
Solving Bluetooth Deficiencies through Publish

and Subscribe Systems

by

Jessica Yu-Tien Huang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

@ Jessica Yu-Tien Huang, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .

MASSACHUSETTS INSTITUTEOF TECHNOLOGY

JUL 2 0 2004

LIBRARIES

Department of Electrical Edigineering and Computer Science
May 26, 2004

Certified by.

Larry Rudolph
Ford Professor of Artificial Intelligence an4 Computer Science

Thesis npervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

BARKER

2

Solving Bluetooth Deficiencies through Publish and

Subscribe Systems

by

Jessica Yu-Tien Huang

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2004; in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Research in pervasive computing aims to fully integrate computing devices into our
everyday environments in a seamless and efficient manner. Wireless technology such
as Bluetooth takes us a step closer by replacing traditional cable connections with
a more seamless communication transport, adding mobility and more human-centric
computation.

However, if we are to fully integrate this technology, we must first address some
of its shortcomings, particularly those with respect to areas with a high density of
Bluetooth devices. Four of these shortcomings: susceptibility to anonymous attacks,
poor power management, synchrony requirement, and lack of friendships stem from
the tight coupling of device interactions during the discovery protocol.

One solution to this problem uses the advantages of publish and subscribe systems
to decouple this interaction between smart mobile devices. Available devices can
announce their availability to a central controller while devices interested in finding
others can announce their interests. When a match occurs, the controller notifies
both parties and provides information on how they can form a direct connection.

This solution preserves the functionality of the Bluetooth connection protocol
while circumventing the four shortcomings. The assumptions it makes are reasonable
when placed in a the context of personal computing environment. Future consid-
erations include optimizations that utilize caching, improvements on performance,
increases in system capacity, and solutions for including dumb devices.

Thesis Supervisor: Larry Rudolph
Title: Ford Professor of Artificial Intelligence and Computer Science

3

4

Acknowledgments

I thank my advisor, Larry Rudolph, for his guidance and patience during the year. I

also thank Debbie Wan for providing information on her group keys research and I

thank the other members of the Oxygen Research Group for creating a friendly and

fun working environment. In addition, I thank my friends, Devon, Maya, Uttara, for

the encouragement to finish this thesis.

Above all, I'd like to thank my mother and sister for their love and support during

my years at MIT. Without them, I would not be where I am today.

5

6

Contents

1 Introduction

1.1 Motivation.

1.2 O utline. .

2 Background

2.1 Bluetooth

2.1.1 Overview

2.1.2 Core Architecture

2.1.3 General Access Profile .

2.1.4 Problems with Bluetooth

2.2 Publish and Subscribe System

2.2.1 Basic Model

2.2.2 Schemes

2.2.3 Architecture

2.3 Related Work

3 Requirements

4 Design

4.1 Protocol

4.1.1 Procedures.

4.1.2 Subscription Language .

4.1.3 Matching .

7

13

14

14

17

. 18

. 18

. :.. . . 19

. 2 1

. 25

. 28

. 28

. 30

. 33

. 35

39

43

45

46

52

58

M

4.1.4 Identifiers 66

4.1.5 Event Expiration 67

4.1.6 Disconnections . 68

4.2 Assumptions. .. 69

5 Discussion 71

5.1 Satisfied Requirements 71

5.2 Design Alternatives 73

5.3 Choosing Parameters 75

5.4 Future Considerations . 76

5.4.1 Optimizations 76

5.4.2 Performance 78

5.4.3 Scalability 79

5.4.4 Dumb Devices 80

5.5 Conclusion... 82

8

List of Figures

2-1 A Personal Area Network for communication between mobile devices 18

2-2 A single frame consisting of a master transmission in the first time slot

and a slave transmission in the second 20

2-3 An example scatternet topology formed from two piconets A and B,

where the master of A is also a slave in B 21

2-4 Transactions between an inquiring device A and a listening device B . 22

2-5 Transactions between a paging device A and a listening device B . . . 23

2-6 Interaction model of a simple publish-subscribe system 29

2-7 Example code of using a string filter 32

2-8 Star Topology ..34

2-9 Hierarchical Topology .. 34

2-10 Ring Topology . 35

2-11 Transactions of adding device A to the group owned by device C . . . 36

2-12 Transactions of device B verifying device A's membership in the group

owned by device C 37

4-1 Basic interaction of the system. Publishers announce availability and

subscribers announce interest in devices (dotted lines). The controller

notifies both parties when there is a match (solid lines) 44

4-2 Message transactions for publishing directly and indirectly. Solid lines

indicate standard Bluetooth actions, dotted line indicates automated

responses (see Section 2.1.3), and double lines indicate system specific

actions . 47

9

4-3 Message transactions for subscribing. Solid lines indicate standard

Bluetooth actions, dotted line indicates automated responses (see Sec-

tion 2.1.3), and double lines indicate system specific actions . . . 48

4-4 Message transactions for matching when the publication arrives first.

P-C action indicates either direct or indirect publishing as shown in

Figure 4.2 and C-S action indicates subscribing as shown in Figure 4.3 49

4-5 Two possible message transactions for matching when the subcription

arrives first, one for a direct publication and the other for indirect.

P-C action indicates publishing as shown in Figure 4.2 and C-S action

indicates subscribing as shown in Figure 4.3 50

4-6 State transition diagram for a subscriber and a publisher. 51

4-7 Flow chart diagram for the controller threads that handle cleaning,

disconnections, new connections and existing connections. 53

4-8 Flow chart diagram for the controller thread that handles event pro-

cessing and the notification action 54

4-9 Allowing multiple matches to one publication results in packet collision 56

4-10 Match procedure for a publication and a subscription 62

4-11 Controller chooses oldest matching subscriber to notify 65

4-12 Controller notifies subscriber of all matching publications 65

10

List of Tables

2.1 Minimum, average, maximum times of inquiry and paging 24

4.1 Consistency for five cases of publication and subscription keys lists . 60

4.2 Common element for cases with NULL appended to subscription list 60

11

12

Chapter 1

Introduction

In an era dominated by wireless technology, Bluetooth is fast emerging as the standard

for short-range wireless communication. Due to its low cost, low power consumption,

and operational robustness, this protocol has become widely recognized as the future

replacement for cables. Unfortunately, the rising density of Bluetooth-enabled devices

has revealed a number of problems associated with the technology. Therefore, before

we can fully incorporate Bluetooth into everyday computing, we nust address its

major shortcomings.

This thesis deals with the shortcomings of the Bluetooth connection protocol,

particularly the discovery procedure. First, the protocol allows anonymous attacks

on discoverable devices, a trend that recent news has reported as spreading very fast

among mobile Bluetooth devices. These attacks target devices left in discoverable

mode and could result in the compromise of confidential data. Second, the protocol

causes devices participating in the discovery procedure to expend power unnecessarily

when the device they are looking for is not available. The available devices that reply

to these searches waste power too because their relies are ignored. Third, the protocol

requires devices to be synchronized in order to discover one another. If a device is not

listening at the exact time and frequency that another is inquiring, then they cannot

find each other. And fourth, the protocol requires devices who wish to be available

to be so to everyone. There is no mechanism in the Bluetooth connection protocol

that allows a device to be available to only its "friends".

13

One solution uses the publish and subscribe paradigm to address these shortcom-

ings. In this scheme, responsibility for device discovery is shifted to a central entity,

who handles information on availability and interests and notifies devices when there

is a match. The system uses this middleware to provide a simple yet effective solution.

The rest of this chapter describes the motivation for this thesis and gives an outline

of later chapters.

1.1 Motivation

The field of pervasive computing has become a strong leader in computer research.

Pervasi e computing, also known as ubiquitous computing, aims to create the next

generation computing environment; one with computer and comImunication technolo-

gies vailable at allties].As the IEEE Pervasive Computing Organization states,

the "essence of this vision is the creation of environments saturated with computing

and wireless communication, yet gracefully integrated with human users" {2].

To achieve this goal, we must break the traditional interface between humans and

computers. Typical interactions rely on physical closeness to a computer and are

limited by wires and the connections they create. Computing in this environment

revolves arouid the computer, forcing humans to adapt their lifestyles accordingly.

Instead, computng should adapt to normal human activity, which requires mobility.

With the introduction of cost efficient wireless technology, such as Bluetooth technol-

ogy, we are now able to replace both short distance wires as well as less reliable forms

of wireless communication such as infrared. This allows us to embed mobile devices

seamlessly into our everyday lives.

1.2 Qutline

Chapter 2 gives background information about Bluetooth, publish-subscribe systems,

and related work. It provides an overview of Bluetooth technology and describes

the shortcomings that this thesis will address. Next, the chapter gives an overview

14

of publish-subscribe systems, including variations, and sites examples of different

systems.

Chapter 3 lists the requirements necessary in a system that seeks to solve the

Bluetooth shortcomings icientified in Chapter 2.

Chapter 4 presents a solution in the form of a publish-subscribe system that

improves upon the Bluetooth connection protocol. It details the protocol and as-

sumptions of tho system.

Chapter 6 discusses how the system meets the requirements listed in Chapter 3.

It also describes design alternatives and why they were not optimal for this system.

Next, it discusses the choices of parameters in the system and considerations for

future work.

Chapter 7 describes the contributions of this thesis.

15

16

Chapter 2

Background

Understanding the problem requires a solid understanding of the Bluetooth technol-

ogy, particularly those procedures related to device discovery and connections. This

knowledge can then be used to identify the shortcomingspf existing Bluetooth tech-

nology and to recognize the reasons why, these shortcomings persist. The next step is

to explore the possible solutions to this problem. This requires a solid understanding

of the publish-subscribe paradigm. It also requires looking at different variations and

examples of publish-subscribe systems.

This chapter provides background information on both Bluetooth and publish-

subscribe systems. It details the core architecture of Bluetooth and the General

Access Profile, which defines the procedures involved in device discovery and con-

nection management.- It also examines four shortcomings of Bluetooth associated

with using the Bluetooth connection protocol: susceptibility to attacks, poor power

management, synchrony requirement, and lack of friendships. Next, the chapter de-

tails the basic interaction model of the publish-subscribe paradigm. It describes the

advantages and disadvantages of using different schemes (topic-based, content-based,

type-based) and different architectures (centralized, distributed). It also sites exam-

ples of publish-subscribe systems. Lastly, the chapter looks at related work involving

the creation of group associations among Bluetooth devices.

17

Figure 2-1: A Personal Area Network for communication between mobile devices

2.1 Bluetooth

Bluetooth technology is regulated by the Bluetooth SIG (Special Interest Group),

which originally consisted of five companies, Ericsson, Nokia, Toshiba, Intel, and

IBM, but has now expanded to thousands of companies. It is a privately held trade

association dedicated to the development of wireless Bluetooth technology [3].

2.1.1 Overview

As described in the Intel Technology Journal, Bluetooth itself "encompasses a simple

low-cost, low-power, global radio system for the integration of mobile devices" [4]

The basic Bluetooth network, known as piconet, is an ad hoc network that has

a capacity of up to eight actively transmitting devices. Scatternets are formed by

overlapping up to 10 piconets, resulting in the connection of up to 80 active devices.

Bluetooth was developed for three main uses: to connect a computing device to a

communication device, to connect a computing device with its peripherals, and to

create Personal Area Networks (PAN) for mobile devices (see Figure 2.1) [5].

In the late 90's, supporters of the Bluetooth SIG publicly announced a long-term

target mark of $5 per chip. After a long struggle of about six years, it seems that

Bluetooth chips are finally close to hitting this mark. Because it provides a low-cost

replacement for cables, Bluetooth will soon become prevalent in every computing

18

environment [6].

2.1.2 Core Architecture

Bluetooth radios operate in the unlicensed Industrial-Scientific-Medical (ISM) band

at 2.4GHz. This band is divided into 79 different channels of 1 MHz size each.

To reduce the effects of fading and interference from other radios, Bluetooth radios

randomly hop through these channels while transmitting and receiving data at a bit

rate of 1 Megabit per second (Mb/s). By default, radios transmit within a range of

10 meters, outputing 1mW of power. This range can be increased, up to 100 meters,

by increasing the power output to 100mW [7].

The fundamental form of communication in Bluetooth is through a shared physical

channel. This channel is accessible only to devices that are synchronized to the same

clock and frequency hopping pattern. A frequency hopping pattern is a pseudo-

random ordering of the 79 available frequencies. It is algorithmically determined

according to a device's Bluetooth Device Address, a global identifier assigned to

every Bluetooth transceiver. The clock offset of a device serves, as the offset into

this pattern. The device that provides this synchronization reference is known as the

master, and all other devices on the channel are slaves. Together, this network of

devices is known as a piconet [7].

Data transmissions on these physical channels use a Time-Division Duplex (TDD)

scheme. In TDD, a single channel is shared by two streams of data going in separate

directions. This is done by allocating different time slots during which the streams

can send data [8]. The physical channel of a piconet is allocated in this same way; it is

divided into time slots of 625 us during which a device can transmit a packet of up to

2,745 bits in'pngth. Even time slots are typically reserved for master transmissions

while o tne slots are for slaves [9].

Time slots on a physical channel are organized to create physical links between the

master and each slave. This is done via Bluetooth frames, which consist of a master

transmission followed by a slave transmission as shown in Figure 2.2. Unless they

have negotiated otherwise, a slave may only transmit when the master addresses it in

19

One Frame

Master Packet

Slave Packet

One Time Slot

Figure 2-2: A single frame consisting of a master transmission in the first time slot
and a slave transmission in the second

a frame, thereby forming a physical link from the master to the slave. Slaves do not

form physical links directly to each other. After a frame, all devices in the piconet

hop to the next frequency in the frequency hopping pattern. The typical time slot of

625 us therefore results in 1,600 hops per second [9].

Physical links support two types of data transfer: synchronous connection oriented

(SCO) and asynchronous connectionless (ACL). A SCO link allocates periodic frames

during which a slave device is free to transmit data without being requested by the

master. A piconet can support up to three SCO links of 64,000 bits per second each.

An ACL link only allows a slave to transmit data in response to a request from the

master. Communication on the piconet typically occurs as follows: First, the master

listens on the channel at frames separately reserved for SCO transmissions. Once

that reserved period has passed, the master queries each slave with an ACL link to

see if they have data to send. By default, all active slaves have an ACL link to the

master [7] [9].

All Bluetooth devices can become the master of a piconet or a slave in another

device's piconet, depending on its frequency hopping sychronization. In Bluetooth

networks, devices can participate in more than one piconet; a device can be a slave

in multiple piconets or a master in its piconet while a slave(s) in other piconet(s).

However, a device cannot be the master in more than one piconet. Being master of

multiple piconets would imply that these piconets all have the same synchronization

20

Figure 2-3: An example scatternet topology formed from two piconets A and B, where
the master of A is also a slave in B

and therefore share the same physical channel. Figure 2.3 shows an example of a,

scatternet topology in which a device participates as a slave in one piconet and a

master in another.

2.1.3 General Access Profile

The Bluetooth General Access Profile defines the set of operational procedures a de-

vice must follow in order to connect to another device. Because Bluetooth networks

are ad hoc, the device must first discover neighboring devices that are available for

connection. Then, the device targets an available device and connects by synchroniz-

ing that device to its piconet. The General Access Profile also defines the operational

modes a slave device can enter. Ordered from highest to lowest power consumption,

these modes are: active, sniff, hold, and park.

Discovery

A device performs the discovery or inquiry procedure to find out what nearby devices,

if any, are available. In this procedure, an available or discoverable device listens for

inquiries on a special physical channel, while an inquiring device actively sends inquiry

requests on the same channel. When a request is heard, the available device responds

21

7 BiINQUIRY CNQURYSCAN
modNQURY mode

TBT ADDR, OFE'SET ") sed -HS (

receive ()

Figure 2-4: Transactions between an inquiring device A and a listening device B

by providing its Frequency Hopping Synchornization (FHS). A FHS packet is a special

control packet that consists of a devices Bluetooth address and clock offset. Once

this is obtained, the inquiring device can also ask for the device name and device class

of the available device. Figure 2.4 shows the transactions of an inquiry procedure.

The special physical channel reserved for this procedure is called the inquiry scan

channel. The inquiry scan channel has a slower hopping sequence and comprises fewer

frequencies (32) than a piconet channel. A discoverable device listens on this channel

by scanning through the frequencies, listening to each for 10 ms and hopping to the

next every 1.25 seconds [41. An inquiring device sends requests by also scanning

through the frequencies, transmitting and listening for responses at each. However,

because an inquiring device has no previous knowledge of this channel, it must pseudo-

randomly hop through the possible frequencies. It takes advantage of the slower

hopping sequence by hopping at a. faster rate, increasing the probability that a, request

is heard [101.

Paging

Once a device discovers its neighbors. it can target an available device to connect to

by. This is done by performing the paging procedure, which is similar to inquiring. In

this procedure, a connectable device listens for pages on a special physical channel,

while a paging device actively sends pages on the same channel. When a page is

22

BA

A B

PAGE PAGE SCAN
mode -P made

receve (
A c k k(

receive ()
sendiHS () 31T ADR, *F*SET 3

Ack re c eive(

ad (FHS A)

Figure 2-5: Transactions between a paging device A and a listening device B

heard, the connectable device responds with an acknowledgement. The paging device

receives this and sends its FHS packet. The connectable device acknowledges this

again to inform the paging device that it is now joining the piconet. The device then

uses the FHS packet to calculate the frequency hopping pattern and synchronizes

to the piconet of the paging device. Figure 2.5 shows the transactions of a paging

procedure.

The special physical channel reserved for this procedure is called the page scan

channel. Similar to inquiry scan channels, page scan channels consist of a unique

sequence of 32 frequencies. A connectable device listens on this channel by scan-

ning through the frequencies every 1.25 seconds and listening for 10 ins on each [4].

The paging device sends pages by transmitting and listening for responses at each

frequency. If a paging device has no prior knowledge of this channel, it must psuedo-

randomly hop through the possible frequencies in the same manner as in the inquiry

procedure. However, prior knowledge of this channel can be obtained from the FHS

packet acquired during a previous inquiry procedure. This packet can be used to

calculate the frequency pattern of the page scan channel and its offset [10]. Because

of this optimization, it takes much less time for a paged device to hear a page than

for a discoverable device to hear an inquiry, given that the paged device was previ-

23

Table 2.1: Minimum, average, maximum times of inquiiTy and paging

ously discovered. Table 2.1 shows the minimum, average, and maximum times for

the inquiry and paging procedures [11].

Operational Modes

A slave device defines its level of participation in a piconet by entering one of four

modes: adiv , paiked, hold, and niff. The active mode is the default for a lave

while the other three are used when a slave wishes to enter a low-powered state or to

define a period(s) of inactivity in order to participate in other piconets.

Active mode In the active mode, a slave participates in data transmission and

is assigned a 3-bit Active Member Address that gives it aiccess to the piconet's

physical channel. An active slave can particpate in ACL or SCO transfers with

the master.

Parked - The parked mode is the lowest-powered mode for a slave. In the parked

mode, a device gives up its AMA for an 8-bit Passive Member Address (PMA). A

parked device does not have access to the channel and therefore cannot transfer

data. However, it still listens on the channel at a beacon interval reserved

for broadcasting to parked devices. The master can still communicate with a

parked slave by addressing broadcasted packets to that slave. The situations

in which the master uses this beacon interval are: to ask a parked device to

become active, to ask if there are any parked devices that wish to be active, or

to broadcast data to parked devices.

Hold - The hold mode consumes the next lowest power after the parked. In the

hold mode, a slave listens but does not transfer data for a period previously

24

Operation Type Minimum Time Average Time Maximum Time

Inquiry 0.00125s 3-5s 10.24-30.72s
Paging, 0.0025s 1.28s 2.56s

Total(paging 0.00375s 4.28-5.28s 12.8-33.28s
+inquiry)

negotiated by the master and slave. This mode is only entered once per invoca-

tion after which the slave returns to its normal mode. Slaves with a SCO links,

which requires them to transmit at fixed periods, cannot enter this mode.

Sniff - The last mode is the sniff modes, which provides a power level less than the

active mode but more than the parked and hold modes. The sniff mode allows

a device to define a duty cycle with periods of presence and absence. A slave

typically uses this mode to engage in activity in other piconets during periods

of absence.

The master of a piconet may choose to park devices to expand its piconet capacity.

Because the AMA address space only allows for seven active slaves (an address is

reserved for the master), a new device can only be added to the piconet by parking

an active slave and reassigning its AMA to the new device. The combination of AMA

and PMA allows over 256 devices to belong to a piconet. However, only the eight

devices assigned an AMA can transmit data [4].

2.1.4 Problems with Bluetooth

This thesis addresses four shortcomings of the Bluetooth technology: susceptibility

to attacks, poor power management, synchrony requirement, and lack of friendships.

All four shortcomings are a consequence of device interactions during the Bluetooth

connection protocol, particularly the device discovery stage of the protocol. This

section details each shortcoming and the protocol feature that causes it.

Attacks in Discoverable Mode

Mobile Bluetooth-enabled devices, such as cell phones and PDAs, have recently be-

gun experiencing attacks when left in discoverable mode. Many popular models of

Bluetooth-eabled devices contain vulnerabilities that make them susceptible to these

anonymous attacks. According to an AL Digital website, vulnerable phones include:

Ericsson T68; Sony Ericsson R520m, T68i, T610 and Z1010; and Nokia 6310, 6310i,

25

7650, 8910 and 8910i [12]. This section describes the two most common anonymous

attacks, bluejacking and bluesnarfing, and how they are currently prevented.

Dluejacking is an increasingly popular phenomenon among Bluetooth cellular

phone use It occurs when one person anonymously sends a message to another

without being connected. This attack aims to startle or unnerve a victim, usually

by sending physical information about the victim, such as his appearance or current

activity, in the middle of a crowded area. A victim receives this anonymous message,

knowing he must be visible to the sender, but cannot identify the sender. To perform

a bluejack attack, an attacker creates a new contact on his phone and places the mes-

sage he wishes to send in the "Name" field., He then chooses to send this contact via

Blutooth and searches for Bluetooth-enabled phones within range. Finally, he picks

a victim and sends the, contat. 'luejacking has spawned a new craze and presents

a possible new outlet for spazimners. The only way to avoid bluejacking is to make

sure a device is not in discoverable mode, ensuring that it canno longer be found by

other devices [13] [14].

Bluesnarfing occurs when a person connects to another device without alerting the

owner of the request. According to an AL Digital website, the attake gains limited

access to confidential stored data once connected, including "the entire phonebook

(and any images associated with the entries), calendar, realtime clock, business card,

properties, change log, and IMEI (Intenaioal Mobile Equipm.ent Identity which

uniquely identifies the phone to the mobile network, and is used in illegal phone

cloning)" [12J. Bluesnarfing primarily targets mobile devices that are in discoverable

mode. Therefore, to avoid the attack, device should not be discoverable to other

devices. A few models remain vulnerable even when not in discoverable mode and

have no option but to turn Bluetooth off to avoid bluesnarfing f15].

Power

One of the main concerns of wireless communication is power management. Unlike

wired devides which typically connect to their own power source or to another device

with a power source,' most wireless devices require mobility and therefore run on

26

batteries. Because of this limitation, conservation of power is a top priority for

wireless devices.

One way to conserve power is to minimize the number of transmissions a Blue-

tooth device must perform. Because transmissions consume much power, unneces-

sary ones should be eliminated. Unfortunately, the Bluetooth connection protocol

promotes just the opposite when used in Bluetooth-rich environments. During the

inquiry procedure, all available devices must respond to an inquiry request. While

these transmissions ensure that an inquiring device can discover its neighbors, they

become particularly wasteful when the inquiring device is looking for a specific target.

Because the responses of other available devices are ultimately ignored, the battery

power of those devices is wasted. Even worse, an inquiring device might periodically

repeat these inquiry requests if the target device is not present, resulting in repeated

response transmissions. This poses a real power management issue in areas dense

with Bluetooth-enabled devices participating in the inquiry procedure.

Another way to conserve power is to reduce the amount of time a device spends

listening for transmissions. During the inquiry procedure, an available device must

spend its time scanning the inquiry scan channel for inquiry requests. This level of

activity consumes much power when there are no immediate inquiries.

Synchrony

While Bluetooth devices can connect freely with respect to physical location (they

only have to be in range of each other), they are limited in synchronization during

discovery. This requirement states that a device can only discover another device if it

sends inquiry requests at the same time and on the same fiequency that an available

device is scanning. Both 4evices must -e present and using the same communication

chaniiel. This requirement greatly limits the options of an inquiring device4 If the

specific target device is not present, an inquiring device must repeat its-request peri-

odically in hopes that! the target shows up and is available at a time that coincides

with its request. Therefore, staggered inquiries and inquiry scans can impede the

discovery process.

27

Friendships

The Bluetooth connection protocol does not allow for the formation of friendships.

A friendship is a privileged relationship where one device is exclusively available to

another. A device can restrict its availability to a pre-determined set of friendly

devices, but remain invisible to strangers. There are several reasons a device might

like to do this: it might not wish to provide unique and traceable information about

itself to unknown devices or it might wish to avoid attacks from unfriendly devices

while remaining available to its friends. Unfortunately, the Bluetooth connection

protocol does not support this option.

2.2 Publish and Subscribe System

A publish-subscribe system is a communication service that dynamically routes infor-

mation from their sources to interested parties. The system consists of two compo-

nents, publishers and subscribers, who exchange information through a server. The

publishers, or information providers, publish informatiok to the system while the

subscribers, or information consumers, subscribe to information of interest. When

information is generated by publishers, the system matches and delivers it to in-

terested parties. This section describes the basic interaction model of the publish-

subscribe paradigm. It details the different schemes and architectures along which

publish-subscribe systems vary, and cites examples of different systems.

2.2.1 Basic Model

The basic interaction model of a publish-subscribe system allows subscribers to ex-

press interest in an event or pattern of events. Events contain information that a

publisher produces and a subscriber consumes. When a publisher provides an event,

the event is delivered to interested subscribers through a notification.

In this model, storage and management of subscription interests and publications

are handled by an event service. The service receives events from publishers and

28

Publisher Event Service (Subscriber)

Mlanagerient and
Storage of Events subscribe

Publisher) Subscriber'

Publisher Subscribe

Figure 2-6: Interaction model of a simple publish-subscribe system

efficiently delivers them to interested subscribers, thus serving as a mediator between

publishers and subscribers. Subscribers typically register their interest by calling a

subscribe () operation on the event service. This operation is called without prior

knowledge of where events are generated. Subscribers can also terminate a sub-

scription with an unsubscribe() operation. Publishers generate an event by calling

a publish() operation on the event service. The event service then propagates the

event to all interested subscribers. In this model, every subscriber receives every event

that conforms to its registered interest. Figure 2.6 illustrates this basic interaction

[16j

The main advantage of the publish-subscribe paradigm is that it decouples inter-

actions between publishers and subscribers along three dimensions: space, time and

synchronization.

Space - Space decoupling is provided by the fact that end users do not need to know

about each other. Publishers provide information directly to the event service

and do not need to hold references to subscribers. Subscribers do not need to

hold references to publishers either because they receive the information directly

from the event service. Therefore, unless the information contains end-to-end

semantics, publishers and subscribers remain anonymous to each other.

Time - Time decoupling is provided by the fact that publishers and subscribers

do not need to be actively participating, i.e. present, at the same time. For

example, a publisher might publish an event before a subscriber arrives or a

29

subscriber might receive notification of an event after the publisher of the event

has disconnected. This is because once an event is published, the event service

takes control of it, either storing it or forwarding it.

Synchronization - Synchronization decoupling is provided by the fact that pro-

duction and consumption of events do not have to occur synchronously. For

example, a publisher might publish an event that is stored on the event service

until a subscriber comes along that is interested in it. Even if no one is inter-

ested in the event initially, it can still be consuimed by a subscriber that later

registers interest.

There are two fundamenta differences between publish-subscribe systems: the ex-

pressivity of the subscription language and the architecture of the event service. The

scheme a system determines the expressivity of subscriptions. The implementation of

the event service follows a centralized or distributed architecture, or a combination

of the two [17].

2.2.2 Schemes

In publish-subscribe systems, subscribers are not interested in all events, but rather

particular events or event patterns. In the yery first publish-subscribe prototypes,

e.g. TIB/Rendezvous and Elvin, which were developed over Local Area Networks

(LANs), publishers would simply multicast information and leave it to each subscriber

to filter out information that was not of interest 118 [19]. When publish-subscibe

systems made the moved to Wide Area Networks (WANs), it was no longer practical

to rmulticast. Instead, an event service took on the responsibility of filtering and

delivering event f interest to subscribers. These are many possible ways to do this,

but most fall under one of three schemes: topic-based, content-based, and type-based.

Topic-Based

The topic-based publish-subscribe scheme was the earliest scheme to emerge. Systems

that follow this scheme use the idea of topics or subjects to categorize and filter

30

events, resulting in a topic-based filtering scheme. The scheme essentially creates a

communication channel for each topic and delivers information provided at one end of

the channel to parties at the other end. Topics are identified by key words. With this

scheme, clients in the system can publish events to individual topics and subscribe

to individual topics. An individual topi6 can be viewed as its own event service to

which clients publish and subscribe.

This scheme is ideal for systems that can statically categorize events into a fixed

set of groups. It is an abstraction that is very easy to understand and requires little

overhead or filtering at the event service. Unfortunately, this scheme does not provide

expressive subscriptions. Subscribers who express interest in a specific topic must

receive all events for that topic, often resulting in more filtering at the subscribers end.

An improvement to the traditional topic-based scheme uses hierarchies. Hierarchical

topics allow clients to organize topics based on containment relationships, providing

more options for specifying topics. Topic names are also allowed to contain wildcard

values, which can be thought of as describing an entire subtree or a specific lVel of

topics in a hierarchy. IBM's Gryphon is an example of a system that uses hierarchical

topics [18].

Content-Based

The content-based scheme allows more expressivity in subscriptions by filtering based

on the content of the event. Unlike topic-based systems which use predetermined sub-

jects, systems that employ this scheme filter events based on the dynamic properties

of an event, either internal attributes or associated meta-data.

To express event interest, subscribers must provide a criterion or filter for ex-

pressing event constraints to the event service. These constraints serve as subscrip-

tion patterns that can be represented several ways. Three representations are string,

template object, and executable code.

Strings - Strings are the most frequently used representation because they are

the simplest. String filters must conform to a subscription language that the

event service understands. This subscription language is usually in the form

31

String filter = "news = '1GIONAL' and location = 'BOSTON'

and month MARCH and year '2004"';

Subscription sub = new subscription(filter
R Vent~ervice.subzcribe (sub);

Figure 2-7: Example code of using a string filter

of attribute-value pairs that use basic operations such as =,<, <=, >, and >=.

These pairs are then combined using operations like AND and OR to form a

string which is parsed by the event service. Figure 2.7 shows example code

for using a string filter. More complex subscription grammars include SQL

(Structured Query Languag) and XPath [201 [211. The Intentional Naming

Syso INS) is neample of a ,ystem that uses a simple language based on

attribute-value pairs for resource discovery in dynamic networks [221.

Templates - Template objects are another representation for expressing a subscrip-

tion pattern. Subscribers must provide a template object to the event service,

indicating that it is interested in every event that conforms to the template.

Events that conform are those whose attributes all match the corresponding

attributes of the template, except for attributes carrying a wildcard value.

Executable Code - The last representation for a subscription pattern is in the form

of executable code. Subscribers provide an object to the event service that is

able to filter events at runtime. This representation is not often used because

the implementation of the object is left to each subscrber, making it difficult to

optimize the system as a whole.

The content-based scheme is the most common employed scheme because of the ex-

pressiveness it allows in describing event interest. Unfortunately, this requires a lot of

overhead from the event service, who must pass events through filters in real time to

match them with interested subscribers. Much research has been done on developing

efficient and scalable matching algorithms.

32

Type-Based

The type-based scheme is a recently proposed scheme. It emerged from the observa-

tion that many topic-based systems were categorizing events based on both content

and structure. Systems that employ this scheme filter events based on the structure

or type of the event, which can also lead to a natural description of content-based

filtering if types are defined by the content.

The advantages of this scheme are that it is simple to implement and preserves

type encapsulation, unlike the template-based approach which considers event types

to be dynamic properties. This scheme is particularly useful for object-oriented sys-

tems. An example is the Distributed Knight, a tool for synchronous, collabora-

tive distributed modeling. It integrates a type-based publish-subscribe scheme with

object-oriented languages to model events [23].

2.2.3 Architecture

Publish-subscribe systems follow. either a centralized or distributed architecture. A

centralized architecture consists of a central entity that manages messages using the

client-server model. In this model, an event server receives, stores, and forwards

events while clients publish or subscribe or both. Each system has exactly one event

server, resulting in a star topology, as shown in Figure 2.8. Systems that follow this

approach, like the IBM MQSeries queuing system, are built on a central database [24].

This architecture is suitable for a system that requires reliability, data consistency, or

transactional support, but does not need high data throughput [17]. Unfortunately,
it does not scale well due to the bottleneck and single point of failure that the central

serer presents. The distributed architecture follows a peer-to-peer model, which

has ne- eiftra[entity. lh this mnodel all nodes are equal and can act as publisher,

subscriber, PF event service. The role of an event service requires a node to store or

forward events it receives. Because every node has some service functionality; there

is no bottleneck or single point of failure. This architecture is advantageous for fast

and efficient deliver of transient data, such as encountered on the Internet [16}. The

33

~ Server (S

Figure 2-8: Star Topology

(~r>~r> Server)

Figure 2-9: Hierarchical Topology

TIBCO Rendezvous example mentioned earlier also uses this distributed approach

[18].

Systems can combine these two architectures to create a client-server models with

multiple servers. This results in different topologies such as the hierarchical and ring

topologies. Hierarchical topologies arrange event servers in a hierarchy tree, where

every server except the root has a parent. These servers act as gatekeepers for their

subtree, forwarding along only events that the subtree is interested in. Therefore,

event servers follow the same protocol for their server links as they do for their

clients. The ring topology arranges servers into peer-to-peer relationships in the form

of a, ring. Servers communicate to each other via a different protocol that allows them

to exchange subscriptions and publications [16]. Figures 2.9 and 2.10 illustrates these

two topologies.

34

Figure 2-10: Ring Topology

2.3 Related Work

The Oxygen Research Group at the MIT Computer Science and Artificial Intelligence

Laboratory is currently researching possibilities for creating groups among Bluetooth

devices. The hope is to allow two Bluetooth devices that belong in the same group to

be able to verify each other's membership and bypass the authentication step when

setting up a connection. Currently, a protocol has been developed for creating groups,

adding devices to groups, and verifying membership in groups. This section describes

this protocol.

Groups are implemented using private and public keys. To participate in groups,

each device generates four keys: a device privateikey, a device-publicikey, a group-private-key,

and a group-public-key. Private keys are known only to a device while public keys

are available to everyone. In a group, there is exactly one owner device, which knows

the group's private key and can add new members to the group. Using these keys,

every device can be the owner of its own group [25].

Group membership is determined through an encrypted group token, which iden-

tifies the Bluetooth device and the group it belongs to. Tokens are obtained in the

following manner: First, a device encrypts its unique Bluetooth address with its de-

vice-privatekey to create a device token. Then, it sends the device token and its

device publickey to the owner of a group it wishes to join. The owner decrypts the

token with the key to verify that it is speaking to the correct device. It then encrypts

the device token with its group-privatekey to create a group token. This token is

sent back to the device and serves as a passport for proving group membership. If the

35

cncrpzt ('BT ADDR A-A -riv key

A public key recec (

/ r..eiv. ()

decrypt (

ncryp-(

r eceie(

dercrypt ()

Figure 2-11: Transactions of addling device A to the group owned by device C

device wishes, it can ensure that it was speaking to the group owner by decrypting

the group token with the group -public -key to obtain the original device token it sent.

Figure 2.11 shows the transactions between a, device A that wishes to join the group

of device C [25].

The group membership of a device can be verified by any other device. This is

dlone by first decrypting the group token with the group -public -key to obtain the de-

vice token. The device token is then decrypted with the device-public-key to obtain

the Bluetooth address of the device. If this matches with the address of the commu-

nicating device, then membership is verified. Following the example in Figure 2.11,

Figure 2.12 shows the transactions between devices A and B, where B is verifying A's

membership in group C (owned by device C) [25].

Using this protocol, devices can acquire a group token for each group it belongs to.

Tokens are typically kept with the corresponding group -pu blic-keys to verify another

device's membership in the same group.

36

grpC_pubkey

?DTOKEN1 r pC prv key

A public key \ r ve(

receive ()
decrypt(GTOKEN, grpC_pubkey)
decrypt (DTOKEN, Apublickey)

Figure 2-12: Transactions of device B verifying device A's membership in the group

owned by device C

37

38

CIapter 3

Requirements

This chapter describes the requirements of a system that seeks to improve upon the

Bluetooth connection protocol. Such a system would perform no worse than the Blue-

tooth connection protocol and would improve specifically upon the four shortcomings

of the connection protocol as described in Section 2.14.

Perform no worse than Bluetooth connection protocol - The system should

provide at least the same amount of functionality as provided by Bluetooth.

It should allow all devices that woiuld have normally discovered each other

on their own to discover each other through the system. In other words, an

inquiring device that uses the Bluetooth protocol should be able to find the

same discoverable devices through the publish-subscribe system, assuming that

those devices have published their availability to the system. Also, the system

should provide a subscribing device with no less information about available

devices than the device would have received through a Bluetooth inquiry. Lastly,

the system should provide devices with no less privacy than the Bluetooth

connection protocol. The system should never provide more information about

a device than would have been discovered during inquiry, unless the device

specifies otherwise.

Prevent anonymous attacks in inquiry scan mode - The system should be able

to prevent anonymous attacks. A device should not be vulnerable to bluejacking

39

or bluesnarfing attacks when it wishes to be available to other devices.

Allow devices to expend a lower average power during discovery - The sys-

tem should improve the power management of devices involved in the inquiry

procedure when in Bluetooth-rich environments. On average, these devices

should expend less power in order to discover other devices. In particular, the

cases to consider are when a device is left in discoverable mode and when a de-

vice is inquiring whether a specific device is available. Both these cases expend

an undesirable amount of energy in the existing Bluetoth protodL

Provide asynchronous device discovery - The system should be able to decou-

ple device interactions during discovery. Available devices and searching devices

should be able to discover each other through the system, without requiring

them to listen and ask for each other at thesame time and place. In this case,

the notion of place refers to a frequency channel. This requirement eliminates

the synchrony criterion of the Bluetooth connection protocol which states that

a device can only discover another device by inquiring at the same time and at

the same frequency that another device is listening on.

Allow devices to restrict availability,- The system should allow the formation

of friendships by enabling a device to restrict its availability to a pre-defined set

or sets of device groups. The avaiable device must be group member or friend

in order to restrict its availability to that group.

Handle inconsistent data - The system should have a mechanism to handle sys-

tem states in which the information on a client device is inconsistent with in-

formation on the server. These can occur when a device disconnects from the

system. Inconsistent data should not persist in the system. Information about

publsihers that are no longer available should not be given to subscribers be-

cause the subscribers will waste resources paging while the unavailable device

is not listening. Information about subscribers that are no longer searching for

other devices should also be removed since a new publisher might be told to en-

40

ter page scan mode (listen for pages) if its event matches this old subscription.

In both cases, a device wastes power unnecessarily.

41

42

Chapter 4

Design

This chapter presents a solution to the shortcomings of the Bluetooth connection

protocol described in Section 2.1.4. The purpose of this best-effort system is to set

up Bluetooth device connections in a flexible and efficient manner while fulfilling the

requirements listed in the previous chapter. Devices that participate in this system

are smart mobile devices that can suppor-t multiple connection to different classes

of devices. Examples are laptops, Personal Digital Assistants (PDAs), and some

mobile phones. These devices require an application layer running on top of the

standard Bluetooth HCI, or control, layer, in order to locally Call HCI commands.

These commands are sent remotely from a controller, rather than inputted by the

user (as in the normal procotol). This system does not require any modification to

the Bluetooth stack, but the controller in this system must have a device name that

clearly indicates its role as a controller. Therefore, devices looking for a controller

will know when it is found.

The solution uses a content-based publish-subscribe system to facilitate device dis-

ldoveiietisn manrt mobile devices. In this centralized system, a publish-subscribe

conit6litr & % niddleware betweefi available devices (publishers) and devices that

are looking to connect (subscribers). Publishers must provide self-descriptive infor-

mation to the'dcontroller, which then packages it up into a publication. Publishers

have the option of limiting access to their publication, by creating friendships. Only

devices verified to be a member of an authorized group can unlock a restricted pub-

43

"I'm interested
"A is available" in someone

like A"

Publsher A - - Controller (---- Subscriber B

"Someone is "Here's how
looking for you" to reaoh A"

Figure 4-1: Basic interaction of the system. Publishers announce availability and

subscribers announce interest in devices (dotted lines). The controller tiptifies both

parties when there is a match (solid lines)

lication. Subscribers must provide information to the controller describing the types

of devices that are of interest. This information is packaged into a subscription. In

this system, there are two event types: publications and subscriptions.

Responsibility falls on the controller to match publications and subscriptions,

resulting in the pairing of devices that are interested in connecting with each other.

When these matches are made, the controller must answer these events by notifying

both parties with information on how to form a connection. Figure 4.1 shows the most

basic interaction model. Once these events have been answered, they are removed

from the system. Open events are unanswe re events that remain on the system

because they have not yet been matched. Each time a new event or trigger event

arrives, the controller seeks to match it against open events through the matching

procedure.

The controller keeps track of events by assigning unique identifiers to each one.

These identifiers are needed as multiple events can originate from the same device.

When information is se, to a device regarding one of its events, there must be a way

for the device to recognize which event is in question. These following are situations

in which identifiers are used: to identify which event is being answered in a match

notification, as acknowledgements for when an event is successfully added to the

system, and to identify an event that has expired

The controller manages open events on the system by assigning an expiration

44

date to each. When an open event remains unanswered on its expiration date it

is removed from the system and the originator is informed of the expiration. The

originator can then resubmit an event to the system if it wishes. When devices

disconnect. the controller also removes their events from the system. If a device

discmnected unintentionally, it rpcqmnects tQ the contr9lRer. Qtherwise, the device

reenters the state it was originally in before it connected t9 the controller.

This publish-subscribe system allows devices in the system to bypass the Blue-

tooth discovery stage when initiating connections to other devices (see Section 2.1.3).

This saves on power in Bluetooth-rich environments and reduces the chances of an

anonymous attack. It provides synchronization decoupling and a mechanism for form-

ing friendships. This chapter presents in detail the protocol for device and controller

interactions in the system. It also describes the assumptions this system makes and

justifies why they are made.

4.1 Protocol

This section outlines the protocol for devices that comprise the system, including the

controller. The controller in this publish-subscribe system is a non-mobile device that

draws power from a constant source. It has a Bluetooth radio and is always both

discoverable and inquiring about its neighbors. The protocol set forth in this section

is for a system with exactly one controller, which is only in connectable mode when

there is room for another device in its piconet. Devices in this system are smart

mobile devices that have ah extra application layer to handle their participation in

the system.; Section 5.4.3 discusses the- possibilities for creatito ng a system that

includes dumnbdevices, ie. simple devices that only connect one other device and run

on simple software.

ToJointhe system, a device may connect to the controller via the standar dBlue-

tooth connection protocol. The device inquires and discovers the controller ifin

range. The device name that a controller provides during discovery must be desarip-

tive enough to identify it as a publish-subscribe controller. If the cntroller is Ain

45

connectable mode, the device can then page the controller and connects. The device

and controller perform a role switch so that the controller becomes master and the

device becomes slave.

Piscoverable devices may also connect to the system without initiating the connek-

tion. Because the cohtroller is continually inquiring, it will discover the new device

and page it for its information. That way the device can seamlessly transfer the

responsibility of announcing its availability to the controller.

4.1.1 Procedures

s saction describes the prpcedures for publishing availpbility and subscribing to

device types. Both procedures produce a new event, which triggers the matching

procedure by the controller. If there are no matches, the event is left Ipen on the

system and the controller parks the device. When a match does occur (triggered

by a later event), the controller reactives the device and notifies it of a match. The

controller reacts differently depending on whether a publication arrived first or a

subscription.

Publish

There are two ways to publish availability: directly and indirectly. In the Erst, the

device initates a connection to the controller. After the connection is made, it calls

a publisho operation on the controller and provides information on its availability.

The controller then checks that the publication is valid (see Section 4.1.2). If so, the

controller assigns it an event identifier and. returns it to the publisher, who stores

for later reference. This method is called a direct publication because the device is

intentionally using the controller to publish.

In the second method, the controller is the one to initate a connection. As men-

tioned in the previous section, the controller continually sends inquiries and will find

a new discoverable device. The controller then pages the device, obtains its informa-

tion, and packages it into a publication. An event identifier is assigned and returned

46

Direct Indirect

P C P
Inqluiry Inquiry

Ack Ack

Page Page

Ack Ack

Role Swi)tch A Ack(ID)

Publish(

ACk(ID)

Figure 4-2: Message transactions for publishing directly and indirectly. Solid lines

indicate standard Bluetooth actions, dotted line indicates automated responses (see

Section 2.1.3), and double lines indicate system specific actions

to the device. This method is called an indirect publication because the device does

not intentionally use the services of the controller. Unlike a direct publication, a

indirect publication can specify no more information than what is obtained from the

inquiry and page. Figure 4.2 shows timelines of message transactions for these two

cases.

For both cases, the controller performs the match procedure to search for any open

subscriptions that match the publication. If there are no matches, the publication is

kept open in the controller's database until expiration. The controller will park the

device to put it in power saving mode and will disable any scan modes if applicable.

The matching procedure, identifiers, and expirations are described in more detail in

Section 4.1.3, Section 4.1.4, and Section 4.1.5 respectively. At any time, a device can

remove a publication by calling an unpublish() operation on the controller with the

event identifier as an argument.

Subscribe

Unlike publishing, there is only one way to subscribe: the device initiates a. connec-

tion by inquiring and paging the controller and calls a subscribe () operation with

its subscription interest. The controller checks that the subscription is valid before

47

C S
Inquirq

Ac k

Page

Ack

Role Switch

ACIk(ID)

Figure 4-3: Message transactions for subscribing. Solid lines indicate standard Blue-

tooth actions, dotted line indicates automated responses (see Section 2.1.3), and

double lines indicate system specific actions

assigning it an event identifier and adding it to the system (see Section 4.1.2). The

event identifier is returned to the subscriber, who stores it for later reference. Figure

4.3 shows the message transactions for a subscribe procedure.

As with publishing, subscribing triggers the matching procedure to see if there

are any open publications that match. If there are no matches, the controller keeps

the subscription open in the system until expiration. The controller parks the device-

to put it in power-saving mode and disables any scan modes if applicable. At any

time, a device can remove a, subscription by calling an unsubscribe () operation on

the controller with the event identifier for the subscription as an argument.

Parked Mode

When a device's publication or subscription does not result in a match, the controller

stores the event and parks the device. As described in Section 2.1.3, parked devices

give up their Active Member Address for a Parked Member Address. These devices

remain synchronized to the piconet but cannot transmit. This mode is used to put

the devices in power-saving mode. When the device needs to transmit, the controller

will reactive the device using the beacon interval reserved for communication with

parked devices.

48

PD

P-C

disable scan

park

* C-S

enable
page scan

Page

Figure 4-4: Message transactions for matching when the publication arrives first. P-C
action indicates either direct or indirect publishing as shown in Figure 4.2 and C-S
action indicates subscribing as shown in Figure 4.3

Notification

Matches occur when availabilities agree with interests. When a match occurs, the

controller must notify both parties and provide information on how they can directly

connect to one another. The subscriber is provided with information on how to page

the publisher, while the publisher is told to listen for the page.

The controller reacts differently according to which event type arrived first. If

the publisher arrives first, the controller stores the publication and parks the device.

When the matching subscription arrives, the controller does not park the subscriber.

Instead, the controller sends a message to the publisher to enable its page scan and

a message to the subscriber containing the FHS packet of the publisher. Figure 4.4

showw e message trawctions when the publication is indirect. A direct publication

would, olsqlhiwe the same result.

If the subscriber arrives first, the controller stores the subscription and parks

the device. As previously described, the matching publication can arrive directly

or indirectly. In the first case, the device actively publishes by connecting to the

controller. Following this, the controller notifies both parties of thV -match. In the

49

Direct Indirect

PC P CS

C S C-S

P-C P-C,

[FHSpl
FS

Page

Page

Figure 4 5: Two poible message transactions for, mwtching when the subeription
arrives first, one for, a direct ,publication and he other fo indirect P-C action
indicates publishing as shown in ,Figure 4.2 and C-S action indicates subscribing as
shown in Figure 4.3

second case, the controller finds the discoverable device and receives its information

indirectly through an inquiry and a page. In this case, no connection is needed

between the publishing device and the controller Instead, the controller only needs to

send the publishers FHS to the subscriber. Figure 4.5 shows the message transactions

for both a direct and indirect publication.

States.

Figure 4.6 shows the state transition diagrams for participating devices. A subscriber

has four main states. When it is not connected to the controller, it is in the dis-

connected state. To transition to 'the active state, the subscriber must initiate a

connetion. Oce active, it can subscribe. If the subscription results in no matches,

the device enters parked state. If there is a match, the device is given information

to enter the page state. A publisher has states similar to the subscriber. When in

the disconnected state, the device is not connected and is not in inquiry scan mode.

The device can transition to active state by initating a connection. Another start

state is the inquiry-scan state. The publisher enters the active state by hearing an

50

Oftline

C onnec f

Connected
to

Controller

Open
Sutbsciption

mat~h zh ik match check

Not
atchedtched

to fenewv p a rk a ae FHS time

Parked Page

n I

Off line Inquiry
cri~prtScat)

c netd trmc t onc

Connected
10

Controller

Open
Pubhcation

Ial ltch iIC fie ck matc h ch eck

Not
Matched) Matched

to r-,vw tr ar ae nable timeoiut

Parked)l
Sc an-.

con n ed

Connected
to

\Subscrtber/

out

/Connected

Publisher

Subscriber Publisher

Figure 4-6: State transition diagram for a subscriber and a publisher.

inquiry from the controller and accepting the connection. From the active state, the

publisher may publish its information. If there is no match, it enters park state. If

there is a match, it enters page-scan state to listen for an incoming connection.

Flow Chart

The controller manages the system using a database of open events and a queue of

events that are waiting to be processed. Events in the queue are processed on a First

In First Out (FIFO) basis. This section describes the actions of the controller in ths

system.

Figure 4.7 and 4.8 show the flow chart diagrams for the five main threads of the

controller (cleaning, handling disconnections, handling new connections, handling

existing connections, and processing events). The cleaning thread removes expired

events from the system while the disconnection thread removes events left by devices

51

that have disconnected. The new-connection thread handles the connection of new

devices and the addition of their events to the event queue. The existing-connection

thread handles the querying of devices that are already connected to the controller

and are parked. This thread is necessary to check if a parked device wishes to renew,

add a new event, ox ruimove an event. Finally, the processing thread takes events off

the queue on a FIFO basis and processes them by perfprming 4 match check. The

results and matching procedure itself are described in detail in Section 4.1.3. Because

these threads operate simultaneously and modify shared data, locks are used. The

cleaning, disconnection, existingconnection,.and processing threads all modify the

database of open events while the existing-connection and new-conlnection threads

modify the queue of events. A thread must wait for the appropriate lock to be free

before executing its actions. When it is done, it must release the lock.

Figure 4.8 also shows the flow chart for the notification action. Devices are always

parked after a notification. The only time a device is active for long in the system is

when it is a new device that is waiting for an event to be processed. The thread for

the processing of events will park all devices involved.

4.1.2 Subscription Language

This section 4escribes the subscription language for publications and subscriptions. It

gives the scheme and representation of the language and the reasons for these choices.

It also describes the attribute-value pairs used to create an event.

Represeptation

To allow for 6ipre6siveness of events, this system follows the content-based scheme

described in Section 2.2.2. Because events are essentially device descriptions, the sys-

tem needs a language flexible enough to express all the different possible descriptions

of a device or devibe type. Of the main schemes of publish-subscribe systems, the

content-based scheme provides the most expressivity. A topic-based scheme is too

limiting as it requires the system to categorize events into a fixed set of topics. This

52

Rest

Get
Database

Lock

C Iean

Remove
Event

Notify
Device

Release
-- Database

Lo ck

Cle an
Database

Inquiry
Scan

UQ1 mt'tr'4,ewr

Connect
to one
Device

Get Event
Queue Lock

Add Event to
Event Queue

Release Event
Queue Lock

K

Rest

Register
Device

Disconnection

Get Get
Database Queue

Lock Lock

!Remove Remove
Events Events

Release Release
Database Queue

Lock Lock

Vit to
Join

Handle
Disconnections

Check
Parked __
Devices

Activate

Get Event Get Database
Oueue Lock Lock

J., Al
Add Event Remove
to Queue Event

Park
Device

Lock

Handle New
Connections

Handle Exwstlng
Connections

Figure 4-7: Flow chart diagram for the controller threads that handle cleaning, dis-

connections, new connections, and existing connections.

restricts the granularity at which a device can perform a search since a search can

only vary according to one parameter: the topic. A type-based scheme is also unsuit-

able for this system due to the unnecessary complexity it adds. Publication events in

53

.0

Notify

Notify s
Device

Activate
Send

Get One
Ev ent

Park
Device Database

Lock

Af n;O tle Chec kfor :nth o iub
Matches

A cr~e my"' O rh ptn 0 kol u Ps

7Notify' onertiNoif

Add Event Remove rahopbNtf

Reeser

to Database Matched - bscriber
oEet Pick Oldest

Subscription

N o f fy Notify
PU 11sher Subscriberu

Park Device
if Active

wait forRelease
soth Database

Lock

Process Events

Figure 4-8: Flow chart diagram for the controller thread that handles event processing

and the notification action

this system are device descriptions that do not fall into statically configurable event

types. Therefore, filtering in the context of event types is not useful. The downside

to a content-based scheme is that it places more overhead on the controller when

performing matches. However, this is an allowable tradeoff since the controller has

its own power supply and is assumed to have many resources (see Section 4.2).

Subscriptions in the system define event constraints using attribute-value pairs.

This is ideal because information obtained during a Bluetooth discovery procedure

is already in the form of attribute-value pairs. For example, a discovery procedure

uncovers the name value, class value, and Bluetooth device address value of a device.

Each piece of information can be easily formatted into an attribute-value pair and

54

combined to form a subscription. With these pairs, it is then reasonable to follow the

template object approach described in Section 2.2.2. Publications can be thought of

as objects and subscriptions as templates for object types. Any object that conforms

to the template is therefore of interest to the subscriber. A possible alternative

representation uses strings. However, because this system incorporates the groups

protocol described in Section 2.3 to allow for friendships, strings are impractical. The

group verification protocol is too complex to express using strings.

Publications

The purpose of a publication is to provide information about device availability A pub-

lication consists of five attribute-value pairs: [KEYS=(group keys), BTADDR=(Bluetooth

Device Address), OFFSET=(clock offset), NAME=(device name), and CLASS=(device,

class)]. In this system, a device is not allowed to publish multiple times because a

device should be discoverable in only one way, just as there is only one inquiry re-

sponse from each discoverable device participating in the standard Bluetooth inquiry

procedure. Allowing multiple publications from the same device could lead to si-

multaneous matches. In that case, the controller would need to have a scheduling

algorithm for answering matched subscriptions. Without one, the controller would

answer all matches, resulting in simultaneous page requests from different subscribers

sent on the same channel (see Figure 4.9). This greatly increases the chance of packet

collisions. Introducing a scheduling algorithm, however, adds too much overhead and

a level of complexity undesirable in a simple controller. Therefore, devices are limited

to one publication each.

Publications contain device information that could have otherwise been discov-

ersd tlpugh a Bluetooth discovery procedure. This consists of the Bluetooth device

address' clockoffsot,' device name, and device class. All these parameters, except the

clodk offset, hdlp identify a device. Typically, the user of an inquiring device chooses

to conneet to a device based on user-friendly attributes such as the name and class

of a device. While the BTADDR is a unique global identifier for devices, it does not

present information that easily describes devices. However, this attribute is included

55

Publisher

[PAGE } [PAGE)

enable
ubscribe page scan ubscribe

[FHS[p E P)

Controller

Figure 4-9: Allowing multiple matches to one publication results in packet collision

in the publication to leave the option of locatiag a device by its unique identifier. The

clock offset is only, included in the publication to keep device information stored ina

single location for easy access by the controller. Though this ,attribute is largely ig-

nored during a match, it remains in the publication alongsider the EBT-ADDR so that

they can be easily packaged into a FHS packet when needed. This packet contains

information on how to page and connect to a device.

A publisher also has the option of limiting or restricting Access to its publications

by specifying groups as describe in Section 2.3. By providing specific group..public-keys,

the device indicates that it wishes to be available exclusively to members of those

groups. Theerefore, only subscriptions that have a key in corion with a restricted

publicatio, can acess it. Of course, the controller must verify both the publisher

and subscribers membership in the group before allowing access. These steps are

done during a matching procedure (see Section 4.1.4). Keys can also be represented

as attribute-value pairs. Unfortunately keys are different than the previously men-

tioned device properties if that they can have multiple instances. Since a publisher

can be6ngA Mre than one group it should be able to specify multiple keys to

permit access to nore than one group. Therefore, the value of the KEYS attribute

is a list that contains either one or more group keys or a wildcard value (NULL). A

wildcard value indicates an unrestricted publication. The reason for listing keys to-

gether rather than having multiple attributes (KEY1, KEY2, etc.) is that the system

56

does not know how many groups a publisher belongs to or wishes to provide access

to - different publishers might specify a different number of keys. Thus, a list is used

to enforce a more consistent format across all events.

Subscriptions

The purpose of a subscription is to provide the system with information about the

types of devices a subscriber is interested in. The format of a subscription is very

similar to that of a publication. A. subscription consists of five attribute-value pairs:

[KEYS, BTADDR, OFFSET, NAME, and CLASS]. In this system, a subscriber is

not allowed to add a repeated subscription. However, a subscriber is allowed to add

up to six unique subscriptions to the system. When a match occurs, the subscriber

becomes the master of the publisher (see Section 4.1.4). Since a device can only

have up to seven active slaves in its piconet, the system allows it to look for no

more than seven devices at any given time. Unfortunately, this does not ensure that

a subscriber will not waste controller resources; since it cabi still add up to seven

subscriptions even while the subscriber's piconet is at ftill capacity. However, this

simple solution does limit the amount of wpste to a reasonable extent for a system

where controller resources are not scarce.

To access restricted publications, a subscriber can specify the groups it belongs to

by providing a list of group keys as the value of its KEYS attribute. Doing so indicates

that the subscriber isla member of those groups and can therefore access a restricted

publication that is locked by any one of those keys. If the subscriber has no keys, it

sets the attribute to a list containing the wildcard value (NULL). Again, the controller

must verify these memberships before allowing access. The values of the BT.ADDR,

CLOCK, NAME,, oLASS attributes can also be NULL value, implying that the

subscribr des ot care what apublication has for that value, i.e. the controller

can matchr any ipublication value for that attribute. Subscriptions typically havel'n

unspecified, CLOCK value since it is not an identifier. -If the controller were .to cheek

for matches on that attribute when a value is provided, then it is bighly unlikeytl*t

a match would be produced. Therefore, the controller ignorestheCL OCK attribute

57

during a match (see Section 4.1.3).

4.1.3 Matching

The cotroler stores collections of publications and of subscriptions, or events. Every

time a new event arrives, the controller checks for matches in the system. This new

event is known as a trigger event because it triggers a matching procedure call. If

the trigger event is a publication, the controller checks the publication for a match

against the collection of subscriptions, If the trigger event is a subscription, it checks

for a match against the collection of publications.

A match is defined as a consistent pairing of two events of opposite type, i.e.

publication and subscription. To determine if there is a match, the procedure checks

if the values of all attributes in a publication are cnsistent with the yalues of all co-

responding attributes in a subscription. At any point, if two corresponding attribute-

value pairs are inconsistent with each other, the match check fails for that element

and, the procedure moves on to next element in the colection. If all attribute-value

pairs are consistent, then the procedure determines that the overall publication and

subscription match andplaces it aside until it has found 4, iatches in the collection.

A matching procedure can result in zero matches, exactly one match, or multiple

matches. In the first case, the trigger event produced no matches and' is added to

the database as an open event. In the second case, there is exactly one match, so

the controller can answer both events. This answer consists of informing the event

originators h6W to communicate with one another in order to set up a connection.

Once these 4vents are answered, the controller removes them from the system. In

the third case, the trigger event produced multiple matches. The controller reacts

differently depending' if the trigger event is a publication or a subscription. If it

is a publication, the controller selects the oldest of the matching subscriptions and

proceeds as if it had found an exact match. If it is a subscription, the controller

returns the entire list of matched publications.

58

Matching Procedure

The matching procedure is called when a trigger event arrives at the controller. This

procedure takes as its arguments the trigger event and a collection containing ele-

ments of the opposite event type. This procedure iterates through the elements of

a collection, individually checking for matches between the trigger event and each

element. Elements that are successfully matched are placed in a separate list during

the iteration. At the end of iteration, the procedure returns this list to the controller.

A publication and subscription match when their attribute-value pairs are consis-

tent. The first and most difficult attribute to match is the KEYS attribute. Match-

ing this attribute is a two step process, involving the determination of common

groups and the verification of membership in those groups. Checking for common

group-public-keys determines common groups. However, because any device can

claim to be in a group, the controller must verify membership before the attribute-

value pairs are considered consistent. Only one commong group is necessary to gain

access to the publication. This can be thought of as unlocking a room with n differ-

ent doors, each locked by a different key. The first correct key unlocks the door and

grants access to the room.

The first step in granting access to a publication requires checking for common

keys in the KEYS attribute-value pairs. This occurs in three out of the five possible

cases. In the first case, the value of the KEYS attribute on both sides is a list con-

taining NULL. This case is consistent because the publication unlocked and therefore

available to all subscribers. In the second case, the value on the publication side is a

list containing NULL, but on the subscription side it is a list containing keys. This

caseis, also consistent because the publicatioti remains unlocked regardless of what

keys as*1bserption owns. In the third case, both the publication and subscription

contain a list of group keys and there is a common key in both lists, meaning that the

publisher and subscriber claim they belong to at least one common group. The fourth

case is exactly like the third except that the lists do not share a common element.

This case is not consistent because the subscription does not belong to a common

59

Publication Subscription Consistent
Keys List Keys List

(NJLL) (NULL) True
(NULL) (keyA, keyB, ... keyN) True

(keyA, keyB, .. keyN) (keyA, keyB, ... keyN) True
s.t. common key exqts

(keyA, keyB, ... keyN) (keyA, keyB, ... keyN) False
s.t. no common key exits

(keyA, keyB, ... keyN) (NULL) False

Table 4.1: Consistency for five cases of publication and subscription keys lists

Publication Subscription Common EeM ent
Keys List Keys List

(NULL) (NULL NULL) True
(NULL) (NULL keyA keyB, . keyN) True

(keyA, keyB, ... keyN) (NULL keyA, keyB, .. eN)True
s.t. common key exits

(keyA, keyB,.... keyN) (NULL keyA, keyB . . keyN) False
s.t. no common key exits

(keyA, keyB, .. keyN) (NULL NULL) False

Table 4.2: Common element for cases with NULL appended to subscription list

group. In the fifth case, the KEYS value on the publication side is a list of'keys, but

on the subscription side it is a list containing NULL. This case is also not consistent

for the sanme reasons as the previous case. Table 4.1 illustrates these four cases and

theirconsistencies.

One simple way of handling these different cases is to have the controller, append

a, NULL value to a subscriptions key list when the event is first added to the system.

Then when matching the KEYS attribute, the controller can disregard the different

cages and just check if the two lists share a common value, wildcard value included.

If'they db, they are consistent and the procedure can verify these common keys. If

not, access isdenied and the procedure moves to the next event. Table 4.2 illustrates

this solution.

Once the procedure obtains a list of common key values, it checks if the NULL

value is present in that list. If so, this indicates that the publication had a NULL

value for its KEYS attribute and is unrestricted. Therefore, the attribute-value pairs

60

matche. If not, the procedure must verify a common group by running down the list

and peiforming verification one by one. Verifying that a device belongs to a group

requires the device's group token, the device..public-key, and the group-public-key,

which was already provided by the KEYS attribute. First, the controller asks for

both the publisher's and subscriber's device...publickeys. Then, it asks both devices

for their group token corresponding to the first commIon group key. Once this is re-

ceived, the controller can follow the group verification protocol described in Section

2.3. If verification succeeds, the attribute pairs match. If verification fails, the con-

troller moves on to the next common group and asks for those tokens. This process

repeats until there are no more common groups, at which time the attribute pairs fail

to match and access is denied. This protocol allows the controller to ask for informa-

tion on a need-to-know basis. Section 5.4.1 discusses the possibility of remembering

verified group memebers on the controller to reduce the amount of necessary device

transmissions.

For all remaining attribute-value pairs, except the CLOCK pair which is com-

pletely ignored in the match check, consistency occurs when the values of corre-

sponding attributes are exactly the same or if the value on the subscription side is

NULL. In the later case, the procedure allows any publication value for that attribute

to match. It now becomes clear why the KEYS attribute is a special case. For friend-

ships and access, it is the publication that controls the degree of specification. For all

other attributes, it is the subscription that controls that degree. Lastly, all matches

are case-insensitive. For example, the device names "BOB", "Bob", and "bob" are

considered the same. Figure 4.10 shows pseudo-code for a match procedure.

Exiact Mkitches

The matching procedure returns a list of elements that successfully matched with the

trigger event. If the list contains only one element, then there is an exact match be-

tween a publication and a subscription and the controller takes the following action.

First, it notifies the subscriber that its subscription has been matched. This noti-

fication consists of the event identifier for the subscription and the Bluetooth FHS

61

public class Controller (

publid boplean wathf(Publication pub,
Subsciption sub)

//get common keys
List cormion = getCoimon(pub.keys, sub.keys);
//verify, if non verify then exit
if (noneVerif ied (cormon)

return false;
If (sub.addr != NULL &&

pub. addr . equals (sub. addr))
return false;

If (sub.name = NULL 4a
pub.name.equals (sub. nme))

return folse;
If (sub.class != NUL &&

!pub.class. equals (sub.class)
return fil*e;

return true;

Figure 4-10: Match procedure for a publication and a subscription

packet of the matched publisher. This packet is easily taken from the publication by

packaging the BTADDR attribute value with the CLOCK attribute value. Because

the FHS packet contains information that allows the subscriber to palculate the pag-

ing channel of the publisher, the subscriber can now directly page the publisher. It

enters PAGE mode and sends page requests on the publishers paging channel. The

next step for the controller is to notify the publisher. This notification consists of an

identifier for the publication and a "wake up" message. When the publisher. receives

this notification, it enters PAGE-SCAN mode and listen for page requests. From

there, the two devices can start from the paging procedure of the standard protocol

to set up a Bluetooth connection and exchange data. Both the publisher and sub-

scriber will tine out of the PAGE-SCAN and PAGE modes if there is no response

from the other party. It is up to devices to determine the length of time they are

willing to wait before they time out of a PAGE or PAGE.SCAN mode. However, the

protocol specifies a minimum time that devices must wait before time out. Chapter

6. discusses choices for this minimum time.

62

After an exact match is answered, the controller erases both the subscription and

the publication from its database. The subscription is erased because the subscriber

has found the device it is looking for. The publication is erased so that there is no

interference on the puierpaging channel while it sets up this connection with

the subsriber. This could happen if immediately after a match a new subscription

was added that also matches with the same publisher. Two subscribers would then

be trying to send requests on the same channel and result in interference. To prevent

this, the publication is erased and the publisher has the option of reposting to the

system once the connection is complete or the PAGE-SCAN has timed out.

There are two possible reasons for timing out of PAGE-SCAN and PAGE modes.

First, the devices are out of range from each other. Even though two devices are in

range of the controller, does not necessarily mean they are in range of each other.

The second reason is that a device is uncooperative and decides not to send page

requests or listen for pages. These situations are not the responsibility of the system.

The system is a best-effort system that only guarantees both parties will be alerted

of a match and given appropriate information for connecting. It does not guarantee

device connection as a result of a match

Multiple Matches

When the matching procedure returns a list with multiple matches, there are two

cases to consider: a publication matching with many subscriptions, or a subscription

matching with many publications. When there are many subscription matches, the

controller must notify many clients of one event. When there are many publication

natches, the controller must notify one client of many events.

I.thefirst case the procedure returns a list of more than one matching subscrip-

tions. The coAtroller is now faced with the task of notifying multiple subscribers of

one publication event. However, this task is more complicated than it seems. Tra-

ditional publish-subscribe systems decouple interactions between the subscriber and

publisher, who are not aware of each other. As mentioned in Section 2.2.1, subscribers

do not typically care where events are generated and publishers do not care, wLire

63

their events go. Therefore, those systems can send an event to all interested sub-

scribers. However, this system differs in that it is concerned with future interactions

between publishers and subscribers and therefore cannot allow a publication event to

beisent to nultiple subscribers. The purpose of this publish-subscribe system is to

d6couple device discovery in a way that can still lead to connections. If the system

sent a publication event to multiple interested subscribers, it would most likely result

in packet collision due to different page requests being sent on the same channel at

the same time. This situation is similar to the one described in the previous section.

To handle this first case, the system removes the possibility of interference by

selecting only one matched subscriber to notify: the subscriber that has been waiting

longest for a match. The oldest subscription isround by looking at the time-to-live

(TTL) alues described in Section 4.1.5. The controller then treats that match as an

exact match and proceeds as previously described (see Figure 4.11). If the publisher

chooses to remain available to other devices after it connects with the subscriber,

it must resubmit a publication. An alternate solution is to have a scheduling al-

gorithm that assigns different times at which to send each matched subscriber the

event notification. The publication remains open until the last matched subscriber

has received its notification. Enough time can be allotted between notifications to

give the publisher and subscriber a chance to set up a connection. This alternative

was not used in this system because it adds too much complexity. It requires the

controller to rmaintain a schedule and to split its time between managing the system

and managing these notifications. It is also difficult to determine how much time

should be allocated between notifications.

In the second case, the procedure returns a list of more than one matching publi-

cation. In response, the controller passes this list to the originator of the subscription

event and erases the subscription (see Figure 4.12). Based on this list, the origina-

tor or subscriber can harrow its search by resubmitting a subscription that serves as

a more specific template for the device it wishes to connect to. This case is more

straight-forward than the previous because the system does not have to worry about

future interactions. There is no exact match, so no publishers are told to listen for

64

Publisher A

Controller

(ubscriber X Subscriber Y Subscriber Z

Figure 4-11: Controller chooses oldest matching subscriber to notify

Publisher A Publisher B Publisher C

Controller

Subscriber X

Figure 4-12: Controller notifies subscriber of all matching publications

page requests and no information is provided on how to page the publishers. Even if

the subscriber could contact all matched publishers, it would be via different channels

and would not therefore not result in packet collision. However, this is irrelevant since

a subscription is meant to match with only one publication to constitute a device pair.

Cache of Matched Events

When an exact match occurs, the two matched devices try to connect via paging. As

mentioned before, these devices might time out of the paging procedure because they

are not in range of each other. If they both resubmit the same events to the system,

the controller would match the events again and the devices would time out again.

This results in a loop in the system.

65

To prevent such loops, the controller maintains a cache of recently matched event

pairs. Each time an exact match occurs, the controller stores the matched pair of

events in a cache along with a Time To Live (TTL) value. Using this cache, the

controller can check if a match is a copy of a previously answered match. If so, the

controller assumes that the previous match timed out and therefore the events should

not be matched.

When the matching procedure generates a list of matches, whether exact or mul-

tiple, it checks the cache and removes all events from the list that have recently been

exactly matched to the trigger event. This occurs during the "match check" action

in Figure 4.8. It then continues with the matching procedure. If a cached pair is ac-

cessed, then the TTL value is reset. Section 5.3 discusses choices for the TTL value.

It should be noted that a more effective way of preventing loops would be to have

the devices that timed out notify the controller when the time out occurs. That way,

the controller can maintain a cache of just the timed out matches, and not of all the

matched events. This solution however requires more involvement from the device

and is not necessary for this simple system.

4.1.4 Identifiers

Unique identifiers are used to reference events in the system. These event identifiers

are nepessary to distinguish between different events from the same device. This is

applicable in the case that a device has multiple subscriptions or both a publication

and subscription(s) active on the system (multiple publications are not allowed). The

main beneficiaries of event identifiers are the client devices in the system, not the

controller. When information is sent to a device regarding one of its events, there

must be a way for the device to identify which event is in question. It is possible to

have the controller send the event itself as an identifier, but this method transfers too

much data unnecessarily. Since the event is already stored on the device, the controller

should avoid resending all that data. Instead, events are assigned identifiers when

are they are first added to the system. As acknowledgement of a successful addition,

an identifier is sent back to the originator of an event, where it is stored alongside

66

its associated event for later reference. These identifiers can later be included in

messages from the controller to a device to identify the event in question.

Bqcause publicatigns and subscription events are managed in separate collections,

they hguld gsp be separately assigned identifiers accprding to evept type. The format

of denifier consists 01 a code indigatingthe event type and a numeric value that

is unique within its collection. While a publication and subscription might have the

same numeric value id, they have different codes for the event, type, resulting in an

overall unique identifier. To assign the numeric value of an identifier, each collection

uses its own counter. Both counters begin at 0 when the system first starts up. Each

time a new event arrives, the controller finds the next valid number by incrementally

increasing the counter corresponding to the events type until no active event in that

collection has the same yalue. For example, when the first publication arrives, the

publication counter is increased to 1 and this value is used for its numeric identifier.

The counter is then set to the latest assignment, in this case 1. Once the maximum

number of the counter is assigned, it wraps back to the lowest value of 1 and continues

from there.

4.1.5 Event Expiration

The system expires open publications and subscriptions that have been in the system

for a fixed period of time. These events are deleted from the database and the

originators are notified through an identifier and an, expiration message. Expirations

are implemented with time-to-live or TTL values. When a new event is added to

the database, the controller attaches a TTL value after assigning an identifier. The

Cqtroller updates the system by decrementing the TTL values of open events once

every clock cycle. If a TTL value becomes 0, the controller deletes the event and

notleri the priginator of the expiration. If it wishes, the device can then resubmit

the evezt the systenM. Section 5.3 discusses choices of TTL values.

. An alternative to using event expirations is to leave events on the system for the

lifetime of a device's connection to the controller. This would not require devices to

renew their events periodically. However, there must be some mechanism for syncing

67

open events on the device side and open events on the controller side. It might be

the case that what the device thinks is stored in the database is not actually stored

or vice versa, resulting in inconsistent data. Unfortunately, syncing algorithms often

require signifibant data transmission. This contradicts the requirement of minimizing

the amount of data a device mtust send (see Chapter 3). Efficient syncing algorithms

such as Rsync haV& been developed that miiimize the amount of transmitted data.

However, the tradeoff is significant computation at the device end which also contra-

dicts a requirement of this system [261. The use of event expiration makes the system

as a whole much simpler. By timing out events, the system allows devices to renew

an event as needed, which k'duces the amount of data sent. There could be a short

period of inconsistency but this is boanded by the Maxinum TTL value. The Java

Message 'Service is an example of a publish-subscribe system that uses expiration to

remove forgotten messages out of the system [t21.

4.1.6 Disconnections

Devices either disconnect intentionally by explicitly closing the connection or leaving

the range of the controller. When devices disconnect, they return to the state they

were originally in before they joined the system. For example, a discoverable device

enters a room with the controller, who detects the device and connets. Its availability

is not matched and the device is parked and its inquiry scan disabled. However, the

device stores its original state (discoverable mode). When the device exits the room,

its connection to the controller times',out because they are no longer in range. When

this occurs, the device returns to its original state. Devices can also disconnect

unintentiohally due to interference or fading. To recover, the device may reconnect

directly or'iidirectly, i.e. actively inquire or enter discoverable mode.

The system handles both types of disconnections by flushing the system of events

that originated in the disconnected device. This ensures that no inconsistent data

is left on the system. Unfortunately, removing these events requires the device to

resubmit all its events when it reconnects. While this solution handles the inconsistent

data requirement, it is not optimal for reducing the amount of data a device must send

68

in this situation. Chapter 6.2.1 discusses an optimization for unwanted disconnections

using a cache.

4.2 Assumptions

Plentiful resources - The controller is assumed to have near limitless resources.

This is justified by the fact that the controller is a plugged in device. Because

the controller is often a bay station, it does not need to worry about storage or

power limitations as compared to mobile devices.

No idle devices - Devices will only remain connected to the controller for as long

as they wish to use its services. In other words, devices that no longer wish to

remain available or are not actively seeking other devices will disconnect from

the controller. This implies that there are no malicious attacks on the controller.

Attackers can be devices that purposely flood the system with nonsense or take

up piconet capacity. This assumption is reasonable when the system is used in

a personal computing environment, where devices are responsible and connect

only when services are required.

Previously authenticated devices - Devices have been authenticated with one

another and with the controller. This design assumes that all devices are trusted

pairs and do not require user authentication. While the system still works when

devices are not authenticating, it just requires more user interaction. However,

this assumption is reasonable for a personal computing environment in which

devices have already been paired. It should not be assumed when the system is

used in a public setting.

69

70

Chapter 5

Discussion

The system presented in the previous chapter addresses the shortcomings of the Blue-

tooth connection protocol. However, it is a simple solution that still has room for

improvements. This chapter discusses the solution itself and future considerations

for improving on the solution. The first section discusses the system in the context

of the requirements previously listed. It describes how the system satisfies these

requirements and to what degree. The second section discusses three design alterna-

tives and why they were not optimal for this particular system. These alternatives

are based on communication paradigms similar to the publish-subscribe paradigm.

The third section discusses how to choose system parameters and what factors to

consider when choosing them. The fourth section discusses future considerations for

the system. This includes different optimizations that use caching and key lists to

reduce the amount of data a device transmits. It also includes a discussion on the

bottlenecks of the system and ways to improve performance and scalability. Lastly,

the section discusses a way to include dumb devices in the system.

5.1 Satisfied Requirements

The solution proposed uses the publish-subscribe paradigm to decouple device inter-

action during Bluetooth discovery. This section discusses whether the requirements

described in Chapter 3 have been met.

71

Perform no worse than Bluetooth connection protocol - The system allows

an inquiring device to find an available device through the matching of publica-

tions and subscriptions. Even when an inquiring device has no specific interest,

it can post a subscription with NULL values for for all attributes, to which

the system would return a list of all publications (unrestricted). This case is

exactly like the normal Bluetooth discovery procedure in which an inquiring

device asks for any available device in the area. Also, a discoverable device can

use the system in a seamless fashion because the controller automatically de-

tects the device and connects to it. It assumes responsibility of announcing the

device's availability with little work from the device. The system goes beyond

this by a4owing devices to make specific inquiries according to their interests.

The system also provides no less information to a subscriber and provides no

more information about a publisher than would have normally been obtained

in a Bluetooth discovery procedure.

Reduces the chances of anonymous attacks in discoverable mode - Because

devices discover each other through the system, these types of anonymous at-

tacks are less likely to occur. Both bluejacking and bluesnarfing, which target

discoverable devices, are avoided when the device is not left in discoverable

mode. In this sytem, a device is only discoverabl long enough for it to publish

or subscribe. Therefore, the .chances' of an attack. are reduced.

Allow devices to expend a lower average ppwer during discovery - This sys-

tems reduces the average power a device consumes to connect, to another device.

Currently, it requires the device to perform one inquiry and one paging proce-

dure to connect to the controller, and then a second paging procedure to connect

to a device. This does result in a greater power consumption when both devices

are already present since they would have performed a single inquiry and page

to connect ggIder standard Bluetooth protocol. However, when devices arrive

asynchronously, they consume much less power by using the system.

Consider first the power consumption of devices using normal Bluetooth con-

72

nection protocol. For two devices to discover each other asynchronously, the

device that arrived earlier must already be inquiring or scanning for inquiries

when the second device arrives. Leaving a device in inquiry mode wastes a lot

of Power as the procedure requires periodic transrmissions. Leaving it in dis-

covtrable mode also requires the tranmission of inquiry responses whenever a

request is encountered.

The system decouples this interaction by allowing devices to announce avail-

ability and then go to "sleep", i.e. parked mode. Because the system takes on

the responsibility of notifying devices of matches, they do not have to worry

about conversing with other devices. Therefore, the average power consumed

in this system for the purpose of discovery is lower. This is especially true in

Bluetooth-rich areas where there are many devices in close proximity.

Allow devices to restrict availability - The system allows devices to restrict ac-

cess to their publications. By providing group-public-keys, a device can specify

access only to members of a common group.

Handle Stale States The system limits the lifetime a parked device can remain

in a stale state, i.e. a state that is no longer true, by expiring events that have

been in the system for a prolonged period of time. 'The system also flushes those

events whose originator has disconnected. Although these procedures address

the problem of stale states, both these mechanisms require more overhead on

the part of the controller. However, given the unlimited resources available to

the controller, this is preferable to increasing overhead on client devices.

5. Design Alternatives

This spctio4ipusses three design alternatives nd the reasons they were not chosen

for this system. These alternatives use communications paradigms similar to publish-

subscribe but do not provide the type of loose coupling required in the system.

Tuple Space - In DSM systems, hosts have the same view of a common shared

73

space called the tuple space, which provides a simple yet powerful abstraction

for accessing shared memory. A tuple space contains a collection of ordered

tuples that act as the communication tool for hosts. Hosts can insert or remove

tuples, or read them without changing their location. The advantages of this

interaction, model are the time and space decoupling it provides. Producers

of tuples do not need to know what happens to the tuples in the future and

consumers do not need to know what has happened to tuples in the past. The

disadvantages of .,pples are that there is no central management that controls

the tuple space. For this system, computation and management should be

handled by a central entity rather than by eices whichdonot have much

power or resources. Also, tuple spaces do not provide the regulation mephanism

necesary for allowing friendships because any end user can read and access a

tuple [171.

Observer Design Pattern - In these systems, subscribers register-their interest di-

rectly with publishers while publishers notify subscribers asynchronously through

a server. This management decouples interaction in synchronization but not in

time and space. It does not work because the purpose of our system is to

perform device discovery. Because devices do not know about each other, sub-

scribers cannot directly register their interest in this manner. An adaptation

of the paradigm might be to have interests delivered to a publisher through

middleware, but this management would still place the burden of filtering on

the publisher [17].

Message Queing - Message queuing integrates certain forms of publish-subscribe

interaction. In this type of system, messages are put into a global space called a

queue by a producer and removed by a consumer. However, consumers retrieve

elements based on priority, or its location in the queue, rather than by structure.

Therefore, this alternative fundamentally cannot be adapted for the system,

which needs to deliver messages based on content. In other words, availability

should not determined by the time a device publishes to the system [17].

74

5.3 Choosing Parameters

One parameter, that affects performance is the initial TTL value assigned to open

events (see Section 4.1.4). TTL values determine the length of time an unanswered

or open event remains on the system. ,p* l T1?L values result ,n high turnover and

require devices to renew events frequeptly, while large TTL values lead to higher

chances of inconsistent data. Inconsistent data could result in missed matches, i.e.

matches that should have occurred but did not. This consequence is not as harmful

as requiring a device to retransmit data often, Therefore, larger TTL values should

be preferred.

Another parameter that affects performance is the MIN-TIMEOUT value for de-

vices participating in the paging procedure as the result of a match (see Section 4.1.6).

When notification is received of an exact match, the subscriber goes into PAGE mode

and the publisher goes into PAGE.SCAN mode. Because the controller cannot ensure

that a device enters its respective mode devices, s$puldtizia out f the paging pro-

cedure when there is no response from the other party. However, if devices time out

too quickly, the other party might not have a chance to respond in time. This might

result in re-publication and re-subscription which is costly for the system. Therefore,

devices must agree to participate in paging for at least a certain amount of time. A

reasonable choice for this value is the maximum time of a paging procedure. While

the average and maximum inquiry times vary by as much as 27 seconds, the average

and maximum paging times vary by only 1.28 seconds (see Table 2.1). Therefore, this

is a reasonable time to wait. As shown in Figure 4.7, the controller will notify both

devices simultaneously and then wait for both notifications to occur before moving

on.

The last parameter to choose is the TTL value for the cache of matched events.

As described in Section 4.1.3, this cache is needed to ensure' that devices that timed

out of a conewtimn are not matched again, thus preventing loops in the system. This

TTL value should be chosen such that devices who time out are not matched again.

However, devices that matched and successfully connected should still be matched if

75

they disconnect and return at a later time. Consider the first case. Two matched

devices will try to connect for the MIN.TIMEOUT period previously discussed. Once

they timeout, they rmust resubmit their events to the controller and wait for them to

be pOcsed. Depending on the number of events waiting tin the queue, this could

take a while. Therefore, a longer TTL value is desirable gothat the record is still in

the cache by the time the resubmitted events are processed. In the second case, two

matched devices connect and communicate. They disconnect and return at a later

time. At that time, the record of their match sh&ould have expited from the cache

so that they may reconnect if desired Therefore, shorter TTL value is desirable.

Altogether, a reasonable TTL value can be longer. The length of time for two devices

to connect, communicate, disconnect, and return to the. system should be at least

several minutes The length of time for the controller to, process events should be

much shorter (less than, a ninute

5.4 Future Considerations

Future considerations for this system include different optimizations and scalability

issues. The system currently meets the requirements listed in Chapter 3. wever, it

still has room for improvement, partictlarly in reducing date transmission and power

consumption and increasin system capacity.

5.4.1 Optimizat oUs

There are two possible optimizations for this system. The first uses caching and the

second uses key lists to remember verified group members. Both result in less data

transmission from the device and therefore saves power.

Cache of Removed Events

The amount of data a device must send to the controller can be reduced by caching

deleted events. Currently, the controller removes events when they expire, when a

device disconnectS, or when a matched event is answered. In the first case, it is likely

76

that the event will be renewed since it had not been answered. In the second case,

the disconnection might have been caused by factors such as interference or fading.

If so, the device would like to reconnect as soon as possible. In the third case, the

device might have timed outfrom an attempted connection and wish to resubmit the

event. All three cases require the device to resubmit deleted events.

By maintaining a cache of events that have recently been deleted from the database,

the controller only needs an event's identifier in order to renew it. For example, when

a device receives an event expiration notice, it can call a renewO operation on the

controller that takes the event identifier as an argument. If a device experiences an

unwanted disconnection, it can call this renew(o operation for each event that was

deleted.

Similar to open events, cached events should expire from the system's cache.

Therefore, the controller must also assign them TTL values (see Section 4.1.6). The

TTL value for cached events should be smaller than TTL values for open events. This

is because devices typically renew events shortly after expiration or resubmit them

soon after they are able to reconnect. Given these two cases, a possible choice for this

TTL value is the maximum time it takes for a device to reconnect to the controller

(see Table 2.1).

This optimization reduces the amount of data transmission from the device, but

requires much more controller overhead. However, this is not an unreasonable tradeoff

given that a controller is assumed to have significantly more resources than devices.

As shown in Figure 4.7, the controller could use the cache when it adds the event to

the queue. The device can specify an identifier at that point and the controller could

look it up and add the event to the queue.

Keys~List

Another*optimization is to maintain a list for remembering verified group memebers.

When matching a restricted publication, the controller must check and verify if the

publisher and a subscriber belong to a common group. This requires devices to

send group tokens and their device..public-key. To avoid these transmissions, the

77

controller can niaintain a list for group members it has previously verified. Elements

in this list associate Bluetooth device addresses with their verified groups, indicated'

by gtoop..public-keys. Therefore, it must verify a device's membership in a group, the

c6jn*ller can simply check this list. If there is no listing for the group or device in

question, the controller proceeds as described in Section 41.4. When new verifications

aretiade, the controller stores them in the list. If desired, the controller can clean this

list by flushing memberships that have not been checked in a long time. This can be

implemented using TTL values that are reset every time the membership is checked.

Group membership is changed by generating new group keys, requiring the owner to

reissue group tokens 1251. Therefore, the system does not consider new group keys

and old group keys a match. Old memberships in this key list will die out.

5.4.2 Performance

As shown in Figure 4.7 and 4.8, the controller uses five threads that interact sequen-

tially to manage the system. This can hinder the performance of the controller. For

example, when a new device publishes, the event must first be added by the new-

connection thread. It must sit in a queue until the processing thread .removes it.

While it is in the queue, a matching subscription might be added to the queue by

another thread. It is not until the processing thread finishes processing the publica-

tion and' then begins processing the subscripion that a match Will be found. As the

number of devices and the number of events to be processed increases, the possibility

of the queue containing matching events increases too, causing the performance of

the system to slow down dramatically.

One way to increase performance is to have two event queues, one for publications

and one for subscriptions. When the processing thread gains the lock for the database,

it can grab the next publication and next subscription off the queues and perform

simultaneous match checks on each. This is possible because events are matched

against open events of the opposite type and do not affect each other. The processing

thread can then wait fdr the results of the match checks before taking the appropriate

actions. These events can also be checked against each other or against events in the

78

opposite queue if no events in the database match. In fact, multiple events from each

queue can be checked for matches simultaneously, so long as no action is taken until

these checks are completed.

Another factor that affects performance is the scheduling of threads. When two

threads are vying for the same lock, it umight not be desirable to be fair, i.e. to give the

lock to whichever thread asked first. For example, the disconnection thread should

be- given higher priority over the processing thread because obsolete events should be

removed before a match is performed. However, if the disconnection thread is always

given priority, then the matching thread might never gain the lock if devices keep

disconnecting. Another example is the cleaning thread. The cleaning thread has less

priority than the existing-connection thread when they are both trying to remove an

event. This is because the existing-connection thread is trying to remove an event

due to an explicit command from a device, which is more important than declaring

an event expired. Therefore, the scheduling of threads is an important consideration

for performance.

5.4.3 Scalability

As mentioned in Section 2.1.3, the controller can support over two hundred slave

devices in its piconet. Given this high piconet capacity, the capacity of the system

really depends on when the performance falls sharply. As previously discussed, per-

formance depends on how many devices are in the system and the traffic of events in

the system. It might be the case that there are many devices in these system but the

rate of event arrival and removal is very slow. It might also be the case that there are

few devices in the system at a time but the rate of event arrival and removal is very

fast. These factors might also change depending on what context the system is used

in., Itei' likely that a home office has less than ten devices and has a slower traffic of

events, Arwork office or space might have a higher traffic of events. Therefore, it is

difficult to judge the capacity of the system without testing it in different environ-

ments. For now, a reasonable capacity can be set to around seven devices. This is

because a piconet can only have seven active devices at a time. Since all slaves start

79

out active, this is a good start for testing system capacity. Also, there are not usually

much more devices in a 10 meter range.

Once the controller has reached its capacity, a possibility for increasing system

capacity is to increase the number of controllers via a scatternet. However, one must

keep in mind that the purpose of the system is to provide device discovery services so

that devices can form connections. Introducing multiple controllers allows different

points of access for a device to enter the system, which is dangerous. It makes no sense

for devices to discover each :other when they are out of range because they cannot

directly form a connection. Therefore, multiple controllers must be grouped closely.

Possible client-server topokogies to use are the hierarchical and ring topologies (see

Section 2.2.3). Hierarchical topologies are most applicable for this system because

scatternets already have: a hierarchical structure, i.e. a master in a piconet acts as

slave in another. Ring topotogies are not possible in a scatternet because they require

peer-to-peer connections. However, they can be implemented with wired connections,

which is acceptable since the controllers are grouped closely.

5.4.4 Dumb Devices

Dumb devices are used for voice or data communications and most peripheral func-

tions. They support only one connection to a computing device and have limited soft-

ware. An example of a dumb communicating device is the Jabra FreeSpeak BT200

headset. The Microsoft Bluetooth Wireless Intellimouse is an example of a dumb pe-

ripheral device. Because a Bluetooth dumb device can support only one connection,

it must be paired with another device.

Pairing is the Bluetooth procedure that occurs after paging but before a connec-

tion, in order toauthenticate two devices that are previously unknown to each other.

Typically, it requires'a PIN to be inputted on both devices by the user. Once two

devices are paired, they' can connect directly to each other at a later time without

searching again. This is done by remembering the information of a device so that

connecting requires only the paging procedure and not both inquiry and paging.

Pairing for dumb devices follows a simple procedure. Unpaired dumb devices are

80

initially discoverable. A computing device will inquire and page a dumb device to

connect to it. Because, the two devices are unknown to each other, they must enter a

PIN to pair. Dumb devices have generic PINs that are assigned by the manufacturer

such as 0000, as with the Jabra headset, or blank, as with the Microsoft mouse [28]

Once pairing has occurred, the computing device -connects to the dumb device

and becomes the master. When the dumb device disconnects and reconnects at a

later time, it directly pages the paired computing device. If the page is heard, it

then connects and performs a role switch so that the computing device becomes the

master. If the page is not heard, the dumb device periodically pages to check if the

computing device has arrived.

Possible Solution

Dumb devices face only the shortcomings of poor power management and the syn-

chrony requirement as described in Section 2.1.4. When the specific computing device

they are paired to is not around, they waste power sending pages. Many devices have

an on/off button to stop this when the device is not connected. They also suffer from

the synchrony requirement because they must be looking for a specific device at the

time that device is available. Dumb devices do not suffer from attacks because they

do not store information. They also cannot benefit from friendships because they

have limited software.

To create a system that decouples these interactions, the controller must be

smarter. Because dumb devices are incapable of knowing about any participation

in the system, the controller must be able to fake them into thinking they are inter-

acting with a normal computing device. This section describes possible solutions for

different cases of dumb device interactions.

In the case that the smart device arrives first and publishes, the publication re-

mains open on the controller and the smart device is parked and put to sleep. At that

time, the controller can take over responsibility of scanning on the smart device's page

scan channel. When the dumb devices arrives, the controller hears its page requests

81

and can wake up the smart device by telling it to listen for pages. The dumb device

then directly pages the smart device and connects.

In the case that the dumb device arrives first and pages the smart device, the

controller does not know the page scan channel of the smart device. However, it

can pseudo randomly hop through the page scan frequencies in the same manner as

ai ifiquiry scan. While it takes longer, the controller will hear the page eventually

and respond. To respond to the page and connect, the controller must be able to

fake the smart device's unique BTADDR. This can only be done with additional

hardware. Once the controller connects, a role switch occurs and the coftroller parks

the dumb device until a smart device matching the BTADDR arrives. At that time,

the controller does not need to connect to the discoverable smart device. Instead, it

disconnects from the dumb device and ignores its pages long enough for the dumb

device to page and connect to the smart device.

In order for this solution to work, the controller must be able to fake Bluetooth

addresses using extra hardware and to pseudo randomly hop through the page scan

channels. It is yet unclear how to do this in hardware and how scalable this solution

is.

5. 5 Conclusion

Bluetooth promises to be the next leader in wireless technology. It is simple, reliable,

cost-efficient, and provides all the characteristics necessary to embed computation

into our everyday lives. With Bluetooth, devices now have the mobility and commu-

nication to adapt to the natural behavior of humans, rather than requiring humans to

adapt to them. Soon, Bluetooth devices will become prevalent in every environment.

For many Bluetooth devices to coexist and operate effectively in the same area,

it is necessary to manage them in an efficient and power-saving manner. This thesis

provides management in the form of a publish and subscribe system. The system

introduces a miiddle man to handle device discovery, thereby shifting the power con-

sumption of discovery from the device to the middle man. Such transfer of responsibil-

82

ity frees up device resources and added benefits include the prevention of anonymous

attacks when in discoverable mode, the possibility of asynchronous connections, and

the development of friendships.

The ability to form Bluetooth connections in a low-powered manner changes user

interaction with these devices. The user no longer has to worry about turning devices

off in order to save power when they are not in use. Devices can remain on and avail-

able without excessively draining their power, therefore requiring less action on the

part of the user. With this system, searching for devices also becomes easier. When

a device is absent/unavailable, searching for it requires asking only once rather than

periodically, also requiring less action from the user. Finally, permitting friendships

in this system opens up many possibilities for associating devices. These associations

can be based on any parameters, including user, type, or content of the informa-

tion handled. Because the system manages friendships, the user does not have to

remember these associations when connecting devices. Instead, simple actions that

are more intuitive to the user, such as touching two devices, can be used to manage

associations.

The primary advantage of this system is the opportunity it provides fbr trans-

ferring the power consumption of discovering devices to a- static middle man. This

allows many available or searching devices to coexist for longer periods of time. The

result is a more seamless interaction with the user, bringing us a step closer to a

pervasive and ubiquitous computing environment.

83

84

Bibliography

[1] Centre for Pervasive Computing.

http://www.pervasive.dk, September 2003.

Available on the Internet:

[2] IEEE Pervasive Computing. Available

http://www.computer.org/pervasive, May 2003.

[3] Bluetooth Official Website.

http://www.bluetooth.com/about/, 2004.

Available

[4] James Kardach. Bluetooth architecture overview. Intel

Quarter 2000.

on the Internet:

on the Internet:

Technology Journal, 2nd

[5] Albert Proust. Personal area networks: A bluetooth primer. O'Reilly Network,

November 2000.

[6] David Carey. Bluetooth making good on price points. Available

http://www.eetuk.com/bus/news/, May 2004.

[7] Bluetooth SIG. Specification of the bluetooth system. Available

http://www.bluetooth.com, November 2003.

[8] TheFreeDictionary.Com. Time division multiplexing. Available

http-//crputing-dictionary.thefreedictionary.com/, 2004.

on the Internet:

on the Internet:

on the Internet:

[9] Curt Franklin. How bluetooth works. http://electronics.howstuffworks.com/bluetooth.htm.

{10] Bluetooth Designer. Bt designer: Glossary: F-j.

http//www.btdesigner.com/ftoj.htm.

85

[11] palowireless Bluetooth Resource Center. Time taken to complete inquiry/paging

procedures.

[12] Adam Laurie, Ben Laurie, and A.L. Digital Ltd. Serious flaws in bluetooth

security lead to disclosure of personal data, May 2004.1 Available on the Internet:

http://www.thebunker.net/release-bluestumbler.htm.

113] Mark Ward. New mobile message craze spreads. BBC News, November 2004.

Available on the Internet: http://news.bbc.co.uk/.

[14] Jo Best. 'bluejacking' hits the mainstream. ZDNet UK, November 2003. Avail-

able on the Internet: http://www.zdnet.co.uk/.

[15] Munir Kotadia. Bluetooth phones at risk from 'snarfing'. ZDNet UK, Feburary

2004. Available on the Internet: http://www zdflet.co.uk/.

[16] Ying Liu and Beth Plale. Survey of publish subscribe event systems. Technical

Report TR 574, Computer Science Department, Indiana University, May 2003.

Available on the Internet: www.cs.indiana.edu/pub/techreports/TR574.pdf.

[17] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys,

35(2):114-131, June 2003.

[18] TIB/Rendezvous Web Site. http://www.rv.tibco.con.

[19] Ben Segall and David Arnold. Elvin has left the building: A publish/subscribe

notification service with quenching. In Proc. of the 1997 Aus&alian UNIX and

Open Systems Users Group Conferencing, 1997.

[201 SQLCourse.com Web Site. Interactive online sql training. Available on the

Internet: http://www.sqlcourse.com/.

[21] World Wide Web Consortium. Xml path language (xpath). Available on the

Internet: http://www.sqlcourse.com/.

86

[22] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley.

The design and implementation of an intentional naming system. In Proc. 17th

ACMSOSP, Kiawah Island, SC, December 1999.

[23] Klaus Marius Hansen and Christian Heide Damm. Building flexible, distributed

collaboration tools using type-based publish/subscribe - the distrbuted knight

case. In Proceedings of IASTED SE 2004, 2004.

[24] Peter Houston. Building distributed applications with message queuing mid-

dleware. Available on the Internet: http://msdn.microsoft.com/library/, March

1998.

[25] Tehyih D. Wan. Personal correspondence on device groups in bluetooth, May

2004.

[26] Andrew TRidgell and Paul Mackerras. The rsync algorithm. Technical Report

TR-CS-96-05, The Australian National University, June 1996. Available on the

Internet: http://cs.anu.edu.au/techreports/1996/TR-CS-96-05.pdf.

[27] Sun Microsystems. Java message service, version 1.0.2. Available on the Internet:

http://www.javasoft.com, 1999.

[28] Jabra Corporation. Support: Phone-specific info for bluetooth phones. Available

on the Internt: http://www.jabra.com.

[29] Amazon. Microsoft bluetooth wireless intellimouse explorer. Available on the

Internet: http://www.amazon.com.

87

