
Visualization and Management of
Large Biological Imaging Datasets

by MASSACHUSETTS INST1 EOF TECHNOLOGY

Jeffrey C. Mellen JUL 2 02004

Submitted to the Department of LIBRARIES
Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 20, 2004 -

© 2004 Massachusetts Institute of Technology.

A u th or
Department of

C ertified by ...

Department of

C ertified by ..

V

Accepted by...................

A " '* -L- 1-%-TcTA

Associate Professor
iter Science

pervisor

...........
eI er K. Sorger

A cQnccri if Professor
Biology
>ervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

Visualization and Management of

Large Biological Image Datasets

by

Jeffrey C. Mellen

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

The Open Microscopy Environment (OME) image browser enables biologists to

quickly analyze, manipulate and modify large imaging datasets. The browser

includes a variety of features that facilitate image classification, annotation,

visualization, and organization. The browser displays image metadata using a

variety of techniques, including visual cues, context-sensitive overlays, and

color-coding. The application explicitly supports visualization of screening

datasets, but also supports multidimensional images, as well as standalone

images. When integrated with the rest of the applications of the OME client

software, the browser allows users to view images in greater resolution, analyze

multiple dimensions, and in future releases will support analysis routines.

Thesis co-supervisors:

Dennis M. Freeman Peter K. Sorger
Associate Professor Associate Professor
Department of Electrical Engineering Department of Biology
And Computer Science

3

4

Acknowledgements

OME is a joint effort between the Sorger Lab in MIT's Department of Biology, the

Wellcome Trust Biocentre at the University of Dundee in Dundee, Scotland; the

Institute of Chemistry and Cell Biology at Harvard Medical School, the Image

Informatics and Computational Biology Unit at the National Institutes of Health

in Baltimore, and the Laboratory for Optical and Computational Instrumentation

at the University of Wisconsin.

I couldn't have completed this project, or this thesis, without the assistance and

advice of Chris Allan, Erik Brauner, Jean-Marie Burel, Andrea Falconi, Denny

Freeman, Ilya Goldberg, Harry Hochheiser, Dan Rines, Peter Sorger, Jason

Swedlow, and especially Doug Creager. Thanks for the opportunity and the

codebase. The movie will be made.

I would also like to thank Matthew Aichele, Yuriy Brun, Sheldon Chan, Bren

Cox, Evan Davidson, Jessica Mellen, John Ritchie, Rahul Sarathy, Cathy Shaw,

Tony Scelfo, Tony Walters, Josh Yardley, and Sarah Zhou for tolerating me

throughout the project.

This project is dedicated to my wonderful parents, Tim and Peggy Mellen. You

finally get to see some return on your investment now!

5

6

Table of Contents

1 Introduction .. 11
1.1 Collecting user interface requirements .. 1 3
1.2 Project evolution/sum mary .. 14
1.3 The O M E Project ... 14

2 The User Interface ... 17
2.1 The O M E Client... 17
2.2 Browser Com ponents .. 21
2.3 Displaying Images ... 24
2.4 The Heat M ap & scalar variable display... 30
2.5 Image Classification... 34
2.6 Annotations... 36

3 Design & Im plementation...37
3.1 Browser Overview ... 37
3.2 The Browser Agent and application-level classes 40
3.3 Core browser classes .. 44
3.4 Thumbnails & draw ing .. 49
3.5 Event handling, actions and behavior factories... 53
3.6 Heat & Color maps...58
3.7 Integration: Loading a dataset .. 61

4 Supporting Large Image Datasets ... 65
4.1 Semantic zoom ing... 65
4.2 Color coding ... 68
4.3 Contextual Layouts ... 71

5 Sam ple Datasets...75
5.1 ICCB full plate ... 75
5.2 A sam ple dataset of 5D images.. 78

7

6 Conclusion .. 81
6.1 Future W ork... 81

Appendix A: Code & Documentation URLs ... 83

Appendix B: Complete Source File List... 85

8

List of Figures

Figure 1.1: O M E 2.2 architecture .. 15
Figure 2.1: A screenshot of the entire O M E client .. 18
Figure 2.2: The O M E image viewer .. 19
Figure 2.3: The Annotator module .. 20
Figure 2.4: An empty browser w indow .. 21
Figure 2.5: The heat map w indow .. 23
Figure 2.6: The color map w indow ... 23
Figure 2.7: The phenotype editor...24
Figure 2.8: The image browser displaying a screen .. 27
Figure 2.9: Q uantum treemap and heatmap m ode.. 28
Figure 2.10: The image magnifier .. 30
Figure 2.11: Heat map Boolean mode .. 34
Figure 2.12: Classifying an image .. 35
Figure 2.13: An image annotation .. 36
Figure 3.1: The class hierarchy of the image browser.. 38
Figure 3.2: The BrowserAgent hierarchy .. 41
Figure 3.3: Agent event classes.. 43
Figure 3.4: Application-level classes.. 44
Figure 3.5: The browser core classes .. 46
Figure 3.6: Thum bnail classes .. 51
Figure 3.7: Paint method classes... 52
Figure 3.8: The browser event & action classes.. 55
Figure 3.9: Heat map classes .. 60
Figure 3.10: Color map classes.. 61
Figure 4.1: Paint method classes (inheritance) ... 67
Figure 4.2: Color m ap classes 11.. 70
Figure 4.3: Layout method classes .. 73
Figure 5.1: The 384-well ICCB dataset...76
Figure 5.2: A small 5D image dataset .. 78

9

10

CHAPTER 1

Introduction

In recent years, quantitative analysis of biological images has become a common

technique for testing scientific hypotheses. Biological images are now frequently

the subjects of numerical analysis and the basis of experiments' in chemical

screening and in modeling intracellular processes. Researchers can now take

high-resolution movies of cells in five dimensions, and run screening

experiments using thousands of compounds at a time, to verify biological models

and determine compound behavior. The hardware and methods used to

generate the terabytes of imaging information necessary to conduct these

experiments have become more sophisticated and more efficient2 . However, the

software used to manage, classify and analyze this data has not matured at the

same pace.

Currently, biologists who work with large image datasets manage them in an ad-

hoc manner, using whatever tools are available. Often, they save libraries of

thousands of images in folders on a normal filesystem, identifying each unique

image only by filename. To take notes about a particular image or series of

images, they use a notebook or spreadsheet, which may or may not be in sync

with the dataset. To search for images that meet a certain criteria, they usually

scan through their notes, or scan through the images themselves with a viewer

I Swedlow, J. R., Goldberg, I., Brauner, E., Sorger, P.K. "Informatics and Quantitative Analysis in
Biological Imaging." Science, Vol. 300 (April 4, 2003); 100-2.
2 Yarrow, J.C., Feng, Y., Perlman, Z.E., Kirchhausen, T., Mitchison, T.J. "Phenotypic screening of
small molecule libraries by high throughput cell imaging." Combinatorial Chemistry & High
Throughput Screening, June 2003; 279-86.

11

such as Metamorph3, one at a time. This workflow and these ad-hoc tools are

imprecise, inefficient, and ill suited for analyzing entire datasets as a whole.

To better analyze the volumes of data generated by imaging experiments,

biologists need a tool that can quickly extract and display information about

hundreds, even thousands of images at a time. Such a tool would ideally allow

the biologist to identify and organize images by phenotype, create annotations

on the fly, and display relevant image metadata at the dataset level. This tool

would have several advantages over current ad-hoc solutions. First, the tool

would unite an image and its metadata. A biologist would no longer have to

search for image information in auxiliary files or in a notebook; an image's data

would instead appear in the same application and same location as the image

itself. With images and their metadata united, a biologist could more quickly

discover correlations between quantitative variables, and between variables and

phenotypes. Such an application would also enable the biologist to perform

comparative analysis of a large number of images, often by visual inspection.

Finally, this tool would allow a biologist to more easily gather and share

quantitative information about a large set of images, and review imaging

experiments more easily.

My thesis project has been to develop such a tool. Over the past several months,

I have developed an image browser capable of displaying hundreds of images

and their associated metadata at the same time. The browser provides tools for

the biologist to classify images and organize images by phenotype, and quickly

compare images over an unlimited number of quantitative variables. It also

allows a biologist to create and save freeform notes about specific images.

Finally, as a component within the OME (Open Microscopy Environment) client,

the browser provides access to more sophisticated image analysis tools and

databases.

This document describes the feature set, design and implementation of the image

browser in detail. Chapter 2 contains a tour of the application, describing all the

3 MetaMorph, Universal Imaging Corporation. http://www.imagel.com/products/metamorph.

12

features of the image browser's user interface. Chapter 3 summarizes the design

and structure of the image browser at a source module level. Chapter 4 details

how the image browser allows a biologist to better analyze large datasets in

particular. Chapter 5 analyzes how effectively the browser interacts with real

image datasets. Finally, Chapter 6 proposes future directions for the browser.

The remainder of this section recounts how the image browser has evolved into

its current form, and quickly describes the larger OME project.

1.1 Collecting user interface requirements
Before designing any modules or writing any code, I conducted an informal

survey with the biologists in the OME project about what features would enable

them to more effectively analyze large volumes of data. These discussions in

November 2003 led to the idea of an image browser, originally intended to

facilitate analysis of chemical and biological screens. Screening is the concurrent

analysis of hundreds of molecules or hundreds to thousands of cells using an

automated microscope, following exposure to some perturbation, such as

treatment with a small molecule. In each screen, the microscope images an entire

plate, which contains an array of wells, typically arranged in a standardized 96 or

384-well format. In this manner, a biologist can systematically test if cells react to

libraries of compounds by the hundreds. Our idea was that the image browser

would help the scientist by displaying the images in well order; images onscreen

would appear in the same location as on the plate, thus making the dataset more

familiar and accessible to the screener.

I added a number of features to the proposed browser based on discussions with

other biologists, particularly Jason Swedlow at the University of Dundee, and

Dan Rines at MIT. Dan & Jason had developed their own ad-hoc methods for

annotating and classifying images, but wanted something much more solid, and

much more convenient. They convinced me that an image browser needed to

organize and group images by phenotype, and that an image browser should

display and support the creation of annotations. Peter Sorger, my advisor in the

Biology department at MIT, suggested the idea of a heat map to compare images

quantitatively. I adopted the idea of semantic zooming, treemaps, and an image

13

magnifier after researching several applications that organize and display photo

albums-particularly PhotoMesa4 from the University of Maryland's Human-

Computer Interaction Laboratory, and the Piccolo 2D API from the same

research group.

After development began, I visited the University of Dundee in January and

explained the concepts and features of the image browser to the biologists there.

They confirmed that many of the proposed features would be useful, and

suggested that categorizing phenotypes by color would be useful in order to

compare two phenotypes at once. I agreed. After that point, the proposed

feature set was frozen, and all efforts turned to development.

1.2 Project evolution/summary

The design and development of the image browser began in November. I

developed a basic design for the browser component throughout December, and

tested several components that the browser relies on (particularly the Piccolo5 2D

drawing framework) throughout the month. The entire development team of the

OME client met in Dundee in January, at which point we agreed on how client-

side components would interact, and on additions to the interface between client

applications and OME servers. At that point, I conducted extensive development

and testing, particularly throughout March and April. The image browser is

now in the final stages of testing; its feature set is final, and bug fixing will

continue until the final release of OME 2.2, due at the end of this month.

1.3 The OME Project

The Open Microscopy Environment (OME) is an open source project with a suite

of tools that analyze, annotate, share, and store imaging data for a variety of

applications6 . It is a joint effort between MIT, the Institute for Chemical & Cell

Biology (ICCB) at Harvard, the Wellcome Trust Centre at the University of

4 PhotoMesa, University of Maryland Human-Computer Interaction Lab (HCIL).
http://www.cs.umd.edu/hcil/photomesa/.
5 Piccolo, HCIL. http://www.cs.umd.edu/jazz/.
6 Open Microscopy Project. http://www.openmicroscopy.org; http://docs.openmicroscopy.org.uk.

14

Dundee, the National Institutes of Health (NIH) in Baltimore, and the University

of Wisconsin at Madison. OME's ultimate purpose is to allow biologists to

perform experiments and analysis on image data they collect from microscopes,

in an automated and versatile manner.

The core of OME is two data

sources: the OME data server Java Admin toos Web
(OMEDS) and OME image

server (OMEIS). OMEDS is a

relational database that Re a
DBa sere

contains information about \ _ s____erver
Authentbcation \ aaM aefn ae

experiments, image sets, C*""^ \

analysis modules, annotations, Image Server

and data histories. It also

contains a Perl layer that

converts the relational data in

the underlying database into

objects that client applications Figure 1.1. OME 2.2 architecture (4/2004)
can create, use and modify.

OMEIS stores binary image data, and selectively serves regions of interest (ROIs)

and thumbnails of multidimensional images to client applications. A Java-based

client and web-based client allow users to view images and manage metadata.

The image browser is a component of the Java client. An overview of the current

OME architecture is shown in Figure 1.1. More information about the project

and the architecture of the entire OME system can be found at

http: / /docs.openmicroscopy.org.uk (see the Appendix for a complete list of

URLs pertaining to the project). The next section begins with an overview of the

Java client.

15

16

CHAPTER 2

The User Interface

This section is a complete tour of the image browser. The browser is a

component within a larger OME client, so this section will begin with an

overview of the other components in that application. A discussion of the

individual UI components of the image browser will follow. The remainder of

the section will focus on how the user interface reflects the dataset, how a user

interacts with the components of the UI, and how the dataset view displays

image metadata. Keep in mind that this section discusses these components

from the perspective of the user; Chapter 3 details the components from the

programmer's point of view.

2.1 The OME Client

The image browser is one of several user interface components embedded within

a larger application, the OME client, codenamed "Shoola." The other visual

components within Shoola are the Data Manager, which allows users to view

their work in a hierarchical tree; a Viewer, which allows users to view and

manipulate their images at full resolution; an Annotator, which allows users to

make notes about datasets and images; and information panels, which provide

quick summaries about individual projects, datasets, and images.

The enclosing user interface of the OME client appears after a user logs into

OME. A single window appears, containing multiple embedded windows that

can be minimized, maximized, and closed independently, as shown in Figure 2.1.

Those embedded windows are not children of the operating system's window

17

Open MIcroscopy Environment

File Connect Window Help

New... Import

T My OME

V 68-353 Projects
- 5D Test Set I

0, ICCB Test Screen (4 rows)

> ICCBTest Screen (full:
8 ImportSet

Figure 2.1. A screenshot of the entire OME client.

manager, but rather of the parent window. This configuration is commonly

known as a MDI (multiple-document interface) view. Other popular

applications that use MDI include America Online, and Adobe Photoshop. One

advantage of MDI is its simple representation within an operating system's

window manager; an MDI application only adds one child to the window

manager. A user can manipulate Shoola and other MDI applications more easily

in an operating system context. However, with that convenience comes some

loss in flexibility. Biologists who may want to organize the image browser and

multiple viewer panels across multiple screens cannot do so, as the modules are

all enclosed within a single window. Whether or not Shoola remains an MDI

application is a subject currently up for debate by the OME development team.

The lone child window that appears when a user loads Shoola is the Data

Manager, which is the top left window in Figure 2.1. The Data Manager contains

18

Controls Movie

aff i M 3 #Rate 1 Z /0 T /0

Figure 2.2. The OME Image Viewer.

a tree view of the entire project hierarchy on a remote OME server. Initially, the

tree view is only displayed at project depth. However, by expanding each

project, a user can see a list of datasets contained within that project. Clicking on

the arrow next to that dataset will reveal the complete list of images that are

members of that dataset. Double-clicking on any entry will trigger an

information panel, which contains basic information about projects, datasets, and

images, including image dimensions, project and dataset size, and that object's

name. Right-clicking on any object within the data manager will trigger a menu

with a list of actions pertaining to that resource. A user can trigger the image

browser by right-clicking on a dataset and selecting "Browse" from the popup

menu. Similarly, a user can also trigger the viewer by right-clicking on an image

and selecting "View."

The viewer is a component that displays images stored in OME at full resolution,

and offers users a wide variety of filters and analysis tools. The main purpose of

the viewer, shown in Figure 2.2, is to allow the biologist to clearly isolate

qualitative features within an image. Thus, it has much more UI support for

image analysis and view customization than the browser, through a variety of

palettes, image views, and menus. Whereas the image browser only shows a

19

thumbnail of an image in two dimensions, the viewer has full UI support for

multi-dimensional 5D images. The viewer can display multiple Z slices and time

points of an image, as well as reveal the image under different channels. While

the browser displays thumbnails with a default set of channel intensities and

colors, the viewer allows the user to manipulate these intensities. Most critically,

the browser only shows images at a limited level of resolution-the viewer

allows a user to view an image at high resolution. However, the browser is

better suited for classifying images by phenotype, and organizing images within

a dataset, once they have been inspected within the viewer.

Finally, the Annotator is a component
Edit Image Annotation

which allows users to input and store
Editkn: Image 01081-Oll8l Morph Well D12 Site 2

This image looks pretty washed out; I'd exclude it qualitative information about an
from any future analyses you make. image, such as notes, general
--JM observations, and even messages to

other biologists. The Annotator is

simple, and can be triggered by both

the data manager and the browser.

As shown in Figure 2.3, it contains a
Figure 2.3. The Annotator module. simple text box with the latest

annotation for a particular dataset or image, and buttons to either save an

updated annotation or restore the previous one. Currently, the Annotator

supports the display of a single annotation per image, although multiple

annotations (from different users) may be necessary in the future. However, the

freeform nature of an annotation makes it easy for multiple users to collaborate

and make notes about the same dataset or image.

The data manager, viewer, and parent UI were developed by Andrea Falconi and

Jean-Marie Burel at the Wellcome Trust Center at the University of Dundee in

Scotland. I helped the Dundee team develop the annotator. Future releases of

the OME client will include graphical analysis and experiment visualization

tools, developed by Harry Hochheiser at the National Institutes of Health in

Baltimore.

20

2.2 Browser Components

The image browser contains several UI components, which are all children of

Shoola's parent window. Obviously, the main component is the browser itself,

which organizes and displays image information within a dataset. In addition, a

heat map window allows a user to quickly identify outliers in analysis and

survey quantitative image information graphically. A color map window

enables a user to quickly identify the phenotypes of a particular image. There is

also a phenotype editor, which allows a user to create categories and phenotypes

for image classification. The remainder of this section is a brief overview of

what these components look like; their function will be discussed in future

sections.

2.2.1 The browser window 000 Image Browser. SD Test Set1

The browser window is the View Analyze Layout

principal component of the image

browser. It displays thumbnails and

provides the mechanism for

selecting, opening, and interacting

with individual images. It contains

four main components: a menu bar,

a toolbar, the dataset view, and a

status bar. An empty browser

window is shown in Figure 2.4. The

title bar always contains the name of

a dataset; this allows users to

identify between multiple active Fllinginanalyzedsemanfic Wes...

datasets. The Shoola UI supports

multiple open browser windows, Figure 2.4. An empty browser window.

although it does not support multiple concurrent views of the same dataset.

The menu bar currently contains three menus: View, Analyze, and Layout. The

view menu allows users to specify what additional information they would like

displayed on top of each thumbnail. Each entry in the view menu is an overlay

21

that can be turned on or off; its current status is indicated with a check mark.

Current view options include well number (for screening datasets) and an

annotation indicator. Future indicators accessible through the View menu

include those for displaying image dimension, site number (for screening

datasets), and image ID. The Analyze menu allows a user to display the other

components in the browser-the heat map window, the color map window, and

the phenotype editor. The option to turn the image magnifier on or off is also

located in the Analyze menu. Finally, the Layout menu contains all possible

layouts for a particular dataset. The default layout is always an option, as is an

item for organization by phenotype. Possible future layouts include graph and a

custom, freeform layout mode.

Users manipulate the zoom level of the browser through the toolbar, located

under the menu bar and above the dataset view. The toolbar contains three

buttons related to zoom: zoom out, zoom in and zoom to fit; as well as a text field

for manually inputting a zoom percentage.

Below the dataset view is the status bar, which displays a variety of messages to

the user. It is especially important during dataset loading. Retrieving all

necessary image data and metadata out of the OME system is, unfortunately, a

relatively time-consuming operation. While the browser loads that data, the

status bar is continually updated with status messages. These messages inform

the user that the loading operation has not timed out. In addition, the status bar

displays thumbnail names on mouseover, and the status of selection operations.

Of course, the dataset view is the central focus of the browser window, and all its

features will be described in Section 2.3.

2.2.2 The heat map window

The heat map window is the front end to the heat map tool, which color-codes

each image based on its value for a particular variable. This provides users with

a method to easily identify outliers and infer phenotypes. Figure 2.5 illustrates

the window's three basic components. The first is a tree, listing the available

scalar parameters to supply to the heatmap algorithm. The list of parameters is

22

inferred from the OME database during the

browser window loading sequence, and contains

every Boolean or scalar-valued semantic element

for which images in the dataset have some non-

null value. The second component is the heatmap,

legend, which contains a color band, dataset

minimums and dataset maximums, and combo

boxes for supplying additional parameters to the

heatmap algorithm.

2.2.3 The color map window

When the color map is active, thumbnails are

color-coded according to their phenotype within a

certain class. The color map contains a legend of

which colors correspond to which phenotypes. A

single combo box controls the currently displayed

class, while a list containing color boxes and

phenotype names explain the relationship between

color and image type. Figure 2.6 contains the color

map for an Image Quality class.

* ' HeatMap: SD Test Set 1

01 0 PlaneSumj-i
T 0 StackCentroid

#Thec
TheT

Y
z

'- 0 StackaeometricMean
StackGeometricSigma

0- 0 StackMaximum v

View by: Mean

0.0 1.0

Scale: Linear

Loaded StackCentroid attributes.

Figure 2.5. The heat map.

@) View Phenotypes

Select class:

Image Quality

UAverage
Bad
Excellent

2.2.4 The phenotype editor L uooa

The last peripheral component of the image

browser is the phenotype editor, which allows

users to create classes and phenotypes for images

within a particular dataset. The editor is shown in I

Figure 2.7. The editor contains two lists: a list of Figure 2.6. The color map.

classes, and a list of phenotypes for a particular

class. Selecting a class in the left list will reveal and/or change the list of

phenotypes in the right list. Users can create and edit both classes and

phenotypes by clicking on the buttons below the lists. Doing so will trigger the

class and phenotype creator, which allows a user to input the name of a

phenotype or class, and an associated description. Descriptions may contain

23

77

f)) t Categories: ICCB Test Screen (4 rows)

Groups: Phenotypes:

J;eQuai Excellent
Mitotic Index lGood

Bad
Average

New Group Edit New Phenotype

Save Changes Cancel

Figure 2.7. The phenotype editor.

informal criteria for classification, or

information about the phenotype itself,

but they are semantically equivalent to

annotations-simply text to guide

biologists. Phenotypes and classes are

saved directly to the database, and thus,

there is a small amount of lag that occurs

when loading the editor, and when

committing changes with the "Save

Changes" button. Pressing the "Cancel"

button will abort any changes made to

the phenotype list.

2.3 Displaying Images

The dataset view displays all images in a particular dataset. It does so by

representing and drawing a thumbnail of each image. Then, depending on the

current mode, it organizes these thumbnails according to a specific layout. The

dataset view conveys metadata to the user through image overlays, and allows a

user to more closely inspect an individual image through an image magnifier.

This section summarizes each visual component of the dataset view, and

describes how biologists may interact with them.

2.3.1 Thumbnails & overlays

Thumbnails are the fundamental units of the image browser. They can represent

an individual image, or in screening context, an individual well. The browser

can group and rearrange thumbnails to provide contextual information to the

user, and draw over the thumbnails to provide additional information about the

underlying images. Aside from the background, the thumbnails are the only

items the user sees within the dataset view, so they also are the basis for user

interaction with the image browser.

When initialized, the image browser loads all thumbnails in a dataset from

OMEIS and stores them in memory, in order to avoid making excessive calls to

24

the image server. The image browser retrieves the thumbnails by calling

OMEIS's GetThumbnail' function; thus, OMEIS determines the size, color

balance, black level, and contrast of the displayed images. OME's Importer

attempts to optimize the contrast and color balance of an image for feature

visibility, and the browser depends on this best-effort computation to display

visually coherent thumbnails. The one limitation of this default thumbnail

extraction behavior is in calculating thumbnails for multidimensional images.

The default plane extracted from a multi-dimensional image is the middle Z-slice

from the first timepoint in a 5D image. Unfortunately, this may not be the most

meaningful plane in the entire image stack. However, using the Viewer, a user

may correct this by marking a particular plane (and a channel configuration) as

the default. It should be noted that the Get Thumbnail function supports

multiple parameters, such that the browser can retrieve different planes or larger

thumbnails than the default. However, extracting images with this method is

very time-consuming, which is detrimental when opening large datasets.

A user can interact with a thumbnail in several ways. Moving the mouse over a

thumbnail will either trigger the magnifier (see Sections 2.3.4 and 4.1.1) or

display the name of the image in the status bar. Right-clicking on a thumbnail

will bring up a popup menu, which lists further options for viewing, classifying

and manipulating the underlying image. A user may select multiple thumbnails

in the same method that a user in graphical file manager would select multiple

files. In this manner, a user can classify multiple images at once. The browser

currently lacks support for dragging the thumbnails within the dataset view.

While this feature would be appropriate for quickly classifying images in

treemap layout mode, and for allowing a user to organize a dataset to his or her

liking, I did not consider drag support critical, especially with the other analysis

and classification tools contained in the browser.

Finally, the dataset view makes extensive use of overlays, graphical cues drawn

atop thumbnails, to display image metadata. These graphical cues can be zoom-

The complete OMEIS API can be found at
http://docs.openmicroscopy.org.uk/api/omeis/index.html.

25

dependent or static, can take the form of icons, shaded rectangles, or text, and

can even respond to user input. For example, selecting "Well number" in the

View menu (for a screening dataset) will display the well number in the upper-

left corner of each thumbnail. Overlays can be zoom-sensitive; certain overlays

will only appear or react to user input if the zoom level is above a certain

threshold. The color map, heat map and annotation discussion will reveal more

overlays and how they can rapidly provide the user with quantitative and

qualitative information about a dataset.

2.3.2 Layouts

The image browser can currently organize thumbnails within a dataset in four

different ways, using four different LayoutMethod subclasses: by a maximum

pixel width layout method (MaxWidthLayoutMet hod); a maximum-number

column layout method (NumColsLayoutMethod); in the configuration of a

chemical screen (PlateLayoutMethod), or by using treemaps to group

thumbnails by phenotype (QuantumGroupLa youtMe thod). The image browser

determines a default layout method for each dataset by verifying whether or not

a dataset represents a chemical screen. If the dataset contains mages of a

chemical screen, images within a dataset will have associated Image P l at e

attributes in the OME database; non-screen images will lack those attributes. If

the image browser finds these attributes, it will order the images in a plate layout

configuration; otherwise, the thumbnails will be organized in an n-by-8 grid,

where n is some number of rows.

The plate layout method, shown in Figure 2.8, attempts to simulate the layout of

images within a chemical screen as accurately as possible. By keeping track of

well addresses in the dataset, the browser determines the number of rows and

columns that are required to recreate the screen, and then assigns a location for

each image thumbnail based on its well letter and number.

There are a number of subtleties in processing screening datasets. First, the wells

likely do not have a one-to-one correspondence with the images in the dataset.

More often than not, there are multiple images for a particular well, taken at

26

0 C) Image Browser ICCB Test Screen (full)

View Analyze Layout

~43% _

sawMnsmo mammmn mommaammmmnonsmmomnmmnm

=man mama UMmmmamamma

=woman amnamann =mmma

*nmmunammummmmmuummummu
mmm-.,omm-..mmm-m,,n

mm -momnmmmmmmmmom
,mommmnmmmmnm,mm,omm-mmmnnmmemmommomm
,mmmmumnmm,m-,mmom,,
m,mmmommemmmmommm
,m,-mnommrnommemmomm-mo
mmemmmmmemmomemammmom
,mmmonmom-mmnsmmemm,

010BI-OlIB1 Morph Well M02 Site 1

Figure 2.8. The image browser, displaying an entire 384-well screen.

different sites within the well by the scanning microscope. Thus, a single

thumbnail may represent multiple images. A small triangle-shaped overlay that

gives a thumbnail a "folded" look notifies the user that a well has multiple

images. The browser only displays one image per well at a time. A user can

change which image to display by using the image magnifier to select a different

site. Finally, the well number overlay is only available for screening datasets. It

is not shown by default; a user must select "Well Numbers" from the View menu

to see the well number of each image.

The other major layout method, the quantum grouping layout method, is more

complicated, and merits its own section.

2.3.3 Quantum Treemaps & Organization by Phenotype

The default method to organize thumbnails by a phenotype is by employing a

quantum treemap. The benefits of quantum treemaps are the subject of section 4.3.

27

PIP-

O 00image Browser: ICCB Test Screen (4 rows)
View Analyze Layout

8 1% _

All images loaded.

Figure 2.9. A screenshot of quantum treemap (and heatmap) mode.

What is important to mention now is that the quantum treemap algorithm

simply divides a rectangular space into regions, into which visual objects can be

placed. The sizes of the regions are roughly proportional to the number of

objects that they contain. In the browser context, the algorithm accepts sets of

thumbnails-each set containing thumbnails of like phenotype-and divides the

browser window into regions of like phenotype. Selecting the "Arrange by

Phenotype" menu item from the Layout menu will yield a treemap layout

similar to that shown in Figure 2.9. The menu item contains a list of classes by

which the browser can group thumbnails. Selecting one of the classes will

initiate the quantum treemap algorithm, over sets of images with like phenotype

within that class. When the algorithm completes, thumbnails of like phenotype

appear grouped together. A tab in each region informs the user of the phenotype

of that region. Unclassified images appear in the "Unclassified" region. These

are the same images that are not colored when the color map is active.

28

Quantum treemap layout provides an additional and useful UI

benefit-allowing a user to see the quantitative variance of images within a

phenotype, and allowing users to see information about two classes of

phenotypes at once. For example, given the two classes "Image Quality" and

"Mitotic Arrest," a user can organize thumbnails into various phenotypes in the

Mitotic Arrest class with a treemap, and identify good examples of images

within a particular phenotype by selecting the Image Quality class in the color

map. As quantitative information sometimes determines the phenotype of an

image, using the heatmap in treemap layout mode can allow the biologist to

identify misclassified images, pick out outliers out of a certain phenotype, and

visualize the correlation of other scalar variables to phenotype. See Section 2.4

for more information about the heat map, and Section 4 about how the

combination of treemap and layout views is especially valuable in analyzing

large datasets.

2.3.4 The image magnifier

The image magnifier is a tool that allows a user to quickly investigate an image

within the dataset without having to open the viewer. It provides a higher

resolution view of a particular thumbnail, and displays information about the

image that is normally hidden in the dataset view. Furthermore, it allows a user

to quickly and easily perform certain operations on a thumbnail, such as

annotation, property editing, classification, and opening within the viewer.

The default action when a user moves the mouse cursor over a thumbnail is for

the image magnifier to appear over that thumbnail. An example of this is shown

in Figure 2.10. In order to prevent the magnifier from appearing unintentionally,

the browser waits 500 milliseconds to prompt the magnifier. If the user's cursor

has not left the boundaries of the dataset view, and has not left the boundaries of

a single thumbnail, the magnifier will appear.

29

The magnifier in Figure 2.10 is an example of a magnified image within a

screening dataset. Several bits of information that do not normally appear in the

dataset view (due to space constraints) appear in the magnifier. For example, the

well number is prominently displayed in the upper-left hand corner of the

magnifier. In addition, the magnifier displays the total number of images in a

well and the currently selected image within the well. There are conceivably

additional applications and features for the magnifier. When more analysis code

is merged into the Shoola client, the magnifier could display image features, and

display the dimensions of an image. This practice of displaying additional

metadata at higher resolutions is called semantic zooming, and there are additional

examples of this technique elsewhere in the browser (also see Section 4.1 on why

semantic zooming is beneficial).

The icons in the magnifier, laid atop the

image, provide the same functionality as

right-clicking on an image. The icon on the

left side triggers the popup menu for a

particular thumbnail; a user can classify the

currently zoomed image in this manner.

The paper icon on the right side triggers the

image annotator. Below the annotation icon

is a magnifying glass icon. Clicking on this

Figure 2.10. The image magnifier. icon instructs the browser to load the

zoomed image in the image viewer. Finally, the red X in the upper right hand

corner closes the magnifier; this may be necessary to view neighboring images

obscured by the magnifier window. Unlike thumbnails, the magnifier is not

subject to overlays generated by the heat map and color map, so it is useful for

displaying the original image when a thumbnail is color-coded.

2.4 The heat map & scalar variable display

The heat map component allows a user to quickly compare images

quantitatively, using color to indicate the value of a particular variable in an

image. If an image is colored blue, its value for a particular scalar is low

30

compared to the rest of the images in the dataset. If an image is colored red, its

value for a particular variable is relatively high. In addition, the heat map has a

Boolean mode, which colors images based on whether an image meets a certain

criterion.

Comparing the relative values of a variable for all images is a useful tool in

biological image analysis, especially for chemical screening. For example, one

common variable in analyzing biological image is maximum image intensity.

Proteins stained with GFP will fluoresce if they are in high levels. In this case,

images with higher maximum intensities (in the GFP emission wavelength)

likely indicate higher protein levels, which is useful for analyzing and isolating

cell processes. Using color to show quantitative differences between images

allows biologists to quickly survey a dataset and determine an image's relative

value. This is not a new technique; everything from weather maps to news

magazines to instant messenger clients use color to indicate quantitative

difference. However, it is invaluable in analyzing large image datasets.

A user opens the heat map by selecting the "HeatMap" item from the Analyze

menu. The heat map initially displays a hierarchy of all semantic types with a

scalar or Boolean element that is image-granular; that is, types that can have

unique values for every image. A semantic element and enclosing semantic type

will only be included in the heat map's tree (for a particular dataset) if at least

one of the images in the dataset has a non-null value for that element. For

example, all images have a Pixels attribute, and have non-null values for the

SizeX and SizeY elements; thus, the heat map places the Pixels type in the tree.

Because the image browser must rely heavily on the database for information

about available semantic types and their applicability to the dataset, building the

heat map for a particular dataset takes significant processing time. Thus, to

make user interaction with the heat map as smooth as possible, this analysis

occurs during the initial dataset load.

There are three types of objects displayed in the tree: Types, symbolized by a red

icon with a "T", scalars, represented by a pound sign icon, and Boolean values,

represented by a yin-yang icon. The heat map does not classify and assign colors

31

to string or object values; this is better suited for the treemap layout and for the

color map classifier. Expanding a type reveals more subtypes, or scalar or

Boolean elements. Clicking on a scalar element initiates heat map scalar mode,

whereas clicking on a Boolean element initiates heat map Boolean mode. As

these two modes are sufficiently different, I describe them in their own

subsections.

2.4.1 HeatMap scalar mode

By clicking on any scalar element within the heat map's hierarchical tree, a user

initiates scalar mode. This sets off a chain of processing, which can take several

seconds, depending on the size of the dataset. First, the image browser must

contact the OME data server (OMEDS) to retrieve all attributes of the element's

enclosing semantic type, if it has not done so already (the browser will cache all

instances of a type once they are loaded). Once all the elements are retrieved

from the data server's database, the heat map agent analyzes the values of each

image, extracting the minimum, mean, and maximum values across the dataset.

This analysis sets the range of possible data values-the "cold," or blue value, is

the minimum scalar value for all images in the dataset, and the "hot," or red

value, is the maximum for the dataset. Finally, for each image, the heat map

determines a color based on either linear or logarithmic interpolation between

the "cold" and "hot" color. The heat map finally maps each thumbnail to a

particular color, and for each thumbnail, instructs the browser to draw a semi-

transparent rectangle overlay of that color. The end result, as earlier shown in

Figure 2.9, is that each image has a relative "temperature," which is apparent by

visual inspection.

The heat map offers several options to fine-tune coloring and handling multiple

attributes per image. First, there are different scales a user can use to color a

dataset. Different scales control how the heat map interpolates color for each

image. The default scale is linear. Using a linear scale, an image that has a value

that is exactly the average of the entire dataset will be colored purple-the

average color between red and blue. A logarithmic scale is also available. Using

the logarithmic scale, color is assigned by comparing the log of the value of a

32

particular image to the log of the minimum and the log of the maximum. Color

is interpolated based on how close the log value is to either extreme. The

logarithmic scale is useful for comparing images whose values for a particular

variable may differ by orders of magnitude. A standard deviation/mean scale

will be included in a feature release of the image browser.

It is often possible, even likely, that multiple instances of a single semantic type

will correspond to a particular image. For example, the number of StackMax

attributes (the maximum intensity computed in three dimensions) for a

multidimensional image, is proportional to the number of timeslices and

different channels in an image. The heat map, however, must assign a single

color to an image, regardless of this many-to-one relationship. Currently, the

heat map combines these attributes in a manner determined by the user. The

default is to use the elemental mean of the attributes. For example, when

determining the value to use for displaying the StackMax.Maximum for a

multidimensional image, the heat map will take the average of the Maximum

element of all associated StackMax attributes. However, using a combo box in

the heat map, a user can also elect to use the minimum value, median value, or

maximum value as the value assigned to a thumbnail. More sophistication may

be necessary for multidimensional images, but this strategy works well for three-

dimensional (X, Y, channel) screening images.

Finally, enabling heat map scalar mode will activate an overlay that draws the

numerical value of a scalar atop a thumbnail. Because the image browser prints

this in a small font, the overlay is only visible at 75% zoom and above. This is

another example of semantic zooming; the scalar value only appears once a user

has zoomed in past a certain threshold. In contrast, the color overlays assigned

by the heat map are not semantic; the image browser draws them at all

resolutions and levels of zoom.

33

2.4.2 Heat map Boolean mode

Boolean mode is similar to scalar mode, but displays different information. The

method of obtaining relevant attributes is the same as in scalar mode, as the

image browser must contact the OMEDS to retrieve information about each

image. However, once this occurs, processing is complete. If the value of a

Boolean variable for a particular image is true, the image is colored green. If it is

false, the image browser colors it red. Figure 2.11 shows a dataset colored in

Boolean mode. Unlike scalar mode, there are no scale parameters, as Boolean

classification is binary and discrete. The lone complication is when there are

multiple instances of a semantic type for a particular image. Currently, if the

'true' values outweigh the 'false' values, the image is marked as "true" and vice

m sversa. It is possible, and may be

View Analye Layout __more desirable, to provide a
100% HeatMap: 5D Test Set 1 color blend, or a true / false

0 DsplayOptons count; however, this is not
0- BlueChannel (DisplayChannel)* * '~glueChannelonBlueChanneln icurrently implemented in the

1 DisplayRGB

0 CreenChannel IDisplayChannel) system. It should be noted that
f GreenChann6On

110 GreyChannel [DisplayChannel) using red and green to represent
O Pixels (Pixels]
0 0 RedChannel (DisplayChannell false and true is a strategy

All images loaded. _ _ _ _ _

adopted from JUnit, the popular
View by:

Java testing facility, although

JUnit may have borrowed that

False True color scheme from traffic lights.

Scale:-. In any case, it is recognizable

Loaded DisplayOptions attributes. and distinctive enough to suit
Figure 2.11. Heat map Boolean mode. the purpose of Boolean mode.

2.5 Image Classification

The image browser uses three components for image classification: the

phenotype editor, the color map, and the thumbnail popup menu. As described

in Section 2.2.4, the phenotype editor allows a user to create classes and

phenotypes. The color map provides a legend linking colors and phenotypes

34

within a dataset. The final piece of the puzzle is the thumbnail popup menu,

which allows a user to assign phenotypes to a particular image. This is a very

useful feature because the vast majority of biological image data is hand-

annotated.

To activate the thumbnail popup

menu, a user must either right-click on

a thumbnail (or group of thumbnails),

or click on the menu icon of theE View Info

magnifier. The popup menu, shown Annotate
Cateoz ime Q Average

on Figure 2.12, contains several items. totic index Bad
Excellent

To classify an image, a user must click celn

on "Categorize." Clicking on Figure 2.12. Classifying an image.

"Categorize" displays the list of

phenotype classes that belong to a dataset. Clicking a group pops up the

available phenotypes for that class, and clicking on a phenotype classifies the

selected image (or images) as that particular type. The classification occurs in the

database immediately.

Both the color map and quantum treemap layout rely on these classifications.

Section 2.3.3 discusses treemap layout has already been discussed in detail; this

section focuses on the color map. A user triggers the color map by selecting the

"View Phenotypes" item in a browser's Analyze menu. The color map then

appears above the browser. A user must then select a class to view. When a

class is selected, the color map agent displays a mapping between colors and

phenotypes in its color list, and then instructs the image browser to color-code

the thumbnails in accordance with that mapping. A user can change the

phenotype of an image when the color map is active; this change will be reflected

in the thumbnail. The color map explicitly supports 32 different phenotypes per

class; it will assign distinctly different colors for the first 32 phenotypes. After 32,

the color map will issue a random color for each subsequent phenotype.

Changes to phenotype classes and phenotypes themselves made using the

phenotype editor will be appear immediately in the other image classification

35

tools. If quantum treemap mode is active, updated phenotypes will appear

renamed. Additional colors will appear in the color map if a user adds

additional phenotypes. The only exception is that a user will need to manually

reorganize a quantum treemap using the Layout menu to reflect changes in a

phenotype class.

2.6 Annotations

There are three ways to create or modify an annotation with the image browser.

The first is by clicking on the annotate icon (below the red X) in the magnifier.

The second is by right-clicking on a thumbnail, triggering the thumbnail popup

menu, and selecting the Annotate item. The third, illustrated in Figure 2.13, is by

clicking on a thumbnail's annotation overlay. Each method will trigger the

Annotator module, which allows a user to create or modify annotations.

a -- == w A user can determine which thumbnails

I * * * *have annotations by selecting the
Annotations item from the View menu.IM This prompts the image browser to draw

onsider rechecking the I a small icon overlay in the lower right
mnitotic index ofthis
image corner of each thumbnail that has an

associated annotation. The overlay itself

is another example of semantic zooming;

Figure 2.13. An image annotation, it is drawn only at 50% zoom or higher.
However, unlike other overlays discussed

thus far, the annotation overlay is an active overlay node, and responds to user

input. Moving the mouse over the annotation icon will pop up a text box that

looks like a "Post-It Note," which displays the first few lines of the associated

annotation. Clicking on the icon or the dynamic text box will trigger the

Annotator, and allow the user to modify that annotation. These active overlays

allow the user to quickly view and subsequently edit annotations, without

excessively cluttering the dataset view.

36

CHAPTER 3

Design & implementation

The previous chapter described what the image browser displays to a user. This

chapter describes how the browser component works, at the system level. The

first half describes the modules in the image browser from the top down,

working from the top-level application classes to the browser components down

to thumbnails and thumbnail action classes. I will cover several patterns used

throughout the browser application in detail, including behavior factories, and

top-down event handling. This section concludes with a thorough summary of

how the browser modules work together to load a dataset.

3.1 Browser overview

Like the rest of the OME client, the image browser is written in Java. The

browser itself is composed of more than 140 separate classes; the total number of

classes that make up the client is about 350. The classes in the browser fall into

several groups: a set of application-wide classes which serve as the glue between

the rest of the OME client and the browser, a collection of browser UI classes,

user event handlers and behavior factories, layout managers, overlay drawing

methods, image metadata storage classes, and packages for the heat map and

color map widgets. Figure 3.1 shows a schematic of the browser class hierarchy.

The browser relies on three external frameworks for the user interface and for

communicating with the other major OME components. For displaying UI

widgets, the OME Java client uses Swing, the standard user interface toolkit for

Java. The dataset view uses Piccolo, an open-source 2D graphics toolkit built

atop Java2D, authored by the HCIL at the University of Maryland.

37

"I A

-' ~ ~Brwir~nuor + Browsortnternal SemTypeTf

-Uth

Attri~etB rowtte +rotooll P Lccolo actron

0+

~IcA+
ero +seesg Cotoreit ecoa*A Colu Iep

0D+ Bosri ml*ew so
Lyu~- 41 - .- 0s BW~vlLse

NOW MEMO -9

Finally, to extract image data and metadata from OMEDS and OMEIS, the image

browser relies on the OME remote framework, a Java layer that abstracts XML-

RPC communication with the data server, manages object persistence, and

regulates data transport.

The browser's use of Swing is straightforward. The parent UI widget of the

entire client is a JDes ktop Pane8 , and agents within the enclosing application

are JInternal- Frames. This is the normal way to build MDI (multiple-

document interface) applications in Java (see to Section 2.1 for a more detailed

discussion on the benefits and drawbacks of MDI). The image browser, heat

map, and color map components are all JInternaFrames. Each frame

contains a various configuration of buttons and drop-down boxes, and is fairly

straightforward, using the only default UI widgets provided by Swing.

The dataset view uses the Piccolo graphics framework for drawing overlays and

rendering images. I chose Piccolo instead of standalone Java2D for several

reasons. First, when displaying large datasets, performance is of the utmost

importance. Piccolo is optimized for handling scenes with high primitive counts,

drawings with many objects, and uses Java 1.4's drawing facilities wherever

possible, which enable a system to employ hardware acceleration where needed.

More importantly, Piccolo makes several common tasks easier for the

programmer, such as zooming, panning, mouse event handling and organizing

many graphics primitives into a hierarchy.

In Piccolo, every drawable object is a node-an instance of the PNode' class.

Nodes can have children and parents, and are viewed though a camera,

represented by the PCamera class. Piccolo includes separate nodes for simple

shapes, images, and text. Nodes can be added to a viewable layer, and can

respond to mouse events, such as clicking, dragging, and hovering. The camera

controls the zoom level and center of projection; that is, which point in the

8 The complete Java API can be found at http://java.sun.com/api. The specifications for each Swing
component can also be found at that site.

9 The Piccolo API, including PNode, PCamera, PPickPath, and PImage classes, can be found at
http://www.cs.umd.edu/hciI/piccolo/download/piccolo/api/.

39

drawing space corresponds to the center pixel within the browser viewport.

Piccolo makes a 2D programmer's life much easier by abstracting the acts of

panning and controlling the zoom level to methods in the PCamera class. In

addition, the Piccolo canvas facilitates event handling by constructing directed

acyclic graphs (DAGs) in response to user input, such as a mouse click. These

graphs, called P Pi c k Paths, contain a list of all possible PNode s that could have

captured that event. The browser takes advantage of this data structure to

streamline event handling, as described in Section 3.5.

Finally, to retrieve information from OMEIS and OMEDS, the image browser

interacts with the remote framework, a collection of classes that abstract database

calls and URL constructions to the image server. The Java remote framework

bundles database calls in XML-RPC messages, sends them to the active data

server, unmarshals the response into Java objects, and forwards those objects

back to clients. In addition to communication and transport classes, the remote

framework contains Java representations of OME core types (such as a Project,

Image, Dataset or Feature) as well as semantic types and attributes. The image

browser makes extensive use of attributes to display metadata, and must query

the remote framework frequently in order to retrieve metadata from and store

metadata to OMEDS.

3.2 The Browser Agent and application-level classes

The OME client is made up of several independent modules called agents. The

data manager, viewer, and browser are all examples of agents. Agents send and

receive messages to and from other agents, communicate with the data layer to

retrieve metadata from OMEDS and pixel data from OMEIS, and allow modules

to have common access to filesystem and application-wide resources, such as

icons, configuration information, and a unified error-handling framework.

The browser agent (BrowserAgent. java)" plays several roles. First, it

receives messages from the data manager, and sends messages to the Annotator,

10 The complete OME client reference API, including documentation of all browser class & method
references, can be found at http://sorger-g51.mit.edu:8009/shoola. The source code is available at

40

Classifier and Viewer agents. It is also the one module in the browser

application that has access to the data layer; thus, all requests for image data or

metadata must be routed through the BrowserAgent. It must also provide

access to resources and information that the browser needs, such as zoom icon

buttons, and the browser configuration file on disk. Finally, and most

importantly, it is in charge of loading all thumbnails and immediately relevant

image metadata from the remote servers when a dataset is first opened.

3.2.1 The BrowserAgent within the OME client

By implementing the OME client's Agent interface, the BrowserAgent class

serves as the conduit between the internal modules of the image browser and the

external resources and components of the OME client. The Agent interface

contains setup and teardown methods, as well as the setContext method,

which provides the browser agent with access to resources shared by the entire

Shoola application. This access comes in the form of a Registry object, the lone

parameter to the setContext method. The registry contains references to the

remote data service, remote image
BrowserAgent

service, a semantic type resolver, an

icon manager, an error notification Agent Lieten

module, and a reference to the

enclosing UI component (TopFrame) BrowserAgent

of the entire Shoola application. Each

agent is supplied with a registry when

the OME client application is first TopFrame

initialized; the agent container (a

module that initializes each agent at
appl hatntiap)esuresthi. aFigure 3.2. The BrowserAgent hierarchy.
application startup) ensures this.

The BrowserAgent also implements the AgentEventListener interface,

which allows it to listen to messages from other agents. How this is done is the

subject of the next subsection.

http://cvs.openmicroscopy.org.uk. Follow instructions on how to retrieve the latest CVS snapshot of
the code; there is also a web view where users may inspect the most recent source code.

41

3.2.2 Message handling

One of the modules contained in the registry is the event bus (EventBus. j ava).

The event bus is a message queue that all agents in the application share, and is

the mechanism by which one agent can talk to another. To receive messages

from other agents, an agent must selectively subscribe to a certain class of

messages, using the event bus's regi st er () method. This method takes an

AgentEventListener (the browser agent is one) and a message class as

parameters. This instructs the event bus to forward any messages of that class in

the queue to that agent.

The browser agent listens for (and registers with the event bus for) four types of

event-driven messages: LoadDataset, ImageAnnotated, Images-

Classif ied, and CategoriesChanged. Each message type is a separate class,

whose instances contain the parameters of the message. Whenever another

component generates a message of those types, the browser agent will react to it.

For example, consider when a user clicks on the "Browse" popup menu entry in

the Data Manager. Clicking on "Browse" instructs the data manager to post a

LoadDataset message to the event bus. As the BrowserAgent has subscribed

to listen to those messages, it receives it, extracts the ID of the dataset to load,

and then loads the dataset.

Likewise, the image browser posts messages (of different types) to the event bus.

When a user clicks on the image open icon, the browser agent posts a

LoadImage event to the event bus, embedding the image ID in the event as a

parameter. The image viewer, configured to listen for these messages, responds

by triggering the viewer window and loading the specified image.

In some cases, the browser agent might require a response to a particular

message. For example, consider the case when a user clicks on the annotate icon

in the magnifier. The browser agent posts an Annot at e Image message to the

event bus, which forwards it to the Annotator agent. The annotator then, of

course, pops up its editing box and allows a user to create or change the

annotation. However, the browser needs to know when editing is complete, in

42

order to display an annotation icon and the

new annotation itself over the target AgentEventlistener

thumbnail. Any agent that requires such a

response can attach a handler to a message, Annotatelmage

and listen for a response. For example, prior

to posting the Annotate Image message, a Annotatelmage ImageAnnotated

browser agent attaches a AnnotateImage-
CategoryChange

Handler object, which contains the code that Handler

should be executed when database LoadCategories Categones

processing is completed (in this case, the

code updates annotation overlays). When Classification
Handler

the Annotator finishes updating the OME

database with new annotations, it wraps the Classifylmage Reclassifylmage

ClasiN~mges Reclassify
AnnotateImage object in an Image- Ima

Annotated response, and posts it to the ImagesClassified

event bus. When the browser agent receives

the response, it executes the response's Figure 3.3. Agent event classes.
complete () method, which executes the

original handler code. In this manner, agents can respond and post messages to

each other asynchronously. This request handler-response mechanism is an

established design pattern, known as an asynchronous communication token

pattern, or ACT. The browser agent uses ACTs when creating new annotations,

assigning new phenotypes, and editing phenotype classes, although not when

launching the viewer.

3.2.3 Loading a dataset

Because the browser agent is the only component within in the image browser to

have access to the Registry, and thus the only component to have access to

OMEDS and OMEIS, it is the only component capable of loading a dataset.

Loading a dataset is a complicated operation, and discussing it in detail here will

sideline the discussion of the image browser's design. The process of loading a

dataset is covered fully in Section 3.7.

43

Figure 3.4. The application-level classes.

3.2.4 Application-level classes

The browser agent is one in a set of application-level classes. I define an

application-level class as any class that should only have one active instance.

The browser agent is one; there shouldn't be multiple browser agents

concurrently active in Shoola. Every application-level module is accessible

through the BrowserEnvironment class. The BrowserEnvironment, shown

in Figure 3.4, is a singleton class that contains references to the browser agent,

icon manager, and UI component managers.

The UI component managers are application-level classes that control the

visibility of the browser's user interface widgets. The BrowserManager class

maintains a list of active browser windows. The HeatMapManager keeps track

of a heat map's state, as well as all the heat map models for each browser

window. Similarly, the ColorMapManager maps browser windows to color

map models, and keeps track of the color map's visibility.

Any module in the browser application that needs to query the UI component

managers, retrieve information from the BrowserAgent, or send messages to

other components within the OME client must acquire an instance of the

Browse rEnvi ronment class. This is fairly easy to do; a module simply needs

to call the environment's get Inst ance () method. That module can access the

browser agent and component managers by then calling accessor methods on the

environment instance.

3.3 Core browser classes

A browser window is a visual representation of a dataset. A dataset, in OME

terms, is the parent object of any number of images, and a child of any number of
44

projects. Each browser window displays information about a specific dataset,

visualizes the set of images that belong to that dataset, and allows a user to edit

and create metadata about the dataset and its member images.

Whereas there can be only one application-level class, the application supports

multiple browsers. A user can view multiple browser windows open at the same

time, as long as each browser window displays a different dataset. For each

browser window, there is one set of core browser objects, shown in Figure 3.5.

Most prevalent is the browser's viewer, which displays thumbnails and overlays,

and responds to user input. The viewer is a faeade atop a browser model, which

contains a browser's state, as well as references to the dataset. There is a camera

class for each viewer that manages its perspective and draws viewer-level

overlays. Finally, there are several classes that manage event handling and the

viewer's integration within the Swing UI.

3.3.1 BrowserModel

The browser model (BrowserModel. j ava) maintains the state of a browser

window and stores all the information that the viewer requires for display. It is

the model component of the model-view architecture of each browser window.

Other classes use the browser model to query and modify a browser's state and

manage a dataset's thumbnails; the viewer class uses the model to determine

how to display them.

The BrowserModel's primary function is to store a dataset's thumbnails. In

order to do so, it maintains a Set of thumbnails, and provides accessor methods

for both adding and removing thumbnails. When a dataset is loaded, the

browser agent adds a set of preloaded thumbnails to the browser model using

these methods. In addition to storing the thumbnails themselves, the browser

model maintains a list of selected thumbnails, and exposes mutator methods that

mark thumbnails as selected or deselected.

The browser model also contains information about the dataset it represents. Of

course, it contains the basic attributes of a dataset within OME, such as its unique

ID, name, and owner. However, the browser model also stores a variety of

45

Browser classes

U rapper CategoryTree

BrowserMenuBar + BrowserInternal SemanticTypeTree
Frame mom

ZoomButtonPanel BrowserController StatusBar

+ |BrowserModel \ ProgressListener

BrowserModel + Lsee

BrowserModeClass BrowserView BrowserView

BrowserMode BosrCamera Camea

FootprintAnalyzer FHoverManager

Figure 3.5. The browser core classes.

metadata that other components use. For example, each browser model contains

a CategoryTree object, which manages the set of phenotype classes and

phenotypes (categories) that exist (within OMEDS) for images in a particular

dataset. The browser model also encapsulates a SemanticTypeTree object,

which keeps track of which image-granular semantic types are valid for the

dataset. If an image has a non-null attribute of a particular semantic type, that

type will exist in the browser model's semantic type tree.

Finally, the browser model maintains browser state. At any time, a browser may

be in several of a few modes. Whether or not the magnifier is turned on defines

one mode. Whether or not thumbnails have been selected is another. Each

discrete category of modes is called a BrowserModeClass, each of which has

several BrowserMode objects. One mode may be selected for each class at a

time. Other classes can infer the mode of the browser model through its accessor

methods. In addition to modes, the browser keeps track of how thumbnails are

46

organized onscreen by storing default and current LayoutMethod objects.

Section 4.3 covers how the LayoutMethod objects place thumbnails within the

browser viewer.

3.3.2 The Browser View

A BrowserView object is the visual component of a browser window. It is a

drawing canvas, a Piccolo PCanva s object. As such, it is the parent object for all

visual primitives in the dataset view, including thumbnails, overlays, tool

palettes, and popup menus. In addition, as the canvas and a Swing UI

component, it receives both mouse and keyboard input. It is the first object in

the dataset view to be notified of user events, and can thus best control how they

are processed. Section 3.5 discusses image browser event handling in detail.

At its heart, the browser view is the parent for all thumbnails. This is critical, as

Piccolo organizes visual primitives into a hierarchy; a canvas or a layout can be

the parent of other nodes, and in turn, those nodes can have other children. The

browser view is effectively the root. It has no visible parent (there is a root object

to describe the entire scene graph, including the projection and perspective of the

canvas), but does have many children-the image thumbnails. Drawing in

Piccolo is recursive; if the parent is redrawn, its children will also be redrawn.

Thus, while the browser view is responsible for when the dataset view is updated

visually, it is not necessarily responsible for precisely how it is drawn. Indeed,

the paintComponent () method of the BrowserView object is fairly short;

Section 3.4 will illustrate how and why the bulk of the drawing logic resides in

the Thumbnail classes.

The browser model and browser view share a producer-consumer relationship.

Although the browser view contains a reference to the browser model, it is not

notified directly when changes to the browser model occur. Instead, the browser

model contains a set of listeners (that implement the BrowserModelListener

class), and notifies these listeners whenever it changes. The BrowserView

object is such a listener. It updates the view in response to a wide variety of

changes to the underlying model, including thumbnail addition and subtraction;

47

mode changes, thumbnail selection, a change in the model's layout and grouping

methods, and changes to the set of active overlays.

For a more detailed example, consider the case when a set of thumbnails is

added to a browser model. This is a normal occurrence during the initial load of

a browser window. The browser model will signal that such an event occurred

by invoking the thumbnailsAdded method on all subscribers, with an array of

Thumbnail objects as the parameter. In response to that invocation, the browser

view will add all the thumbnails in the array to the Piccolo canvas; thumbnails

are Piccolo nodes and can be children of a canvas layer. The view then consults

the browser model as to how the organize the thumbnails, and then draws the

dataset. The majority of events invoked by the browser model will trigger such a

chain of events; the browser view will check the browser model's latest state,

change the layout of its thumbnails if necessary, and then redraw the new pixels

to the screen.

There are other functions that the viewer performs independently of the browser

model. For example, the magnification level of the dataset is an attribute

inherent to the browser view, not the model. Thus, the browser view itself has

zoom level accessor and mutator methods. In addition, the view object has a

significant amount of logic that makes sure that a dataset "looks right." The

browser view calculates the total bounds of the entire collection of thumbnails

onscreen, and ensures that a user cannot move beyond those bounds. It also

limits the factor by which a user can zoom in and out of a dataset, to prevent

thumbnails from appearing too small (for lower zoom factors) or too pixelated

(for high levels of zoom). Finally, it contains two nodes that it maintains

independently of the model: a background node, and a foreground node. It uses

the foreground node to draw the boundaries and phenotype names in quantum

treemap mode, and the background node to capture user input.

3.3.3 The browser camera

The BrowserCame ra class controls the viewport into the browser view's canvas,

and also serves as a Piccolo parent to any dataset-level overlays. When a user

48

zooms into a dataset, some regions of the dataset will be out of view, and others

will be in focus. The camera keeps track of the current bounds of the viewport,

manages the viewport position on zooming in and out, and notifies camera

listeners when the boundaries of the viewport have changed relative to the

browser view. The scrollbars of each browser window are updated in this

manner; they listen for change events thrown by the camera and change their

appearance accordingly. The BrowserCamera also contains a PCamera object,

supplied when the browser camera is initialized. The PCamera object is the

camera for the browser view. PCameras are special objects within Piccolo, in

that they maintain a constant coordinate system, even if the scenes (or in this

case, browser views) they "project" change coordinates due to zooming or scene

translation. The implies that children of a PCamer a will appear the same size,

regardless of the zoom level or viewport location of the underlying Piccolo

canvas. For that reason, the BrowserCamera manages any visual component

that should be drawn at a constant size, such as the magnifier, and the

annotation "Post-It" notes.

3.3.4 Support classes

Finally, each browser window contains classes that interact with Swing and with

the rest of the browser application. The parent UI component of each browser

window is a Browser Internal Frame, a subclass of JInternalFrame. This class

encapsulates all the UI widgets of the browser window, including the menu bar,

toolbar, status bar, and BrowserView object itself. In addition, each browser

window has a BrowserController, which provides an interface for the

browser manager to access the browser model. The other UI components in the

image browser, such as the heat map and color map, use the controller to change

a browser window's drawing modes, and update the browser model, if

necessary.

3.4 Thumbnails & drawing
Thumbnails are the basic units of both drawing and storing information in the

image browser. Thumbnails contain more than just pixel data; they contain all

metadata associated with the images they represent. Moreover, a Thumbnail

49

may contain more than one image. Like browser windows, thumbnail objects

use a model-view architecture; the view controls how the thumbnail is drawn

and how it responds to user input, and the model contains the backing state used

to determine how a thumbnail is drawn.

3.4.1 The Thumbnail object

Thumbnail objects are the visual representations of thumbnails in the browser.

They are instances of Piccolo's PImage class. PImages are nodes that have

embedded images; their bounds are defined by the size of their embedded

image, and its image is drawn whenever its parent (in this case, the browser

view) is repainted. A Thumbnail is also responsible for drawing its own

overlays. It does so by maintaining sets of PaintMethod objects, which contain

additional drawing instructions to be executed during each redraw. Thumbnails

also respond to user input events such as mouse clicks and hovers by

maintaining a set of behaviors to be executed whenever such events occur. (see

Section 3.5 for more details) Thumbnail objects may contain more than one

image, as is the case in chemical screening. If a thumbnail has multiple

embedded images, it is called a "multiple-mode" thumbnail, and much of its

behavior has to change because of its multi-image nature. Finally, Thumbnail

objects are normally created when the dataset is loaded, once the browser agent

has downloaded the image from the image server. However, the image contents

are allowed to change; if an analysis module changes the look of a particular

image, a thumbnail can be updated to reflect this change.

3.4.2 Thumbnail data models

Each thumbnail contains one or more ThumbnailDat aModel (TDM) objects,

which contains all metadata associated with the thumbnail's embedded image

(see Figure 3.6). If a thumbnail is a "multiple-mode" thumbnail, it will have

multiple TDMs. The thumbnail data models are the basis for image

classification, annotation, and organization, as they are the lone objects in the

image browser that contain OMEDS data. TDMs contain basic information about

the images they belong to, including image name and dataset ID. More

50

importantly, TDMs contain AttributeMaps, which are the structures that store

metadata from OMEDS.

AttributeMa p objects make it fairly easy to

infer particular information about all images

in a dataset. They form key-value pairs Thumbnail

between semantic types (or, more accurately,
Thumbnail

their names) and any attributes of that

semantic type that may apply to an image. AtdbuteMap

For example, consider what happens when a

user selects the "Annotations" item from the Atribute

View menu. How does the browser figure out

which images have annotations? As it turns
FmagAnntatinCUsiicto

out, Annotation is actually a semantic type 1 gnic as
ema~ntc A!nues

with image granularity, and instances of [ail

ImageAnnotation are attributes in the

database. When a user loads a dataset, if any IyOpons P

images within that dataset contain Figure 3.6. Thumbnail classes.
annotations, they will be loaded into those

images' attribute maps. So, to figure out whether or not to draw an overlay, all a

module needs to do is for each thumbnail, check if there is some non-null value

associated with the "ImageAnnotation" ST or name in its AttributeMap.

Attribute maps also contain classification and phenotype data (as those are

attributes as well), image statistics, and any other metadata stored in the OME

database and requested at some point by a browser process.

3.4.3 Drawing thumbnails and overlays

Each thumbnail maintains a set of PaintMethod objects. A PaintMethod is an

interface with a single method: paint (), which takes a PPaintContext object

(supplied to a thumbnail through its paint () method, just like a Graphics

object is supplied to a Swing or AWT component) and a Thumbnail as

parameters. Each paint method contains logic to determine how to draw an

overlay atop a thumbnail. This logic is usually the same for all images in a

51

dataset, which is why the paint () method takes a thumbnail as a parameter.

When executed, the logic inside a paint method analyzes the thumbnail or the

thumbnail's backing model to

determine what kind of shape to draw,

if any. This is precisely the module that

makes the decision to draw an overlay.

PaintMethod OverlayMethod
Because these paint methods can be

AbstractPaint Abstract executed across all thumbnails in a
Method OverlayMethod

dataset, they are reusable, easy to write,

Z e and cleanly abstracted away from
PaintMethod

thumbnails themselves. Several

ResponsiveNode Overlay ode commonly used paint methods are
Responsve~ode Dictionar

found in the PaintMethods object.

DrawStyle One such paint method is responsible
PaintShape
Generator for drawing a small graphic atop a

DrawStyles thumbnail if it has a valid image

annotation-the DRAWANNOTATION_
Figure 3.7. Paint method classes.

MET HOD. The logic inside this paint

method is exactly that outlined in the previous section. When the thumbnail

calls paint () on that PaintMethod, it analyzes the model of the thumbnail

supplied as a parameter, and if the model's AttributeMap contains an

ImageAnnotation attribute, it draws the icon to the Graphics2D canvas

accessible through the PPaintContext parameter.

Occasionally, the logic required to determine what kind of overlay to draw can

be costly. For example, in heat map mode, there may be a significant number of

attributes of type PlaneCentroid associated with an image, especially a multi-

dimensional image. Computing the average value to determine which color

overlay to draw should only happen once. Thus, some paint methods include

caches that map thumbnails to overlays. In this case, the logic to pick a

thumbnail color will be executed once per thumbnail. On subsequent calls to

rep a in t (), the paint method logic will simply fetch the color mapped to the

52

thumbnail in its cache, and draw a rectangle of that color atop the image. The

design of Thumbnail and PaintMethod makes this possible, as all thumbnails

can contain a reference to the same PaintMethod object, which in turn can hold

references to all thumbnails.

Thumbnail objects contain three sets of paint methods-a background set, a

middle set, and a foreground set. A thumbnail's paintO method executes the

paintO function of every method in the background set, then renders the image,

and then calls the paintO function of every method in the middle and foreground

sets, respectively. As a result, overlays created by paint methods in the

background set will appear behind the image, middle overlays will appear

immediately atop an image, and foreground overlays will appear atop both

middle overlays and the image itself. All coloring paint methods, such as the

heat map and color map methods, are middle overlays. Annotation icons, data

values, well numbers, and selection state are drawn in the foreground.

Adding these overlays as Piccolo nodes is a more natural way to add information

to a thumbnail. However, Piccolo's performance dropped off as the number of

visible nodes in a scene graph increased beyond a certain threshold-around a

thousand. This makes sense; each node has an event handler, and has somewhat

complicated paint logic. Drawing overlays that don't respond to user input by

with only additional Java2D drawing calls eliminates this overhead. In addition,

we do not have to worry about removing children (an occasionally messy task),

or the overhead of thousands of additional objects in the Java virtual machine.

Recall that a single P a i n t Me t ho d object can be applied to any number of

thumbnails, so its overhead in the JVM is very low.

3.5 Event handling, actions and behavior factories

The image browser adopts an unconventional event handling architecture in the

dataset view, a hybrid between bottom-up event handling, and top-down event

handling. Event handling in most Swing applications is bottom-up, where

individual UI widgets are responsible for responding to UI input. For example, a

Swing button often contains an action listener that executes when it is pressed.

53

This is in contrast to top-down event handling. In a top-down system (any applet

constructed in the early days of Java 1.0 is an example), there is a single event

handler per application, which determines which object received the user input

and responds appropriately.

The advantage of bottom-up event handling is its simplicity and reusability. Top-

down event handlers often contain complicated logic, whereas bottom-up event

handling allows a programmer to bind reusable actions to individual UI widgets.

However, there are also several drawbacks to bottom-up event handling,

especially with large datasets. Adding a separate event handler to each UI

widget (including thumbnails) adds overhead to the Java virtual machine. More

importantly, it is difficult to include code that affects the entire enclosing

application with a bottom-up event handler. Moreover, bottom-up event

handling doesn't handle modal semantics very well. The browser has several

modes that determine the appropriate UI response. For example, when the

magnifier is deselected, moving the mouse over a thumbnail should not activate

it, and vice versa. This is easier to manage using top-down handling, as the

single event handler can determine what action to take based on the current

mode.

3.5.1 The BrowserView/Thumbnail approach

The BrowserView object combines these two approaches. The thumbnails

contain the code that executes the response, but the BrowserView assigns that

code to each thumbnail depending on the mode, and serves as the event handler

for the entire application. In addition, the behavior of a thumbnail in response to

user input is more configurable than that of a default Swing widget.

All thumbnails implement two event interfaces (see Figure 3.8 for an

illustration): MouseOve rSens it ive,, which is analogous to Swing's

MouseMotionListener interface, and MouseDownSensitive, which is

analogous to Swing's MouseListener interface. These interfaces contain

similar semantics ot their Swing counterparts, with one critical addition: accessor

and mutator methods for each action. A module can specify what occurs when a

thumbnail (or any other MouseDownSensitive object) is double-clicked by

54

Action & event class Z2
BrowserView

EventDispatcher

Mouse owncis

Sensitive + icl~to

BrowserAction

Mouse ver ~ vACmpst

PiccoloActionPic
Mouse rg MouselDragA ctions Rvril

PiccoloModifier PiccoloActions icl cfo

Figure 3.8. The browser event & action classes: a hybrid event-handling approach.

calling its s e t D o u b l e C1 i c kA c t i o n method. In this manner, the browser

window can change specific UI responses depending on a mode, while leaving

others the same. Moreover, the mutator methods take an input modifier as a

parameter, so the browser model can dynamically configure actions that occur

when a user right-clicks, or shift-clicks a thumbnail.

The browser view object controls the UI responses of each thumbnail. Based on

the browser mode (which it finds out about when invoked by the browser

model), it selects an appropriate set of UI responses for all or a set of thumbnails.

For example, consider the case when a user selects a thumbnail. This indicates a

mode change, and requires thumbnails to respond to user input differently.

Clicking on another thumbnail should deselect the previously selected

thumbnail, as well as select the new one. Shift-clicking should add additional

thumbnails to the selected set. Clicking a non-thumbnail region should deselect

all thumbnails. The browser view ensures that the thumbnails respond in this

manner by passing these actions to their setClickAction methods. When a

user clicks on a space away from the thumbnails, the mode changes again (no

thumbnails should be deselected), and the browser view applies the new set of

responses to each thumbnail.

The browser view object employs a BrowserViewEvent Dispatcher object to

handle all user input. The dispatcher is the conventional event handler for both

Piccolo and Swing events. It can determine the origin of an event by analyzing a

55

P InputEvent, the original event notification generated by Piccolo to signal that

an event occurred. These input messages contain PPickPaths, directed acyclic

graphs that contain the hierarchy of a particular node; in this case, the node that

was the origin of the user input. If the dispatcher determines that the picked

node is sensitive to user input (that is, the picked node implements

MouseOverSensitive, MouseDownSensitive, or any other browser event

interface), it passes the event message to that node. That node responds

according to its current set of actions.

3.5.2 PiccoloActions

The image browser contains a number of classes that encapsulate actions, or

responses to user input. The base interface is a BrowserAct ion, analogous to

the Swing Action interface. A B r o w s e r A c t i o n specifies only one

method-execute () . However, the image browser uses the base interface

sparingly; most actions implement the PiccoloAction interface. The

PiccoloAct ion interface, which extends BrowserAction, specifies an

additional method-execute (PInputEvent) . All response logic is in that

method. There are several varieties of actions, including a

CompositePiccoloAction, which bundles a set of actions together, and a

ReversiblePiccoloAct ion, which contains both execute and undo methods.

The normal pattern for action logic is to extract the picked node from the

P InputEvent, cast it as a Thumbnail or appropriate Over layNode object

(casting coherence is guaranteed by the browser view), and then perform some

operation on the thumbnail, or execute other module methods using the

specified thumbnail as a parameter. For example, consider the popup menu

action, triggered by a user right-clicking on a thumbnail. The input event is first

processed by the browser view dispatcher, and passed to the picked thumbnail

via its respondMouseClick method. The thumbnail's response to a

respondMouseClick call is to inspect its set of actions for a response that

matches the pair <mouse-click, popup modifier>, and execute that action with

the P Input Event as a parameter. The action bound to the input-modifier pair is

the popup menu action. The logic inside the popup menu action again extracts

56

the picked node, constructs a popup menu based on the thumbnail selected, and

draws that popup menu atop the thumbnail. The second node extraction seems

redundant, but is required for action reusability. Much like a single paint

method can apply to every thumbnail, each thumbnail can use the same

PiccoloAct ion event to respond to user input. This allows the image browser

to maintain a collection of reusable action classes that are deployable to all

thumbnails.

3.5.3 PiccoloActionFactory and other behavioral factories

Many actions require additional state and access to additional modules in order

to execute properly. Certain actions are also conditional on additional browser

state, not just browser modes. The PiccoloActionFactory class constructs

these more complicated PiccoloActions. As the name suggests, it is a factory

class; each method takes in several parameters and generates a PiccoloAct ion

object that uses those parameters.

Again, consider the popup menu action. The popup menu is a Swing object, and

must be the child of another Swing UI object. However, there is no Swing UI

component specified in the PInputEvent, or PPickPath. Thus, the action is

created using the factory's getPopupMenuAction class, which takes a

BrowserView object as a parameter. The parameter is final (constant), so the

PiccoloAct ion the method creates can reference it. The popup menu action's

exe cute () method does so; after creating the popup menu, it instructs it to

appear inside the passed browser view component window.

The action factory is one of several examples of behavior factories in the image

browser. A behavior factory creates logic classes, which can be applied and

executed by any thumbnail or other module. The purpose of such a factory is to

abstract action from presentation in the code, and to make certain actions and

action patterns more reusable. Other behavior factories in the image browser

include the paint method factories in both the color map and heat map, and a

popup menu factory. The paint method factories generate logic that determines

what color an overlay should take, whereas a popup menu factory generates

57

logic that determines how a popup menu should be built, in response to what

kinds of phenotypes and categories are available in a dataset.

3.6 Heat & Color maps

The heat and color map objects are UI components that are separate from the

browser window. They adopt their own MVC (model-view-controller)

architecture. They both can access the browser agent independently of the

browser window, and can appear even when no browser is visible in the

application. However, both the heat map and color map use BrowserModel

objects to obtain information about a dataset, and the images within that dataset.

Thus, they both rely upon some underlying data model to display information to

the user. This section will briefly outline the architecture of each component, and

how they interact with the browser model and other UI component classes.

3.6.1 The heat map

The heat map, as discussed in the user interface overview, is a component that

allows a user to compare images in a dataset based on a single variable. A user

chooses a variable to compare by selecting an element from a tree of valid

semantic types. When a user selects an element in the tree, the images in the

active dataset are analyzed to determine a minimum and maximum value, and

then each image is assigned a color based on its variable value. Images whose

values are close to the minimum appear blue, and images whose values are close

to the maximum appear red.

The heat map contains several model classes (see Figure 3.9 for more details),

which contain state for UI components and dataset metadata. The

HeatMapModel is the backing data model for the entire component. It contains

a reference to a data source (a BrowserModel), and a tree model of valid

semantic types and elements. The HeatMapModel builds this tree model by

acquiring a list of relevant, applicable semantic types from the browser model

(using the g e t R e 1 e v a n t T y p e s () method), and constructing a

SemanticTypeTree from that information. A semantic type tree is a data

structure that organizes semantic types and elements into a hierarchy, keeps

58

track of the data type of each element, and facilitates retrieval and storage of

attributes retrieved from OMEDS. It also serves as the model for the tree view;

the HeatMapTreeUI constructs a JTree object based on the data types and

hierarchy contained in the tree.

The remaining models manage heat map parameters and statistics. The gradient

class (HeatMapGradient) maintains statistics about the range of a variable,

such as its minimum and maximum value. Multiple scale objects (linear,

logarithmic) are constructed for each variable, and perform the math that

converts a variable value to a color. The heat map component also contains a

mode class. Each mode class (HeatMapMode) contains a function that

determines how a single variable value is assigned to an image, in the event that

the image has multiple attributes of like semantic type. Modes include

minimum-value assignment, mean-value assignment, median-value assignment,

and maximum-value assignment.

Each model backs a corresponding view component. The parent view object of

the heat map is the HeatMapUI. The heat map UI is responsible for listening to

changes in the heat map model, and refreshing and rebuilding its

subcomponents in response. It also maintains basic heat map state, such as

whether or not the heat map is displaying a scalar or Boolean value.

The HeatMapUI contains a HeatMapGradientUI, a widget in charge of

representing the range of a variable and a color legend to the user. This class

draws the color bar and the scale that indicates the range of variable values to the

user. The HeatMapTreeUI, as mentioned, constructs a Swing tree based on the

semantic type tree stored in the HeatMapModel. It also responds to user input,

particularly node (element) selection. Finally, the HeatMapModeBar and

HeatMapScaleBar allow a user to select a mode and scale, to further refine the

mapping between color and variable value.

The H e a t M a p D i s p a t c h e r class is the nerve center of the heat map. It is

responsible for extracting metadata from OMEDS via the browser agent in

response to element selection, and for constructing the paint method to apply to

59

all thumbnails. Each UI

component in the heat map

HeatMapModel MHeL tener notifies the dispatcher

whenever some user input

e'at"ap"' event occurs, such as a

He ap HMAp HeatMap HeaMap HeatMa mode or scale change, or
GradientUI TreeUI StatusUl ModeBar ScaleBar element selection. When an

element is selected, the
HeatMap HeatMap HeatMap HeatMap Scale
Gradi t Treeustnr Status ode dispatcher accesses the

HeatMapUtils HeatMapDispatcher Linear semantic type tree to

determine the semantic
HeatMapPMFactary RangeChecker Logarmic element to display. The

dispatcher then analyzes

Figure 3.9. Heat map classes. the tree to determine how it

should structure its queries

to OMEDS. Once the dispatcher executes these queries and receives metadata

from OMEDS (a process which may take some time, so the dispatcher posts

status messages to the heat map UI), it uses the HeatMapPMFactory to build an

overlay method. The factory constructs a paint method that draws an overlay

based on the current mode, scale, and min-max information. Finally, it adds this

method to the browser model through its addPaintMethod function, which

allows a user to apply a Paint Method to all thumbnails at once. Whenever a

user changes modes, scales, or elements, the factory must construct and apply a

new paint method, and remove the previous paint method from the dataset.

Finally, the dispatcher responds to changes in the heat map model itself, by

redrawing the gradient and tree UI objects.

Finally, other UI components can interface the heat map using the

HeatMapManager. The HeatMapManager allows modules such as the browser

window to launch the heat map view. In addition, the browser agent notifies the

heat map manager whenever a dataset is loaded, and constructs a new heat map

model. This is covered in more detail in Section 3.7. The manager is embedded

in the BrowserEnvironment class, as it is an application-level module.

60

"""" '

3.6.2 The color map

The color map is the component +CoapM L tener

that colors images by phenotype.

It contains a legend that displays C C

both the color and phenotype
ColorMapbistUtGrlla

S Grou Biar
name, and a combo box for

changing the class of phenotypes ColorPatrModel ColorMapList Gra Lstener

to investigate. It does not have
CO OrPair ColOrMapDispatcher Coor~a

the same range of options as the Ca Iste

combo box, but does not need to

display data that is as

complicated, or as continuous. Figure 3.10 Color map classes.

The color map architecture

(shown on Figure 3.10) mirrors the structure of the heat map. Like the heat map,

it contains a model class for each UI component, UI widgets which visualize

those models, a ColorMapDispatcher object that responds to user input and

controls the look of the other UI widgets, and a ColorMapPMFactory that

constructs paint methods that apply to all thumbnails. These classes interact in a

similar manner to their analogs in the heat map.

The one unique implementation to note in the color map is color selection.

Because phenotypes are discrete, the color map must assign a color to a specific

phenotype arbitrarily, as opposed to interpolation. Currently, the color map

assigns the first 32 phenotypes in a class with a distinct color. However, past

that, the color map will start assigning arbitrary, random color values to

additional phenotypes. We have not yet tested constructing a dataset (or set of

categories) that meet this criteria, but in that case, it would be easier to organize

thumbnails by a quantum treemap than classifying by color.

3.7 Integration: Loading a Dataset

The best way to demonstrate how all these pieces fit together is to analyze what

happens when the image browser loads a dataset. This analysis will focus on the

61

interaction between the browser components, and between the browser and the

other components in the OME client in a step-by-step approach, based on which

components interact at the same time.

3.7.1 Initial notification

On the surface, an image browser loads when a user clicks the "Browse" option

on a dataset in the Data Manager agent. In response to the selection, the data

manager agent constructs a LoadDataset event object, and posts it to the event

bus. The event bus notifies the browser agent of the LoadDataset event, as the

browser agent has registered to be a listener for such messages. More precisely,

the event bus calls the browser agent's event Fired method, which contains

logic for demultiplexing event messages. The logic inside event Fired extracts

the information from the message-most specifically the ID of the dataset to

load, and then calls the browser agent's loadDat a set method, which starts the

loading process.

3.7.2 Initializing the browser window

The browser agent's loadDataset (int) method constructs the components of

the browser window. It creates a new BrowserModel, Browserview and

B r o w s e r C o n t r o ll e r object, and adds the component to the

BrowserManager. In addition, it initializes and keeps a reference to the

browser window's status bar, so that it may display messages to the browser

window while loading data from the OMEDS. Finally, it adds the UI component

to Shoola's parent JDe s ktop Pane. This is the earliest point when the agent can

show some feedback to the user that it is loading a dataset, so it chooses this

point to display the window in the client, even though the browser does not yet

have any thumbnails or image metadata to show.

Once this occurs, the browser agent starts a thread that loads data from OMEDS

and OMEIS. This process runs in a separate thread because this task may take a

long time to complete, and blocking UI input until the dataset is fully loaded

would be highly undesirable. In addition, a user may want to cancel the loading

process. In order to support load cancellation, the loading thread is an instance

62

of a K i ll a b i e T h r e a d, a class unique to the image browser. A

Killable Thread is a thread that specifies a kill () method. It is unsafe to call

a s top () method on a thread, so Java no longer supports that procedure.

However, a Kill able Thread allows other modules to specify when a thread

should die. Calling the kill () method will set a Boolean flag in the thread that

the thread should die as soon as possible. The logic inside the thread can choose

to heed the flag or not, so the method specification does not guarantee that the

thread will stop. However, the threads in the browser agent behave well, and

stop processing (i.e., don't make network calls to the OMEDS or OMEIS, or

update other browser components) when killed.

3.7.3 Loading image metadata

The first task of the thread is to load the basic data about each image in the

dataset, by requesting core image object data from OMEDS. This data includes

the name of the image, the default P i xe 1s attribute, and the image ID. It

maintains this list of IDs as a parameter to supply to OMEDS when retrieving

attributes, such that the agent will only retrieve attributes and metadata

pertaining to those images. These IDs effectively act as the argument to a SQL

IN clause.

Next, the thread loads all attributes that are essential to the display of the

thumbnails in the dataset view. It queries the OMEDS to return all attributes of

semantic type ImagePlate, ImageAnnotation, and Classification that

belong to any image in the dataset, as well as any CategoryGroup and

Category attributes that belong to the dataset. The latter two are the database

representations of phenotype classes and phenotypes; a Clas sif ication is a

mapping between an image and a phenotype.

The browser agent processes these attributes immediately after the OMEDS

response. Using the retrieved categoryGroup and Category attributes, it

creates a new ColorMapModel and instructs the ColorMapManager to add and

show that model in the color map UI. It also stores a copy of the phenotype class

and phenotype hierarchy (a Cat egoryT ree) in the browser model. In addition,

63

it stores a map between image IDs and both ImageAnnotation and

Classif ication objects, which will be added to thumbnails later. It also saves

Image Plate objects, if they exist, which will be used to determine the dataset's

layout later.

However, before layout and thumbnail acquisition, the browser agent loads the

definitions of all semantic types with attributes that belong to images in the

dataset. This is the most complicated database operation by far, and is clearly

the most time-consuming. When complete, however, the browser agent builds a

H e a t M a p M o d e 1 using those valid semantic types, and instructs the

HeatMapManager to display the semantic type tree within the model if it is

active.

The loading thread diverges at this point, based on whether or not the dataset is

a based on a standard screen. If it is, the browser agent maps which image

belongs to which well, infers the size of the screen from the Image Plat e

attributes retrieved, and adds multiple images to a thumbnail, if necessary. If it

is not, the browser agent simply retrieves the pixel data for all thumbnails from

OMEIS, without preprocessing. In both cases, the threads construct a group of

Thumbnail objects, add image data from OMEIS, and then add all the image

metadata captured thus far to the thumbnail's Thumbnail DataModel. Finally,

the browser agent adds the thumbnail to the model. When all thumbnails are

added, the loading is complete, and the view is instructed to draw all the

thumbnails. At this point, the dataset appears to the user for analysis.

64

CHAPTER 4

Supporting Large Image Datasets

The ultimate goal of the image browser is to provide biologists with the means to

effectively analyze large and varied datasets. Thus, an image browser must be

able not only to display a large number of images at once, but also to display

information to that aids in extracting meaning from image datasets. This section

outlines how the image browser combines image and numerical information to

enable faster and more precise analysis. I will briefly describe several features,

how they facilitate analysis, and how they are implemented in the browser code.

4.1 Semantic zooming

Semantic zooming is simply the selective display of metadata and other

information based on the size and resolution of thumbnails. Semantic zooming

balances information overload and underreporting metadata, and ensures that

metadata is presented to the user in the correct context. When a user zooms out

to inspect the entire dataset, he/she likely does not want to be flooded with

information about each image. Instead, users likely want to spot trends in the

dataset, quickly pick out outliers, and inspect the types of images in the dataset.

Similarly, when users zoom in to a specific region or image, they are likely more

interested in those images themselves. Because a user focuses on individual

images more at higher levels of magnification, the browser displays more

detailed information about each image. Multiple components in the browser use

this concept to effectively display information.

65

4.1.1 Magnifier

The magnifier provides more information to a user about a single image in a

dataset, and provides the user with a range of image manipulation options.

Section 2.3.3 describes the individual features and functions available to the user

through the component. The magnifier is a good tool for initially analyzing and

identifying images of particular phenotypes within the dataset. For example,

because the magnifier displays images at higher resolution, a biologist can

quickly confirm that an image in a particular screen is of bad quality, and mark

as such using the browser's classification tool. In future releases, the magnifier

will also display select image features, such as displaying "spots," regions

calculated by an analysis module. Displaying image feature information atop a

low-resolution image would lead to information overload; displaying it atop a

magnified image of interest makes more sense.

The plumbing behind the magnifier is located in the SemanticZoomNode class.

The class contains the logic to fetch a higher-resolution version of the target

image from OMEIS, manages PiccoloAction responses to user input, draws

icons to the user and keeps track of icon hotspots, and finally draws information

about the thumbnail atop the image. A variety of P icco l oAc t ion classes

regulate the magnifier's activation. If magnifier mode is on, moving the mouse

across a thumbnail will trigger that thumbnail's MouseOverAct ion. This action

instructs a browser view helper class, the HoverManager, to start timing how

long the user has kept the mouse over that thumbnail. If the hover time exceeds

500 milliseconds, the HoverManager adds a new SemanticZoomNode to the

view's BrowserCamera, and draws the over the active thumbnail. Note that

because the magnifier is a child of the BrowserCamera, it will always remain

the same size, regardless of the zoom level of the dataset. The magnifier

disappears if the user moves the mouse off of its onscreen region.

4.1.2 Contextual image overlays

Contextual overlays are overlays that only appear atop images at a given level of

zoom or greater. There are two varieties of contextual overlays in the browser:

66

overlay graphics (normally drawn by PaintMethods), and overlay nodes, which

are overlays that can respond to user input. Examples of overlay graphics

include well numbers, and the variable value in heat map mode. The annotation

icon is an example of an overlay node; UI events occur when a user clicks or

moves the mouse over the node. Whereas overlay graphics mitigate information

overload, overlay nodes mitigate hotspot overload. Any graphical

representation sensitive to user input should not have hundreds or thousands of

hotspots; sensitive regions become too small, and a user can often accidentally

trigger a UI response.

Section 3.4 covers the general construction and drawing of overlay graphics, but

omits a few implementation details. First, there exists a special subclass of

PaintMethod: a ZoomDependent-PaintMethod (see Figure 4.1 for a listing of

the paint classes). This class is a wrapper for a normal paint method, with two

additional parameters: minimum zoom level, and maximum zoom level. The

paint () method of the ZoomDependent-PaintMethod checks the current

scale of the drawing context, and executes

the paintO procedure of the embedded

Pa in t Me t hod only if the current scale is PaintMetodsf overlayMesE

within the specified zoom range. The

PaintMethod that draws variable values Pa"ntethodIEIveryMe

on images in heat map mode is such a zoom stm aint Abst,,ct
Method Overta Method

method, with bounds <0.75,+c>.

ZoomDependent Ovedayod
Overlay nodes are constructed and added to PaintMethod

thumbnails in mostly the same manner as ResponsiveNode

overlay graphics, with a few differences.

Each overlay node is an instance of an DrawStyle

OverlayNode class, which in turn extends Generato

ResponsiveNode, which contains default

responses to all UI events. OverlayMethod Figure 4.1. The paint method classes.

objects that create the OverlayNode are Dotted arrows indicate inheritance;
objedts hsolid arrows indicate usage. The
added to the thumbnails, instead of the drawing utilities are on the bottom.

67

OverlayNodes themselves. The semantics of an OverlayMethod are similar to

those of a PaintMethod. However, PaintMethods do not necessarily have to

retain state; they contain code that should be executed every time the canvas is

drawn. However, OverlayMethods add overlay nodes (which are Piccolo node

children) to a Thumbnail, which should not happen every time an image is

drawn. Thus, an OverlayMethod must check if the thumbnail is already

displaying the node. In addition, if the thumbnail no longer meets the overlay

method criteria, the method has to remove the overlay node from the thumbnail.

Aside from that detail, the semantics of an OverlayMethod are identical to

those of a ZoomDependent PaintMethod.

4.2 Color coding

Colors are an ideal way to allow a user to compare images in a large dataset,

both by phenotype, by scalar variable, and by Boolean value. Consider an

alternative to classification by color. Imagine that the image browser instead

drew the scalar values of a particular variable atop thumbnails. It would be

much harder to for a user to determine the image with the maximum and

minimum value for in that dataset. If a hundred images were visible, a user

would have to scan each thumbnail to extract that information, instead of quickly

identifying the thumbnail with the designated minimum and maximum color.

Colors make this quantitative analysis much easier, and much clearer. The

image browser supports color-coding in the heat map for analyzing scalar and

Boolean variables, and in the color map for classifying by phenotype.

4.2.1 Heat mapping implementation

This section focuses on the logic of the paint methods generated by heat map to

color-code images. The instructions to build and apply paint methods onto

thumbnails come from the HeatMap Dispat cher, which responds to heat map

user events, such as semantic element selection or scale selection. When the user

selects an item in the heat map's element tree, the dispatcher retrieves all

instances of an enclosing semantic type from the database and stores the

attributes locally. The dispatcher subsequently uses the RangeChecker object

to compute the minimum and maximum values of a variable over all images in

68

the dataset. Finally, the dispatcher instructs the HeatMapPMFactory to

construct Pa intMethods based on the type of the element selected. If the

element is numerical, the dispatcher will invoke the factory's

get Pa intMe thod () procedure. Otherwise, if it is Boolean, it will invoke the

factory's get BooleanPa intMethod () procedure. Both procedures return a

PaintMethod that the dispatcher then applies to all thumbnails in the active

browser model.

The logic inside both paint method varieties is similar. Both method constructors

take as parameters the current mode, interpolation scale, minimum/ false color,

maximum/ true color, target attribute name, and target semantic element. The

supplied element is the variable to convert to a color. As the elements are all

final, they may be accessed from anonymous inner classes, which the method

constructors return.

The logic of the Boolean PaintMethods created by the factory is simpler,

because Boolean methods do not have retain state (see Section 3.4.3 for an

explanation). The paint () method adheres to the PaintMethod specification,

taking a PPaintContext and Thumbnail object as parameters. The method

extracts the value from the supplied thumbnail by analyzing the thumbnail's

AttributeMap. If the target attribute exists in the map, the target element's

value will be either true or false. If true, the method will fill a region over the

thumbnail with a rectangle of the "true" color (normally green). If false, the

method will draw a rectangle of "false" color (normally red) over the thumbnail.

If no attribute of the requested type exists, the method will not draw the

rectangle.

Scalar paint methods are slightly more complicated, as they cache colors for each

thumbnail. Each scalar paint method contains an IdentityHashMap that maps

thumbnails to colors. If a thumbnail is not in the map, the PaintMethod will

call its setupMethod () procedure. The setupMethod () procedure computes

the mapped color, by analyzing the supplied scale, mode, and values of all

relevant attributes. Once this color is determined, the scalar paint method draws

69

a rectangle of that color over the thumbnail, in the same manner as the Boolean

paint method.

4.2.2 Phenotype color mapping

The color map draws colors atop thumbnails based on their phenotypes. Its

operation is similar to that of the heat map. A ColorMapPMFactory object

constructs overlay methods in a similar manner to the HeatMapPMFactory.

The color map factory'scoormp c ye
getPaintMethod () procedure is

nearly identical to that of

Categoryree ColorMapUH a HeatMapPMFactory, with two

main differences. First, the

ColorMapListU GrouBar method does not accept individual

colors as parameters like the
ColorPairModel ColorMpis Grou L stenr

HeatMapPMFactory. Instead, it

ColorPair ColorMapDspatcher Cate Lstener accepts a C o 1 o r P a i r Mo d e 1 that

maps phenotypes to colors.
C lorPairFactor Color apPMlFactr

Second, the color map factory's

setupMethod() is somewhat
Figure 4.2. The color map classes.

different, although it addresses

the same problem as the heat map factory's setupMethod ()-to accelerate

overlay drawing. Phenotypes are represented in the source and in OMEDS by

Classification objects. The setupMethod thus searches for any

Classification whose embedded phenotype (Category) is in the supplied

phenotype-color map. An image may have multiple Classification attributes, at

most one per phenotype class (CategoryGroup). If there are many phenotype

classes, finding a classification belonging to the current CategoryGroup could

be a time consuming operation. Caching the phenotype using setupMethod ()

avoids this bottleneck.

70

4.3 Contextual layouts

The image browser provides spatial coherence when displaying a dataset, by

placing thumbnails onscreen in a meaningful, structured manner. First, the

browser can display images in a standard screen in plate order. Images that

correspond to particular wells appear in the same location onscreen as they

would in a plate, allowing a researcher to quickly pick out an image that

corresponds to a particular well. The image browser can also group images of

like phenotype or like criteria into groups, using a quantum treemap. Before

describing how the image browser places and organizes thumbnails, I will

discuss the structure and benefits of quantum treemaps in more detail.

4.3.1 Quantum treemaps
Quantum treemaps are graphical data structures originally developed by Ben

Shneiderman and Ben Bederson at the Human-Computer Interaction Lab (HCIL)

at the University of Maryland. Treemaps" are simply a method to divide a single

rectangular region into different-sized subregions. Typically, treemaps are used

to compare the size or importance of subsets within large datasets. For example,

the SmartMoney MarketMap browser" uses treemap layout algorithms to

subdivide a single region (the entire stock market) into different-sized market

segments. The sizes of the segments are roughly proportional to the day's

trading volume within each segment.

One drawback to traditional treemap algorithms is its dual constraint: all

subregions must fit into a rectangular area, and the regions must be sized

relatively proportional to each other. Thus, regions that are relatively small may

have a high aspect ratio, so that all subregions may fit into a rectangular shape.

Traditional treemaps have no notion of a minimum width or height, which is

required if an application must to display structured information (such as a

" Bederson, B.B., Shneiderman, B., and Wattenberg, M. "Ordered and Quantum Treemaps:
Making Effective Use of 2D Space to Display Hierarchies." ACM Transactions on Graphics, 21, (4),
October 2002, 833-854.
12 SmartMoney MarketMap Browser. http://www.smartmoney.com/marketmap.

71

group of thumbnails) inside the regions. Bederson and Shneiderman solved this

problem by introducing quantum treemaps.

Quantum treemaps are used to place n identically-sized objects into r different

regions. The minimum size and height of a region is determined by the size of

each object. Establishing a minimum size ensures that regions are wide enough

or high enough to contain a single visual object. Bederson uses quantum

treemaps to organize photo albums in PhotoMesa, with favorable results.

Whereas PhotoMesa uses quantum treemaps to divide an entire album of photos

into subfolders, the image browser uses quantum treemaps to divide thumbnails

in a dataset into regions of like phenotype. This division allows biologists to

more rapidly find images of a specific phenotype, and make quantitative

comparisons of like images, which is especially useful in analyzing large

datasets. Grouping subsets of images in large datasets together can allow a

biologist to search for additional correlation between phenotypes, by using the

heat map to investigate variable values, or by visual inspection. Grouping

images together also adds order to a large dataset, which may be relatively

unstructured when viewed as a plate or with another default layout.

4.3.2 Layout method implementation

The LayoutMethod family of classes place thumbnails in the dataset view. Each

LayoutMethod implements two methods: getAnchorPoint (Thumbnail),

which returns the coordinate of the top-left corner for a that thumbnail, and

getAnchorPoints (Thumbnail []), which generates a Map that maps

thumbnails to the determined coordinates of their top-left corners. The first

method is used only for L a y o u t M e t h o d s that retain state; the

PlateLayoutMethod is one such method. The other main methods used by the

image browser are stateless. In both cases, the L a y o u t M e t h o d s do not

physically place the thumbnails; instead, the BrowserView object uses the

coordinates returned by the LayoutMethod objects to place its thumbnail

children.

72

The two simple layout methods for ' metds
Af~ ae ver **iLayoutnon-screen datasets are very similar. Comparator yeth

Both the NumColsLayoutMethod
AbstractOrdered PlateLayoutMethod

and MaxWidth-LayoutMethod LayoutMethod

assign coordinates to thumbnails in Iax~idI Num Cos

rows from left to right across the L

QuantumGroup Quantum
canvas until a certain point, then LayoutMethod Treemap

begin placing additional thumbnails

in a new row below the previous set. Figure 4.3. The layout method classes.

The NumColsLayoutMethod logic creates a new row every n thumbnails. The

MaxWidthLayoutMethod starts a new row when the bounds of the next

thumbnail in the row would extend beyond a specified maximum width. Both

methods maintain a constant thumbnail order, as they are subclasses of

AbstractOrdered-LayoutMethod, which has one function-to sort

thumbnails in a list by ascending image ID. When presented with a group of

thumbnails to place, both methods use the sorting function to arrange them by

their ID, and then begin the coordinate assignment algorithm.

The Plat eLayoutMethod is a bit more complicated, as it maintains the number

of rows and columns in the plate, as well as a mapping between thumbnails and

an index within the plate. The browser agent establishes this mapping when it

loads a dataset for the first time. Indexes correspond to locations in the plate,

increasing from left to right, then from top to bottom. For example, in a 384

(24x16) plate, the thumbnail corresponding to well B5 will have index 29. The

layout method uses this index to quickly assign a coordinate to a thumbnail. The

row number is the dividend of the index into the number of rows, and the

column number is the remainder. Since all images in a screen are assumed to be

the same size, the row and column number determine the coordinate of the

thumbnail, which the PlateLayoutMethod returns to the browser view.

The most complicated layout method is the quantum treemap layout method.

The constructor for a QuantumGroupLayoutMethod takes a

CategoryGroupingMethod, which divides the thumbnails into subsets by

73

phenotype, and a minimum thumbnail width and height. The latter two

parameters define the quantum-the minimum dimension of a region in the

treemap. The layout method is stateless, so determines all coordinates in its

getAnchor Point s (Thumbnail []) method. To calculate the coordinates, the

layout method logic first constructs a QuantumLayout object (from the HCIL's

open source quantum treemap toolkit"), divides the supplied thumbnail array

into groups using its grouping method, and runs QuantumLayout's algorithm

on those groups and the dimensions of the parent container. QuantumLayout

returns a Rectangle for each group, with position and dimensions that define the

visual region for that group. The layout method then uses the rectangles to place

the thumbnails. Thumbnails are placed in ascending image ID order within the

regions, just like in NumColsLayoutMethod and in MaxWidthLayoutMethod.

Occasionally, the QuantumLayout method will generate a different

configuration of rectangles for the same groups, but it will always attempt to fill

the enclosing container in as balanced and even a manner as possible.

13 http://www.cs.umd.edu/hci1/photomesa/download/layout-algorithms.shtmi.

74

CHAPTER 5

Sample Datasets

This section briefly discusses how the image browser, in its current state,

performs against several real-world biological image datasets. The first is a

complete 384-well plate obtained from Harvard's Institute for Chemical and Cell

Biology (ICCB). The second is a sample collection of multidimensional images

from the National Institute for Aging at the National Institutes for Health.

5.1 ICCB full plate

The first dataset is a complete 384-well chemical screen, containing 648 images.

No analysis modules have been run on the dataset to date, so no image metadata

is available other than image intensity statistics generated by OME's importer

code. The browser, with the complete plate, is shown in Figure 5.1.

The ICCB dataset revealed both strengths and weaknesses of the image browser.

First, it highlighted the value of the color map and treemap functions to sort and

group the images. The thumbnails look nearly identical at low resolution,

differing only in color and occasionally in intensity. Without some sort of

graphical classifier, the dataset looks uninteresting and uniform. However,

zooming out to see the entire dataset does allow a user to quickly pick out and

classify poor-quality images. Even at a zoom factor of 40%, several images

clearly appear overexposed, or blurry, or nearly empty. Displaying well

numbers atop a thumbnail was more useful than anticipated, as it allows users to

keep track of individual images when changing layouts. The magnifier worked

well once it was triggered after a delay; it allowed users to easily perform basic

image operations and quickly inspect individual images.

75

0 0 0 Image Browser ICCB Test Screen (full)

View Analyze Layout

~43%_

mmummmmumnmm mimummm
mawama anME OEB M- amn= no

,,mnmmmmnanm,-m=Smm Mm,
,,mmmmm anmamammamm,

,,m-wmamm,mmamm mmomm,
m,,mamm-nm Smm-mmm,,

mm,,mmNm,,mm-m,,=Omm,,

01OBl -01lBl Morph Well M02 Site 1

Figure 5.1. The 384-well ICCB dataset.

Performance on the large dataset was both a strength and a weakness. Once the

image loaded, the browser was very responsive, drawing all images and overlays

quickly. Moving the scrollbar updates the dataset viewport at a reasonable

response rate, and the apparent speed of the browser increases as zoom

increases. Changing image layout is nearly instantaneous, as is switching

between categories and preloaded elements in the heat map. However, any

operation that required querying the database triggered significant delay. For

example, over a 100MB Ethernet connection, and using a dual G5 Mac OS X

server to run OMEDS, the metadata. from the ICCB dataset took over 90 seconds

to load. The 648 thumbnails from OMEIS, required less than a minute to load.

Selecting an element in the heat map triggers a database query that may take as

long as 45 seconds to complete. This would likely be unacceptable as a first

impression. However, these problems are likely not browser-specific. We

suspect that XML-RPC is adding significant overhead to any database

communication, as is the Perl layer on OMEDS. Although not limited to the

76

browser, these problems are at their worst when loading and extracting

information about a large dataset. If poor data layer performance adversely

affects the performance of the browser application, the OME project will need to

focus on improving database performance.

Experimenting with the ICCB dataset also revealed several problems that will be

addressed in upcoming versions of the image browser. First, more support for

multiple images per well is needed in screening. Currently, the only overlay that

indicates multiple images in a well is a folding icon. However, this only reflects

the presence of multiple images, and not the content of those other images.

There is presently no visual cue to indicate that another image in a well has an

annotation. Heat mapping and color mapping only take the active image in a

thumbnail into consideration when applying color overlays. When a user selects

treemap layout, the thumbnails are organized based on the phenotype of the

active image in a well, which may be different from the phenotype of another

image in the same location.

The other significant problem has to do with color overlays. Currently, the

browser does not convert the images in the browser to grayscale before applying

a heat map or color map overlay, as the operation makes the browser's repaint

operation much too slow. As a result, the overlays, which are partly transparent

to show the contents of the image, may blend with the colors of the thumbnail in

undesirable ways. One way around this is to make the overlays larger than the

thumbnails themselves, and draw them in the background. I have yet to

experiment with this technique, but it seems that it would resolve this particular

problem.

Other problems the ICCB dataset revealed were relatively minor. Some users

complained that the magnifier was too intrusive. Initial versions of the browser

contained menu palettes in the Piccolo space, like the web UI image viewer.

Users complained that those were often in the way as well, so I added a more

traditional Swing menu bar and toolbar to each browser window instead.

Current plans are to update the browser to handle even larger datasets, on the

order of several thousand images.

77

5.2 A sample dataset of 5D images

I also tested the image browser on a much smaller dataset, containing just a few

multidimensional 5D images. Figure 5.2 shows a screenshot of that dataset. My

main conclusion from testing the browser on the 5D images is that the viewer

does a better job of describing a multidimensional image than the browser

currently does. Right now, the browser only shows a single image slice with a

default configuration of channels. This is the thumbnail generated by

OMEIS-which for a 5D image is a color-balanced projection of its middle Z slice

and first timepoint. However, the region of interest for a 5D image may really be

Image Browser: SD Test Set 1 at a different timepoint or different Z slice.

View Analyze Layout A user has to determine this with the

f 10%~ viewer, and not the browser. One possible

solution would be to support chimographs,

or displaying whole stacks of time points

and Z slices in a different browser window.

Such a strategy, however, would rely of

OMEIS to deliver thumbnails of arbitrary
All images loaded.

_planes quickly, which it is not currently

Figure 5.2. A small 5D image dataset. optimized to do.

The other problem revealed by 5D image datasets is with the heat map. Several

important image statistics attributes, such as maximum intensity, image centroid,

and mean intensity, are characteristics of stacks and planes within the image, and

not the entire image. However, a thumbnail represents an entire image, and not

a single plane or stack. The heat map tries to address this by allowing a user to

pick how a value is assigned when multiple attributes of a specific type exist-as

they surely will in the case of stack and plane-level attributes. However, this is

really an oversimplification. There aren't many ways around this. One method

that has been discussed is to use the image browser code as a template for a stack

and plane browser within an image. Another is to allow the user to inspect

different timepoints and Z slices in the magnifier. The latter makes the most

sense, and will likely be a feature in a future version of the browser.

78

Despite these limitations, the browser is still useful for larger 5D datasets. The

browser is still the only tool within OME that allows a user to annotate an image

and view those annotations. The viewer may allow a user to better classify and

characterize a 5D image, but the browser still allows the biologist to quickly

detect, remember, and use that information.

79

80

CHAPTER 6

Conclusion

I have outlined and summarized an image browser for visualizing and managing

large datasets of biological images. The features of this tool enable biologists to

more quickly extract meaningful information from gigabytes of image data,

through classification, annotation, and semantic overlay mechanisms. It includes

a user interface that changes behavior based on the current level of detail and

zooming factor on the dataset. Finally, it is designed to be adaptive, flexible, and

efficient. However, the project is not completely finished. The image browser is

in its first incarnation, and there is room for improvement and new features

6.1 Future work

The most important goal in the short-term is to get feedback from users about the

image browser, and develop a list of new features for the tool. I recently

presented the browser to the biologists working in SorgerLab, and they have

already responded with constructive feedback. For example, one researcher

suggested a layout method that would order thumbnails by a scalar variable-a

graphing layout. Another suggested faded overlays for annotations in images in

a well, or a multiple-page look for multiple images in a well. We will be meeting

very soon with screeners at the Harvard ICCB to allow them to test the software,

get feedback, and consider implementing their suggestions.

Further down the road, we have discussed making the image browser a more

generic tool, developed separately from OME. Such a tool would use a flatfile or

direct JDBC data connection to extract image data, and could be used to organize

81

and classify images on a remote or local filesystem. The act of browsing is

independent from any paradigm in OME; it may prove useful for the browser to

become independent of OME at some point as well.

Finally, the development of the image browser was rapid. Mistakes were

inevitably made, and several features, particularly key events, were omitted.

Once the entire OME package is released, I will include those omissions, and

analyze the source to determine if and where the code should be refactored. All

in all, my goal in the next few months (while I am still at MIT) is to improve the

code, and leave an application that biologists will actually use. If my software

enables a biologist to more effectively conduct research, then this project will be

judged a success.

82

APPENDIX A
Code & Documentation URLs

Both the code for the image browser and its Javadoc documentation can be found

on the OME project websites, or through anonymous CVS.

Source (view only):
http:/ /cvs.openmicroscopy.org.uk/ cvsweb/

Source (anonymous CVS- HOWTO):
% cvs -d ':pserver:anoncvs@cvs.openmicroscopy.org.uk:/ome' login

(Enter anoncvs for the password)
% cvs -z3 -d ':pserver:anoncvs@cvs.openmicroscopy.org.uk:/OME'

checkout OME

The browser code is located in the Shoola branch, under org / openmicroscopy/
shoola / agents / browser.

Javadoc (OME client, including browser):
http: / / sorger-g51.mit.edu:8009 / shoola/

Javadoc (OMEDS, OMEIS interfaces):
http: / / sorger-g51.mit.edu:8009 / ome-java /

General project documentation:
http: / / docs.openmicroscopy.org.uk/

83

84

APPENDIX B

Complete Source File List

The following is a list of files written and created by the author for the purpose of

creating the browser and for completing this Thesis. The root folder of these files

from the main OME branch (see Appendix A for code access information) is

Shoola/SRC/ org/openmicroscopy/ shoola/ agents.

annotator/AnnotationCtrl.java

annotator/Annotator.java

annotator/DatasetAnnotationCtrl.java

annotator/ImageAnnotationCtrl.java

annotator/TextAnnotationUIF.java

annotator/events/AnnotateDataset.java

annotator/events/AnnotateImage.java

annotator/events/DatasetAnnotated.java

annotator/events/ImageAnnotated.java

browser/BrowserAgent.java

browser/BrowserController.java

browser/BrowserEnvironment.java

browser/BrowserManager.java

browser/BrowserMode.java

browser/BrowserModeClass.java

browser/BrowserModel.java

browser/BrowserModelAdapter.java

browser/BrowserModelListener.java

browser/BrowserTopModel.java

browser/BrowserTopModelListener.java

browser/IconManager.java

browser/colormap/ColorBoxLabel.java

browser/colormap/ColorCellRenderer.java

browser/colormap/ColorMapCategoryListener.java

browser/colormap/ColorMapDispatcher.java

85

browser/colormap/ColorMapGroupBar.java

browser/colormap/ColorMapGroupListener.java
browser/colormap/ColorMapList.java
browser/colormap/ColorMapListUI.java
browser/colormap/ColorMapManager.java
browser/colormap/ColorMapModel.java
browser/colormap/ColorMapModelListener.java
browser/colormap/ColorMapPMFactory.java
browser/colormap/ColorPair.java
browser/colormap/ColorPairFactory.java
browser/colormap/ColorPairModel.java

browser/datamodel/AttributeMap.java
browser/datamodel/CategoryComparator.java
browser/datamodel/CategoryTree.java
browser/datamodel/CompletePlate.java
browser/datamodel/DataElementType.java
browser/datamodel/PlateInfo.java
browser/datamodel/PlateInfoParser.java
browser/datamodel/ProgressListener.java
browser/datamodel/ProgressMessageFormatter.java

browser/events/AnnotateImageHandler.java
browser/events/BrowserAction.java
browser/events/BrowserActions.java
browser/events/CategoryChangeHandler.java
browser/events/ClassificationHandler.java
browser/events/CompositePiccoloAction.java
browser/events/MouseDownActions.java
browser/events/MouseDownSensitive.java
browser/events/MouseDragActions.java
browser/events/MouseDragSensitive.java
browser/events/MouseOverActions.java
browser/events/MouseOverSensitive.java
browser/events/PiccoloAction.java
browser/events/PiccoloActionFactory.java
browser/events/PiccoloActions.java
browser/events/PiccoloModifiers.java
browser/events/ReversibleBrowserAction.java
browser/events/ReversiblePiccoloAction.java

browser/heatmap/AbstractHeatMapMode.java
browser/heatmap/HeatMapDispatcher.java
browser/heatmap/HeatMapDTListener.java
browser/heatmap/HeatMapFilter.java
browser/heatmap/HeatMapGradient.java
browser/heatmap/HeatMapGradientUI.java
browser/heatmap/HeatMapManager.java
browser/heatmap/HeatMapMode.java
browser/heatmap/HeatMapModeBar.java
browser/heatmap/HeatMapModel.java
browser/heatmap/HeatMapModeListener.java

86

browser/heatmap/HeatMapModelListener. java
browser/heatmap/HeatMapModes.java

browser/heatmap/HeatMapPMFactory.java

browser/heatmap/HeatMapScaleBar. java
browser/heatmap/HeatMapStatus.java

browser/heatmap/HeatMapStatusU I. java
browser/heatmap/HeatMapTreeListener. java
browser/heatmap/HeatMapTreeRenderer. java
browser/heatmap/HeatMapTreeUI.java

browser/heatmap/HeatMapUI.java

browser/heatmap/HeatMapUtils.java

browser/heatmap/LinearScale.java

browser/heatmap/LogarithmicScale. java
browser/heatmap/RangeChecker.java

browser/heatmap/Scale.java

browser/heatmap/SemanticTypeTree.java

browser/images/AbstractOverlayMethod.java

browser/images/AbstractPaintMethod.java

browser/images/DrawStyle.java

browser/images/DrawStyles.java

browser/images/ImageAnnotationNode.java

browser/images/ImageAnnotationOverlay.java

browser/images/OverlayMethod.java

browser/images/OverlayMethods.java

browser/images/OverlayNodeDictionary.java

browser/images/PaintMethod.java

browser/images/PaintMethods.java

browser/images/PaintShapeGenerator.java

browser/images/ResponsiveNode.java

browser/images/Thumbnail.java

browser/images/ThumbnailDataModel.java

browser/images/ZoomDependentPaintMethod.java

browser/layout/AbstractOrderedLayoutMethod. java
browser/layout/AspectLayoutMethod.java

browser/layout/CategoryGroupingMethod.java

browser/layout/ConstrainedLayoutMethod.java

browser/layout/CriteriaGroupingMethod.java

browser/layout/FootprintAnalyzer.java

browser/layout/GroupingMethod.java

browser/layout/GroupModel.java

browser/layout/ImageIDComparator.java

browser/layout/LayoutComparator. java
browser/layout/LayoutMethod.java

browser/layout/MaxWidthLayoutMethod. java
browser/layout/NumColsLayoutMethod.java

browser/layout/PlateLayoutMethod.java

browser/layout/QuantumGroupLayoutMethod.java

browser/layout/QuantumTreemap.java (from HCIL)

browser/layout/SingleGroupingMethod. java

87

browser/ui/BrowserCamera.java
browser/ui/BrowserInternalFrame.java
browser/ui/BrowserMenuBar.java
browser/ui/BrowserView.java
browser/ui/BrowserViewEventDispatcher.java
browser/ui/BrowserViewListener.java
browser/ui/CameraListener.java
browser/ui/CategoryEventHandler.java
browser/ui/CategoryMenuFactory.java
browser/ui/HoverManager.java
browser/ui/HoverSensitive.java
browser/ui/NeighborFinder.java
browser/ui/PopupMenuFactory.java
browser/ui/RegionSensitive.java
browser/ui/SelectedRegion.java
browser/ui/SemanticZoomNode.java
browser/ui/StatusBar.java
browser/ui/UIWrapper.java
browser/ui/ZoomButtonPanel.java
browser/ui/ZoomParamListener.java

browser/util/Filter.java
browser/util/GrepOperator.java
browser/util/KillableThread.java
browser/util/MapOperator.java
browser/util/StringPainter.java

classifier/AttributeComparator.java
classifier/CategoryCtrl.java
classifier/CategoryEditUI.java
classifier/CategoryUI.java

classifier/Classifier.java

classifier/events/CategoriesChanged.java
classifier/events/ClassifyImage.java
classifier/events/ClassifyImages.java
classifier/events/ImagesClassified.java
classifier/events/LoadCategories.java
classifier/events/ReclassifyImage.java
classifier/events/ReclassifyImages.java

88

