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ABSTRACT

Parallel computing, especially cluster computing has become more

popular and more powerful in recent years. Star-P is a means of

harnessing that power by eliminating the difficulties in

parallelizing code and by providing the user with a familiar and

intuitive interface. This paper presents methods to create a

parallel FFT module for Star-P. We find that because calculating

a parallel FFT is more communication-intensive than processor-

intensive, clever planning and distribution of data is needed to

achieve speed-up in a parallel environment.
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1. Theory

1.1. Discrete Fourier Transform

1.1.1. One-Dimensional DFT
The one-dimensional Discrete Fourier Transform is a matrix-vector

product between a matrix, FN, the Fourier matrix, and a vector.

The DFT can be expressed in the following equations:

y=FNx [1],

1 1 1 ... 1

1 2 N-l

where FN I 2 4 1 c 2
(N-1) [21

1 wN- ) 2 (N- 1) (N-1)2

27ri

and w=e N [3]

We can also express the DFT as a summation:

y[k]= x[j](Oj where k = 0, 1, ... , N- [4].
j=0

1.1.2 Inverse DFT
The inverse Discrete Fourier Transform is a matrix-vector product

between the vector and the Fourier matrix.

Expressed as a summation, it is:

y[k]= Y x[j](t)N-k [5 .
j=0

Often times, the inverse DFT is scaled down by a factor of N.

Therefore, we can say that:

Nx=F-'(Fx) [6].
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1.1.3 Convolution Theorem
The DFT and the inverse DFT can be combined to aid in computing

convolutions. Let (f * g) represent the convolution of two

discrete signals, f and g. If we let F represent the Fourier

Transform operator, then (F f) represents the DFT of the signal f

and (F g) represents the DFT of the signal g. The convolution

theorem states that:

F(f*g)=(Ff).(Fg) [7],

where the dot denotes point-wise multiplication. Another form of

the theorem that will prove invaluable later is the following:

(f*g)=F((Ff).(Fg)) [8J,

which states that the convolution of two signals is equal the

inverse Fourier transform of the point-wise multiplication of the

Fourier transform of each of the two individual signals.

1.1.4 Two-Dimensional DFT
The two-dimensional Discrete Fourier Transform is a matrix-matrix

product between the Fourier matrix and the desired matrix in the

following form:

y =FNXFN 9],

which can also be expressed as:

y=(FN(FNX)T )T [10].

The above equation states that the two-dimensional FFT is a

series of smaller steps as follows: a one-dimensional FFT on the

matrix, a transpose of the resulting matrix, another one-

dimensional FFT on the matrix, and finally another transpose.

10



1.1.5 Properties of the Discrete Fourier Transform
When the input to the DFT is a matrix that contains only real

numbers, then we can apply the following property to the DFT:

y[k]=y*[N-k] [11].

This property will split the calculation of the DFT of a real

vector in half [2].

Another useful property of the DFT is that for a matrix

where the elements are complex, then we can apply the following

property of the DFT:

F(A+Bi)=FA+i*FB [12].

Therefore, a DFT on a matrix with complex elements can be broken

down into two more simple DFTs on matrices with real elements.

1.1.6 Relation between the DFT and the FFT
The Fast Fourier Transform is identical to the Discrete Fourier

Transform. The Fast Fourier Transform is a term that was coined

to describe the set of algorithms use to increase the speed of

calculating the DFT from being O(N2 ) as would be expected from a

matrix-vector product to being O(N log 2 N). Another difference

between the DFT and the FFT is connotation in the size of the

problem investigated. Often times, the DFT is associated with

either infinite or an arbitrary size while the FFT is most often

associated with sizes that are equal to a power of 2. In fact,

most benchmarks for FFTs will only be expressed as the speed of

the FFT versus a matrix of size equal to a power of 2. The term

FFT and DFT can otherwise be used interchangeably.
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1.2 Cooley-Tukey Method

1.2.1 Radix-2 Decimation in Time FFT
Calculating a DFT purely by the mathematical definition given

above would take O(n2 ) time. However, in 1965, Cooley and Tukey

independently came up with a solution that was actually first

proposed by Gauss even before Fourier proposed his original paper

on the Fourier series. The Cooley-Tukey method is an example of

a divide-and-conquer algorithm. A divide-and-conquer algorithm

recursively attempts to solve a problem by dividing the original

problem into two or more problems of smaller size. The algorithm

then attempts to solve each smaller problem by further dividing

those problems into even smaller problems until some boundary

condition is met. The final solution is obtained by combining

the solutions to each of the smaller problems that spawned from

the original.

From equation [4], we can express one term of the DFT as

such:

N-1

y[k]=jx[j1(oj .
j=0

First, we shall evaluate the Cooley-Tukey algorithm in its

simplest form, the radix-2 FFT. Initially, we re-write the

definition of the DFT into the smallest summations of its even

terms and its odd terms as follows:

N N

y[k] x[2 j] ± 4jl + k x[2j + 1]iW/ [13].

j=0 j=0

12



Using the identity:

=WN0W2 [14],
2

we can re-write the above equation as:

N N
-- 1 -- 1

y~k ] = x(2j]w jk + ()k [ ~]k [ 15]3
j-0 2 j=0 2

As we can see from equation[15], it appears that each

summation becomes a smaller DFT of size N/2. The first DFT is

over the even-indexed elements and the second DFT is over the

odd-indexed elements. Because we are splitting the initial data

set, this approach is called decimation in time. In addition, by

applying another identity, we can easily find another element of

the final DFT.

We can also apply two more identities to easily find

another point in the DFT.

-N+k

w = -(Ok and w =1 [16]
2

help create the next equation:

N _1N

yAk + ]N x( 2 j ] jk - w x(2 j + 1](0ik [171.
2 2 j- 2

Equation [17] allows us to calculate two points in the DFT by

breaking up the DFT into two smaller DFTs of size N/2. If the

smaller DFTs of size N/2 are still divisible by 2, then we can

apply the radix-2 algorithm again to create even smaller DFTs of

size N/4. Assuming the smaller DFTs are still divisible by 2,

then we can keep applying the radix-2 algorithm until either the

13



DFT becomes so small that we can calculate it directly or until

it becomes a one-point DFT, in which case, the result is just

that element.

Originally, the DFT takes O(N2 ) time to calculate because it

is a matrix-vector product. However, with the radix-2 algorithm,

the computation is reduced to O(N log 2 N) because of the divide-

and-conquer strategy employed.

1.2.2 Radix-2 Decimation in Frequency FFT
Another radix-2 algorithm to calculate a FFT is to employ

decimation in frequency. Instead of dividing the input x into an

even-indexed set and an odd-indexed set, the decimation in

frequency (DIF) FFT divides the output y, into an even-indexed

set y 2j and an odd-indexed set Y2i. The algorithm is otherwise

very similar to the decimation in time (DIT) FFT [1].

1.2.3 Bit-Reversal
Because both the DIT and DIF FFT divide the FFT into an even-

indexed set and an odd-indexed set, either the input or the

output will be in a scrambled order. For the DIT FFT, it will be

output that will be in a scrambled order while for the DIF, it is

the input that is in a scrambled order. One method for restoring

the natural order of both the input and output is bit-reversal.

If we express the index of the element that we wish to de-

scramble in binary, then the proper place for the element is the

reverse of that index as expressed in binary [1].

1.2.4 Generalized Cooley-Tukey Algorithm
Unfortunately, there are many times where the size of the FFT

will not be a power of 2. In fact, there might even be times
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when the size of the FFT will not be a multiple of 2. However,

if the size N of the FFT is still a composite number, then we can

use the generalized Cooley-Tukey method to break the FFT down

into smaller sizes.

Again, we start with the definition of the DFT of size N as

defined by equation [4]

N-1

y[k ] = , x[ jk',
j=0O

If N is composite, then we can express N as the product of two

numbers p and q. We can then express the indices j and k from

the definition of a DFT as:

j=]jq+j 2  [18], and

k=k1 +k 2P [19]

where ji and k 2 range from 0 to p-1 and j 2 and k, range from 0 to

q-1. After substituting these values into the definition of the

DFT and then applying simple exponential identities, we achieve:

q-1 p-1

y[k + k2p]= ,[(y x[j 1q+ j 2 ]W )Wvk1 2k2 [ 20].
j2=0 j1=0

p-1

The inner summation, Ex[jq+ j 2 ]j , computes q DFTs of size p.
jl =0

It then multiplies it by the result by w' which is also known

as a twiddle factor and then finally calculates p DFTs of size q.

If each of p and q are composite as well, we can apply the

Cooley-Tukey algorithm again to achieve smaller DFTs until either

p and q are small enough to calculate directly or p and q are

prime numbers in which case, we can use either Rader's method or
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Bluestein's algorithm to calculate the DFT. Like the radix-2

method, the Cooley-Tukey method enjoys a speed-up in performance

from O(N2 ) time from the definition of the DFT to O(N log 2 N)

time.

1.3 Rader's Method
Another method for calculating the FFT of size N, where N is a

prime number is Rader's method. However, unlike Bluestein's

method, Rader's method only works when N is prime.

When N is prime, there exists a number g, which is a

generator for the number k, a multiplicative group modulo N that

contains the elements from 1 to N-1. Notice that k does not

contain the element zero. We can express the above as follows:

k= gmod n , where k = 1, 2, ...,n-1 and q is unique for each k

and is within the set {0, 1, . n-2}. Similarly, j=g-P mod n ,

where j is a non-zero index and p is within the set {0, 1, ... , n-

2} as well. Therefore, we can re-write the DFT using p and q as

follows:

N-2

y[gP,]=x[0]+ x[gq]w, where p = 0, ..., n-2. [21].
q=0

The final summation is a cyclic convolution between two

sequences a. and bq of length n-1, since q ranges from 0 to n-2,

where a. and bq are defined by:

a[q]=x[gq] [22], and

b[q] =w" (o -231
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We can apply the convolution theorem to the summation to turn it

into an inverse FFT of a point-wise multiplication of the two

FFTs, one of a and the other of b. The FFTs of a and b will be

of size N-1 and since N is prime and N-1 is composite, we can

apply the Cooley-Tukey algorithm to compute the FFT of a and b,

as well as the inverse FFT. Alternatively, the convolution can

be padded with zeroes to a length from 2 (n-1) - 1 to a power of 2

and then a radix-2 algorithm can be used.

1.4 Bluestein's Method
Bluestein's method of calculating FFTs can actually be applied to

FFTs of any size N. However, it has been found that it is more

efficient to use the Cooley-Tukey method to calculate FFTs of

composite N's. Therefore, the use of Bluestein has been somewhat

relegated to calculating the FFT of prime N's.

First, let us revisit the definition of the DFT from

equation [4]:

N-1

y[k]= Jx[j]o4" .
j=0

If we use the simple algebraic equality:

.k - (j - k)2 + j2 +k k2[2.jk- [24] .
2

Then we obtain

2N-1 -(j-k) 2

y[k] =o ((x[j ]w)wN 2 [25].
j=O

This summation becomes a linear convolution between two sequences

a and b of length N where:

17



kz2

a[k]=4k]w) [26], and

-k 2

b[k]=WN 2  [27],

where the output of the convolution is multiplied by a factor of

b*[k]. Therefore, the convolution becomes

N-I

y[k]=b*[k]ja[j]b[k-j] [28].

As stated before, from the convolution theorem, the

convolution becomes the inverse FFT of the point-wise product of

the FFT of a and b. However, the key is that the length of these

new FFTs do not have to be N. Because y has been expressed as a

convolution, the input vectors a and b can be zero-padded to any

length greater than 2N-1. Therefore, we can zero-pad the

convolution to a power of two and then apply the radix-2

algorithm.

There are two other ways of expressing Bluestein's method.

The first way is to think of the convolution as first running the

input through a chirp transform, which is based on an analog

signal filter [3]. The other way to think of the convolution is

to think of expressing the DFT as a symmetric Toeplitz matrix-

vector product where the symmetric Toeplitz matrix is any matrix

where its elements can be expressed as follows [1]:

t ,1 =hi_1 and hi1 =h1, [29].

The algebraic equality given in equation [24] accomplishes this.

18



2. Parallel Computing

2.1 Star-P
In recent years, there have been great advances in the field of

parallel computing. These advances, in addition to the decrease

in the cost of hardware, have caused cluster computing to boom.

Many companies and labs are turning to Beowulf clusters instead

of traditional supercomputers to handle their computationally

intensive needs. Beowulf clusters have the advantage over

traditional supercomputers in that they are cheaper to create.

This cost-efficiency is balanced by the fact that the clusters,

even the ones with high-end interconnects, have much higher

communication costs than shared-memory supercomputers. Because

of this, parallel computing on Beowulf clusters must take into

account the cost of communication between the nodes more keenly

than traditional supercomputers.

Another problem with supercomputing is that the cost of

creating a parallel program is still extremely high. An

algorithm that is optimized for computational cost on a serial

platform will not necessarily port well to a distributed

computer. Star-P is a solution to that. Star-P provides a

Matlab front-end to the user which is simple and intuitive to

learn, but also provides a distributed back-end which improves

performance over serial computers. Matlab was chosen as a front-

end because of its widespread popularity among engineering and

scientific communities. By providing a familiar front-end, Star-

P reduces the cost of creating parallel programs [12].

19



The back-end, on the other hand, demonstrates the cost of

creating parallel programs. It is written in a mixture of C,

Java, and Fortran with the Message Passing Interface (MPI)

library as its primary means of communication between nodes. MPI

is a popular library that works over TCP/IP connections as well

as with shared-memory architectures and consists of six basic

functions. One function signifies the start of a parallel

program while another signifies the end of the parallel program.

Two functions provide information about the parallel environment

such as the number of processors and the rank of each processor.

The last two functions are a simple send and receive. The send

function is a non-blocking send, which is called by the sender

and includes as its arguments, the data, the type of the data,

and lastly, the recipient. The receive function is a blocking

receive, which is called by the target and must include the data,

the type of the data and also the sender.

Each function that is normally available in Matlab is re-

implemented in Star-P with what is considered the most optimal

parallel algorithm. Therefore, each function acts as a black

box, receiving the same arguments and outputting the same result

as the serial version, which makes implementing new functions

through mex files identical to implementing new functions in

Matlab.

2.2 Distributions
Star-P uses three different kinds of distributions. These

distributions are the ones as specified by the parallel linear

20



algebra package Scalapack. Each of these three distributions has

its strengths and weaknesses depending on the desired function

and the user can control which distribution is used. Since each

function in Star-P is designed to work with each of the three

distributions, the user can chose which distribution is utilized

arbitrarily. However, this freedom also places a slight burden

on the user in that the user may choose a non-optimal

distribution.

The first distribution is row distribution. In this

format, the matrix is divided, as evenly as possible, by its rows

onto each of the processors. For example, with N rows and P

processors, the first processor will receive the first N/P rows,

rounded up to the nearest integer. The next processor will

receive the next N/P rows and so on. If there are not enough

rows such that each processor gets at least one row, then the

last few processors will not receive any data and there will be

wasted processors.

The second distribution is column distribution. This

format is identical to the row distribution except that instead

of contiguous rows being on each processor, contiguous columns

are on each processor. As in row distribution, the columns will

be divided as evenly over the processors as possible.

The last distribution is the block-cyclic distribution.

This format is the trickiest because it is also the most

flexible. When Scalapack is installed, it allows the user to

either chose the size of each block or to allow Scalapack to

21



dynamically chose the size of the blocks. The processors are

broken up into two groups. The first group contains the first

P/2 processors, rounded up. The second group contains the next

P/2 processors rounded down. The data is then broken into

blocks, using the sizes either specified by the user or the

Scalapack library. In a row major fashion, the blocks are

distributed cyclically across the first group of processors until

there are no blocks that can be distributed. The next set of

rows is distributed cyclically across the second group of

processors. The third set of rows is distributed across the

first group of processors and each successive set of rows is

distributed across a group of processors. For example, if the

size of the block ix MX by MY then the first MX rows are

cyclically column distributed across the first P/2 processors.

The next MX rows are cyclically column distributed across the

second P/2 processors and so on. This format is demonstrated by

the following diagram of a matrix distributed over 4 processors

[11].

*1 0 1 0 1 0 1

3 2 3 2 3 2 3

1 0 1 0 1 0
B k c 2 3 2 3 2 3

0 1 01 0 1 0 1

S23 2 3 2 3

0 1 oil 0 1 0 1

S2 3 2 3 2 3

FIGURE 1

Block-Cyclic Distribution Over Four Processors
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2.3 FFTW
Fastest Fourier Transform in the West, FFTW, is a C sub-routine

for computing Discrete Fourier Transforms in one or more

dimensions. The program was developed at MIT by Matteo Frigo and

Steven Johnson and is extremely competitive in terms of speed

with even manufacturer's hand-coded FFT functions. In addition,

FFTW is very portable from one architecture to another.

Initially FFTW was coded as a serial program. However, a

parallel version was added in FFTW 2.1.5, which is the version

that Star-P utilizes. The parallel version attempts to make the

calculations for FFTW as embarrassingly parallel as possible by

fitting smaller FFTs on each processor and then combining them as

necessary.

The key to the speed behind the FFTW package is the FFTW

planner [2]. Instead of trying to figure out the best method for

calculating a FFT, FFTW allows the computer to try out different

methods in order to come up with an optimal solution for a FFT of

a given size. The final and quickest method is stored in a plan

that can be reused for any FFT of that size. Since scientists

and engineers often calculate many FFTs of the same size

repeatedly, re-using the plan leads to a vast savings in time

that eventually outweighs the cost of calculating the plan.

Star-P as well as Matlab use FFTW as its means of

calculating serial FFTs. However, in both programs, each FFT

call is made individually so it is not efficient to call the

planner each time and there is no good method for caching the

23



plan between calls. Therefore, FFTW also includes another option

where the processor guesses the best method for calculating FFT

based solely on the size of the problem. While this option does

not always provide the most optimal plan, the plan is created

almost instantaneously.

In this project, FFTW was utilized as the primary method of

calculating FFTs because of its speed and portability, in

addition to the fact that FFTW already has quite a bit of code

that takes advantage of different hardware architectures, a feat

that would take quite a while to replicate.
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3. Methodology
In this section, we will investigate the methodology behind

evaluating a parallel transform. In particular, we will build

from the easiest situation to parallelize to the most difficult

in its application with Star-P. As will be seen from this

section, each situation builds on the one from before.

3.1 Column Distributed One-Dimensional Fast

Fourier Transform
We shall first begin with the most basic and trivial case, a

column distributed one-dimensional matrix. As discussed in a

previous section, the column-distributed matrix has a set of

contiguous columns on each processor. Since the one-dimensional

FFT is an independent operation on each column, each processor

can perform the FFT over its set of data without any inter-

processor communication. This solution would be described as

'embarrassingly parallel.'

If the data set is small enough to fit in the resident

memory of each individual processor and each processor has

approximately the same number of elements, then we should

experience almost linear speed-up as the number of processors

increase. In the case that the data set is too large for the

resident memory of each processor and has to go into an alternate

means of storing the data set, then the distributed version

should experience super-linear speed-up. However, if the cluster

is not homogeneous or each processor does not contain
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approximately the same amount of data, then the FFT will only

speed-up relative to the speed of the slowest processor.

In application, Star-P utilizes Scalapack, which

distributes the columns as evenly as possible so at least linear

speed-up should be seen. However, Star-P also anticipates that

the data is in column-major format as opposed to FFTW, which

expects the data to be in row-major format. This obstacle is

overcome without performance degradation because FFTW has been

optimized for strided data. We merely set the stride to the

entire length of the DFT to be computed.

3.2 Column Distributed Two-Dimensional Fast

Fourier Transform
As seen before, we can express the two-dimensional FFT as a

matrix-matrix multiplication, as opposed to the matrix-vector

multiplication that categorizes the one-dimensional FFT.

Parallel to the one-dimensional FFT, this matrix-matrix

multiplication can be expressed as a summation as follows:

As can be seen from the equation above, the two-dimensional

FFT is nothing more than a set of nested one-dimensional FFTs.

In fact, the exact order of operations for a two-dimensional FFT

is as follows: one-dimensional FFT along the columns, a matrix

transpose, then another one-dimensional FFT along the columns of

the transpose matrix, and finally another transpose to return the

matrix to its original form. This technique lends itself well to

being parallelized. In order to calculate the two-dimensional

FFT on a column-distributed matrix, we shall compute a one-

dimensional FFT along each column, take the transpose of the
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result, computer the one-dimensional FFT along each column again,

and then take the transpose again.

From the section on the one-dimensional column distributed

FFT, each of the one-dimensional FFTs will be embarrassingly

parallel and therefore have at least linear speed-up. However,

there is inter-processor communication and it comes in the form

of the matrix transpose. In essence, a matrix transpose on a

distributed machine is like converting a column-distributed

matrix into a row-distributed matrix and switching the matrix

from row-major to column-major. From before, switching the

matrix from row-major to column-major the serial FFTW program is

not a significant obstacle. On the other hand, converting the

column-distributed matrix into row-distributed matrix requires a

considerable amount of communication between processors.

In a best-case scenario in a N x N matrix with P

processors, each processor will have to send 1/P of its data to

each of the other P-1 processors when converting from column-

distributed to row-distributed and back. In a shared-memory

architecture, this communication is not significant as since no

two processors will be attempting to access the same data

location at the same time. However, in a distributed memory

architecture, the communication must occur under several

constraints in order to achieve optimal performance. First,

there must be some sort of load-balancing for communication

between processors to ensure that no processor is sitting idling.

Second, in order to minimize the latency of communication, the
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data should be sent in blocks that are as large as possible.

Third, we must assume that each processor can only communicate

with one other processor in a send and receive pair and each

communication between two processors constitute a round. Last,

we want as few rounds as possible. It turns out that there is a

theoretical solution to this problem in another form. The other

problem is called the "soccer match" problem and has a very well

known solution.

Because a serial two-dimensional FFT is normally calculated

by taking the one-dimensional FFT across all the columns, taking

the transpose, taking the one-dimensional FFT across all the

columns again, and then transposing the matrix back to its

original form, the parallel version is extremely similar. The

parallel version will experience speed-up in a linear or super-

linear fashion across each of the one-dimensional FFTs that are

calculated. This speed-up is however offset by the amount of

communication that must be performed in each of the two

transposes. In a serial FFT, no transpose is necessary and

because FFTW can handle strided data without significant

performance problems, the transposes can essentially be ignored.

On the other hand, in the parallel FFT, depending on the

interconnect between the processors and the size of the problem,

the time spent in the transpose could outweigh the time saved by

having multiple processors.

3.3 Row Distributed Two-Dimensional Fast

Fourier Transform
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The two-dimensional row-distributed FFT is extremely similar to

the two-dimensional column-distributed FFT that was discussed in

the previous section. However, the primary difference is that

since the data is row-distributed, in order to compute the first

one-dimensional FFT across the columns in the initial step, we

must first transpose the matrix to become column-distributed.

As states in the previous section, the two-dimensional

column distributed FFT requires significant communication in

performing each of the matrix transposes. The row-distributed

two-dimensional FFT requires even more time because it actually

requires three matrix transposes. It requires a transpose at the

beginning of the FFT to start the first one-dimensional FFT along

the columns.

3.4 Row Distributed One-Dimensional Fast

Fourier Transform
There are two ways to calculate the one-dimensional row-

distributed FFT. One method is change the row distribution into

a column distribution using an algorithm similar to that of a

matrix transpose and then using the one-dimensional column-

distributed FFT to calculate the FFT in an embarrassingly

parallel fashion before changing the matrix back to row

distribution. This method requires two transpose-like functions

and is very similar to the two-dimensional column distributed

FFT.

The second method is to take a single column and turn it

into a two-dimensional matrix and then by computing the two-
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dimensional FFT of that matrix in a manner described above and

then converting the matrix back into a one-dimensional column.

In order to do this, the length N of the column is first factored

into the product of two composites, p and q. We can then apply

the Cooley-Tukey algorithm to make the FFT of the column equal to

the nested FFTs of size p and q with a twiddle factor included.

On a parallel machine, we create a two-dimensional matrix of size

p x q that is column distributed across the processors and then

we use the two-dimensional column distributed FFT to calculate

the FFT of the p x q matrix. The second method involves three

matrix transposes, therefore making it similar to the row-

distributed two-dimensional FFT.

3.5 Block-Cyclic Fast Fourier Transform
Both the one-dimensional and two-dimensional block-cyclic FFTs

are very similar. FFTW currently does not allow for parallel

strided FFTs and demands that each processor have a contiguous

set of rows. Therefore, in order to compute a FFT on a block-

cyclic matrix, we must either convert the matrix into column-

distributed or into row-distributed. Because block-cyclic

distribution is a row permutation followed by a column

permutation, converting to either column or row distribution will

require approximately the same amount of time. However,

calculating a FFT in column distribution is embarrassingly

parallel in one-dimension and requires one less matrix transpose

than row distribution in two-dimensions so therefore, the obvious

choice would be to convert the FFT to column distribution.
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4. Results

The parallel FFTs were all tested on a Beowulf cluster which

utilized a Fast Ethernet (100 MB) interconnect. In addition,

each node was a dual-processor node with 1 Gigabyte of shared

memory. Each test was run multiple times with the results taken

being the average. Occasionally, the results of the test would

prove to be unstable in either the node would crash occasionally

while running the test or the results from the test were too

spread apart. These results will not be displayed. In addition,

it seemed that maximum size that could be run stably on Beowulf

was a problem of size 4096 x 4096. This matrix would consume 134

MBs of space which is well within the boundaries of the hardware

involved. A 8192 x 8192 matrix, which usually did not

successfully complete would only take four times that amount of

space which is still well within the bounds of the Beowulf

cluster. This instability was somewhat puzzling.

4.1 Column Distributed One-Dimensional FFT
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Figure 2
Speed of One-Dimensional Column Distributed FFT

Unfortunately, there was no speed-up observed. In fact, only at

ten processors did the parallel version match the speed of the

serial version. This behavior would seem to contradict what

would be expected to happen, linear to super-linear speed-up.

There is no communication between processors so all the loss of

speed is coming from some unknown source. There are two possible

explanations for this. Because the speed of the serial FFT is

already so quick, the gaps in performance could be due to the

overhead involved in accessing a parallel matrix. Star-P has its

own overhead in dealing with parallel code and parallel matrices.
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The second explanation could be the overhead in dealing with the

Star-P log. Because Star-P is still in a development stage, the

log contains a very detailed list of parallel functions that are

called. Serial FFT does not trigger these events in the log.

4.2 Row Distributed One-Dimensional FFT
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Size of Matrix

Figure 3
Speed of One-Dimensional Row-Distributed FFT

Again, serial beats parallel and in fact parallel is doing even

worse, which was to be expected. Another disturbing trend is

that the speed of the problem is not necessarily related to the

number of processors in the parallel version. We would expect

that eight processors would be faster than four, especially when
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the problem size grows as the case was with the column

distributed. However, it is clear that the four processor

version is much faster than the eight processor version for a

4096 x 4096 matrix.

4.3 Block-Cyclic One-Dimensional FFT
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Figure 4

Speed of One-Dimensional Block-Cyclic FFT

The blocks in these examples were of size 64 x 64. Block-Cyclic

FFT is only slightly slower than row distribution. It gains the

advantage of more embarrassingly steps when actually calculating

the FFT but loses a significant amount when dealing with the

communication of changing distributions .
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4.4 Two-Dimensional FFT
Instead of showing graphs of how poorly a parallel 2D FFT

compares to the serial version, I decided to investigate the

speed of changing distributions because that seems to be one of

the primary slow-downs in the non-column distributed FFT.
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25-

2 Processors
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E - 6 Processors

1 8 Processors

10.

0
64 128 256 512 1024 2048 4096 8192

Size of Matrix

Figure 4
Speed of Changing Distributions (Row to Column)

From the look of the chart, changing distributions exhibits the

same exponential behavior demonstrated by the parallel FFT

program. This unfortunately means that despite all the best

efforts of the parallelization and the efficiency in changing

distributions, the limiting factor is the matrix transposes

involved. The same behavior is exhibited in the block-cyclic to

column distribution.
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Again, the same exponential behavior is exhibited.
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5. Future Considerations
From the results, it seems that a parallel FFT runs slower than a

serial FFT. However, the tests were run on only one iteration of

the FFT at a time because of the way that Star-P works and the

overhead to the Star-P calls seems to out-weigh any speed-

advantage granted from using multiple processors. In real-life

applications, many FFTs are often strung together in a sequence.

A parallel FFT can take advantage of this property by taking the

time to change the distribution into the most optimal format

initially, and change the final answer back to the original

distribution. This simple shortcut would reduce the time of each

FFT and also reduce the overhead of the Matlab function calls.

Ideally, a parallel FFT would adopt an approach more

similar to that of the serial FFTW with its planner. The true

power of FFTW is the planner because it actually runs part of the

FFT in order to determine a re-useable plan for a FFT of that

size. Therefore, when a FFT of size N is run multiple times, the

plan, which has some fixed cost to calculate, is re-used and the

cost of running a FFT with this optimized plan is much less than

the cost of running a FFT with the estimate plan. Because of the

large overhead involved in communication in a parallel FFT, the

ability to perform that communication once, and optimally would

greatly reduce the cost of the communication.

For example, if a FFT were being run multiple times on a

distributed matrix, it would be better to have the output from

one FFT remain bit reversed to be the input into the next FFT.
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The program would alternate between using DIF and DIT algorithms

to ensure this. This way, there would be no communication

necessary to move the elements into the proper places between

FFTs which would greatly reduce communication cost.

Another future consideration would be a more flexible FFTW

program in MPI. Currently the FFTW program as implemented in MPI

dictates to the user which rows have to be on which processors.

Furthermore, FFTW assumes that every single processor is being

used and each processor holds a contiguous set of data. Lastly,

the program does not allow for strided FFTs like it does in the

serial version. None of these should be strict constraints. In

a two-dimensional FFT, it does not matter which rows are on which

processors because the first step is to transpose the matrix.

Most FFTs are tested for their speed on matrices with

dimensions that are equal to a power of two, or in the case of

FFTW, dimensions that are equal to the product of very small

primes. In practical applications, FFTs are used on matrices of

any size. However, it is possible for both Rader's algorithm and

Bluestein's algorithm for calculating FFTs to be parallelized

rather elegantly for different values of N. This parallelization

could be the most beneficial speed-up seen in a practical FFT.

For example, in the case that N is a Mersenne prime, then

parallelizing Rader's algorithm becomes a simple matter. From

Scalapack, each of the processors holds the same amount of data

with the first processor holding any extra elements. After

applying Rader's algorithm, we then have to compute a series of
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FFTs on the a matrix of length N-1, which is also 2s, where S is

an integer. Suddenly, we have a row-distributed matrix of size

2 s, which is a simple matter to compute using a radix-2

algorithm.

Bluestein's algorithm is even more easily parallelized,

albeit at the cost of space. Since the point of Bluestein's

method is to grow the matrix to a more easily computable size,

usually 2' but with FFTW that is not necessary, a parallel

Bluestein can grow the matrix to a size that is optimal and

relative to the number of processors with only minimal

communication. However, since the speed benefit from Bluestein's

algorithm is already balanced by its cost in space, this problem

should be minimal and in fact, should play better to the

strengths that parallel computing has to offer.

Lastly, in hindsight, attempting to apply a serial program,

FFTW that contains minimal parallel support, at least for

distributed memory systems, to a distributed system, Star-P, that

attempts to abstract away the parallelism, will not yield optimal

results. There is no simple way of parallelizing the FFT

especially since FFTW achieves its results by combining many

different algorithms. Therefore, in order to optimized a

parallel FFT, we would have to optimized each of these different

algorithms, if not create new ones. As it is, the most efficient

way of calculating the FFTs would be to transpose them into

column distribution and then calculate the FFTs along the columns

in an embarrassingly parallel fashion.
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