Solving Bluetooth Deficiencies through Publish

and Subscribe Systems
by
Jessica Yu-Tien Huang

Submitted to the Department of Flectrical Engineering and Computer
Science
in partial fulfillment of the requircments for the degree of

Master of Engineering in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2004
(© Jessica Yu-Tien Huang, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part. [MASSACHT
SETTS INST
OF TECHNOLOGY U

) [JUL 20 zonq

Author., T
Department of Electrical Erfgineering and Computer Science

May 26, 2004

Certified by.. , e

Larry Rudolph
Ford Professor of Artificial Intelligence and Computer Science
| Thesis Supervisor

Accepted by B e
o © Arthur C. Smith

Chairman, Department Committee on Graduate Students

BARKER

Solving Bluetooth Deficiencies through Publish and
Subscribe Systems
by

Jessica Yu-Tien Huang

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2004, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Research in pervasive computing aims to fully integrate computing devices into our
everyday environments in a seamless and efficient manner. Wireless technology such
as Bluetooth takes us a step closer by replacing traditional cable connections with
a more seamless communication transport, adding mobility and more human-centric
computation. '

However, if we are to fully integrate this technology, we must first address some
of its shortcomings, particularly those with respect to areas with a high density of
Bluetooth devices. Four of these shortcomings: susceptibility to anonymous attacks,
~ poor power management, synchrony requirement, and lack of friendships stem from
the tight coupling of device interactions during the discovery protocol.

One solution to this problem uses the advantages of publish and subscribe systems
to decouple this interaction between smart mobile devices. Available devices can
announce their availability to a central controller while devices interested in finding
others can announce their interests. When a match occurs, the controller notifies
both parties and provides information on how they can form a direct connection.

This solution preserves the functionality of the Bluetooth connection protocol
while circumventing the four shortcomings. The assumptions it makes are reasonable
when placed in a the context of personal computing environment. Future consid-
erations include optimizations that utilize caching, improvements on performance,
increases in system capacity, and solutions for including dumb devices.

Thesis Supervisor: Larry Rudolph
Title: Ford Professor of Artificial Intelligence and Computer Science

Acknowledgments

I thank my advisor, Larry Rudolph, for his guidance and patience during the year. I
also thank Debbie Wan for providing information on her group keys research and I
thank the other members of the Oxygen Research Group for creating a friendly and
fun working environment. In addition, I thank my friends, Devon, Maya, Uttara, for
the encouragement to finish this thesis.

Above all, I'd like to thank my mother and sister for their love and support during

my years at MIT. Without them, I would not be where I am today.

Contents

1 Introduction 13
1.1 Motivation L .. 14
1.2 Outline. e 14

2 Background , 17
21 Bluetooth 0. 18

211 Overview ... L. 18
2.1.2 Core Architecture 19
2.1.3 General Access Profile 21
2.1.4 Problems with Bluetooth - 25

2.2 Publish and Subscribe System 28
221 BasicModel o 28
222 Schemes L T v. ... 30
2.2.3 Architectureo 33
2.3 Related Work 35

3 Requirements B |) 3;9

4 Design :) 43

" 41 Protocol e e e e e e e e e e e e e e e 45

411 Procedures. 46
4.1.2 Subscription Language 000 52

413 Matching 58

414 Identifiers U . 66

4.1.5 Event Expiration e 67
4.1.6 Disconnections L0 68
42 Assumptions. 69
Discussion | e 7'1
5.1 Satisfied Requirements 71
5.2 Design Alternatives J e 73
5.3 Choosing Parameters IR ... TB
5.4 Future Comsiderations Y (¢
5'4.1- Optirﬁizations.. e N
5.4.2 .Pérformance .‘ L | 78
54.3 Scalability e e LS TY
544 Dumb Devices. e e e O -
5.5 Conclusion. e e e 82

List of Figure(s'" .

2-1
2-2

2-4
2-5
26
27
2-8
2-9

A Personal Area Network for communication between mobile devices

A single frame consisting of a master transmission in the first time slot

and a slave transmission in the second e
An example scatternet topology formed from two piconets A and B,
where the master of A isalsoaslaveinB. L I
Transactions between an inquiring device A and a listening device B .
Transactions between a paging device A and é. listenihg device B . . .
Interaction model of a simple pﬁblishfsubscribe ‘system C o
Example code of using a string ﬁlte;,rr’ I
Star Topology
Hierarchical Topology

2-10 Ring Topology e e e

2-11 Transactions of adding device A to the group owned by device C . . .

2-12 Transactions of device B verifying device A’s membership in the group

4-1

owned bydeviceC

Basic interaction of the system. Publishers announce availability and
subscribers announce interest in devices (dotted lines). The controller
notifies both parties when there is a match (solid lines)
M@éage transactions for publishing directly and indirectly. Solid lines
indicate standard Bluetooth actions, dotted line indicates automated

responses (see Section 2.1.3), and double lines indicate system specific

18

20

21
22
23
29
32
34
34
35
36

37

44

Message transactions for subscribing. Solid lines indicate standard

4-3
Bluetooth actions, dotted line indica@es automated responses (see Sec-
tion 2.1.3), and double lines indicate system specific actions, 48
4-4 Message transactions for matching when the publication arrives first.
P-C action indicates either direct or indirect publgsh;ng as shown in
Figure 4.2 and C-S action indicates subscribing as shown in Figure 4.3 49
4-5 Two possible message transactions for matching when the subcription
arrives first, one for a direct publication and, the other for indirect.
- P—C action indicates publishi,ngf as sl)own in Figure 4.2 snd C—S action
mdmates subscnbmg as shown in Flgure 4 3 ... e .’ R U
4-6. State trans1tl9n dlagram for a subscrlber and s. pubhsher. . R 51
4-7 Flow chart cllagram for the controller threads that handle cleamng,
‘ dlsconnectxons, new connectxons, and exxstmg connectlons Cee . 083
4—8 Flow chart diagram for the controller thread that handles event pro-
cessing and the notification actlon .. .V Ce e e e ..., 54
4-9 Allowing multiple matches to one pubhcatlon results in l)acket colhs1on 56
4-10 Match procedure for a pubhcamon and a subscnptlon .Y .. . o 62
4-11 Controller chooses oldest matching subscriber to notify . . .6
4-12 Controller notifies subscriber of all matching ﬁul)lics'tibns 65

10

List of Tables‘

2.1 Minimum, average, maximum times of inquiry and paging 24

4.1 Consistency for five cases of publication and subscription keys lists . 60

4.2 Common element for cases with NULL appended to subscription list 60

11

12

Chélpter' 1
Ihtroduction

In an era dominated by wireless technology, Bluetooth is fast emerging as the standard
for short-range wireless communication. Due to its low cost, low power consumption,
and operational robustness, this protocol has become widely recognized as the future
replacement for cables. Unfortunately, the rising density of Bluetooth-enabled devices
has revealed a number of problems associated with the technology. Therefore, before
we can fully incorporate Bluetooth into everyday computing, we must address its
major shortcomings. . | ‘
This thesis deals with the shortcomings of the Bluetooth connection protocol,
_particularly the discovery procedure. First, the protocol allows anonymous attacks
on discoverable devices, a trend that recent news has reported as spreading very fast
among mobile Bluetooth devices. These attacks target devices left in discoverable
mode and could result in the compromise of confidential data. Second, the protocol
causes devices participating in the discovery procedure to expend power unnecessarily
when the device they are looking for is not available. The available devices that reply
to these searches waste power too because their relies are ignored. Third, the protocol
requires devices to be synchronized in order to discover one another. If a device is not
listening at the exact time a;nd ffequency that another is inquiring, then they cannot
find each other. And fourth, the protocol requires devices who wish to be available
to be so to,evefyone. There is no mechanism in the Bluetooth connection protocol

that allows a device to be available to only its “friends”.

13

One solution uses the publish and subscribe paradigm to address these shortcom-
ings. In this scheme, responsibility for device discovery is shifted to a central entity,
who handles information on availability and interests and notifies devices when there
is a match. The system uses this middleware to provide a simple yet effective solution.
The rest of this chapter describes the motivation for this thesis and gives an oﬁtliné

of later chapters.

1.1 Motivation

The field of pérvasive computing has become a strong leader in cdmputer research.
Pervasive computing, also known as ubiquitous computing, aims to create the next
generation computing environment, one with computer and communication technolo-
gies available at all'times [1] As the IEEE Pervasive Computing Organization states,
the “essence of this vision is the creation of environments saturated with computing
and wireless communication, yet gracefully iﬁtegrated‘ with human-users” [2].

To achieve this goal, we must break the t%a;ditional interface between humans and
computers. Typical interactions rely on physical closeness to a computer and are
lirhited by wirés and the connections they create. ‘Computing in this environment
revolves drouiid the computer, forcing humans to adapt their lifestyles accordingly.
Instead, computing should adapt to normal human activity, which requires mobility.
With the introduction of cost efficient wireless technology, such as Bluetooth technol-
‘ogy, we are now able to replace both short distance wires as well as less reliable forms
of wireless communication such as infrared. This allows us to embed mobile devices
s;eamleﬁély' into our everyday lives.

1.2 Outline

Chapter 2 giveé backngund information about Bluetooth, publish-subscribe systems,
and related work. Tt provides an overview of Bluetooth technology and describes

the shortcomings that this thesis will address. Next, the chapter gives an overview

14

of publish-subscribe systems, including variations, and sites examples of different
systems. :

, Chapter 3 lists the regjuirements necessary in a system that seeks to solve the
Bluetooth shortcjomings ‘icf::‘entiﬁed in Chapter 2.

. Chapter 4 presents a‘»!-"éolution in the form of a publish-subscribe system that
impfoves upon i:he Bluetf;oth connection protocol. It details the protocol and as-
sumptions of thé system. :

Chapter 6 di:‘fscusses how the system meets the requirements listed in Chapter 3.
It also describesivdesign alternatives and why they were not optimal for this system.
Next, it discusses the cheices of parameters in the system and considerations for
future work.

Chapter 7 describes the contributions of this thesis.

15

16

Chapter 2
Backgro‘und

Understanding the problem requires a solid understanding of the Bluetooth technol-
ogy, particularly those procedures related to device discpyery and connections. This
knowledge can then be used to identify the shortcomings of existing Bluetooth tech-
nology and to recognize the reasons why. these_shortéomings persist. The next step is
to explbre fhe possible sdlutions to this problém. This requires a solid understanding
of the publish—subscribe paradigm. It also requires looking at different variations and

examples of publish-subscribe systems.

This chapter provides background information on both Bluetooth and publish-
subscribe systems. It details the core architecture of Bluetooth and the General
Access Profile, which defines the procedures involved in device discovery and con-
nection management.. It also examines four shortcomings of Bluetooth associated
with using the Bluetooth connection protocol: susceptibility to attacks, poor power
management, synchrony requirement, and lack of friendships. Next, the chapter de-
tails the basic interaction model, of the publish-subscribe paradigm. It describes the
advantages and disadvantages of using different schemes (topic-based, content-based,
type-based) and different architectures (centralized, distributed). It also sites exam-
ples of publish-subscribe systems. Lastly, the chapter looks at related work involving

the creation of group associations among Bluetooth devices.

17

Figure 2-1: A Personal Area Network for communication between mobile devices
2.1 Bluetooth

Bluetooth technology is regulated by the Bluetooth SIG (Special Interest Group),
which originally consisted of five companies, Ericsson, Nokia, Toshiba. Intel, and
IBM, but has now expanded to thousands of companies. It is a privately held trade

association dedicated to the development of wireless Bluetooth technology [3].

2.1.1 Overview

As described in the Intel Technology Journal, Bluetooth itself “encompasses a simple
low-cost, low-power, global radio system for the integration of mobile devices” [4]
The basic Bluetooth network, known as piconet, is an ad hoc network that has
a capacity of up to eight actively transmitting devices. Scatternets are formed by
overlapping up to 10 piconets, resulting in the connection of up to 80 active devices.
Bluetooth was developed for three main uses: to connect a computing device to a
communication device, to connect a computing device with its peripherals, and to
create Personal Area Networks (PAN) for mobile devices (see Figure 2.1) [5].
In the late 90’s. supporters of the Bluetooth SIG publicly announced a long-term
target mark of $5 per chip. After a long struggle of about six years, it seems that
Bluetooth chips are finally close to hitting this mark. Because it provides a low-cost

replacement for cables. Bluetooth will soon become prevalent in every computing

18

environment [6].

2.1.2 Core Architecture

Bluetooth radios operate in the unlicensed Industrial-Scientific-Medical (ISM) band

‘at 2.4GHz. This band is divided into 79 different channels of 1 MHz size each.
To reduce the effécts of fading and intérference from other radios, Bluetooth radios
rf;,ndomly hop through these channels while transmitting and receiving data at a bit
rate of 1 Megabit per second (Mb/s). By default, radios transmit within a range of
10 meters, outputing ImW of power. This range can be increased, up to 100 meters,
- by increasing the power output to 100mW [7].

The fundamental form of communication in Bluetooth is through a shared physical
channel. -This channel is accessible only to devices that are synchronized to the same
clock and frequency hopping pattern. A fréquency hopping pattern is a pseudo-
random ordering of the 79 available frequencies. . It is algorithmically determinéd

according to a device’s Bluetooth Device Address, a global identifier assigned to

every Bluetooth transceiver. The clock offset of a device serves, as the offset into -

this pattern. The device that provides this synchronization reference is known as the
master, and ali other devices on the channel are slaves. Together, this network of
devices is known as é.'pz'conet [7].

Data transmissions on these physical channels use a Time-Division Duplex (TDD)
scheme. In TDD, a single channel is shared by two streams of data going in separate
directions. This is done by allocating different time slots during which the streams
can send data {8]. The physical channel of a piconet is allocated in this same way; it is
divided into time slots of 625 us during which a device can transmit a packet of up to
2,745 bltﬁ 1nlgngth Eventlme slots are typically reserved for master transmissions
while odd time slots are for slaves [9].

,Timg s}9§s on a physical channel are organized to create physical links between the
master axid:l gaph slave. This ?s done via Bluetobth frames, which consist of a master
transmission followed by a élave transmission as shown in Figure 2.2. Uhle’ss they

have negotiated otherwise, a slave may only transmit when the master addresses it in

19

e

One Frame

AN
~

Master Packet

Slave Packet

S

One Time Slot

Figure 2-2: A single frame consisting of a master transmission in the first time slot
and a slave transmission in the second

a frame, thereby forming a physical link from the master to the slave. Slaves do not
form physical links directly to each other. After a frame, all devices in the piconet
hop to the next frequency in the frequency hopping pattern. The typical time slot of
625 us therefore results in 1.600 hops per second [9].

Physical links support two types of data transfer: synchronous connection orientec
(SCO) and asynchronous connectionless (ACL). A SCO link allocates periodic frames
during which a slave device is free to transmit data without being requested by the
master. A piconet can support up to three SCO links of 64,000 bits per second each.
An ACL link only allows a slave to transmit data in response to a request from the
master. Communication on the piconet typically occurs as follows: First, the master
listens on the channel at frames separately reserved for SCO transmissions. Once
that reserved period has passed, the master queries each slave with an ACL link to
see if they have data to send. By default, all active slaves have an ACL link to the
master [7] [9].

All Bluetooth devices can become the master of a piconet or a slave in another
device’s piconet, depending on its frequency hopping svchronization. In Bluetooth
networks, devices can participate in more than one piconet; a device can be a slave
in multiple piconets or a master in its piconet while a slave(s) in other piconet(s).
However. a device cannot be the master in more than one piconet. Being master of

multiple piconets would imply that these piconets all have the same synchronization

20

Figure 2-3: An example scatternet topology formed from two piconets A and B, where
the master of A is also a slave in B

and therefore share the same physical channel. Figure 2.3 shows an example of a
scatternet topology in which a device participates as a slave in one piconet and a

master in another.

2.1.3 General Access Profile

The Bluetooth General Access Profile defines the set of operational procedures a de-
vice must follow in order to connect to another device. Because Bluetooth networks
are ad hoc, the device must first discover neighboring devices that are available for
connection. Then, the device targets an available device and connects by synchroniz-
ing that device to its piconet. The General Access Profile also defines the operational
modes a slave device can enter. Ordered from highest to lowest power consumption,

these modes are: active, sniff, hold, and park.

Discovery

A device performs the discovery or inquiry procedure to find out what nearby devices,
if any, are available. In this procedure, an available or discoverable device listens for
inquiries on a special physical channel. while an inquiring device actively sends inquiry

requests on the same channel. When a request is heard. the available device responds

21

INQUIRY INQUIRY SCAN
mods [INQUIRY] mode
e
— ;
7

-) s sandzHs ()
(BT ADDR, CFFSET)

&]
N

receive ()

Figure 2-4: Transactions between an inquiring device A and a listening device B

by providing its Frequency Hopping Synchornization (FHS). A FHS packet is a special
control packet that consists of a device’s Bluetooth address and clock offset. Once
this is obtained, the inquiring device can also ask for the device name and device class
of the available device. Figure 2.4 shows the transactions of an inquiry procedure.
The special physical channel reserved for this procedure is called the inquiry scan
channel. The inquiry scan channel has a slower hopping sequence and comprises fewer
frequencies (32) than a piconet channel. A discoverable device listens on this channel
by scanning through the frequencies, listening to each for 10 ms and hopping to the
next every 1.25 seconds [4]. An inquiring device sends requests by also scanning
through the frequencies, transmitting and listening for responses at each. However.
because an inquiring device has no previous knowledge of this channel, it must pseudo-
randomly hop through the possible frequencies. It takes advantage of the slower
hopping sequence by hopping at a faster rate, increasing the probability that a request

is heard [10].

Paging

Once a device discovers its neighbors, it can target an available device to connect to
by. This is done by performing the paging procedure, which is similar to inquiring. In
this procedure. a connectable device listens for pages on a special physical channel,

while a paging device actively sends pages on the same channel. When a page 1s

[}
(N}

PAGE PAGE SCAN
oas
mods {Page] mode
™
r .
recerve ()
Aok sck)

load (FHS,)

Figure 2-5: Transactions between a paging device A and a listening device B

heard, the connectable device responds with an acknowledgement. The 1ﬁaging device
receives this and sends its FHS packet. The connectable device acknowledges this
again to inform the paging device that it is now joining the piconet. The device then
uses the FHS packet to calculate the frequency hopping pattern and synchronizes
to the piconet of the paging device. Figure 2.5 shows the transactions of a paging
procedure.

The special physical channel reserved for this procedure is called the page scan
channel. Similar to inquiry scan channels, page scan channels consist of a unique
sequence of 32 frequencies. A connectable device listens on this channel by scan-
ning through the frequencies every 1.25 seconds and listening for 10 ms on each [4].
The paging device sends pages by transmitting and listening for responses at each
frequency. If a paging device has no prior knowledge of this channel, it must psuedo-
randomly hop through the possible frequencies in the same manner as in the inquiry
procedure. However, prior knowledge of this channel can be obtained from the FHS
packet acquired during a previous inquiry procedure. This packet can be used to
calculate the frequency pattern of the page scan channel and its offset [10]. Because
of this optimization, it takes much less time for a paged device to hear a page than

for a discoverable device to hear an inquiry, given that the paged device was previ-

o
(N

Operation Type || Minimum Time | Average Time | Mazimum Time
Inquiry 0.00125s 3-5s 10.24-30.72s
Paging 0.0025s 1.28s 2.56s

Total(paging | 0.00375s 4.28-5.28s 12.8-33.28s
+inquiry) o ‘

Table 2.1: Minimum, faverage, maximum times of inquiry and paging

ously discovered. Table 2.1 shows the minimum, average, and maximum times for

the inquiry and paging procedures [11].

Operational Modes

A slave device defines its level of participation in a piconet by entering one of four
modes: ‘acti\fe,‘pai’ked hold, and éniff. The active mode is the default for & &lave
while the other three are used when a slave w1sha8 to enter a low—powered state or to

define a penod(s) of 1nact1v1ty in order to partmpate m other pxconets

Active mode - In the active mode, a slave ‘participates in data’transmission and
is assigned a 3-bit Active Member Address that gives it access to the piconet’s
physical channel. An active slave can particpate:in- ACL or. SCO transfers with

the master.

Parked The parked rnode is the lowest-powered mode for a slave In the parked
mode a device glves up its AMA for an 8-bit Passrve Member Address (PMA) A
parked devrce does not have access to the channel and therefore cannot transfer
data However it stlll hstens on the channel at a beacon mterval reserved
for broadcastmg to parked dev1ces The master can strll commumcate with a
parked slave by addressmg broadcasted packets to that slave. The situations
:u} whrch the master uses this beacon interval are: to ask a parked device to

‘become actwe to ask if there are any parked devices that wish to be active, or

to broadcast data to parked devices.

Hold - The hold mode consumes the next lowest power after the parked. In the

hold mode, a slave listens but does not transfer data for a period previously

24

negotiated by the master and slave. This mode is only entered once.per invoca-
tion after which the slave returns to its normal mode. Slaves with a SCO links,

which requirés them to transmit at fixed periods, cannot enter this mode.

Sniff — The last mode is the sniff modes, which provides a power level less than the
" active mode but more than the parked and hold modes. The sniff mode allows
~ a device to define a duty cycle with periods of presence and absence. ‘A slave

typically.uses this mode to engage in activity in other piconets during periods

of absence.

The master of a piconet may choose to park devices to expand its piconet capacity.
Because the AMA address space only allows for seven active slaves (an address is
reserved for the master), a new device can only be added to the picohet by parking

an active slave and reassigning ité AMA to the new device. The combination of AMA

and PMA allows over 256 devices to belong to a piconet. However, only the eight |

devices assigned an AMA can transmit data [4].

2.1.4 Problems with Bluetooth

This thesis addresses four shortcomings' of the Bluetooth technology: susceptibility
to attacks, pbor power management, synchrony requirement, and lack of friendships.
All four shortcomings are a consequence of device interactions during the Bluetooth
connection protocol, particularly the device discovery stage of the protocol. This

section details each shortcoming and the protocol feature that causes it.

Attacks in Discoverable Mode

Mobile Bluetooth—enabled'devices, such as cell phones and PDAs, have recently be-
gun expériencing é,ttacks when left in discoverable mode. Many popular models of
Bluetooth-enabled devices contain vulnerabilities that make them susceptible to 'these
anonymous attacks. According to an AL Digital website, vulnerable phones include:
Ericsson T68; Sony Ericsson R520m, T68i, T610 and Z1010; and Nokia 6310, 6310i,

25

¥

7650, 8910 and 8910i {12]. This section describes the two most common anonymous
attacks, bluejacking and bluesnarfing, and how they are currently prevented.
Bluejacking is an increasingly popular phenomenon among Bluetooth cellular
Ph‘?l}ﬁ;;‘,lﬂ?l.’;?- It occurs when one person anoxiymously scnds a message to another
witﬁout being connect';(;d. This attack aims to startle or unnerve a victim, uscally
by sending}pﬁhysica.l i}n.fo.nfla‘tion(about the victim, such as his appearance or current
activity, in 'the mxddle o.f‘ a crcwded area. A vic?tim receives this aNnonymous message,
knowing he must bé visible to the sender, but cannot identify the sen‘dc’rv. To perform
‘a bluejack attack, an attacker creates a new contact on his phone and pi‘aces the mes-
sé.gé he wishes to send in the “Name” field. He then chooses to send this contact via
Bluetooth and seé.rches for Bluetooth-enabled phones within range. Finally, he picks
a victim and sends-the contact. Bluejacking has spawned a new craze and presents
a: possible new outlet, for spammers.. The only way to avoid bluejacking: is. to make
sure a device is not.in discoverable mode, ensuring‘ that it can no longer be found by
other devices [13] [14]. | | | | |
Bluesnarfing occurs when a person connects to another device without alerting the
owner of the request. According to an Al Digital websit;e’ the attacker gains limited
access to confidential stored data once connected, 1nclud1ng “the entire phonebook
"(and any 1mages associated with' the entnes) ca.lendar realtime clock busmess card
properties, change log, and IMEI (Internatlonal Mobile Equlpment Identity, which
uniquely identifiés the phone to the mobile network,v and is used in illegal phone
cloning)” {12]. Bluesnarfing primarily targets mobile devices that are in discoverable
mode. Therefore to avoid the attack, device should not be discoverable to other
devices. A few models remain vulnerable even when not in discoverable mode and

have no option but to turn Bluetooth off to avoid bluesnarfing [15].

Power

One of the main concerns of wireless communication is power management. Unlike
wired devices which tyj)'ically connect to their own power source or to another device

with a power sourceé, most wireless devices require mobility and therefore run on

26

batteries. Because of this limitation, conservation of power is a top priority for
w1reless dev1ces k

One way to conserve power is to minimize the number of transnussxons a Blue-
tooth devrce must perform Because transm1ss10ns consume much power unneces—
sary ones should be ehmxnated Unforturrately, the Bluetooth connectron protocol
promotes Just the opposn;e when used in Bluetooth—nch enwronments Durlng the
mqulry procedure, all available devices must respond to an inquiry request. While
these transmissions ensure that an inquirirxg device can discover its rreighbors, they
become particularly wasteful when the inquiring device is looking for a specific target.
Because the responses of other available devices are ultimately ignored, the battery
power of those devices is wasted. Even worse, an inquiring device might periodically
repeat these inquiry requests if the target device is not present, resulting in repeated
response transmissions. This poses a real power management issue in areas dense .
with Bluetooth-enabled devices participating in the inquiry procedure.

Another way to conserve power is to reduce the amount of time a device spends

listening for transmissions. During the inquiry procedure, an available device must -:

spend its time scanning the inquiry scan channel for inquiry requests. This level of

activity consumes much power when there are no immediate inquiries.

Synchrony

While Bluetooth devices can connect freely with respect to physical location (they
only have to be in range of each other), they are limited in synchronization during
discovery. This requirement states that a device can only discover another device if it
sends inquiry requests at the same time and on the same frequency that an a\railable
deviee is acanhingt.: Both devices must be present and 'using the same communication
charnel. ‘Fhis requirement greatly limits the options of an inquiring device: If the
speciﬁc target device is not present, an inquiring device must repeat its request peri-
odically in hopes: that the target vshowsﬂup and is available at a time that coincides
~with its request. Therefore, staggered inquiries and inquiry scans can impede the

discovery process.

27

Friendships

The Bluetooth connection protocol does not allow for the formation of frrendshrps
A fnendshrp is a pr1v11eged relatronshlp where one dewce is exclusrvely avallable to
| another A device can restnct its avaﬂabrlrty to a pre—determmed set of fnendly
devices, but remain invisible to strangers. There are several reasons a device might
like to do this: it might not w13h to prov1de umque and traceable information about
itself to unknown devices or it might w1sh to avord attacks from unfnendly devrces
while remaining available to its friends. Unfortunately, the Bluetooth connectlon a

protocol does not support this option.

2.2 Publl_sh'and Subsoribe' System o

A publish-subscribe system is a communication service that dynamically routes infor.'-
mation from their sources to interested parties. The system consists of two compo-
nents, publishers and subscribers, who exchange'_information through a server. The
publishers, . or information providers, publleh»ini:orrrratiorr~to the system" whileﬁthe
subscribers, or information consumers, snbscribe':‘to informat’ron of ’inter‘est. When
information is generated by publishers, the’system matches and delivers it to in-
terested parties. This section describes the basic interaction model of the publish-
- subscribe paradigm. It detarls the different schemes and architectures along whrch

publlsh-subscnbe systems vary, and cites examples of different systems.

221 | Basic Model

The basic interaction model of a publish-subscribe system allows subscribers to ex-
press 1nterest in an event or pattern of events. Events contain mformatlon that a
publisher produces and a subscriber consumes. When a publisher provrdes an event,
the event is delivered to interested: subscribers through a notification.

In this model, storage and management of subscription interests and publications

are handled by an event service. The service receives events from publishers and

28

_-"’] . L-"\, . pd B ,
(\Pubhsher‘ Event Service (Subscriber)
,.»l L #

r)
g “s, —~—
Management and
[R Storage of Events subscribe —————__

/. . b i \\
l\Pub“Sher:) \Subscnbea
- 7 xk_d/

Ooa_ﬁ
f/,/——l--\ N - L —
| Publisher Subscribe\ﬂ
i s -

Figure 2-6: Interaction model of a simple publish-subscribe system

efficiently delivers them to interested subscribers, thus serving as a mediator between
publishers and subscribers. Subscribers typically register their interest by calling a
subscribe() operation on the event service. This operation is called without prior
knowledge of where events are generated. Subscribers can also terminate a sub-
scription with an unsubscribe() operation. Publishers generate an event by calling
a publish() operation on the event service. The event service then propagates the
event to all interested subscribers. In this model, every subscriber receives every event
that conforms to its registered interest. Figure 2.6 illustrates this basic interaction
[16]

The main advantage of the publish-subscribe paradigm is that it decouples inter-
actions between publishers and subscribers along three dimensions: space, time and

synchronization.

Space - Space decoupling is provided by the fact that end users do not need to know
about each other. Publishers provide information directly to the event service
and do not need to hold references to subscribers. Subscribers do not need to
hold references to publishers either because they receive the information directly
from the event service. Therefore, unless the information contains end-to-end

semantics, publishers and subscribers remain anonymous to each other.

Time - Time decoupling is provided by the fact that publishers and subscribers
do not need to be actively participating, i.e. present, at the same time. For

example, a publisher might publish an event before a subscriber arrives or a

29

subscriber might receive notification of an event after the publisher of the event
has disconnected. This is because once an event is published, the event service

takes control of it, either storing it or forwarding it.

Synchronization — Synchronization decoupling is provided by the fact that pro-
duction and consumption of events do not have to occur synchronously. For
example, a publisher might publish an event that is stored on the event service
until a subscriber comes along thet is interested in it. Even if no one is inter-
ested in the event initially, it can still be consuiﬁed'by a subscriber that later

registers interest.

There are two fundamental -"diﬁer'en“ées between publish-subscribe systems:' the ex-
pressivity of the'subscription ldhguége and the architecture of the event service. The L
scheme a system determines the expressivity of subscriptions. The implementation of
the event service follows a centralized or distribdted afchitécture, ‘or ‘a combination

of the two [17].

2.2.2 Schemes

In pubhsh—subscnbe systems, subscnbers are not 1nterested in all events, but rather
particular events or event _patterns. In the very first pubhsh-subscnbe prototypes
‘e g. TIB/ Rendezvous and Elvin, wh1ch were developed over Local Area Networks
(LAN s), publishers would s1mp1y multicast information and leave it to each subscnber
to filter out information that was not of interest [18] [19]. When pubhsh-subscnbe
systems made the moved to Wide Area Networks (WANS), it was no longer practical
to multxcast Instead an event service took on the responsibility of filtering and
dehvermg events of mterest to subscribers. These are many possible ways to do this,

but most fall undér one of three schemes: topic-based, content-based, and type—based.

Topic-Based

The topic-based publish-subscribe scheme was the earliest scheme to emerge. Systems

that follow this scheme use the idea of topics or subjects to categorize and filter

30

events, resulting in a topic-based filtering scheme. The scheme essentially creates a
communication channel for each topic and delivers information provided at one end of
the channel to parties- at the other ehd. Topigs are identified by key words. With this

scheme, clients in the system can i)ublish events to individual topics and subscribe
| to individual topics. An individual topi¢ can be viewed as its own event service to
which clients publish and subscribe.

This scheme is ideal for systems that can statically categorize events into a fixed
set of groups. It is an abstraction that is very easy to understand and requires little
overhead or filtering at the event service. Unfortunately, this scheme does not provide
expressive subscriptions. Subscribers who exp'ress interest in a specific topic must
receive all events for that topic, often resulting in more filtering at the subscribers end.
An 1mprovement to the traditional topic-based scheme uses hierarchies. Hierarchical
topics allow clients to organize topics based on containment relationships, providing
more options for specifying topics. Topic names are also allowed to contain wildcard
values, which can be thought of as describing an entire subtree or a specific 1ével of
topics in a hierarchy. IBM’s Gryphon is an example of a system that uses hierarchical

topics [18]. ' ‘ ;

Content-Based

The content-based scheme allows more expreséivity in subscriptions by filtering based
on the content of the event. Unlike topic-based systems which use"predetermined sub-
Jects, systems that employ this scheme filter events based on the dynamic properties
of an event, either internal attributes or associated meta-data.

.' To express event ir1terest, subscribers must provide a criterion or filter for ex-
.pressing event constraints to the event service These constraints serve as subscrip-
tion: patterns that can be represented several ways. Three representations are string,

f

| template object and executable code.

Strmgs - Stnngs are the most frequently used representation because they are
the sunpl%t Strmg filters must conform to a subscnptlon language that the

event service understands This subscrlptron language is usually m the form

.....

31

String filter = “news == ‘REGIONAL’ and location == ‘BOSTON’
' and month == ‘MARCH" and year == *2004’'%;

Subscription 'sub = new Subscr.xption(ﬁlte:) ;

Ew:ntService subdcnhe {stub);

. Figure 2-T: Example code of using a string filter

of attribute-value pairs that use basic operations such as =, <, <=,>,and >=.
Theee pairs »a{rle“;,then combined using operations likeAND and OR to form a
stx;ki,n’g which is pexsed by the event service. Figure 2.7 shows_‘exe.mple code
for using a stxix;\g filter. More complex subsqriptiongrmers;ipclﬁde SQL
(Structured Query Languagg) and XPath [20] [21]. The Intentional Naming
--SYSF,‘%m (INS)xs .an example ‘(_)f gt;sy“stezx‘;g;ﬂthat uses a simple lanvguage‘baeed;gn ,

. attribute-value paars for resource discovery in dynamic networks [22]. .

Templates. — Template objects are another representation for expressing a subscrip-
tion pattern. Subscribers must provide a template object to the event service,
indicating that it is interested in every event that conforms to the template.
Events that conform are those whose attributes‘a.ll match the eorresponding

attributes of the template, except for attributes carrying a wildeard value.

Executable Code The last representatton fora subscnptlon pattern isin the form
of executable code Subscnbers prov1de an object to the event servxce that is
;able to filter events at runtlme This representatlon is not often used because
the 1mplementat10n of the obJect is left to each subscrber, making it dxﬁicult to

optimize the system as a whole.

The content~based scheme is the most common employed scheme because of the ex-
pressiveness it allows in descnblng event interest. Unfortunately, this requires a lot of
" overhead from the event service, who must pass events through filters in real time to
match them with interested subscribers. Much research has been done on developing

efficient and scalable matching algorithms.

32

Type-Based

The type-based scheme is a recently proposed schémé. It emerged from the observa-
tion that many topic-based systems were categorizing events based on both content
and structure. Systems that employ thie; scheme filter events based on the structure
or type of the event, which can also lead to ,5 natural description of content-based
filtering if types are defined by the content. ‘

The advantages of this scheme are that it is sirriple to implement and preserves
type encapsulation, unlike the template-based approach which considers event types
to be dynamic properties. This scheme is particularly useful for object-oriented sys-
tems. An example is the Distributed Knight, a tool for synchronous, collabora-
tive distributed modeling. It integrates a type-based publish-subscribe scheme with

object-oriented languages to model events [23].

2.2.3 Architecture

Publish-subscribe. systems follow. either a centralized or distributed architecture. A

centralized architecture consists of a central entity that manages messages using the &

client- server'modelv In this model, an event server receives, stores, and forwards
events wh11e clients pubhsh or subscribe or both. Each system has exactly one event
server, resulting in a star topology, as shown in Figure 2.8. Systems that follow this
approach, like the IBM MQSeries queuing system, are built on a central database [24].
This architecture is'suitable for a system that requires reliability, data consistency, or
transactional support, but does not need high data throughput [17]. Unfortunately,
eitrdoe,g énot,zs:ca;le well.due to the bottleneck and single point of failure that the central
server. presents. ‘The distributed architecture follows a peer-to-peer model, which
has no: central entity. iIn this aodel, all nodes are equal and can act as publisher,
subscriber, -or .event service. The role of an event service requires a node to store or

forward events it receives. Because every node has some service funétionalityg there

is no bottleneck or single point of failure. This architecture is advantageous for fast

and efficient deliver of transient data, such as encountered on the Internet [16]. :The

33

L8

:ém.}

Figure 2-9: Hierarchical Topology

TIBCO Rendezvous example mentioned earlier also uses this distributed approach
Pl

18].

Systems can combine these two architectures to create a client-server models with
multiple servers. This results in different topologies such as the hierarchical and ring
topologies. Hierarchical topologies arrange event servers in a hierarchy tree, where
every server except the root has a parent. These servers act as gatekeepers for their
subtree. forwarding along only events that the subtree is interested in. Therefore,
event servers follow the same protocol for their server links as they do for their
clients. The ring topology arranges servers into peer-to-peer relationships in the form
of a ring. Servers communicate to each other via a different protocol that allows them
to exchange subscriptions and publications [16]. Figures 2.9 and 2.10 illustrates these

two topologies.

N

S b _{ Server ‘,\—{ server ,\—__‘ p‘:)

\ G
© b

i

Figure 2-10: Ring Topology
2.3 Related Work

The Oxygen Research Group at the MIT Computer Science and Artificial Intelligence
Laboratory is currently researching possibilities for creating groups among Bluetooth
devices. The hope is to allow two Bluetooth devices that belong in the same group to
be able to verify each other’s membership and bypass the authentication step when
setting up a connection. Currently, a protocol has been developed for creating groups.
adding devices to groups, and verifying membership in groups. This section describes
this protocol.

Groups are implemented using private and public keys. To participate in groups,
cach device generates four keys: a device_private_key, a device_public_key, a group_private_key,
and a group_public_key. Private keys are known only to a device while public keys
are available to everyone. In a group. there is exactly one owner device, which knows
the group’s private key and can add new members to the group. Using these keys,
every device can be the owner of its own group [25].

Group membership is determined through an encrypted group token, which iden-
tifies the Bluetooth device and the group it belongs to. Tokens are obtained in the
following manner: First, a device encrypts its unique Bluetooth address with its de-
vice_private_key to create a device token. Then, it sends the device token and its
device_public_key to the owner of a group it wishes to join. The owner decrypts the
token with the key to verify that it is speaking to the correct device. It then encrypts
the device token with its group_private_key to create a group token. This token is

sent back to the device and serves as a passport for proving group membership. If the

35

encryPt () | [BT_ADBR I, oriv kew

A public key receive ([}
~

receive ()
decrypt ()
encrypt ()

decrypt ()

Figure 2-11: Transactions of adding device A to the group owned by device C

device wishes, it can ensure that it was speaking to the group owner by decrypting
the group token with the group_public_key to obtain the original device token it sent.
Figure 2.11 shows the transactions between a device A that wishes to join the group
of device C [25].

The group membership of a device can be verified by any other device. This is
done by first decrypting the group token with the group_public_key to obtain the de-
vice token. The device token is then decrypted with the device_public_key to obtain
the Bluetooth address of the device. If this matches with the address of the commu-
nicating device, then membership is verified. Following the example in Figure 2.11,
Figure 2.12 shows the transactions between devices A and B, where B is verifying A's
membership in group C (owned by device C) [25].

Using this protocol, devices can acquire a group token for each group it belongs to.
Tokens are typically kept with the corresponding group_public_keys to verify another

device’s membership in the same group.

A B
grpC_pub key

[DTOKEN] grpc

priv_key

I

receive ()

receive ()}
decrypt (GTOKEN, grpl pub key)
decrypt (DTOKEN, A public key)

Figure 2-12: Transactions of device B veritying device A’s membership in the group
owned by device C

38

Chapter 3
Requirements

This chapter describes the requirements of a system that seeks to improve upon the
Bluetooth connection protocol. Such a system would perform no worse than the Blue-
tooth connection protocol and would improve specifically upon the four shortcomings

of the connection protocol as described in Section 2.1.4.

Perform no worse than Bluetooth (;onhection protgpol - Tﬁe ’s‘,ystém should
provide at least the same amount of functionality as provided by Bluetooth.
It should allow all devices that woiuld have ﬁormally' discovered each other
on their own to discover each other through the system. In other words, an
inquiring device that uses the Bluetooth protocol should be able to find the
same discoverable devices through the publish-subscribe system, assuming that
those devices have published their availability to the system. Also, the system
should provide a subscribing device with no less information about available

" devices than the devme would have received through a Bluetooth inquiry. Lastly,
vthe system should provxde dev1ces with no less pnvacy than the Bluetooth
; bconnectxon protocol The system should never provide more mformatlon about
| a dev1ce than would have been dlscovered dunng inquiry, unless the devme

spec1fies otherwxse

Prevent anonymous attacks in inquiry scan mode - The system?shéuld be able

to prevent anonymous attacks. A device should not be vulnerable to bluejacking

39

or bluesnarfing attacks when it wishes to be available to other devices.

Allow devices to expend a lower average power during discovery ~Thesys-

tem should 1mprove the power management of devices involved in the inquiry
procedure When in Bluetooth-rxch environments. On average, these devxces
should expend less power in order to discover other devices. In I;artlcular the :
cases to consider are when a device is left in discoverable mode and when a de-
vice is inquiring whether a specific device is available. Both these cases expend

an undesirable amount of energy in the existing Bluetooth' protocdl

Provide asynchronous device discovery — The system should be able to decou-
ple device interactions during discovery. : Available-devices and searching devices
should be able to discover each other through the system,; without requiring
them to listen and ask for each other-at the same time .émd:.place. In this case,
the notion of place refers to a frequency channel. This requirement eliminates
the synchrony criterion of the Bluetooth connectlon protocol which states that
a device can only discover another device by i 1nqu1rmg at the same time and at

the same frequency that another dev1ce is listening on.

Allow devices to restrict availability — The system should allow the formation
of friendships by enabling a device to restrict its availability to a pre-defined set
-or sets of device groups. The available device inust be group member or friend

in order to restrict its availability to that group.

Handle inconsistent data — The system should have a mechanism to handle sys- -
| tem ‘st‘ate‘s in which the information on a client device is inconsistent with in-
formation on the server. These can occur when a device disconnects from the
system.v Inconsistent data should not persist in the system. Information about
publsihers that are no longer avz;.ilable should not be ‘given to subscribers be-
cause the subscribers will waste resources paging while the unavailable device

is not listening. Information about subscribers that are no longer searching for

other devices should also be removed since a new publisher might be told to en-

40

ter page scan mode (listen for pages) if its event matches this old subscription.

In both cases, a device wastes power unnecessarily.

41

42

hE

Chapter 4
Design

This chaptei' presénts a solution to the shortcomings of the Bluetooth connection
protbcol described in Section 2.1.4. The purpose of this best-effort system is to set
up Bluetooth device connections in a flexible and efficient manner while fulfilling the
requirements listed in the previous chapter. Devices that participate in this system
are smart mobile devices that can support multiple connections to different classes
of devices. Examples are laptops, Personal Digital Assistants (PDAs), and some
mobile phones. These devices require an application layer running on top of the
standard Bluetooth HCI, or control, layer, in ordér to locally call HCI commands.
These commands are sent remotely from a controller, rather than inputted by the
user (as in the normal procotol). This system does not require Any modification to
the Bluetooth stack, but the controller in this system must have a device name that
clearly indicates its role as a controller. Therefore, devices looking for a controller
will know when it is found.

‘The solution uses a ¢content-based publish-subscribe system to facilitate device dis-
dovery between smart mobile devices. In this centralized system, a publish-subscribe
.cbhtiréﬁé‘f é)’éi;é’f&iﬁ’m‘iadlewai'é,bétvs*eeﬂfavailéblé devices (publishers) and devices that
are looking' to connect (subscribers). Publishers must provide self—descriptive infor-
mation to the’controller, which then packages it up into a publication. Publishers
have the option of limiting access to their publication, by creating friendships. Only

devices verified to be a member of an authorized group can unlock a restricted pub-

43

“I'm interested
"Ais available” in someone

“Someone is : "Here's how .
looking for you" to reach A" -

Figure 4-1: Basic interaction of the system. Publishers announce availability and
subscribers announce interest in devices (dotted lines). The controller : m)tlﬁes both
parties when there is a match (solid lines)

hcatlon Subscnbers must prov1de mformatlon to the controller descnbmg the types
of dewces that are of 1nterest ThlS mformatlon i packaged mto a subscnptlon In

th1s system, there are two e'uent types pubhcatlons and subscrlptlons

Responsxbxhty falls on the controller to match ‘publlcatxons and subscriptiohs,
resulting in the pairing of dewces that are interested in connecting Wlth -each other
When these matches are made, the controller must answer these events by notifying
both parties with information on how to form & oonneel;xon. ZFllgure 4.1 sh_ows the most
basic interaction model. Once these events _haye;been answered, they grae‘-.rex‘noved
from the system: ‘Qpen.‘ events are unenswex;ecl; events that remal:} : 99;“33 system
becau,se:tlxey have not yet been matched. Each time a new event or tﬁgger‘ event
arrives, the controller seeks to match it ageinst open events through the matching
procedure. 4

The contr‘oller keeps track of events by assigning unique identifiers to each one.

,-These xdentlﬁers are needed as multiple events can originate from the same device.
When mformatlon is,sent, to a dewce regarding one of its events, there must be a way _
for; the device to recognize which. event-is in question. These following are situations
in which identifiers are usegl: .to identify which event is being answered in a match
notification, as acknowledgements for when an event is successfully added to the

system, and to identify an event that has expired

The controller manages ‘open events on the system by assigning an expiration

44

date to each. When an open event remains ﬁnanswered on its expiration date, it
is removed from the system and the originator is informed of the expiration. The
originator can thén resubmit an event to the system if it wishes. When devices
discdnnect-, the controller also removes their events from the system. If a device
discoxmected unintentionally, it reconnects to. &hecontml;'l;e;.;@thekwise, the device
reenters the state it wasforiginally in before it connected to. the controller.

This publish-subscribe system allows devices in the s“ystefn to bypass the Blue-
tooth discovery stage when initiating connections to other devices (see Section 2.1.3).
This saves on power in Bluetooth-rich environments and reduces the chances of an
anonymous attack. It provides synchronization decoupling and a mechanism for form-
ing friendShips. This chapter presents in detail the protocol for device and controller
interactions in the system. It also describes the assumptions this system makes and

justifies why they are made.

4.1 Protocol

This section outlines the protocol for devices that comprise the system, inclﬁding the -
controller. The controller in this publish-subscribe system is a non-mobile device that
draws pdwer: from a constant source. It has a Bluetooth radio and is always both
discoverable and inquiring about its neighbors. The protocol set forth in this section
is for a system with exactly one controller, which is only in connectable mode when
there is room for another device in its piconet. Devices in this system are smart
mobile devices that. have an extra application layer to handle their participation in
‘the ‘system. Section 5.4.3 discusses the: possibilities for creatito ng a system that
ineludes dumbdev;ces, i.e. simple;devices that enly: cbnnect one other device and run
on simple software. '

- Toijoin the system, a device may connect to the controller via the standard Blue-
‘tooth connection protocol. The device inquires and discovers- the contraller,. if in
range. The device name that a controller provides during diseovery musb%ﬁﬂemrip-

tive enough to identify it as a publish-subscribe controller. If the. controller is.in

v

45

connectable mode, the device can then page the controller and connects. The device
and controller perform a role switch so that the controller becomes master anci the
device bécames slave.

;- Piscoverable devices may also connect to the system without initiating the connec-
‘tioh. Because the controller is continually inquiring, it ‘will' discover the new device
and page it for its information. That way the device can seamlessly transfer the

‘responsibility of announcing its availability to the controller. =

4 1. 1 Procedures

RSO Pt . (R ! jU R .

:Thls section descnbes the procedures for pubhshmg avallabﬂlty and subscnbmg to
device types., Both procedures produce a new event, which triggers the matching
procedure by the controller. If there are no matches, the event is left gpen on the
system and the controller parks the device. When a match does occur (triggered
by a later event), the controller reactives the device and notifies it of a match. The
controller reacts differently depending on whether a publicé.tioﬁ" affi\}e;l;ﬁrst or a

subscription.

Publish

‘There aré two ‘ways to publish availability:", directly and indirectly. In the first, the
device!initates a connection to the controller. After the connection is.ma.de, it calls
a publish() operation on the controller and provides information on its availability.
The controller then checks that the publication is valid (see Section 4.1.2). If so, the
controller assigns it an event identifier and.returns it to the publisher, who stores
for later reference. This méthod is called a direct publication because the device is
intentionally using the controller to publish.

In the second method, the controller is the one to initate a connection. As men-
tioned in the previous section, the controller continually sends inquiries and will find
a new discoverable device. The controller then pages the device, obtains its informa-

tion, and packages it into a publication. An event identifier is assigned and returned

46

Direct Indirect

P C F B
Irquiry % Inouiry
I 7
Ak AL
S I s >
Page Page
7 <
Ak Ak
e —————m e iy _9
. Raole Switch . ACK(ID)
< <
Fublish() .
- ACK(ID)

Figure 4-2: Message transactions for publishing directly and indirectly. Solid lines
indicate standard Bluetooth actions, dotted line indicates automated responses (see
Section 2.1.3). and double lines indicate system specific actions

to the device. This method is called an indirect publication because the device does

-not intentionally use the services of the controller. Unlike a direct publication. a
indirect publication can specify no more information than what is obtained from the
inquiry and page. Figure 4.2 shows timelines of message transactions for these two
Cases.

For both cases, the controller performs the match procedure to search for any open
subscriptions that match the publication. If there are no matches, the publication is
kept open in the controller’s database until expiration. The controller will park the
device to put it in power saving mode and will disable any scan modes if applicable.
The matching procedure, identifiers, and expirations are described in more detail in
Section 4.1.3, Section 4.1.4, and Section 4.1.5 respectively. At any time, a device can
remove a publication by calling an unpublish() operation on the controller with the

event identifier as an argument.

Subscribe

Unlike publishing, there is only one way to subscribe: the device initiates a connec-
tion by inquiring and paging the controller and calls a subscribe () operation with

its subscription interest. The controller checks that the subscription is valid before

47

s Inguiry
\ -
Ak ;,
L Fage
RS
Ark

Role Switch
o
rd
Subscribel)

"l

ACkID)

~
Fd

Figure 4-3: Message transactions for subscribing. Solid lines indicate standard Blue-
tooth actions, dotted line indicates automated responses (see Section 2.1.3), and
double lines indicate system specific actions

assigning it an event identifier and adding it to the system (see Section 4.1.2). The
event identifier is returned to the subscriber, who stores it for later reference. Figure
4.3 shows the message transactions for a subscribe procedure.

As with publishing, subscribing triggers the matching procedure to see if there
are any open publications that match. If there are no matches, the controller keeps
the subscription open in the system until expiration. The controller parks the device
to put it in power-saving mode and disables any scan modes if applicable. At any
time, a device can remove a subscription by calling an unsubscribe () operation on

the controller with the event identifier for the subscription as an argument.

Parked Mode

When a device’s publication or subscription does not result in a match. the controller
stores the event and parks the device. As described in Section 2.1.3, parked devices
give up their Active Member Address for a Parked Member Address. These devices
remain synchronized to the piconet but cannot transmit. This mode is used to put
the devices in power-saving mode. When the device needs to transmit, the controller
will reactive the device using the beacon interval reserved for communication with

parked devices.

48

_, disable scan

|, enable
| (38 page scan FHSl .|

"""“f“"é’

Paga

(

Figure 4-4: Message transactions for matching when the publication arrives first. P-C
action indicates either direct or indirect publishing as shown in Figure 4.2 and C-S
action indicates subscribing as shown in Figure 4.3

Notification

Matches occur when availabilities agree with interests. When a match occurs, the *

controller must notify both parties and provide information on how they can directly

connect to one another. The subscriber is provided with information on how to page

the publisher, while the publisher is told to listen for the page.

The controller reacts differently according to which event type arrived first. If
the publisher arrives first, the controller stores the publication and parks the device.
When the matching subscription arrives, the éontroller does not park the subscriber.
Instead, the controller sends a message to the publisher to enable its page scan and
a message-10 the subscriber containing the FHS packet of the publisher. Figure 4.4
showg;ﬁhe?massage transactions when the publication is indirect. A direct publication
would: also have the same result. . ‘

If the subscriber arrives first, the controller stores the subscription and parks
the device: - As previously described, the matching publication can arrive directly
or indirectly. In the first case, the device actively publishes by connecting to the

controller. Following this, the controller notifies both parties of the match. . In the

49

Direct | Indirect

, ___Enable '
page scan

[FHS) o

Page

‘Fxgure 4-5: Two. possxble message transactlons for-matching when the subeription
arrivesifirst, ‘one" for a' diréct publication; and the other-for indirect: P-C action
indicates publishing as shown in Figure:4.2 and C-8 action indicates subscribing as
shown in Figure 4.3

“second case, the controller finds the discoverable device and receives its information
indirectly through ah inquiry and a page. In this case, no connection is needed
between the publishing device and the controller. .Instead, the controller only needs to
send the publisher’s FHS to the subscriber. Figure 4.5 shows the message transactions

for both a direct and indirect’ pubhcatwn

Fooeox

States

Figure 4.6 shows the state tx:anéition diagrams for participating devices. A subscriber
has four mam states. When it is not connected to the ‘controller, it is in the dis-
connected state. "To transition to ‘the active state, the subscriber must initiate a
fcdnnecti(m."'Oﬁée?’actﬁ'é“,‘ it'can subscribe. If the subscription results in no matches,
the device enters parked state. If there is a match, the device is given information
to enter the page state. A publisher has states similar to the subscriber. When in
the disconnected state, the device is not connected and is not in inquiry scan mode.
The device can transition to active state by initating a connection. Another start

state is the inquiry-scan state. The publisher enters the active state by hearing an

50

i Offline

{ Orﬂlne':ﬁ! { iy)

“ Scan
L e e Vi
connect | E— connagl b rinect conngct
disconnas
.:rconneded'* / Connected ',
| to | | 10 J
* Controller . Controller /

"]
unsubscrive
subscobe

< Open
-@ubscunll-u}

match sheck match chack

unsubsenbe
subscrbe
2
" Open .
. Publication 3

i
match check match check

oy . -4 S
‘.A—- Not - y 4 . : - Not e .,
' ‘ ' ()
"-.Matched_.f i Matched | E-.Matched) \VMatc heq;,
ACHAe g ;;\ R activate e T
tovenew park Ll ERz dmenls Worensw pak activate enable tmeout
il FHS wi SCan
; S / \L, B e / enable -Lk -
| Parked | J " parked | { Page
N el) “_Sean ./
""—"" connedt o confiect

.f '4
/ Connected

/ Connected’,

to %ll to j
. Publisher \Subscriber,’
Subscriber Publisher

Figure 4-6: State transition diagram for a subscriber and a publisher.
te =

inquiry from the controller and accepting the connection. From the active state, the
publisher may publish its information. If there is no match, it enters park state. If

there is a match, it enters page-scan state to listen for an incoming connection.

Flow Chart

The controller manages the system using a database of open events and a queue of
events that are waiting to be processed. Events in the queue are processed on a First
In First Out (FIFO) basis. This section describes the actions of the controller in ths
system.

Figure 4.7 and 4.8 show the flow chart diagrams for the five main threads of the
controller (cleaning. handling disconnections, handling new connections, handling
existing connections, and processing events). The cleaning thread removes expired

events from the system while the disconnection thread removes events left by devices

that have disconnected. The new-connection thread handles the cennection of new
devices and the addition of their events to the event queue. The existing—'connectien
thread ha.ndles the querying of devices that are already connected to the controller
and are parked Thrs thread is necessary to check if a parked device wishes to renew,
add a new event OI “Femove an event. Finally, the processmg thread takes events off
the queue on a FIFO basm and processes them by perfprmmg a match check. The
results .and matching procedure itself are described in detail in Sectmn 4.1.3. Because
these threads operate sxmultaneously and modify shared data, locks are used. The
~clean1ng, disconnection, exxstmg—connectlon, a.nd processmg threads all modify the
datebase, of open events whﬂe the ex1stmg—connect10n and new—connectlon threads
modify the queue of events A thread must wait for the appropnate lock to be free
before executmg its actions. When it is done, it must release the lock. .

Figure 4.8 also shows the flow chart for the notification &ction Dev1ces are always
parked after a notification. The only time a device is aefclve f_or long in the system is
when it is a new device that is waiting for an event to be precessed. The thread for

the processing of events will park all devices involved.

4.1.2 Subscription Language
This section describes the subscription language for publications and subscriptions. It

gives the scheme and representation of the language and the reasons for these choices.

It also describes the attribute-value pairs used to create an event.

Representation

To allow for éxpressiveness of évents, this system follows the content-based schenré
described in Section 2.2.2. Because events are essentially device descriptions, the sys-
tem needs a la;hgué,ge flexible enough to express all the different possible descriptions
of a device or device type. Of the main schemes of publish-subscribe systems, the
content-based schemé provides the most expressivity. A topic-based scheme is too

limiting as it requires the system to categorize events into a fixed set of topics. This

52

—— S
_'é Rest | m“i’ Rest]

Get E Register
Database Davice
Lock : 1 Disceonnection
[_C;lean Get Get
\I/ Database Queue
LoCcK Lock
Remove N N2
Event] i
‘Remove {Remove
|: | Events I Events
i 1
Notify b o~
Device Release | Release
T Database i Queue
\L Lock . Lock
Release T —
—— Database Wit to
Lock Join
Clean Handle
Database Disconnections

Inguiry 1 ;
nqui
Sc¢an quiry
T YPRCOETNG ound ’Jh“
PR st
Devices
Connect Sohon 13_1;;;;-:\'»;-;
to one ki
Device Activate
L NG
Get Event Get Event GetDatabase
Queue Lock Queue Lock \LECK
\1/ Add Event Remove
Add Event to to Quéeus Event
Event Queue \ /
P
Park
Davica
Release Event | | Rel\f’ase
Queue Lock
Lock
Handle New Handle Existing
Connections Connections

Figure 4-7: Flow chart diagram for the controller threads that handle cleaning, dis-
connections, new connections, and existing connections.

restricts the granularity at which a device can perform a search since a search can
only vary according to one parameter: the topic. A type-based scheme is also unsuit-

able for this system due to the unnecessary complexity it adds. Publication events in

n3

Notify

. é Nﬁﬁf\f ¢ parsind

Device 1
=
i acie 1
_Activate
Send ’ ‘
Message] A—
- | Get One
Event
iDPafk 1 Get
L_:]——'“"”‘i‘lm Database
Lock
oo match Chack for
ratches
i one mank \L %
Add Event Remove d Notity
to Database Matched e Subscriber
Event \ Pick Oldgst
T Subscription
.
W Notify Notify
3 Publisher Subscriber
Park Device
if Active
- L
i e N
W;gt:‘or | 5 Release
+ Database

- Lock

Process Events

Figure 4-8: Flow chart diagram for the controller thread that handles event processing
and the notification action
this system are device descriptions that do not fall into statically configurable event
tvpes. Therefore, filtering in the context of event types is not useful. The downside
to a content-based scheme is that it places more overhead on the controller when
performing matches. However, this is an allowable tradeoff since the controller has
its own power supply and is assumed to have many resources (see Section 4.2).
Subscriptions in the system define event constraints using attribute-value pairs.
This is ideal because information obtained during a Bluetooth discovery procedure
is already in the form of attribute-value pairs. For example, a discovery procedure
uncovers the name value, class value. and Bluetooth device address value of a device.

Each piece of information can be easily formatted into an attribute-value pair and

H4

combined to form a subscription. With these pairs, it is then reasonable to follow the
templé,te object approach described in Section 2.2.2. Publications can be thought of
as objects and subscriptions as templates for object types. Any object that conforms
. to the template is therefgre of“ interest to the subs.(v:rib_er.}‘ A Possible alternative
representation uses strings. However, because this system incorporates the groups
protocol described in Section 2.3 to allow for friendships, strings are impractical. The

~ group verification. protocol is too complex to express using strings.

Publications

The purﬁose ofa publication is to provide information about device availé,bility A pub-
lication consists of five attribute-value pairs: [KEYS=(group keys), BT_ADDR=(Bluetooth
Device Address), OFFSET=(clock offset), NAME=(device name), and CLASS=(device .
class)]. In this system, a device is not allowed to publish multiple times because a .
device should be discoverable in only one way, just as there is only one inquiry re-
“sponse from each discoverable device participating in the standard Bluetooth inquiry
procedure. Allowing multiple publications from the same device could lead to si-
multaneous matches. In that case, the controller would need to have a scheduling
algorithm for answering matched subscriptions. Without one, the controller would
answer all matches, resulting in simultaneous page requests from different subscribers
sent on the same channel (see Figure 4.9). This greatly increases the chance of packet
collisions. Introducing a scheduling algorithm, however, adds too much overhead and

a level of complexity undesirable in a simple controller. Therefore, devices are limited
- toone publication éach.

- Publications contain device information that could have otherwise been discov-
ered through .a Bluetooth discovery procedure. This consists of the Bluetooth device
addw;rdoclgoﬂ'sﬁt;;device name, and device class. All these parameters, except the
clock offset, help identify a device. Typically, the user of an inquiring device chooses
to connect to a.device based on user-friendly attributes such as the name and class
of a device. While the BT_ADDR is a unique global identifier for devices, it does not

present information that easily describes devices. However, this attribute is included

95

Figure 4-9: Allbwing multiple matches to one publication results in packet collision

in \the'fpiiblié‘ation to leave the optio‘n of locating a device by its unique idéntiﬁer. The
clock offset is only_’incl«»uded in the publication to keep :device;-infé.')rmatidn stored in 'a
k. single location for: easy access by the controller: Th>ough ‘this attribute is largely ig-
nored during a match, it remains in the publication alongéiderthe BT_ADDR so that
they.can be easily packaged into a FHS packet when neéeded. This packet contains
information on how to page and connect to.a device. . . '
A publisher also has the option of limiting or restricting access: to its publications
by specifying groups as describe in Section 2.3. By providing specific group_public_keys,
‘the device indicates that it wishes to be available exclusively to membets of those
‘ ngups:-‘ Thérefore; only subscriptions that have a key in conimon with a restricted
publication can’sccess it. - Of course, tﬁe conttoller must Verify both the publisher
‘and ‘subsér’i{‘bers'*member‘ship in the group before allowing access. These steps are
done during a matching proceduré (see Section 4.1.4). Keys can also be represented
as attribut&Vt;_Iué pairs.- VUnfortunately,» keys are different than the previously men-
“tioned 'device ‘propeérties irr that ﬁ}_xey can have multiple instances. Since a publisher
‘can-belong to more than ‘one -group, it should be able to specify multiple keys to
’permi't. access to more than one group. Therefore, the value of the KEYS attribute
is a list that contains either one or more group keys or a wildcard value (NULL). A
wildcard value indicates an unrestricted publication. The reason for Iistin‘g keys to-

gether rather than having multiple attributes (KEY1, KEY2, etc.) is that the system

56

does not know how many groups a publisher belongs to or wishes to provide access
to - different publishers might specify a different number of keys. Thus, a list is used

to enforce a more consistent format across all events.

Subscriptions

The purpose.of a subscription is to provide the system with information about the
types of devices a subscriber is interested in. The format of a subscription is very
similar to that of a publication. A subscription consists of five attribute-value pairs:
[KEYS, BT_ADDR; OFFSET, NAME, and CLASS]. In this system, a subscriber is
not allowed to add a repeated subscription. However, a subscriber is allowed to add
up to six imique subscriptions to the system. When a match occurs, the subscriber
becomes the master of the publisher (see Section 4.1.4). Since a device can only -
have up to seven active slaves in its piconet, the system allows it to look for no -
more than seven devices at any given time. Unfortunately, this does not ensure that
a ‘subscriber will not waste controller resources, since it can still add up to seven

subscriptions even while the subscriber’s piconet is at full capacity. However, this

simple solution does limit the amount of waste to a reasonable extent for a system :

where controller resources are not scarce. ’

To access restricted publications, a subscriber can specify the groups it belongs to
by providing a list of groﬁp keys as the value of its KEYS attribute. Doing so indicates
that the subscriber is:a member of those groups and can therefore access a restricted
pﬁblication that is locked by any one of those keys. If the subscriber has no keys, it
sets the attribute to aeiist ‘co'ntéining the wildcard value (NULL). Again, the controller
‘must verify these memberships before allowing access. The values of the BT_ADDR,
.CLOCK, NAME, or CLASS attributes can also be.NULL value, implying that the
subscribér dees not care what a: publication has for that value, i.e. the controller
can match;any ipublication value for that attribute. Subscriptioné typically havéié&n
unspecified CLOCK value since it ’is not an identifier. ‘If the controller weze to,check
for matches on that attribute when a value is provided, then it is highly unlikely.that
a match would be produced. Therefore, the contré;ller ignores the CLOCK: attribute

57

during a match (see Section 4.1.3).

4;1.3 Matching

The coq@rq,llei ‘s{t;grg:s,qql,lgctions of publications and of subscriptions, or events. Every
time a new event arrives, t;he controller checks for matches in the systein. This new
-event is known, as a t;igger event because itv' triggers a match%@g proggdﬁ;e call. If
the trigger event is a pﬁb@icgtion, the c‘(‘_)_ntroller‘ checks the pubﬁcatioi{ 4,for a match
against the collection of k,su})scriptiops'.%_}lf the trigger event is a subscription, it checks
for a mafch ;aga:inst;the cq]léctiqn‘o,fvpublicé‘tiorf. - N
A match is defined as a consistent’ pairing of two events of opposite types, i.e.
publication and subscription.. To determine-\:_i‘f\,thete is a.match, the procedure checks
if the values of all attributes in a publication; are consistent. with the values of all cor-
‘responding attributes in a subscription. At any.point, if two corresponding attribute-.
value pairs are inconsistent with each other, the match check fails for.that. element
and the procedure moves on to next é‘lt‘ament\inﬁhhe collection. If all attribute-value
pairs are consistent, then the procedure determines that the overall publication and
subscription match and places it.aside until it has found ajl matches in the collection.
A matching procedure can result in zero matches; exactly one match, or multiple
~ matches. In the first case, the trigger event produced no matches and is added to
the database as-'an open event. In.the second case, there is exactly one match, so
the controller can answer both events. 'This answer consists of informing the event
originators hbw:to communicate with one -.anothér in order to set up a connection.
Once these évents are answered, the controller removes them from the system. In
the ﬁhirdicslse,"theA-trigger event produced multiple matches. The controller reacts
differently depending: if the trigger event is a publication or a subscription. If it
is a publication, the controller selects the oldest of the matching subscriptions and
proceeds as if it had found an exact match. If it is a subscription, the controller

returns the entire list of matched publications.

58

Matching Procedure

The matﬁ:hing procedure is called when a trigger event ar;ives at the controller. This
procedui;é ta.kes as its arguments the trigger event and a collection containing ele-
menté otf the opposite event type. ‘This procedure iterates through the elements of
a collection, individually checking fofmatches between the trigger event and each
element. Elements that are successfully matched are placed in a separate list during

the iteration. At the end of iteration, the procedure returns this list to the controller.

A publication and subscription match when their attribute-value pairs are consis-
tent. The first and most difficult attribute to match is the KEYS attribute. Match-
ing this attribute is a two step process, involving the determination of common

groups and the verification of membership in those groups. Checking for common

group_public_keys determines common groups. However, because any device can ..

claim to be in a group, the controller must verify membership before the attribute-
value pairs are considered consistent. Only one commong group is ne_cess&ry to gain
access to the publication. This can be tﬁbught of as uﬁlééking a room with n aiffer- f
ent doors, each locked by a different key. The first correct key unlocks the door and

grants access to the room.

The first step in granting access to a publication requires checking for common
keys in the KEYS attbribute—value pairs. This occurs in three out of the five possible
cases. In the first case, the value of the KEYS attribute on both sides is a list con-
taining NULL. This case is consistent because the publication unlocked and therefore
available to all subscribers. In the second case, the value on the publication side is a
list; containing NULL, but on the subscription side it is a list containing keys. This
/¢ase;is! also consistent because the publication; remains unlocked regardless of what
keys;a;q&bscriptiqn owns. In the third«case, ‘both the publication and subscription
contain a list of group keys and there is a common key in both lists, meaning that the
publish_en and subscriber claim they belong to at least one common group. The fourth
case is exactly like the. third except that the lists do not share a common element.

This case is not consistent because the subscription does not belong to a common

59

Publication Subscription Consistent

Keys List Keys List
(NULL) | (NULL) True
(NULL) (keyA, keyB, ... keyN) True

(keyA, keyB, ... keyN) | (keyA, keyB, ... keyN). | True
o s.t. common key exits
(keyA, keyB, ... keyN) || (keyA, keyB, ... keyN) " False

o 4 s.t. no common key exits } -~
(keyA, keyB, ... keyN) (NULL) . False .

Table 4.1: Consistency for five cases of publication and subscription keys lists

Publication : Subseription Common: Element
Keys List . : Keys List L
NOLL) | (NULL NULL) = True
‘ (NULL): 1 (NULL keyA, keyB, ... keyN) " True .
| (keyA, keyB, ... keyN) || (NULL keyA, keyB, .., keyN) | ~ True
o s.t. common key exits B
(keyA, keyB, ... keyN) || (NULL keyA, keyB, ... keyN) | - Falge -
' I s.t. no common: key exits ‘
(keyA, keyB, .. keyN) (NULL NULL) False

Table 4.2: Common element for cases with NULL appyer;de'd» t’o"subscf)iptic‘)‘n list

{

group. In the fifth case, the KEYS value on the publicationiside is a list of 'keyé, but
on the subscription side it is a list containing NULL. This case is also not consistent
for the same reasons as the previous case. Table-4.1 illustrates these four cases and
thein consistencies. | _

One simple way of handling these different cases is to have the éontroller: append
a NULL ‘valué-’;oo’ & subscriptions key list when the event is first adﬂéd to the system.
‘Then 'when’ matching the KEYS aftribute, the controller can disregard the different
cases and just check if the two lists share a common value, wildcard value included.
If ‘?t”héy cio,:hheyare consistent and the procedure can verify these common keys. If
not, »access"'iéf*d'enied ‘and the procedure moves to the next event. Table 4.2 illustrates
thig:solution. ~ = - \

Once the procedure obtains a list of common key values, it checks if the NULL
value is present in that list. If so, this indicates that the publication had a NULL
value for its KEYS attribute and is unrestricted. Therefore, the a‘tt;ibute—Value pairs

60

matche. If not, the procedure must verify a common group by ruhning down the list
and performing verification one by one. Verifying that a device belongs to a group
requires the device’s group token, the device_public_key, and the group_public_key,
which was aheady provided"hy the KEYS attribute. First, the controller asks for

both .the publisher’s and subsefiber’s de\iiCe;public_keyS; _,:’I‘hen, it asks both devices

for their group token corresponding to the first eommbn group key. Once this is re-
ceived, the controller can follow the group verification protocol described in Section
2.3. If verification succeeds, the attfibute pairs myatch. If verification fails, the con-
troller moves on to the next common group and asks for those tokens. This process
repeats until there are no more common groups, at which time the attribute pairs fail
to match and access is denied. This protocol allows the controller to ask for informa-
tion on a need-to-know basis. Section 5.4.1 discusses the possibility of remembering
verified group memebers on the controller to reduce the amount of necessary device
transmissions.

For all remaining attribute-value pairs, except the CLOCK pair which is com-
pletely ignored in the match check, consistency occurs when the values of corre-
sponding attributes are exactly the same or if the value on the subscription side is

NULL. In the later case, the procedure allows any publication value for that attribute

to match. It now becomes clear why the KEYS attribute is a special case. For friend-

ships and access, it is the publication that controls the degree of specification. For all
other attributes, it is the subscription that controls that degree. Lastly, all matches
are case-insensitive. For example, the device names “BOB”, “Bob”, and “bob” are

‘considered the same. Figure 4.10 shows pseudo-code for a match procedure.

E:’t’act Matéheé |

,The matchlng procedure returns a hst of elements that successfully matched w1th the
tngger event If the list contams only one element ‘then there is an exact match be—
tween a publlcatlon and a subscnptlon and the controller takes the following action.
Flrst it notlﬁes the subscnber that its subscnptxon has been matched This noti-

fication consists of the event identifier for the subscription and the Bluetooth FHS

61

LS

J public class Controller {
P ST

public boolean mateh(Publication puh,
» ~ Bubsciption sub) {
e //get: common keys
List conmon = getCommon (pub.keys, sub keya),
//verify, if non verify then exit
if (noneVerified{coimbn))
return false;
if [sub,addr. = RULL &&
ipub.addr.equals(sub.addr))
return false;
J.f tsub nm I= NULL &&
‘*pub neme . equals (sub. name})

.L”a \ equa,l.s (:mb c:laas) 3
f&lse H

:abnrn true;

Figure 4-10: Match procedure for a publication and a Subscription

packet of the matched publisher. This packet is easily taken from the publication by
packaging the BT_ADDR attribute value with the CLOCK attribute J}alue. ‘Because
the FHS packet contains information that allows the subscriber to calculate the pag-
ing channel of the publisher, the subscriber can now directly page the publisher. It
e‘nters;PAGE mode and sends page requests on the publishers paging channel. The
next step for the controller is to notify the publisher. This.r_lotiﬁcation consists of an
ident‘iﬁermfo: the publication and a “wake up” message. When the publisher receives
this notification, it enters PAGE_SCAN mode arrd listen for page requests. From
there, the two devices can start from the paging procedure of the standard protocol
to set up a Bluetooth connection and exchange data. Both the publisher and sub—
'scrlber will trme out of the PAGE_SCAN and PAGE modes if there is no response
from the other party It is up to devices to determine the length of time they are
willing to wait before they time out of a PAGE or PAGE_SCAN mode. However, the
protocol specifies a mlnlmum time that devrces must wait before tlme out. Cha.pter

6.1 discusses chmcw 'for this minimum time. -

62

After an exact match is answered, the controller erases both the subscriptidn and
the publication from its database. The subscription is erased because the subscriber
has found the device it is looking for. The publication is erased so that there is no
int_erfg;gnqg qn)the.publﬂiébe,r‘sl paging channel while it sets up this connection with

 the subsgriber. This could hz;ppep if immédjately after a »métph, a new subscription
was added that also matches with the same publisher. Two subscribers would then
be trying to send requests on the same channel and result in interference. To prevent
this, the publication is erased and the publisher has the option of reposting to the
system once the connection is complete or the PAGE_SCAN has timed out.

There are two possible reasons for timing out of PAGE_SCAN and PAGE modes.
First, the devices are out of range from each other. Even though two devices are in
range of the controller, does not necessarily mean they are in range of each other.
The second reason is that a device is uncooperative and decides not to send page
requests or listen for pages. These situations are not thevr,esponsibilityA gf the system.
The system is a best-effort system that only guarantees both barties wil} be alerted
of a match and given appropriate informatibn for connecting. It“ does not gua;éntee ;

device connection as a result of a match

Multiple Matches

When the matching procedure returns a list with multiple matches, there are two
cases to consider: a publication matching with many subscriptions, or a subscription
matching with many publications. When there are many subscription matches, the
controller must notify many clients of one event. Whén there are many publication
matches, the controller must notify one client of many events.

. +In.the first case, the procedure returns a list of more than one matching subscrip-
tions. The controller is now faced with the task of notifying multiple subscribers of -
one ‘pﬁblica'\tion event. waéver, this task is more complicated than it seems. Tra-
ditional publish-subscribe systems decouple iﬁteractions between the gubscriber and
publisher, who are not aware of each other. As mentioned in Section 2.2.1, subscribers

do not typically care where events are generated and publishers do not care, where

63

their évents go. Therefore, those systems can send an event to all interested sub-
scribers. However, this system differs in that it is concerned with future interactions
betiivéen'publiéhers and subscribers and therefore cannot allow a publication event to
be‘sent to multiple subscribers. The purpose of this publish-subscribe system is to
déédﬁple device discbvery in ‘a way that can still lead to connecﬁiOns. If the system
- ‘sent a’publication event to multiple interested subscribers, it would most likely result
in packet collision due to different page requests being sent on the same channel at

the same time. This situation is similar to the one described in the previous section.

"To handle this ﬁrst case, the system removes the p0331b111ty of interference by
selectmg only one matched subscrlber to notlfy the subscriber that has been waiting
longestl for a match. The oldest subscrlptlon is found by lookmg at the time-to-live
(TTL) values described in Section 4.1.5. The controller then treats that vinaﬁCh as an
exact match and proceeds as previously described (see Figure 4.11). If the pu(b‘lish'ér
chooses to remain available to other devices after it conneCts with the subscriber,
it must resubmit a publication. An alternate solution is to have a scheduling al- -
gorithm that assigns different times at which to send each matched subscriber the
event notification. The publication remains open until the last m'at’kchedf» subscriber
has received its notification. Enough time can be allotted between notifications to
give the publisher and subscriber a chance to set up a connectio“n?.' '\’ ThlS altérnative
‘was not used in this system because it adds too much complexity. It requires the
controller to maintain a schedule and to split its time between managing ﬁhe system
and managing these notifications. It is also difficult to determine how much time

should be allocated between notifications.

In the second case, the procedure returns a list of more than one matching publi-
cation. In response, the controller passes this list to the originator of the subscription
event and erases the suBsCription (see Figure 4.12). Based on this list, the origina-
tor or subscriber can narrow its search by resubmitting a subscription that serves as
a more specific template for the device it wishes to connect to. This case is more
straight-forward than the previous because the system does not have to worry about

future interactions. There is no exact match, so no publishers are told to listen for

64

¢ Publisher A >
\

*'T

Controller

/

(_,unsu |t<er\ '} rf} Subscriber ¥ \. ‘:.ul:brnn»'-r? :,

"’-—14—-’"3 e o *—__,_——’/

Figure 4-11: Controller chooses oldest matching subscriber to notify

ey R W i
{ Publisher & 4%{ Publisher B ?K Publisher C
*u. / \‘\1

ol Contraller —/

e

—~ ~
(Subscriber %)
y

o S o

Figure 4-12: Controller notifies subscriber of all matching publications

page requests and no information is provided on how to page the publishers. Even if
the subscriber could contact all matched publishers, it would be via different channels
and would not therefore not result in packet collision. However, this is irrelevant since

a subscription is meant to match with only one publication to constitute a device pair.

Cache of Matched Events

When an exact match occurs, the two matched devices try to connect via paging. As
mentioned before, these devices might time out of the paging procedure because they
are not in range of each other. If they both resubmit the same events to the svstem,
the controller would match the events again and the devices would time out again.

This results in a loop in the system.

To prevent such loops, the controller maintains a cache of recently matched event
pairs. Each time an exact match occurs, the controller stores the matched pair of
~ events in a cache along with a Time To lee (TTL) value. Using this cache, the
controller can check if a match is a copy of a previously answered match. If so, the :
controller assumes that the previous match timed out and therefore the events should
not be matched.

~ When the matching procedure generetes a list of matches, wheth'er exact or mul-
tiple, it checks the cache and removes all events from the list that have recently been
exactly matched to the trigger event. This occurs during the “match check” action
in Figure 4.8. It then continues with the mat'ehing procedure. If a cached pair is ac-
cessed then the TTL value is reset. Section 5.3 discusses choices for the TTL value.
It should be noted that a more effectwe way of preventing loops would be to have
the devices that tlmed out notify the controller ‘when the time out occurs. That way, -
the controller can maintain a cache of just the timed out matches, and not of all the
matched events. This solution however requires more involvement from the device

and is not necessary for this simple system.

4.1.4 Identifiers

Umque 1dent1ﬁers are used to reference events in the system. These event 1dent1ﬁers ,
are negessary to éhstmgmsh between dlfferent events from the same dev1ce Thls is
apphcable in the case that a devme has multiple subscnptlons or both a pubhcatlon
and subscrlptlon(s) active on the system (multlple pubhcatmns are not allowed). The
main beneficiaries of event 1dent1ﬁers are the client devices in the system, not the
controller. When information is sent to a device regardmg one of its events, there
must be a way for the device to identify which event is in question. It is possible to
have the controller send the event itself as an identifier, but this method transfers too
much data unnecessa.nly Since the event is already stored on the device, the controller
should avoxd r%endmg all that data. Instead, events are assigned identifiers when

are they are first added to the system. As acknowledgement of a successful a.ddltlon,

an identifier is sent back to the originator of an event, where it is stored alongside

66

its associated event for later reference. These identifiers can later be included in
messages from the cbntroller to a device to identify the event in question.

Because publications and subscription events are managed in separate collections,
they, should also be separately assigned identifiers according to event type. The format
of an, jdentifier consists of a code.indicating the event type and a numeric value that
is unique within its collection. While a publication and subscription might have the
same numeric value id, they have different codes for the event: type, resulting in an
overall unique identifier. To assign the numeric value of an identifier, each collection
uses its own counter. Both counters beéin at 0 when the system first starts up. Each
time a new event arrives, the controller finds the next valid number by incrementally
increasing the counter corresponding to the events type until no active event in that

collection has the same value. For example, when the first publication arrives, the

publication counter is increased to 1 and this value is used for its numeric identifier. . ,

The counter is then set to the latest assignment, in this case 1. Once the maximum . .

number of the counter is assigned, it wraps back to the lowest value of 1 and continues

from there.

4.1.5 Event Expiration

"The system expires open publications and subscriptions that have been in the system
for a fixed period of time. These events are deleted from the database and the
originators are notified through an identifier and an expiration message. Expirations
are implemented with time-to-live or TTL‘valués. When a new event is added to
-the database, the controller attaches a TTL value after assigning an identifier. The
Qo,ntrolle,r'updates the system by decrementing the TTL values of open events once
every clock cycle. If a TTL. value becomes 0, the controller deletes the event and
notifies .the, originator- of the ;expi_ra.tion. If it wishes, the device can then resubmit
the event to the system. Section 5.3 discusses choices of TTL values.

An é.ltém&_tive to using event expirations is to leave events on the system for the
lifetime of a device’s connection to the controller. This would not require devices to

renew their events periodically. However, there must be some mechanism for syncing

67

open events on the device ’side and open events on the controller side. It might be
the case that what the device thinks is stored in the database is not actually stored
or 'vice versa, resulting in inconsistent data. Unfortunately, syncing algorithms often
require significant datd transmission. This contradicts the requirement of miﬁifﬁizing‘
thé amount of data a device must send "(éee Chapter 3). Efficient syncing algorithms
such as Rsync have been developed that minimize ‘the amount of transmitted data.
However, the tradeoff is significant computation at the device end which also contra-
dicts a requirement of this system [26]. The use"of QVéht e‘xbiration makes the system
as a whole much simpler. By timing out events, “théi'éwtem'aliwé devices to renew
an event as heeded, which reduces thie amourt of data sént. There could be a short
period of inconsistency but this is Bounded by the maximum TTL value.-The Java
Message Servi¢e is an example of a publish-subscribe system that ‘iises expiration to

remove forgotten messages out of the system [27].

4.1.6 Disconnections

Devices either disconnect intentionally by explicitly closing the connection or léaving
the range of the controller When devices disconnect, they return to the state they
were originally in before they joined the system. For example a dlscoverable device
enters a room with the controller, whodetects the device and conne¢ts. Its availability
is hot matched and the device is parked and its inquiry scan disabled. However, the
device stores its original state (discoverable mode). When the device exits the room,
its cohnection to'the controller times out-because they are no longer in range. When
this occurs; the device returns to its ongmal state. Devices can also disconnect
unmtentxonally due to 1nterference or fading. To recover, the device may reconnect
‘directly or ‘inditectly, i.e. actively inquire or enter discoverable mode.

The systém handles both types of disconnections by flushing the system of events
that originated in the disconnected device. This ensures that no inconsistent data
is'left on the system. Unfortunately, removing these events requires the device to
resubmit all its events when it reconnects. While this solution handles the inconsistent

data requirement, it is not optimal for reducing the amount of data a device must send

68

in this situation. Chapter 6.2.1 discusses an optimization for unwanted disconnections

using a cache.

4.2 Assumptions

Plentiful resources — The controller is assumed to have near limitless resources.
. This is justified by the fact that the controller is a plugged in device. Because
the controller is often a bay station, it does not need to worry about storage or

power limitations as compared to mobile devices.

No idle devices —~ Devices will only remain connected to the controller for as long
as they wish to use its services. In other words, devices that no longer wish to
remain available or are not actively seeking other devices will disconnect from
the controller. This implies that there are no malicious attacks on the controller.
Attackers can be devices that purposely flood the system with nonsense or take
up piconet. capacity. This assumption is reasonable when the system is used in
a personal c;)mputing environment, where devices are responsible and connect

only when services are required.

Previously authenticated devices - Devices have been authenticated with one
another and with the controller. This design assumes that all devices are trusted
pairs\ and do not require user authentication. While the system still works when
devices are not authenticating, it just requires more user interaction. However,
this assumption is reasonable for a personal computing environment in which
devices have already been paired. It should not be assumed when the system is

used in a public setting.

69

70

C‘hapter 5
Discussion |

The system presented in the previous chapter addresses the shortcomings of the Blue-
tooth connection protocol. However, it is a simple solution that still has room for
improvements. This chapter discusses the solution itself and futufe considerations
for improving on the solution. The first section discusses the system in the context
of the requirements previously listed. It‘ describes ,hQW; the system satisfies these
requirements and to what degree. Th'e‘s.econd section discusées three demgn alterna-
‘tives and why they were not optimal for this particular system. Thése alternatives
are based on communication paradigms similar tb the publish-subscribe parédigm.
/The third section discusses how to choose system parameters and what factors to
consider when choosing them. The fourth section discusses future considerations for
the system. This includes different optimizations that use caching and key lists to
reduce the amount of data a device transmits. It also includes a discussion on the
bottlenecks of the system and ways to improve performance and scalability. Lastly,

the section discusses a way to include dumb devices in the system.

5.1 Satisfied Requirements

The solution proposed uses the pliblish-subsCribe pafadigm to decouple device inter-
action during Bluetooth discovery. This section discusses whether the requirements

described in Cha;v)ter 3 have been met.

71

Perform no worse than Bluetooth connection protocol — The system allows
~an inquirixig device to find an available device through the matching of publica-
tions and subscriptions. Even when an inquiring device has no specific interest,
it can post a subscription with NULL values for for all attributes, to which
the system would return a list of all publications (unrestricted). This case is
exactly like the normal Bluetooth discovery procedure in rvhich an inquiring
device asks for any available device in the area. Also, a discoverable device can
use the system m a seamless fashion because the controller automa.txcally de-
tects the device and connects to it. It assumes responsrbrhty of announcing the
device’s availability with little work from the device. The system goes beyond
this by allowing devices to make specific inquiries according to their interests. -
The system also provides no less information to a subscriber and provides no
more information about a publisher than would have normally been obtained

in a Bluetooth discovery procedure.

Reduces the chances of anonymous attacks in discoverable mode — Because
devices discover each other through the system, these types of anonymous at-
tacks are less likely to occur. Both bluejacking and bluesnarfing, which target
discoverable devices, are avoided when the device is not left in discoverable
mode. In this sytem, a device is only drscoverable long enough for it to publish

. ‘or subscnbe Therefore the chances of an attack are regluced

Allow -devjces to expend a lower,average power during ,discqvery — This sysL
- tems reduces the average power a device consumes to connect,to another device.
Currently, it requires the device to perform one inquiry and one paging proce-
dure to connect to the controller, and then a second paging procedure to connect
to a device. This does result in a greater power consumptron when both devices
are already present since they would have performed a smgle inquiry and page
toeonneict irmder_ standard Bluetooth protocol. ‘However, when devices arrive

asynchronously, they consume much less power by using the system. -

Consider first the power consumption of devices using normal Bluetooth con-

72

nection protocol. For two devices to discover each other asynchronously, the
device that arrived earlier must already be inquiring or scanning for inquiries
when the second device arrives. Leaving a device in‘inquiry mode wastes a lot
of power a8 the procedure requires periodic transmissions. Leaving it in dis-
- eoverable mode also requires the tranmission of inquiry responses whenever a

' request is encountered.

The system decouples tﬁiS'interaCtion'by allowing devices to announce avail-
ability and then go to “sleep”,‘i.é. parked mode. Because the system takes on
the responsibility of notifying devices of matches, they do not have to worry
about conversing with other devices. Therefore, the average power consumed
in this system for the purpose of discovery is lower. This is especially true in

Bluetooth-rich areas where there are many devices in close proximity.

Allow devices to restrict availability — The system allows devices to restrict ac-
cess to their publications. By providing group_public.keys, a device can specify

access only to members of a common: group.

Handle Stale States — Thé system limits the lifet'ime a "pafked’deviée can remain
in a stale state, i.e." a state that is no longer true, by expiring events that have »
been in the system for a prolonged perlod of time. The system also flushes those
everits whose originator has disconnected. Although these procedures address
the problem of stale states, both these mechanisms réquire more overhead on
the part of the controller. However, given the unlimited resourées available to

the controller, this is preferable to increasing overhead on client devices.

5 2 Besign Alternatwes

4ixrr B i S

' Thxs sectwn d,lsqusses three dwgn a.lternatlves gnd the reasons they were not chosen
for thls system These alternatives use communications paradxgms similar to publish-

subscribe but do not prov1de the type of loose coupling required in the system.
Tuple Space - In DSM systems, hosts have the same view of a common shared -

73

space called the tuple space, which provides a simple yet powerful abstraction
for accessing shared ‘memory. A tuple space contains a collection of ordered
tuples that act #$ the communication tool for hosts. Hosts can insert or remove

" tuples, or read them without :eché.nging their location.. The advantages of this

“ interaction ‘model are the time and space decoupling'it provides. Producers
of tuples do not need to know what happens to the tuples in the future and
consumers do not need to know what has happened to tuples in the past. The.
“disadvantages of tuples are that there is no central management that controls
the tuple space. For this system, computation and management should be
handled.»,hy,a;central entity rather than by devices which do xp,otihatre much
POWer OT Fesources. Also, tuple spaces do bnot‘px_foyide‘the, ;‘egul,ationl mechanism
neceessary iforvallowing f.riendships.oeqause ,axiy,,en;l user can read and access a
tuple [17]. '

Observer Design Pattern - In these systems, subseribers registertheir interest di-
rectly with publishers while publishers hotify subscribers asynchronously through

a server. This management decouples 1nteract10n m synchromzatlon but not m

YN

time and space. It does not work because the purpose of our system is to
perform dev:ce dlscovery Because devices do not know about each other sub-

scrlbers cannot dlrectly reglster thelr mterest m thxs manner An adaptatlon

;n,',

of the paradlgm mlght be to have mterests dehvered to a pubhsher through

iy i B SR
rmddleware but thls management would stlll place the burden of ﬁltenng on

the pubhsher [17]

- Message Queing ~ Message queuing integrates certain forms of publish-subscribe

interaetion. In thistype of system, messages are put into a global space called a
queue by a prodtlcer and removed by a consumer. ’However, consumers retrieve
eléments based on priority, or its location in the queue, rather than by structure.
Thereforé, this alternative fundamentally cannot be adapted for the system,
which needs to deliver messages based on content. In other words, availability

. should not determined by the time a device publishes to the system [17].' ,

74

5.3 Choosing Parameters

One parameter that affects performance is the initial TTL value assigned to open
events [see Section 4.1.4). TTL values determine the length of time an unanswered
or open-event remains on the system. Small ’I‘TL values result in high turnover and
require devices fo renew events frequently, while large TTL values lead to higher
- chances of inconsistent data. Ih_consisteht data could result in missed matches, i.e.
matches that should have occurred but did not. This;cdnsequence is not as harmful
5 as requiﬁng a de.vice to retransmit data often, Therefore, larger TTL values shoﬁld

be preferred.

" Another parameter that affects performance is the MIN_TIMEOUT value for de-
vices participating in the paging procedure as the result of a match (see Section 4.1.6).
When notification is received of an exact match, the subscriber goes into PAGE mode
and the publisher goes into PAGE_SCAN mode. Becapse the controller cannot ensure
that a device enters its respective mode;.devices.shpuld ,timeout pf ‘the paging pro-
cedure when there is no response from the other party. However, if devices time out
too quickly, the other party might'yvrib‘t have a chance to respond in time. This might
result in re-publication émd re-subscription which is costly for the system. Therefore, “
devices must agree to participate in paging for at least a certain amount of time. A
reasonable choice for this value is the maximum time of a paging procedure. While
- the average and maximum inquiry times vary by as much as 27 seconds, the average
- and maximum paging times vary by only 1.28 seconds (see Table 2.1). Therefore, this
-is a reasonable time to wait. As shown in Figure 4.7, the controller will notify both
~devices simultaneously and then wait for both riotiﬁcations,to occuf before moving

on.

- The last parameter to choose is the TTL value for the cache of matched events.
As described in Section 4.1.3, this cache is needed to ‘ensure that devices that timed
outof a COﬁnecbim' are not matched again, thus preventing loops in the system. This
TTL value should be chosen such that devices who time out are not matched again.

However, devices thét matched and successfully connected should still be matched if

75

they disconnect and return at a later time. Consider the first case. Two matched.
devices will try to connect for the MIN.TIMEOUT period previously discussed. Once

they timeout, they must resubrmt their events to the controller and wait for them to -

, be pr cefsed. Depending on the number of events waltmg in the queue, this could,

| ‘take a while. Theréfore, a:longer TTL value is desirable 80 that the record is-still in
the cache by the time the resubmitted events are processed. In the second case, two
-matched devices connect and communicate. They disconnect and return at a later
time. At that time, the record of their match sﬁﬁuldha\»eiexpiredﬂfmm the cache

so ‘that they may reconnect, if desired. Therefore, a shorter TTL value is desirable. - -
Altogether, a reasonable TTL value can be longer. The length of time for two devices

to connect, COmmuniCate;-v:discoiinect,f and return to;the. system shoulfi be at least:
several minutes. The,:length of time for the: cox’itroﬁielr;,ta{ process \e\}ents;{should be.

much shorter (less than aminute}i» . -~ o0 oo oL 1o

| 5.4 Future Considerations

Future considerations for this system include diﬁ‘etent.opti:nig@tions and scalability-
issues. The system currently meets ‘the_re‘quiremem;s‘ listed in Chapter 3. However, it
still has room for imprqvement, partxcularly in rqc‘iuqi‘x\lg' data J_trhnsmissi‘gn‘ and power

consumption and increasing system capacity.

5.4.1 Optimizations

There dre two possible optimizations for this system. The first uses caching and the
second uses key lists to remember verified group members. Both result in less data

transmission from the device and therefore saves power.

-

- Cache of Removed Events

The amount of data a device must send to the controller can be reduced by caching - -
deleted events. Currently, the controller removes events when they expire,' when a

device disconnécté,ior when a matched event is answered. In the first case, it is likely

76

that the event will be renewed since it had not been answered. In the second case,
the disconnection might have been caused by factors such as interference or fading.
If so, the device would like to reconnect as soon as possible. In the third case, the
device might:-have timed out from an attempted connection and wish to resubrnit the
event: All three cases require the device to resubmit deleted events.
" By maintaining a cache of events that have recently been deleted from the database,
~ the controller only needs an event’s identifier in order to renew it. For example, when
a device receives an event expiration notice, it can call a renew() operation on the
controller that takes the event identifier as an argument. If a device experiences an
unwanted disconnection, it can call this renew() operation for each event that was -
deleted.

Similar to open events, cached events should expire from the system’s cache.
Therefore, the controller must also assign them TTL values (see Section 4.1:6). The
TTL value for cached events should be smaller than TTL values for open events. This
is because devices typically renew events shortly after prirafc_ion or resubmit ﬁhem

soon after they are able to reconnect. Given these two cases, a possible choice for this

TTL value is the maximum time it takes for a device to reconnect to the controller *

(see Table 2.1).

This optimization reduces the amount of data transmission from the device, but
requires much more controller overhead. However, this is not an unreasonable tradeoff
given that a controller is assumed to have significantly more resources than devices.
As shown in Figure‘4.7, the controller could use the cache when it adds the event to
the queue. The device can specify an identifier at that point and the controller could

look it up and add the event to the queue.

g

Keys List

SRR Sy

K

Anohher‘optimim_tion is to maintain a list for remembering verified group memebers.
When matching a restricted 'publication; the controller must check and verify if the
publisher and a subscriber belong to a common group. This recjuires devices to -

send group tokens and their device_public_key. To avoid these transmissions, the

77

controller can miaintain a list for group members it has previously verified. Elements
in this list associate Bluetooth device addresses with their verified groups, indicated
by gﬁm’p_public_keys. Therefore, it must verify a device’s membership in a group, the
contoller can simply: check this list. If there is no listing for the group or device in |
question, the controller proceeds as described in'Section 4.1.4.. When new verifications
are made, the controller stores them in the list. If desired, the eontroller can clean this
list by flushing membelrshipsr-fthat have not been checked in a'long time. This can be
implemented using TTL values that are reset every. time the . membership is checked.
Groupmémbership is changed by generating new group keys, /requiri'ng' the owner to
reissue’ group f‘tokens'[25}. Therefore, the system does.not‘_consi,der new: group keys
and old group key‘s a match. Old memberships in this key list will die out.

5.4.2 Performance T

As‘s'hown in Figure 4.7 and 4.8, the controller uses five threads that interact seqﬁen—
tially to manage the system. This can hinder the performance of the controller. For
exarhple, when a new device publishes, the event must first be added by the new-
connection thread. It must sit ma queue until the processmg thréaﬂ removes -it.
While it is in the queue, a matching subscription might be_‘adde'd to thé%;ueue by
another thread. It is not unfil thé processing thread finishes processing the publica-
“tion and then begins procéséiné thé subscription that a match will be found. As the.
number of devices and ‘the: number of events to be processed increases, the possibility
of ‘the queue ébntaihi'ﬁg" matching events increases too, causing the performance of
the system to slow down dramatically. '
‘One way to increase performance is to have two event queues, one for publications
and one for subscriptions. When the processing thread gains the lock for the database,
it c_ap‘grab the next publication and next subscription off the queues and perform
'Si'niuitameous match checks on each. This is possible because events are matched
f!'a‘gainStE open events of the opposite type and do not affect each other. The processing
thread can then wait for the results of the match checks before taking the appropriate

actions. These events can also be checked against each other or against events in the

78

opposite queue if no events in the database match. In fact, multiple events from each
queue can be checked for matches simultaneously, so long as no action is taken until
these checks are completed

. Another factor that aﬂects performance is the scheduling of threads. When two
. threads are vying for the same lock, it might not be desirable to be fair, i.e. to give the
~ lock to whichever thread asked first. For example, the disconnection thread should
be-given higher priority over the processing thread because obsolete events should be
. removed before a match is performed. However, if the disconnection thread is always
given priority, then the matching thread might ﬁ_ever gain the lock if devices keep
disconnecting. Another example is the cleaning thread. The cleaning thread has less
priority than the existing-connection thread when they are both trying to remove an
event. This is because the existing-connection thread is trying to remove an event
due to an explicit command from a device, which is more important than declaring
an event expired. Therefore, the scheduling of threads is an important consideration

- for performance.

5.4.3 Scalability

As mentioned in Section 2.1.3, the controller can support over two hundred slave
devices in its piconet. Given this high piconet ‘capacity,‘the capacity of the system
reallly depends on when the performance falls sharply. As previously discussed, per-
formance depends on how many devices are in the system and the traffic of events in
the system. It might be the case that there are many devices in these system but the
rate of event arrival and removal is very slow. It might also be the case that there are
- few.devices in the system at a time but the rate of event arrival and removal is very
fast: These féctors might also change depending on what context the system is used
T ind Tteis iikely that a home office has less than ten devices and has a slower traffic of
events. Aswork office .or space might have a higher traffic of events. Therefore, it is
difficult to judge the capacity of the system without testing it in different environ-
ments. For now, a reasonable capacity can be set to around seven devices. This is

because a piconet can only have seven active devices at a time. Since all slaves start

79

‘out active, this is a good start for testing system capacity. Also, there are not usually
much more devices in a 10 meter range. ‘

Once the controller has reached its capacity, a possibility for increasing system
capacity is to increase the number of controllers via a scatternet. However, one must
keep in mind that the purpose of the system is to provide device discovery services so
that devices can form connections. Introducing multiple controllers allows different
points of access for a device to enter the system, which is dangerous. It makes no sense

'for devices to discover each other when they are out of range'becéuse they cannot
directly form'a connection. Therefore, multiple controllers must be groﬁped closely.
Possible ’élient-Server' topologies to use are the hieratchical and ring topologies (see
Section’ 2.2.3). Hiérarchical topologies are most applicab}e for this System because
scatternets:already have a hierarchical structure, i.e. a master in a piconet acts as
slave in another. Ring topologies are not possible in a scatternet because they require
peer-to-peer connections. Howéver, they can be implemented with wired connections,

which is acceptable since the controllers are grouped closely.

5.4.4 Dumb Devices“ | ‘ L

Dumb devices are used for voice or data communications and most periphefal func-
tions. They support only one connection to a computing device and have limited soft-
ware. An example of a dumb commumcatmg device is the Jabra FreeSpea.k BT200
headset. The Microsoft Bluetooth Wireless Intellimouse is an example of a dumb pe-
ripheral device. ‘Because a Bluetooth dumb device can support only one connection,
it must be paired with another device.

Pairing is the Bluetooth procedure that occurs after paging but before a connec-
‘tion; in-order to authenticate two devices that are previously unknown to each other.
‘Typically, it requires’'a PIN to be inputted on both devices by the user. Once two .
F/ devices are paired, they can connect directly to each other at a later time without

searching again. This is done by remembering the information of a device so that
connecting requires only the paging procedure and not both inquiry and paging.

Pairing for dumb devices follows a simple procedure. Unpaired dumb devices are:

80

initially disc_:overable. A computing device will inquire and page a dumb device to
connect to it. Because, the two devices are unknown to each other, they must enter a
PIN to pair. Dumb devices have generic PINs that are assigned by the manufacturer
such as 0000, as with the Jabra headset, or blank, as with the Microsoft mouse [28]
[29]- ¥

Once pairing has occurred, the computing device connects to the dumb device
and becomes the master. When the dumb device disconnects and reconnects at a
later time, it directly pages the paired computing device. If the page is heard, it
then connects and performs a role switch so that the computing device becomes the
master. If the page is not heard, the dumb device periodically pages to check if the

computing device has arrived.

Possible Solution

Dumb devices face only the shortcomings of poor power management and the syn-
chrony requirement as described in Section 2.1.4. When the specific computing device
they are paired to is not around, they waste powér sending pages. Many devices have
an on/off button to stop this when the device is not connected. They also suffer from
the synchrony requirement because they must be looking for a specific device at the
time that device is available. Dumb devices do not suffer from attacks because they

’) do not store information. They also cannot benefit from friendships because they
have limited software. _

To create a system that decouples these interactions, the cont‘roll.er must be
smarter. Because dumb devices are incapable of knowing about any participation
in the system, the controller must be able to fake them into thinking they are inter-
actixig with Aa,{normél computing device. This section describes possible solutions for
different. cases of dumb device interactions.

In the case that the smart device arrives first and publishes, the publication re-
mains open on:the controller and the smart device is parked and put to sleep. At that
time, the controller can take dver responsibility of scanning on the smart device’s page

scan channel.- When the dumb devices arrives, the controller hears its page requests

81

‘and can wake up the smart device by telling it to listen for pages. The dumb device
then directly pages the smart device and connects.

In the case that the dumb device arrives first and pages the smart device, the
controller does not know the pageé scan channel of the smart device. Howe\}er, it
can pseudo randomly hop through the page scan frequenci% in the same manner as
ah“i'ﬂqﬁiry‘ scan. While it takes longer, the controller will hear the page eventually
‘and respond. - To respond to the page and connect, the controller must be able to
fake the smart device’s unique BT_.ADDR. This can only be done with additional
hardware. Once the controller connects, a role switch occurs and the controller parks
~ the dumb device until a smart device matching the BT ADDR arrives. At that time,
the controller does not need to convnect to the discoverable smart device. Instead, it
disconnects from the dumb device and ignores its pages long enough for the dumb
device to page and connect to the smart device. ‘ ” .

In order for this solution to work, the controller must be able to fake Bluetooth
addresses using extra hardware and to pseydo randomly hap through the page scan
channels. It is yet unclear how to do this in hardware and how scalable this solution

i

1s.

5.5 CanluSion

Bluetooth promises to be the next leader in wireless technology. It is simple, reliable,
cost-efficient, and provides all the characteristics necessary to embed computation
into our everyday lives. With Bluetooth, devices now have the mobility and commu-
nication to adapt to the natural behavior of humans, rather than requiring humans to
adapt to'them. Soon, Bluetooth devices will become prevalent in every environment.

For many Bluetooth devices to coexist and operate effectively in the same area,
it is necessary to manage them in an efficient and power-saving manner. This thesis °
provid‘es management in the form of a publish and subscribe system. The system
introduces a middle man to handle device discovery, thereby shifting the power cori-

sumption of discovery from the device to the middle man. Such transfer of responsibil-

‘82

ity frees up device resources and added benefits include the prevention of anonymous
attacks when in discoverable mode, the possibility of asynchronous connections, and
the development of friendships. “

The ability to form Bluetooth connections in é IoW-powered manner changes user |
iﬂterébﬁon with these devices. The user no longer has to worry about turning devices
off in order to save power when they are not in use. Devices can remain on and avail-
- able without excessively draining their power, therefore requiring less action on the
part of the user. With this system, searching for devices also becomes easier. When

a device is absent/unavailable, searching for it requires asking only once rather than
" periodically, also requiring less action from the user. Finally, permitting friendships
in this system opens up many possibilities for associating devices. These associations
can be based on any parametérs, including user, type, or content of the informa-
tion handled. Because the system manages friendships, the user does not have to
remember these associations when connecting devices. Instead, simple actions that
are more intuitive to the user, such as touching two devices, can be used to manage
~ associations.
The primary advantage of this system is the opportunity it provides for trans-
~ ferring the power consumption of discovering devices to a-static middle man. This
- allows many available or searching devices to coexist for longer periods of time. The
fesult is a more seamless interaction with the user, bringing us a step closer to a

pervasive and ubiquitous computing environment.

83

Bibliography

[1] Centre for Pervasive Computing. Available on the Internet:

http:/ /www.pervasive.dk, September 2003.

[2] IEEE Pervasive Computing. Available on the Internet:
http://www.computer.org/pervasive, May 2003.

[3] Bluetooth Official Website. Available. on the Internet:
http://www.bluetooth.com/about/, 2004.

[4] James Kardach. Bluetooth architecture overview. Intel Technology Journal, 2nd

Quarter 2000.

[5] Albert Proust. Personal area networks: A bluetooth primer. O’Reilly Network,
November 2000.

[6] David Carey. Bluetooth making good on price points. Available on the Internet:
http://www.eetuk.com/bus/news/, May 2004.

[7] Bluetooth SIG. Specification of the bluetooth system. Available on the Internet:
http://www.bluetooth.com, November 2003.

[8] TheFreeDictionary.Com. Time division multiplexing. Available on the Internet:

'vht‘t_kp; //computing-dictionary.thefreedictionary.com/, 2004.
[9] Curt Franklin. How bluetooth works. http://electronics.howstuffworks.com/bluetooth.htm.

{10] Bluetooth Designer. Bt designer: Glossary: F-j.
http//www.btdesigner.com/ftoj.htm. '

85

[11) palowireless Bluetooth Resource Center. Time taken to complete inquiry /paging

procedures.

[12]' Adam Laurie, Ben Laurie, and A.L. Digital Ltd. Serious flaws in bluetooth
security lead to disclosure of personal data, May 2004 Avallable on the Internet
http / /www.thebunker.net/release-bluestumbler. htm. ‘

~
f

[13] Mark Ward. New mobile message craze spreads. BBC News, November 2004.
. Available on the Internet: http:// news.bbc.co.uk/ .

[14] Jo Best. ’bluegackmg hits the mainstream. ZDNet UK, November 2003. Avail-
able on the Internet: http: / fwrorer. zdnet.co. uk/. -

[15] Munir Kotadia. Bluetooth phdnés at risk from ’Snarfirif. ZDNet UK, Fe‘t;urary
'2004. Available on the Internet: http://www.zdnet.co.uk/.

[16] Ying Liu and Beth Plale. Survey of publish subscribe event systerhs. Technical
Report TR 574, Computer Science Department, Indiana University, May 2003.
Available on the Internet: www.cs.indiana.edu/pub/techreports/TR574.pdf.

[17] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
‘Kermarrec. The many faces of publish/suhscril\ae. ACM Computing Surveys,
35(2):114-131, June 2003. |

~ [18] TIB/Rendezvous Web Site. http://www.rv.tibco.com. ~

[19] Ben Sega.ll and David Arnold. Elvin has left the building: A publish/subscribe
notification service with quenching. In Proc. of the 1 997 Australian UNIX and
- Open System,s Users Group Conferencing, 1997.

 [20] SQLCourse.com Web Site. Interactive online sql training. Available on the

. Internet: http://www.sqlcourse.com/.

[21] World Wide Web Consortium. Xml path language (xpath). Available on the

Internet: http://www.sqlcourse.com/.

86

122

[23]

[24]

[25]

[26]

[27]
28]

[29]

William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley.
The design and implementation of an intentional naming system. In Proc. 17th

ACMSOSP, Kiawah Island, SC, December 1999.

Klaus Marius Hansen and Christian Heide Damm. Building flexible, distributed
collaboration tools using type-based pubfish/subscribe - the distrbuted knight
case. In Proceedings of IASTED SE 2004, 2004.

Peter Houston. Building distributed applications with message queuing mid-
dleware. Available on the Internet: http:// msdn.micrbsoft.com/library/ , March

1998.

Tehyih D. Wan. Personal correspondence on device groups in bluetooth, May

2004.

Andrew Tridgell and Paul Mackerras. The rsync algorithm. Technical Report
TR-CS-96-05, The Australian National University, June 1996. Available on the
Internet: http://cs.anu.edu.au/techreports/1996/TR-CS-96-05.pdf.

Sun Microsystems. Java message service, version 1.0.2. Available on the Internet:

http://www.javasoft.com, 1999.

Jabra Corporation. Support: Phone-specific info for bluetooth phones. Available

on the Internét: http://www.jabra.com.

Amazon. Microsoft bluetooth wireless intellimouse explorer. Available on the

Internet: http://www.amazon.com.

87

