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Abstract

We present a new parse reranking algorithm that extends work in (Michael Collins
and Terry Koo 2004) by incorporating WordNet (Miller et al. 1993) word senses. In-
stead of attempting explicit word sense disambiguation, we retain word sense am-
biguity in a hidden variable model. We define a probability distribution over can-
didate parses and word sense assignments with a feature-based log-linear model,
and we employ belief propagation to obtain an efficient implementation.

Our main results are a relative improvement of ~ 0.97% over the baseline
parser in development testing, which translated into a - 0.5% improvement in fi-
nal testing. We also performed experiments in which our reranker was appended
to the (Michael Collins and Terry Koo 2004) boosting reranker. The cascaded
system achieved a development set improvement of ~ 0.15% over the boosting
reranker by itself, but this gain did not carry over into final testing.

Thesis Supervisor: Michael Collins
Title: Assistant Professor
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Chapter 1

Introduction

We present a novel method for parse reranking that is motivated by a desire to

model meaningful dependency relationships. Numerous studies (Charniak 1997;

Collins 1999) have shown that bigram headword statistics are helpful in resolving

parse ambiguities. However, these lexical bigram statistics suffer from problems

of data sparseness, and correlations between bare words only approximate the

meaningful underlying dependencies. In an attempt to resolve sparseness issues

and to more closely model the underlying relationships, we substitute bigrams of

WordNet (Miller et al. 1993) word senses for bigrams of bare headwords.

Our reranker is an extension of the reranking approach introduced in (Michael

Collins and Terry Koo 2004). As with any other system that uses word senses, we

must address the word sense disambiguation problem. However, we are placed at

a disadvantage because our data sets are not word sense-annotated, so our word

sense inferences are essentially unsupervised. Rather than attempt to assign ex-

plicit word senses, a task that would be a labor in itself, we retain the word sense

ambiguity, capturing it in a hidden variable model. We treat each candidate parse

as a Markov Random Field in which the hidden variables are the unknown word

senses. A probability distribution is defined over the space of candidate parses and

word sense assignments using a feature-based log-linear model. By summing out

the hidden variables, we obtain a distribution that reranks the candidate parses.

The choice of a log-linear probability model offers us flexibility in the choice

13



of features. In addition, feature sets for log-linear models are easy to redefine,

allowing our reranker to be repurposed quickly and with minimal human effort.

For reasons of efficiency, however, we accept a pairwise restriction on the features;

Section 3.2 describes this restriction and explains how it allows us to make use of

the efficient belief propagation algorithm (Yedidia et al. 2002).

Our main result is a relative improvement of 0.97% over the baseline parser

in development testing, which translated into a 0.5% relative improvement in

final testing. We also performed cascaded reranking experiments, in which our

reranker was appended to the (Michael Collins and Terry Koo 2004) boosting

reranker. On the development set, the cascaded system achieved a relative im-

provement of ~ 0.15% over the boosting reranker by itself, but this gain did not

carry over into final testing.

The remainder of this chapter explains the motivations behind our reranking

approach and mentions some difficulties in the application of WordNet. After-

ward, Chapter 2 surveys background material and related research, Chapter 3

presents our reranking algorithm, Chapter 4 describes our experiments and re-

sults, and Chapter 5 wraps up by pointing out some directions for future work.

1.1 Motivations Behind Our Approach

A considerable body of research (Collins and Brooks 1995; Charniak 1997; Collins

1999; Ratnaparkhi 1999) holds that lexical headword statistics are helpful in resolv-

ing syntactic ambiguities. This accords with linguistic intuition: since the head-

word of a constituent is the linguistically most important word in the constituent,

we should expect that interactions between constituents are governed by correla-

tions between their headwords.

For instance, consider the sentence "He walked the dog to the park", in which

the prepositional phrase "to the park" may attach to either "walked" or "dog", as

shown in Figure 1-1. The former case is the intuitive attachment, implying that

the walking action was conducted along the way to the park; the meaning of the

14



S (walked)

NP(He) VP(walked)

PRP(He) VBD(walked) NP(dog) PP(to)

DT(the) NN(dog) TO(to) NP(park)

DT(the) NN(park)

S (walked)

NP(He) VP(walked)

PRP(He) VBD(walked) NP(dog)

NP(dog) PP(to)

DT(the) NN(dog) TO(to) NP(park)

DT (the) NN (park)

walked

He dog to

the park

the

walked

He dog

the to

park

the

Figure 1-1: A pair of syntactic structures that depict a case of PP-attachment; both phrase struc-
ture trees and the dependency trees are shown. This ambiguity could be resolved through obser-
vation of the headword dependencies.

latter attachment is unclear, though we might imagine that the dog is somehow

extending toward the park, akin to "path" in "the path to the park". The use

of headword bigram statistics could disambiguate this PP-attachment since "to"

modifies "walked" far more often than it modifies "dog".

Unfortunately, headword statistics are quite sparse, and it is unlikely that a

training corpus will ever be made that overcomes this sparseness problem. Even

if such a corpus did exist, lexicalized bigrams would still fall short of the mark.

Consider the following pair of sentences

1. John charged across the battlefield.

2. John charged the defendants across the table with murder.

Bigram statistics collected from the first sentence would encourage attachment of

"across" to the verb "charged", while statistics from the second sentence would

discourage the verb attachment. Note that these opposed statistics are not a prod-

uct of PP-attachment ambiguity, but of word sense ambiguity: the first sentence

uses "charged" in the sense of "ran" while the second sentence uses "charged"
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in the sense of "accused". When the two senses are taken separately, each sense

has a fairly unambiguous preference for the preposition "across"; nevertheless, a

seeming PP-attachment ambiguity is observed because the bare word "charged"

conflates the two senses.

Our intuition, therefore, is that dependencies between word senses will give a

more meaningful measure of plausibility than dependencies between headwords.

Moreover, the use of word senses will allow us to address data sparseness issues

by sharing statistics among semantically related senses. For instance, we might

not have collected any statistics for the noun "chihuahua". However, we can still

reason about this unseen noun through statistics collected from semantically simi-

lar nouns such as "rottweiler" or "dachshund". The particular methods by which

we bring about this information-sharing effect are described in greater detail in

Section 4.2.

1.2 Difficulties in Using WordNet

The use of word senses introduces several difficulties. Most obviously, there is

the problem of word sense ambiguity. As we have described above, we use word

senses as a means of alleviating data sparseness and accessing deeper relation-

ships. However, neither of these benefits can be achieved unless the sense am-

biguity of a word is reduced. Therefore, even though we abstain from full word

sense disambiguation, sense ambiguity will pose a problem for us.

Another problem is the intractability of adjective senses: unlike nouns and

verbs, WordNet adjective senses are not organized under a hierarchical relation-

ship1 such as hypernymy, nor are they categorized into supersenses. However, as

we will see in Section 4.2, our information-sharing techniques depend on either

hypernyms or supersenses. We decided not to make use of adjective senses at all.

IIn fact, it is unclear how, if at all, such a relationship could be established (Miller et al. 1993).
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Chapter 2

Related Research

This chapter reviews some related research that has influenced our own research.

We begin by describing efforts in statistical parsing, continue with an overview

of parse reranking techniques, and finish by presenting some related projects that

also make use of WordNet (Miller et al. 1993).

2.1 Statistical Parsing Approaches

The syntactic ambiguity inherent in natural language makes it difficult to design

robust parsers. Attempting to resolve ambiguities deterministically is a downward

spiral: augmenting and refining rule sets leads to an explosive growth in the gram-

mar and often introduces new ambiguities. Statistical parsers, which use statistical

techniques to make informed decisions in the face of parse ambiguity, have come

to prominence in recent years, with the appearance of large parsed corpora such

as the Penn Treebank (Marcus et al. 1994).

The simplest form of statistical parsing model is the probabilistic context-free

grammar (PCFG), which simply assigns a frequency-based probability to each rule

expansion in a fixed grammar. (Charniak 1997) achieves significant improvement

over a plain PCFG by augmenting the probability model with headword bigram

statistics. The lexical statistics are backed off by applying a word-clustering tech-

nique to the headwords; however, the results indicate that the clustering had only
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a small effect. One of the drawbacks of the (Charniak 1997) parser is the use of a

fixed treebank grammar, which is extracted from the training corpus; if a new sen-

tence requires a rule which was not seen in the training set, then it is impossible

for the parser to produce the correct structure.

The more complex parsers of (Collins 1999) and (Charniak 2000) make use

of generative probability models that employ a Markov grammar. An nth-order

Markov grammar models a rule expansion as a generative process that first cre-

ates the rule's head constituent and then generates the left and right modifiers with

, t'-order Markov processes. A Markov grammar is able to outperform a fixed tree-

bank grammar because of the Markov independence assumptions that are applied

when generating left and right modifiers: the reduced conditioning context allows

the parameters of the grammar to be estimated more accurately, and the modeling

of rule expansions as sequential processes extends the grammar to unseen rules

effortlessly.

The (Collins 1999) parser actualizes the complement-adjunct distinction through

the additional complement nonterminals NP-C, S-C, SBAR -C, and VP-C. The gen-

erative model is adjusted so that left and right subcategorization frames are cho-

sen after generating the head constituent, but before generating the right and left

modifiers. These frames name the complements that the head expects to find to its

left and right. Introducing the complement nonterminals is useful in itself, since

the meaning of a parse cannot be recovered without first determining the com-

plements. The use of complement nonterminals also aids parsing performance in

two ways: first, the complement nonterminals allow separate distributions to be

learned by complements and adjuncts, and second, the subcategorization frames

allow the parser to avoid certain impossibilities, such as an intransitive verb with

two objects.

An alternative statistical parsing approach is that of (Ratnaparkhi 1999), which

uses a feature-based maximum-entropy probability model. The parser first per-

forms part-of-speech tagging and low-level chunking, then combines the chunks

into progressively larger constituents through a series of parsing decisions that re-
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semble the actions of a shift-reduce parser. Each decision is assigned a probability

by the maximum-entropy model, where the features of the model can access the

context of the earlier decisions. One of the advantages of this approach is that

the probability model is completely unspecific, whereas the probability models

of the (Collins 1999) and (Charniak 2000) parsers have been specially crafted for

the parsing task. Therefore, while the maximum-entropy parser achieves slightly

lower performance than its more heavily tuned counterparts, Ratnaparkhi claims

that significantly less work was required to create it.

2.2 Parse Reranking Approaches

Parse reranking is one of the most interesting recent developments in statistical

parsing. A parse reranker is a model that reanalyzes the output of some base

parser; the reranker accepts a set of the top N candidate parses created by the

base parser, together with the parser's initial ranking, and induces a new ranking

over these parses. The motivation is that the reranker can make use of information

unavailable to the base parser, since it has access to complete parse trees and is free

from the independence assumptions of the parser.

For example, a reranker can make use of long-range features, such as "there

is an auxiliary verb inside this relative clause", or global features, such as "there

is an SBAR in this parse tree". A parser, on the other hand, must evaluate the

plausibility of a parse as the parse is being constructed, so it cannot feasibly access

long-range or global information.

The reranker presented in (Michael Collins and Terry Koo 2004) uses feature

selection to optimize an exponential loss function. The reranker also integrates

the base parser's ranking though a special feature that gives the parser's log-

probability for each candidate parse. The optimal weight for this special feature

is determined ahead of time, before entering the optimization phase. This general

approach to incorporating the base parser's ranking is one that we borrow for our

own reranker, as described in Section 3.4.1.
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Appending the (Michael Collins and Terry Koo 2004) reranker to the (Collins

1999) parser yields a 13% relative reduction in error over the base parser. This

improvement matches the gains made by the (Charniak 2000) parser, which uses

a similar set of features. The equivalent improvements imply that new features

should yield the same influence, whether incorporated directly into the parser or

appended in a reranker. A reranker, however, is simpler to implement and allows

freedom in the choice of features.

2.3 WordNet-Based Approaches

WordNet word senses are applied to the prepositional phrase attachment ambi-

guity problem in (Stetina and Nagao 1997). Instances of PP-ambiguity are repre-

sented as quadruples of words: the preposition, the noun argument of the prepo-

sition, and the noun and verb between which the attachment is ambiguous. When

evaluating a test quadruple, it will often be the case that the exact quadruple was

unseen in the training set. Backed-off models, such as (Collins and Brooks 1995),

collect statistics based on lower-order tuples to address this issue. However, each

level of backoff obtains progressively lower performance; for instance, (Collins

and Brooks 1995) obtained 92.6% performance for full quadruple matches, 87.8%

for triples, and so forth.

The approach of (Stetina and Nagao 1997), therefore, is to increase the number

of high-order matches by equating unseen test words with words from the train-

ing set. For instance, the test quadruple "buy magazines for children" could be

matched to the observed quadruple "buy books for children" by equating "books"

and "magazines". The criteria that determines when two words can be equated

is the semantic distance between the senses of the two words, where the semantic

distance between two senses is related to the distance between each word sense

and their lowest common ancestor in the WordNet hypernymy graph.

The action of our hypernym feature set, described at greater length in Section

4.2.4, resembles the semantic distance metric of (Stetina and Nagao 1997). Nev-
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ertheless, our reranker does not actually compute semantic distances, nor does it

explicitly attenuate correlations between word senses as their semantic distance

increases. However, it is possible for our reranker to simulate the use of a seman-

tic distance measure, since it may learn to pay less attention to features involving

higher-level hypernyms during training.

A system that simultaneously parses and performs word sense disambigua-

tion is described in (Bikel 2000). The parser makes use of a generative probability

model based on a I-order Markov grammar, in the language of Section 2.1. For

every rule, the head constituent is generated first, and then left and right modi-

fiers are generated outward. For each constituent, the nonterminal label is created

first, followed by the part-of-speech tag of the headword, WordNet word sense

of the headword, and actual headword. Note that the word senses are gener-

ated before the words themselves. Bikel gives the motivation for this decision as

a desire for the generative probability model to match the cognitive model of lan-

guage generation. WordNet word senses correspond to internal concepts, while

bare words correspond to external artifacts such as speech or text; therefore word

senses should be generated before words. In spite of the added burden of dis-

ambiguating word senses, parsing performance was not significantly affected by

the introduction of word senses, and moreover, the word sense disambiguation

performance was high.

Many aspects of the (Bikel 2000) project are similar to our own: the use of Word-

Net senses as a means of accessing underlying meanings, the use of sense-to-sense

dependencies, the use of WordNet hypernymy to combat data sparseness. How-

ever, the project differs from our own in a few important ways. First, instead of

creating or modifying a standalone parser, our project employs a reranking ap-

proach. In addition, the goal of our reranker is to increase parse performance only;

word senses are useful inasmuch as they aid us in resolving parse ambiguities, but

they are not an aim in themselves. We also train on a corpus that has no word

sense-annotations. On the other hand, the (Bikel 2000) project is aimed at creat-

ing both word senses and syntactic structures, and the parser is trained on a word
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sense-annotated corpus.

Finally, high-level semantic tagging of named entities has been explored by

(Johnson and Ciaramita 2003). This project introduces the concept of WordNet "su-

persenses", an idea which we borrow for our supersense feature set, as described

in Section 4.2.3. In explanation, every WordNet sense is processed from source

material in a lexicographer file. WordNet noun senses originate from 26 such files,

each of which pertains to some high-level semantic category. The filenames, there-

fore, define the supersense categories (a listing of the 26 noun supersenses is given

in Table 4.1 on page 52).
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Chapter 3

Structure of the Reranking Model

In this chapter, we present our reranking algorithm. We begin by outlining the

algorithm at a high level, and in later sections we describe how we obtain an effi-

cient implementation by imposing and exploiting limitations on the feature space.

We continue by showing how we optimize our model using stochastic gradient

descent, and we finish by describing our method for incorporating the rankings of

other models into our reranker.

3.1 High-Level Description

Our hidden variable model is a simple extension of the head-driven statistical

models introduced in (Collins 1999) and (Charniak 1997). From each parse tree

we produce a dependency tree, which captures the dependency relationships be-

tween headwords in the parse. Our main innovation is to treat this dependency

tree as a pairwise Markov Random Field (MRF); each word in the dependency tree

is given a hidden word sense, and these hidden senses interact along dependency

arcs. Figure 3-1 illustrates the interaction of hidden word senses.

Our reranking algorithm is characterized by four elements. First, we make use

of a feature vector representation, which reduces each MRF into a high-dimensional

vector of feature counts. Second, we use a matched vector of parameters to define

a probability distribution over the MRFs. Third, we define a loss function that
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moved
(mved (him elf))

John moved (his toot) fJohn (T~hist foot

one o a'gg forwardone (foot (12 inchn) frwr
(S (NP John) (VP (V moved) (NP (NP (CD one) (N foot)) (ADVP forward))))

moved
moved (himself7) f-*X

John mved ot forward

f oot
( oat ( art)

one foot (12 inches)

(S (NP John) (VP (V moved) (NP (CD one) (N foot)) (ADVP forward)))

Figure 3-1: The sentence "John moved one foot forward" gives rise to the two alternate depen-
dency trees above, each of which prefers a different word sense assignment, as circled above. In
the top structure, the adjectival attachment of "forward" creates an affinity for the "unit of length"
sense of "foot", which in turn promotes the reflexive sense of "moved". In the bottom structure,
the adverbial attachment of "forward" has the opposite effect.

approximates the training error of the algorithm. Fourth, we optimize the param-

eter vector using the gradient of the loss function. The remainder of this section

explains each of these four elements in greater detail.

3.1.1 Notation

We begin by defining notation and formally restating the problem. We are given a

corpus of m training examples x, ... , x, where each example contains of a set of

mi candidate dependency trees ti, 1, . . ., tims. Each candidate tree is scored accord-

ing to its adherence to the gold standard parse, and in each group of candidates,

the highest-scored tree is specially labeled as ti,1.

Each word in every tree tij holds a hidden word sense. We define tree-wide

assignments of word senses to all nodes. Let mij give the number of possible as-

signments for tree tij; let the assignments themselves be asi, II.. ., a, ,j. Note that

mij is exponential in the size of the tree; if there are n words, each of which has

si possible senses, then there are mij = H 1 si possible sense assignments. Figure

3-2 arranges the various entities associated with a given data example xi.
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"Incorrect" Trees

t 4~2
Candidate

Trees

Assignments
to Hidden
Variables
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22
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000

000

t 01 12
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Figure 3-2: A table depicting the elements that make up a single reranking example xi. The top row enumerates the candidate dependency trees

ti,; note that the best-scored tree tiI is labeled as "correct" tree, while the other trees are labeled "incorrect" trees. The assignments of hidden word

senses are enumerated in columns below each candidate tree.
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3.1.2 Feature-Based Probability Model

A dependency tree tij together with some sense assignment aijk is represented

with a high-dimensional feature vector. We define the function (D(i, j, k), which

gives the feature vector representing tree tij with assignment ai,j,k. Each dimen-

sion of the vector <D(i, j, k) contains an occurrence count for some salient structure

or relationship. For example, q I(i, j, k) might count how often rule S =* NP VP

appears in tij, while 1Dioo(i, j, k) might count how often S =4> NP VP appears with

the word sense "company (business institution)" heading the NP.

To accompany the feature vectors, we define a dimensionally-matched param-

eter vector 6. These parameters are used to induce the probability distribution

p ,I i, a) = e~i~

j',k i

which ranks the candidate trees and word sense assignments according to the

plausibility of the sense-to-sense dependencies they imply. Note that according to

the definition above, each dimension in 8 would indicate the discriminative ability

of the related feature. Continuing our example from above, if 81 = 0.0000001 and

Oloo= 0.5, then we would conclude that the rule S => NP VP is not a good dis-

criminator by itself, but when accompanied with the noun sense "company (busi-

ness institution)", it is a strong indicator of a good parse.

We use the distribution p(j, k I i, 8) from above to define two additional prob-

ability distributions. First, by summing out the hidden word sense assignments,

we obtain the distribution

p (j*i ) p (j, k I 1, 8)
k

which measures the overall plausibility of dependency tree ti,, independent of any

particular sense assignment. Second, by dividing the two previous distributions,

we obtain a conditional probability distribution over the word sense assignments

for a given dependency tree
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. . p(j, k l i, E)p(k I il3,) = pjIi )p(jli,e)

Finally, before we move on, note that our probability model does not place

any inherent constraints on the features it can use; that is, our reranking model

can accept arbitrarily-defined features. However, in Section 3.2, we will impose

an artificial constraint on the features; namely, we will restrict the features to in-

volve either a single word sense or a pair of senses involved in a dependency rela-

tionship. This new constraint allows us to bring powerful dynamic-programming

methods to bear on the problem and thereby achieve an efficient implementation.

Nevertheless, for the time being we shall continue to treat our probability model

as unconstrained.

3.1.3 Loss Function and Gradient

Ideally, the probability distribution p should satisfy the following property:

Vi, Vj > 1 p(1 i, E) > p(ji, e)

so that the best-scoring candidate tree tij is awarded the greatest share of the

probability mass. Accordingly, the goal of the training phase of our algorithm is

to generate parameters E that maximize the probability mass awarded to trees

t1,1 t2 ,1 ... It,. This subsection captures this goal formally by defining a loss

function L(E) that equals the negative log-probability of the best-scored candidate

trees:

L(O) = -Elogp(i1i,0)
i

Substituting our definitions for the various probability distributions yields
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= -- log p(1,kIi,E)
z k

= - log

-S log

E
k

1:eD(i,,k) E

j',k1

(E e

Our next step is to find an expression for the gradient a& ). For

simplicity, we rewrite L in terms of functions F and Gi as follows:

L(8) =, (-F(8) + Gi(6))

F (E)

Gi (0)

the sake of

k
= log e51(ijIk)-E

The gradient ar2 (e) is given byae

aF(e) a og e(i,5,k)
aE)

E <4(i1, k)e''D('ijk).E
k

<b i,, kk))-
k (i, 1, k) e (i,1,k)-E

(k1

= I:
k

1(i, 1, k)

\k'/

L(8)

D(i,1,k). ebe(i,q,r)-8 ISr D(i,q',r')-
q',r'
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= E <(i,
k

= 4 <(i,k
k

= bi,

= k,<~,

1, k) p(1, k I i, 6)

p (1 k' 8)
1, k)

1, k) (l kKIO ))

1, k)p(k Ii, 1, 8)

1, k)]

where Ep[f4(i, 1, k)] is the expected feature vector produced by candidate tree ti

under the probability distribution p(k Ii, 1, 0) (and the generalization Ep[b(i, j, k)]

follows immediately). Graphically, Ep[<b(i, 1, k)] can be thought of as the weighted

average of the feature vectors produced by the leftmost "Correct Tree" column of

Figure 3-2. We now turn our attention to aG-(E:aE)

8G (6)
do

a_ log Z ef(ij'k')

j' ,k' <b~~jk

e 1 (i j, k

j,k

= I

= P(J,
= 3 ~ ,

k)p(k i, j, 0)p(j i, 8)

8) E <b(i, j, k)p(k I i, J, 0)
k

6) E[Dj, k)]

Therefore, Gi(B) equals the expected feature vector produced by the entire ex-

ample xi. Referring back to Figure 3-2 once more, we can think of Gj(O) as the
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Figure 3-3: A flowchart
with each other.

depicting how the major elements of the reranking algorithm interact

weighted average of the feature vectors produced by the entire table. Finally, we

substitute our partial results back into the expression for Oa >:

a ® -z OFi (0)
a8

+G (0))
+ 0

+ Ep(j i, )Ep[ D(i j.
J

k)])

Note that OL> is completely expressed in terms of the two functions p(J I, -) and

E [JD(i, jA k)]. This property figures importantly in Section 3.2, where we will show

how p and Ep, and hence the gradient, can be computed efficiently.

3.1.4 Summary

In summary, our reranking algorithm proceeds as follows. We first produce feature

vectors from every dependency tree tj and sense assignment a j. We initialize

the parameters 0, creating a probability distribution over trees and assignments.
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The gradient &'(®) allows us to optimize 9, using an algorithm such as stochastica 0

gradient descent (LeCun et al. 1998) or conjugate gradient descent (M. Johnson and

Riezler 1999). The flowchart in Figure 3-3 lays out the high-level operation of the

algorithm.

3.2 Incorporating Belief Propagation

The reranking algorithm as described in the previous section contains some glar-

ing inefficiencies. The gradient must be recomputed on each iteration of gradient

descent, which means that the algorithm must repeatedly evaluate

E (i, j, k)] and p(j i , -) Vij

The formulae for E,[J(i, j, k)] and p(j i, 9) given in Section 3.1 require an enumer-

ation over all possible assignments to hidden variables, a combinatorially complex

task. In addition, feature vectors must be produced for every tree tj and sense

assignment ai,j,k; again, a combinatorially-sized task. To overcome these obstacles,

we impose the following constraint on our features:

(i) A feature can involve at most two hidden word senses,

(ii) If a feature involves two senses, these two must be involved in a dependency

relationship; that is, they must be linked by an edge in the dependency tree.

In this section, we show how these restrictions allow the use of belief propaga-

tion as a module that computes E[(D(i, j, k)] and p(j i , 9) in linear time (Yedidia

et al. 2002). Additionally, the restrictions permit a decomposed feature vector rep-

resentation that sidesteps the problem of enumerating a combinatorially-sized set

of feature vectors.

The remainder of this section is divided into four subsections: the first sub-

section introduces new notation, the second subsection describes the belief propa-

gation algorithm, the third subsection explains how we use belief propagation to
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create p and E., and the fourth subsection summarizes our modifications to the

reranking algorithm.

3.2.1 Notation

We narrow the scope of our analysis to a single dependency tree tij. Let n be the

number of nodes in the tree, and number the nodes 1, 2, ... , n. Let the edges in the

tree be given by the set Eij, which is defined such that (u, v) E Eij iff a < v and

nodes u and v neighbor each other in tij; therefore, IEi, = n - 1. For convenience,

let N(u) give the set of nodes neighboring u; that is, v E N(u) iff (u, v) E Eij or

(v, U) c Eij.

Next, let the hidden word sense of node u be s,, E S,, where S, is the domain

of word senses that the word at node u may carry. We also define the constant

S = max, S, 1, which bounds the size of the word sense domains. We continue to

refer to a complete assignment of senses to all nodes with the notation ajk,, but

we define new selector functions a,(aij,k) E S., such that a,(aij,k) returns the word

sense assigned to node a in assignment a2 ,,,k.

The input to belief propagation is a set of node weights a c Su I R and edge

weights /3,, c (S,, x S,) - R such that cavs(su) gives a measure of the appropri-

ateness of sense su being assigned to the word at node u, and f3, (sU, s) gives a

measure of the appropriateness of values su and sv appearing on edge (u, v) in

conjunction1 . These weight functions define the following probability distribution

over assignments aij,k:

Pi,j (aij,k) = Z- . (aw (aik,) O #2,(au(ai,,), a,(ai,2 k))
Zi . (U,v)EEig

where Zij is a normalizing constant that ensures Zk Pi,j (aij,k) = 1. Figure 3-4

depicts the functions os and fk,, for a small sample graph of four nodes.

1Note that we require the edge weights to be undirected and defined in both directions, so that
O.,v(s., sv) = Ov,. (sv, s,) holds. This property is important because the message passing algorithm
of Section 3.2.2 will use both 0,,,(s, sv) or X, (sv, su) to refer to the same value.
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In fact, because we are performing belief propagationn a tree, the node beliefs be

will actually give the exact marginalized probability distribution at each node u;

that is,

bs(xe) = z pi,j (ai,j,k)
ai,J,k (ai,j,k = = S = 3= )= U

where the notation as,J,k as(as,J,k) = x, restricts the summation to assignments

where node u is given word sense xa; that is, the summation is restricted to the set

{Tahe as(aik) = xs}. The second output of belief propagation is a set of pairwise

beliefs b, E (S x S E) - R which, in the tree case, give the exact marginalized

distributions over pairs of nodes; that is:
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Figure 3-5: The steps of the message-passing algorithm on a small example graph. The dark node
is an arbitrarily chosen root, and the messages are shown as arrows.

S
aj, I au(a,,,k)=xL,av(a,j,k )--X

where the notation ai,j,k au(ai,j,k) = xu, av(ai,jk) = x, indicates summation over

assignments where senses xu and xv are assigned to nodes u and v, respectively.

Proof that the node and edge beliefs are equal to the marginal probability distribu-

tions, in the tree case, can be found in Appendix A.1. Finally, the third output of

belief propagation is the normalization constant Zjj associated with pi,j (aij,k); this

constant is essential, as it allows us to compute p(j i, 6) efficiently (see Section

3.2.3).

3.2.2 Mechanics of Belief Propagation

The core of belief propagation is the dynamic-programming technique known as

the message passing algorithm, which allows linear-time 2 computation of all three

outputs of belief propagation: node beliefs, pairwise beliefs, and normalization

factor. We will describe only the essentials here, leaving the details of a linear-time

implementation and the necessary complexity analysis to Appendix A.2.

2Time linear in the number of nodes in the tree; the dependence is quadratic in S, the bound on
the size of the word sense domains.
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In the message passing algorithm, every node u transmits a message mu_, C

S, 4 R to each of its neighbors v, where mU,,(sv) gives an indication of how

strongly node u "thinks" node v should have sense sv. These messages are deter-

mined recursively by the following:

Ms_.(s-) = E a7(sJ)U,,(sS) mWU(sU)
sUES. wEN(u)\v

so that the message from u to v is a combination of the messages received from

u's other neighbors (that is, w E N(u) \ v). In the case of a tree, the following

scheme suffices to calculate the messages: pick an arbitrary root node, then com-

pute messages from the leaves in towards the root and then from the root back out

to the leaves. To see why, consider a tree in which no messages have been calcu-

lated. Each leaf node t has only one neighbor: its parent node p. Therefore, the

set w E N(f) \ p is empty, and the message from f to p can be created immedi-

ately, without waiting for any incoming messages. Once all of the leaf messages

have been computed, the parent nodes p can compute their own upstream mes-

sages, and so forth. Figure 3-5 depicts the full upstream-downstream process for

an example tree. After the messages have been computed, the node beliefs b and

pairwise beliefs buv are given by

1
bit(sU) = -a1(sU) J mV_.?(sL)

vEN(u)

1
bUAsU, sV) = -aU(ss)CV(sV) u,v(su, sv) 11 ms-u(su) fj mtv(sv)

zu," sEN(u)\v - tEN(v)\u

where zu and z,, are normalizing factors which ensure that

Z bu(su) =1 and E b,(sU,so) =1
s.E Su SuLS,Sv ESv

We now turn our attention to the third output of belief propagation: the nor-
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malization factor Zij. Fortunately, it turns out that

VU Z. =Zi,

V(u, v) E Eij z,, =Zij

so that any of the node or pairwise normalization constants can serve as the tree-

wide normalization constant. This equivalence is a side effect of the proof that tree

beliefs are equal to marginal probabilities; see the end of Appendix A.1, page 75.

3.2.3 Computing p and Ep

The inputs to belief propagation must be carefully prepared so that its outputs

give rise to p(j i, 8) and E[C4(i, j, k)]. Recall that our features are restricted to

either single word senses or pairs of senses joined by a dependency. Therefore,

we can decompose the tree-wide feature vector q)(i, j, k) into a set of node feature

vectors #,(s,,) and pairwise feature vectors #iV(su, se):

(D(i, i, k) (E #.(au(aik))) + E Ou,,(au(a,,k)a,, av(aiky)
U / (u,v)EEig

where a.(aij,k), as before, gives the word sense assigned to node u by assignment

aij,k. If S = max, Sul bounds the size of the word sense domains, then there

are only O(nS +nS 2 ) = O(rS 2 ) decomposed feature vectors OL(su) and ouv(su, sv),

while the number of full feature vectors 4D(i, j, k) is O(Sn). We use the decomposed

feature vectors to define the node and pairwise weight functions3:

ae (sU) = e0,(s.)-

3Note that for notational compatibility with #u,,, we require that #UV(sU, sO) = 4OU(s, sU)
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so that the probability distribution pij(a j,k) can be rewritten as follows:

= 11eO.(w2a,,k))Ez.2j 11
(u,v)EEi,

= ,e W
Zj

zij

From the role of Zj as a normalizer, we can infer that Zij = Ek J4 (ij, k) 0 and this

(aiik))) 
e (uv)EE%

new definition of Zij

tree:

allows us to compute p(j i, 6) in 0(1) time per candidate

Zt= Z, 1  = Ze*(i~j~k)e
j,k

p(j i, e)

EC )(i,j,k).E)
k

1: 4(~'k)
z.-
zi

which is a considerable improvement over the O(S") time that a naive implemen-

tation would require. Note that this definition of Z,J also implies that

pij(ai,y,k) = Ie' = p(k i, j, E)

Next, we consider the quantity Ep[4D(i, J, k)1. Beginning from its original defi-

nition, we replace p(k I i, j, 6) with the equivalent pij (aij,k) and substitute in the

decomposed feature vectors:
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Ep [4D(i, j, k) ]

= Ep(k ijE)<D(i, jk)
k

= E (aij ) J .ama,k)) + O u, v (au (aiye) (,,)
k \ (/ \(u,v)EEi,, / /

(Z pi (a2 ,k)w(a(aijk) +

E Epijy (ai,k)#u,v (au (ai,k), av (ai,k))
\(U,V)E Ei,j k

Note that Ow#(s1) is only sensitive to the word sense sw, so for the set of assignments

{ai,j,k I aw(ajJk) = xW}, the value of Ow(s,) will be fixed at Ow(x,). Accordingly, we

break the set of possible assignments into equivalence classes for which the sense

sw remains constant, giving rise to the following simplification:

Z S p2,3 (aij,k) Ow#(a (aij,k))
IV k w

=W
W

E #27(XU)) E
xwGSw \aijk Ia. (ai,j,k) -xw

E OwS(x)bw(xw)
xwESUI

and similar reasoning applies to the pairwise feature vectors:

(u,v

E
(a,j,k)=x,, a,(ai,j,k)=Xo
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E I pi,j (ai,j,k)#u,,(au(ai,j,k), av(ai,j,k))
)EEi,j k

= E E qUv(Xu, xV)
(u,v)EEi,j xuESu,xvESo ai,j,k Iau

(u,v)E E,y xuESu, x, ESv

Al

pijy (ai,k~)
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Therefore, if there are n nodes in the tree and the size of the word sense domains

is bounded by S, the expected feature vector Ep can be computed in O(nS2 ) time

by the following expression:

Ep['D(i,j,k)] = (zz #(sW)bw(sw) +

(u x) E Su, vE

Once again, this is a vast improvement over the O(Sn) time required by a naive

algorithm.

3.2.4 Summary

In summary, we have seen how restricting features to pairs of senses allows us to

apply the belief propagation algorithm, a powerful dynamic-programming tech-

nique. Whereas a naive algorithm would require time exponential in the size of

the dependency trees, belief propagation requires only linear time. The flowchart

in Figure 3-6 updates Figure 3-3 to show how belief propagation replaces several

items in the high-level algorithm.

3.3 Stochastic Gradient Descent

We optimize our model using a form of stochastic gradient descent (LeCun et al.

1998). We initialize the parameters e to small randomized values, in order to break

symmetries that would trap the model in metastable local optima. We then iterate

through the training corpus, and for each example xi we calculate the gradient

arising from that example alone:
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Figure 3-6: A revised version of the flowchart in Figure 3-3 that depicts use of belief propagation
in the implementation of the reranking algorithm. Several high-level elements from the original
flowchart have been overwritten with belief propagation items. Although these high-level elements
no longer exist in the implementation, they still exist in the abstract, implicitly defined by the
belief propagation machinery that replaces them. For instance, the feature vector 4D is decomposed
into partial feature vectors 0, and , the distribution p(j, k 0 i, E) is represented by the weight
functions a,, and f3,, and the conditional distribution p(k I i, j, E) is represented by the beliefs b,,
and b,,..

4(E))= -Ep[<((i, 1, k)] + Zp(i i, G)Ep[<D(i, j, k)]

The parameters are then perturbed a small amount along the direction of 9r'E>

where the magnitude of the perturbation is determined by a learning rate q:

g(t) = 0

'00
77 MP 0 Li(E))

e .- e-g~mE)
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Note that we move in the opposite direction of the gradient, as we wish to mini-

mize L(8). The learning rate r(t) decays as t, the number of examples that have

been processed, increases. The quantity mp+i above gives the number of examples

processed when the Zt example is encountered on the pt' pass through the training

set, and ao and c are parameters of the learning rate, which are chosen through

validation on a development set.

In order to confirm that stochastic gradient descent is a viable optimization

algorithm for parse reranking, we performed experiments using the features se-

lected by the (Michael Collins and Terry Koo 2004) boosting reranker. The results

of optimization through stochastic gradient descent were indistinguishable from

the results of the boosting optimization.

3.4 Incorporating Other Rankings

In the preceding descriptions of the reranking algorithm, we have always dis-

cussed the reranker as a stand-alone entity. However, we have found it useful

to integrate our reranker with the rankings of other models. The remainder of this

section describes how we integrate the rankings of the (Collins 1999) base parser

and the (Michael Collins and Terry Koo 2004) boosting reranker with our own

reranker.

3.4.1 Integrating the Base Parser

The base parser's probability model creates an initial ranking over the candidate

parses. Although our reranker replaces that initial ranking, by no means is the

ranking completely discarded; our aim in reranking is to supplement, rather than

supplant, the original base model. We establish a special per-tree feature (/gp(Z, J),

which simply gives the log-probability assigned by the base parser to tree tj. This

feature is assigned a parameter 08,,, and our probability model and loss function

are adjusted to include this new feature as follows:
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j/ k1

E), 01,)= -Elogp(1i,E,O,,p)

Unlike the normal features, however, we do not optimize the parameter 0 ,,,,
during stochastic gradient descent. Intuitively, the polarity of the log-probability

feature will change frequently from example to example: in examples where the

base parser's ranking is correct, the gradient aLjeeiogp) will be strongly positive,

but when the base parser makes a mistake, the gradient a O will be strongly

negative. Since 0,ogp(i, j) is present in every candidate tree, it is a powerful feature,

and the back-and-forth oscillations in the value of 0 IoP would hinder the training

process. Experimental evidence (Brian Roark et al. 2004a,b) confirms this intuition.

Therefore, in our experiments we initialize 6 ogp to a static value before training and

keep it constant throughout. The value of 0,op which we used in our final testing

was chosen through validation on the development test set.

3.4.2 Integrating the Boosting Reranker

A good point of comparison for our reranking model is the (Michael Collins and

Terry Koo 2004) boosting reranker. So that we can accurately gauge the amount of

additive improvement our reranker offers over the boosting reranker, we incorpo-

rate the features selected by the boosting reranker into our own reranker. Like the

base parser's log-probability, the boosting reranker's features are per-tree features

that are insensitive to word sense assignments. Let <bDuct(i, j) give the boosting

feature vector for tree tij, and let OboS, be the matched vector of parameters. We

incorporate the boosting features into our probability model and loss function as

follows:
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edlogp(';j)ologpe4boost(idi)-'9bost 1: e:(ij,k)-E)

p(j j, e, ()iboost Ologp) k k ~ l)
b sZ og (io p 0(ii ')o boost (ij')'E boostk (iJ

it k1

-( boosti logp) bslog p I , E, Ob.t, O1op)

and the example-wise gradient is given by

(, 9 iboost -Iboo~t(i, 1) + b3s I Z) E, 0
boosti Oogp>1boost~i7 j)

We took two approaches to optimizing the boosting parameters. First, we at-

tempted to optimize 8 and Ebos, simultaneously. To accomplish this, we altered

our stochastic gradient descent algorithm so that on the it" example of the pt' pass,

it performed:

71(M + 0ari(O, Ob,.st, O,gp)

ae
0

boost + Oboost -
77

boost(mp + 0 O ( boost Ologp)
aeboost

Note that we applied different learning rates to each parameter vector. From our

experiences in training each set of features in isolation, it was clear that the boost-

ing features performed best with a more aggressive learning rate than the newer

features4 . Therefore, when optimizing both sets of parameters simultaneously, we

decided to keep the learning rates separate.

Unfortunately, selecting parameters for the two learning rates proved to be a

4In fact, even among the various types of new features we experimented with (these are de-
scribed further in Section 4.2), each feature set required a different learning rate.
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difficult task. Simply reusing the learning rates that worked best for each set of

features in isolation produced poor results; we presume that interactions between

the two feature sets were invalidating the old learning rates. However, with two

independent learning rates, exploring the possible space of learning rate parame-

ters became prohibitively expensive.

Accordingly, we turned to a second, simpler integration method. We trained

each reranker in isolation and then combined the two rankings with a weighted

average. Therefore, our probability model effectively became

Clogp (ij)oiogp ecboost bboost(ii)e9oost ecG(ijk)e*

j' k'
P 1EbxhOiogp) = li~ogp (iij')Oiogp eCboostI)boost (i~j')GO00-

where 6* and 0*,* are the optimized parameters from the isolated training runs,

and C and CO,,t are the parameters of the weighted average. The particular 6*,

(9*o, C, and C00,t that we used in our final testing were chosen by validation on

the development data set.
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Chapter 4

Experimental Setup and Results

This chapter describes the experiments we conducted and presents the results

achieved by our reranker. We begin by mentioning our data sets and continue with

descriptions of the feature sets we made use of. We finish by presenting our test

results and suggesting a number of factors that may have hindered performance.

4.1 Data Sets

The data sets consist of parsed output produced by the (Collins 1999) parser on the

Penn Treebank, with an average of roughly 30 candidate parses per training exam-

ple. Section 23 was held out as a final test set, and the remainder of the sentences

were divided into a training corpus of 35,540 examples and a development-test

corpus of 3,712 examples.

These training, devtest, and final test corpuses are the same that were used to

produce the (?) boosting reranker. In order to measure how much improvement

our own reranker can provide beyond the boosting reranker, lists of the features

that the boosting reranker used during training, development testing, and final

testing were obtained. There were a total of 11,673 distinct boosting features with

an average of roughly 40 features per tree. The next section discusses how we used

these features in combination with our own reranker.
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4.2 Feature Sets

We trained and tested our reranker using several different feature sets. All of our

feature sets, however, make use of WordNet (Miller et al. 1993) and have the same

basic composition. The remainder of this section first describes the basic structure

of our feature sets and discusses some of the problems of this basic model. We then

describe each feature set, explaining how it addresses particular problems with the

basic model.

4.2.1 Basic Feature Composition

Each feature set is divided into two kinds of features: single-sense features that

are aimed at establishing a prior probability distribution over word sense assign-

ments, and pairwise features that attempt to capture head-modifier relationships

between word senses. We currently only retrieve WordNet word senses for nouns;

we discuss some of the implications of this decision later on in Section 4.3.3.

Often, there may not be any WordNet word senses available: the word might

not be a noun, or it might not appear in WordNet's noun index. When we fail

to obtain a word sense, we simply substitute the bare word for the missing sense

and treat the node as having a single word sense. Each node feature is a tuple

consisting of four elements:

Word The bare word at that node

Sense The word sense assigned to the word.

POS The part-of-speech tag of the word.

Label The nonterminal label that the word re-

ceives as it modifies its target; i.e. the la-

bel of the highest nonterminal to which

this word propagates as a headword.
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S (eats)
eats

NP(cat) VP(eats)

cat mice
DT(The) NN(cat) VBZ(eats) NP(mice)

NNS(mice) CC(and) NNS(birds) The and birds

Figure 4-1: A sample parse tree and the dependency tree derived from it.

For example, in Figure 4-1, the dependency node "cat" would have Word "cat",

Sense "cat (feline)", POS NN, and Label NP, since the word "cat" propagates up as

a headword until the NP. On the other hand, the node "eats" would have Label S,

since "eats" propagates all the way to the top of the phrase structure tree.

Including the word as well as the sense gives our reranker a means of manipu-

lating the prior probability distribution over word senses. The POS and Label are

also included as they can sometimes influence the word sense distribution. For

instance, consider noun part of speech tags, which indicate plurality. The words

"sense" and "senses": the senses of "sense" as in "the five senses" or "word senses"

are likely to be used in singular or plural, but the senses of "sense" as in "common

sense" or "sense of security" will generally only be found in the singular.

The node feature 4-tuples can be quite specific, so we implement several levels

of backoff. In particular, for every node u and word sense su, we produce the

following node features:

(Wordy, su, POSu, Labelu)

(Wordu, su, POSu )
(Wordu, su, Labelu)
(W() (Wordu, s )>
( su, POSU, Labelu)

( Su, POS )
(Su Labelu)

47



Recall that when a word sense is nonexistent, we substitute the bare word for the

sense. Therefore, when the word sense is unavailable, we would not generate the

first four of the features above, as they would redundantly include the bare word

twice: once as Word, and again as s,. Moving on, the pairwise features are tuples

consisting of the following elements:

Modifier Sense

Modifier POS

Head Sense

Head POS

Production Label

Modifier Label

Head Label

The word sense of the modifier in the de-

pendency relationship.

The part-of-speech tag of the modifier.

The word sense of the head in the depen-

dency relationship.

The part-of-speech tag of the head.

The nonterminal label of the constituent

produced by this head-modifier interac-

tion.

The nonterminal label of the head.

The nonterminal label of the modifier.

Dominates Conjunction True if the Production Label

word with POS tag cc.

dominates a

Adjacency

Left/Right

True if the modifier's constituent neigh-

bors the head's constituent.

Whether the modifier is on the left or

right of the head.
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For example, referring to Figure 4-1 again, the dependency between "cat" and

"ate" would be assigned Head Label VP, Modifier Label NP, and Production La-

bel S, because when the NP headed by "cat" and the VP headed by "ate" meet, the

VP is chosen as the head, and the constituent they produce is an S. Since the NP

appears directly to the left of the VP, the dependency would also have Adjacency

equal to true and Left/Right equal to Left; however, as the Produced Label S does

not dominate a cc, the Dominates Conjunction is set to false. On the other hand,

the dependency between "birds" and "mice" would yield Adjacency equal to false,

Left/Right equal to Left, and Dominates Conjunction equal to true.

Note that the triple of nonterminal labels provides information about the kind

of dependency. For instance, a subject-verb relationship would be reflected by

the triple (PLbl, MLbl, HLbl) = (S, NP, VP) while the argument of a transitive

verb might produce the triple (VP, NP, VBZ). The additional information provided

by the Adjacency, Left/Right, and Dominates Conjunction values help to further

determine the type of dependency relationship. As with the node features, the

pairwise features can be overly specific, so we generate backed-off features by first

removing the two part of speech tags, and then removing the three binary-valued

elements. We also generate features where the either the head or modifier sense

is removed, leaving behind only the part of speech tag. The full suite of pairwise

features is:

#2,V(su, sV)=

s5, POS&, SV, POS, PLbl, MLb1, HLbl, ±CC, ±ADJ, L/R)

Su, sV, PLbl, MLb, HLbl, ±CC, ±ADJ, L/R)

(su, s, PLb1, MLbl, HLbl

su, POS, PLb, MLbl, HLbl, ±CC, ±ADJ, L/R)

Su, POSV, PLb, MLb1, HLbl

POSu, sV, PLbI, MLbI, HLbI, ±CC, ±ADJ, L/R)

POSV, so, PLb1, MLbl, HLbl
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4.2.2 Issues with the Basic Model

First of all, there is the issue of choosing which senses to use when producing

features. WordNet provides an index that maps words to sets of senses; we call

these directly-mapped senses the "literal" word senses for a word. Unfortunately,

these literal senses are much too fine-grained for our usage, even with the aid of

backed-off features. Consider the word "chocolate", to which WordNet assigns the

following three senses:

1. A beverage prepared from cocoa, milk, and sugar, as in "hot chocolate",

2. A solid substance made from roasted ground cacao beans, as in "chocolate

bar" or "chocolate chips", and

3. A deep brown color.

The literal senses are clearly informative, but they provide far too much speci-

ficity; given the limited size of our training set, it is difficult to imagine features

with literal senses being any more informative or less sparse than plain lexicalized

features.

Our intuition is that the important information lies somewhere above these

lowest-level senses. While the knowledge that "chocolate" can refer to a chocolate-

based beverage, chocolate-based solid food, and chocolate-colored color is almost

useless, knowing that "chocolate" can refer to a beverage, solid food, or color in

general is quite powerful. We might imagine our reranker learning, for instance,

that the verb "eat" has an affinity for "solid food" arguments, while "drink" has an

affinity for "beverage" arguments. The next two subsections describe our attempts

to recover this kind of knowledge using WordNet supersenses and hypernyms.

Another issue, though one that we have begun to address only recently, is the

interposition of function words at key points in the dependency tree. Most notably,

the headword of a prepositional phrase is chosen as the preposition. Consider Fig-

ure 4-2, which displays a dependency tree containing a PP-attachment ambiguity.
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treated --

John man with

the old respect

Figure 4-2: A dependency tree for the sentence "John treated the old man with respect."

Note that the preposition "with" interposes between its noun argument "re-

spect" and the potential targets "treated" and "man". The function word "with"

is not a noun, so it is only given a single sense, and as we explained in Section

3.1 our features are restricted to pairs of neighboring word senses. Therefore, no

information can flow through the interposing node "with" in our hidden variable

model, and the PP argument "respect" is unable to affect the PP-attachment pref-

erence at all. In fact, under our current model, the prepositional phrase "with

respect" would be treated no differently than the phrase "with arthritis", which

has the opposite attachment preference. Many studies (Ratnaparkhi and Roukos

1994; Collins and Brooks 1995) have shown that the PP argument is essential in

resolving PP-attachment ambiguities.

We explored two possibilities for resolving this problem. First, we ran prelimi-

nary experiments in which each preposition was given two word senses. Variation

of this binary word sense allows a measure of information to pass through the

preposition, so that the PP argument can exert some influence over the attachment

preferences. Our experiments showed that this method yielded some increase in

performance; however, the gains were by no means large. Recently, we have tried

a second approach that involves transforming the dependency tree to bring the

PP argument into direct contact with the target that the PP attaches to. A fuller

description of our efforts in this direction is left to Section 5.2.5 in the next chapter.

4.2.3 Supersenses

As we mentioned earlier, one of the issues with our basic feature model is the over-

specified nature of literal word senses. One method by which we access higher-
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noun.Tops noun.act noun.animal

noun.artifact noun.attribute noun.body

noun.cognition noun.communication noun. event

noun.feeling noun.food noun.group

noun.location noun.motive noun.object

noun.person noun.phenomenon noun.plant

noun.possession noun.process noun.quantity

noun.relation noun.shape noun.state

noun.substance noun.time

Table 4.1: A listing of the 26 WordNet noun lexicographer filenarnes, which we use as "super-

senses."

level information is through the use of WordNet "supersenses", which are de-

scribed in greater detail in Section 2.3. Briefly, WordNet supersenses categorize

word senses into broad, top-level semantic categories; the full set of 26 noun su-

persenses is given in Table 4.1.

For every word, we first retrieve its literal senses, and from each sense we de-

rive its supersense, discarding the original senses. For example, the noun "crate"

has two literal senses: a box-like object ("a wooden crate"), or the quantity held

in a crate ("a crate of toys"), which give rise to the supersenses noun. art if act

and noun .quanti ty. However, note that this process may reduce the number of

senses the word is assigned. For instance, the noun "car" has five literal senses,

but all five are members of noun . art if act, so we treat "car" as having only a

single word sense.

The small number of supersenses yield a fairly compact feature set, making

for more dependable training and generalization. However, the coarse nature of

the supersenses means that each supersense carries less information than a more

specific word sense might.

4.2.4 Hypernyms

A second way in which we access higher-level information is through the use of

WordNet hypernymy. Beyond the word to sense index and the supersenses, Word-

Net contains a great deal of information about the relationships between word

52



abstraction[O]

attribute[ 1]

property[2]

visual-property[3]

color[4]

chromaic_color[5]

brown[6]

I : chocolate[7]

entity[O]

substance[1]

solid[2] fluid[2]

food[2] liquid[3]

beverage[3]

food[3]

chocolate[4] 3 cocoa[4]

Figure 4-3: A depiction of the hypernym graph that arises from the literal senses of the word
"chocolate." Each word sense is annotated with the minimum distance between it and the top-
level hypemrnyms. Note that the two nodes marked "food" above denote different word senses; the
"food" at depth 2 indicates a nutrient-bearing substance in general, while the "food" at depth 3
indicates solid food in particular, as in "food and drink".

senses. Noun hypernymy is a WordNet relation that organizes noun senses accord-

ing to the hierarchical' "is-a" relationship; for instance, "brown" is a hypernym of

"chocolate" because chocolate "is-a" type of brown.

By repeatedly following hypernym pointers, a series of progressively broader

senses can be established, starting from the overspecified literal senses to a set of

9 top-level2 hypernyms (see Figure 4-3 for an example). We believe that useful

1 Actually, WordNet hypernymy does not define a true hierarchy, as some senses may have
more than one hypernym; for instance, the word sense "beverage" in Figure 4-3 has two hyper-
nyms: "food" and "liquid". For simplicity, however, we will continue to refer to hypernymy as a
hierarchical relationship.

2Note that these top-level hypernyms are not the same as the supersenses described above; the
supersenses derive from the 26 noun lexicographer filenames, and are not necessarily related to the
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word sense information lies somewhere between the two extremes of granularity;

however, locating the exact depth of the useful region is tricky, as the length of a

hypernym path varies from sense to sense.

Rather than attempt to explicitly specify the useful depth, then, we simply pro-

duce features for all possible hypernyms, and leave it to the reranking model to

sort out which hypernyms are useful. Returning to our oft-used example, con-

sider the word "chocolate" and its three senses: "chocolate (beverage)", "chocolate

(solid food)", and "chocolate (color)". For the solid food sense, we would produce

features for "chocolate (solid food)", "food", "solid", "substance", and "entity";

and likewise for the other two senses. Note that we are not increasing the num-

ber of senses, only the number of features; the word "chocolate" would still have

only three word senses, and each of these senses would carry features for all of its

hypernyms.

The drawback of this hypernym approach is an explosion in the number of

features. When we generate pairwise features, we must not only process all pairs

of word senses, but for each pair of senses, we must create features for all possible

pairs of the hypernyms of the two senses involved. More specifically, consider a

pair of neighboring nodes u and v, whose possible word senses are given by Su

and Sr,. If H(su) gives the total number of hypernyms reachable from word sense

su, then, the total number of features produced is

E E H(su)H(sv) = O(S 2 H2 )
sUGSU SIJES1J

where S = max| Su I and H = max, H(s).

4.3 Results and Discussion

This section describes our experimental results and discusses their implications.

We report development test results for the hypernym and supersense feature sets.

hypernymy structure.
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Figure 4-4: The development-set scores of the hypemrnym (h) and supersense (s) features are
graphed versus the number of passes over the training set. The logp baseline score is also graphed.

As the supersense features outperformed the hypernym features in development

testing, we chose to evaluate the supersense features in our final tests.

Our experiments fall into two categories: reranking tests, which measure the

additive improvement of the new reranker over the base parser, and cascaded

reranking tests, which measure the additive improvement of the new reranker over

the (Michael Collins and Terry Koo 2004) boosting reranker. The remainder of this

section presents our results for both kinds of experiments, and concludes with a

discussion of some deficiencies of our reranking model that may have hampered

its performance.

4.3.1 Reranking Tests

The point of comparison for the reranking tests is the logp baseline, which is sim-

ply the score of the base parser by itself. For a fair comparison, we integrated the

base parser's ranking with our reranker as described in Section 3.4.1.

In tests on the development set, the hypernym feature set achieved an improve-

ment of ~ 0.68% over the logp baseline. The supersense features, on the other

hand, achieved an improvement of ~ 0.97% past baseline, a significant gain. Fig-

ure 4-4 shows the scores achieved by both hypernym and supersense features as
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Figure 4-5: The development-set scores of the the backed-off supersense features (s2) and non-
backed-off features (s) are graphed for every pass over the training set.

training progressed.

Given the coarseness of the supersense categories, we expected the supersense

features to generalize well and were supported by our tests on the development

set. The inclusion of backed-off features turned out to be crucial; without back-

off, the supersense features achieve an improvement of only ~ 0.77% over base-

line, dropping by a factor of about 1/5. Figure 4-5 graphs the performance of the

backed-off and non-backed-off features.

Nevertheless, the supersense feature set achieved an improvement of only

0.5% over baseline on the section 23 test set (see Table 4.2). We attribute at least

some of this drop to overspecialization of the model toward the development set;

many parameters were chosen based on validation with the development set: the

learning rate parameters ao and c, the number of iterations of training, the param-

eter 0 ,.9P and so forth. Because the development test set was fairly large, we did

not believed that we would encounter overspecialization problems. However, in

the future, we plan to avoid such problems by using an N-way cross-validation

and averaging scheme. We would divide our training data into N chunks, train-

ing in turn on N - 1 chunks and using the held-out chunk as a development set.

The N reranking models that are produced would be combined with a weighted
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MODEL < 100 Words (2416 sentences)
LR LP CBs 0 CBs 2 CBs

C099 88.1% 88.3% 1.06 64.0% 85.1%
C004 89.6% 89.9% 0.86 68.7% 88.3%

SS 88.4% 88.9% 1.02 65.2% 85.5%

Table 4.2: Results on Section 23 of the Penn Treebank. LR /LP = labelled recall/precision. CBs is
the average number of crossing brackets per sentence. 0 CBs, 2 CBs are the percentage of sentences
with 0 or < 2 crossing brackets respectively. C099 is the baseline parser of (Collins 1999). C004 is
the boosting reranker of (Michael Collins and Terry Koo 2004).

average; the relative weightings could be chosen through validation on a separate

development set that is withheld from the N-way training.

A somewhat unexpected result was the relative absence of overtraining in the

hypernym features. The entire hypernym feature space contains over 30 million

features, while the training set spans only about a million trees. Nevertheless, the

hypernym features managed to achieve and maintain nontrivial gains. A possible

explanation could be that the reranking algorithm has a tendency to assign more

weight to more frequent features. Since the higher-level hypernyms appear most

frequently, they take control of the hypernym feature set, and the hypernym fea-

ture set effectively migrates toward a supersense-like feature set.

4.3.2 Cascaded Reranking Tests

In our cascaded reranking tests, we compare our reranker to the boost base-

line, which is the score of the base parser augmented by the (Michael Collins and

Terry Koo 2004) boosting reranker. In order to measure the true additive improve-

ment, we integrated the rankings of the base parser and boosting reranker into our

reranker, as described in Sections 3.4.1 and 3.4.2.

By using a weighted combination of new and old rerankers, we were able to

obtain small improvements: for the supersense features, the optimal weighting

yielded a development set improvement of ~ 0.153% past the boost baseline.

Unfortunately, this improvement did not carry over to the final test results.
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4.3.3 Deficiencies of the Reranking Model

One of the biggest deficiencies of our current reranking model is that, as we men-

tioned in Section 4.2.1, our feature sets currently only assign noun word senses.

This restriction was originally imposed in order to keep the model as simple as

possible, at least until the various implementation issues could be resolved. Over

the course of our experimentation, however, it has become increasingly apparent

that word senses for other parts of speech are needed.

First of all, the power of our hidden variable model lies in its ability to model

sense-to-sense interactions, yet when the model is restricted to noun senses only,

there are few sense-to-sense interactions. Noun-noun dependencies occur in only a

handful of situations: restrictive modifications (as in "satellite communications"),

appositions, and conjunctions. These noun-noun interactions are typically quite

short-range, near the leaves of the parse tree, and therefore they have only a small

effect on the correctness of a parse.

If we included verb senses, we would greatly increase the amount of sense-to-

sense interaction. Moreover, verb-noun interactions typically span a larger region

of the parse tree, being closer to the core structure of a parse. Therefore, we can

expect to make stronger gains by learning verb-noun interactions.

If we apply the tree transformations described in Section 5.2.5 on top of the verb

senses, we could derive noun-noun and verb-noun dependencies from instances of

prepositional phrase modification. These PP-attachment interactions have longer

range and are usually quite ambiguous, so we might stand to gain much from

using tree transformations.

Besides the restriction to noun senses only, another deficiency of our reranker

arises from the predominance of proper nouns in Wall Street Journal text. Natu-

rally, WordNet cannot be expected to provide coverage of these proper nouns. In

fact, the use of WordNet on proper nouns can sometimes cause misleading sense

interactions. For example, consider the name "Apple Computer, Inc.", in which

the fruit sense of "Apple" would be assigned, or the name "John", which WordNet
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gives the senses of "slang for toilet", "king of England", "apostle", and "part of the

bible" (i.e. the gospel according to John).

The example of "John" above also points out a quite different drawback of us-

ing WordNet: the frequent occurrence of rare or irrelevant "outlier" senses. For

example, one of the senses of "investment" is "a covering of an organ or organ-

ism", and the senses of "man" include "Isle of Man" and "board game piece" (e.g.

chess man). Although our reranking model can learn to avoid these outlier senses,

doing so places an additional burden on the training data. If we can resolve this

issue through outside means then the reranker will be better able to address other,

more substantive matters.
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Chapter 5

Conclusion

We have developed a WordNet-based parse reranking technique that avoids the

onus of explicit word sense disambiguation by using a hidden variable model. Al-

though our results were not as strong as we had hoped, there is still a good deal we

can add to the reranking model and its feature sets; many possible changes have

already been suggested in Section 4.3.3. The remainder of this chapter describes of

our ideas for future research.

5.1 Different Gradient-Based Optimization Techniques

First of all, we may wish to use a different gradient-based optimization technique.

We have attempted to verify that stochastic gradient descent is viable by using it

to optimize the (Michael Collins and Terry Koo 2004) boosting reranker's features.

Although stochastic gradient descent succeeded in this task, the boosting features

are qualitatively different from our own feature sets in that they are insensitive

to word senses. It might be that stochastic gradient descent suffers from some

susceptibility to our hidden variable model or feature sets. Therefore, in order to

determine whether stochastic gradient descent is at fault or not, we should exper-

iment with other gradient descent methods, such as conjugate gradient descent

(M. Johnson and Riezler 1999) or even plain line-search gradient descent.
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5.2 New Feature Sets

It is possible that our WordNet-driven hidden variable model contains some in-

nate deficiency that makes it unable to perform well at the parse reranking task.

However, it would be rash to arrive at this conclusion without first making a more

thorough investigation of alternative feature sets; we have currently explored only

two different feature sets in depth. There are a number of alterations we can make

to our feature model that offer hope of improved performance, and most of these

fixes are quite simple. We describe each alteration in greater detail below.

5.2.1 Hypernyms with Depth Cutoff

A quite simple modification would be to add depth thresholding to the hypernym

feature set. Rather than producing features for all hypernyms of a literal sense,

we would produce features only for hypernyms that are within a certain distance

from the top level. A proper threshold could keep the number of features at a man-

ageable level while still capturing the "active region" of the hypernym structure.

Our hope is that the reduction of the feature space would lead to more effective

training, which would allow the depth-cutoff features to outperform the standard

hypernym features.

5.2.2 Incorporating Verb Senses

As we mentioned in Section 4.3.3, the use of noun senses alone is insufficient. We

could easily add verb senses using WordNet; WordNet supplies a verb sense index

and a verb hypernymy relationship. In addition, as is the case with noun senses,

verb senses can be organized according to their lexical filenames, opening the pos-

sibility of verb "supersenses".

Alternatively, we might attempt an unsupervised approach to including verb

senses. For each verb, we could propose a small set of, for example, ten unnamed

supersenses. Ideally, as training progressed, the unnamed verb supersenses would
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diverge from each other, each supersense coming to represent a different type of

distributional affinity. The verbs in turn would become associated with a mixture

of these archetypical supersenses. To encourage heavier learning on the unsuper-

vised verb senses, we might train the reranker without using the rankings of the

base parser or boosting reranker.

5.2.3 Overcoming Outlier Senses

In Section 4.3.3, we mentioned the problem of "outlier" senses, which are rare

or irrelevant senses that are included in the WordNet sense index. One way to

overcome this issue might be to establish a prior probability distribution on the

word sense assignments with an independent word sense disambiguation system;

these priors would draw the attention of the reranker away from the implausible

outliers. Priors could also be inferred from the WordNet sense ordering1 , although

this approach could potentially be more noisy.

We could also address the outlier senses using an unsupervised word-clustering

method on a large corpus of parsed output from the same domain; words would

be clustered based on the distribution of neighboring words in the dependency

tree. The clusters formed with this technique would only reflect those word senses

which appear in the domain, thereby eliminating the troublesome outlier senses.

5.2.4 Handling Proper Nouns Specially

We mentioned in Section 4.3.3 that proper nouns should not be assigned word

senses in the same manner as common nouns. One way to handle proper nouns

might be to use a named-entity tagger to fit proper nouns into broad categories.

Alternatively, a simpler approach would be to abstain from assigning word senses

to proper nouns at all. Finally, a more interesting unsupervised approach would

be to give all proper nouns the senses of "person", "location", and "organization".

1WordNet orders its word sense index according to how frequently each sense is assigned to
each word in various semantically-tagged corpora. However, these counts are not always available,
so not all word senses will be ordered.
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treated -

John man with-respect

the old

Figure 5-1: A PP-ambiguous dependency in which the preposition has been merged with its
noun argument.

letting the reranking model resolve the uncertainty.

5.2.5 Applying Tree Transformations

As we described in Section 4.3.3, a major drawback of our basic model is that func-

tion words often interpose at critical junctions of the dependency tree. Therefore,

we have begun work on a method for transforming the dependency trees so that

function words are merged with their arguments. The senses of the merged node

are conjunctions of the function word and the senses of its argument. For example,

Figure 5-1 shows how this transformation technique would alter the dependency

tree from Figure 4-2. The supersenses of "with-respect" would be given as:

"with-noun. cognition" "with-noun. state"

"with-noun. act" "with-noun. f eeling"

"with-noun. attribute"

In the transformed tree, the pairwise features that arise from the dependency be-

tween "with-respect" and the attachment points "treated" and "man" would cap-

ture interactions between the senses of "respect" and the senses of "treated" or

"man", moderated by the preposition "with". Therefore, our reranking model

could learn to disambiguate the PP-attachment ambiguity of Figures 4-2 and 5-1.

The general idea behind these tree transformations is simple, but there are

some tricky details that need to be addressed. For instance, although the noun

and preposition shaie the same node, we should still document the dependency

that exists between the two. Therefore, we define the node feature set of a merged
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growth growth

in in-Britain

and Britain in and and Europe in-markets

and Europe markets Far Eastern

Far Eastern

Figure 5-2: Dependency trees for the prepositional phrase "[growth] in Britain and Europe, and in
Far Eastern markets" before and after transformations. The dependency arcs are colored according
to whether the dependency originally modified a preposition or noun; note that after the transfor-
mation, some of the children of "in-Britain" originally modified "Britain" while others originally
modified "in".

node to contain all of the features that would normally arise from the two nodes

when separate. That is, the node features of "with-respect" would include all the

normal node features of "with" and "respect", as well as all of the normal pairwise

features arising from the dependency between "with" and "respect".

By the same token, we should also preserve the features that would normally

arise between the preposition and its other neighbors, as well as the features that

would normally arise between the noun argument and its other neighbors. For

example, consider the dependency trees shown in Figure 5-2, which depict a com-

plex prepositional phrase before and after transformations are applied. From the

dependency between "growth" and "in-Britain", we should produce the features

that would normally arise from the dependency between "growth" and "in" as

well as the features arising from "growth" and "in-Britain". Similarly, from the

dependency between "in-Britain" and "Europe", we should produce the pairwise

features that would normally arise from the dependency between "Britain" and

"Europe", as well as those arising from "in-Britain" and "Europe". However, note

that we should not produce features derived from "growth" and "Britain" or "in"1

and "Europe", as these dependencies did not exist in the untransformed tree. The

coloration of the dependency arcs in Figure 5-2 reflects whether the noun or prepo-

sition should be used in the production of these preserved features.
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According Accordingto-estimates

to some

estimates

some

Figure 5-3: Dependency trees for the prepositional phrase "According to some estimates" both

before and after transformations.

A last issue is how we deal with cascaded prepositions, such as the example

in Figure 5-3. Our current approach is to merge all chains of preposition nodes,

concatenating the text of the prepositions and treating them as a single preposi-

tion. Note that this approach would discard the preposition-to-preposition depen-

dencies in the original tree and modify the preposition-to-noun features. In the

example in Figure 5-3, we would discard the pairwise features arising from the

dependency between "According" and "to", and instead of producing pairwise

features for "to" and "estimates", we would produce features for "According-to"

and "estimates".

Although we have consistently used prepositional phrases as examples, note

that these tree transformations can be applied to other interposing function words.

Figure 5-4 shows some other transformations that could prove useful.

5.3 Experimenting with a Sense-Tagged Corpus

One possible problem with our reranking approach may be that, despite our in-

tuitions, word sense assignments do not bear strongly on the problem of parse

disambiguation. To determine if this is indeed the case, we could experiment with

a sense-tagged corpus; our reranker would therefore have access to "perfect" word

sense assignments. If the reranking performance remains low, even when using a

variety of feature sets, then we must conclude that our initial assumption about
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expects

it to

sales

expects

it to-remain

remain

/
steady

sales steady

pursuit

high-profile

SEC

will

SEC probably vote

on

proposal

the

pursuit

's-SEC high-profile

the

will-vote

SEC

The

probably on-proposal

the

Figure 5-4: Dependency trees depicting transformations that operate on possessive markers and
verbal auxiliaries, such as the infinitival "to" and modal verbs. Each transformation removes an
intervening functional word, allowing the content words to interact directly. The text of the phrases
are "it expects sales to remain steady", "the SEC's high-profile pursuit", and "The SEC will proba-
bly vote on the proposal".

the importance of word senses was incorrect. On the other hand, if reranking per-

formance is high, then we can infer that our problems must lie elsewhere.

5.4 Exploring PP-Attachment Ambiguity

Finally, our experiments indicate that a large proportion of reranking decisions

hinge on prepositional phrase attachment ambiguities. Therefore, it may be help-

ful to mount a study that applies our hidden variable model to the PP-attachment
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ambiguity problem in isolation. Insights we gain from this study would no doubt

aid us in the larger reranking task; moreover, the reduced scope of the problem

would allow much simpler error analysis and a faster design cycle.
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Appendix A

Proofs

This part of the appendix provides proofs that were elided in earlier sections of the
document.

A.1 Equivalence of Beliefs and Marginals in Trees

For the purposes of our proof, we define the following notation. Let T denote the
entire tree tij, and for every edge (u, v), let Tq, denote the subtree of T that is
rooted at u and that lies "behind" v (i.e. if we were to divide T into two connected
components by cutting edge (u, v), then Tu/, is the component that contains u; see
Figure A-1 for some visual examples). Note that the property

Vv C T Vs,t E N(v) Ts/,vn T/ = {}

holds, or else we could show a cycle in T. We define the function a such that for
any set of nodes S, a(S) enumerates through all word sense assignments to the
nodes in S. We define a over trees as well; a(T) and a('L/v) enumerate through
sense assignments to the nodes of these subtrees. Under this new notation, the
marginal probabilities for each node and pair of nodes can now be given by:

Pu,v(Xu, XV)

1
a(T) I s,=xu wET

Z3 a(T) I su=xs,=x wET

where the notation a(T)I s, = x, indicates enumeration over all sense assignments
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AN-_0Xe
Figure A-1: Depictions of the shape of T, in some sample graphs.

of T where s., is fixed to the value x,. We define partial normalization constants:

Z (ET/ V)

Z (7U/V1 sU = xU)

za(T~i~)
11

wETL/,

o!w (sW) 1I
( s',V' )ET/,

= E
a Iu;) su=x 1 ~ t,

/'VI,I (su/, sr' )

II(U' V)ET
0, 1 s ,' sA

where Z(Tu/v) is the normalization constant for subtree T/v, and Z(T/, I su = xu)
gives the normalization constant for subtree Tu/v when sense su is fixed to the par-
ticular value xu.

It is worthwhile to explore some of the properties of these partial normalization
constants before we continue. First, note that the normalization constant Z(T/v)
can be built up out of partially-fixed normalization constants Z(T/, I su = xu) as
follows:

Z(T/v) = E
XuESu

Z(TIV I SU = XU)

This property also holds when more than one word sense is being fixed

Z (TUIV) = S: ZE/ SU = XU, sW = XW)

and in general, when a subset S of the nodes has their word senses fixed, then

Z(T/v) = 5 Z(T/v I a(S))
a(S)

In addition, the product between the normalization constants for any two disjoint
subtrees T/v and T/t yields a normalization constant for the union of the two
subtrees:
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\a(7 ./) WETu/v

\a(T/) ET,/t

H ce (s.) H
wTVU/V (u',v')CT

H
rET /t

ar (sr)

- (T/ t S 1-I(s )

13 U'[V(s,sV' )
/V

O,,X (SS,,I St,)H1
(s',X)ET,/t

H

= z /UU /t)

We can draw an interesting conclusion from the above. Recall that for any node v,
Vs, t E N(v), T 1v n T/v = {}; that is, all neighboring subtrees are disjoint. There-
fore, we can construct the tree normalization constant Z(R,/v) by piecing together
smaller normalization constants with node and edge weights.

Z(T/c) = E c (xu) H E /3u,.(Xu, X.)Z(T/U SW = X)
XuESu wEN(u)\v xwESw

and a natural extension is that for any node u, we can compute the normalization
constant for the entire tree by combining the tree normalization constants for all of
the subtrees neighboring u:

Vu, Z(T) = S a,(Xu)
xuE SU

H E /2,( (X )Z(Tw/1 I sW = xU)
wEN(u) xwESw

We now continue with our proof that tree beliefs equal marginal probabilities.
For convenience, we reproduce the recursive formula defining the messages:

ms-V(sV)= E au(su)/2,v(susv)
suESu

H m--u(sU)
wEN(u)\v

The key intuition in our proof is to think of the messages Mu, as dynamic-
programming subproblems, where each message mu, is related to the normaliza-
tion factor Z(T/,). The exact relation is given by predicate P below:
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P(mU-+V) ={mUv(sv) = Z #(xu, sV)Z(T/V I su = xU)

and the following proof shows that P holds for messages produced by the message-
passing algorithm as described in Section 3.2.2.

Proof by Induction

Base Case The messages emanating from the leaves of T are the base case of the
induction. For a leaf f and its parent p, P(mep) holds trivially. Since the only
neighbor of a leaf node is its parent, N(f) \ p = {} and Z(7/s =e xe)
at (xe). Therefore,

mep,(sp) = Z ac(se) 3e,(se, sp) 7 m~e(se)
stE Se EN(f)\p

= E ae(se) 3e,p(se, sp)
se G Se

- 3 I4,(xt, s)Z(Tf/P I se = xt)
x'rE Se

so that P(m&+,) holds.

Inductive Case We prove the property P(m.-,), and our inductive assumption
is that Vw f v, P(m._.) holds. We argue that this is a fair inductive as-
sumption, since the messages _ w # v are exactly those messages which
would be required to compute ms-, in the message passing algorithm (as
laid out in Section 3.2.2). We begin by writing out the formula for ms_.V(sv)
and substituting in our inductive assumptions:

mU-V(sV)= >3 x)O,,(xUsv)
xUESU

17 E O,,(xW, xU)Z(T-W/ SW = xW)
wEN(u)\v xwESw
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We define F(w, xw) = 3w,,(xw, XU)Z(T/U I s = xw) and rewrite the above as
follows:

H E
wEN(u)\v xwESw

F(w, xw)

Next, we rearrange the product over sums HwEN(u)\v ZExSw F(w, x.) into a
sum over products:

H Z F(w,x,)
wEN(u)\v xwS,

(F(wi, ,xU)

(F(w2 , XI, 2)

(F(wm, Xz 1 )

(F(wi, XI)

(F(wi, x,)

(F(wi, X)2

+ F(wi, x)

+ F(w 2, 4W2)
)
)

+F(wm,x1m). ..+ F(wm, xzsA4!I

F(w2 , XW 2 )

F(w 2 , XW'2 )

F(w2 , XW'2)

K(F(w1,

. . . F(wA, x )

. . . F(wM, x 2

... F(wm, x )

... F(wM,X

- 1 H F(w,sw)
a(N(u)\v) wEN(u)\v

Applying this rearrangement
simplifications:

MU-V (s)

to our original expression allows the following

E aU(XU)OUV(XU, sv)
xuESU

E H
a(N(u)\v) wEN(u)\v

v) w'EN(u)\v

OI' (su , Xa )Z(T 1U I sv)

i// a( N(?L) \ v))

au(xu) H /3w,u(s, X)
wEN(u)\v
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E Z U( U, sV) Z Z(Tu/v I a(N(u) \ v), su = x,)
xu E SU a(N(u)\v)

- E 3u,v U(I sV)Z(TV I SU = xU)
xu E S",

Therefore, P(mu.v) holds. U

Now, using the definition in proposition P, we can prove that the node beliefs
are equal to the marginal probabilities:

- -au(XU) H
vEN(u)

1
= -aU(xu) H

veN(u)

mI-U (sU)

E 13,t),U xU)Z(,/u sV = xv)
xv ESv

a(N(u)) VEN(u)

U(wEN(u)
E Z (T I a(N(u)), s,,= xu)

a(N(u))

1
= Z (T I sU= xU)

Z a(T) | su=xu wCT
H

(U',v')C T

(*)

!'iu~,,( sui, se,) = Pu(xu)

and similar reasoning can be applied to the pairwise beliefs:

= -1 au(xu)av(xv) 3 u,v(xu,xv) rI
Zu,v sEN(u)\v

mS-4U(sU) H mtv(s ,)
tEN(v)\u

xv) (au (xu)

(av (xv)

sEN(u)\v x.,ESs

3s,uxs, xu)Z(Ts/u s xs))

H E t'V (xt I xv) Z(TV St t
tEN(v)\u xtESt
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bu(xu)

1
~-n u (

1

1

E z
a(N(u))

xU au(xu)
vEN(u)

bUV(xU,x )

1
Zu,v

OV'U(x", xu)Z( 1/,u so8 = xv)



1
,v

a( (xU) E H
a(N(u)\v) sEN(u)\v

0, ,(x , X .) Z (T / I ss = x s))

e S() E H pt,,(XtxV)Z(T'1V st=xt)
a(N(v)\u) tEN(v)\u

= /u,v (xu, xv) Z(T/v Isu = xU) Z(TIU I sV = xv )
zu,v
1

= Z(T IsU = x, s8V= xv)
zu, V

= 1 E H aw (SW) i3 1',V'(s",,
UV a(TIsu=Cxu,sv=xvwET (U',v/)ET

(*)

Incidentally, the above also proves that the node and pairwise normalization con-
stants are equal to the tree-wide normalization constant Zjj. Consider the lines
marked (*) above, and note that

E
xu ESu

bu(xa) = 1

zU= >3 Z(T I sU = xU) = Z(T) = Zij

buv(XU, xv) = 1 ->

zuV = 1:
xuESU, x?,ESv

Z(T sS = xU, sV = Xi) = Z(T) = Zij

A.2 Computing Messages and Beliefs in Linear Time

We show that given node and pairwise potentials au and O/,, belief propagation
can create messages and beliefs in time linear in the size of the tree. Recall that
n is the number of nodes in the tree, Ejj gives the set of edges in the tree, N(u)
gives the set of neighbors of u, and the constant S = max bounds the size of
the word sense domains. We reproduce below the recursive formula defining the
messages:

M U+V~s)= S )U(s L)/UV(su, sV) H mw__(sS)
suESu wEN(u)\v

We create the messages in each tree by first computing messages from the
leaves inward to the root, and then from the root outward to the leaves (see Figure
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3-5 on page 34). We call the first set of messages (leaves to root) upstream messages
and the second set (root to leaves) downstream messages.

Now, suppose we wish to compute the upstream message from node u to its
parent p. This message m p..(sp) will have ISpI K S dimensions, and for each
dimension we must take a summation over ISu1 S products of the IN(u) -- 1
messages that arrive from u's children. After multiplying in the weights au and
/3, and completing the summations, the entire message will require 0(IN(u) S2)
time. As we compute this upstream message, however, we save each product of
child messages in a "message product" array mpu(su) that is attached to the node.
That is, we set

Tmpiu(su) = JJ me-(su)
cEN(u)\p

We will save a lot of time by reusing these computations later on. Of course, these
message product arrays use up an additional O(nS) space. However, note that the
messages, node beliefs, and pairwise beliefs already require O(nS), O(nS), and
Q(nS2 ) space respectively, so incurring an additional 0(nS) space cost is accept-
able.

Now, we compute the downstream messages. We begin at the root node r and
compute the downstream message to a child node u. Again, there are ISu, I S di-
mensions and a summation over IS, S terms. However, instead of recomputing
the product of messages, we reuse the stored values in the message product array,
dividing them by the single held-out message:

H nc-r(sr) = rni-r(Sr)
cEN(r)\u mu~r si

When we compute the downstream messages from a non-root node a to its child
c, we augment u's stored message product with the downstream message received
from u's parent p, and then we reuse the message products as before; that is:

Mpu(SU) <-mpu(sU)mp-u(su)

_mp'u(su)JJ r-+u(sU) -

vEN(u)\c Tc-+,(sU)

Therefore, the message product required by the recursive message definition can
be computed in 0(1) time for downstream messages; an entire downstream mes-
sage can be computed in 0(S2 ) time. However, each node u has 0 (IN (u) I) down-
stream messages to create, and thus taking care of node u's entire quota of down-
stream messages requires 0(IN(u) S2) time.
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Thus, every node u (except the root) must compute a single upstream mes-
sage at a cost of 0(IN(u) IS2), and every node u (except the leaves) must compute
O(1N(u) ) downstream messages at a cost of 0(S2 ) each. The total cost of comput-
ing all messages, therefore, is bounded by

2 E O(IN(u)|S2 ) = 0 s2 IN(u)I
U

The summation E, IN(u) counts each edge twice, once for each endpoint; there-
fore, E IN(u)I = O(n), and the total time required to compute all messages is
o(nS2 ).

Note that at the finish of the message passing algorithm, for every node u, the
message product array mpu contains the product of all incoming messages: when
we computed the upstream messages, we initialized mpu as the product of all child
messages, and when we computed the downstream messages, we updated mpu to
include the parent message. We will exploit these saved products again below.

We compute the beliefs bu and bu, and their normalizing constants zu and zu,
by defining intermediate terms

Bu(su) = j(su)mpu(su)

BL,w ( sU, si,) = as( se) a(svft3?,V( s,, s( rnu(su)' ( mp, ( sr)
mV_4U (s)) m -T(s))

and using them to create the normalization constants and beliefs:

z/U= Bu(su)

Next, each zu requires O(S) time and e u,, uie E(2 tie llo he

=Z

bu, (ss) = B ,(U V
17 ,

Computing each B., requires 0 (S) time and computing each Bu requires 0 (S2)
time; preparing all of the intermediate terms requires 0(nS + inS2 ) = 0(riS2) time.
Next, each zu requires 0(S) time and each zu~ requires 0(S2 ) time; all of them to-
gether require another 0(nS2 ) time. Finally, the node and pairwise beliefs require
only 0(1) additional computation per belief, which incurs a third 0(nS2) cost.
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In conclusion, the messages require O(riS2 ) time to create, and when the mes-
sages are complete, the normalization constants and beliefs can be computed with
an additional O(nS2 ) time. Therefore, given node and pairwise weights 01 and
Ou,, the belief propagation algorithm can create node and pairwise beliefs b" and
bu,,, together with the associated normalization constants zu and z,,,, in O(nS 2 )
time per tree.
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