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Abstract

Possession of a complete, automatically generated and frequently
updated model of the MIT campus leads the way to many valuable
applications, ranging from three-dimensional navigation to virtual
tours. In this thesis, we present a set of application tools for
generating a properly labeled, well-structured three-dimensional model
of the MIT campus terrain from a set of geographical and
topographical plans. In particular, we present the Basemap Generator
application capable of generating a two-dimensional model of the MIT
campus by subdividing the contour map of the campus into a set of
distinguishable spaces labeled with specific label types (including but
not limited to grass, sidewalk, road, ramp) as necessary. We also
present the Basemap Modeler application capable of transforming the
two-dimensional model of the campus into 3D. Finally, we provide two
auxiliary applications, the Basemap Examiner and the Building Mapper,
capable of minimizing negative effects due to erroneous input data.

Thesis Supervisor: Seth Teller
Title: Associate Professor of Computer Science and Engineering
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Chapter 1

Introduction

The main goal of the Building Model Generator (BMG) research project

at the MIT Computer Graphics Group is to develop a system capable of

automatic extraction of an accurate three-dimensional model of the

MIT campus from a set of two-dimensional architectural plans

maintained by the Department of Facilities (DOF) at MIT [1].

Possession of a complete, frequently updated model of the campus

would lead the way to many valuable applications, ranging from the

three-dimensional navigation to virtual tours.

The BMG project originated from a BMG tool developed by Rick Lewis

at the University of California-Berkeley. The tool takes two-

dimensional plans of each floor of a particular building and generates a

well-formed three-dimensional model of the building, possibly using

supplementary information provided by the user. In addition, because

most of the architectural plans are far from being perfect, the tool

attempts to correct some of the most obvious errors that it finds in the

floor plans, before extruding the plans into 3D. The BMG project at MIT

made the BMG tool work on far less strict architectural plans provided

by the DOF and extended the tool to work with a minimum of the user

feedback on the whole MIT campus [2].

The BMG system is structured as a pipeline of several different stages,

each responsible for one part of the project. For example, one of the
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first stages of the BMG pipeline is responsible for downloading the two-

dimensional architectural plans from the DOF website; another stage,

later in the pipeline, is accountable for extruding each of the individual

building floor plans into 3D as well as "gluing" the resultant floor

models on top of each other to form a complete model of the building;

yet another stage is responsible for generating a properly labeled,

three-dimensional model of the MIT campus terrain; and, finally, one

of the last pipeline stages is accountable for placing and orienting the

generated building models on the terrain to form a complete three-

dimensional model of the MIT campus.

Procedural generation of the MIT campus terrain is an important part

of the BMG pipeline. It is responsibility of the basemap generator part

of the BMG system to take a two-dimensional AutoCAD map of the MIT

campus, also known as basemap, convert the map to one of the

geometrical file formats used in the project, properly label the map by

inferring some of the information presented in the map implicitly, and,

finally, extrude the map into 3D, using the topographical maps

downloaded from the DOF website. In addition to generating a

complete, three-dimensional model of the MIT campus terrain, the

basemap generator stage of the BMG pipeline is responsible for

subdividing the campus terrain into a set of simple, interconnected

spaces that can be used afterwards by the route-generation program

developed by Patrick Nichols as part of his MEng graduate thesis [3].

This chapter discusses the motivations for the BMG project as a whole

and provides an overview of the basemap generator part of the BMG

pipeline. The second chapter is about the design of the basemap

12



generator applications, discussing design the main choices made and

alternatives. The third chapter focuses on the software design,

architecture, and implementation details in the creation of the project

applications. Finally, the fourth chapter presents conclusion and

suggestions for further work.

This thesis makes the following contributions:

" A set of applications for generating a well-formed, three-

dimensional terrain model from a set of geographical and

topographical maps.

* A space-labeling algorithm capable of subdividing a geographical

contour map into a set of distinguishable spaces labeled with

specific types (including but not limited to grass, sidewalk, road,

ramp) as necessary.

* Methods for subdividing a two-dimensional triangulated terrain

into a set of simple polygons subject to one or more

constraint(s).

* An extrusion algorithm capable of transforming a two-

dimensional terrain model into 3D, using point-by-point

topographical maps available.

* Methods for displaying large volumes of graphical information

subject to incremental changes.

* A framework for working with N-dimensional geometrical

primitives, including but not limited to points, vectors, lines, and

polygons.

13



* A framework for writing geometrical information to one or more

popular file formats such as Post Script, Unigrafix, and Open

Inventor.

14



Chapter 2

Design

The basemap generating stage of the BMG pipeline consists of several

applications: Basemap Generator, Basemap Examiner, and Basemap

Modeler. The Basemap Generator application takes a two-dimensional

map of the MIT campus presented in a Unigrafix file format and

produces a well-structured two-dimensional version of the MIT campus

terrain properly labeled with specific label types (including but not

limited to grass, sidewalk, road, ramp). The Basemap Examiner

application uses the output from the Basemap Generator application to

examine the two-dimensional basemap model and, possibly, fix some

of the labeling errors made by the Basemap Generator. Finally, the

Basemap Modeler application uses the output from the Basemap

Examiner application along with topographic maps obtained from the

DOF website to extrude the two-dimensional model of the MIT campus

terrain into 3D.

The next several paragraphs discuss each of the applications

mentioned above in more detail and provide information about the

main algorithmic and design decisions behind each application. The,

the following chapter describes the structure of each application, the

most important classes, and the most significant software design

decisions made in the project.

15
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Building Mapper
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Basemap Generator
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tr.fixed basemap ugit
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basemap.ug.it. portals basemap. ug tspaces basemap.ug.it.topo
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ponap.points Basemap Modeler

basemap.ug.it.topo.spaces

Figure 2-1: Data Flow Diagram of the Basemap Generator

Project. Input, output, and temporary data files are shown in

pink, green, and white, respectively.
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2.1 Basemap Generator

The Basemap Generator application takes a two-dimensional map of

the MIT campus given in a Unigrafix file format and produces a

properly labeled and structured two-dimensional version of the MIT

campus terrain (see Appendix A.2.1). The labeling part of the

Basemap Generator task has to do with how the input two-dimensional

map of the MIT campus provided by the DOF is structured. While a

typical map is usually represented as a set of non-intersecting simple

polygons that subdivide the area in question, the MIT campus map

consists simply of a large set of possibly open and intersecting

contours. Each contour in the map is labeled with a type, which is

supposed to provide information about the nature of the contour. For

instance, a contour with a LSITEWALK label usually indicates a

boundary between two spaces, where one space is a grass lawn and

another space is a sidewalk; a contour with a C__BLDG label usually

indicates a contour of a building. The problem, however, is that no

contour provides information about how each of the two spaces,
located to the left and to the right of the contour, respectively, must

be labeled. For instance, in the example above, it is not clear which of

the two spaces must be labeled as a grass lawn and which must be

labeled as a sidewalk.

The problem of labeling the basemap optimally, given only the

information available, is a very difficult problem; in fact, it can be

shown to be NP-complete via reduction to the famous GRAPH-K-

COLORABILITY problem [4]. Because it is infeasible to solve the
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problem optimally, the Basemap Generator application simply

attempts to find a good solution, which, strictly speaking, may be far

worse than the optimal. The idea behind the algorithm used by the

Basemap Generator application is to break the basemap into a set of

distinguishable spaces, use the available contour type information to

compute a probability estimate of each space being grass, sidewalk,

building, and so on, and, finally, use a "greedy algorithm" technique to

do the label assignment. The space-labeling (SL) algorithm described

above has complexity of 0 (N log N), where N is the number of

segments in the original basemap, which makes the problem of

labeling the basemap feasible. The following paragraphs describe each

of the stages of the SL algorithm in more detail.

The SL algorithm starts with breaking the basemap into a set of

separate, distinguishable spaces. First, the basemap is triangulated by

the Constrained Delaunay Triangulation (CDT) algorithm, using

basemap contours as constraints [5].

18



Figure 2-2: Basemap Generator Application in the Debugging

Mode: TRIANGULATOR process.
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Once the basemap is triangulated, it is subdivided into a set of

separate spaces with the following two assumptions in mind: no two

adjacent spaces must share the same type, and no two triangles in a

space must share an edge from an original basemap contour. The first

assumption guarantees that each homogeneous area in the basemap

consists only of a single space. The second assumption ensures that

each space is bounded by one or more contours from the original

basemap. The Basemap Generator program exploits the two

assumptions above to break the original basemap into a set of

separate spaces, using a simple flood-fill algorithm.

While breaking the basemap into a set of distinguishable spaces is a

simple problem in theory, in practice, the implementation of the

algorithm is complicated by the fact that contours in the original

basemap are not always correct. For instance, in many cases, two

contours that are supposed to form a T-like juncture overlap or have a

gap between them. While the CDT algorithm corrects many such cases

by imposing a fine-grained grid and forcing each vertex to match the

closest grid node, some of the gaps and overlaps are not eliminated.

Therefore, in addition to the two main constraints discussed above, the

flood-fill algorithm implemented in the Basemap Generator application

makes use of a supplementary constraint that forbids any flow through

triangles with the area-to-perimeter ratio less than 0.01 basemap

units, that is, small or thin triangles.

20



Figure 2-3: Examples of the Erroneous Contours. Invalid T-

junctures and contour gaps are marked with purple boxes to

the left and to the right, respectively.

21

0



-I

4'5

Figure 2-4: Basemap Generator Application in the Debugging

Mode: PATCHBUILDER process.

22



Once the basemap is broken into a set of distinguishable spaces, the

SL algorithm estimates the probability of each space being of a

particular type. The way the probability values of a particular space

are estimated is by examining the type of each contour in the space

boundary and using a predefined table to lookup the estimated

probability values (see Appendix C). For example, if the space is

surrounded by a single CBLDG contour, the space is most likely to be

a building, even though there is a nonzero probability that the space is

a sidewalk or a lawn of grass (for instance, the space may be a

courtyard surrounded by two or more buildings). Similarly, if the space

is surrounded by a CBLDG and a LSITEWALK contours, the space is

most likely to be either a sidewalk or a grass lawn. For any two

contour types present in the space boundary, the probability table

contains estimates of how likely the space is to be a building, or a

sidewalk, or a grass lawn. The weighted average of those estimates

across all pairs of contour types in the space boundary defines the set

of probability values assigned to the space. The type with the

maximum probability value is the type that is initially assigned to the

space.
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Figure 2-5: Basemap Generator Application in the Debugging

Mode: PROBASSIGNER process.
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Once the probability values are calculated and each space is labeled

with an initial type, the space labeling must be refined, and any

possible labeling conflicts between adjacent spaces must be resolved.

A labeling conflict may occur when two or more adjacent spaces share

the same type, which contradicts how the spaces were constructed in

the first place. In order to resolve the conflict, each space is assigned

a weight, simply the area of the space. If a space has a neighbor with

a larger weight and the two spaces share the same label type, the

space with a smaller weight must be assigned a different type - the

best possible non-conflicting type. The types are reassigned again and

again across the basemap until there are no conflicts to resolve. Each

iteration is guaranteed to fix the type of at least one space (the space

with the largest weight among the spaces with unfixed types);

therefore, the process must converge. The resultant space labeling is

the final labeling.

The SL algorithm described above is not the only way to approach the

space-labeling problem. A different approach, considered during earlier

stages of the program development, was to generate a set of random

lines going across the basemap and optimize the type-labeling along

each of those lines using a dynamic programming technique. The

problem with this approach, however, is that it does not necessarily

resolve space-labeling conflicts in all directions, which makes the

quality of the label assignment much worse. Moreover, solving the

problem in many different directions is a much more time-consuming

procedure than assigning the labels using the currently implemented

SL algorithm.
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Figure 2-6: Basemap Generator Application in the Debugging

Mode: TYPEASSIGNER process.
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The SL algorithm makes correct assignments in most cases. The cases

that the algorithm handles poorly are those where two or more spaces

in the basemap are incorporated into a single large space in the

program, because the spaces are not completely separated from each

other in the original basemap (see Figure 2-3). Moreover, the

algorithm often makes a mistake of assigning a grass type to a

sidewalk space or vice versa, because grass and sidewalk types may

be used interchangeably in many cases across the basemap. The latter

kind of mistake can be fixed using the Basemap Examiner application

described later in the text.

Labeling the basemap is only one part of the Basemap Generator task.

In addition, the properly labeled basemap must be broken into a set of

simpler spaces used by the route generation program, and triangles

overlapping with building placement sites must be removed from the

basemap model. The reason why the basemap must be broken into a

set of simpler spaces is that the route-generation program currently

operates only with spaces that are simple polygons, i.e., polygons that

have a single, continuous boundary. Therefore, in cases where, for

example, a building space completely contains a sidewalk space, the

SL algorithm must break the outer building space into a couple of

simple spaces. The spaces are subdivided using a flood-fill algorithm.

In addition to the constraint of the space simplicity, several other

constraints are imposed. For instance, currently, no space is allowed to

contain more than a predefined number of triangles.

27



Figure 2-7: Part of the Basemap Corrected Using the Basemap

Examiner Tool.
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Because the basemap model is eventually assembled with models of

the newly generated buildings to form a complete model of the MIT

campus, it is important to remove any triangles that overlap with

building model placement sites from the basemap model. In order to

remove the triangles, the Basemap Generator application reads a set

of building placement contours, adds them as additional constraints

into the original basemap triangle mesh, and then uses a flood-fill

algorithm to mark the triangles that must be removed. The marked

triangles are skipped during the output stage to produce a well-formed

model of the MIT campus terrain.

One of the fundamental problems with the approach above is that

building contours in the original basemap file represent the top-down

view of each building, while the building placement site coordinates

come from the outline(s) of the building ground-level floor. There may

be a substantial difference between the two types of the building

contours, and there is no easy way to make the contours match

without modifying the building size or geometry. In addition, because

the top-down and the ground-floor contour views of each building are

given in different coordinate systems, a set of transformations is

needed to make the contours match, at least approximately. The

Building Mapper application (see Appendix A.2.4), written in the

course of the project in addition to the three main applications

discussed here, provides functionality for computing the correct set of

transformations.
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Figure 2-8: Building Mapper Snapshot. Building contours from

the contours file are shown in black and the building contours

from the .TOPO basemap file are shown in blue.
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2.2 Basemap Examiner

The Basemap Examiner application uses the output from the Basemap

Generator to examine the two-dimensional basemap model and,

possibly, fix some of the labeling errors made by the Basemap

Generator. In the Basemap Examiner application, the user is allowed

to traverse the basemap and to reassign label types as necessary. For

instance, to assign a building type to one of the spaces, the user

simply needs to highlight the space and to press a B key (see

Appendix A.2.2). Once a building type is assigned, the application uses

the space labeling refinement algorithm described earlier to reassign

the types of spaces around the space in question, and so on, until

there are no labeling conflicts. Once the user is satisfied with the

quality of the labeling, the user closes the program, and the new

space-labeling information is written onto the disk in order to be

further used by the Basemap Modeler application.
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Figure 2-9: Basemap Examiner in the Debugging Mode. Note

how the currently active spaces are highlighted with the yellow

color.
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2.3 Basemap Modeler

The Basemap Modeler application uses the output from the Basemap

Examiner application along with the topographic maps obtained from

the DOF website to extrude the two-dimensional model of the MIT

campus terrain into 3D (see Appendix A.2.3). The DOF provides two

different types of topographic maps: isomaps (files with .CONTOURS

extension) that contain information about basemap contours that

correspond to the same elevation level, and point-by-point maps (files

with .POINTS extension) that consist of a large set of points in 3D

more or less uniformly scattered around the campus (see Appendix

B.7-B.8). The Basemap Modeler application currently makes use only

of the point-by-point topographic maps.

The Basemap Modeler uses the three-dimensional points from the

point-by-point topographic map of the campus as constraints for the

CDT triangulation algorithm, in addition to the regular constraints

imposed by the Basemap Generator application. Once the basemap is

triangulated, for each contour point from the original basemap file, the

program identifies a triangle in the topographic map that contains the

point and uses the triangle vertices to compute the Z-coordinate of the

point in question such that the point lies within the plane formed by

the triangle vertices (see Chapter 3 for more details). Once all of the

basemap vertices are extruded into 3D, a flood-fill algorithm is used to

identify the set of triangles within each input space contour to produce

a three-dimensional version of the .SPACES (see Appendix B.1) file

used by the route-generation program.
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Figure 2-10: 3D Model of the MIT Campus Terrain as Viewed

from the ivview Application Window.
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Chapter 3

Implementation

Applications such as Basemap Generator, Basemap Examiner, and

Basemap Modeler have a lot of functionality in common. In order to

avoid the duplication of the code among the programs, the most

common functionality has been implemented as a set of separate

static libraries. Each application is linked to whatever libraries it needs

to use in the compile time, and many applications share the same set

of libraries. Once a library is modified, recompiled, and re-linked with

the applications that use the library, the change in the library

propagates to all the applications. One could allow each application to

link to the latest version of the library dynamically, in the run time;

however, while convenient, such functionality is supported differently

across different platforms.

Each static library in the project is responsible for implementation of a

particular piece of the functionality common to all the project

applications. Currently, there are four different libraries: Common,

FLParser, Geometry, and Graphics. The Common library embraces the

most common functionality used not only by all the applications in the

project but also by the rest of the static libraries. The FLParser library

implements the common file and command-line parsing functionality.

The Geometry library provides implementation for a wide range of

geometrical data structures and some related auxiliary functionality.

Finally, the Graphics library provides implementation for the common
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bitmap routines as well as for miscellaneous world window and

viewport transformations. The next several paragraphs cover each of

the libraries and their classes in more detail.

I:--

Figure 3-1: Overall Structure of the Basemap Generation

System. Note the three software layers: the application layer

and two library layers.
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3.1 Common Library

The Common library implements the functionality most common to the

project applications and libraries. It consists of six classes: CMTime,

CMRepository, CMObject, CMTimeCounter, CMStepCounter, and

CMCounter. The CMTime class is responsible for implementation of

common time and date functionality, which is implemented differently

across UNIX-like and MS Windows platforms. The class encapsulates

the platform differences and provides methods that can be used to get

all the necessary time and date information. One of the direct users of

the CMTime class is the CMTimeCounter, which is used to give a child

process the control over the program for a limited amount of time.

Once the time, usually measured in milliseconds, given to the child

process expires, the control returns to the parent process, which is

often responsible for interactive functionality, such as resizing the

application window or redrawing the screen.

The CMStepCounter class implements a functionality similar to that of

the CMTimeCounter, but instead of giving a limited amount of time to

the child process, it allows the process to be executed a limited

number of times. The counter starts with some predefined number of

times to execute the process and decrements every time the process is

executed. Once the counter value drops to zero, the control is passed

back to the parent process. The CMCounter class embraces the

functionality of both time and step counters. An application that makes
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use of the cMCounter class can switch between the two counter kinds

in the run time.

CMCounter

CMTimeCaunter CMStepCounter

CMllme

CMObject

CMRepository

Figure 3-2: Modular Dependency Diagram of the Common

Library. Every small arrow represents a "uses" relation

between the two classes it connects. Every large arrow (not

shown on the picture) represents an "is a" relation between

the classes it connects.

While time and counter classes find their use in some of the project

applications, the CMRepository and the CMObject classes make their

way to all the project applications and libraries. The CMRepository

class serves two different important purposes. First, it provides object-

storing functionality that significantly decreases the number of
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dependencies among producer and consumer classes, and, second, it

implements object-tracking functionality that can be used for tracking

dangling pointers and deallocating objects that must be deallocated no

matter whether the program successfully finished the execution, or

failed as a result of a fatal error.

The object-storing part of the repository functionality acts as a

dispatcher unit, where miscellaneous objects can be registered and

retrieved by a unique string name. In general, multi-level repositories

are allowed, that is, repositories can be added to one another to form

an acyclic oriented graph. However, as a matter of practice, one or two

different repositories per application are usually sufficient, unless one

wants to have multiple repositories with multiple namespaces: each

repository acts as a separate namespace. No matter how many

repositories are in the application, there is generally one or a few

global repositories that can be accessed from anywhere in the

application. Once an object to be stored in a particular repository is

ready, the object producer adds it into the repository with a name

known to all of the potential object consumers. Then, an object

consumer can simply use the object name to retrieve the object from

the repository.

In a large project with multiple separate parts, the repository

functionality is necessary to decrease the number of dependencies

among the project pieces. Without any kind of a global repository,

each object consumer must know about the existence of the

corresponding producer and must depend on the producer to create

the object in question and to inform the consumer that the object is
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ready to be used. This approach leads to additional dependencies

between the object producer and its consumers as well as to

miscellaneous synchronization issues. The producer must guarantee

that it does not return the object only half-ready to be used. With a

repository, on the other hand, the producer can simply register the

object when the latter is ready. If any consumer attempts to retrieve

the object from the repository beforehand, no object will be found in

the repository and the NULL pointer will be returned.

The object-tracking part of the repository functionality keeps track of

object pointers and deallocates the objects that must be deallocated

no matter how the program finishes its execution. Once an object

makes it to a global repository, it resides there until either the object

is removed from the repository or the application is terminated by a

return or an exit instruction. If the application is terminated, the object

destructor is indirectly called on the object by the repository. In the

object destructor, the object information as well as, possibly, some

debugging information can be written to disk and, if necessary,

restored once the user restarts the application.

The above scenario is especially useful when the application in

question makes use of the GLUT library, which encapsulates a lot of

platform-specific OpenGL initialization and window management

routines. Because the window exit event is implemented differently

across different platforms, the GLUT library does not support

registering a callback function that must be called when the user

closes the application window. Instead, the library terminates the

OpenGL call loop simply by making a call to the C/C++ exit
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instruction. Then, the memory used by the program is automatically

reclaimed by the operating system and no object destructor is called

unless the object is global. Because making the object global exposes

it throughout the application, a better approach would be simply to

register the object in the global repository and then allow the latter to

call its destructor automatically.

In fact, with a few minor changes, it is possible to guarantee that any

object registered in a global repository will be deleted exactly once at

some point in the application life. Because each object to be stored in

a CMRepository must inherit from the CMObject class, the

programmer can make sure that the object is added to the repository

when it is created and removed from the repository when its virtual

CMObject destructor is called. This approach will work both for static

and non-static objects, for while it is true that the order in which

static-global objects are deallocated by the system is not defined, each

static object is destroyed exactly once. This kind of functionality can be

easily added provided that each object stored in a repository knows

the unique name by which it is referenced within the project.

The CMObject class also serves two goals. First, as mentioned above,

every object that needs to be stored in a CMRepository must inherit

from the CMObject. In fact, because the class is used almost

everywhere throughout the project, the CMObject is also the class that

contains the global static repository, and static methods are provided

to add, remove, and retrieve objects from the repository. Second, the

CMObject class provides warning and assertion functionality along with
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definitions for common error and warning messages. The difference

between warnings and assertions throughout the project is that the

former simply redirect the warning messages to the standard output,

while the latter also halt the program by making a call to the C/C++

exit instruction. Once the program is halted, the standard procedure of

deallocating global repositories along with objects stored there applies.

One may change this behavior by making a call to the C/C++ abort

function, in which case no objects will be deallocated and the memory

will be reclaimed by the operating system.

3.2 FLParser Library

The FLParser library implements the common file and command-line

parsing functionality. It contains the following classes: CLParser,

FLToken, FLTokenizer, FLParser, UGNode, and UGNodeIR, as well as a

dozen other smaller classes that are used by the Unigrafix format

parser. The CLParser class incorporates functionality common to all

the command-line parsers in the project. More specifically, it allows

the user to specify from the command line the name of the main data

file to process, a special "-frmt" flag that indicates the format or

formats that must be used for outputting debugging information, a "-

mode" flag that indicates whether the program must be run in a debug

or batch mode, and a "-help" flag that indicates a request for the

parent application command-line help information (see Appendix A).

The CLParser class provides only default functionality. Each of the

applications in the project is responsible for providing its own
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command-line parser, which can usually be found by a name that

consists of a two-letter application name abbreviation and a "Parser",

suffix; for instance, "BGParser," "BEParser," and so on. Usually, each

of the command-line parsers inherits from the CLParser and overrides

or extends the functionality of the latter.

The FLParser class as well as its helper classes, the FLToken and the

FLTokenizer, all serve to provide file-parsing functionality. Each class

that extends the FLParser class inherits an individual tokenizer that

breaks the input file stream into a sequence of tokens, where each

token extends the FLToken class. Two groups of characters are used to

break the stream into tokens and those characters may differ from one

parser to another. The first group of characters usually consists of

separation characters such as space, tab, or a new line. The second

group consists of characters that are often used to separate tokens but

that serve as tokens as well. For instance, left or right curly brace

characters often make it into the second group, because these tokens

are usually used to separate numbers or other tokens in miscellaneous

graphics formats.

In order to provide elementary parsing error functionality, each token

contains information about the line and position it comes from in the

original data file. This way, if an error occurs while parsing an input,

the parser can get back to the user with a comprehensible error

message that specifies the type of the error along with the location

where the error occurred in the data file. Apart from the common error

diagnostic functionality, the FLParser class also contains functionality
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for parsing integer and real numbers. If two or more file parsers in the

project inherit from the FLParser and have a lot of the additional

functionality in common, the common functionality is usually

encapsulated in a separate class that also inherits from the FLParser,

directly or indirectly. For instance, the VXParser class in the Geometry

library inherits from the FLParser and provides vertex-parsing

functionality for all file parsers that deal with vectors and vertices in

the common {X Y Z} format.
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Figure 3-3:
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Modular Dependency Diagram of the FLParser

Unlike most file parsers in the project, the Unigrafix or .UG parser

does not inherit from the FLParser class, because the functionality of
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the FLParser was added to the project after the .UG parser had

already been implemented. Unlike file parsers that inherit from the

FLParser class, the .UG parser does not break the input into a

sequence of tokens explicitly. Instead, the parser first creates an

intermediate representation of the input file data and then converts

the intermediate representation into a set of actual Unigrafix objects.

If a parsing error occurs and no intermediate representation can be

created from the input, the parser halts before it allocates any

Unigrafix objects. The approach above is beneficial when the

intermediate representation data structures are lightweight compared

to heavyweight representation of actual Unigrafix objects.

3.4 Geometry Library

The Geometry library provides implementation for a wide range of

geometrical data structures and related auxiliary functionality. The

library consists of four different groups of classes. The first group

provides implementation for N-dimensional vectors and points as well

as lines, segments, and other geometrical primitives. The second

group represents a modified version of the Constrained Delaunay

Triangulation (CDT) library. The third group provides implementation

for miscellaneous polygon data structures as well as the multigraph

data structure built on top of the Quad-Edge triangle mesh. Finally, the

last group of classes is responsible for outputting geometrical data in

Unigrafix, Open Inventor, and other file formats. The next several

paragraphs describe each of the four groups in more detail.
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Figure 3-4: Modular Dependency Diagram of the Geometry

Library.

The geometrical primitive class group consists of the following classes:

VectorND, Line, Segment2d, and GMClipper. The VectorND class

template provides implementation for N-dimensional vectors and

points and replaces the deprecated set of two-dimensional geometrical

primitive classes that originally came with the CDT library. Generic, N-
dimensional vectors are extensively used in the Basemap Generation

application. For instance, if an individual triangle in the basemap must
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be labeled with one of the N different label types and there is a

probability value indicating how well each of the label types fits the

triangle, it is possible to think about the probability values forming a

probability vector in an N-dimensional space. Then, for any two

adjacent triangles in the basemap, the larger the dot product of the

corresponding probability vectors, the more likely it is that the

triangles must be labeled with the same type.

The Line and the segment2d classes implement line and segment

primitives. While lines and segments are inherently two-dimensional,

in the sense that for each line or segment there exists a plane that

contains all of the line or segment points, points in more than two-

dimensional space can be used to specify a segment or a line. In such

a case, all point coordinates but X and Y are usually discarded. The

GMClipper class implements the Cohen-Sutherland clipping algorithm

and can be used to clip lines and segments according to a predefined

two-dimensional clipping window [6]. The clipping functionality is used

extensively throughout the project for processing subsets of large

geometrical data sets.

The second group of classes forms a modified version of the CDT

library. The library has been modified in several ways. First, the library

has been tuned to make use of the new set of generic geometric

primitives. Second, the Edge class, responsible for implementation of a

single mesh edge, has been modified to inherit from the GMEdge class

that provides an interface for data structures such as the multigraph

data structure built on the top of the Quad-Edge triangle mesh. Finally,

the CDT algorithm has been adjusted to operate in 3D. For instance,
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when a new edge is being inserted into a mesh and the edge intersects

one of the mesh edges, each of the two edges is split into two by the

common intersection point. While the original algorithm computed only

X- and Y-coordinates of the intersection point, the new version of the

algorithm also computes the third, Z-coordinate.

The third group of classes provides implementation for miscellaneous

polygon data structures as well as the multigraph data structure built

on top of the Quad-Edge triangle mesh. The Quad-Edge data structure

encapsulates much of the information about the triangle mesh. For

instance, given an edge e in the mesh, one can look up the origin of e,

the destination of e, the previous and the next edge around the left

face of e, the previous and the next edge around the right face of e, all

the edges leaving the origin of e, all the edges coming to the

destination of e, and so on. However, while the Quad-Edge data

structure captures much of the local information about the mesh, it

fails to support many global operations such as obtaining a list of

triangles in the mesh or obtaining the total number of edges in the

mesh. Therefore, if one wants to obtain the total number of triangles

or edges in the mesh, one often has to traverse the whole data

structure.

To ensure that the global as well as the local information about the

triangle mesh is available, a multigraph dual of the Quad-Edge data

structure is built on the top of the Quad-Edge data structure. In the

multigraph, each node corresponds to a triangle in the mesh, and each

edge between two nodes corresponds to an edge between two

adjacent triangles. Because the multigraph data structure is general
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enough to represent an arbitrary plane subdivision, more than one

edge may exist between two nodes-polygons that share more than one

edge in the subdivision: this is where the term "multigraph" comes

from.

The GMGraph is the class that provides implementation for the

multigraph data structure in the Geometry library. In the GMGraph

class, the multigraph data structure is implemented using several STL

map containers. Two map containers are used to map each edge to

the edge origin and destination nodes, and another two map

containers are used to map each node to the list of edges coming into

the node and the list of edges leaving the node. Because no node or

edge, implemented by classes GMNode and GMEdge respectively, stores

any graph-related information as part of their internal states, two or

more graphs can share the same set of nodes and/or edges.

While any graph node in the GMGraph class must inherit from the

GMNode, the latter does not provide any information about the

polygons that it represents in the subdivision. Instead, a hierarchy of

classes, many of which inherit from the GMNode class, provides all the

polygon-related functionality. Each class in the hierarchy represents a

set of polygons with particular properties. For instance, most of the

polygon classes in the hierarchy inherit from the abstract GMSpace

class that provides an interface to the GMLocator class used for

identifying the polygon that contains a particular point in the

subdivision. Two classes inherit from the GMSpace class: the GMGroup

and the GMCntr.
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The GMGroup class implements a group of non-overlapping and

possibly disconnected simple polygons. The class supports point-

locating functionality and provides implementation for methods that

return the group area, perimeter, bounding box, type, etc. The

GMGroup class also serves as a base class for the GMPoly class that

represents a group of non-overlapping, connected simple polygons

with a single contour. Further below the hierarchy, two classes, the

GMCnvx and the GMCncv, which represent convex and concave simple

polygons respectively, inherit from the GMPoly class and provide

alternative, more efficient implementations for some of the methods

above the hierarchy.

One of the most important methods in the GMPoly class is the AddNode

method responsible for "gluing" two adjacent polygons together. The

method is extensively used throughout the project in many flood-fill-

like algorithms, where two or more connected polygons in the

subdivision are incorporated into a single patch. Because "gluing" two

polygons is a relatively expensive operation, it was the AddNode

operation that largely defined the choice for the internal representation

of the GMPoly class. In the class, there must exist some representation

for the contour of the polygon in question. The most obvious

implementation of the contour is a vector or list of vertices.

Unfortunately, the obvious representation results in a linear complexity

of the AddNode operation, which is too expensive. Therefore, the

contour is represented in terms of two STL map data structures

instead. One map data structure maps each polygon edge to the next
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edge in the counter-clockwise direction. Another map data structure

maps each polygon to the previous edge in the counter-clockwise

direction. While such a representation makes it slightly more

expensive to traverse the polygon edges in one or another direction, it

decreases the complexity of the AddNode operation from 0 (n) to 0

(log n), where n is the number of vertices or edges in the largest of

the two polygons being "glued."

Using two maps to represent the polygon contour makes the AddNode

operation much more efficient but takes its toll on operations such as

displaying the polygon on the screen. While incremental updating of a

single bitmap in the debugging mode works adequately in most cases,

displaying thousands of triangles in real time becomes a problem. One

way to deal with the difficulty is to cache the perimeter of the polygon

in a consecutive or a random access container such as a list or a

vector. Then, if the AddNode operation is not called too often, the

method responsible for rendering the polygon on the screen may

ignore the map representation of the polygon contour and use the

cached representation instead. The BEPoly class in the Basemap

Examiner application exploits this strategy. Another approach to avoid

the problem is not to provide efficient implementation for the AddNode

method at all, thus preserving the obvious representation of the

polygon contour. For instance, the GMCntr class that is mainly used to

represent large simple polygons supports all point-locating

functionality but does not provide any of the more sophisticated

GMPoly methods such as the AddNode method.

51



The ability to identify the polygon or polygons that contains or contain

a particular point is crucial in the project. The GMLocator is the class

that provides point-locating functionality. The way the GMLocator

works is simple. When an instance of the class is created, the user

initializes the locator with a rectangular window that must be tracked,

and registers one or more GMSpace objects with the locator. Inside the

locator, a rectangular grid is imposed onto the window being tracked

and divides the window into a set of separate buckets. In turn, each

GMSpace object represents a two-dimensional entity with a rectangular

bounding box and a special Locate method that returns true when the

space contains a particular point. Then, when a GMSpace object is

registered with the locator, the object is added to all the buckets that

have any common points with the bounding box of the object. When a

space containing a particular point needs to be identified, the locator

examines the bucket that hosts the point and searches for a space that

admits to containing the point. If such a space is found, the locator

returns a reference to the space object; if not, the locator returns

NULL.

The last, fourth part of the Geometry library consists of classes

responsible for outputting geometrical data in Unigrafix, Open

Inventor, and other file formats. The need to output geometrical

information in different formats arises from the fact that different

formats are popular under different platforms. In addition, some of the

formats are more difficult to parse than others and, as a result,

somewhat simpler formats such as the Unigrafix format are used for

transmitting data between the programs in the project, while more
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sophisticated formats such as the Open Inventor format are used for

visualization purposes.

The group of classes responsible for outputting geometrical data

consists of the GMStream base class and several classes that extend it:

GLStream, IVStream, PSStream, and UGStream. The base class

provides several overloads for the stream insertion operator that

enable the user to specify the current drawing color as well as the

current drawing mode. Presently, three different drawing modes are

supported: POLYGON, CONTOUR, and DELAUNAY. The POLYGON is by

far the most popular mode, when the polygon in question is rendered

filled with the current color. In the CONTOUR mode, only the contour

of the polygon is rendered without outputting any contours of the sub-

polygons that the polygon in question may consist of. Finally, in the

DELAUNAY mode, the contour of the polygon is rendered along with

the contours of its sub-polygons.

Each of the subclasses, GLStream, IVStream, PSStream, and UGStream,

writes geometrical data onto the screen, in the case of the GLStream

class, or into one of the three file formats: Open Inventor, Post-Script,

and Unigrafix. Besides the three file formats supported presently,

support for the fourth, the VRML format, is in the process of being

added. The output of each stream class consists of three parts: the

starting sequence, body, and the closing sequence, where any of the

parts may be an empty sequence. When a stream class object is

created or deleted, the output starting or closing sequence

respectively is displayed on the screen, in the case of the GLStream

class, or written into a file. Failing to delete a stream object allocated
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dynamically may lead to an invalid output and/or dangling file

handlers.

The GMColor class is used throughout the project for setting the

current OpenGL or stream drawing color, as well as for converting

from abstract node and edge types to RGBA colors used for

visualization. The GMColor class inherits from the generic VectorND

class and represents a vector of four one-byte components: Red, Blue,

Green, and Alpha. The class currently provides a standard set of colors

plus a special default color used when the programmer has not set any

color explicitly. Moreover, the default color can be used to specify that

a polygon being output by an overloaded stream insertion operator of

one of the stream classes must be painted with the preset polygon

color.

3.3 Graphics Library

The Graphics library provides implementation for the common bitmap

routines as well as for miscellaneous world-window and viewport

transformations. The library consists of the following classes:

GRPixelMap, GRWindow, GRViewport, GRWorldWin, and GRPortal. The

GRPixelMap class provides implementation for the common bitmap

functionality. Each instance of the class is a rectangular matrix of RGBA

pixels, where each pixel consists of four one-byte components: Red,

Green, Blue, and Alpha. The bitmaps are used in the project for

updating the image on the screen without redrawing the screen

contents from scratch. For instance, an application running in the
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debugging mode may need to visualize changes made to a large data

structure. While redrawing the entire data structure every time it is

modified is often infeasible, making an incremental change to a bitmap

copy of the screen contents and displaying the bitmap works in most

cases. Because the bitmap content always reflects the current state of

the data structure, the time it takes to update the bitmap usually

depends not on the size of the data structure but on the number and

quality of the incremental changes made to it.

GRPortal

GRPixelMap

'/ I

-+ GRViewport

GRWorldWin

RGBA

GRWindow

Figure 3-5: Modular Dependency Diagram of the Graphics

Library.

Because two or more bitmaps can be displayed on top of each other

with arbitrary levels of transparency, more than one stage of the
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algorithm can be visualized simultaneously. In fact, because each

bitmap is just a matrix of pixel values, it is possible to combine

computer-generated images with those loaded from .BMP image files.

Currently, the GRPixelMap class supports loading bitmaps from 24-bit

.BMP files but does not support saving bitmaps in the .BMP format, a

function that may prove to be useful in the future. It would also be

useful to provide functionality for reading and writing bitmaps from

and to .JPEG and .GIF files as well.

The GRWorldWin, GRViewport, and the GRPortal classes provide

functionality for mapping one or more world-windows to one or more

viewports on the screen. Each instance of the GRPortal class

represents a one-to-one mapping between a world-window

implemented by the GRWorldWin class and a viewport implemented by

the GRViewport class. When a portal is activated by invoking a

GRPortal: :BringUp method, any image produced by calls to the

OpenGL library is clipped according to the portal world-window

coordinates, mapped to the portal viewport, cached in the portal

bitmap, and displayed in the viewport so long as the portal's visibility

flag is set to true. The portal viewports are generally initialized to

reflect the initial dimensions of the main application window. If the

user resizes the application window, each of the viewports is

automatically resized to preserve to the original layout. When a portal

viewport is resized, the portal bitmap is usually also resized and

redrawn to preserve the one-to-one pixel mapping between the

viewport and the bitmap.
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3.5 Basemap Generator

The Basemap Generator application is structured as a pipeline of

separate stages, called processes, executed by a single processing

unit, called processor. Each of the processes provides implementation

for one part of the Basemap Generator Space-Labeling (SL) algorithm.

The processor is responsible for registering and executing the

processes, one after another, in a predefined order. The processor also

controls a local repository used to help processes to pass data from

one process to another. The following several paragraphs describe the

processor and each of the processes in more detail.

The BGProcessor class implements all the functionality of the

processor. Because there is a need for only one processor per

application, the BGProcessor is implemented as a singleton: the only

constructor that may be used to create a new processor is declared

private, and a single public producer method guarantees that only one

instance of the BGProcessor class is ever created. When the processor

is created, it is added into the global object repository to make sure

that the processor and all of the objects stored in the local processor

repository are deallocated from the memory before the application is

terminated.

Once the processor is created, it must be initialized. During the

initialization stage, each of the different application processes is

created and added to the processor execution queue in a predefined

order. In the debugging mode, a separate drawer, implemented by the

BGDrawer class and responsible for outputting the debugging
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information onto the screen, is also created for each of the application

processes. The newly created processes, as well as their drawers, if

any, are automatically added into the local processor repository. The

name for identifying a particular drawer in the repository consists of

the name of the host process and a ":DRAWER" suffix. This way, each

process in the application "knows" the name of its drawer and, as a

result, can obtain a reference to the drawer stored in the processor

repository.
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Figure 3-6: Modular Dependency Diagram of the Basemap

Generator Application. Note how the classes used together are

shown in the same box.
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The BGProcessor class provides a special Execute method that runs

through a small part of the SL algorithm until the algorithm is over.

The Execute method consists of several steps. First, a time or step

counter is initialized and set to a positive value. Then, the current

process is executed until either the counter drops to zero or the

process comes to an end. Then, in the debugging mode, the changes

made to the internal state of the current process are displayed on the

screen and information about the process progress is shown at the

standard output. If the current process comes to an end, its temporary

data structures are deallocated from the memory, and the next

process from the process execution queue is initialized to take the

place of the current process.

There are two different ways the Execute method can be called in the

Basemap Generator application. In the batch mode, the Execute

method is simply called multiple times until the algorithm is over. In

the debugging mode, the Execute is called indirectly by the idle

OpenGL callback function. Once the OpenGL main loop is started and

until the application is terminated, the idle function, registered along

with several other special OpenGL callback routines, is called

automatically every time the application is idle.

The Display method of the BGProcessor class is responsible for

displaying the debugging information about the current process in the

debugging mode. For each process that has already been executed or

is in the process of being executed, the corresponding process drawer

is retrieved from the processor repository, and the drawer bitmaps are
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displayed with predefined levels of transparency, one for each portal in

the drawer. The Display method is called indirectly by the display

OpenGL callback function every time the image on the screen needs to

be updated.

The Reshape method of the BGProcessor class is responsible for

rescaling and possibly redisplaying the debugging information on the

screen after the main application window has been resized. The

Reshape method is called indirectly by the reshape OpenGL callback

function called every time the main application window is resized. The

Reshape method takes two parameters: the new height and width of

the window. For each of the application processes, the Reshape

method retrieves the corresponding process drawer from the processor

repository, resizes the drawer bitmap, and updates the bitmap content

by making a call to the processor Repaint method.

There are seven different processes in the Basemap Generator:

TRIANGULATOR, GRAPHBUILDER, PATCHBUILDER, PROBASSIGNER,

TYPEASSIGNER, CUTOFFMARKER, and TRAGGREGATOR. Each of the

processes inherits from the BGProcess class that provides default

functionality for initializing, executing, and debugging each process.

The Triangulator class implements the TRIANGULATOR process. In

the Execute method of the Triangulator class, the basemap space

contours are read from the basemap .UG database, clipped as

necessary, broken into a set of separate edges (each edge with a

certain type), and added to build the Delaunay triangulation of the

basemap using the modified version of the CDT algorithm.
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The GraphBuilder class implements the GRAPHBUILDER process

responsible for building a multigraph data structure on top of the

Quad-Edge data structure created by the CDT algorithm (see Figure 2-

2). For each edge in the Quad-Edge data structure that has not been

processed, a new GMPoly node is created to represent the polygon

located to the left of the edge, and, for each of the edges in the

polygon, a record is added to map the edge to the corresponding host

GMPoly node. Then, the edge symmetrical to the edge being processed

is examined and, if a map record for the symmetrical edge is found, an

edge between the two host nodes is added. When the process is over,

the resultant multigraph data structure consists of triangle GMPoly

nodes connected to each other as well as a large "outside" polygon

node that represents the part of the plane outside of the triangulated

region. The "outside" node is never used in the application and is

easily identifiable by the number of vertices, which is always more

than three for a rectangular mesh.

The PatchBuilder class implements the PATCHBUILDER process

responsible for incorporating individual basemap triangles into larger

units called patches (see Figure 2-4). The following two assumptions

are made for each patch: all triangles in the patch must have the same

label type and no two triangles in the patch are allowed to share an

edge with a type different from the EDGENOCLR type. That is, each

patch is restricted only by the basemap space contours and not by

edges added in the process of triangulating the basemap. The way the

Execute method of the PatchBuilder class works is that a new patch

node is added for each node in the triangle multigraph data structure
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that has not been processed. Then, a flood-fill algorithm is used to add

all non-processed triangle nodes, which satisfy the two conditions

above, to the new patch node. Finally, each of the newly processed

triangle nodes is marked as such by creating a record that maps the

triangle node to the host patch node. Once all the triangle nodes are

processed and all the patches are created, the edges between

separate patch nodes are added using the information about the edges

in the triangle multigraph. A new, patch multigraph data structure is

built on top of the triangle multigraph data structure and added to the

processor repository.

Once the patch multigraph data structure is built, the ProbAssigner

class that implements the PROBASSIGNER process is responsible for

estimating the probability of each patch being of a particular type, as

well as for setting the patch type to a rough approximation of what

that type should be (see Figure 2-5). The GMGroup class implements

the functionality of estimating the probability of each patch being of a

particular type. The result is a multi-dimensional probability vector

that can be used to compare how likely two different adjacent patches

are to have the same type. The largest coordinate in the vector defines

the initial type of the patch. If there are two or more equal largest

coordinates, the patch type is chosen arbitrarily from among the

corresponding types.

The TypeAssigner class that implements the TYPEASSIGNER process

is used to refine the type labeling assignment (see Figure 2-6). First, a

weight is associated with each patch in the patch multigraph data

structure. While there may be more than one definition of the patch
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weight, the patch-area definition is currently used. That is, the larger

the area of the patch, the more important it is to assign the patch type

correctly. Once all weights are computed, for each patch in the

multigraph, the algorithm checks whether the initial space labeling of

the patch conflicts with that of some other adjacent patch (where two

adjacent patches are considered to be in conflict with each other if

they share the same type). If a conflict is discovered, the algorithm

uses the weights of the two nodes to determine which of the nodes

must be assigned a different type by reassigning the type of the node

with a smaller weight. The new type assigned is usually the non-

conflicting type with the largest probability value.

Once all of the basemap patches are properly labeled, there are two

more tasks the algorithm has to perform to produce a 2D-version of

the M.I.T. basemap. First, the triangles that lie inside the actual

building contours must be deleted from the basemap. Second, the

basemap must be broken into a set of spaces such that no space is

entirely contained within another and that there is a limit on the

number of triangles or the area of each space. The CutoffMarker class

that implements the CUTOFFMARKER process achieves the first task.

The CutoffMarker works as a simple flood-fill algorithm. However,

instead of restricting the area to be filled with a set of edges, as is

usually done throughout the project, the process restricts the area by

using the GMLocator provided by the Geometry library. Each triangle

determined to lie inside a building contour according to the GMLocator

is assigned a special NODE_CTOFF type, which prevents the triangle

from being included in the output.
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The Traggregator class that implements the TRAGGREGATOR process

is responsible for breaking the labeled basemap into a set of spaces,

such that no space is entirely contained within another and that there

is a limit on the number of triangles or the area size of each space.

The Traggregator class also makes use of the flood-fill algorithm.

However, the indicator of whether a triangle must be added to a

particular space is not simply the type of the triangle but also whether

the triangle can be added to the patch without violating the

containment rule and rules on the number of triangles and area size of

each patch. Once the basemap is broken into a set of spaces, the

information about the basemap spaces is written into a temporary .IT

file, which can be used afterwards by the Basemap Examiner

application to refine the space-labeling and to write the resultant space

information into a .SPACES (see Appendix B.1) file used by the route-

finding algorithm.

3.6 Basemap Examiner

The Basemap Examiner application consists of the main BEExaminer

class, several OpenGL callback functions, and several helper classes

used by the BEExaminer class. The BEExaminer class is responsible for

reading the initial basemap space-labeling data from an intermediate

.IT (see Appendix B.3) file produced by the Basemap Generator

application, parsing the space-labeling data, building an internal

representation of the basemap, enabling the user to browse the

basemap and modify the space-labeling, and, finally, writing the
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modified version of the data into a .SPACES (see Appendix B.1) file,

which can be used afterwards by the Basemap Modeler application to

extrude the basemap into 3D, using the topographical information

available.

CLParser CMObject Portal FLIParser

PLParse

BEParser BEExaminer TParser VXParser

GLteam GMLocator GMCncv

Vstream OuadEdge Gk~oly

-7 GMBucket 47

GMStream Psstream Edge GMGraph GMGroup

GMColor UGStream GMSpace GMEdge M~trtr GMNode

KM fTLateer r

Figure 3-7: Modular Dependency Diagram of the Basemap

Examiner Application. Note how the classes used together are

shown in the same box.

The BEExaminer is a singleton class. It has a single private constructor

that takes a list of arguments passed from the command line and a

static producer that returns a reference to the single instance of the
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class in the application. Inside the constructor, the command-line

argument list is parsed using an instance of the BEParser class. The

BEParser is a command-line parser that inherits from the CLParser

base class and, apart from standard command-line parser

functionality, provides support for a "-list" flag employed to specify the

data file with the list of .PORTALS (see Appendix B.2) files to be

updated. Once the command-line is parsed, the data from the .IT (see

Appendix B.3) file is read using an instance of the ITParser class. The

ITParser class inherits from the FLParser class and is used for

parsing the intermediate file format designed for passing extended

spaces data from the Basemap Generator to the Basemap Examiner

application. The intermediate (or .IT) file format is very similar to the

standard .SPACES format used by the BMG route generation

applications, but, unlike the latter, the .JT format provides not only

geometrical information but also information about the probability of

each space being of a particular type.

The information from the .IT file is used to create a set of BEPoly

spaces. The BEPoly class inherits from the GMPoly class and provides

some additional functionality for working with identifiable spaces.

Because the GMPoly class, in turn, inherits from the GMSpace abstract

class, an instance of the GMLocator class uses BEPoly objects to

provide support for identifying the currently active space chosen by

the user as well as the set of spaces that lie within the application

browser window, functionality necessary for the user to browse the

basemap and modify the space-labeling. The reason why the

GMLocator class, usually used for point-locating purposes, can be used
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to identify the set of spaces that lie within a particular rectangular

window is that each instance of the class imposes a rectangular grid

onto the area being tracked. Each polygon in the subdivision registers

with all the grid cells, or buckets, that it intersects. Thus, one way to

identify the set of spaces that lie within a particular rectangular

window is to compute the union of the sets of polygons registered with

the buckets that have common points with the window.

Once the instance of the GMLocator is initialized, the face and patch

multigraph data structures are built on top of the basemap subdivision

similarly to how it is done in the Basemap Generator application. While

the patch multigraph data structure is necessary for updating the

space labeling in real time, the only function of the face multigraph is

to serve as a base for building the patch multigraph data structure.

Therefore, the face multigraph must be created and initialized first.

Once the two multigraph data structures are built, the control over the

program is passed to the OpenGL rendering loop. In the loop, every

time the screen contents need to be updated, the OpenGL calls a

special display callback function that, in turn, passes the control to the

BEExaminer: :Display method. The Display method uses an instance

of the GMLocator class to identify the set of the polygons that need to

be rendered on the screen and displays the polygons using the

GLStream class from the Geometry library. The polygon that contains

the center point of the browser window is displayed differently from

others to ensure that the user can identify the polygon currently being

processed and can modify its space labeling if necessary.
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To assign a different type to a polygon, the user highlights the polygon

and presses one of the type keys: B for building, G for grass, S for

sidewalk, and so on (see Appendix A.2.2). Every time a key is pressed,

the OpenGL calls a special keyboard callback function that, in turn,

passes the control to the BEExaminer: :Control method. The Control

method examines the key being pressed and sets the polygon label

type as necessary. In addition, the modified polygon is marked as

fixed by assigning a large weight to the polygon. Large weight

prevents the polygon from being further modified by the space-

labeling algorithm once the polygon type is set manually. Currently,

the weight of a fixed polygon is computed in the program as the area

of the polygon multiplied by a large constant.

To highlight a particular polygon, the user uses cursor keys: UP,

DOWN, LEFT, and RIGHT to go up, down, left, and right across the

basemap, respectively (see Appendix A.2.2). Every time one of the

cursor keys is pressed, the OpenGL calls the special callback function

that passes the control to another overloaded version of the

BEExaminer: :Control method. In the Control method, the key being

pressed is examined and coordinates of the browser window are

updated. Because the browser window is used by the GMLocator to

identify the set of polygons that need to be displayed on the screen, a

different set of the polygons may be displayed when the display

function is called again.

The user is also able to save the newly updated map by pressing the

INSERT key or closing the application. In either case, the modified

version of the map is written into intermediate .IT and .TOPO (see
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Appendix B.4) files as well as into a .SPACES file used by the route-

generating application. The existing .PORTALS files are also updated,

provided that the file list has been specified using the "-list" command-

line flag. Moreover, depending on what formats have been specified

using the "-frmt" command-line flag, a copy of the map may be saved

in one or more of the standard project formats such as Open Inventor,

Unigrafix, and Post-Script.

3.7 Basemap Modeler

The Basemap Modeler application consists of the main BMModeler class

and several helper classes. The BMModeler class is responsible for

reading the 2D basemap data from an intermediate .TOPO (see

Appendix B.4) file produced by the Basemap Examiner application,

reading the topological data from a .POINTS (see Appendix B.8) file,

and extrusion of the basemap into 3D. The latter step consists of

several sub-steps. First, the boundaries of the basemap are identified

by examining the point coordinates in the .TOPO file. Then, a

rectangular basemap mesh is created and triangulated using the

vertices from the .POINTS file as constraints for the CDT algorithm.

Then, a temporary face multigraph data structure is built on top of the

triangle mesh. The face multigraph is then used along with an instance

of the GMLocator class to lookup basemap contour points from the

.TOPO file and extrude the basemap into 3D. Finally, the basemap

contour edges are added into the triangle mesh, the resultant polygons

are labeled with their corresponding label types, and 3D basemap
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space-labeling data is written into a 3D version of the .SPACES file.

The following several paragraphs describe each of the steps above in

more detail.

The TPParser class, which inherits from the VXParser class, is used

for reading the 2D basemap data from an intermediate .TOPO file

produced by the Basemap Examiner application. The .TOPO file format

is similar to the .SPACES format. Unlike the .SPACES format, however,

the .TOPO format does not provide any information about how each

individual space in the basemap is triangulated. The reason why the

triangulation information is not provided is that it is likely to change

during the process of extracting the basemap into 3D anyway. The

result of the parser's work is a sequence of the TPCntr basemap

contours. The TPCntr class inherits from the GMCntr class and, apart

from standard point-locating functionality, provides several additional

attributes such as the contour identifier.

The only source of the topographic information is the .POINTS file

produced by parsing the corresponding topographic map provided in

the .DXF format. The .POINTS file simply contains a sequence of

basemap points in 3D. To be more precise, many points in the file lie

outside the basemap, but those points are simply discarded, using the

basemap boundaries obtained by examining the point coordinates in

the .TOPO file. The points that do lie inside the basemap are added as

additional constraints into the CDT triangle mesh.

Once the basemap area is triangulated using the incremental CDT

algorithm, a temporary face multigraph data structure is built on top of
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the resultant triangle mesh. The sole purpose of the multigraph data

structure is to serve as a collection of polygons that can be registered

with an instance of the GMLocator class to provide point-locating

functionality. Once a point locator is created and initialized, for each

point from the basemap .TOPO file, the locator is used to identify the

triangle in the topographic basemap terrain that contains the point. If

the triangle is successfully identified, the third, Z-coordinate of the

point is modified properly to ensure that the point lies in the plane

formed by the triangle vertices.

Mesh

Edge

QuadEdge

CLParser - MObiect FLParse

BMParser BMModelor TPParser VXParse.

NTPCir GItt

Stream GMLocator GMCnv

NStream QuadEdge G

GMBucke .

G'mStream PSSIrSm Edge GMGraph GMGroup

GCLor L UGStream GMSpace GMEdge MLiterator GMNode

Figure 3-8: Modular Dependency Diagram of the Basemap

Modeler Application. Note how the classes used together are

shown in the same box.
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Once all basemap contour points are extruded into 3D, the contours

are added as additional constraints into the existent triangle mesh to

form a fully extruded 3D version of the M.I.T. basemap. The only task

left then is to ensure that the output .SPACES file reflects the changes

made to the space contours and triangulation. The way it is done is

that face and patch multigraph data structures are built on top of the

basemap triangle mesh, using a flood-fill-like algorithm to assign each

triangle in the mesh to a particular basemap space. Once it is done,

the 3D basemap space data may be written into a 3D version of the

.SPACES file as well as to any of the auxiliary file formats supported in

the project.
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Chapter 4

Future Work and Conclusion

There are several improvements that can be made to the existing set

of the basemap generating tools in the future. First, new space label

types may be added in the Basemap Generator application. For

instance, even though there is a special CWATR layer that indicates

the shore of the Charles River in the original .DXF basemap file,

currently the layer is discarded, and there is no space label type that

corresponds to a water surface. Second, a better way to process

erroneous T-junctions in the PATCHBUILDER stage of the Basemap

Generator application would be beneficial. Finally, in the Basemap

Modeler application, it would be a good improvement to filter out from

the input topographic map file those points that stand out among their

neighbors with unusually large or small Z-coordinates. The following

sections describe each of the possible future improvements in more

detail.

4.1 Adding New Space Label Types

In order to add a new space label type in the Basemap Generator

application, the following modifications must be made (based on the

C_WATR example above). First, the GMCOLOR.H and the

GMCOLOR.CPP files must be modified to include two new types: one
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edge type to represent contours in the C_WATR layer, and one space

label type, also known as node type, to represent a water surface. In

addition, two new colors from the global color list must be chosen to

represent the two types above in the output. Then, in the

TRIANGULATOR.CPP file, the body of the ToEdgeType function must be

modified so that the new edge type is returned every time the

C_WATR layer name is passed into the function. Finally, in the

GMPOLY.CPP file, the estimated probability values table declared in the

GMGroup class must be updated to reflect the presence of the new

edge type.

4.2 Detecting Erroneous T-junctions

Erroneous T-junctions in the original .DXF basemap file are responsible

for many of the space-labeling errors. The SL algorithm works well

provided that the basemap is correctly broken into a set of

distinguishable spaces. However, the flood-fill algorithm, used during

the space-building stage, often leaks through small gaps left by the

erroneous T-junctions, incorporating two or more true spaces into a

single large space (see Figure 2-3). The way most of the incorrect T-

junctions are detected now is by forbidding any flow through very

small or very "thin" triangles in the flood-fill algorithm. The latter

approach is good, but it does not detect many of the erroneous T-

junctions and sometimes finds false positives; a new and better

approach would be valuable.
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4.3 Filtering Out Invalid Z-coordinates

The basemap extrusion into 3D works well in the Basemap Modeler

application provided that the topographic data is correct. However,

some points in the point-by-point topographic map of the MIT campus

have unusually large or unusually small Z-coordinates, forming peaks

and/or valleys once the extrusion is performed.

Figure 4-1: The MIT Campus Terrain Extruded into 3D Using

Partially Incorrect Topographical Data.
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One way to solve the problem of partially erroneous Z-coordinates is

to filter out points that have unusually large or unusually small

elevation values. For instance, if the elevation value of a point differs

by more than, say, two standard deviations from the average elevation

in the neighborhood, the elevation value of the point may be set to the

average, thus making the basemap surface smoother.

4.4 Conclusion

While the existing set of tools for generating a three-dimensional

model of the MIT campus terrain may be improved in many different

ways, it provides all the necessary functionality and may be used by

further generations of students as a good starting point for their work

on creating realistic models of large urban areas. I hope that the

results accomplished by the BMG project will be of use to the MIT

community and visitors of the campus.
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Appendix A

Project Build Instructions

This chapter describes how to checkout, build, and execute the

applications described in the thesis, including the Basemap Generator,

Basemap Examiner, Basemap Modeler, and Building Mapper. The

instructions below assume an account with the MIT Computer Graphics

Group and a UNIX-like command-line environment.

A. 1 Checkout and Build Instructions

The applications described in the thesis are part of the CVS

walkthru/mit source tree. To checkout the tree, first, set the CVS

environment variable:

% setenv CVSROOT /d9/projects/

Make sure that the environment variable is set by checking the

environment:

% env I grep CVSROOT

Next, move to the directory where the walkthru source tree will be

hosted. To checkout the entire tree, type:

77



% cvs checkout -P walkthru/mit

To checkout only the basemap generator part of the tree:

% cvs checkout -P walkthru/mit/src/BaseGen/

In the walkthru/mit/src/ directory, find the BaseGen directory. The

latter directory contains subdirectorieS BaseGen, BaseExam, BaseMod,

and BldgMap with source code and data files for the Basemap

Generator, Basemap Examiner, Basemap Modeler, and Building

Mapper applications, respectively. The BaseGen directory also contains

subdirectories common, FLParser, Graphics, and Geometry with source

code files of four static libraries used by the basemap generator

applications.

To build all of the basemap generator applications and libraries

automatically, run the build. sh in the BaseGen directory. To build a

particular library or application separately, type:

% make

in the corresponding subdirectory. Before building an application,
make sure that all the static libraries have already been built. For

instance, you may build the programs in the following order: Common

library, FLParser library, Geometry library, Graphics library, Basemap

Generator, Basemap Examiner, Basemap Modeler, and Buildging

Mapper.
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A.2 Invoking Applications

In order to generate a three-dimensional model of the MIT campus,

one may simply run the buildbasemap.sh script located in the

BaseGen directory. The script takes the input data from the

BaseGen/Input directory and runs the basemap generator project

applications, one after another, to produce a three-dimensional model

of the MIT campus, stored along with the rest of the relevant data in

the BaseGen/Output directory. Alternatively, the user may run each of

the basemap generator applications separately. The following

paragraphs describe invoking each of the applications in more detail.

A.2.1 Basemap Generator

The Basemap Generator application is invoked with the following

command-line arguments:

% BaseGen data -mode mode -ctff contours -frmt formats

The data parameter specifies the name of the input basemap .UG file.

The rest of the flags and parameters are optional. The -mode switch

allows the user to specify whether the application must be run in the

batch or in the debugging mode by setting the mode value to the batch

or debug value, respectively. The batch mode is set by default. The -

ctff switch allows the user to specify the .CNTR file with coordinates

of the building contours to be cut off the basemap. By default, no
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contours are cut off. Finally, the -frmt switch allows the user to

specify the format of the files produced for debugging purposes

(currently some files are produced no matter whether the -mode file is

set to the batch or debug value). The presently supported file formats

are Unigrafix, Open Inventor, and Post Script. The user is allowed to

specify more than one format by using a plus separator. The following

is an example of a typical command-line argument set:

% BaseGen Data/basemap/basemap.ug -mode batch -ctff

Data /basemap. cntr -frmt ps+iv+ug

The output of the program is a special .IT file used by the Basemap

Examiner application and one or more files with debugging

information. By default, the output files can be found in the parent

directory of the input .UG file specified.

In addition, the Basemap Generator application supports command-

line help functionality. To read the help, invoke the application with a

special -help flag as shown below:

% BaseGen -help

Apart from source code files, the BaseGen directory contains a set of

test data sets located in the Data subdirectory. Presently, the Data

directory contains four data sets: 0200, 0569, 1000, and basemap,

each located in a separate subdirectory. For instance, the 0200

subdirectory contains a forgc0200.ug data file that represents a 200

by 200 piece of the basemap. The basemap subdirectory contains the
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entire basemap file, basemap.ug. To understand how the Basemap

Generator application works, run the program in the debugging mode

on one of the small data sets:

% BaseGen Data/0200/forgcO200.ug -mode debug -frmt ps+iv

A.2.2 Basemap Examiner

The Basemap Examiner application is invoked with the following

command-line arguments:

% BaseExam data -mode mode -list list -frmt formats

The data parameter specifies the name of the .IT file produced by the

Basemap Generator application. The rest of the flags and parameters

are optional. The -mode and -frmt flags play the same role as in the

Basemap Generator application. However, in the debugging mode of

the Basemap Examiner application, the user is allowed to navigate

across the basemap and to refine the space assignment produced by

the Basemap Generator application. Cursor keys LEFT, RIGHT, UP, and

DOWN can be used to go left, right, up and down across the basemap,

respectively. Letter keys g, b, I, t, s, h, c, u can be used to set the

space label type of the currently active patch to GRASS, BUILDING,

SLOPE, STAIRS, SIDEWALK, ROAD, ELEVATION, or UNKNOWN type,

respectively. Keys PAGEUP and PAGEDOWN can be used to zoom in

and zoom out on the basemap, respectively.
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In addition to the usual set of flags, the Basemap Examiner application

supports a special -list flag that allows the user to specify the list of

the .PORTALS files that need to be modified to ensure that each of the

initially dangling portals is leading to a valid basemap space. The list

file consists of a list of .PORTALS file paths specified relatively to the

location of the BaseExam executable. The following is an example of a

typical command-line argument set:

% BaseExam Data/basemap/basemap.ug.it -mode batch -list

Data/Bldg/bldgs.txt -frmt ug+iv

The output of the program consists of the modified version of the .IT

file generated by the Basemap Generator application, the basemap

.SPACES file, the basemap .PORTALS file, and a special .TOPO file used

by the Basemap Modeler and Building Mapper applications. By default,

the output files can be found in the parent directory of the input .JT file

specified.

The Basemap Examiner application also supports command-line help

functionality. To read the help, invoke the application with a -help flag

as shown below:

% BaseExam -help

Finally, the Basemap Examiner application can also be run on different

data sets located in the BaseExam/Data/ directory. The data sets

found in the directory are those produced from 0200, 0569, 1000, and

basemap data sets by the Basemap Generator application. To
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understand how the Basemap Examiner application works, run the

program in the debugging mode on one of the small data sets:

% BaseExam Data/0200/forgc0200.ug.it -mode debug -frmt

ps+iv

A.2.3 Basemap Modeler

The Basemap Modeler application is invoked with the following

command-line arguments:

% BaseMod data -topo topo file -frmt formats

The data parameter specifies the name of the topographic, point-by-

point map file. The -topo switch allows the user to specify the name of

the .TOPO file produced by the Basemap Examiner application. Finally,

the -frmt switch plays the same role as in the two other basemap

generator applications; it is optional. The Basemap Examiner also

supports the -mode switch but presently works only in the batch mode.

The following is an example of a typical command-line argument set:

% BaseMod Data/basemap.points -topo basemap.ug.it.topo -

frmt ug+iv

The output of the program consists of the three-dimensional version of

the basemap .SPACES file, the basemap .PORTALS file, and two three-

dimensional basemap models in the Unigrafix and Open Inventor
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formats. By default, the output files can be found in the parent

directory of the input .TOPO file specified.

The Basemap Modeler application also supports command-line help

functionality. To read the help, invoke the application with a -help flag

as shown below:

% BaseMod -help

Finally, the Basemap Modeler application can also be run on different

data sets located in the BaseMod/Data/ directory. The data sets found

in the directory are those produced from 0200, 0569, 1000, and

basemap data sets by the Basemap Generator and Basemap Examiner

applications. To understand how the Basemap Modeler application

works, run the program in the debugging mode on one of the small

data sets:

% BaseMod Data/basemap.points -topo

Data/0200/forgcO200.ug.it.topo -frmt ug+iv

A.2.4 Building Mapper

Unlike other basemap generator applications, the Building Mapper

application does not directly participate in the process of generating

the basemap model. The only purpose of the Building Mapper

application is to ensure that the building contours file used by the
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Basemap Generator application is correct. The Building Mapper

application is invoked with the following command-line arguments:

% BldgMap contours -topo topo -frmt formats

The contours parameter specifies the name of the original building

contours file. The -topo switch allows the user to specify the name of

the .TOPO file produced by the Basemap Examiner application. Finally,

the optional -frmt switch plays the same role as in the rest of the

applications described above. The application also supports the -mode

switch but presently works only in the debug mode. The following is an

example of a typical command-line argument set:

% BldgMap Data/buildings.cntr.fixed -topo

Data/basemap/basemap.ug.it.topo -frmt ps+iv

In the program, the building contours from the contours file are shown

in black and the building contours from the .TOPO basemap file are

shown in blue. The user can use the cursor keys LEFT, RIGHT, UP, and

DOWN to go left, right, up, and down across the basemap,

respectively. In addition, the user is allowed to activate a black

building contour by pressing the INSERT key and to translate and/or

rotate the activated contour around its center in the clockwise and

counter-clockwise direction, using the cursor keys as well as w and c

character keys, respectively. Finally, the user can use PAGEUP and

PAGEDOWN keys to zoom in and zoom out on the basemap and F1,

F2, F3 keys to control the size of a single translation/rotation step: F1
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sets the step to a predefined default value, F2 decreases the step by a

factor of 10, and F3 increases the step by a factor of 10.

The output produced by the program consists of the fixed version of

the building contour file, easily recognizable by a special .FIXED

extension, and a special .TRNSF file that contains the set of transforms

applied to each of the original building contours. By default, the output

files can be found in the parent directory of the input .CNTR file

specified.

The Building Mapper application also supports command-line help

functionality. To read the help, invoke the application with a -help flag

as shown below:

% BldgMap -help

Finally, the Building Mapper application can also be run on different

data sets located in the BldgMap/Data/ directory. The data sets found

in the directory are those produced from 0200, 0569, 1000, and

basemap data sets by the Basemap Generator and Basemap Examiner

applications. To understand how the Building Mapper application

works, run the program on one of the small data sets:

% BldgMap Data/buildings.cntr.fixed -topo

Data/0200/forgcO200.ug.it.topo -frmt ps+iv
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Appendix B

File Formats

This chapter describes the file formats used in the project, including

formats such as .SPACES, .PORTALS, .IT, .TOPO, .CNTR, and .TRNSF.

B.1 .SPACES File Format

A .SPACES file consists of a set of spaces, where each space is

represented as a single line in the file, in the following format:

SPACENAME SPACE-CONTOUR I SPACETRIANGULATION

If the space is a basemap space, the SPACENAME follows the format:

BMAP#ID#TYPE

The SPACECONTOUR for a space represents the 2D footprint of the

space, represented as an ordered list of 3D points. The contour must

be closed, i.e., the last point in the list must be the same as the first

point. For a space with n points, the format is:

{X1 Y1 Zi} ... {X, Y Z, }
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The SPACETRIANGULAION for a space is the CDT triangulation of the

space, represented as a 3-tuple of points enclosed by braces. For a set

of m triangles, the format is:

{ {T1xj T1yI Tzi} {Tlx2 TY2 T1z2} {T x 3  T1y 3  T1z3}I ... { {Tmx Tmyi

Tmzl I { TmX2 TmY2 TmZ2} { Tmx 3 TmY3 Tmz 3 } I

For example, one .SPACES record may look as following:

BMAP#1000#GRASS {711007.0 496071.0 0.01 {711025.0 496033.0
0.01 {711083.0 496059.0 0.01 {711066.0 496097.0 0.01
{711007.0 496071.0 0.0} 1 {{711066.0 496097.0 0.01
{711025.0 496033.0 0.01 {711083.0 496059.0 0.011 {{711025.0
496033.0 0.01 {711066.0 496097.0 0.01 {711007.0 496071.0
0.0}1

B.2 .PORTALS File Format

A .PORTALS file consists of a set of portals, where each portal is

represented as a single line in the file, in the following format:

PORTALNAME PORTAL TYPE SPACE_1 SPACE_2 PORTALSHAPE

The PORTALNAME is simply a unique identifier. The PORTALTYPE is one

of the following valid types: STAIR_UP, STAIRDOWN, ELEVUP,

ELEV DOWN, OUTSIDE, WINDOW. Each portal connects two spaces with

unique identifiers SPACE_1 and SPACE 2, respectively. Portals are

directed in the sense that the order of the spaces above does matter.

Each portal also has a physical footprint, as represented by the

88



PORTALSHAPE, which is a set of four points represented by the

quadrilateral outline of the portal:

{P1X, Ply, Ply} ... {P4x, P4y, P4y}

For example, one .PORTALS record may look as following:

PRTL1000 OUTSIDE BMAP#1000#GRASS BMAP#1001#SDWLK {711007.0
496071.0 0.0} {711025.0 496033.0 0.0} {711007.0 496071.0
0.01 {711025.0 496033.0 0.0}

B.3 .IT File Format

The .IT file format is very similar to the .SPACES format. The main

difference between the two formats is that the .IT format provides

some additional information such as the estimated probability of the

space being grass, sidewalk, etc., and whether the space type is fixed

or not. Each space is represented in the file as a single line, in the

following format:

SPACENAME SPACE TYPE TYPE-FIXED PROBVECTOR SPACECONTOUR

I SPACETRIANGULATION

The SPACE NAME follows the format:

BMAP#ID#
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That is, the type of the space is not part of the space name and is

specified separately as SPACETYPE. The PROBVECTOR is represented

as a sequence of probability values enclosed in braces. For a set of n

values, the format is:

{ P1 P 2 -.. Pn }

TYPE-FIXED is 0 if the space type is not fixed and 1 if the space type is

fixed. SPACECONTOUR and SPACETRIANGULATION are specified

same way as in the .SPACES file format.

For example, one .IT record may look as following:

the

BMAP#1000# GRASS 0 {0.0 0.77396 0.0 0.0 0.0 0.63324 0.0 0.0
0.01 {711007.0
{711083.0 49605
496071.0 0.01 1
0.01 {711083.0
{711066.0 496097.

496071.0
9.0 0.01 {

{{711066.0

0.0} {711025.0
711066.0

496097.0
496059.0 0.011
0 0.01 {711007.0

496097.0
496033.0 0.01
0.01 {711007.0

0.01 {711025.0 496033.0
{{711025.0 496033.0
496071.0 0.011

0.01

B.4 .TOPO File Format

The .TOPO file format is a simpler version of the .IT format.

.TOPO file, each space is represented as a single line, in the following

format:

SPACENAME SPACE TYPE SPACE CONTOUR

For instance, one .TOPO record may look as following:
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BMAP#1000# GRASS {711007.0
0.01 {711083.0 496059.0
{711007.0 496071.0 0.01

496071.0 0.01
0.01 {711066.0

{711025.0 496033.0
496097.0 0.01

B.5 .CNTR File Format

The .CNTR file format is used throughout the project for representing

simple contours. A .CNTR file consists of a set of contours, where each

contour is represented as a single line in the file, in the following

format:

CONTOURID CONTOURSIZE V1 V2 ... Vcontour size

The CONTOURID is an arbitrary, globally unique identifier;

CONTOURSIZE is the number of vertices in the contour; each of the

vertices vi is a 3-tuple:

{xi Yi Zi}

For example, one .CNTR record may look as following:

mit W85ABC
{706913.689451
493986.963538
{706919.563912

6 {706919.149218
493987.418518

0.01 {706914.104144
493988.996716

493989.906678
0.01 {706913

493986.508557
0.01

0.01
.896798

0.01
{706919.356565

493989.451697 0.01
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B.6 .TRNSF File Format

A .TRNSF file consists of a set of transformation records, where each

transformation record is represented as a single line in the file, in the

following format:

CONTOURID CWCONTOURROTATION CONTOURTRANSLATION

The CONTOURID is the ID of the contour that must undergo the

transformation. The CWCONTOURROTATION indicates how much the

contour must be rotated around its center in the clockwise direction.

The CONTOURTRASLATION is the translation vector, in the following

format:

{T, Ty Tz}

For instance, one .TRNSF record may look as following:

mit_2 3.1415 {-2.81250 -0.9 0.0}
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B.7 .CONTOURS File Format

A valid .CONTOURS file consists of zero or more contours, where each

contour is a set of one or more lines, in the following format:

E Z X1 Y1 X2 Y2 ... Xn Yn 0 0

The Z token above is the contour Z-value, the same for all points

along the contour. Each pair Xi and Yi represents one of the contour

points. The last pair of point coordinates is always 0 and 0. For

instance, one .CONTOURS record may look as following:

E 8.0
705184.9072
705184.5328
705181.3709
705178.2678
705177.8206
705174.7713
0 0

498043.6460
498045.1372
498054.7966
498069.8690
498071.5573
498077.3167

B.8 .POINTS File Format

A valid .POINTS file is simply a sequence of points, where each point is

represented in the file as a 3-tuple:

x Y Z

For instance, a simple .POINTS file may look as following:

704973.9842 493326.7027 9.00
705030.1043 493321.0519 9.80
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Appendix C

The PROBASSIGNER Lookup Table

The following is the lookup table used by the PROBASSIGNER process

(see Chapter 2) to estimate the probability of each space being grass,

sidewalk, building, and so on, as defined in the GMPoly. cpp file. In the

table, each non-zero entry is defined as:

s prob table[EDGE TYPEl] [EDGE TYPE2] [SPACETYPE] = VALUE

That is, for each pair of edge types present in the space contour, the

probability that the space type is SPACETYPE is estimated to be the

VALUE.

GRASS

s prob table[EDGE GRASS]
s_probtable[EDGEGRASS]

s_prob table [EDGEGRASS]
s_probtable[EDGEGRASS]

s prob table [EDGE GRASS]
s_probtable[EDGEGRASS]

s probtable [EDGEGRASS]
s_prob table[EDGEGRASS]

s_prob table[EDGE GRASS]
s-probtable[EDGEGRASS]

s_probtable [EDGE GRASS]
s probtable[EDGE GRASS]

[EDGE GRASS]

[EDGEGRASS]

[EDGEBLDNG]

[EDGEBLDNG]

[EDGE SLOPE]

[EDGESLOPE]

[EDGE STAIR]

[EDGESTAIR]

[EDGE HGWAY]

[EDGEHGWAY]

[EDGE CNSTR]

[EDGE CNSTR]

[NODE GRASS]

[NODESDWLK]

[NODEGRASS]

[NODESDWLK]

[NODEGRASS]

[NODESDWLK]

[NODE GRASS]

[NODESDWLK]

[NODEGRASS]
[NODESDWLK]

[NODEGRASS]

[NODE SDWLK]
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= 0.55;
= 0.45;

0 . 50;
= 0.50;

= 0. 45;
0.55;

0. 45;
= 0.55;

= 0.50;
0.50;

= 0. 45;
0.55;



s probtable
s probtable
s probtable

BTLDNG:

s prob table
s prob table
s probtable
s probtable

s probtable
s probtable
s prob table

s prob table
s prob table
s probtable

s probtable
s probtable
s probtable

s prob table
s probtable
s probtable

s probtable
s probtable

// SLOPE:

s_probtable
s probtable
s_probtable
s probtable
s prob table
s probtable
s probtable
s probtable

s probtable
s prob table
s probtable
s probtable

[EDGEGRASS]

[EDGE GRASS]

[EDGEGRASS]

[EDGE BLDNG]

[EDGEBLDNG]

[EDGEBLDNG]

[EDGE BLDNG]

[EDGEBLDNG]

[EDGEBLDNG]

[EDGEBLDNG]

[EDGEBLDNG]

[EDGE BLDNG]

[EDGEBLDNG]

[EDGEBLDNG]

[EDGEBLDNG]

[EDGEBLDNG]

[EDGE BLDNG]

[EDGEBLDNG]

[EDGEBLDNG]

[EDGEBLDNG]

[EDGEBLDNG]

[EDGESLOPE]
[EDGESLOPE]

[EDGESLOPE]

[EDGE SLOPE]

[EDGE SLOPE]

[EDGE SLOPE]

[EDGE SLOPE]

[EDGESLOPE]

[EDGE SLOPE]

[EDGE SLOPE]

[EDGE SLOPE]

[EDGE SLOPE]

[EDGE MBRDR]

[EDGE MBRDR]

[EDGEMBRDR]

[EDGE BLDNG]

[EDGE BLDNG]

[EDGE BLDNG]

[EDGEBLDNG]

[EDGE SLOPE]

[EDGE SLOPE]

[EDGESLOPE]

[EDGE STAIR]

[EDGE STAIR]

[EDGESTAIR]

[EDGE HGWAY]

[EDGE HGWAY]

[EDGEHGWAY]

[EDGE CNSTR]

[EDGECNSTR]

[EDGECNSTR]

[EDGEMBRDR]

[EDGEMBRDR]

[EDGE SLOPE]

[EDGESLOPE]

[EDGESLOPE]

[EDGESLOPE]

[EDGESTAIR]

[EDGESTAIR]

[EDGE STAIR]

[EDGESTAIR]

[EDGEHGWAY]

[EDGEHGWAY]

[EDGEHGWAY]

[EDGE HGWAY]

[NODE GRASS]

[NODE SDWLK]

[NODEUKNWN]

[NODE GRASS]

[NODE SDWLK]

[NODE BLDNG]

[NODEHGWAY]

[NODE GRASS]
[NODE SDWLK]

[NODESLOPE]

[NODE GRASS]

[NODE SDWLK]

[NODESTAIR]

[NODE GRASS]
[NODE SDWLK]

[NODEHGWAY]

[NODE GRASS]

[NODE SDWLK]

[NODEHGWAY]

[NODE BLDNG]

[NODEUKNWN]

[NODEGRASS]

[NODE SDWLK]

[NODESLOPE]

[NODE HGWAY]

[NODE GRASS]
[NODESDWLK]

[NODESLOPE]

[NODEHGWAY]

[NODEGRASS]

[NODESDWLK]

[NODESLOPE]

[NODEHGWAY]

s prob table[EDGE SLOPE] [EDGECNSTR] [NODEGRASS]
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0
0

0

0
0
0
0

0
0
0

= 0

= 0

=0

.10;

.10;

.80;

05;
25;
50;
20;

.25;

.25;

.50;

.25;

.25;

.50;

= 0.10;
= 0.60;
= 0.30;

0.
0.

0.

45
45

10

= 0.20;
= 0.80;

05;
20;
60;
15;
05;
20;
60;
15;

05;
50;
05;
40;

= 0.45;



s probtable
sprobtable
sprobtable

s probtable
s prob table

s r t:
s prob table
s prob table
s prob table
s prob table
s prob table
s prob table
s prob table
s prob table

s prob table
s prob table
s prob table
s probtable

s probtable
s-prob-table

/1/ HGWAY:

s prob_table
s prob table
s prob table

s prob table
s probtable
s probtable

[EDGESLOPE]

[EDGESLOPE]

[EDGESLOPE]

[EDGESLOPE]

[EDGESLOPE]

[EDGESTAIR]

[EDGESTAIR]

[EDGESTAIR]

[EDGESTAIR]

[EDGE STAIR]

[EDGE STAIR]

[EDGESTAIR]

[EDGESTAIR]

[EDGESTAIR]

[EDGE STAIR]

[EDGE STAIR]

[EDGESTAIR]

[EDGE STAIR]

[EDGESTAIR]

[EDGE HGWAY]

[EDGE HGWAY]

[EDGEHGWAY]

[EDGEHGWAY]

[EDGE HGWAY]

[EDGE HGWAY]

[EDGECNSTR]

[EDGECNSTR]

[EDGECNSTR]

[EDGEMBRDR]

[EDGEMBRDR]

[EDGE STAIR]

[EDGESTAIR]

[EDGE STAIR]

[EDGE STAIR]

[EDGE HGWAY]

[EDGE HGWAY]

[EDGE HGWAY]

[EDGE HGWAY]

[EDGE CNSTR]

[EDGE CNSTR]

[EDGE CNSTR]

[EDGECNSTR]

[EDGE MBRDR]

[EDGE MBRDR]

[EDGEHGWAY]

[EDGEHGWAY]

[EDGEHGWAY]

[EDGE CNSTR]

[EDGE CNSTRI

[EDGE CNSTR]

[NODE SDWLK]

[NODE SLOPE]

[NODEHGWAY]

[NODE SLOPE]

[NODEUKNWN]

[NODE GRASS]

[NODE SDWLK]

[NODE STAIR]

[NODE HGWAY]

[NODE GRASS]

[NODE SDWLK]

[NODE STAIR]

[NODEHGWAY]

[NODE GRASS]

[NODE SDWLK

[NODE STAIR]

[NODEHGWAY]

[NODE STAIR]

[NODE_ UKNWN]

[NODE GRASS]

[NODE SDWLK]

[NODEHGWAY]

[NODE GRASS]

[NODE SDWLK]

[NODEHGWAY]

s probtable[EDGE HGWAY]

s probtable[EDGEHGWAY]

/ CN STR P:

s probtable[EDGE CNSTR]

s_probtable[EDGECNSTR]

s_probtable[EDGE CNSTR]

s_prob table[EDGECNSTR]
s_prob table[EDGECNSTR]
s_prob table [EDGECNSTR]

[EDGE MBRDR]

[EDGEMBRDR]

[EDGE CNSTR]

[EDGE CNSTR]

[EDGECNSTR]

[EDGEMBRDR]

[EDGE MBRDR]

[EDGE MBRDR]

[NODE HGWAY]

[NODEUKNWN]

[NODE GRASS]
[NODE SDWLK]

[NODECNSTR]

[NODE GRASS]

[NODE SDWLK]

[NODEBLDNG]
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= 0.45;
= 0.05;
= 0.05;

0.20;
0.80;

0.05;
0.20;
0.60;
0.15;
0.05;
0.50;
0.05;
0.40;

0.45;
0.45;

0.05;
= 0.05;

0.20;
0.80;

0.20;
0.20;
0.60;

0.45;
0.45;
0.10;

= 0.20;
0.80;

= 0.25;
= 0.25;
= 0.50;

0.04;
= 0.04;
= 0.04;



s_probtable[EDGECNSTR]

s_probtable[EDGECNSTR]
s_probtable[EDGE CNSTR]
s_probtable[EDGECNSTR]

/ / MBFDR:

s prob table[EDGEMBRDR]

s probtable[EDGE MBRDR]

s probtable[EDGEMBRDR]

s probtable[EDGEMBRDR]

s prob table[EDGEMBRDR]
s prob table[EDGEMBRDR]

s probtable[EDGE MBRDR]

[EDGEMBRDR]

[EDGEMBRDR]

[EDGEMBRDR]

[EDGEMBRDR]

[EDGE MBRDR]

[EDGE MBRDR]

[EDGEMBRDR]

[EDGE MBRDR]

[EDGEMBRDR]

[EDGE MBRDR]

[EDGE MBRDR]

[NODE SLOPE]

[NODE STAIR]

[NODE CNSTR]

[NODEUKNWN]

[NODE GRASS]

[NODE SDWLK]

[NODE BLDNG]

[NODE SLOPE]

[NODE STAIR]

[NODE CNSTR]

[NODEUKNWN]
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= 0.04;
= 0.04;

0.04;
= 0.76;

0.04;
= 0.04;
= 0.04;

0.04;
0.04;

= 0.04;
= 0.76;
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