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Abstract

We formulate a model for planning the rerouting of aircraft to alleviate en-route con-
gestion, with system capacity being modeled stochastically. To overcome problems
with tractability, we apply a Dantzig-Wolfe decomposition and present an efficient
method for solving it. The decomposed formulation is shown to be tractable for real-
world problem, and it generates up to a ten percent reduction in cost when compared
to an otherwise equivalent deterministic model. We show that even when the decom-
posed formulation fails to terminate within a reasonable time, a near-optimal solution

can still be generated.
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Chapter 1

Introduction

Every year delays cost the airline industry billions of dollars [3]. These delays are,

for the most part, caused by severe weather conditions, which reduce the capacity of

both airports and en-route airspace. Of these two types of capacity reduction, the

reduction in airport capacity has received far more attention.

At present the Federal Aviation Administration (FAA) implements a policy of

ground-holding aircraft that would not have an immediately available landing slot

upon arrival. This technique of converting airborne delays into less costly ground

delays has generated tremendous savings [7]. There is however, at present, no similar

method for reducing costs in the case of congestion en-route.

This thesis examines the problem of optimally adjusting flight plans to meet re-

duced en-route capacities imposed by convective weather. Due to the uncertainty

involved in plans based upon weather predictions, it is useful to model the problem

stochastically, so that a plan will be robust against several likely developments. Using

a model that allows the rerouting of aircraft to be done as needed, makes it possible

to use available capacity more efficiently than using a model with fixed flight routes.

This is because aircraft can avoid chokepoints, and demand can be more effectively

adjusted to meet restrictions when rerouting is an alternative. The model and corre-

sponding solution technique, presented in this thesis are designed to incorporate both

of these characteristics to generate plans with full-recourse and dynamically selected

routes.
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Chapter 2 motivates the problem by first describing how air traffic control works

and how the system is impacted in the presence of convective weather. In the end

of the chapter, previous work on the problem is presented. Chapter 3 presents the

formulation for stochastic planning with rerouting, after first giving the formulation

that it was based upon, and also presents a method for generating solutions to the

problem is given. Chapter 4 presents some variations on the basic model, which allow

the system and airline operations to be modeled with greater accuracy. Chapter 5

provides the results of several computational experiments devised to determine both

the effectiveness and the tractability of the model and formulation. Finally, Chapter

6 draws some conclusions about the usefulness of the model and presents directions

for future work.
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Chapter 2

Problem Description

The objective of this chapter is to explain the operational problem in the airline

industry that the model in this thesis addresses. Section 2.1 explains interactions of

the major decision makers that affect flight planning and execution. Next, section

2.2 presents a closely related problem. Section 2.3 explains the causes of congestion.

Section 2.4 presents the costs that need to be considered when evalutating schedule

adjustments. Section 2.5 explains what needs to be considered in constructing an

appropriate model. The final section presents previous work that has been done in

this area.

2.1 National Airspace System

Due to the competitive nature of the commercial airlines, the primary users of the

National Airspace System (NAS), scheduling is typically done in an aggressive fashion

with little consideration of system capacity. The main concern of the Federal Aviation

Administration (FAA) is the safety of air transportation, and it otherwise tries to

interfere with airline operations as little as possible.

Ensuring safety is primarily done through the appropriate direction of aircraft in

the air, and rarely involves having the airlines modify their schedules. By enforcing

their safety requirements in this manner, rather than with schedule adjustments, the

FAA allows for the existence of unnecessary airborne delays, which can be excessively

9



Figure 2-1: The division of the National Airspace System. The darker lines show the
boundaries of ARTCC's while the lighter lines show the sectors.

costly.

The NAS is divided up into twenty-two regions, each of which is controlled by an

Air Route Traffic Control Center (ARTCC). Each of these regions is in turn divided

into about 40 to 60 sectors and each sector has a single controller in charge of directing

the aircraft within it.

If the demand in a sector s exceeds its capacity, a controller will place restrictions

on aircraft entering sector s. These restrictions can either be a minimum distance or

minimum time period between successive aircraft entering the sector. These restric-

tions result in limited outflows in neighboring sectors, whose controllers must in turn

limit their own inflows so that capacity is not exceeded. This ripple effect can result

in major airborne delays. Due to the highly distributed nature of air traffic control,

in which communication between sector controllers is rather limited, it is difficult to

reroute aircraft around congested regions in real time.

The FAA tends to mandate rerouting around congestion only in severe cases when
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it is clear that safety is a concern. When doing so there is a standard set of alternative

routes that are selected from a playbook, which has limited flexibility.

2.2 Collaborative Decision Making

In the mid-1990s, the FAA and the airline industry started a joint program called

Collaborative Decision Making (CDM). This initiative was started to develop effec-

tive ways to deal with the inefficient way in which arrival capacity was being used

due to the competitive nature of the airlines. The idea behind CDM is that by shar-

ing information about operations, unavoidable system delays can be redistributed in

an equitable manner and improve efficiency, and that this is achieved by creating

incentives for the airlines to provide information about their operations.

This program has brought about an improvement in the performance of ground

delay programs (GDP) that have generated tremendous savings anually compared to

GDPs prior to CDM. GDPs are a technique for assigning landing times at congested

airports, translating what would normally be an airborne delay into a less costly

ground hold. Due to the great success that has been achieved reducing the cost from

airport congestion, the CDM program has recently been expanded, with the forma-

tion of the Long-Term Collaborative Routing Groug, to investigate similar methods,

involving natural extensions to the ground delay programs that already exist, for

alleviating congestion delays that occurs en-route [5].

2.3 Causes of Congestion

Within the NAS the vast majority of flights are planned well in advance because the

heaviest users are the major airlines, which must schedule in advance to accommodate

passenger plans. It is not always possible for these schedules to be met, due primarily

to unforeseen system congestion. Congestion can occur at and near airports and en-

route. The focus of this thesis is developing a methodology for addressing problems

that result from en-route congestion.
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En-route congestion is a result of the need to impose spacing restrictions on how

close aircraft may be to each other, as well as how closely they may approach a

dangerous weather formation such as a thunderstorm. These restrictions are imposed

in real-time by air traffic controllers that communicate with and appropriately direct

pilots.

This spacing restriction on a tactical level results in capacity reductions on the

strategic level. The ability to effectively direct traffic within a sector depends on how

many aircraft are in it and how close they must get to each other. As the number

of aircraft increases the controller has less time to focus on each aircraft, and must

pay more attention to maintaining separation minima due to the decreased distances

between aircraft. When there is bad weather in a sector, the usable area is reduced.

This means that bad weather increases the density for a fixed number of aircraft.

The end result of this line of reasoning is that constraints on the capacity of

en-route sectors, whether they result from increased traffic or bad weather, must

be considered during the planning of flight trajectories to ensure that controllers

will be able to maintain the desired separation among aircraft. It is estimated that

approximately 70 to 75 percent of airline delays are caused by weather [5]. For this

reason, this thesis focuses on addressing the problem of weather related congestion as

opposed to the general congestion problem as a whole. The aspects of the model that

make it more weather specific are the incorporation of stochasticity as well as being

focused on a small region within the NAS rather than modeling it in its entirety.

2.4 Costs

The cost to an airline of a certain flight plan is determined by several factors. The

most tangible of these factors is fuel usage. A slightly more indirect cost is the

safety cost, and an even more indirect cost comes from customer dissatisfaction which

ultimately can lead to a loss of business.

Fuel and safety costs are primarily accumulated while an aircraft is in the air.

This means that if an aircraft cannot land without delay at the arrival airport, given
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that it departs on time, then it is better to have the airplane wait on the ground

before departure rather than be delayed in the air.

The cost from customer dissatisfaction is present both in delays that take place

on the ground and delays in the air. Combinining these different types of costs gives

a positive cost for each time period that a flight is forced to wait on the ground, and

an even greater cost for each time period that a flight must wait in the air.

2.5 Model Characteristics

There are two important characteristics of the model used in this thesis to address en-

route congestion problems. These two characteristics are the modeling of stochasticity

and the ability for aircraft to be redirected along a route that is different from its

nominal route. Section 2.5.1 presents the case for needing stochasticity, while section

2.5.2 explains why rerouting capabilities are necessary.

2.5.1 Dealing with Stochasticity

Due to the highly stochastic nature of weather, it is difficult to generate an accurate

high fidelity forecast of the state of the weather within the NAS at a time that is

more than two hours away [6], and consequently, an accurate capacity forecast is also

unavailable. Planning two hours in advance is not a reasonable option because flights

of more than two hours duration could incur significant delays in the air due to plans

developed on the basis of incorrect capacity forecasts.

A stochastic model can address problems caused due to severe weather. Although

it would be possible to solve a deterministic planning problem and generate flight

plans that are feasible under any possible weather development by assuming a worst

case capacity for each sector, there is potential for underutilized system capacity

when the weather is better than the worst case. A more flexible and less costly

approach would be to generate contingency plans for each possible weather scenario,

which could better utilize the capacity available in good weather scenarios while still

ensuring that the bad weather scenarios do not result in disaster.
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2.5.2 The Need for Modeling Rerouting

With the exception of one model presented by Patterson and Bertsimas [10], methods

for dealing with enroute congestion do not typically provide for the capability of

rerouting aircraft. Instead the costs of delay are mitigated only through the use of

ground holding and airborne holding. That approach can neglect a major source for

effectively offloading excess demand.

When there is convective weather within the NAS, it is rather unlikely that sector

capacities will be reduced uniformly. It is instead likely that some sectors will have

their capacities impacted more than others. Effective rerouting of aircraft can utilize

available sector capacity and reduce system delay.

2.6 Literature Review

A stochastic model for the dynamic rerouting of aircraft has not been found anywhere

in the literature. Patterson and Bertsimas present a model for solving the Air Traffic

Flow Management Rerouting Problem (TFMRP) [10], but it does not address the issue

of stochasticity. Additionally, to deal with dimensionality problems, flights from the

same airport were aggregated into single commodities in a multi-commodity flow.

This results in a loss of distinction among some flights, as well as fixed travel times

between locations that are independent of equipment type. This loss of distinction

prevents the use of flight specific delay costs and also limits the ability to correctly

model a sequence of flights flown by a single aircraft. The fixed travel times result in

model innacuracies that should be avoided because they either assume aircraft speeds

that are not feasible for slower aircraft or neglect the use of higher speeds for faster

aircraft.

The Stochastic Air Traffic Flow Management Rerouting Problem (STFMRP) and

formulation presented in this paper are based mainly upon the Air Traffic Flow Man-

agement Problem (TFMP) formulation of Patterson and Bertsimas [3]. This problem,

and a corresponding formulation, was introduced by Lindsay, Boyd, and Burlingame.

Another formulation was later presented by Helme. The reason that the Patterson-
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Bertsimas formulation was used as a basis for the STFMRP formulation is because

it has proven to have strong LP relaxations, resulting in tractability for large prob-

lems. Although these models do not address rerouting or stochasticity, Patterson and

Bertsimas suggest an untested modification to incorporate rerouting into the model.

Alonso, Escudero, and Ortufio [1] examined a stochastic variant of the Patterson

TFMP formulation, but the need for rerouting was still not addressed.
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Chapter 3

Problem Formulation and Solution

Technique

This chapter presents the Stochastic Air Traffic Flow Management Rerouting Prob-

lem (STFMRP) and presents a technique for solving it. Section 3.1 presents a model

for solving the Air Traffic Flow Management Problem that was formulated by Pat-

terson and Bertsimas and used as a basis for the STFMRP. Section 3.2 introduces

the STFMRP and describes the model formulation that was generated for solving it.

This model, however, proved to be intractable in its initial formulation when experi-

menting with an integer programming solver. Therefore it was necessary to develop

an alternate solution technique. This was accomplished by applying a Dantzig-Wolfe

decomposition, the details of which are given in section 3.3.

3.1 Patterson-Bertsimas TFMP Model

The TFMP attempts to solve the operational problem of minimizing air traffic delay

costs, but it does so by using deterministic sector capacities and fixed flight routes.

Under this restricted set of assumptions, Patterson and Bertsmias were able to develop

a model that could solve a problem formulation for the entire NAS modelled over a

several hour period, with solution time short enough to be feasible for airline planning.

An important key to the success of their model was that the 0-1 formulation had
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a strong LP relaxation that required little or no application of branch and bound

techniques.

Problem Definition

For a set of flights f and a set of sectors J, modeled over time periods T, the problem

is defined with the following data.

Nf = number of sectors in the path of flight f

P(f, i) the ith sector in the path of flight f

P(f, 1) = the departure airport of flight f

P(f, N) = the arrival airport of flight f

Pf the set {P(f, i) : 1 i < N}

if= minimum travel time in sector j for flight f

C (t) = capacity of sector j at time t

d- scheduled departure time of flight f

ry= scheduled arrival time of flight f

c = cost of holding flight f in the air for one period

c = cost of holding flight f on the ground for one period

T =set of feasible times for flight f to arrive at sector j

= first time period in the set T'f f

T last time period in the set T

The two different costs c' and c , are used to represent the greater cost of having

an airplane circle in the air as opposed to sitting on the ground. The objective of the

model is to minimize the total cost for all flights by deciding how long to hold each

plane on the ground and in the air.

3.1.1 Model Formulation

All of the decision variables are of the form wi where

17



Wft . 1 if flight f arrives at sector j by time t{ 0 otherwise

Each triple (f, j, t) such that t E TJ contributes one decision variable to the

formulation. Note, by variable definition, for each flight f, the expression wft

Wf'l) can only be equal to one for a single value of t. Specifically that value is the

time at which flight f will depart. Thus we can compute the departure time as

3 t(w(f'1 ) - )
ft P

The arrival time can be computed in a similar manner. Both the departure and

arrival are not allowed to happen before the scheduled time. Therefore, the ground

delay for a flight can be found by subtracting the scheduled departure time from the

modeled departure time. The arrival delay can be computed in the same way, and

then the airborne delay is found by subtracting the ground delay from the arrival

delay. Multiplying these delays by their respective costs gives the objective function

for the model below.

Min3g t(w P(f~fj f) - 17 (3.1)

+Ca t(WfP(f,Nf ) P(f,Nf))

tETP(f,Nf)tT

-~f S tw-1fD- df)
t CTfP f 1)

(wi - Wf,) < C3(t) Vj Jt C T (3.2)
f:P(fi)=P(fi+1)=j',i<Nf

18



W - w < 0 Vf E Fj - P(f,i),j' P(f,i + 1), t E T},i < Nf

wi-w7_ 1 ;>0 Vf EFj E ,tET} (3.4)

w = 1 Vf E F, j E P (3.5)
f, Tf

w 1e0, 1} Vf E F,j E Pf,t E T (3.6)

Cohstraints 3.2 model the limited sector capacities. If an aircraft has entered the

ith sector in its path at time t, but has not yet entered the i + 1st sector, then the

difference within the sum will equal one, and it will otherwise be zero. The sum of

all of these differences gives the number of aircraft in a given sector at time t, which

must be less than the given capacity.

Constraints 3.3 enforce the minimum travel times through sectors in the path,

preventing flight f from spending less time than lj in sector j

Constraints 3.4 represent the connectivity in time between the variables. Thus

if a flight has arrived at a sector by time t, then for each t' > t, the flight has also

arrived by time t'.

Constraints 3.5 ensure that flights arrive at each sector by the last possible time.

Constraints 3.6 force all of the variables to be binary.

3.2 Stochastic Air Traffic Flow Management

Rerouting Problem

The Stochastic Air Traffic Flow Management Rerouting Problem (STFMRP) assumes

that a scenario-based stochastic forecast of sector capacities is available. This is the

19
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Scenario 1 (p1 = 0.3)

Scenario 2 (pi = 0.3)

Scenario 3 (p3 = 0.3)

Scenario 4 (p4 = 0.1)

t1 t2 t3

Figure 3-1: A scenario tree example.

only source of stochasticity in the model, as travel times are deterministic.

3.2.1 Definition

When rerouting and stochasticity are added to the problem, the definition requires a

few minor changes. Now letting S be the set of scenarios in the forecast, the changes

in the problem data are given below.

lfj = minimum travel time from sector j to sector j' for flight f

N(j) the set of sectors neighboring sector j

Cy,(t) = capacity of sector j at time t in scenario s

TA(s, s') = earliest time by which the scenarios

s and s' can be distinguished

p5 = probability that scenario s is the true scenario

An illustration of a scenario forecast tree is show in figure 3-1. For example in

this scenario, we have TA(1, 2) = t3 and TA(1, 3) = ti.

20



3.2.2 Formulation

As stated previously, the Patterson-Bertsimas model was quickly solvable even when

modeling large scenarios. The expectation in using this model as a basis for a

STFMRP formulation, was that increasing the complexity by adding in rerouting and

stochasticity would be offset by the reduced size of the region being modeled, result-

ing in a tractable formulation. Although their model does not support the rerouting

of aircraft, Patterson and Bertsimas suggest that this can be done by extending the

variables to be of the following form:

,j 1 if flight f arrives at sector j' from sector j by time t

0 otherwise

By extending the variable definition even further with an additional subscript such

that

{ 1 if flight f arrives at sector j' from sector j by time t in scenario s

0 otherwise

the Patterson-Bertsimas model can be extended to provide the capability for modeling

a stochastic scenario in which rerouting is allowed.

The two costs Ca and c.are used again as in the original model, except that this

time the cost being minimized is an expected cost. Ground delays and air delays are

again the basis of this expected cost, and rerouting is now available as well.

Sectors labeled 6f and pf respectively correspond to the departure and arrival

airports as P(f, 1) and P(f, Nf) did in the Patterson-Bertsimas model. For example

if w-' - 0 then flight f has not arrived at its destination by time t, from sector j,

in scenario s. For these airports we define N(3f) and N(pf) to be the sets of sectors

that are feasible entrances into the modeled region from the departure and arrival

airports respectively. Similarly an airport is included in N(j) if sector j is reachable

from the airport without passing through other modeled sectors.
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In addition to including variables for each pair of neighboring sectors, the variable

W ft will be used to represent departure by time t as wp(f') was used earlier. The

airborne delays and ground delays are computed in the same as they were before, but

now the cost being minimized is a weighted average of the costs for each scenario,

with the weights being given by the scenario probabilities p.

Min YsPCS E
SGS f Ej

c E (t - dff)(w' if - w ft1,)

tETf

t T ,jCN(pf)

(t - r-)(W j,' - W ) (3.7)

(3.8)
f EF j"CN(j)

- S
"EN (j)

0 Vj E J, f c F, t E T, E S (3.9)

t--1- , > 0 Vj E Jj' E N(j), f e Y, t E T, s E S

5 1 f Vf E F, S E S, t =6f

w JEN = I Vf E F, s E S, t = f)f
jE N(pf )

W -w , = 0fts f ts, { Vj E J,j' E N(j), f e F,

s, S' E S, t < TA(s, s') +lfj'

22
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tCT

w w- 5 < 5 Cj(t) Vj E J,t C Ts S
fE.F j'EN(j)

w i i
j'E-zN(j)

(3.10)

(3.11)

(3.12)
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W jis C0to, 1}{ Vj E J,j' E N(j), f E F, (3.14)

s E St E T

Constraints 3.8, like constraints 3.2, prevent the number of aircraft in a sector from

exceeding the forecasted capacity during that time period. The only difference is that

to determine arrival by time t, it is necessary to sum the variables corresponding to

arrival for all possible entry sectors j'. Similarly, to determine departure from the

sector, we sum over all possible exiting sectors j".

Constraints 3.9 are similar to constraints 3.3 in that they enforce the minimum

travel time requirement for flights traveling between two sectors. They, with 3.14, also

prevent a flight from exiting a sector into multiple neighbors. Again it is necessary

to sum over all of the entrances and exits. A possibly useful interpretation for these

constraints would be to view them each as half of a flow balance constraint that says

that the flow out is less than or equal to the flow in.

Constraints 3.10 provide connectivity between consecutive time periods as con-

straints 3.4 did.

Constraints 3.13 represent the inability to take actions based upon information

that is not yet available, which is more formally known as the non-anticipativity

principle. Specifically the constraints state that at time t it is not possible to choose

to go towards sector j' under scenario s and not do so in scenario s' if the two scenarios

are not distinguishable at that time.

Constraints 3.11 and 3.12 specify that exactly one aircraft representing flight f

must take off and exactly one must land.

Constraints 3.14 force all variables to be binary.

3.2.3 Problem size

This formulation generates an LP that proved to be intractable in initial testing. The

number of variables generated is roughly .F||SI IJIDK, where D is the maximum

delay (this is the same as the number of possible time periods during which a flight

may enter a sector), and K is the average number of neighboring sectors. Even for
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a relatively small problem with JTJ = 60, IS! = 3, IJI = 30, D = 10, K = 3,

the number of variables is nearly 200,000. The number of constraints generated is

approximately the same, mainly due to constraints 3.10. This necessitates the need

for an alternate solution method that does not simply feed this formulation directly

to an MIP solver.

3.3 Decomposition

To deal with the unwieldy size of the formulation, a Dantzig-Wolfe decomposition [41

was used. The master problem is given by the constraints 3.8, the only constraints

that bundle the flights together. The remaining constraints define |FI subproblems,

each of which yields a feasible flight plan as a solution.

3.3.1 Master Problem

Let Af be a 0-1 variable that represents the selection of flight plan i for flight f as

generated by a sub-problem for flight f. The following parameters are defined for the

master problem.

pf = The expected delay cost of flight plan i for flight f

if(j, t, s) = Indicator function that is 1 if flight plan i

has the aircraft in sector j at time t in scenario s

If = The set of all possible flight plans for flight f
The master problem is defined as

Mm EPf Af
Min E { Y A{

f CF iC-If

Af =1 Vf E F (3.15)
icIf

,t, s)AV < Cj'(t) Vj E J, t E T, s E S (3.16)
fEF iEIf
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Af E {O, 1} Vf E T, i E If

Constraints 3.15 and 3.17 ensure that one flight plan is chosen for each flight while

constraints 3.16 are the sector capacity constraints 3.8.

Since there are a huge number of possible flight plans for each flight, column gen-

eration must be used to keep the problem size reasonable. Each time the master

problem is solved on a restricted subset of flightplans, up to J.F new flight plans are

generated -using the dual costs of the current solution to the restricted master prob-

lem. If none of the newly generated Af's has a negative reduced cost, the algorithm

terminates..

3.3.2 Solving the Sub-problems

The master problem generates two different types of dual costs. Cost pt corresponds

to the cost of the ith flight constraint of type 3.15, and cost vjt, is associated with the

sector capacity constraint for sector j at time t in scenario s. Given these dual costs,

the goal of the sub-problems is to identify flight plans that will lead to a solution with

lower cost.

Instead of using an LP solver to solve the subproblems, it is possible to exploit

their time dependent structures to generate optimal solutions with a Dynamic Pro-

gramming (DP) algorithm. To put this in the form of a DP problem, let z correspond

to a segment of the scenario tree. Each segment of the tree represents a possible

information state about the true weather scenario. In each information state the set

of candidates for the true scenario is a subset of S. The DP algorithm can iteratively

compute the optimal expected cost-to-go for a flight that reaches sector j at time t in

segment z, by starting with terminal costs of the various landing times and working

backwards in time. This cost-to-go is a minimized expectation of the costs that will

be accrued over the remainder of a flight.
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Z3
Scenario 1 (p1 = 0.3)

Z1

4 Scenario 2 (p1 = 0.3)

zo

Scenario 3 (P3 = 0.3)

Z2

Scenario 4 (p4 0.1)

to t1 t2 t 3

Figure 3-2: A scenario tree with labeled information states.

Z(t) = the set of segments for time t

Vf(t, j, z) = the optimal cost-to-go for flight f while in

= time t, sector j, and segment z.

S(z) the set of scenarios included in segment z

z = the probability that the true scenario is included

- in segment z (EZes(z)Ps)

Z(z, t) the subset of Z(t) that is reachable from segment z

As an illustration of this notation, we have the same scenario tree as before, but it

now has its segments labeled. Letting zo correspond to the information state during

planning gives Z(to) = zo, S(zo) = S, Pz = 1, and Z(zo, t) = Z(t). In the scenario

tree zo shows up as the segment coming from the root of the tree at time to.

For the realization of scenario 2, which is depicted with the thick lines in the

tree, we start of in information state zo, where the true scenario could be any of the

four possibilities. We then proceed to information state zi, in which we know that

the true scenario is either scenario 1 or scenario 2, and finally we end up in state
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z4 , in which we are certain that the true scenario is scenario 2. For segments that

start farther along in time, Z(z, t), becomes a reduced subset of Z(t). For example

Z(zi, t 3 ) = {z 3 , z 4 }, while Z(t6) = {z 3 , z4 , z5 , z6 } because once it is know that the true

scenario is either scenario 1 or scenario 2, it is not possible to know later on that the

true scenario is scenario 3 or scenario 4. To begin the computation of the DP, first

the terminal costs are set depending on how late the flight reaches its destination, as

Vf(t, pf, z) = ca(t - af) for each t E TJ, z Z(t).

Using these terminal values, the sector capacity dual costs of vtj,, it is now possible

to compute the cost-to-go functions for previous time periods and other sectors. This

cost is computed as

P/Vf (t + 1, j, z') + E Vj
z'EZ(z,t+1) Pz sES(z) Pz

Vf(t, j, z) min JN(j) V (t + fjij',l z) (3.18)
z'C Z(z,t+lfjjI)

t+l1f39 -1

t'=t z'EZ(z,t') Pz sCS(z') Pz

The first term in the minimization corresponds the the cost-to-go if the aircraft is

delayed in the air for one period. This is computed as the expected cost-to-go from

being in the sector at the next time period, which is the expectation of Vf(t + 1, j, z'),

plus the cost of occupying the sector for the current time period, which is "is. To

compute the expectation of Vf(t + 1, j, z'), we add the costs for each possible z' scaled

by the probability P4 of ending up in state z' at time t + 1 given that at time t, the

information state is z. The reason that the sector occupancy costs are scaled by 1- is
PZ

because vtjs is an expected cost of planning to occupy sector j at time t in scenario

s given that at time t o the information state is zo. The cost incurred by this choice

is zero for other information states at time t, therefore the cost in state z must be
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scaled in this manner.

The second term corresponds to the minimimum cost of directing the aircraft

towards a neighboring sector. This cost is computed as the expected cost-to-go from

the neighboring sector after the specified minimum travel time plus the expected cost

of occupying the current sector until that travel time has elapsed.

For the departure airport we compute the cost the same except that the first

term, which corresponded to in-place delay is decreased by c, - c to represent the

value gained by substituting ground delay for airborne delay. The value obtained for

Vf(df, 6, z1)) plus lf gives the reduced cost of the flight plan, which is only kept if

this cost is less than zero.

3.3.3 Branch and Bound Strategy

The LP relaxation of the formulation does not always yield an integral solution, so it

is necessary to formulate a branch and bound methodology to get the optimal integral

solution. The typical branch and bound strategy of choosing a single fractional vari-

able to set to 0 or 1 in separate subproblems does not work well in conjunction with

column generation, and it also changes the structure of the subproblem, making it

impossible to use the DP. To branch effectively while still maintaining a subproblem

structure that is solvable by the DP, the following method was employed [2].

For a problem with a fractional solution, the problem is split into two subproblems.

Let (t, j, s) be a time-sector-scenario triplet for which some fractional part of flight

f is designated to be in sector j at time t in scenario s. One of the subproblems

requires that the flight passes through (t, j, s), while the other forbids it. This is

easily implemented in the subproblems by adjusting the prices Vt to be either -oc

or oc.

As is typically the case, the choice of what to branch upon is an important factor in

performance. The most effective strategy found was to branch on a triple (t, j, s) with

a maximum dual cost among those that experienced fractional occupation. Because

the LP relaxation of the formulation is fairly strong to begin with, we found that this

strategy terminates with an optimal solution in a reasonable amount of time.
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Chapter 4

Modeling Variations

This chapter introduces several variations to the STFMRP formulation that can be

used to model the problem in greater detail. Section 4.1 presents some constraints that

are part of the Patterson-Bertsimas model that were not included in the STFMRP.

Section 4.2 shows how non-linear cost functions can be used for the delay cost rather

than the linear cost functions that are used. Lastly section 4.3 shows how the level

of passenger disruption caused by a potential solution can be incorporated into the

objective function.

4.1 Patterson-Bertsimas variations

There are three sets of constraints that were part of the Patterson-Bertsimas formu-

lation [10] of the TFMP that were left out of the STFRMP formulation of this thesis.

These constraints on legitimate flight plans were not removed because they made the

model too complicated. They were simply left out because they were not seen as being

as relevant as sector capacities when rerouting aircraft to accommodate convective

weather. Two of these types of constraints allow limits to be imposed on departure

and arrival capacities at airports. Adding these constraints will be discussed in sub-

section 4.1.1. The third type of constraint gives the ability to model continued flights,

which means that if a single aircraft is used for two consecutive flights, then the de-

parture of the second flight cannot be before a minimum turnaround time has elapsed
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after the first flight lands. The implementation of these constraints is discussed in

subsection 4.1.2.

4.1.1 Arrival and Departure Capacities

Because the model can only be used for modeling regions of limited size, the flights

included will often represent only a fraction of the flights scheduled to use the arrival

and destination airports. The exceptions to this would be airports that are actually

within the region being modeled. Since this region is most likely experiencing severe

convective weather, it would be prudent to model the reduced runway capacity at

these airports by limiting their arrival and departure capacities.

For a flight f, the two expressions

5f
6

f
3

.f 
6
f 

6
f(41

Wfts - wj, 1 ,, (4.1)

and

ft(ws - wfL 1,,) (4.2)
jGN(pf)

each only evaluate to 1 if the flight departed or arrived respectively at time t in

scenario s and otherwise evaluates to 0. Thus summing each expression over all

flights using the same airport gives the numbers of flights departing and arriving at

a particular time.

The runway restrictions for airports in the set C are defined with the following

data

Dks(t) the departure capacity of airport k at time t in scenario s

Aks (t) = the arrival capacity of airport k at time t in scenario s

6f = the departure airport of flight f

pf = the arrival airport of flight f
Adding the constraints

(wfts - wft-is) <; Dks(t) Vk E IC, S E S, t E T (4.3)
f:6f =k
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> (wjpf - wp|_,,) < Akt) Vk E IC,s E S,t E T (4.4)
f:pj =k

generate the desired restrictions on the departure and arrival capacities.

These constraints remain as part of the master problem in the decomposition.

The added complexity from each constrained airport should be no greater than the

complexity that would come with adding an additional constrained sector. The effect

on the subproblems is that there is an added cost for certain departure and arrival

times. This can be dealt with appropriately in the DP algorithm by modifying the

terminal costs and adjusting how the costs are computed at the departure airport.

It is even possible to model capacities that are not independent of each other, such

that more arrivals can be allowed at the cost of reducing the number of departures,

or vice versa. For more details on dependent capacities see [10].

4.1.2 Continued Flights

For airports within the modeled region, it could be useful to model the use of a

single aircraft for successive arriving and departing flights to ensure greater model

accuracy. Let C be a set of ordered pairs of flights representing all connections, such

that for each (f, f') E C flight f is continued by flight f'. Letting Of be the minimum

turnaround time needed for flight f, the needed constraints are as follows.

3 f' - W _ lf > 0 V(f, f') c C, t E T ', s E S (4.5)
jEN(pf)

Constraints 4.5 work in a manner similar to constraints 3.9, by preventing a de-

parture of the continuing flight before a minimum amount of time has elapsed after

arrival of the continued flight.

As for the airport capacity constraints 4.3 and 4.4, these constraints would re-

main in the master problem when the problem is decomposed. The changes to the

subproblem are again only changes to costs of certain departure and arrival times,

which are easily captured in the DP algorithm.
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4.2 Non-linear Costs

Although linear cost functions are often used to determine the values of solutions

to problems in air traffic flow management, it is not necessary when using the 0-1

formulation of Patterson and Bertsimas. Many costs, such as fuel and safety costs,

are in fact accumulated in a linear manner, with an equal value being consumed for

each time period spent aloft. There are however some costs that do not accumulate

in a linear manner. One example is the cost of missed passenger connections. A flight

can most likely arrive several minutes late without having any passengers miss their

connections to other flights, but a longer delay indeed results in missed connections.

The cost accumulated during the first few minutes of delay is zero, whereas the cost

of further delay is positive. Clearly a non-linear cost function can be of use in making

the model more accurate.

It is not possible to model a flight cost that is an arbitrary function of the ground

delay and the airborne delay, but it is possible to model a cost that can be computed

as an arbitrary function of ground delay plus an arbitrary function of total delay. As

was noted in section 4.1.1, for each scenario s and flight f, the two expressions 4.1 and

4.2 each only evaluate to one for a single time, and that these times are the departure

and arrival times respectively. This means that the objective can be changed to

Min E PS( [Ec (t) (w,"I - ,

sES f G- tET 5I

1 (4.6)

tETJN(pf)

where c,(ti) and cT(t 2 ) are the costs associated with flight f departing and arriving

at times t, and t2 respectively.

This change is all that is needed to use non-linear costs. These costs do not affect

the ability to apply the decomposition and use the DP algorithm to generate flight

plans. The algorithm only requires a modification to how the terminal costs are
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initialized and how the costs are computed at the departure airport.

4.3 Passenger Disruption

The level of passenger disruption that is caused by a schedule change cannot simply

be computed from the arrival times of flights. This disruption also depends on when

connecting flights leave. If a flight arrives late, passengers might still make a connec-

tion if their next flight is also delayed. Therefore, the actual cost of a solution can be

computed more accurately if the cost function is not limited to being a sum of costs

for individual flights.

To represent the disruption, the model can include variables of the following form:

1 if passengers from flight f do not connect with flight f' in scenario s
Xff'S

0 otherwise

The constraints used to represent disruptions are similar to the constraints used for

continued flights. The difference is that the passenger disruption constraints make the

minimimum delay between departure and arrival optional, with a cost for not meeting

the minimum, while the continuation constraints make the delay mandatory. Let rt/P

be the minimum time between arrival and departure that allows passengers from flight

f connect to flight f', and let Q be the set of possible passenger connections. The

constraints to represent making connections are

Wfts - Wf t+K4f S + Xff'5 > 0 V(f, f') Q, t E '
jEN(pf)

The addition of the xff, term to the minimum delay type constraint allows the

original constraint to be violated, but only at the cost of missed connections.

These constraints will be treated the same as the flight continuation constraints

in the decomposition. Because they stay in the master problem, it now has xfff5

variables in addition to Af variables.
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Letting (ff be the cost incurred when passengers on flight f cannot make their

connection to flight f', the terms ps~ffixffis are added to the objective function to

represent the expected cost of missed connections. By including these disruption costs

in the objective function, it is possible to more accurately evaluate the real cost of a

solution and therefore generated solutions perform better.
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Chapter 5

Computational Results

This chapter gives the results of several computational experiments performed using

the decomposed formulation of section 3.3. There are three goals for these exper-

iments. The first goal is to determine whether problems of a realistic size can be

solved with the model in a reasonable amount of time. The second goal is to compare

the costs that can be achieved using the model to costs that result from using a de-

terministic model. The last goal is to examine the quality of plans that are generated

if the decomposition algorithm is terminated prior to reaching optimality.

All tests were run on a 2.1 GHz Pentium 4 with 1 GB of RAM. For the decompo-

sition, the Master problem was solved using the XPRESS-MP solver, while the DP

subproblems to generate flight plans were implemented in Java.

The scenarios all modeled a region of 40 sectors in and near the Cleveland ARTCC,

with model time periods corresponding to 5 minutes. This region is depicted in figure

5. The sectors in the middle of this region are designated as having conditions that

are likely to lead to storm activity. The number of flights included in the model was

148. Costs are set such that c" = 2 and c'. = 1 for all flights.

5.1 Running Time

Test 1 models 3 possible scenarios, corresponding to good weather, moderate storms,

and heavy storms. The times at which these three scenarios become distinguishable

35



Figure 5-1: Sectors modeled in computational exercises, with the storm impacted
sectors shown in blue.

from each other is the same for each pair. The nominal capacity for each sector is set

to 10 until the scenario divergence time, at which point the capacities of the central

sectors are reduced to 4 and 2 respectively in the moderate storms scenario and the

heavy storm scenario, while the capacities remain at 10 in the good weather scenario.

The good weather scenario is assigned a probability of .4, and the other two scenarios

each occurr with probability .3.

The problem is solved after 72 iterations of column generation requiring a total of

12 minutes. Table 5.1 shows how much time is needed to solve the DP subproblems

and the LP for the restricted master problem in each of several iterations. The time

needed for the master problem increases at first as many columns are generated in the

first few iterations, but levels off at around 1 second. The DP time stays relatively

constant as one would expect since the algorithm computes the same formula in each

iteration with different inputs.

The total time needed to obtain a solution is dominated by the column generation

process. This can be alleviated in two ways. One way is by using a more performance
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Iteration DP time (secs) LP time (secs)

1 9.982 0.168
2 9.652 0.251
3 9.646 0.485
4 9.583 0.725
5 9.555 0.739
6 9.861 0.864
7 9.871 0.804
8 9.65 0.917
9 9.754 0.942

10 9.763 1.005

72 9.496 1.011

Table 5.1: Computation times in seconds for DP subproblems and LP master problem.

oriented language rather than Java. Another ways is to parallelize the process. The

DP time is actually the time to solve 1 subproblem for each of the 148 flights, rather

than the time to solve a single problem. Since the problem solutions are not dependent

on each other, these many subproblems can be easily solved in parallel on separate

computers. In addition to these two methods for reducing the solution time, the LP

time for the master problem can also be reduced by reusing the bases from previous

solutions as a starting point in each iteration.

5.2 Stochastic vs. Deterministic

In the second test, the results for the stochastic model are compared with results

obtained using deterministic capacities. The scenario used is the same as for the first

test. To evaluate the use of deterministic capacities, flights are planned using "fixed"

capacities until the divergence time, and replanned to deal with the actual capacities

at that time. Table 5.2 summarizes the results from the stochastic plan, and from a

deterministic plan using the mean capacities as the fixed capacities.

There is more than a ten percent reduction in cost between the stochastic model

and the deterministic model with mean capacities. This is a tremendous cost im-
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Model Cost achieved

Stochastic 127.3
Deterministic with mean capacities 142.0

Table 5.2: Plan costs for stochastic and deterministic planning methods.

provement when considering the amount of money that is anually lost by the airline

industry due to delays. The deterministic model is also somewhat optimistic in the

sense that, it assumes that a global replan is possible while planes are enroute. As

was stated in Chapter 2, the highly distributed nature of air traffic control makes

the changing of flight plans very difficult. This necessitates proper planning with full

recourse prior to takeoff.

5.3 Convergence rates

As was mentioned in section 3.3, the column generation process can be halted prior to

satisfaction of the optimality codition. The master problem can then be solved with

only a subset of the feasible flight plans for each flight. This premature algorithm

termination might be necessary when an answer is needed soon, but the algorithm

has not yet terminated. If this is to be used as a fallback plan, then it is useful to

know how far from optimal the generated plan actually is.

As the system becomes more constrained, the algorithm's time to termination

tends to degrade. For this reason, the capacity of the impacted sectors in the heavy

storm scenario is decreased to 1 for this test. The algorithm us terminated prior

to completion after running for 800 iterations. The entries in table 5.3 show the

optimal values for the restricted master problem obtained after several iterations.

The iterations listed are those at which the objective value actually improved, starting

with iteration 7 which had the first feasible solution.

The objective value did not improve at all during the last 700 iterations. The

bound given by the LP relaxation of the master problem is 173.87 which is within

1 percent of the best solution obtained. When observing the results of the test for

38



Iteration Objective Value

7 198.8
8 192.9
9 187.1
10 183.2
11 181.3
12 180.1
13 177.4
14 177.1
15 177
16 176.5
19 176.2
36 175.9
42 175.6
94 175.3

Table 5.3: Objective function for restricted master problem

section 5.1, it is noted that the optimal solution was found long before the branch

and bound process was able to prove that the solution was indeed optimal so it is

quite possible that 175.3 is that actual objective value even the algorithm did not

manage to prove this within a reasonable amount of time.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, it is shown that a model that handles both stochasticity and rerouting

can deal effectively with en-route capacity reductions due to convective weather. A

model that does this, the STFMRP, based upon the TFMP formulation of Patter-

son and Bertsimas is described along with a method for generating solutions to the

STFMRP that deals with the intractibility of the large 0-1 MIP that results from

the problem formulation. This method was implemented and evaluated in several

contexts.

The solution technique is shown to work on a realistically-sized problem, and

provide results that are a significant improvement over the results from using a de-

terministic model for planning. In the case of slow termination, which can happen

for problems that are heavily constrained, it is shown that optimal or near-optimal

solutions can be obtained without running the algorithm to completion.

6.2 Future Work

A major problem with a global optimization approach determine optimal allocation

of en-route capacity is that airlines are reluctant to share information if they do not

perceive any benefit. This can result in allocating resources to flights that have been

40



cancelled, which is of course suboptimal.

Before the formation of the CDM initiative, there was a different methodology used

to implement ground delays. Using CDM has proven to be more effective, due to the

incentive for airlines to share information. In designing methods to allocate congested

resources, it is necessary to consider the willingness of the airlines to participate.

The price based decomposition used in this paper is suggestive of an auction,

in that prices are adjusted so that resources go to buyers that value them the most.

With very minor changes, the master problem can be recast as a combinatorial auction

problem, where each flight or airline bids for the right to occupy certain sectors during

certain time periods.

Recently, a large amount of research has been done for effective ways to solve

combinatorial auction problems, and just as importantly, the truth revelation that is

embedded in these methods [9, 8]. As we see from the computational experiments,

the LP relaxation of the STFMRP formulation typically does not yield integral solu-

tions. This indicates that placing prices on individual resources, as was done in the

decomposition, fails to capture some interdependence among them. By considering

the value of a resource bundle as a whole rather than as the sum of the values of in-

dividual resources, it is possible that more insight could be gained into the structure

of the problem, and a better solution technique could be generated.

By using an auction approach to slot allocation, it could be shown to airlines that

it is in their best interest to show how much they truly value the resources that they

are allocated. Airlines would not need to bid with real money. They could instead

each be allocated a number of credits based upon their nominal airspace usage. This

method of allocation would match well with the CDM ideology, which maintains that

negotiation between the FAA and the airlines is a necessary part of efficient planning.
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