
A Wireless Communication System for a

Tactile Vest

by

Brett J. Lockyer

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 19, 2004 -

0 2004 Massachusetts Institute of Technology. All rights reserved.

Author

Department of Electrical Engineering and Computer Science
May 19, 2004

Certified by

Dr. ynette A. Jones
Thesis Supervisor

Accepted by_____ ___________________________
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITTE
OF TECHNOLOGY

JUL 2 0 2004

LIBRARIES

A Wireless Communication System for a Tactile Vest
by

Brett J. Lockyer

Submitted to the
Department of Electrical Engineering and Computer Science

May 19, 2004

In Partial Fulfillment of the Requirements for the Degree of Master of Engineering in
Electrical Engineering and Computer Science

ABSTRACT

This research focuses on the development of wireless communication circuitry for a
tactile display called the Tactile Vest. The display consists of a 4x4 array of vibrating
motors worn around the user's torso in direct contact with the skin. It allows an operator
with a notebook computer to issue navigational commands wirelessly to units in the
vicinity and receive transmissions from them regarding their status. Each command is
associated with a pattern of vibratory stimulation to which the user responds. The Tactile
Vest system must be durable, lightweight, and consume very little power since it will be
worn by mobile users for extended periods. The complete circuit design process is
described, from initial prototype development to final layout and testing. A graphical
user interface for the notebook computer, written in Visual Basic .NET, is also presented.

Thesis Supervisor: Lynette A. Jones

Title: Principal Research Scientist

2

Acknowledgements

The author would like to thank the students, researchers, and professors at the
MIT BioInstrumentation Laboratory for all their support. Without the patience and
guidance of Dr. Lynette Jones, this project would not have been successful. This
research was supported by a grant from the Advanced Decision Architectures
Collaborative Technology Alliance sponsored by the U.S. Army Research Laboratory
under Cooperative Agreement DAAD19-01-2-0009.

3

Table of Contents

ABSTRACT ... 2

LIST OF FIGURES .. 5
LIST OF TABLES ... 5
INTRODUCTION .. 6

CIRCUIT DESIGN .. 16
PROTOTYPE CONSTRUCTION .. 26

LAYOUT AND FABRICATION ... 29

POPULATION AND TESTING .. 36
SOFTWARE ... 40

FURTHER RESEARCH .. 44
REFERENCES .. 53
APPENDix A : M ICROCONTROLLER CODE .. 55

APPENDix B: VISUAL BASIC N ET CODE ... 67

4

List of Figures

Figure 1: MaxStream and Bluetooth modules. ... 21
Figure 2: The prototype circuit. .. 27
Figure 3: Tactile Vest schematic.. 30
Figure 4: Top layer of PCB layout... 33
Figure 5: Bottom layer of PCB layout. ... 33
Figure 6: Top layer of unpopulated PCB.. 34
Figure 7: Bottom layer of unpopulated PCB. .. 35
Figure 8: The final wireless communication circuit. ... 37
Figure 9: The prototype 3 x3 motor array. ... 39
Figure 10: A screenshot of the Visual Basic .NET GUI... 41

List of Tables

Table 1: Power consumption at various operating voltages .. 38
Table 2: Comparison of various wireless technologies. .. 49

5

Introduction

The human body's means of perception are typically divided into five discrete

modalities: vision, audition, touch, taste, and smell. Of these five senses, the first three

are regularly employed to guide daily activities. They complement each other well, and

in cases where one sense is impaired, the brain is often able to extract information from

the remaining senses to compensate for the loss of sensory information. Methods for

transmitting information to the human brain via the visual and auditory channels have

been the focus of centuries of research, whereas the scientific community has only

relatively recently studied information transmission via the tactile channel [1]. Since

visual and auditory displays are simple to construct and operate, and can accommodate

multiple users simultaneously, the associated senses are generally considered vastly

superior to the tactile channel for conveying information. This is not necessarily the case,

however. If the information is presented well, the processing capability of the tactile

channel can approach that of the other two modalities [1].

A device that presents information to the user via the sense of touch is called a

tactile display. It stimulates the nerve receptors in the skin using either electrical

impulses from surface or subdermal electrodes (electrocutaneous stimulation), vibration

signals from small actuators mounted on the skin (vibrotactile stimulation), or static

deformation of the skin. Tactile displays are generally mounted on the fingertip, palm, or

forehead where the skin is most sensitive to the type of stimulation presented.

Unfortunately, this channel of communication remains highly underutilized in today's

modem, information-driven world.

6

Approximately 2 m2 of skin covers the average adult, about 90% of it hairy and

10% smooth or glabrous [2]. The skin on the torso constitutes about half of this surface

area [3]. Hairy skin contains five main types of mechanoreceptors, each classified

according to their rate of adaptation to a step change in applied skin pressure. These

classifications were originally established to differentiate the mechanoreceptors in

glabrous skin, but the same principle is applied to receptors in hairy skin. The groups

are: fast adapting, small receptive field (FA I); fast adapting, large receptive field (FA

II); slowly adapting, small receptive field (SA I); and slowly adapting, large receptive

field (SA II). In hairy skin, the fast adapting mechanoreceptors include hair follicle

receptors (FA I), field units, and Pacinian corpuscles (FA II), while the Merkel's cells

(SA I) and Ruffini endings (SA II) are slowly adapting [2].

This speed of adaptation is crucial for determining which mechanoreceptors will

respond best to vibrotactile stimulation within a specific frequency range. As the

adaptation speed increases, so does the vibration frequency range that can elicit a

response from the mechanoreceptor. Knowing which receptors will be stimulated by a

particular frequency range is useful when deciding where to place a tactile display on the

body for maximal information transfer.

The concept of vibrotactile stimulation is simple: use controllable vibrating

electromechanical actuators in contact with the skin to stimulate the user's cutaneous

receptors. The actuator (or tactor) technology varies with the application, from

electromechanical speakers, to vibrating motors like those used in cell phones or pagers,

to pneumatic actuators. Of all the mechanoreceptors that have been identified and

characterized, only a few are sensitive to vibratory signals, namely the Meissner

7

corpuscle, the Pacinian corpuscle, Ruffini endings and hair follicle receptors. The

Pacinian corpuscle (FA II), for example, is most sensitive to vibrations in the 200 to 300

Hz range. Meissner's corpuscles are only found in glabrous skin but respond well to

mid-range frequencies (20 to 40 Hz). Ruffini endings, generally found around hair

follicles in the dermis, are sensitive to low-frequency vibration (around 7 Hz) [2].

Research in a number of areas, from virtual reality to telerobotics to rehabilitation,

has demonstrated the need for tactile displays that can augment or simply represent an

environment (be it real or virtual). Braille is perhaps the most recognized example of a

tactile display, providing a representation of text in a tactile format via deformation of the

skin as users slide (scan) their fingertips across the display. The average reading rate for

experienced Braille users is 125 words per minute, and rates as high as 200 words per

minute are possible [2]. "With over 10,000 parallel channels, the tactile system is

capable of processing a great deal of information if it is properly presented," [2, p. 360].

One of the most difficult aspects of tactile display design is deciding upon the optimal

method for presenting data to the tactile system.

Certain types of information may be more efficiently conveyed through a tactile

display than with a visual or aural display. Examples include data on surface structures,

textures in virtual environments, forces acting on objects or actuators in tele-

manipulation, and orientation or motion information for pilots of remotely operated

vehicles [1].

Tactile displays have also been used to substitute, in part, for the visual and

auditory senses. A Tactile Vision Substitution (TVS) system developed for the blind in

the 1970s allowed recognition of simple patterns and human faces. The system consisted

8

of a stimulator matrix mapped to the pixels of a television camera. The intensity of

stimulation varied with the amplitude of light falling on the corresponding camera pixel

(or group of pixels) [2]. Thus, an image in the camera was projected onto the tactile

array. The system was limited with respect to the complexity of the patterns it could

successfully convey, however. This can be attributed to the inherent low-pass filter

behavior of the skin for spatial detail, which blurs highly detailed patterns [4].

Tactile substitution for the auditory sense has also produced some surprising

results. An auditory prosthesis, called the Tacticon, which consists of 16 electrodes,

actually improves the speech clarity of deaf children and the comprehension of auditory

cues in older subjects [2]. Some of the Tacticon's success may be ascribed to its

ingenious design, which is modeled after the human ear. Each electrode's intensity is

varied based on the measured intensity of sound in a narrow passband of the audio

spectrum, thus resembling the manner by which the ear decodes incoming sound into its

various frequency components and amplitudes.

Despite the enhancements to daily life demonstrated by the aforementioned

sensory substitution systems for disabled persons, only one system has become a

commercial success. The Optacon (short for Optical to Tactile Converter, made by

TeleSensory, Mountain View, CA) converts printed text characters directly to tactile

stimulation patterns via a 24x6 vibrating (230 Hz) tactor array [2]. Unlike Braille, the

Optacon uses a tiny, hand-held camera to capture images, and then it reproduces the same

spatial pattern on the array. Experienced blind users can read text at up to 90 words per

minute, but 28 words per minute is the average rate [2].

9

When compared with Braille, which uses a 2x3 array to represent most

alphanumeric characters, the success of this system is surprising. Braille users can

generally read three to five times faster than Optacon users. Clearly, Braille's method for

representing characters is very intuitive, and differences between characters are easily

recognized. The Optacon uses the visual pattern of each character for presentation to the

tactile sense, which degrades performance since the eye is capable of quickly identifying

fine spatial details that the tactile sense cannot distinguish on the same time scale.

Much of the research on vibrotactile displays has focused on augmenting the

user's perception of his environment, especially in environments where there are

discrepancies in the inputs to the sensory systems. These displays generally provide

position or motion information to aid the users' other senses and to prevent them from

becoming disoriented. The vibratory stimulus is usually between 125-250 Hz and is

presented at fixed frequencies and amplitudes. It is sometimes modulated with a digital

signal depending on the specific application.

The U.S. Navy has constructed a system called TSAS (Tactical Situation

Awareness System) to help pilots avoid spatial disorientation, which is a common

problem when performing complex maneuvers in jet fighters such as the F/A-18 [5]. It

transfers azimuth and elevation data continually from the aircraft's flight instruments to a

vest with embedded vibrotactile stimulators worn by the pilot. One prototype's stimulus,

for example, is 10 pulses of a 150 Hz rectangular pulse train waveform with a 10% duty

cycle, followed by a 450 ms break [6]. Small pager motors or electromechanical

speakers provide the vibratory input [7].

10

The TSAS has been successfully tested in a T-34 aircraft and an H-60 helicopter.

The test pilots were seated in a shrouded cockpit to eliminate all visual cues for

movement or orientation. They were instructed to perform a series of maneuvers

including level flight, climbing and descending turns, and simple acrobatics. Except for

occasional problems with missed tactor cues due to intermittent contact with the skin, the

pilots performed very well after less than 20 minutes of training [6]. The TSAS has been

through several prototyping stages, each improving aspects of the previous design, but a

final version for widespread use has not yet been developed. This system can increase

the pilot's awareness in situations where misleading incoming sensory data would

otherwise lead to spatial disorientation. By reducing the processing load required to fly

the aircraft, the system allows the pilot to focus more on mission objectives, weapons

systems, and communications [7].

One of the limitations of the TSAS system is its inefficient and cumbersome

design. One of the latest prototypes uses pneumatic tactors that must be connected to a

compressed air source, making it difficult to fit into the tiny cockpits of some aircraft. It

also requires a separate computer (486 type processor) running custom software for

control. A more compact and mobile device called the Tactor Interface Microcontroller

System (TIMS) has been proposed. Its power-efficient design readily interfaces to the

flight control system in most Naval fighter jets. The bulky computer is replaced with a

Motorola MPC860 microcontroller and the pneumatic tactors are replaced with smaller

electromechanical vibrating tactors. Once fully implemented, it will control 40 tactors or

more with a palm-sized interface and use the MIL-STD-1553 aircraft bus for

communication with the flight instruments [5].

11

Vibrotactile displays worn on the torso have also been tested for use in the space

program. Rochlis and Newman have demonstrated the need for such a device to assist

astronauts aboard the International Space Station (ISS) in Extravehicular Activity (EVA)

[8]. During normal terrestrial activities, the brain receives information (some of which is

redundant) from the visual, vestibular (inner ear), and somatosensory systems (skin, joint,

and muscle sensors) [7]. This information is combined and processed in the brain to

yield a determination of the body's movement and orientation with respect to some

inertial reference frame. In space or other unusual gravitational environments, the

accuracy of this sensory information is compromised by the lack of a clear gravitational

vector, or any stable reference frame. Space Motion Sickness (SMS), a form of spatial

disorientation, usually results from conflicting sensory inputs, and the astronauts' ability

to execute their missions becomes impaired [8].

Since the brain generally relies on the visual modality during activity in

weightless environments, astronauts may become distracted from their primary objectives

during the EVA simply because their spatial awareness has decreased. The Tactor

Locator System (TLS) was designed to help astronauts maintain a high level of spatial

orientation during EVA missions [8]. It uses a vibrotactile display that provides a

redundant (and intuitive) sensory cue to aid the visual system in unusual environments.

In the prototype phase, the system consists of an array of six vibrating tactors, driven at

250 Hz with a 6 V peak-to-peak waveform. Four tactors are spaced evenly around the

midsection of the torso, and the other two are located at the base of the neck and the

buttocks [8].

12

During preliminary testing, the user was given a task to execute on a PC-based

space simulator. Results indicated an improvement in the reaction time to an unfamiliar

situation, as well as an improvement in the user's ability to maneuver in the environment.

Tactile cues reduced the subjects' maneuvering times (time to acquire a target) by 92 s on

average and decreased their reaction time to new situations by an average of 4.5 s [8].

A further study of the usefulness of vibrotactile cues in maintaining spatial

orientation will be conducted by a Dutch astronaut named Andre Kuipers on the

International Space Station in April 2004. This project is not related to the

aforementioned research of Rochlis and Newman [8], but its goals are similar. The suit

consists of a matrix of vibrating tactors that will be actuated based on signals from a two-

axis gyroscope. The system is battery powered and interactive via an arm-mounted

control panel. The experiment is broken down into two phases, one in which the

astronaut is instructed to execute various orientation tasks while wearing the suit, and the

other will instruct the astronaut to carry out his daily activities while wearing the suit.

The second phase will evaluate the suit's effectiveness in an operational setting.

Performance data will be monitored and recorded on removable flash memory cards [9].

Wall and Weinberg have built another type of tactile display that provides

vibratory stimulation to the skin to assist in postural stability in people with balance

impairments [10]. This may include people recovering from inner-ear surgery or elderly

persons who have impaired balance and are prone to falling. The system incorporates a

vibrotactile array that displays the body's tilt with respect to the vertical, thus enabling

vestibulopathic subjects to reduce their body sway and prevent falls [10].

13

The tactile display used in Wall and Weinberg's prototype wearable prosthesis is

a 3x16 array of vibrating tactors operating at 250 Hz [10]. They are spaced evenly

around the lower torso (horizontally) and arranged into three vertical rows. The subject

receives body tilt direction information via actuation of the tactor on the ring

corresponding to the angular direction of the measured tilt. The number of tactors

actuated in that column then depends on the magnitude of the tilt. The 802.1 lb (Wi-Fi)

protocol is used to communicate with the wearable prosthesis via a notebook computer

[10]. The computer, running a custom LabView interface, records the prototype's

measurements for analysis and updates the software running on the device's various

processors.

Tactile displays can also be used as active devices, actually instructing the user to

perform various actions instead of passively representing the environment or the user's

orientation within that environment. This application is generally reserved for visual or

auditory displays because they are considered more mature technologies and are easy to

construct. Unfortunately, there is a limit to the amount of information those two senses

can process without causing confusion. A tactile display can take advantage of the sense

of touch, thereby reducing the demands placed on the other two modalities and

potentially increasing the information throughput to the user.

This thesis details the design and implementation of a wireless communication

circuit for a tactile display called the Tactile Vest. The complete system consists of a 4x4

array of vibrating motors worn around the torso, along with the associated embedded

control electronics that receive commands wirelessly from a notebook computer and

translate them into sequences of vibration. The user will sense this vibrotactile

14

stimulation, associate it with a command, and take the appropriate action. Since the vest

is worn around the torso, it will not interfere with the user's arms or legs, allowing a full

range of motion while wearing the system. Its operation is virtually silent, which is

desirable in many military environments.

15

Circuit Design

The Tactile Vest circuit has two main components: a wireless transceiver module

for communication with a notebook computer and an embedded processor, or

microcontroller, to receive commands from the wireless module and translate them into

sequences of motor actuation. Each component will be discussed in detail in this section

together with the rationale for selecting the technology.

The wireless communication system represents the most challenging aspect of the

design process. The features desired in a wireless system for this application are not

necessarily realistic given the current state of wireless technology. Desired specifications

for the Tactile Vest's wireless system include a 100-meter range both indoors and

outdoors, the ability to operate for at least 48 hours on a single charge of a reasonably

sized battery, a fast connection time, a high data communication rate with encryption, the

ability to communicate with multiple units at the same time and to handle a constantly

changing spatial distribution of units. The wireless module for the vest circuit must be

small and inexpensive, and on the notebook computer side, it should have a Universal

Serial Bus (USB) interface.

Two different wireless modules satisfy most of the above criteria: 9XStream

radio modules from MaxStream, Inc. (Orem, UT) and BR-C 11 Bluetooth modules from

BlueRadios, Inc (Englewood, CO). Unfortunately, neither system possesses all the

specifications listed above, but they are the best options available.

The MaxStream modules use spread-spectrum 900 MHz wireless modem

technology. This is the same frequency band used by cordless phones for short-range

communication within a house or business. One module connects to the RS-232 (serial)

16

port of the notebook computer and the other interfaces to the microcontroller on the

tactile vest via a Universal Asynchronous Receiver Transmitter (UART). The wireless

system can accommodate up to 7 networks, each with 65,536 individually addressable

modules. Communication speed is rather slow, however, at only 19.2 kbps (over air).

The modules themselves are 84.3 mm long, 40.64 mm wide, and 16.89 mm thick, making

them rather large, especially with the half-wave antenna attached, which is about 167 mm

long [11].

The BlueRadios modules are spread-spectrum, 2.4 GHz Bluetooth Class 1 devices

that are easily integrated with Microsoft Windows (see [12] for more information about

the Bluetooth standard and Special Interest Group). They allow for high-speed

communication of up to 721 kbps (over air), transmission security via 128-bit encryption

and a ten-digit PIN, and have a relatively long range of 100 m (line-of-sight, outdoors)

[13]. Unfortunately, this technology can only handle "pico-nets" of seven users or less,

which could present a problem when trying to communicate with large groups of people.

The Bluetooth module contains an integrated ceramic chip antenna, but it requires

an external RF "backplane" to function properly. This "backplane" must consist of non-

magnetizable metal residing in very close proximity (about 0.4 mm) to the metal

component shield on the device (measured in the direction perpendicular to the plane of

the module). Electrical contact between the metal shield and the "backplane" is not

necessary. It must also be mounted at least 6.1 mm away from the chip antenna in the

lateral direction (along the plane of the module). Details of the antenna's transmission

profile, directionality, and physical design could not be obtained from the manufacturer,

and so the reason for this "backplane" is not precisely known. According to the

17

manufacturer, the radio frequency output is amplified by eddy currents induced in the

metal "backplane," therefore leading to a stronger, more favorable antenna transmission

profile.

Low power consumption is critical to this application due to the constraints on

battery size and weight, which limit the available power to the circuit during operation.

Ideally, the battery would weigh no more than 500 grams so it can be easily carried for

two days without encumbering the user. To meet this objective, the circuit's power

consumption must be minimized.

The MaxStream modules allow for several low-power modes of operation: pin

sleep and cyclic sleep. Pin sleep is the lowest power mode, consuming only 0.3 mW, and

it is initiated by toggling one of the input pins (SLEEP, pin 2) on the module. The

MaxStream unit then remains in pin sleep mode until the pin is brought low again. The

transition back to idle mode takes about 40 ms [11]. The other low-power mode

implemented on this module is cyclic sleep. In this mode the unit transitions from idle to

sleep after a user-defined period of inactivity. The module then transitions back to idle

periodically (based on a user-defined period from 0.5 s to 16 s) to check for incoming

data packets over the RF link or the UART [11]. If it detects any valid packets during the

100 ms window, it receives or transmits them and then enters the sleep state again [11].

With no sleep modes initialized, the MaxStream device consumes 750 mW while

transmitting, 250 mW while receiving, and 15mW while idle [11]. Cyclic sleep mode

can significantly reduce the average power consumption in this case. When the module

enters into 1 s cyclic sleep mode, it draws only 19.3 mW on average, and when it enters

16 s cyclic sleep mode, average power consumption drops to 1.38 mW.

18

The Bluetooth module can also enter a type of cyclic sleep mode. The scan

interval and window can be set independently, thereby specifying the time between

searches (interval) for incoming data or connection requests and the duration of each

search session (window). The default setting gives a 1.024 s interval and a 0.512 s

window. Under these conditions, the module operates at a 50% duty cycle, nearly cutting

its average power consumption in half. Between searches, the module draws about 7 mW

[14]. Without sleep mode implemented, the Bluetooth module draws 396 mW while

transmitting, and 132 mW while receiving data [13].

Reduced power consumption leads inevitably to an increase in latency. Measured

as the time between command transmission and initiation of a vibration pattern on the

array, the latency must be minimized in this application. Otherwise, commands may not

be relevant by the time the user has received them. If sensors on the vest detect a critical

situation, that information must be relayed back to the host and a command must be sent

informing the user to take immediate action. These critical data must reach their

destination as quickly as possible to increase the operator's safety.

Since the host cannot issue commands to the vest while the wireless module is in

low-power mode, the command must be sent repeatedly until the vest module receives

and acknowledges it. This process could take up to 16 s for the MaxStream module (in

the lowest power cyclic sleep mode) and up to 0.5 s for the Bluetooth module (in factory

default cyclic sleep mode), depending on the module's duty cycle, or the length of time it

sleeps versus the time it checks for incoming data. The overall system latency would be

the sum of this latency, the time required for the vibration pattern to be executed, and the

19

time a person takes to react to the vibrating stimulus (about 200 ms, [2]). This delay may

be unacceptable in some applications.

Tests performed in the laboratory have shown that the MaxStream modules have a

better range both indoors and outdoors (up to 200 m indoors, over 200 m outdoors) than

the BlueRadios modules. The latter have a range of only 170 m outdoors and around 23

m indoors in the presence of obstacles such as doors or walls. However, the BlueRadios

modules are much smaller, both on the embedded side and on the notebook computer end

(which uses a USB interface), and can communicate at faster rates than the MaxStream

modules. MaxStream's proprietary technology can limit its usefulness in a particular

application, whereas Bluetooth technology has the potential built-in to expand

effortlessly into other applications such as voice transmission. Figure 1 shows the two

modules.

One reason for the MaxStream module's superior indoor range is its operating

frequency. The wavelength of a 900 MHz wave is 0.33 m, whereas the wavelength of a

2.4 GHz signal is 0.125 m. The longer the wavelength, the greater the diffraction around

obstacles and the stronger the received signal remains. When an electromagnetic wave

encounters an opaque obstacle or a gap between obstacles, the wave "bends" and

diffraction occurs. The resulting diffraction pattern is caused by interference between

different parts of the wave as it travels through space. If a wave is "bent" such that its

path length, measured from source to observer, is changed, then its phase will also be

modified. Two waves with different phases that overlap in space can interfere either

constructively or destructively, thereby producing wave amplitudes either greater than or

less than the original amplitudes, respectively [15].

20

Figure 1: MaxStream (left) and Bluetooth (right) modules. The grid is 1 cm2.

The extent and spatial location of this interference depends on the size of the

obstacle or gap relative to the wavelength of the incoming radiation. In general, if the

wavelength is smaller than the dimensions of the obstacle, distinct shadows will be cast

behind the obstacle. These shadows are the result of destructive interference between

sections of the original wave after encountering the obstacle and undergoing phase shifts.

If the wavelength is larger than the dimensions of the obstacle, the wave will tend to

spread out spatially after encountering the obstacle [15]. No distinct shadows are cast,

and the likelihood of the observer (or receiver, in this case) being positioned within a

destructive interference zone decreases. The effect is similar to that of a sound wave

(with a frequency of 500 Hz and a wavelength of about 68 cm) "bending" around

21

. --- -

obstacles such as trees and telephone poles, while the same obstacles cast distinct

shadows when illuminated by light (with a wavelength of 500 nm or so) [15].

Another reason for the MaxStream module's enhanced range is the high receive

sensitivity it exhibits. The transmission power output of both the MaxStream and the

Bluetooth modules is 100 mW (20 dBm), but the Bluetooth module's typical receive

sensitivity is 10-8 mW (-80 dBm) compared with the MaxStream module's 2 x 1011 mW

(-107 dBm) sensitivity [5, 6]. Range differences can be ascertained using the Friis

transmission formula for matched antennas:

PR _ T TGR2

(4 7.r)2

where PR is received power (mW), PT is transmitted power (mW), GT is linear gain on

transmitting antenna, GR is linear gain of receiving antenna, k is wavelength (m), and r is

distance between transmitter and receiver (m) [16]. By equalizing transmitting and

receiving antenna gains between Bluetooth and MaxStream systems, and assuming line-

of-sight conditions, the only parameters that affect the received power, and hence range,

are the wavelength and the distance between transmitter and receiver. Given their

operating wavelengths and sensitivities, the MaxStream module can communicate at a

distance of about 60 times the maximum range of the Bluetooth module. This simplified,

first-order approximation demonstrates the fundamental operating differences between

the two systems and suggests why one easily outperforms the other.

Although the MaxStream modules have a greater range when compared with the

Bluetooth modules, neither technology satisfies all the original design requirements.

Therefore, the system has been designed around the Bluetooth wireless modules simply

because they are easy to use and represent a standardized solution instead of a proprietary

22

one. Eventually, the Tactile Vest may be used with proprietary wireless modules, and so

the system is being designed to be as independent of the wireless protocol as is possible

in such an embedded application.

The embedded processor in the vest receives commands from the host and

translates these into patterns of motor actuation. Each pattern will be distinct and

associated with only one command. The system is configured to accommodate any

number of commands, most of which are represented by sequences of vibrotactile

stimulation that are essentially self-explanatory. For example, a directional command

instructing the operator to turn left can be associated with an actuation pattern that begins

by vibrating the rightmost column of motors on the vest and then shifts through the

columns to the leftmost column. This is a very unambiguous and easily interpreted

pattern.

The microcontroller must meet a number of criteria including having a UART

interface, a reasonably fast clock speed, an analog-to-digital (A/D) converter, low-power

sleep modes, a watchdog timer, large flash memory space, 16-bit timers for long delays

and timing events, and a number of I/O pins for motor control and sensor interfacing.

The Atmel AT90LS8535, a member of the AVR family of microcontrollers, incorporates

all these features and is readily available from electronics parts suppliers such as

DigiKey. It is manufactured in space-saving 44-lead TQFP and PLCC surface mount

packages with very low profiles, making it ideal for this application [17]. The

microcontroller and its development environment are very low-cost, compared with

similar microcontrollers from manufacturers such as Motorola.

23

The AT90LS8535 has one feature that is especially useful in this application. It

supports in-circuit serial programming (ISP), which allows the microcontroller to be

reprogrammed or the contents of its memory verified while embedded in its target

application. The microcontroller's on-board flash memory can be read, written, or erased

with purely electronic signals, making ISP compatibility possible. All this takes place via

a six-pin connector on the circuit board. Potential benefits of this feature include an in-

the-field programming capability that allows users to modify the microcontroller's list of

recognized commands and vibratory patterns quickly and easily.

A low quiescent current, open-drain motor driver integrated circuit is also

required for the Tactile Vest because the microcontroller's outputs cannot drive high-

current inductive loads such as motors or solenoids. The motor drivers, each of which

can control eight motors, will serve as the interface between the microcontroller and the

16-motor array. The open-drain specification is important because the design must

accommodate motors running at 3.3 V instead of the 5.0 V used by the microcontroller

and motor controller logic. The low quiescent current specification is vital as the motor

controller will be idle most of the time.

The best candidate for the motor drivers is Allegro's A6B259KLW, an 8-bit

addressable DMOS power driver with open-drain outputs, available in a 20-lead surface

mount package that conserves space. The device has eight outputs per package so two

packages are needed for this application. Since they function as decoders, only nine

control lines are necessary to control sixteen outputs. Its quiescent current consumption

(with the outputs off) is only 20 ,IA, but it is capable of driving up to 150 mA per output

24

pin [18]. This is more than enough current to power the small vibrating motors on the

vest, which draw about 50 mA at most.

The circuit must be designed to make the most efficient use of the energy

available to it. Two National Semiconductor LM2595 switching regulators are used to

convert the battery pack's voltage, nominally 7 to 10 V, into 3.3 V and 5.0 V for the

electronics [19]. The Bluetooth module and motor array are driven from the 3.3 V

supply, while the microcontroller and the motor controller logic are driven from the 5.0 V

supply. With efficiencies around 80%, the switching regulators represent the optimal

solution to the power conversion problem. They are also simple to implement, with only

four external components required per regulator.

25

Prototype Construction

The Tactile Vest prototype circuit was constructed on a "breadboard" for

evaluation of the circuit design. This was a temporary version of the circuit that could be

modified easily to accommodate the addition of new functionality or the adjustment of

component values. The dual in-line package (DIP) versions of the microcontroller and

motor controllers were used to facilitate insertion into the breadboard. While these

packages take up more space than their surface-mount counterparts, they respond

similarly and have nearly identical pin layouts, which allows for the complete circuit to

be constructed and tested on the breadboard. In addition, light-emitting diodes (LEDs)

were connected to the microcontroller's output pins to be used as status indicators. The

LEDs were not included in the final design. If necessary, a voltage level measurement of

the first four pins of Port B on the microcontroller will provide status information in the

final version. Figure 2 is a picture of the prototype setup. The Bluetooth module may be

seen protruding from the prototype board on the right side of the picture. The

microcontroller is the largest integrated circuit on the board, seen near the top of the

photograph. The two power converters are near the bottom, with the motor controllers in

the middle. The cable extending to the 9 motors used for testing (in a 3x3 matrix) can be

seen on the left-hand side of the picture.

The microcontroller is programmed while installed in the target application via its

in-circuit programming (ISP) interface. The Atmel STK500 Development System

provides the necessary software and hardware to develop the code and program the

microcontroller. The system is designed to interface with and program any

microcontroller in Atmel's AVR family. Sockets of several different sizes are mounted

26

on the development board, which allows the user to program the microcontrollers

directly. There is also a 6-pin header to allow connection to an external microcontroller

via ISP mode. The development board interfaces with a notebook computer over a

standard serial (RS-232) cable.

Figure 2: The prototype circuit.

The assembly software is written using Atmel's AVR Studio 4.0. This

application provides an environment that facilitates code development and

communication with the STK500. The software also contains a debugger and simulator

for a variety of AVR microcontrollers, as well as an integrated assembler to convert code

in assembly language into machine language read by the microcontroller. Extra features

27

.............

such as automatic color-coding of typed code and tab stops allow quick debugging and

make the code generated neat and easily readable.

The prototype Tactile Vest circuit performed well, exhibiting all the features

desired in the final version, including efficient use of power and low latency (less than

one second). The Bluetooth module in the circuit receives commands from the USB

Bluetooth module connected to a notebook computer. Because the circuit expects to

receive commands in the form of plain ASCII characters, Microsoft HyperTerminal is

used to communicate with the vest prototype. Any terminal program will work for this

application, but HyperTerminal comes with the Windows operating system, so it is

generally the most convenient program to use. The use of this program, instead of a

custom graphical user interface (GUI), eliminates the possibility of errors in the GUI

code affecting the prototype testing. Since HyperTerminal is known to work well, any

problems exhibited by the system must originate in the prototype circuit.

The prototype's embedded processor recognizes eight commands, seven of which

are linked to vibration patterns on the motor array. A 3x3 motor array was used with the

prototype because it is sufficient to demonstrate proof-of-concept, and the system can be

easily scaled up to accommodate a 4x4 array in the final version. Each command

translates into an unambiguous "sweeping" pattern on the vest. For example, the "up"

command begins by actuating the lowest row of tactors in the array simultaneously. It

then shifts to the middle row, and then to the top row of tactors. The wearers of the vest

feel an upward-moving stimulation with respect to their body, which they can

immediately associate with the command "up."

28

Layout and Fabrication

Following the successful testing of the prototype circuit and 3x3 motor array, the

final design was entered into OrCAD's Schematic Capture CIS and Layout Plus

programs. The Schematic Capture program is the first step towards creating a functional

printed circuit board (PCB) from the prototype circuit's schematic. Data entry began

with the selection of parts from a library of predefined packages or the creation of custom

parts to match those in the prototype circuit. Since the Schematic Capture program is not

a simulator, it does not require information about the part's dynamics during operation,

just how many pins each part has and a reference name. Standard parts are represented

on the screen by their schematic symbols, and custom parts are usually rectangles with

short, numbered line segments protruding from each side to represent the pins.

Each part must also be linked to a footprint file from either a standard or a custom

library. The footprint file contains information about the physical part, including package

and pin dimensions and the necessary clearance around the part on the printed circuit

board. The footprint will eventually be etched out of a copper-clad board and the part

will be soldered onto it, so everything must be specified exactly if a good fit is desired.

Figure 3 shows the completed Tactile Vest schematic, taken from the OrCAD Schematic

Capture program.

Once each part is chosen and its symbol placed in the workspace on the screen,

connectivity information may be entered into the program via "wires" added to the

diagram. These wires are just line segments that tell the program which pins are

connected together in the circuit. Once this is completed, all the part, footprint, and

connectivity information is packed into a single file called a netlist.

29

?A28
U3

30 ~~NC1 OUTOJ3 3V
31 NC2 OUrT1V

Sl

DATA OUJT6 1
.V CL OUT7 1

VDD) PGND2I
LGND PGND1

- -- -+ -- A6B259KLW
21

_3d___ 10uH 9
0.1uF U2

X 1NC1 OUITO A _.

-- - NC2 OU1Motor Connector

13 1
- EN 1UT

R2 lpDATA CIFT

4 7K +5V C

LGNO PGND1 +3.3V U6

--A65259KLW VDD

UIA

IAR

R3 +5V +5V +5V +5V RT
9.1 K NCM

PCM

9t

(.b t

CD

on

us +.3 3V

C"+ 05 L3 44
220uF, 1V DN WO2 +C12

1 GND N/OFF MBRS340 220uF. 10V Tent

LM2595-3.3

TACTILE VEST SCHEMATIC

Size IDocument Number e
B 1: Brett Lockyer

Date: FridayAprl 09 2004 |Shqet 1 of 1
5 4 3I

J1 1 4

C2
33pF R

4 3 4
110
119

-1 -3 '
+is .

J1

PA0/ADO PCI
PAl/AD1 PCI
PA2/AD2 PC2
PA3/AD3 PC3
PA4/AD4 PC4
PA5/AD5 PC5
PA6/AD6 PCA/TOSC1
PA7/A-7 PC7/TSC2

P60/IC P00/660
PB /Ti PD1TX0
PB2/AINO PD2/1NTO
PB3/A411 P03/INT1
PB4/SS PD4/OCiB
PBS/MOSI P06/0014

PB7/SCK PD7/OC2

XTAL1 AVCC
XTAL2 AGND

AREF

VCC0 GN02
VCC1 GND1
VCC2 GNDO

AT90S8535/PLCC

Y1

3.6864 MH

C4
33p

+5V

C2

4.7.F

J404

VNFDBK A

EXT. POWER +C9 UT L2 6
220uF. 16 -F /01 + 10

GND ON/FF 9 MBRS340 20uF, 10V Tent

LM2595-5 --

SPI MOsI
rTX SPIMRSO

Tr162 SPI CSB
T~RTS SPICLK

$CTS P10171
P1016 - --
P1015 -1-

SYNC P10[41

OUT P10[3/USB RES
N P10[2]/USi P/I
0K 6800 -E

1 USBD00+ -
2

3GND5

OD

5 1 4 -

._-.

S+5V

ISP Header

-1

12GND
25GND

BTM

I .1"F _T .1.F 1 10 4,7.F

The OrCAD Layout program imports this netlist and generates a "ratsnest," which

it displays on the screen. This is a massive conglomeration of all the parts' footprints in

the circuit, with yellow lines connecting the appropriate pins together. Once the PCB's

dimensions have been determined, the "ratsnest" must be organized and manipulated

such that everything fits satisfactorily inside the desired board outline. This is generally

the most daunting aspect of printed circuit board development.

When all the footprints have been placed within the board outline, the yellow

lines representing the circuit's connectivity information must be converted to copper

traces. This can be done manually or with an automatic software router that attempts to

find a routing solution meeting the design constraints specified. It is often possible to

"autoroute" an entire board, but usually not desirable. It can lead to inefficient use of

space and unnecessarily long traces, leaving the circuit vulnerable to external noise

sources. This process is especially difficult when there are stringent layout constraints.

These can include requirements that certain parts are placed directly above a ground

plane to minimize noise, or that other parts are routed with wide traces that will carry

high currents during operation. Too many constraints will usually cause the autorouter to

fail to converge on a satisfactory routing solution.

The manual routing option was chosen for this circuit. This gave the designer full

control over placement and trace width, it maximized the use of space on the board and

ensured that the final design was not extremely vulnerable to noise. Manually routing a

board takes much longer than autorouting does, but the result is worth the extra effort

since debugging time is greatly reduced. Most digital signal lines were routed using 10

mil (0.010 in wide) traces. The smallest trace width that can be used on boards

31

manufactured with standard PCB fabrication machines is usually 7 mils. Higher current

lines such as those for the two voltage regulators were routed with up to 40 mil traces. At

least 10 mils of space separate every object on the board, placing the board design well

within the requirements of standard PCB manufacturing equipment.

Since the vast majority of parts in the circuit could be purchased in surface-mount

packages, the board was designed with only two layers: top and bottom. All the

components were mounted on the top layer, along with some traces, and the bottom layer

was used only for traces and the ground plane. The only thru-hole parts in the design are

the connectors, which are placed side-by-side on one edge of the board.

Traces on the top and bottom layers are connected with "vias" when necessary.

Vias are simply holes drilled through the board that are plated with metal around their

circumferences. Traces that are to be connected on each layer terminate directly on top

of one another, and vias are drilled at the exact spots needed to connect them electrically.

This is essential when two traces on the same layer must overlap, which often occurs.

One of the traces then remains on the top layer, and the other one connects to a trace on

the bottom layer that passes under the first trace.

The final layout design satisfied all the constraints on trace width and component

placement, including a large ground plane on the bottom layer to minimize noise. The

trace pattern for the top layer can be seen in Figure 4 and the pattern for the bottom layer

is shown in Figure 5.

32

Figure 4: Top layer of PCB layout (from OrCAD Layout Plus).

Figure 5: Bottom layer of PCB layout (from OrCAD Layout Plus).

33

...........

The finalized layout design for each layer was then sent to a PCB fabrication

company (E-teknet Inc., Gilbert, AZ). They accepted the output files generated by

OrCAD and used them to etch the correct patterns into a copper board. The board was

then coated with green insulation (except where the parts must be soldered) and printed

with text using a silkscreen process. The printed circuit board can be seen in Figures 6

(top layer) and 7 (bottom layer).

Figure 6: Top layer of unpopulated PCB.

34

...... - ------

Figure 7: Bottom layer of unpopulated PCB.

35

Population and Testing

Once the layout process was completed, the board was then "populated" with

components and tested. The population process was demanding since many of the

miniscule surface-mount parts were difficult to solder by hand. Several tools were useful

in this endeavor, including a normal soldering iron with a tiny, pointed tip and a hot air

gun whose tip did not make direct contact with the component's pin to heat it. The air

gun made it easier to hold the part in place while applying heat and solder. A Zeiss Stemi

SV8 magnifying station is essential for successful board population since it provides all

the lighting, mounting, and magnification options one requires when working with

miniscule components on a densely populated board. Inspection of the final version for

solder bridges or gaps was also crucial, and the magnifying station vastly simplified this

process.

The final PCB is shown in Figure 8. All the connectors are mounted on the top of

the board for convenience. From left to right, the connectors are for the battery (7 to 10

V), the ISP cable to the STK500, the A/D inputs, and the motor array. The Bluetooth

device can be seen protruding from the bottom (without the small RF "backplane"

mounted). The power regulators are on each side, and the microcontroller is the square

chip in the middle. The motor controllers can be seen to the upper left and right of the

microcontroller.

36

Figure 8: The final wireless communication circuit.

The final power consumption measurements for the board are listed in Table 1.

Since the consumption varied depending on the Bluetooth module's connection status,

measurements for both connected and disconnected states are given. The results would

suggest a minimum in the operating power curve near 8.0 V, probably due to variations

in regulator efficiency and duty cycle across changes in input voltage, although the exact

cause is unclear.

37

..........

Operating Current Power Connected (C) or
Voltage (V) (A) (W) Disconnected (D)

7.00 0.052 0.364 D
7.00 0.038 0.266 C
8.00 0.045 0.360 D
8.00 0.034 0.272 C
9.00 0.041 0.369 D
9.00 0.031 0.279 C
10.0 0.038 0.380 D
10.0 0.029 0.290 C

Table 1: Power consumption at various operating voltages

(Note: motors not active during measurements).

The prototype vest is actually a stretch-fabric sleeve that fits over the user's

forearm. A 3x3 array of motors is attached with double-sided tape to the outside of the

sleeve, as shown in Figure 9. The DC motors vibrate at 110 Hz when supplied with

3.3 V from the board. The sleeve demonstrated that a number of tactile commands could

be accurately identified by the user - paving the way for the construction of a 4x4 torso-

mounted array.

The analog-to-digital (AID) converter is routed to the 16-pin connector on the

board, but it was only tested for basic functionality in this phase of the design. The

assembly code running on the microcontroller can initiate a query of only the first

channel in the 8-channel A/D. It then transmits both bytes (10-bit resolution), starting

with the least significant byte, to the host after completing the conversion. Furthermore,

only four directional commands (up, down, left, and right) are implemented on this

prototype. More commands can easily be added as needed, along with additional code to

read the other seven A/D channels upon request from the host.

38

Figure 9: The prototype 3x3 motor array.

39

........... -

Software

The software required for the Tactile Vest includes a graphical user interface for

the notebook computer as well as an assembly program for the microcontroller. The

software for the notebook computer will reside on the computer's hard drive, to be run

during operation of the vest, while the assembly program will be stored in the

microcontroller's flash memory, running automatically each time the vest circuit is

powered on. Both programs may be easily modified to accommodate additional features,

commands, or vibratory patterns.

A graphical user interface (GUI) has been written in Microsoft Visual Basic .NET

(see [20] for information about Visual Basic .NET) to run on the notebook computer

using the Windows XP operating system. It provides the user with a list of commands to

transmit to the vest and displays the data returning from the vest's sensors. The software

interfaces with the computer's COM (serial) port, which communicates using the RS-232

protocol, and manages the transmission and reception of characters and data. The

Bluetooth module plugs into the computer's USB port and creates a virtual serial port in

software that allows communication as if it were actually connected to the serial port.

The GUI software was initially written by an undergraduate student working in the lab

and has been updated and customized to work with the Tactile Vest system.

The GUI has eight buttons, each one sending a separate command that can be

linked to a vibratory pattern via the embedded processor's software. Six directional

commands are implemented here as an example. These are: up, down, left, right,

forward, and back. A warning command is also incorporated to inform the operator of

imminent danger in the vicinity. The final command is a request for the vest to send data

40

from its sensors. There is currently no vibratory pattern linked to this eighth command.

Figure 10 shows a screenshot of the GUI running on Windows XP.

COM Setup Received Data (Hex) Received Data
r COM 1 Timeout (ms) Open COM Port
C~ COM 2 0
C COM 3
ro COM 4 BaudRate
C COM 5570

CO M 6 57600 Bytes to read
1

Data to Tx

W

Auto Rx is Off IDLETIME Clear

Up Forward

Left Right

Back
Down

Figure 10: A screenshot of the Visual Basic .NET GUI.

The microcontroller's software is written in assembly language. Unlike higher-

level languages, such as C++ or Visual Basic, which have a predefined set of instructions

and will run on virtually any computer hardware platform, assembly language is based

entirely on the hardware platform on which it will be executed. The set of instructions

therefore varies with the embedded processor model and manufacturer. The Tactile

Vest's assembly program is written for the Atmel AVR series microcontroller, and it uses

only the commands implemented on the AT90LS8535 processor.

41

....

The microcontroller recognizes 118 separate commands [17] which grant the

programmer full control over data storage and usage, leading to highly efficient code that

is executed very quickly. After the program is written, an assembler program translates

the assembly code into machine code - the most basic representation possible of the

code. This machine code is simply a string of bytes that is stored in the processor's eight

kilobytes of flash memory. Flash memory is convenient because it is electrically erasable

and writable and does not require ultraviolet light exposure to erase its contents. The

bytes stored in the flash memory represent different commands or arguments of

commands depending on their location, or address, in the memory space.

There are C language compilers available for this processor, but these take the

high-level commands from C and translate them into equivalent assembly language

commands, which are then translated into machine language to be stored on and read by

the microcontroller. This programming method is convenient because C contains

hardware-independent commands that can be used to program any microcontroller with a

C compiler (most of them have one available), but it can lead to inefficient code that is

not optimized for the specific application since the translation from C to machine code is

not direct. Assembly language translates directly to machine code, so programming in

assembly leads to the most efficient code possible. This minimizes the latency between

command transmission and vibratory pattern execution.

Latency of response is not the only design consideration for this system. Ultra-

low power consumption is a priority as well. The microcontroller features several low-

power modes of operation, which facilitate minimizing power consumption. Idle mode is

the only one used in this application because it stops the central processing unit (CPU)

42

but allows the UART, A/D converter, and timers to continue functioning. No instructions

can be executed without the CPU, but during periods of inactivity such as when waiting

for a command to be sent, idle mode can reduce the microcontroller's power consumption

by about 70% [17].

The assembly code instructs the processor to enter idle mode whenever it is

feasible, even if only for a few microseconds, to minimize the average power

consumption. In fact, during a typical operating session with the vest, the microcontroller

"sleeps" in idle mode nearly all of the time. Idle mode is entered while waiting for a

command to be sent, which is the system's state for the vast majority of its operating

time. The microcontroller is woken up (switched to active mode) automatically upon

reception of a character, and the requested motor control pattern is executed. Idle mode

is entered once again while timing this pattern. Since the motor controllers will maintain

their states until the microcontroller modifies them, the microcontroller is free to sleep

between state changes for a given pattern, which could take one to two seconds. The

timer is used to awaken the microcontroller for the next state change because it remains

functional during idle mode.

The intrinsic tradeoff between latency and power consumption does not apply in

this situation. The microcontroller transitions almost instantaneously from idle to active

mode, thereby reducing power consumption without an appreciable increase in the

latency. The wireless transceivers remain the most significant contributors to the overall

system latency.

43

Further Research

There are numerous possibilities for further development of the Tactile Vest

system, including modifications to both hardware and software. Scenarios in which

multiple vests are in use simultaneously within range of each other were not the focus of

this research project, but algorithms to handle these situations effectively would be

invaluable to the system's effective operation in the field. New wireless technologies

currently under development may simplify these algorithms drastically, allowing for the

creation of much more complex and dynamic transceiver networks than the Bluetooth

system can support.

The multiple-vest situation introduces a number of new design considerations and

necessitates a change in the software's structure both on the embedded and computer

sides. One of the most important issues is that of data collision. If the vests are

programmed to send data back to the host periodically and at random time intervals, the

potential for data collision increases as the number of vests within communication range

of the host grows. Data transmitted to the host simultaneously from separate vests would

collide, causing the loss or corruption of both data sets. Potential advantages of this

communication method, however, include immediate transmission of vital information

detected by the vest's sensors, allowing for a fast user response and increasing the user's

safety and awareness.

Another strategy for dealing with this potential problem might be to initiate data

transmission on the host side and allocate a separate time interval for communication

with each module to avoid data collisions. This leads to more complex host software and

increases the communication delay with any given module. For example, if a vest's

44

sensors detect a chemical hazard in the operator's vicinity, the information may not be

queried by the host for some time. This delay would be unacceptable in some

circumstances, so other strategies should be explored.

An additional problem is that each module's position is not always fixed. The

vests will be attached to mobile operators, so the network's structure will be constantly

changing. This essentially rules out Bluetooth for use with an expanded system.

Although the Bluetooth modules may be configured to automatically connect to a specific

host when within range, the connection process takes too long (2-30 sec), and the

technology can only handle simultaneous communications with 7 devices per network

[14]. Therefore, another wireless technology is required for optimal functionality of this

system in the field.

The Zigbee protocol currently under development will address many of the

shortcomings of Bluetooth in the field of low-power, low-data-rate communication

within expansive, complex, dynamically restructuring networks. The Tactile Vest system

would benefit substantially from the integration of Zigbee technology, allowing it to

fulfill nearly all the desired specifications outlined earlier and providing much greater

flexibility and functionality than is possible with Bluetooth.

The IEEE is responsible for detailing the physical (PHY) and medium access

control (MAC) layers of the protocol. This standard, IEEE 802.15.4, supports data rates

of 20 kbps, 40 kbps, and 250 kbps [21]. Working across multiple RF bands (868 MHz,

915 MHz, and 2.4 GHz), this wireless technology can occupy unlicensed frequency

bands throughout the world, leading to simple, globally functional solutions [21].

45

The ZigBee Alliance is responsible for outlining the boundaries and design

specifications of the network and security layers, as well as the application framework

layers of the protocol [21, 22]. These layers are "built" upon the PHY and MAC layers.

Preliminary specifications include low power consumption, long battery life in target

applications, low cost, and support for up to 255 devices per network [22]. User

applications and profiles represent the uppermost layer of the protocol, which, of course,

vary with the specific implementation.

Zigbee provides ample bandwidth for the Tactile Vest system since only a few

characters are exchanged with the host each time a command is sent. One character is

used for the command and another for the reply. Sensor data from the vest consists of

two bytes of information per reading, due to the 10-bit A/D converter used to digitize

each sensor's output. Even if all eight sensors are queried sequentially, only 16 bytes of

information will be transmitted in a single communication session. Since the sessions are

sporadic and take less than a second each on average, the system's duty cycle is very low.

Zigbee technology is perfectly suited to an application like this whereby a device wakes

up from a low-power mode, connects to the network, receives or transmits data, then

resumes low-power operation.

This low duty cycle scenario also requires a fast connection time because most

wireless modules are incapable of maintaining a connection with the host while in low-

power mode. Zigbee's connection and authentication process takes only 30 ms, while a

single module takes about 15 ms to transition from low-power mode to active mode [21].

This is two orders of magnitude faster than Bluetooth, and it allows for the creation of

seamlessly self-forming, self-healing networks.

46

The types of networks supported in the Zigbee protocol include star, mesh, and

cluster tree [21]. Star networks usually have a central node that communicates via

separate channels to outlying nodes in the vicinity. The topology resembles an old

wagon wheel with the central node at the hub and each spoke representing the

communication link between the hub and the outlying nodes around the wheel's

circumference. The outlying nodes do not communicate with each other. The mesh

network topology is more free-formed in that there is no central hub and communication

links may be established from any node to any other node (also called peer-to-peer).

Cluster tree networks incorporate hybrid star/mesh topology to provide multiple

communication pathways between modules to improve reliability while retaining some

localized structure.

With multiple communication pathways between nodes, the communication range

of a given module can be greatly enhanced, providing a significant advantage over

Bluetooth and other wireless technologies that lack inherent support for this feature. In

harsh RF environments such as dense urban locales, where the Tactile Vest system will

often be operated, the range of each module can be significantly reduced due to

interference from nearby obstacles. By working together to relay information to and

from the host, a Zigbee system should exhibit very high reliability.

Reliability in demanding RF environments is further enhanced by features such as

packet freshness data, collision avoidance algorithms, guaranteed time slots for critical

data transmission, and acknowledgement of packet reception [21]. Because these

features are already integrated into the Zigbee stack, the user does not need to develop

47

new algorithms for handling these situations, thereby reducing the development time for

new systems and allowing for rapid integration into existing systems.

Stack size is another important concern in embedded applications, especially

when memory space is limited. The Zigbee stack, containing all the necessary software

to manage network connections, low power modes, and communications, is around one-

tenth the size of the Bluetooth stack (28 kilobytes for Zigbee versus 250 kilobytes for

Bluetooth) [21]. This leaves more space for the user's application software and data

storage.

Zigbee is not the only wireless technology on the market that can be incorporated

into the Tactile Vest project. Table 2 provides an overview of the specifications of most

wireless technologies available today. Note that the UHF and Near Field Magnetic

communication protocols are only standardized for very specific applications such as

Citizens Band (CB) radio. In other words, one UHF or Near Field Magnetic device is not

guaranteed to communicate with another from a different manufacturer outside of

specific applications. Other, more standardized protocols such as Wireless USB (WUSB)

and Wi-Fi (802.1 lb) will be considered for completeness.

Wireless USB (WUSB) is a high-speed, point-to-point wireless protocol designed

to replace cable USB connections in the personal computer peripheral market. The radio

specifications, as detailed by the newly formed WUSB Promoter Group, will be based on

ultra wideband radio technology efforts by the MultiBand OFDM Alliance (MBOA) and

the WiMedia Alliance [23] (see [24] for additional information on WUSB). It will

initially support the same bandwidth as USB 2.0 (480 Mbps), with a projected bandwidth

48

exceeding 1 Gbps as ultra wideband radio technology evolves [25]. Since it is designed

as cable replacement technology, the range is limited to less than 10 m [25].

Wireless Communication Systems

Property 8 /g Bluetooth ZigBee UWB UHF WUeless IR Wireless Marneld
(Wi-Fi) ______ ____________c

868 MHz
(Europe),

Operating GHz 24 GHz 902 -928 MHz 3.1 - 10.6 260 -470 MHz, Infrared (800 - Magnetic
Frequency . (Americas), GHz 902 - 928 MHz 2.4 GHz 900 nm) Coupling

2.4 GHz
(Worldwide)

802.11 b:

Data Rate 1 1 Mbps kbps k 100500 10-100kbps 62.5kbps 115k bps, 64-384
802.11lg- kbps. 250 kbps Mbps 4 &16 Mbps kbps
54 Mbps

Range 50- 100 m 10m 10 - 100 m 10 m 10 m - 16 km 10m line-of s ght) 1 -3 m

Point-to- Ad hoc Ad hoc, star, Point-to- Point-to- Point-to-
Networking mu.nt piconets peer-to-peer, point Point-to-point point Point-to-point point

mesh

Complexity High High Low Medium Lowest Low Low Low

Consumption High Medium Very Low Low Low Low Low Low

Industrial
monitoring and Home

Wireless control, home entertain- Coded remote Remote
WLAN Headsets, automation and ment control, remote PC control, PC- Wireless

Applications Hotspots. PC-PDA- control, sensor networks, keyless entry, peripherals. PDA-Laptop headsets,
Laptop networks, toys, streaming garage doors. connections. automotive.

connections. games, video.
automotive,

medical.

Table 2: Comparison of various wireless technologies (adapted from [11]).

The primary supported network topology is the point-to-point, hub-and-spoke

network, with a single host communicating with as many as 127 devices simultaneously

[25]. Each slave device, nominally embedded in a computer peripheral such as a printer

or scanner, can only communicate with the host and not with other slave devices. In

certain circumstances, however, a slave module may exhibit limited host capabilities.

Multiple clusters may be created in this fashion, but details as to how many clusters can

coexist within radio range of each other are still being considered [25].

49

The power consumption target for the initial phase of WUSB devices is less than

300 mW, and projected consumption for future revisions is 100 mW [25]. This is less

than the MaxStream modules, but comparable to the Bluetooth devices, which are still

considered relatively high-power solutions for the Tactile Vest application.

In short, Wireless USB technology is designed for low-power, high-bandwidth,

short-range, point-to-point communication. The Tactile Vest requires low-bandwidth

communication, high efficiency, low-power operation, point-to-multipoint networking

capability, and long-range transceivers. Wireless USB cannot enhance the current

system's functionality or reliability enough to justify its incorporation into the Tactile

Vest's circuitry.

The final wireless protocol under consideration for overall system augmentation is

Wi-Fi (short for Wireless Fidelity), or IEEE 802.11. It is designed mostly for wireless

networking in personal computer applications. Therefore, it supports point-to-multipoint

network topologies, providing connections between computers or from a computer to a

wireless hub or access point. It also offers very high bandwidth (up to 54 Mbps for IEEE

802.11 g, [26]) for streaming video and audio, file sharing, and Internet access.

Unfortunately, power consumption is less of an issue in this market, but emerging

handheld computer technologies are making this a consideration. In certain mobile

applications, power consumption for Wi-Fi systems has been significantly reduced (to

around 1 W, [27]), but it remains the most power-hungry of all the wireless technologies

[21]. Its significantly increased bandwidth generally justifies the additional power

consumption, but in the application considered here, bandwidth is the least important

consideration.

50

Besides power consumption, another disadvantage of Wi-Fi technology is its

sheer complexity, in both software and hardware. On the software side, an

implementation of Wi-Fi in an embedded system generally requires a TCP/IP stack, a

real-time operating system (RTOS), and application-specific software, not to mention an

optional web server for remote monitoring over the Internet using standard web browser

software [27]. Surprisingly, many hand-held computing devices, such as the Compaq

IPAQ or the Palm Pilot, are able to support this extensive software requirement, but their

hardware is very complex, while the Tactile Vest's hardware is simple and efficient.

Wi-Fi module manufacturers realize that many of their customers do not possess

the necessary resources (or board and memory space) to implement complex software

and hardware in their embedded applications, and so the manufacturers usually

incorporate everything into the modules themselves [27, 28]. This provides the consumer

with fully functional, "drop-in" Wi-Fi solutions, thereby drastically reducing

development and product integration time, as well as system complexity (not including

the module).

One considerable advantage of Wi-Fi technology over most other standardized

wireless systems is its increased operating range. With transmission distances of over

100 m between unobstructed modules [21, 28], the range is slightly superior to that of

Class 1 Bluetooth modules. Of course, the range varies with the transmission power of

the module, which varies with the manufacturer. Some companies, namely SyChip

(Plano, TX) advertise outdoor ranges of around 122 m and indoor ranges of around 37 m

while transmitting at only a quarter of the output power of the Bluetooth device used in

51

the Tactile Vest circuit [28]. This may be attributed to increased sensitivity in the SyChip

module's receiver circuitry.

The Tactile Vest could easily be modified to work with Wi-Fi wireless

technology, but this would not be the most rational course of action. The overall system

complexity would increase significantly to provide a less significant increase in its

functionality. Wi-Fi's extraordinarily high data rate is countered by its prohibitive power

consumption, leading one to believe that a more suitable solution to the Tactile Vest

application must exist. Integration of the Zigbee wireless technology into the Tactile

Vest system would provide such a significant enhancement to its overall functionality

that it would constitute the next logical step in the further development of the vest.

52

References

[1] J.B.F. van Erp and J.J. van den Dobbelsteen. "On the Design of Tactile Displays."
TNO Human Factors report, TM-98-B012. TNO, The Netherlands, 1998.

[2] K.A. Kaczmarek and P. Bach-Y-Rita. "Tactile Displays." In Virtual Environments
and Advanced Interface Design, W. Barfield and T.A. Furness, III (Eds.). New
York, NY: Oxford University Press, 1995, pp. 349-414.

[3] L.A. Jones, M. Nakamura, B. Lockyer. "Development of a Tactile Vest."
Proceedings of the IEEE 12 1h International Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems. Chicago, IL: IEEE, March 27-8,
2004, pp. 82-89.

[4] R.W. Cholewiak and A.A. Collins. "The Generation of Vibrotactile Patterns on a
Linear Array: Influences of Body Site, Time, and Presentation Mode," Perception
& Psychophysics, Vol. 62, No. 6, 2000, pp. 1220-1235.

[5] B. Luke. "Design of a Microelectronic Controller with a MIL-STD- 1553 Bus
Interface for the Tactile Situation Awareness System." Engineer's Thesis, Naval
Postgraduate School, Monterey, CA, September 1998.

[6] A.H. Rupert. "An Instrumentation Solution for Reducing Spatial Disorientation
Mishaps." IEEE Engineering in Medicine and Biology, March/April 2000, pp.
71-80.

[7] A.H. Rupert, F.E. Guedry, and M.F. Reschke, "The Use of a Tactile Interface to
Convey Position and Motion Perceptions," presented at an A GARD Meeting on
"Virtual Interfaces: Research and Applications," October 1993, pp. 20-1 - 20-7.

[8] J.L. Rochlis and D.J. Newman. "A Tactile Display For International Space Station
(ISS) Extravehicular Activity (EVA)," Aviation, Space, and Environmental
Medicine, Vol. 71, No. 6, June 2000, pp. 571-578.

[9] S.P. Korolev. "DSM Delta Project: SUIT Experiment," Science Research on ISS
Russian Segment, RSC Energia. Internet:
http://www.energia.ru/english/energia/iss/researches/medic-53.html, obtained
May 2004.

[10] C. Wall, III, and M.S. Weinberg. "Balance Prostheses for Postural Control:
Preventing Falls in the Balance Impaired by Displaying Body-Tilt Information to
the Subject via an Array of Tactile Vibrators." IEEE Engineering in Medicine
and Biology Magazine, March/April 2003, pp. 84-90.

[11] MaxStream, Inc., "XStream 900MHz & 2.4GHz Wireless OEM Modules: OEM
Manual," Data Sheet, June 2002.

[12] Anonymous, "The Official Bluetooth Membership Site," Bluetooth Special Interest
Group (SIG) information page, Internet: http://www.bluetooth.org, Bluetooth
Special Interest Group, 2004.

[13] BlueRadios, Inc., "Bluetooth Module BR-C 11 Class 1," Data Sheet.
[14] BlueRadios, Inc., "User Guide for BlueRadios Bluetooth Serial Module AT

Command Set." Data Sheet, Rev. 1.1.9, April 2004.
[15] E. Hecht. Optics, 4 th ed. San Francisco, CA: Addison Wesley, 2002, pp. 443-485.
[16] D.H. Staelin, A.W. Morgenthaler, J.A. Kong. Electromagnetic Waves. Upper

Saddle River, NJ: Prentice Hall, 1998, pp. 406-489.

53

[17] Atmel, "8-bit AVR Microcontroller with 8K Bytes In-System Programmable Flash:
AT90S8535, AT90LS8535," Data Sheet Rev. 1041H, November 2001.

[18] Allegro Microsystems, Inc., "6B259," Data Sheet No. 26186.122, January 2000.
[19] National Semiconductor, "LM2595 SIMPLE SWITCHER Power Converter 150kHz

IA Step-Down Voltage Regulator," Data Sheet No. DS012565, May 1999.
[20] Anonymous, "Microsoft Visual Basic Developer Center," Microsoft Developer

Network (MSDN) Visual Basic .NET information page, Internet:
http://msdn.microsoft.com/vbasic/, Microsoft Corporation, 2004.

[21] Frenzel. "The ZigBee Buzz is Growing: New Low-Power Wireless Standard Opens
Powerful Possibilities," Electronic Design, January 12, 2004.

[22] Bahl. "Zigbee Overview," Marketing and information brief. Internet:
http://www.zigbee.com; ZigBee Alliance, September 2002.

[23] Anonymous. "Industry Leaders Developing First High-Speed Personal Wireless
Interconnect." Intel Press Release. Internet:
http://www.intel.com/pressroom/archive/releases/20040218corp c.htm, February
18, 2004.

[24] Anonymous, "Wireless Universal Serial Bus," Intel WUSB information page,
Internet: http://www.intel.com/labs/wusb/, Intel Corporation 2004.

[25] R. Kolic. "Wireless USB Brings Greater Convenience and Mobility to Devices."
Technology @ Intel Magazine. Internet:
http://www.intel.com/update/contents/wi02041.htm, Feb./Mar. 2004.

[26] Reaff. "IEEE Std. 802.1 ig - 2003," Amendment to "IEEE Std. 802.11, 1999
Edition." New York, NY: IEEE, June 25, 2003.

[27] DPAC Technologies, "Airborne 802.1 lb Wireless LAN Node Module: WLNB-AN-
DP101," Data Sheet 30B211-01, Rev. E, January 2004.

[28] SyChip, "SyChip WLAN6060EB Embedded Module Product Brief," Product Brief,
WLAN6060EBC 1, Ver. 2.1, obtained May 2004.

54

Appendix A

This appendix contains the code that executes on the microcontroller. It is
programmed in assembly language for the Atmel AT90LS8535 processor. The code
assumes the Bluetooth module is already configured to communicate at 57,600 baud and
respond to commands in short form with no authorization enabled. See [14] for details
on configuring the Bluetooth module.

;Tactile Vest
;AT90LS8535 Microcontroller code
;Version 5 (Updated Bluetooth)
;5/5/04

.include "8535def.inc"!

.org 0x00
start: rjmp setup

.org OxOO8
rjmp tisr

.org OxOOB
rjmp rxisr

.org Ox10O
setup: ldi r16, Ox9F

out SPL, r16

clr r16
out SPH, r16

out DDRA, r16

out PORTA, r16

out ADMUX, r16

ser r16
out DDRB, r16

out DDRC, r16

out DDRD, r16

ldi r16, OxOF
out PORTB, r16

clr r16
out PORTC, r16

out PORTD, r16

ldi r16, Ox03
out UBRR, r16

ldi r16, Ox98
out UCR, r16

ldi r16, Ox85
out ADCSR, r16

ldi r16, Ox04
out TIMSK, r16

ldi r16, Ox40
out MCUCR, r16

rcall waitlong
rcall btcmd

;timer 1 has overflowed

;character received

;initialize stack pointer to Ox9F

;configure port A for inputs
;clear port A
;ADCO is input (pin AO)

;configure Port B as outputs only
;configure Port C as outputs only
;configure Port D as outputs only

;port B = OxOF

;port C = OxOO
;port D = OxOO

;set UBRR to 57600 baud, 3.6864 MHz xtal

;set UCR to enable interrupt on RX done

;enable ADC, no interrupts, CLK/32 freq,
; single conversion mode

;enable interrupt on timer 1 overflow

;enable idle sleep mode
;wait for module to start up

55

rcall waitmore
rcall btconn
rjmp rxchar

;make connection to USB Bluetooth module

S************** *********************** * ** *************

;BLUETOOTH CONFIGUJRATION AND CONNECTION ROUTINES

btconn: ldi r18, Ox41
rcall txchar
ldi r18, Ox54
rcall txchar
ldi r18, Ox44
rcall txchar
ldi r18, Ox53
rcall txchar
ldi r18, OxOD
rcall txchar
ldi r18, OxOA
rcall txchar
clr r7
rcall rxresp
rcall respok
idi r16, Ox80
out SREG, r16

sleep
nop
nop
nop
clr r16
out SREG, r16

clr r7
inc r7

rcall rxrespl
rcall respconnl

ldi r16, Ox80
out SREG, r16

ldi r16, Ox02
out PORTB, r16

ret

btcmd: ldi r18, Ox41
rcall txchar
ldi r18, Ox54
rcall txchar
ldi r18, Ox4D
rcall txchar
ldi r18, Ox43
rcall txchar
ldi r18, OxOD
rcall txchar
ldi r18, OxOA
rcall txchar
clr r7

;send A

;send T

;send D

;send S

;send cr

;send if

;looking for 0 (OK) which is 5 chars

;enable interrupts (global)
;waiting for receive char (connect= 1)

;disable interrupts (global)

;looking for 18-1=17 chars now since 1 st

; was received during sleep

;looks for the last digit in the USB
;communicator's 12-digit address
;to validate the connection

;enable interrupts (global)

;set port pin PB1 high if connection made
;the module should be connected by the
; time this is executed

;send A

;send T

;send M

;send C

;send cr

;send lf

56

rcall rxresp
rcall respok
ldi r16, Ox01
out PORTB, r16

;look for 6 chars
;is response 0=0K ?

;set port pin PBO high if module
; communication successful

ret

S********** ** *************************** ***********

;BLUETOOTH MODULE RESPONSE RECEPTION ROUTINES

rxresp: in r19, USR

sbrs r19, 7
rjmp rxresp
rcall rxchek

inc r7

mov r16, r7
cpi r16, Ox05
breq rxend
cpi r17, OxOD
breq rxresp
cpi r17, OxOA
breq rxresp
mov rO, r17

rjmp rxresp
rxend: clr r7

ret

rxchek: in r20, USR
sbrs r20, 4
rjmp chekor
rjmp ferr

chekor: sbrs r20, 3
rjmp rxok
rjmp orerr

ferr: rjmp end
orerr: rjmp end
rxok: in r17, UDR

ret

rxrespl: in r19, USR

sbrs r19, 7
rjmp rxrespl
rcall rxchekl

inc r7

mov r16, r7
cpi r16, Ox12
breq rxendl
cpi r17, OxOD
breq rxrespl

;MUST BE CALLED WITH THE PROPER VALUE

; LOADED INTO R7!

;loop back if char not received yet
;read char to r17 after reception

; (if no data errors)
;r7 used as an indicator of # chars to
; look for (call w/ r7=x; 5-x=#chars)

;is char cr?

;is char lf?

;***store response in ro (will not store

; CR or LF chars)***

;r17 contains OxOA here (usually)

;check USR's FE bit for framing error

;check USR's OR bit for overrun error

;received char -- > r17

;MUST BE CALLED WITH THE PROPER VALUE

LOADED INTO R7!

;loop back if char not received yet
;read char to r17 after reception

; (if no data errors)
;r7 used as an indicator of # chars to

look for (call w/ r7=x, 18-x=#chars)

;looking for 18 chars

;is char cr?

57

cpi r17, OxOA
breq rxrespl
mov rO, r17

rjmp rxrespl
rxendl: clr r7

ret
rxchekl: in r20, USR

sbrs r20, 4
rjmp chekorl
rjmp ferr

chekorl: sbrs r20, 3
rjmp rxokl
rjmp orerrl

ferrl: rjmp end
orerrl: rjmp end
rxokl: in r17, UDR

ret

;is char lf?

;***store response in rO (will not store
; CR or LF chars)***

;r17 contains OxOA here (usually)

;check USR's FE bit for framing error

;check USR's OR bit for overrun error

;received char -- > r17

. ****** ******* ***************************

;BLUETOOTH MODULE RESPONSE HANDLERS

;The response is expected in rO for all routines.

respok: ldi r16, Ox30
cpse r16, rO
rjmp end
ret

respokl: ldi r16, Ox4B
cpse r16, rO

rjmp end
ret

respconn:ldi r16, Ox31
cpse r16, rO
rjmp end
ret

respconnl:ldi r16, Ox41

;returns if response = OK = 0x30 = 0

;does rO contain K=4B? (from response
cr,lf,O,K,cr,lf = 6 chars)

;skip this if response = OK (long)

;returns if response = CONNECT = Ox31 = 1

;this number must be changed to the last
;digit (hex) in the 12-digit USB master's
;address (***NOTE: Will only recognize
;certain masters).

cpse r16, rO
rjmp end
ret

;CHARACTER TRANSMISSION ROUTINES

txchar: rcall txloop
out UDR, r18

rcall txloop
ret

txloop: in r20, USR
sbrs r20, 5

;***transmits char in r18***

;check UDRE to see if ready for new char

58

rjmp txloop
ret ;return when ready to transmit

S***** ******** ********************************

;COMMAND RECEPTION/READY STATUS ROUTINES

rxchar: rcall ready
sleep
nop

nop
nop
rcall motor
rjmp rxchar

ready: ldi r18, Ox23
rcall txchar
ldi r18, OxOA
rcall txchar
ret

;transmit ready (# LF)

;nops in case more instructions are
; executed before processing interrupt

;received char in r17

;send #

;send LF (new line)

;MOTOR CONTROL ROUTINES

;Want to sleep during timing and wake up on timer overflow (idle mode)
;Each increment of the 16-bit timer register equals 256 microseconds at
; CK/1024 (i.e. 2 seconds should be about 0x1E84 increments,
; so load into timer register OxE17B because it counts UP until
overflow)
i.e. OxF85E for 0.5 second

;On motor controllers, EN1 and EN2 grounded; DATA1 on PC3, DATA2 on

PC7; CLR1 and CLR2 on PD7. Control lines for 1 on PCO,1,2 and for 2

on PC4,5,6.

;*MOTOR CONTROLLER ADDRESS LINES MUST NOT CHANGE AT THE SAME TIME AS

; DATA LINES*

motor: cpi r17, Ox55

breq brup
cpi r17, 0x44
breq brdown
cpi r17, Ox4C
breq brleft
cpi r17, Ox52
breq brright
cpi r17, Ox46
breq brforw
cpi r17, Ox42
breq brback
cpi r17, Ox57
breq brwarn
cpi r17, Ox5A
breq brana
ldi r18, Ox3F
rcall txchar
ret

;must translate command char in r17

; (U,D,L,R,F,B,W) to actuations

;char=U

;char=D

;char=L

;char=R

;char=F

;char=B

;char=W

;char=Z

;send ? for unrecognized char

brup: rcall up

59

ret
brdown: rcall down

ret
brleft: rcall left

ret
brright: rcall right

ret
brforw: rcall forward

ret
brback: rcall back

ret
brwarn: rcall warning

ret
brana: rcall analog

ret

ldi r16, Ox01
out PORTB, r16

sbi PORTD, 7

clr r16
out PORTC, r16

sbi PORTC, 3

ldi r16, Ox09
out PORTC, r16

ldi r16, OxOA
out PORTC, r16

ldi r31, OxF8

ldi r30, Ox5E
rcall delay
cbi PORTC, 3

ldi r16, Ox01
out PORTC, r16

clr r16
out PORTC, r16

ldi r16, Ox03
out PORTC, r16

sbi PORTC, 3

ldi r16, OxOC
out PORTC, r16

ldi r16, OxOD
out PORTC, r16

ldi r31, OxF8

ldi r30, Ox5E
rcall delay
cbi PORTC, 3

ldi r16, Ox04
out PORTC, r16

ldi r16, Ox03
out PORTC, r16

ldi r16, OxO6
out PORTC, r16

sbi PORTC, 3

ldi r16, OxOF
out PORTC, r16

ldi r16, Ox8F
out PORTC, r16

;set CLR high

;high byte of timer 1 count
;low byte of timer 1 count

;high byte of timer 1 count
;low byte of timer 1 count

60

up:

ldi r3l, OxF8
ldi r30, Ox5E
rcall delay
cbi PORTC, 7

ldi r16, Ox07
out PORTC, r16

ldi r16, OxO6
out PORTC, r16

clr r16
out PORTC, r16

cbi PORTD, 7

ret

ldi r16, Ox02
out PORTB, r16

sbi PORTD, 7

clr r16
out PORTC, r16

ldi r16, Ox07
out PORTC, r16

ldi r16, Ox8F
out PORTC, r16

ldi r16, Ox8E
out PORTC, r16

ldi r3i, OxF8

ldi r30, Ox5E
rcall delay
ldi r16, OxO6
out PORTC, r16

ldi r16, Ox07
out PORTC, r16

ldi r16, Ox05
out PORTC, r16

ldi r16, OxOD
out PORTC, r16

ldi r16, OxOC
out PORTC, r16

ldi r16, OxOB
out PORTC, r16

ldi r31, OxF8

ldi r30, Ox5E
rcall delay
ldi r16, Ox03
out PORTC, r16

ldi r16, Ox04
out PORTC, r16

ldi r16, Ox05
out PORTC, r16

clr r16
out PORTC, r16

ldi r16, OxO8
out PORTC, r16

ldi r16, Ox09
out PORTC, r16

ldi r16, OxOA
out PORTC, r16

ldi r3i, OxF8

;high byte of timer 1 count
;low byte of timer 1 count

;set CLR low

;set CLR high

;high byte of timer 1 count
;low byte of timer 1 count

;high byte of timer 1 count
;low byte of timer 1 count

;high byte of timer 1 count

61

down:

ldi r30, Ox5E
rcall delay
ldi r16, Ox02
out PORTC, r16

ldi r16, OxO1
out PORTC, r16

clr r16

out PORTC, r16

cbi PORTD, 7

ret

left: ldi r16, Ox04
out PORTB, r16

sbi PORTD, 7

clr r16
out PORTC, r16

ldi r16, Ox85
out PORTC, r16

ldi r16, Ox8D
out PORTC, r16

ldi r16, Ox8A
out PORTC, r16

ldi r3i, OxF8
ldi r30, Ox5E
rcall delay
ldi r16, Ox02
out PORTC, r16

ldi r16, Ox05
out PORTC, r16

ldi r16, Ox07
out PORTC, r16

ldi r16, OxOF
out PORTC, r16

ldi r16, OxOC
out PORTC, r16

ldi r16, Ox09
out PORTC, r16

ldi r31, OxF8

ldi r30, Ox5E
rcall delay
ldi r16, OxO1
out PORTC, r16

ldi r16, Ox04
out PORTC, r16

ldi r16, Ox07
out PORTC, r16

ldi r16, OxO6
out PORTC, r16

ldi r16, OxOE
out PORTC, r16

ldi r16, OxOB
out PORTC, r16

ldi r16, OxO8
out PORTC, r16

ldi r31, OxF8
ldi r30, Ox5E
rcall delay

;low byte of timer 1 count

;set CLR low

;set CLR high

;high byte of timer 1 count
;low byte of timer 1 count

;high byte of timer 1 count
;low byte of timer 1 count

;high byte of timer 1 count
;low byte of timer 1 count

62

clr
out
ldi
out
ldi
out
clr
out
cbi
ret

r16

PORTC, r16

r16, Ox03
PORTC, r16

r16, Ox06
PORTC, r16

r16
PORTC, r16

PORTD, 7

right: ldi r16, OxO8
out PORTB, r16

sbi PORTD, 7

clr r16
out PORTC, r16

ldi r16, Ox06
out PORTC, r16

ldi r16, OxOE
out PORTC, r16

ldi r16, OxOB
out PORTC, r16

ldi r16, OxO8
out PORTC, r16
ldi r31, OxF8

ldi r30, Ox5E
rcall delay
clr r16
out PORTC, r16

ldi r16, Ox03
out PORTC, r16

ldi r16, OxO6
out PORTC, r16

ldi r16, Ox07
out PORTC, r16

ldi r16, OxOF
out PORTC, r16

ldi r16, OxOC
out PORTC, r16

ldi r16, Ox09
out PORTC, r16

ldi r31, OxF8

ldi r30, Ox5E
rcall delay
ldi r16, OxO1
out PORTC, r16

ldi r16, Ox04
out PORTC, r16

ldi r16, Ox07
out PORTC, r16

ldi r16, Ox85
out PORTC, r16

ldi r16, Ox8D
out PORTC, r16

ldi r16, Ox8A
out PORTC, r16

ldi r31, OxF8

;set CLR low

;set CLR high

;high byte of timer 1 count
;low byte of timer 1 count

;high byte of timer 1 count
;low byte of timer 1 count

;high byte of timer 1 count

63

ldi r30, Ox5E
rcall delay
ldi r16, Ox02
out PORTC, r16

ldi r16, Ox05
out PORTC, r16

clr r16
out PORTC, r16

cbi PORTD, 7
ret

forward: ldi
out
ret

back: ldi
out
ret

warning: ldi
out
ret

;low byte of timer 1 count

;set CLR low

r16, Ox1O
PORTB, r16

r16, Ox20
PORTB, r16

r16, Ox40
PORTB, r16

analog: ldi r16, Ox8O
out PORTB, r16

ldi r16, OxD5

out ADCSR, r16

clt
aloop: in r16, ADCSR

bst r16, 4

brts axmit

rjmp aloop
axmit: ldi r16, Ox95

out ADCSR, r16

clt
in r18, ADCL

rcall txchar
in r18, ADCH

rcall txchar
ret

delay: out TCNT1H, r31

out TCNT1L, r30

ldi r16, Ox05
out TCCR1B, r16

sleep
ret

;11010101 = D5 to clear ADIF first

;clear T flag

;store bit 4 of ADCSR (ADIF) to T

; flag
;branch to axmit if T flag is set
; (conversion done, regs updated)

;95=10010101 to clear ADIF flag

;clear T flag
;conversion done, read low byte and xmit

;read high byte and transmit

;always write HIGH byte first (assumes
; this is in R31 when called)
;writing low byte (assumes this is in R30
; when called)

;turn on timer 1 w/ CK/1024 prescale val.

64

**** ************** **

;DELAY ROUTINES

; Delay times given for a 4 MHz crystal

wait: ser r27

waitlp: dec r27

breq goback
rjmp waitlp

goback: ret

waitmore:ser r28
waitmlp: rcall wait

dec r28
breq dun
rjmp waitmlp

dun: ret

waitlong:ldi r29, Ox19
waitllp: rcall waitmore

dec r29
breq dunl
rjmp waitllp

dunl: ret

;this subroutine just delays
;1 cycle per dec, 1 cycle per false breq,

2 cycles per rjmp = 1*255+1*254+2+2*254
;= 1019 cycles
;plus 1 for ser, 4 for ret = 5 cycles
;total clock cycles = 1024 = 256 us

;this delays for 256*256us = 65.536ms

;this delays for 25*65.536ms = 1.6384s

;BLUETOOTH MODULE SOFTWARE RESET ROUTINE

This subroutine issues a reset command to the Bluetooth module from
software (in command mode).

btreset: rcall btcmd
ldi r18, Ox41
rcall txchar
ldi r18, Ox54
rcall txchar
ldi r18, Ox55
rcall txchar
ldi r18, Ox52
rcall txchar
ldi r18, Ox53
rcall txchar
ldi r18, Ox54
rcall txchar
ldi r18, OxOD
rcall txchar
ldi r18, OxOA
rcall txchar
ret

;send A

;send T

;send U

;send R

;send S

;send T

;send cr

;send lf

;ERROR HANDLING ROUTINE

clr r16
out SREG, r16

ldi r16, OxOAA
out PORTB, r16

;disable interrupts

;Port B set high/low alternating

65

end:

endlp: rjmp endlp

;INTERRUPT SERVICE ROUTINES

rxisr: in r20, USR

sbrs r20, 4
rjmp checkor
rjmp end

checkor: sbrs r20, 3
rjmp rxokay
rjmp end

rxokay: in r17, UDR
reti

tisr: clr r16
out TCCR1B, r16
reti

;check USR's FE bit for framing error

;check USR's OR bit for overrun error

;received char -- > r17

;turn off timer 1

66

Appendix B

The following section of code is a customized class for Microsoft Visual Basic
.NET (VB.NET) that provides support for simple serial (RS-232) communications. It
uses native VB.NET and application programming interface (API) features and was
written by Corrado Cavalli (http://www.corradocavalli.cjb.net, corrado(,mvps.org). The
code is freely redistributable.

Imports System.Runtime.InteropServices
Imports System. Text
Imports System. Threading

#Region "RS232"
Public Class Rs232 Implements IDisposable

Module : Rs232

Description Class for handling RS232 comunication
with VB.Net

Created : 10/08/2001 - 8:45:25
Author : Corrado Cavalli

(corrado@mvps . org)
WebSite www.corradocavalli.cjb.net

Notes

'/ Class Members
Private mhRS As Int32 = -1 '// Handle to Com Port

Private miPort As Integer = 1 '/ Default is COM1
Private miTimeout As Int32 = 70 '// Timeout in ms
Private miBaudRate As Int32 = 9600
Private meParity As DataParity = 0
Private meStopBit As DataStopBit = 0
Private miDataBit As Int32 = 8
Private miBufferSize As Int32 = 512 '// Buffers size default to

512 bytes
Private mabtRxBuf As Byte() '/ Receive buffer
Private meMode As Mode '// Class working mode
Private mbWaitOnRead As Boolean
Private mbWaitOnWrite As Boolean
Private mbWriteErr As Boolean
Private muOverlapped As OVERLAPPED
Private muOverlappedW As OVERLAPPED
Private muOverlappedE As OVERLAPPED
Private mabtTmpTxBuf As Byte() '/ Temporary buffer for Async Tx
Private moThreadTx As Thread
Private moThreadRx As Thread
Private miTmpBytes2Read As Int32
Private meMask As EventMasks
Private mbDisposed As Boolean

67

#Region "Enums"
'// Parity Data
Public Enum DataParity

ParityNone = 0
ParitiOdd
ParityEven
ParityMark

End Enum
'// StopBit Data
Public Enum DataStopBit

StopBit_1 = 1

StopBit_2

End Enum

Private Enum PurgeBuffers
RXAbort = &H2

RXClear = &H8

TxAbort = &H1

TxClear = &H4

End Enum

Private Enum Lines
SetRts = 3

ClearRts = 4

SetDtr = 5

ClearDtr = 6

ResetDev = 7 ' // Reset device if possible
SetBreak = 8 ' // Set the device break line.
ClearBreak = 9 ' // Clear the device break line.

End Enum

'// Modem Status
<Flags()> Public Enum ModemStatusBits

ClearToSendOn = &H10
DataSetReadyOn = &H20

RingIndicatorOn = &H40
CarrierDetect = &H80

End Enum

'// Working mode
Public Enum Mode

NonOverlapped
Overlapped

End Enum
1// Comm Masks
<Flags()> Public Enum EventMasks

RxChar = &H1

RXFlag = &H2

TxBufferEmpty = &H4

ClearToSend = &H8

DataSetReady = &H10

ReceiveLine = &H20

Break = &H40

StatusError = &H80

Ring = &H100

End Enum
#End Region
#Region "Structures"

<StructLayout(LayoutKind.Sequential, Pack:=l)> Private Structure DCB

Public DCBlength As Int32

Public BaudRate As Int32

68

Public Bitsl As Int32
Public wReserved As Int16
Public XonLim As Int16

Public XoffLim As Int16
Public ByteSize As Byte
Public Parity As Byte
Public StopBits As Byte
Public XonChar As Char
Public XoffChar As Char
Public ErrorChar As Char
Public EofChar As Char
Public EvtChar As Char
Public wReserved2 As Int16

End Structure

<StructLayout(LayoutKind.Sequential, Pack:=l)> Private Structure

COMMTIMEOUTS

Public ReadIntervalTimeout As Int32

Public ReadTotalTimeoutMultiplier As Int32
Public ReadTotalTimeoutConstant As Int32

Public WriteTotalTimeoutMultiplier As Int32
Public WriteTotalTimeoutConstant As Int32

End Structure
<StructLayout(LayoutKind.Sequential, Pack:=l)> Private Structure

COMMCONFIG

Public dwSize As Int32
Public wVersion As Int16
Public wReserved As Int16

Public dcbx As DCB
Public dwProviderSubType As Int32
Public dwProviderOffset As Int32
Public dwProviderSize As Int32
Public wcProviderData As Byte

End Structure
<StructLayout(LayoutKind.Sequential, Pack:=1)> Public Structure

OVERLAPPED

Public Internal As Int32
Public InternalHigh As Int32
Public Offset As Int32
Public OffsetHigh As Int32
Public hEvent As Int32

End Structure
#End Region
#Region "Constants"

Private Const PURGERXABORT As Integer = &H2

Private Const PURGERXCLEAR As Integer = &H8

Private Const PURGETXABORT As Integer = &H1

Private Const PURGETXCLEAR As Integer = &H4

Private Const GENERICREAD As Integer = &H80000000

Private Const GENERICWRITE As Integer = &H40000000
Private Const OPENEXISTING As Integer = 3

Private Const INVALIDHANDLEVALUE As Integer = -1

Private Const IOBUFFERSIZE As Integer = 1024

Private Const FILEFLAGOVERLAPPED As Int32 = &H40000000

Private Const ERRORIOPENDING As Int32 = 997

Private Const WAITOBJECT_0 As Int32 = 0

69

Private Const ERRORIO_INCOMPLETE As Int32 = 996

Private Const WAITTIMEOUT As Int32 = &H102&

Private Const INFINITE As Int32 = &HFFFFFFFF

#End Region

#Region "Win32API"
'// Win32 API

<DllImport ("kernel32.dll")> Private Shared Function
SetCommState(ByVal hCommDev As Int32, ByRef lpDCB As DCB) As Int32

End Function
<DllImport ("kernel32.dll")> Private Shared Function

GetCommState(ByVal hCommDev As Int32, ByRef lpDCB As DCB) As Int32
End Function
<DllImport("kernel32 .dll")> Private Shared Function

BuildCommDCB(ByVal lpDef As String, ByRef lpDCB As DCB) As Int32
End Function
<DllImport ("kernel32.dll")> Private Shared Function SetupComm(ByVal

hFile As Int32, ByVal dwInQueue As Int32, ByVal dwOutQueue As Int32) As

Int32

End Function
<DllImport ("kernel32.dll")> Private Shared Function

SetCommTimeouts(ByVal hFile As Int32, ByRef lpCommTimeouts As
COMMTIMEOUTS) As Int32

End Function
<DllImport ("kernel32.dll")> Private Shared Function

GetCommTimeouts(ByVal hFile As Int32, ByRef lpCommTimeouts As

COMMTIMEOUTS) As Int32

End Function
<DllImport("kernel32.dll")> Private Shared Function

ClearCommError(ByVal hFile As Int32, ByVal lpErrors As Int32, ByVal 1
As Int32) As Int32

End Function

<DllImport ("kernel32.dll")> Private Shared Function PurgeComm(ByVal
hFile As Int32, ByVal dwFlags As Int32) As Int32

End Function

<DllImport ("kernel32.dll")> Private Shared Function
EscapeCommFunction(ByVal hFile As Integer, ByVal ifunc As Long) As
Boolean

End Function
<DllImport ("kernel32.dll")> Private Shared Function

WaitCommEvent(ByVal hFile As Integer, ByRef Mask As EventMasks, ByRef
lpOverlap As OVERLAPPED) As Int32

End Function
<DllImport("kernel32.dll")> Private Shared Function WriteFile(ByVal

hFile As Integer, ByVal Buffer As Byte(), ByVal nNumberOfBytesToWrite
As Integer, ByRef lpNumberOfBytesWritten As Integer, ByRef lpOverlapped
As OVERLAPPED) As Integer

End Function
<DllImport("kernel32.dll")> Private Shared Function ReadFile(ByVal

hFile As Integer, ByVal Buffer As Byte(), ByVal nNumberOfBytesToRead As
Integer, ByRef lpNumberOfBytesRead As Integer, ByRef lpOverlapped As
OVERLAPPED) As Integer

End Function

<DllImport ("kernel32.dll")> Private Shared Function
CreateFile (<MarshalAs (UnmanagedType.LPStr)> ByVal lpFileName As String,

70

ByVal dwDesiredAccess As Integer, ByVal dwShareMode As Integer, ByVal
lpSecurityAttributes As Integer, ByVal dwCreationDisposition As
Integer, ByVal dwFlagsAndAttributes As Integer, ByVal hTemplateFile As
Integer) As Integer

End Function

<DllImport ("kernel32.dll")> Private Shared Function
CloseHandle(ByVal hObject As Integer) As Integer

End Function
<DllImport ("kernel32.dll")> Private Shared Function

FormatMessage(ByVal dwFlags As Integer, ByVal lpSource As Integer,
ByVal dwMessageId As Integer, ByVal dwLanguageId As Integer,
<MarshalAs(UnmanagedType.LPStr)> ByVal lpBuffer As String, ByVal nSize
As Integer, ByVal Arguments As Integer) As Integer

End Function

<DllImport ("kernel32.dll")> Public Shared Function
GetCommModemStatus(ByVal hFile As Int32, ByRef lpModemStatus As Int32)
As Boolean

End Function
<DllImport ("kernel32.dll")> Private Shared Function

CreateEvent(ByVal lpEventAttributes As Int32, ByVal bManualReset As
Int32, ByVal bInitialState As Int32, <MarshalAs(UnmanagedType.LPStr)>

ByVal lpName As String) As Int32

End Function

<DllImport ("kernel32.dll")> Private Shared Function GetLastError()
As Int32

End Function

<DllImport ("kernel32.dll")> Private Shared Function
WaitForSingleObject(ByVal hHandle As Int32, ByVal dwMilliseconds As
Int32) As Int32

End Function

<DllImport ("kernel32.dll")> Private Shared Function
GetOverlappedResult(ByVal hFile As Int32, ByRef lpOverlapped As
OVERLAPPED, ByRef lpNumberOfBytesTransferred As Int32, ByVal bWait As

Int32) As Int32

End Function
<DllImport ("kernel32.dll")> Private Shared Function

SetCommMask(ByVal hFile As Int32, ByVal lpEvtMask As Int32) As Int32
End Function

Private Declare Function FormatMessage Lib "kernel32" Alias
"FormatMessageA" (ByVal dwFlags As Int32, ByVal lpSource As Int32,
ByVal dwMessageId As Int32, ByVal dwLanguageId As Int32,
ByVal lpBuffer As StringBuilder, ByVal nSize As Int32, ByVal
Arguments As Int32) As Int32

#End Region
#Region "Events"

Public Event DataReceived(ByVal Source As Rs232, ByVal DataBuffer()
As Byte)

Public Event TxCompleted(ByVal Source As Rs232)
Public Event CommEvent (ByVal Source As Rs232, ByVal Mask As

EventMasks)

#End Region

71

Public Property Port() As Integer

'Description: Comunication Port
'Created: 21/09/2001 - 11:25:49

Parameters Info

'Notes:

Get

Return miPort

End Get

Set(ByVal Value As Integer)

miPort = Value
End Set

End Property
Public Overridable Property Timeout() As Integer

'Description: Comunication timeout in seconds
'Created: 21/09/2001 - 11:26:50

'*Parameters Info*

'Notes:

Get
Return miTimeout

End Get

Set(ByVal Value As Integer)
miTimeout = CInt(IIf(Value = 0, 500, Value))
'// If Port is open updates it on the fly
pSetTimeout()

End Set
End Property
Public Property Parity() As DataParity

'Description: Comunication parity
'Created: 21/09/2001 - 11:27:15

I*Parameters Info*

'Notes:

Get

Return meParity

End Get

Set(ByVal Value As DataParity)
meParity = Value

End Set

End Property

72

Public Property StopBit() As DataStopBit

'Description: Comunication StopBit
'Created: 21/09/2001 - 11:27:37

I*Parameters Info*

'Notes:

Get

Return meStopBit
End Get
Set(ByVal Value As DataStopBit)

meStopBit = Value
End Set

End Property
Public Property BaudRate() As Integer

'Description: Comunication BaudRate
'Created: 21/09/2001 - 11:28:00

I*Parameters Info*

'Notes:

Get
Return miBaudRate

End Get
Set(ByVal Value As Integer)

miBaudRate = Value
End Set

End Property
Public Property DataBit() As Integer

'Description: Comunication DataBit
'Created: 21/09/2001 - 11:28:20

I*Parameters Info*
f
'Notes:

Get

Return miDataBit
End Get
Set(ByVal Value As Integer)

miDataBit = Value

End Set
End Property

73

Public Property BufferSize() As Integer

'Description: Receive Buffer size
'Created: 21/09/2001 - 11:33:05

Parameters Info

Notes

Get
Return miBufferSize

End Get

Set(ByVal Value As Integer)
miBufferSize = Value

End Set

End Property
Public Overloads Sub Open()

'Description: Initializes and Opens comunication port
'Created: 21/09/2001 - 11:33:40

I*Parameters Info*

'Notes:

// Get Dcb block,Update with current data
Dim uDcb As DCB, iRc As Int32

'// Set working mode
Dim iMode As Int32 = Convert.ToInt32(IIf(meMode =

Mode.Overlapped, FILEFLAGOVERLAPPED, 0))

'// Initializes Com Port
If miPort > 0 Then

Try
'1// Creates a COM Port stream handle
mhRS = CreateFile("COM" & miPort.ToString, _
GENERICREAD Or GENERICWRITE, 0, 0, _

OPENEXISTING, iMode, 0)

If mhRS <> -1 Then

'// Clear all comunication errors
Dim lpErrCode As Int32

iRc = ClearCommError(mhRS, lpErrCode, 0&)
'// Clears I/O buffers
iRc = PurgeComm(mhRS, PurgeBuffers.RXClear Or

PurgeBuffers.TxClear)
'// Gets COM Settings
iRc = GetCommState(mhRS, uDcb)
'// Updates COM Settings
Dim sParity As String = "NOEM"
sParity = sParity.Substring(meParity, 1)
'V/ Set DCB State
Dim sDCBState As String = String.Format("baud={0}

parity={l} data={2} stop={3}", miBaudRate, sParity, miDataBit,
CInt(meStopBit))

iRc = BuildCommDCB(sDCBState, uDcb)

74

uDcb.Parity = CByte(meParity)

iRc = SetCommState(mhRS, uDcb)
If iRc = 0 Then

Dim sErrTxt As String = pErr2Text(GetLastError())
Throw New CIOChannelException("Unable to set COM

stateO" & sErrTxt)
End If
'// Setup Buffers (Rx,Tx)

iRc = SetupComm(mhRS, miBufferSize, miBufferSize)
'// Set Timeouts
pSetTimeout()

Else
'// Raise Initialization problems
Throw New CIOChannelException("Unable to open COM" &

miPort.ToString)

End If

Catch Ex As Exception
'// Generica error
Throw New CIOChannelException(Ex.Message, Ex)

End Try

Else
'// Port not defined, cannot open
Throw New ApplicationException("COM Port not defined,use Port

property to set it before invoking InitPort")
End If

End Sub
Public Overloads Sub Open(ByVal Port As Integer, ByVal BaudRate As

Integer, ByVal DataBit As Integer, ByVal Parity As DataParity, ByVal
StopBit As DataStopBit, ByVal BufferSize As Integer)

'Description: Opens comunication port (Overloaded method)
'Created: 21/09/2001 - 11:33:40
1
Parameters Info

'Notes:

Me.Port = Port

Me.BaudRate = BaudRate
Me.DataBit = DataBit

Me.Parity = Parity

Me.StopBit = StopBit
Me.BufferSize = BufferSize
Open()

End Sub
Public Sub Close()

'Description: Close comunication channel
'Created: 21/09/2001 - 11:38:00

'*Parameters Info*

'Notes:

75

If mhRS <> -1 Then

CloseHandle(mhRS)
mhRS = -1

End If
End Sub

ReadOnly Property IsOpen() As Boolean

'Description: Returns Port Status
'Created: 21/09/2001 - 11:38:51

I*Parameters Info*

'Notes:

Get

Return CBool(mhRS <> -1)

End Get

End Property
Public Overloads Sub Write(ByVal Buffer As Byte()

'Description: Transmit a stream
'Created: 21/09/2001 - 11:39:51

'*Parameters Info*
' Buffer: Array of Byte() to write

'Notes:

Dim iBytesWritten, iRc As Integer

If mhRS = -1 Then

Throw New ApplicationException("Please initialize and open
port before using this method")

Else
'// Transmit data to COM Port

Try

If meMode = Mode.Overlapped Then
'// Overlapped write
If pHandleOverlappedWrite(Buffer) Then

Throw New ApplicationException("Error in overllapped
write")

End If
Else

'// Clears IO buffers
PurgeComm(mhRS, PURGERXCLEAR Or PURGE TXCLEAR)

iRc = WriteFile(mhRS, Buffer, Buffer.Length,
iBytesWritten, Nothing)

If iRc = 0 Then
Throw New ApplicationException("Write Error - Bytes

Written " & iBytesWritten.ToString & " of " & Buffer.Length.ToString)

End If
End If

Catch Ex As Exception

Throw

End Try
End If

76

End Sub
Public Overloads Sub Write(ByVal Buffer As String)

'Description: Writes a string to RS232
'Created: 04/02/2002 - 8:46:42

'*Parameters Info*

'Notes: 24/05/2002 Fixed problem with ASCII Encoding

Dim oEncoder As New System.Text.ASCIIEncoding()
Dim oEnc As Encoding = oEncoder.GetEncoding(1252)

Dim aByte() As Byte = oEnc.GetBytes(Buffer)
Me.Write(aByte)

End Sub
Public Function Read(ByVal Bytes2Read As Integer) As Integer

'Description: Read Bytes from Port
'Created: 21/09/2001 - 11:41:17

'*Parameters Info*

Bytes2Read: Bytes to read from port
Returns: Number of readed chars

'Notes:

Dim iReadChars, iRc As Integer

'// If Bytes2Read not specified uses Buffersize
If Bytes2Read = 0 Then Bytes2Read = miBufferSize
If mhRS = -1 Then

Throw New ApplicationException("Please initialize and open

port before using this method")
Else

'// Get bytes from port
Try

'// Purge buffers
'PurgeComm(mhRS, PURGERXCLEAR Or PURGETXCLEAR)
'// Creates an event for overlapped operations
If meMode = Mode.Overlapped Then

pHandleOverlappedRead(Bytes2Read)
Else

'// Non overlapped mode
ReDim mabtRxBuf(Bytes2Read - 1)
iRc = ReadFile(mhRS, mabtRxBuf, Bytes2Read, iReadChars,

Nothing)
If iRc = 0 Then

'// Read Error
Throw New ApplicationException("ReadFile error " &

iRc.ToString)
Else

'// Handles timeout or returns input chars
If iReadChars < Bytes2Read Then

Throw New IOTimeoutException("Timeout error")

77

Else
mbWaitOnRead = True
Return (iReadChars)

End If
End If

End If

Catch Ex As Exception
'// Others generic erroes
Throw New ApplicationException("Read Error: " & Ex.Message,

Ex)

End Try

End If
End Function

Overridable ReadOnly Property InputStream() As Byte()

'Description: Returns received data as Byte()
'Created: 21/09/2001 - 11:45:06

Parameters Info

'Notes:

Get

Return mabtRxBuf
End Get

End Property
Overridable ReadOnly Property InputStreamString() As String

'Description: Return a string containing received data
'Created: 04/02/2002 - 8:49:55

'*Parameters Info*

'Notes:

Get

Dim oEncoder As New System.Text.ASCIIEncoding()

Return oEncoder.GetString(Me.InputStream)
End Get

End Property
Public Sub ClearInputBuffer()

'Description: Clears Input buffer
'Created: 21/09/2001 - 11:45:34

I*Parameters Info*

'Notes: Gets all character until end of buffer

If Not mhRS = -1 Then

PurgeComm(mhRS, PURGERXCLEAR)

End If

78

End Sub
Public WriteOnly Property Rts() As Boolean

'Description: Set/Resets RTS Line
'Created: 21/09/2001 - 11:45:34

'*Parameters Info*

'Notes:

Set(ByVal Value As Boolean)
If Not mhRS = -1 Then

If Value Then
EscapeCommFunction(mhRS, Lines.SetRts)

Else
EscapeCommFunction(mhRS, Lines.ClearRts)

End If
End If

End Set
End Property
Public WriteOnly Property Dtr() As Boolean

'Description: Set/Resets DTR Line
'Created: 21/09/2001 - 11:45:34

'*Parameters Info*

'Notes:

Set(ByVal Value As Boolean)
If Not mhRS = -1 Then

If Value Then
EscapeCommFunction(mhRS, Lines.SetDtr)

Else
EscapeCommFunction(mhRS, Lines.ClearDtr)

End If
End If

End Set
End Property
Public ReadOnly Property ModemStatus() As ModemStatusBits

'Description: Gets Modem status
'Created: 28/02/2002 - 8:58:04

I*Parameters Info*

'Notes:

Get
If mhRS = -1 Then

Throw New ApplicationException("Please initialize and open
port before using this method")

Else
'// Retrieve modem status

79

Dim lpModemStatus As Int32
If Not GetCommModemStatus(mhRS, lpModemStatus) Then

Throw New ApplicationException("Unable to get modem
status")

Else
Return CType(lpModemStatus, ModemStatusBits)

End If
End If

End Get

End Property
Public Function CheckLineStatus(ByVal Line As ModemStatusBits) As

Boolean

'Description: Check status of a Modem Line
'Created: 28/02/2002 - 10:25:17

'*Parameters Info*

'Notes:

Return Convert.ToBoolean(ModemStatus And Line)

End Function
Public Property WorkingMode() As Mode

'Description: Set working mode (Overlapped/NonOverlapped)
'Created: 28/02/2002 - 15:01:18
1
'*Parameters Info*

'Notes:

Get
Return meMode

End Get
Set(ByVal Value As Mode)

meMode = Value
End Set

End Property
Public Overloads Sub AsyncWrite(ByVal Buffer() As Byte)

'Description: Write bytes using another thread,
TxCompleted raised when done

'Created: 01/03/2002 - 12:00:56

I*Parameters Info*

'Notes:

If meMode <> Mode.Overlapped Then Throw New
ApplicationException("Async Methods allowed only when

WorkingMode=Overlapped")
If mbWaitOnWrite = True Then Throw New

ApplicationException("Unable to send message because of pending
transmission.")

80

mabtTmpTxBuf = Buffer

moThreadTx = New Thread(AddressOf _W)
moThreadTx.Start()

End Sub
Public Overloads Sub AsyncWrite(ByVal Buffer As String)

'Description: Overloaded Async Write
'Created: 01/03/2002 - 12:00:56

I*Parameters Info*

'Notes:

Dim oEncoder As New System.Text.ASCIIEncoding()

Dim aByte() As Byte = oEncoder.GetBytes(Buffer)
Me.AsyncWrite(aByte)

End Sub

Public Overloads Sub AsyncRead(ByVal Bytes2Read As Int32)

'Description: Read bytes using a different thread,
RxCompleted raised when done

'Created: 01/03/2002 - 12:00:56

'*Parameters Info*

'Notes:

If meMode <> Mode.Overlapped Then Throw New
ApplicationException("Async Methods allowed only when
WorkingMode=Overlapped")

miTmpBytes2Read = Bytes2Read
moThreadTx = New Thread(AddressOf _R)
moThreadTx.Start()

End Sub

#Region "Finalize"
Protected Overrides Sub Finalize()

'Description: Closes COM port if object is garbage collected
and still owns COM port reosurces

'Created: 27/05/2002 - 19:05:56

?*Parameters Info*

'Notes:

Try
If Not mbDisposed Then Close()

Finally
End Try

End Sub

#End Region

81

#Region "Thread related functions"
Public Sub _W()

'Description: Method invoked by thread to perform an async
write

'Created: 01/03/2002 - 12:23:08

I*Parameters Info*

'Notes: Do not invoke this method from code

Write(mabtTmpTxBuf)
End Sub
Public Sub _R)

'Description: Method invoked by thread to perform an async
read

'Created: 01/03/2002 - 12:23:08

'*Parameters Info*

'Notes: Do not invoke this method from code

Dim iRet As Int32 = Read(miTmpBytes2Read)
End Sub

#End Region

#Region "Private Routines"
Private Sub pSetTimeout()

'Description: Set comunication timeouts
'Created: 21/09/2001 - 11:46:40

Parameters Info

'Notes:

Dim uCtm As COMMTIMEOUTS
'// Set ComTimeout
If mhRS = -1 Then

Exit Sub
Else

'// Changes setup on the fly
With uCtm

.ReadIntervalTimeout = 0

.ReadTotalTimeoutMultiplier = 0

.ReadTotalTimeoutConstant = miTimeout

.WriteTotalTimeoutMultiplier = 10

.WriteTotalTimeoutConstant = 100
End With
SetCommTimeouts(mhRS, uCtm)

End If
End Sub

82

Private Sub pHandleOverlappedRead(ByVal Bytes2Read As Int32)

'Description:
'Created:

Handles overlapped read
28/02/2002 - 16:03:06

V*Parameters Info*

'Notes:

Dim iReadChars, iRc, iRes, iLastErr As Int32

muOverlapped.hEvent = CreateEvent(Nothing, 1, 0, Nothing)
If muOverlapped.hEvent = 0 Then

'// Can't create event
Throw New ApplicationException("Error creating event for

overlapped read.")
Else

'// Ovellaped reading
If mbWaitOnRead = False Then

ReDim mabtRxBuf(Bytes2Read - 1)

iRc = ReadFile(mhRS, mabtRxBuf, Bytes2Read, iReadChars,
muOverlapped)

If iRc = 0 Then
iLastErr = GetLastError()
If iLastErr <> ERRORTO_PENDING Then

Throw New ArgumentException("Overlapped Read Error:
& pErr2Text(iLastErr))

Else
'// Set Flag
mbWaitOnRead = True

End If

Else
'// Read completed successfully
RaiseEvent DataReceived(Me, mabtRxBuf)

End If

End If
End If
'// Wait for operation to be completed
If mbWaitOnRead Then

iRes = WaitForSingleObject(muOverlapped.hEvent, miTimeout)
Select Case iRes

Case WAITOBJECT_0
'// Object signaled,operation completed
If GetOverlappedResult(mhRS, muoverlapped, iReadChars,

0) = 0 Then

incomplete")

'1// Operation error
iLastErr = GetLastError()
If iLastErr = ERROR_10_INCOMPLETE Then

Throw New ApplicationException("Read operation

Else
Throw New ApplicationException("Read operation

error " & iLastErr.ToString)

End If
Else

'// Operation completed

83

RaiseEvent DataReceived(Me, mabtRxBuf)
mbWaitOnRead = False

End If

Case WAITTIMEOUT

Throw New IOTimeoutException("Timeout error")
Case Else

Throw New ApplicationException("Overlapped read error")
End Select

End If
End Sub

Private Function pHandleOverlappedWrite(ByVal Buffer() As Byte) As
Boolean

'Description: Handles overlapped Write
'Created: 28/02/2002 - 16:03:06

'*Parameters Info*

'Notes:

Dim iBytesWritten, iRc, iLastErr, iRes As Integer, bErr As

Boolean

muOverlappedW.hEvent = CreateEvent(Nothing, 1, 0, Nothing)
If muOverlappedW.hEvent = 0 Then

'// Can't create event
Throw New ApplicationException("Error creating event for

overlapped write.")
Else

'// Overllaped write
PurgeComm(mhRS, PURGERXCLEAR Or PURGETXCLEAR)

mbWaitOnRead = True
iRc = WriteFile(mhRS, Buffer, Buffer.Length, iBytesWritten,

muoverlappedW)
If iRc = 0 Then

iLastErr = GetLastError()

If iLastErr <> ERROR_10_PENDING Then
Throw New ArgumentException("Overlapped Read Error: " &

pErr2Text(iLastErr))

Else
'// Write is pending
iRes = WaitForSingleObject(muOverlappedW.hEvent,

INFINITE)

Select Case iRes
Case WAITOBJECT_0

'1// Object signaled,operation completed
If GetOverlappedResult(mhRS, muOverlappedW,

iBytesWritten, 0) = 0 Then
bErr = True

Else
'// Notifies Async tx completion,stops thread
mbWaitOnRead = False
RaiseEvent TxCompleted(Me)

End If
End Select

End If

84

Else
'// Wait operation completed immediatly
bErr = False

End If
End If
CloseHandle(muOverlappedW.hEvent)
Return bErr

End Function
Private Function pErr2Text(ByVal lCode As Int32) As String

'Description: Translates API Code to text
'Created: 01/03/2002 - 11:47:46

Parameters Info

'Notes:

Dim sRtrnCode As New StringBuilder(256)

Dim lRet As Int32

lRet = FormatMessage(&H1000, 0, lCode, 0, sRtrnCode, 256, 0)
If lRet > 0 Then

Return sRtrnCode.ToString
Else

Return "Error not found."

End If

End Function
Private Sub pDispose() Implements IDisposable.Dispose

'Description: Handles correct class disposing Write
'Created: 27/05/2002 - 19:03:06

l*Parameters Info*

'Notes:

If Not mbDisposed AndAlso mhRS <> -1 Then
'// Closes Com Port releasing resources
Try

Close()
Finally

mbDisposed = True

'// Suppress unnecessary Finalize overhead
GC.SuppressFinalize(Me)

End Try

End If

End Sub

#End Region

End Class
#End Region

85

#Region "Exceptions"
Public Class CIOChannelException : Inherits ApplicationException

'Module: CChannellException
'Description: Customized Channell Exception
'Created: 17/10/2001 - 10:32:37

'Notes: This exception is raised when NACK error found

Sub New(ByVal Message As String)
MyBase.New(Message)

End Sub

Sub New(ByVal Message As String, ByVal InnerException As
Exception)

MyBase.New(Message, InnerException)
End Sub

End Class
Public Class IOTimeoutException : Inherits CIOChannelException

'Description: Timeout customized exception
'Created: 28/02/2002 - 10:43:43

I*Parameters Info*

'Notes:

Sub New(ByVal Message As String)
MyBase.New(Message)

End Sub
Sub New(ByVal Message As String, ByVal InnerException As

Exception)
MyBase.New(Message, InnerException)

End Sub
End Class

#End Region

86

The following code was developed at the MIT BioInstrumentation Lab. It relies
on the previous section of code to provide serial communication support. It was written
by Jeffrey Hoff and Brett Lockyer.

'vbcrlf is new line
Public Class Forml

Inherits System.Windows.Forms.Form

'// Private members
Private miComPort As Integer
Friend WithEvents btnOpenCom As System.Windows.Forms.Button
Friend WithEvents btnCloseCom As System.Windows.Forms.Button
Friend WithEvents btnTx As System.Windows.Forms.Button
Friend WithEvents Label2 As System.Windows.Forms.Label
Friend WithEvents Label3 As System.Windows.Forms.Label
Friend WithEvents txtTx As System.Windows.Forms.TextBox
Friend WithEvents txtRx As System.Windows.Forms.TextBox
Friend WithEvents btnRx As System.Windows.Forms.Button
Friend WithEvents Label5 As System.Windows.Forms.Label
Friend WithEvents txtBytes2Read As System.Windows.Forms.TextBox
Friend WithEvents GroupBoxi As System.Windows.Forms.GroupBox
Friend WithEvents optCom2 As System.Windows.Forms.RadioButton
Friend WithEvents optComl As System.Windows.Forms.RadioButton
Friend WithEvents txtTimeout As System.Windows.Forms.TextBox
Friend WithEvents Label4 As System.Windows.Forms.Label
Friend WithEvents txtBaudrate As System.Windows.Forms.TextBox
Friend WithEvents Labell As System.Windows.Forms.Label
Friend WithEvents chkAutorx As System.Windows.Forms.CheckBox
Private WithEvents moRS232 As Rs232
Private mlTicks As Long

#Region " Windows Form Designer generated code

Public Sub New()
MyBase.New()

'This call is required by the Windows Form Designer.
InitializeComponent()

'Add any initialization after the InitializeComponent() call

End Sub

'Form overrides dispose to clean up the component list.
Protected Overloads Overrides Sub Dispose(ByVal disposing As

Boolean)
If disposing Then

If Not (components Is Nothing) Then
components.Dispose ()

End If
End If
MyBase.Dispose(disposing)

End Sub
Private components As System.ComponentModel.IContainer

87

'Required by the Windows Form Designer

'NOTE: The following procedure is required by the Windows Form
' Designer
'It can be modified using the Windows Form Designer.
'Do not modify it
Friend WithEvents
Friend WithEvents
Friend WithEvents
Friend WithEvents
Friend WithEvents
Friend WithEvents

Friend WithEvents
Friend WithEvents
Friend WithEvents
Friend WithEvents
Friend WithEvents
Friend WithEvents
Friend WithEvents

Friend WithEvents
Friend WithEvents
Friend WithEvents
Friend WithEvents
Friend WithEvents

using the code editor.
lbHex As System.Windows.Forms.ListBox
Label6 As System.Windows.Forms.Label
Timeri As System.Windows.Forms.Timer
cmdClear As System.Windows.Forms.Button
cmdRxAlways As System.Windows.Forms.Button
LblIdle As System.Windows.Forms.Label
cmdLeft As System.Windows.Forms.Button
cmdRight As System.Windows.Forms.Button
cmdDown As System.Windows.Forms.Button
cmdUp As System.Windows.Forms.Button
cmdForward As System.Windows.Forms.Button
cmdBack As System.Windows.Forms.Button
cmdWarning As System.Windows.Forms.Button
tmrBlink As System.Windows.Forms.Timer
OptCom6 As System.Windows.Forms.RadioButton
OptCom5 As System.Windows.Forms.RadioButton
OptCom4 As System.Windows.Forms.RadioButton
OptCom3 As System.Windows.Forms.RadioButton

<System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()

Me.components = New System.ComponentModel.Container
Me.btnTx = New System.Windows.Forms.Button
Me.txtTimeout = New System.Windows.Forms.TextBox
Me.txtTx = New System.Windows.Forms.TextBox
Me.chkAutorx = New System.Windows.Forms.CheckBox
Me.btnOpenCom = New System.Windows.Forms.Button
Me.txtBaudrate = New System.Windows.Forms.TextBox
Me.btnRx = New System.Windows.Forms.Button
Me.txtBytes2Read = New System.Windows.Forms.TextBox
Me.Label5 = New System.Windows.Forms.Label
Me.Labell = New System.Windows.Forms.Label
Me.Label4 = New System.Windows.Forms.Label
Me.Label3 = New System.Windows.Forms.Label
Me.Label2 = New System.Windows.Forms.Label
Me.txtRx = New System.Windows.Forms.TextBox
Me.optComl = New System.Windows.Forms.RadioButton
Me.btnCloseCom = New System.Windows.Forms.Button
Me.optCom2 = New System.Windows.Forms.RadioButton
Me.GroupBoxl = New System.Windows.Forms.GroupBox
Me.OptCom6 = New System.Windows.Forms.RadioButton
Me.OptCom5 = New System.Windows.Forms.RadioButton
Me.OptCom4 = New System.Windows.Forms.RadioButton
Me.OptCom3 = New System.Windows.Forms.RadioButton
Me.lbHex = New System.Windows.Forms.ListBox
Me.Label6 = New System.Windows.Forms.Label
Me.Timerl = New System.Windows.Forms.Timer(Me.components)
Me.cmdClear = New System.Windows.Forms.Button
Me.cmdRxAlways = New System.Windows.Forms.Button
Me.LblIdle = New System.Windows.Forms.Label
Me.cmdLeft = New System.Windows.Forms.Button
Me.cmdRight = New System.Windows.Forms.Button

88

Me.cmdDown = New System.Windows.Forms.Button
Me.cmdUp = New System.Windows.Forms.Button
Me.cmdForward = New System.Windows.Forms.Button
Me.cmdBack = New System.Windows.Forms.Button
Me.cmdWarning = New System.Windows.Forms.Button
Me.tmrBlink = New System.Windows.Forms.Timer(Me.components)
Me.GroupBoxl.SuspendLayout()

Me.SuspendLayout()

'btnTx

Me.btnTx.Enabled = False
Me.btnTx.Location = New System.Drawing.Point(8, 192)

Me.btnTx.Name = "btnTx"
Me.btnTx.Size = New System.Drawing.Size(56, 24)

Me.btnTx.TabIndex = 7

Me.btnTx.Text = "Tx"

'txtTimeout

Me.txtTimeout.BorderStyle =

System.Windows.Forms.BorderStyle.FixedSingle
Me.txtTimeout.Location = New System.Drawing.Point(96, 32)
Me.txtTimeout.Name = "txtTimeout"
Me.txtTimeout.Size = New System.Drawing.Size(65, 21)
Me.txtTimeout.TabIndex = 3

Me.txtTimeout.Text = "500"
Me.txtTimeout.TextAlign =

System.Windows.Forms.HorizontalAlignment.Center

'txtTx

Me.txtTx.BorderStyle =

System.Windows.Forms.BorderStyle.FixedSingle

Me.txtTx.CharacterCasing =
System.Windows.Forms.CharacterCasing.Upper

Me.txtTx.Location = New System.Drawing.Point(7, 160)

Me.txtTx.Name = "txtTx"

Me.txtTx.Size = New System.Drawing.Size(193, 21)

Me.txtTx.TabIndex = 6

Me.txtTx.Text = "W"

IchkAutorx

Me.chkAutorx.Checked = True
Me.chkAutorx.CheckState =

System.Windows.Forms.CheckState.Checked

Me.chkAutorx.Location = New System.Drawing.Point(216, 160)
Me.chkAutorx.Name = "chkAutorx"
Me.chkAutorx.Size = New System.Drawing.Size(96, 32)
Me.chkAutorx.TabIndex = 13

Me.chkAutorx.Text = "Automatically receive bytes"
Me.chkAutorx.Visible = False

'btnOpenCom

Me.btnOpenCom.Location = New System.Drawing.Point(211, 19)

89

Me.btnOpenCom.Name = "btnOpenCom"
Me.btnOpenCom.Size = New System.Drawing.Size(95, 27)
Me.btnOpenCom.TabIndex = 1
Me.btnOpenCom.Text = "Open COM Port"

'txtBaudrate

Me.txtBaudrate.BorderStyle =

System.Windows.Forms.BorderStyle.FixedSingle
Me.txtBaudrate.Location = New System.Drawing.Point(96, 80)
Me. txtBaudrate. Name = "txtBaudrate"
Me.txtBaudrate.Size = New System.Drawing.Size(65, 21)
Me.txtBaudrate.TabIndex = 5
Me.txtBaudrate.Text = "57600"
Me.txtBaudrate.TextAlign =

System.Windows.Forms.HorizontalAlignment.Center

'btnRx

Me.btnRx.Enabled = False
Me.btnRx.Location = New System.Drawing.Point(8, 224)
Me.btnRx.Name = "btnRx"
Me.btnRx.Size = New System.Drawing.Size(56, 24)
Me.btnRx.TabIndex = 10
Me.btnRx.Text = "Rx"

'txtBytes2Read

Me.txtBytes2Read.BorderStyle =

System.Windows.Forms.BorderStyle.FixedSingle
Me.txtBytes2Read.Location = New System.Drawing.Point(232, 120)
Me. txtBytes2Read.Name = "txtBytes2Read"
Me.txtBytes2Read.Size = New System.Drawing.Size(65, 21)
Me.txtBytes2Read.TabIndex = 12
Me.txtBytes2Read.Text = "1"
Me.txtBytes2Read.TextAlign =

System.Windows.Forms.HorizontalAlignment.Center

'Label5

Me.Label5.Location = New System.Drawing.Point(232, 104)
Me.Label5.Name = "Label5"
Me.Label5.Size = New System.Drawing.Size(72, 14)
Me.Label5.TabIndex = 11
Me.Label5.Text = "Bytes to read"
Me.Label5.TextAlign =

System.Drawing.ContentAlignment.MiddleCenter

'Labell

Me.Labell.Location = New System.Drawing.Point(96, 16)
Me.Labell.Name = "Labell"
Me.Labell.Size = New System.Drawing.Size(75, 14)
Me.Labell.TabIndex = 2
Me.Labell.Text = "Timeout (ms)"
Me.Labell.TextAlign =

System.Drawing.ContentAlignment.MiddleCenter

90

'Label4

Me.Label4.Location = New System.Drawing.Point(96, 64)

Me.Label4.Name = "Label4"
Me.Label4.Size = New System.Drawing.Size(59, 14)

Me.Label4.TabIndex = 4
Me.Label4.Text = "BaudRate"

Me.Label4.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter

'Label3

Me.Label3.Location = New System.Drawing.Point(448, 16)

Me.Label3.Name = "Label3"
Me.Label3.Size = New System.Drawing.Size(82, 14)

Me.Label3.TabIndex = 8
Me.Label3.Text = "Received Data"

'Label2
I
Me.Label2.Location = New System.Drawing.Point(7, 144)
Me.Label2.Name = "Label2"
Me.Label2.Size = New System.Drawing.Size(82, 14)

Me.Label2.TabIndex = 5

Me.Label2.Text = "Data to Tx"

'txtRx

Me.txtRx.Anchor = CType((System.Windows.Forms.AnchorStyles.Top
Or System.Windows.Forms.AnchorStyles.Bottom),
System.Windows.Forms.AnchorStyles)

Me.txtRx.BorderStyle =
System.Windows.Forms.BorderStyle.FixedSingle

Me.txtRx.Location = New System.Drawing.Point(448, 32)

Me.txtRx.Multiline = True

Me.txtRx.Name = "txtRx"

Me.txtRx.ScrollBars = System.Windows.Forms.ScrollBars.Vertical
Me.txtRx.Size = New System.Drawing.Size(120, 158)

Me.txtRx.TabIndex = 9

Me.txtRx.Text =

'optComl

Me.optComl.Location = New System.Drawing.Point(8, 16)
Me.optComl.Name = "optCom1"
Me.optComl.Size = New System.Drawing.Size(64, 16)

Me.optComl.TabIndex = 0
Me.optComl.Text = "COM &1"

'btnCloseCom

Me.btnCloseCom.Enabled = False
Me.btnCloseCom.Location = New System.Drawing.Point(211, 51)
Me.btnCloseCom.Name = "btnCloseCom"
Me.btnCloseCom.Size = New System.Drawing.Size(95, 27)
Me.btnCloseCom.TabIndex = 2

91

Me.btnCloseCom.Text = "Close COM Port"

'optCom2

Me.optCom2.Location = New System.Drawing.Point(8, 32)

Me.optCom2.Name = "optCom2"
Me.optCom2.Size = New System.Drawing.Size(66, 16)
Me.optCom2.TabIndex = 1

Me.optCom2.Text = "COM &2"

'GroupBoxi

Me.GroupBoxl.Controls.Add(Me.txtTimeout)

Me.GroupBoxl.Controls.Add(Me.Label4)
Me.GroupBoxi.Controls.Add(Me.txtBaudrate)
Me.GroupBoxl.Controls.Add(Me.Labell)
Me.GroupBoxl.Controls.Add(Me.OptCom6)

Me.GroupBoxl.Controls.Add(Me.OptCom5)

Me.GroupBoxl.Controls.Add(Me.OptCom4)

Me.GroupBoxl.Controls.Add(Me.OptCom3)

Me.GroupBoxl.Controls.Add(Me.optCom2)
Me.GroupBoxl.Controls.Add(Me.optComl)

Me.GroupBoxl.Location = New System.Drawing.Point(7, 11)
Me.GroupBoxl.Name = "GroupBoxl"

Me.GroupBoxl.Size = New System.Drawing.Size(198, 133)
Me.GroupBoxl.TabIndex = 0
Me.GroupBoxl.TabStop = False

Me.GroupBoxl.Text = "COM Setup"

'OptCom6

Me.OptCom6.Location = New System.Drawing.Point(8, 96)

Me.OptCom6.Name = "OptCom6"

Me.OptCom6.Size = New System.Drawing.Size(66, 16)
Me.OptCom6.TabIndex = 9
Me.OptCom6.Text = "COM &6"

'OptCom5

Me.OptCom5.Location = New System.Drawing.Point(8, 80)

Me.OptCom5.Name = "OptCom5"

Me.OptCom5.Size = New System.Drawing.Size(64, 16)
Me.OptCom5.TabIndex = 8
Me.OptCom5.Text = "COM &5"

'OptCom4

Me.OptCom4.Checked = True
Me.OptCom4.Location = New System.Drawing.Point(8, 64)

Me.OptCom4.Name = "OptCom4"
Me.OptCom4.Size = New System.Drawing.Size(66, 16)
Me.OptCom4.TabIndex = 7

Me.OptCom4.TabStop = True

Me.OptCom4.Text = "COM &4"

'OptCom3

92

Me.OptCom3.Location = New System.Drawing.Point(8, 48)
Me.OptCom3.Name = "OptCom3"

Me.OptCom3.Size = New System.Drawing.Size(64, 16)

Me.OptCom3.TabIndex = 6

Me.OptCom3.Text = "COM &3"

'lbHex

Me.lbHex.BorderStyle =

System.Windows.Forms.BorderStyle.FixedSingle
Me.lbHex.Location = New System.Drawing.Point(320, 32)

Me.lbHex.Name = "lbHex"
Me.lbHex.Size = New System.Drawing.Size(120, 158)

Me.lbHex.TabIndex = 16

'Label6

Me.Label6.Location = New System.Drawing.Point(320, 16)

Me.Label6.Name = "Label6"
Me.Label6.Size = New System.Drawing.Size(114, 14)

Me.Label6.TabIndex = 17
Me.Label6.Text = "Received Data (Hex)"
I
'Timeri
I
Me.Timerl.Interval = 500

'cmdClear

Me.cmdClear.Location = New System.Drawing.Point(464, 208)
Me.cmdClear.Name = "cmdClear"
Me.cmdClear.Size = New System.Drawing.Size(72, 24)

Me.cmdClear.TabIndex = 28

Me.cmdClear.Text = "Clear"

'cmdRxAlways

Me.cmdRxAlways.Location = New System.Drawing.Point(96, 208)
Me.cmdRxAlways.Name = "cmdRxAlways"

Me.cmdRxAlways.Size = New System.Drawing.Size(104, 24)
Me.cmdRxAlways.TabIndex = 29

Me.cmdRxAlways.Text = "Auto Rx is Of f"

'LblIdle

Me.LblIdle.BorderStyle =

System.Windows.Forms.BorderStyle.FixedSingle
Me.LblIdle.Location = New System.Drawing.Point(336, 208)
Me.LblIdle.Name = "LblIdle"
Me.LblIdle.Size = New System.Drawing.Size(88, 16)
Me.LblIdle.TabIndex = 30
Me.LblIdle.Text = "IDLETIME"

Me.LblIdle.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter

'cmdLeft

93

Me.cmdLeft.BackColor = System.Drawing.SystemColors.Control
Me.cmdLeft.Location = New System.Drawing.Point(80, 320)
Me.cmdLeft.Name = "cmdLeft"
Me.cmdLeft.Size = New System.Drawing.Size(56, 32)

Me.cmdLeft.TabIndex = 47

Me.cmdLeft.Text = "Left"

'cmdRight

Me.cmdRight.BackColor = System.Drawing.SystemColors.Control
Me.cmdRight.Location = New System.Drawing.Point(224, 320)

Me.cmdRight.Name = "cmdRight"
Me.cmdRight.Size = New System.Drawing.Size(56, 32)
Me.cmdRight.TabIndex = 48
Me.cmdRight.Text = "Right"

'cmdDown

Me.cmdDown.BackColor = System.Drawing.SystemColors.Control
Me.cmdDown.Location = New System.Drawing.Point(152, 360)
Me.cmdDown.Name = "cmdDown"
Me.cmdDown.Size = New System.Drawing.Size(56, 32)
Me.cmdDown.TabIndex = 49

Me.cmdDown.Text = "Down"

'cmdUp
I
Me.cmdUp.BackColor = System.Drawing.SystemColors.Control
Me.cmdUp.Location = New System.Drawing.Point(152, 288)

Me.cmdUp.Name = " cmdUp"
Me.cmdUp.Size = New System.Drawing.Size(56, 32)

Me.cmdUp.TabIndex = 50

Me.cmdUp.Text = "Up"

'cmdForward

Me.cmdForward.BackColor = System.Drawing.SystemColors.Control
Me.cmdForward.Location = New System.Drawing.Point(312, 296)
Me.cmdForward.Name = "cmdForward"
Me.cmdForward.Size = New System.Drawing.Size(64, 32)
Me.cmdForward.TabIndex = 53
Me.cmdForward.Text = "Forward"
I
'cmdBack

Me.cmdBack.BackColor = System.Drawing.SystemColors.Control
Me.cmdBack.Location = New System.Drawing.Point(312, 344)

Me.cmdBack.Name = "cmdBack"
Me.cmdBack.Size = New System.Drawing.Size(64, 32)
Me.cmdBack.TabIndex = 52

Me.cmdBack.Text = "Back"
I
'cmdWarning

Me.cmdWarning.BackColor = System.Drawing.Color.Tomato
Me.cmdWarning.Location = New System.Drawing.Point(400, 312)
Me.cmdWarning.Name = "cmdWarning"

94

Me.cmdWarning.Size = New System.Drawing.Size(96, 48)
Me.cmdWarning.TabIndex = 51

Me.cmdWarning.Text = "Warning!"

tmrBlink

Me.tmrBlink.Interval = 300

'Formi

Me.AutoScaleBaseSize = New System.Drawing.Size(5, 14)

Me.ClientSize = New System.Drawing.Size(578, 416)
Me.Controls.Add(Me.cmdLeft)
Me.Controls.Add(Me.cmdRight)
Me.Controls.Add(Me.cmdDown)

Me.Controls.Add(Me.cmdUp)
Me.Controls.Add(Me.cmdForward)

Me.Controls.Add(Me.cmdBack)
Me.Controls.Add(Me.cmdWarning)
Me.Controls.Add(Me.LblIdle)
Me.Controls.Add(Me.cmdRxAlways)

Me.Controls.Add(Me.cmdClear)

Me.Controls.Add(Me.txtBytes2Read)

Me.Controls.Add(Me.txtRx)

Me.Controls.Add(Me.txtTx)

Me.Controls.Add(Me.Label6)
Me.Controls.Add(Me.lbHex)

Me.Controls.Add(Me.chkAutorx)

Me.Controls.Add(Me.GroupBoxl)

Me.Controls.Add(Me.Label5)
Me.Controls.Add(Me.Label3)
Me.Controls.Add(Me.btnRx)

Me.Controls.Add(Me.Label2)
Me.Controls.Add(Me.btnTx)
Me.Controls.Add(Me.btnCloseCom)
Me.Controls.Add(Me.btnOpenCom)

Me.Font = New System.Drawing.Font("Tahoma", 8.251,

System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))

Me.FormBorderStyle =

System.Windows.Forms.FormBorderStyle.FixedDialog
Me.MaximizeBox = False
Me.Name = "Forml"

Me.StartPosition =

System.Windows.Forms.FormStartPosition.CenterScreen
Me.Text = "VB.NET Tactile Vest GUI"

Me.GroupBoxl.ResumeLayout(False)
Me.ResumeLayout(False)

End Sub

#End Region

Private Sub btnOpenComClick(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnOpenCom.Click

95

moRS232 = New Rs232
Try

'// Setup parameters
With moRS232

.Port = miComPort

.BaudRate = CInt(txtBaudrate.Text)

.DataBit = 8

.StopBit = Rs232.DataStopBit.StopBit_1

.Parity = Rs232.DataParity.Parity_None

.Timeout = CInt(txtTimeout.Text)

.WorkingMode = CType(Rs232.Mode.NonOverlapped,

Rs232.Mode)

End With

'// Initializes port
moRS232.Open()

'// Set state of RTS / DTS
moRS232.Dtr = True

moRS232.Rts = True

Catch Ex As Exception

MessageBox.Show(Ex.Message, "Connection Error",

MessageBoxButtons.OK)
Finally

btnCloseCom.Enabled = moRS232.IsOpen
btnOpenCom.Enabled = Not moRS232.IsOpen
btnTx.Enabled = moRS232.IsOpen
btnRx.Enabled = moRS232.IsOpen

End Try
End Sub

Private Sub btnCloseCom Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles btnCloseCom.Click

moRS232.Close()

btnCloseCom.Enabled = moRS232.IsOpen

btnOpenCom.Enabled = Not moRS232.IsOpen
btnTx.Enabled = moRS232.IsOpen
btnRx.Enabled = moRS232.IsOpen

End Sub

This function attempts to open the passed Comm Port. If it is
available, it returns True, else it returns False. To determine
availability a Try-Catch block is used.

Private Function IsPortAvailable(ByVal ComPort As Integer) As

Boolean
Try

moRS232.Open(ComPort, 57600, 8,
Rs232.DataParity.ParityNone, _

Rs232.DataStopBit.StopBit_1, 4096)

' If it makes it to here, then the Comm Port is available.
moRS232.Close()

Return True

Catch
If it gets here, then the attempt to open the Comm Port
was unsuccessful.

Return False

End Try

End Function

96

Private Sub ButtoniClickl(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnTx.Click

moRS232.Write(txtTx.Text)

'// Clears Rx textbox
txtRx.Text = String.Empty

txtRx.Refresh()

lbHex.Items.Clear()

End Sub

Private Sub FormlClosing(ByVal sender As Object, ByVal e As
System.ComponentModel.CancelEventArgs) Handles MyBase.Closing

If Not moRS232 Is Nothing Then

If moRS232.IsOpen Then moRS232.Close()

End If
End Sub

Private Sub BtnRxClick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnRx.Click

Try
moRS232.Read(CInt(txtBytes2Read.Text))

txtRx.Text = moRS232.InputStreamString
txtRx.ForeColor = Color.Black
txtRx.BackColor = Color.White
'// Fills listbox with hex values
Dim aBytes As Byte() = moRS232.InputStream

Dim iPnt As Int32

For iPnt = 0 To aBytes.Length - 1

lbHex.Items.Add(iPnt.ToString & ControlChars.Tab &

String.Format("0x{0}", aBytes(iPnt).ToString("X")))

Next

Catch Ex As Exception
txtRx.BackColor = Color.Red

txtRx.ForeColor = Color.White
txtRx.Text = "Error occurred " & Ex.Message & " data

fetched: " & moRS232.InputStreamString
End Try

End Sub

Private Sub btnExitClick(ByVal sender As System.Object, ByVal e As
System.EventArgs)

Me.Close()

End Sub

Private Sub optComlCheckedChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles optComl.CheckedChanged,
optCom2.CheckedChanged, OptCom3.CheckedChanged, OptCom4.CheckedChanged,
OptCom5.CheckedChanged, OptCom6.CheckedChanged

If sender Is optComl Then
miComPort = 1

ElseIf sender Is optCom2 Then
miComPort = 2

ElseIf sender Is OptCom3 Then
miComPort = 3

ElseIf sender Is OptCom4 Then
miComPort = 4

ElseIf sender Is OptCom5 Then
miComPort = 5

97

ElseIf sender Is OptCom6 Then
miComPort = 6

End If
End Sub

Private Sub btnCheckClick(ByVal sender As System.Object, ByVal e
As System.EventArgs)

'Description: Check passed status line
'Created: 28/02/2002 - 10:35:54

'*Parameters Info*

'Notes:

If Not moRS232 Is Nothing Then

Dim bState As Boolean

Dim output As String

bState =
moRS232.CheckLineStatus(Rs232.ModemStatusBits.ClearToSendOn)

output = "Clear to Send: " & IIf(bState, "On",

"Off").ToString & vbCrLf

bState =
moRS232.CheckLineStatus(Rs232.ModemStatusBits.DataSetReadyOn)

output &= "Dataset Ready: " & IIf(bState, "On",
"Off").ToString & vbCrLf

bState =
moRS232.CheckLineStatus(Rs232.ModemStatusBits.RingIndicatorOn)

output &= "Ring Indicator: " & IIf(bState, "On",
"Off").ToString & vbCrLf

bState =
moRS232.CheckLineStatus(Rs232.ModemStatusBits.CarrierDetect)

output &= "Carrier Detect: " & IIf(bState, "On",
"Off").ToString & vbCrLf

End If
End Sub

Private Sub moRS232_DataReceived(ByVal Source As Rs232, ByVal

DataBuffer() As Byte) Handles moRS232.DataReceived
Dim lTicks As Long = DateTime.Now.Ticks
txtRx.Text = Source.InputStreamString
txtRx.ForeColor = Color.Black
txtRx.BackColor = Color.White
'// Fills listbox with hex values
Dim aBytes As Byte() = Source.InputStream
Dim iPnt As Int32

For iPnt = 0 To aBytes.Length - 1

lbHex.Items.Add(iPnt.ToString & ControlChars.Tab &
String.Format("0x{0}", aBytes(iPnt).ToString("X")))

Next

End Sub

98

Private Sub btnAsyncTxClick(ByVal sender As System.Object, ByVal e
As System.EventArgs)

'// Clears Rx textbox

txtRx.Text = String.Empty

txtRx.Refresh()

lbHex.Items.Clear()
mlTicks = DateTime.Now.Ticks
moRS232.AsyncWrite(txtTx.Text)

If chkAutorx.Checked Then btnAsync_Click(Nothing, Nothing)
End Sub

Private Sub btnAsyncClick(ByVal sender As System.Object, ByVal e
As System.EventArgs)

Try

moRS232.AsyncRead(CInt(txtBytes2Read.Text))

Dim lTicks As Long = DateTime.Now.Ticks
Catch Ex As Exception

txtRx.BackColor = Color.Red

txtRx.ForeColor = Color.White
txtRx.Text = "Error occurred " & Ex.Message & " data

fetched: " & moRS232.InputStreamString

End Try

End Sub

Private Sub cmdClearClick(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles cmdClear.Click

txtRx.Text = ""

IdleTime = 0
lbHex.Items.Clear()

End Sub

Private Sub cmdRxAlways_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles cmdRxAlways.Click

If Timerl.Enabled = True Then
Timerl.Enabled = False
cmdRxAlways.Text = "Auto Rx is Off"

Else
Timerl.Enabled = True
cmdRxAlways.Text = "Auto Rx is On"

End If
End Sub

Dim NewLine As Boolean
Dim IdleTime As Integer

Private Sub TimerlTick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timerl.Tick

Try
moRS232.Read(CInt(txtBytes2Read.Text))

txtRx.Text += moRS232.InputStreamString

NewLine = True

IdleTime = 0
LblIdle.Text = "Active"
Timerl.Interval = 100
txtRx.ForeColor = Color.Black
txtRx.BackColor = Color.White

'// Fills listbox with hex values

99

Dim aBytes As Byte() = moRS232.InputStream

Dim iPnt As Int32

For iPnt = 0 To aBytes.Length - 1

lbHex.Items.Add(iPnt.ToString & ControlChars.Tab &
String.Format ("Ox{0}", aBytes(iPnt).ToString("X")))

Next
Catch Ex As Exception

IdleTime += Timerl.Interval
LblIdle.Text = (IdleTime / 1000).ToString
If NewLine = True Then

txtRx.Text &= vbCrLf
NewLine = False

Timerl.Interval = 500

End If

End Try

End Sub

Private Sub TextBoxl_KeyPress(ByVal sender As System.Object, ByVal
e As System.Windows.Forms.KeyPressEventArgs)

End Sub

Private Sub TextBox1_KeyUp(ByVal sender
As System.Windows.Forms.KeyEventArgs)

Select Case e.KeyCode
Case Keys.Left

cmdLeftClick(sender, e)
Case Keys.Right

cmdRight Click(sender, e)
Case Keys.Up

cmdUp_Click(sender, e)
Case Keys.Down

cmdDownClick(sender, e)
Case Keys.F

cmdForwardClick(sender, e)
Case Keys.B

cmdBackClick(sender, e)
Case Keys.Space

cmdWarning_Click(sender, e)

End Select

End Sub

Private Sub cmdUp_Click(ByVal sender
System.EventArgs) Handles cmdUp.Click

txtTx.Text = "U"

ButtonlClickl(sender, e)

As System.Object, ByVal e

As System.Object, ByVal e As

End Sub
Private Sub cmdDownClick(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles cmdDown.Click
txtTx.Text = "D"
ButtonlClickl(sender, e)

End Sub

Private Sub cmdLeftClick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdLeft.Click

txtTx.Text = "L"

ButtonlClickl(sender, e)

End Sub

100

Private Sub cmdRightClick(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles cmdRight.Click

txtTx.Text = "R"

Button_Click_1(sender, e)
End Sub
Private Sub cmdForwardClick(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles cmdForward.Click
txtTx.Text = "F"
Button]_Click_1(sender, e)

End Sub

Private Sub cmdBackClick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdBack.Click

txtTx.Text = "B"
Button_Click_1(sender, e)

End Sub

Private Sub cmdWarningClick(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles cmdWarning.Click

txtTx.Text = "W"

Button1_Click_1(sender, e)
End Sub

Private Sub cboStatusLineSelectedIndexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub

Private Sub TextBox]._TextChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs)

End Sub

Private Sub LblStatusClick(ByVal sender As System.Object, ByVal e
As System.EventArgs)

End Sub
Private Sub txtBaudrateTextChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles txtBaudrate.TextChanged
End Sub
Private Sub lbAsyncSelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs)
End Sub

Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

End Sub
Private Sub lbHexSelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
lbHex.SelectedIndexChanged

End Sub
End Class

101

