
Tracking with Constraints in a Web of Sensors

by

Brian Kerry Dunagan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2004 §ui 7

@ Brian Kerry Dunagan, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author

MASSACHUSETTS INS EOF TECHNOLOGY

JUL 2 0 02 4

LIBRARIES

Department of Electrical Enginering and Computer Science
May 20, 2004

Certified by................
Trevor Darrell

Associate Professor
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

PARKER

2

Tracking with Constraints in a Web of Sensors

by

Brian Kerry Dunagan

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

With the dramatic fall in price of electronics over the past several years, large-scale
networks of sensors are steadily becoming more feasible. The goal of this research
project was to deploy a sensor network for data collection of human trajectories and
to develop and test a method for taking walls into account using a penalty function
in an ongoing research project in trajectory tracking model. There were two deployed
sensor networks, one with distance sensors and one with cameras, and the camera
network was used to collect data for the two papers. The trajectory tracking model
was modified to incorporate wall constraints to enable exploration of more realistic
scenarios, with encouraging preliminary results.

Thesis Supervisor: Trevor Darrell
Title: Associate Professor

3

4

Acknowledgments

I'd like to thank Ali Rahimi for letting me add to his doctoral work and giving me

the opportunity to help publish the research. He provided me with all the help and

direction I needed. My thesis is a small piece of his. I'd also like to thank Trevor

Darrell for overseeing my contributions, Ron Wiken for building ceiling mounts for

the iPaqs, and Project Oxygen for its hardware donations. Finally, I'd like to thank

my family and my friends for their support.

5

6

Contents

1 Introduction 11

1.1 M otivation . 11

1.1.1 Traffic Patterns . 12

1.1.2 Security . 12

1.1.3 Network Self-Calibration . 12

1.2 Goal 13

1.3 Related W orks . 13

1.3.1 Sensor Networks . 13

1.3.2 Obstacle Avoidance . 14

1.4 Structure . 14

2 Sensor Networks 15

2.1 Network Design . 15

2.2 M ote Network . 16

2.2.1 Overview . 17

2.2.2 Adding a Distance Sensor . 18

2.2.3 Programming in TinyOS . 19

2.2.4 Discussion . 20

2.2.5 Future W ork . 21

2.3 iPaq Network . 22

2.3.1 Setup . 23

2.3.2 Discussion . 25

2.4 Comparison of Networks . 26

7

2.5 Results . 26

2.5.1 M easuring Bearing . 27

2.5.2 M easuring Location . 27

3 Wall Constraints 29

3.1 M athematical Programming Overview 29

3.2 Linear Constraints . 30

3.3 Objective Function . 30

3.3.1 Dot Products . 31

3.3.2 The penalty . 32

3.4 Implementation . 33

3.4.1 First Version . 33

3.4.2 Second Version . 33

3.5 Results . 34

3.6 Discussion . 34

3.7 Future W ork . 35

4 Conclusion 41

A TinyOS Distance Module 43

B Matlab Code 47

8

List of Figures

2-1 A Mote: the battery and processing unit (right) and the sensor board with

distance sensor attached (left). 17

2-2 Two Motes with distance sensors attached. 18

2-3 The configuration module for the distance sensor in TinyOS. 19

2-4 Five Motes, one base station board, and one detached distance sensor. . . 20

2-5 A circuit diagram for a Mote sensor board connector. The distance sensor

was connected to the circled pins. 21

2-6 The distance sensor produced noisy data. This is a typical snapshot of one

hundred seconds. The middle line represents the "true" value, four feet in

th is case. 22

2-7 Com paq iPaq. 23

2-8 iPaq with Backpaq attached. 23

2-9 iPaq network viewing traffic horizontally. 24

2-10 iPaq network viewing traffic vertically. 24

2-11 A result with data collected from the iPaq network with horizontal cameras.

The thin line is the actual trajectory, and the thick line is the perceived one.

The grey cones are the fields of view. The black bars are the walls. Notice

that the generated trajectory goes directly through three walls. 27

2-12 A result with data collected from the iPaq network with vertical cameras.

The dotted line is the recovered trajectory. The grey boxes are the recovered

locations and orientations of the sensors, and the dotted boxes are the actual

locations and orientations of the sensors. 28

9

The three subdomains of the constraint problem.

A scenario with one wall and two observations.

A scenario with one wall and four observations.

A scenario with two walls and three observations.

A scenario with three walls and four observations.

A scenario with five walls and five observations. .

10

3-1

3-2

3-3

3-4

3-5

3-6

. 3 1

. 36

. 37

. 38

. 39

. 40

Chapter 1

Introduction

With the dramatic fall in price of electronics over the past several years, large-scale

networks of sensors are steadily becoming more feasible. One use for these is person

tracking. Here, the goal is to observe a person at various locations and collect the

observations.

One use for that collected data is generating a complete trajectory for a moving

person. This entails looking at where the person was when he was observed by the

network, noting the time, and reconstructing a likely trajectory, or path, that he could

have taken, one that includes those observed locations. This problem of trajectory

tracking is essentially an inference problem. The goal is to look at the observed points

in a person's trajectory and interpolate the other points that went unseen.

1.1 Motivation

There are a number of applications for this sort of infrastructure and many scenarios

where this research would prove valuable. Each of the examples below highlights

usefulness of a sensor network that tracks trajectories.

11

1.1.1 Traffic Patterns

A university just finished a building on campus, and the administration and the

architect are interested in how traffic patterns evolve over time. They considered

hiring a consulting firm to study the traffic, but for their long time frame, that

solution is financially infeasible. Instead, the administration invests in a large number

of sensors equipped with cameras. The cameras are installed at main throughways

and take snapshots of the current traffic. After identifying the people in each snapshot

[6, 9, 10], the network is able to calculate the trajectory of every person and aggregate

the data into a general pattern.

1.1.2 Security

A security company would like to keep track of where its employees are at all times, so

they install a network of radio frequency identification (RFID) readers and an RFID

tag give each of their employees. The reader senses any tag that passes by, acting as

a proximity detector. Using these observations and their time stamps, the network

can infer a coarse likely trajectory for each person and build up a database of where

each employee has been.

1.1.3 Network Self-Calibration

There is a newly-installed network of a thousand sensors in an electronics fabrication

factory that monitor temperature, humidity, and human presence. The problem is

the individual sensors do not know where they are located with respect to the rest

of the network. Measuring the exact three-dimensional coordinates for every one of

the thousand sensors would be expensive and time-consuming. A better solution is

to leverage the presence sensor and use its data to let the network self-calibrate [12].

A person could walk around the building until all the sensors had seen him several

times, and the sensor network could infer the specific locations of each sensor to

varying degrees of accuracy.

12

1.2 Goal

The goal of this research project was to deploy a sensor network for data collection

of human trajectories and to develop and test a method for taking walls into account

using a penalty function in an ongoing research project in trajectory tracking model.

There were two deployed sensor networks, one with distance sensors (§2.2) and one

with cameras (§2.3). The camera network was used to collect data for the two papers

(§2.5). The trajectory tracking model was modified to incorporate wall constraints

to enable exploration of more realistic scenarios (§3).

1.3 Related Works

Given the dual goals of this project, there is a distinct body of work that relates to

each.

1.3.1 Sensor Networks

U.C. Berkeley has been a major contributor to the field. Research groups there have

designed and implemented a modular sensor [14] and a functional operating system

[4], both of which are now used extensively in the sensor network community and

are packaged as a commercial product [2]. Culler and Whitehouse have explored

localization techniques within a sensor network [15]. Their goal was to generate

a local (x, y) coordinate system for the sensor network and link that to a known

coordinate system. In addition, Culler deployed a network on Great Duck Island to

monitor weather and nesting behavior [3]. These are sensors that need to run for

months or years without needing maintenance. They are also looking beyond the

macroscopic implementations to the design of microscopic sensors [5].

Balakrishnan et al. [11] set up a location-support system for in-building, mobile,

locatiou-dependent applications. There are a set of sensors, beacons, that broadcast

their two-dimensional coordinate, and another set of sensors, listeners, triangulate

their own position based on the broadcast messages.

13

1.3.2 Obstacle Avoidance

T. Schouwenaars et al. have done work in obstacle avoidance, a superset of the wall

avoidance problem [7]. Their goal was to build a helicopter that could be fed a start

point and an end point and could then autonomously fly from one to the other without

colliding with an obstacle. It is important to note that their research question, "Where

should the helicopter go?" differs slightly from this project's question, "Where did

the person go?"

Their approach to the obstacle avoidance problem was to set up four linear con-

straints, forming a solid box around the obstacle that the object's trajectory points

could not touch, and ensured that all the trajectory points satisfy those. The pitfall of

this approach was the boundary case when the discrete points of where the helicopter

was planning to fly did not overlap with the box but the actual trajectory of the

helicopter clipped a corner of the box. To avoid this, they expanded each obstacle's

box by a certain amount related to the distance the helicopter could travel in a time

step.

On the other hand, their approach is trivially scalable to three dimensions, while

the approach described in this project is not (@3) . For their calculations, they used

mixed integer linear programming and a piecewise linear approximation for their

nonlinear cost function.

1.4 Structure

Section 2 describes the configuration of a Mote network (@2.2) and a iPaq network

(§2.3). Section 3 details the problem of wall constraints, this project's solution to it,

and a set of preliminary results. Section 4 concludes with a discussion on feasibility

and practicality of these sensor networks and the wall constraint problem.

14

Chapter 2

Sensor Networks

This project was part of an ongoing investigation into trajectory tracking. The re-

search had already produced an algorithm that generated likely trajectories given a

set of observation. It had been tested on simulated data from Matlab, so the next

step was to generate trajectories for the real world using experimental data. Two

testbeds were created on which to collect this experimental data: a network of Motes

(§2.2) and a network of iPaqs (§2.3).

2.1 Network Design

There were several design goals that guided the creation of both sensor networks.

The research project was specifically directed at sparse sensor networks, or networks

where the sensors' views do not overlap. In previous work, the networks have been

intentionally made dense [1], with views overlapping, so that sensors could hand off

tracked objects from one to another; the design constraint greatly simplified the task

of inferring position and allowed for other avenues of research. However, the goal of

this research project was tracking a human in a sparse network. One advantage to the

sparse network is the incremental cost of deployment. There is no lower bound to the

number of sensors needed for the algorithm to run, but adding them incrementally

increases the trajectory's accuracy.

The central goal of the network was to provide the maximum number of observa-

15

tions per second. Thus, this project focused on that aspect instead of implementing

any data routing protocols or on-sensor filtering mechanisms. Both of those are nec-

essary for large-scale deployment of either sensor network, especially with Motes, but

they were not a high priority for this small-scale testbed; the base station that col-

lected all the data was in broadcast range of all of the deployed sensors, and the

amount of data, on the order of kilobytes, was not the bottleneck.

One important facet of the trajectory algorithm is its processing mode. It was

designed to process all the data en masse, not incrementally as new observations

occurred. This relaxation allowed for two possibilities: a constant stream of data

or bursts of data at regular intervals. Both options were explored but the final

implementation of both networks sent data as the first, a constant stream.

Finally, there was an urgent need for a deployed network, so designing a sensor

and fabricating a set of them was not a viable option. Fortunately, there are a

number of sensors on the market or in development. Three fit the majority of the

design requirements, though only one came equipped with a distance sensor. The

first choice was Stacks, developed at the MIT Media Lab. They featured a modular

platform and a high bandwidth of over one hundred kilobytes per second, though

there was no high-level operating system written for it. Unfortunately, there were no

spare sensors, and there was no time to assemble more. The second choice was Motes,

developed by U.C. Berkeley and commercialized by Crossbow Technology. They also

featured a modular design and were the de facto choice in the wireless sensor network

research community. The third choice was iPaqs, sold by Compaq. They were small

handheld computers. The first network was built out of Motes, because of their low

cost and extensibility. The second network was build out of iPaqs, because of their

availability and ease of configuration.

2.2 Mote Network

The Mote network required hardware and software engineering to add the distance

sensor and to resolve several issues with time stamps. The sensor programming was

16

Figure 2-1: A Mote: the battery and processing unit (right) and the sensor board with
distance sensor attached (left).

in a C variant, and interface and data manipulation on the PC was in Java.

2.2.1 Overview

A Mote was two inches long, one inch wide, and one inch tall. It was comprised

of two pieces: a battery pack and processing unit and a sensor board (Figure 2-1).

The central unit had a dual purpose. It could accept data from a sensor board and

interact with other sensors over radio at 916 MHz. It could also be plugged into a

peripheral board attached to a computer and act as a base station, broadcasting mes-

sages to the network and relaying data from the network to a computer. The sensor

board was equipped with an array of sensors: a magnetic field sensor, thermometer,

accelerometer, a microphone, and photoresistor. In addition, it included a "sounder"

that produced a high-pitch squeal.

17

Figure 2-2: Two Motes with distance sensors attached.

2.2.2 Adding a Distance Sensor

Because the Mote did not come with a distance sensor, the first task was to find one to

add. One popular compact distance sensor was Sharp's infrared sensor (GP2YOA02YK)

It had a range of twenty centimeters to 150 centimeters (or eight inches to six feet)

and observed the world every forty milliseconds, or at twenty-five hertz. The key

feature was its size as it needed to sit on top of a Mote.

The next step was to add it to the Mote. Luckily, most of the sensor boards did

not have an accelerometer, so that ADC pin was free on the board. A connection

was soldered between the ADC6 pin and the sensor's output pin, along with the

necessary connections between the power and ground on both (Figure 2-5). Using

an oscilloscope verified that all three connections were correct, though two capacitors

were placed between the power and ground pins on the sensor for regulation. For

convenience, the infrared sensor was attached to the top of the Mote with hot glue

(Figure 2-2).

18

includes BrianMsg;

provides interface ProcessCmd;

}
implementation {

components Main, SnetstreamM, LedsC, Accel as IR;

components TimerC, ClockC;

components GenericComm as Comm;

Main.StdControl -> SnetstreamM;

SnetstreamM.Leds -> LedsC;

ProcessCmd = SnetstreamM.ProcessCmd;
SnetstreamM.CommControl -> Comm;

SnetstreamM.ReceiveMsg -> Comm.ReceiveMsg[AMBRIANRECEIVEMSG];

SnetstreamM.SendMsg -> Comm.SendMsg[AMBRIANSENDMSG];

SnetstreamM.Timer- sample -> TimerC.Timer[unique("Timer")];
SnetstreamM.Timersend -> TimerC.Timer[unique("Timer")];
SnetstreamM.TimerControl -> TimerC;

SnetstreamM.ADC -> IR.AccelX;

SnetstreamM.SensorControl -> IR;

SnetstreamM.Clock -> ClockC;

}

Figure 2-3: The configuration module for the distance sensor in TinyOS.

2.2.3 Programming in TinyOS

Researchers at U.C. Berkeley wrote a tiny operating system for Motes: TinyOS [4].

Implemented in NesC, a variant of C, it required only 176 bytes of memory, making

it an ideal operating system for small sensors.

For this research project, the initial programming was straight-forward. The dis-

tance sensor needed a software module to interpret its signals and relay them to the

networking module. There were a number of modules already designed for perform-

ing the same function for the other sensors, so the module for the distance sensor

was modeled after those. To convey the simplicity of programming for TinyOS, the

distance sensor's configuration module has been included (Figure 2-3), and the im-

plementation of this module is in Appendix A.

The packets sent out by the networking component each contained three obser-

19

Figure 2-4: Five Motes, one base station board, and one detached distance sensor.

vations, with one byte for each distance sensor's reading and two bytes for each time

stamp. The two-byte time stamp allowed the continuous stream of data to last for

ten minutes at a clock rate of one hundred hertz, without help.

There were two caveats to consider with the time stamp. First, the network

needed to operate continuously for days, not minutes. Because the timer ran out of

space every ten minutes, the base station was programmed to broadcast a heartbeat

that zeroed out the timers on all the Motes. Second, this broadcast had the added

benefit of minimizing timer drift. Individual timers began to vary after a significant

amount of time. These inaccuracies led to errors in the observations and eventually

in the calculated trajectory. Repeatedly resetting them to a global value ensured the

short-term drift was small and the long-term drift was zero.

2.2.4 Discussion

The Mote network was a success in a few ways. It was able to record twenty-five

observations per second. In addition, while the data required a small amount of post

processing, it was simple, though not necessarily accurate. Most of all, Motes had

very small footprints.

However, there were more drawbacks to this network. Foremost, the sensor were

20

and anatog 1
VDD ANALOG 2
INT3 3
INT2 4'
INT1 5
INTO 6
DC BOOST SHUTDO W
LED3 8
LED2 9
LEDI 10
RD 11~
WR 12
ALE 13
PW7 14
FLASH CLK 15
PROG MOSI SPI 16
PROG MISO SPI 17
SCK SPI 18
FLASH SO 19
FLASH SI 20
12C BUS I CLK 21
12C BUS 1 DATA 22
P V0 23
PVVMIA 24
AC+ 25
AC- 26

Connector (Top)

27 UART RXDQPirl S Pin 27 28 UART TXD0
Pin02" Pin 28 29 PWO
Pin 3 Pin 29 50 PW1
Pin 4 Pin 30 31 PW2
Pin 5 Pin 31 32 PW3
Pin 6 Pin 32 33 PW4
Pin 7 Pin 33 34 Mir
Pin 8 Pin 34 35 PW6
Pin 9 Pin 353 A C7
Pin 10 Pin 36
Pin 11 Pin 37 38 AQO5
Pin 12 Pin 38 39 ADC4Pin 13 Pin 39 40 ADC3
Pin 14 Pin 40 41 ADC2
Pin 15 Pin 41 42 ADC1
Pin 16 Pin 42 43 ADC'0 66u
Pin 17 Pin 43 44 Little Guy ResetPin 18 Pin 44 45 Little Giv SPI ClockPin 19 Pin 45 46 Little Guy MISO
Pin 20 Pin 46 47 Lttle Guy MOSIPin 21 Pin 47 48 RESET
Pin 22 Pin 48 49 P 18I
Pin 23 Pin 49 5
Pin 24 Pin 50 51Pin 25 Pin 51
Pin 26

Figure 2-5: A circuit diagram for a Mote sensor board connector. The distance sensor was
connected to the circled pins.

inconsistent. The data from the sensor was noisy (Figure 2-6), and post processing

didn't necessarily result in an accurate reading. The broadcast range was relatively

limited, thirty feet for line-of-sight and twenty feet if obscured. Finally, Motes did

not provide much feedback for debugging. Each had three LEDs on-board to convey

information on a small number of aspects of its operation, but they did not allow for

very much information on the status of the Mote.

2.2.5 Future Work

The Mote network failed to meet the requirements of the project primarily because

of the distance sensor's inaccuracy. The sensor generated very noisy data that was

difficult to tease apart into measurements that were consistently accurate to within

five feet. While the sensor could simply be used as a proximity detector, relaxing those

requirements in the project's tracking algorithm would have increased its complexity

and limited the accuracy in the resulting trajectories. Finding a better, albeit more

expensive, sensor or increasing the accuracy of the current one would enable serious

work with a Mote network in the future. We designed the second-generation network

21

I

380

378

376

374

372

3701

368 14 .5 .5 1..5 1.58 1-+9....

1.61 1.62
X 106

Figure 2-6: The distance sensor produced noisy data. This is a typical snapshot of one
hundred seconds. The middle line represents the "true" value, four feet in this case.

using nodes with more powerful sensors.

2.3 iPaq Network

The iPaq network provided a higher level of abstraction for data collection. An iPaq

(Figure 2-7) was a small handheld computer with an StrongARM processor sold by

Compaq. The iPaq could be docked with an external module, a Backpaq (Figure 2-8),

equipped with a 802.11b wireless network card and a tiny digital camera. Ten iPaqs

and accompanying Backpaqs were supplied to the project through MIT's Project

Oxygen, with ARM Linux 2.4.18-rmk3 installed. Unfortunately, the camera was

limited to four frames a second, producing very few observations of a passerby.

Like the Mote network, the goal of the iPaq network was to collect experimental

data on people walking past each sensor. The observations and timestamps were fed

into the trajectory-tracking algorithm, and a likely trajectory was produced.

22

..-.... ---

Figure 2-7: Compaq iPaq. Figure 2-8: iPaq with Backpaq attached.

2.3.1 Setup

There were two main aspects of the iPaq to manage: physical placement and internal

operation. The research project required multiple physical setups for the iPaq net-

work, as there were multiple types of data desired, both horizontal (Figure 2-9) and

vertical (Figure 2-10). Mounts were used used to secure the iPaqs to locations.

One prevalent issue was power. iPaqs are designed to run three hours by battery,

so an alternate power source was necessary. The most practical solution was to run

power cables to each of them.

In the vertical setup, the floor needed to represent ground truth. This constraint

allowed the algorithm to determine a local coordinate system in only two dimensions,

instead of three. However, it meant the iPaqs had to be facing directly downwards.

In the horizontal case, the iPaq's camera was used to obtain a distance measure-

ment for the person being tracked. To determine that distance, it was straight-forward

to use what was already known: the pixel width of the image (I), the focal length

of the camera (F), and the actual width of the camera's field of view (FOV). With

23

Figure 2-9: iPaq network viewing traffic horizontally.

Figure 2-10: iPaq network viewing traffic vertically.

24

these, a simple ratio could be constructed, = FOV, where x was the actual dis-

tance to the person. However, for this equation to work, the focal length was needed.

Calculating that was very simple; fixing a person at a known distance produced the

answer. Repeated several times, an approximate focal length was found.

Time stamps were a critical part of the observation data. The original algorithm

did not incorporate them because the data had always been simulated. With the

transition to experimental data, the C program collecting the data on the iPaq was

updated so that time stamps accompanied to each observation.

The most useful part of the iPaq network, aside from the cameras, was the wireless

cards accompanying each iPaq. They enabled a Secure Shell (SSH) connection to each

of them, allowing the iPaqs to be configured remotely and in bulk.

The last issue was time synchronization. As with the Mote network, the time

stamps of separate nodes of the network needed to be as close as possible so that

they accurately represented the observed trajectory. A small script was created to

aid in this task. It was copied onto each iPaq and used the Network Time Protocol

(NTP) to synchronize its time with a global time. Because time drift is relatively

small, running this script on each iPaq before every experiment kept the times as

synchronized as needed.

2.3.2 Discussion

Using the iPaq provided a couple nice features. They each had an Internet Protocol

(IP) address and allowed users to remotely connect with them through SSH. They

also provided low-resolution images, allowing the program to accurately estimate the

distance or relative location of the object.

On the other hand, because the data were images, they required extra processing

to extract the location information. The iPaqs were power hungry, running out of

battery power in 3 hours unless plugged in.

25

2.4 Comparison of Networks

The iPaq network proved to be the more useful one in terms of ease-of-use, distance

accuracy, and deployment scale. Though the Motes footprints were smaller and the

data was more concise, they were more difficult to interact with. Only the data from

the iPaq network was used to determine human trajectories.

2.5 Results

The iPaq network was used for data collection to test the trajectory tracking model.

As mentioned previously, there were two configurations of the network: horizontal

and vertical. Each was used for observing a person's trajectory in an open space.

To generate a likely trajectory, the original tracking algorithm used two terms

in its cost function. The first term, D, took the smoothness of the trajectory into

account and penalized any jagged segments or sharp turns, as people typically walk

in a smooth curve,

T

D(x) =3 fxi - Axi-ili, (2.1)
i=1

and second term in the cost function was S and focused on keeping the trajectory

accurate in terms of the observations,

S(x) - > |CX, - yi (2.2)
iGO

which combine to form the overall cost function S(x) + D(x).

The original model detailed in those did not account for walls.' That work was

done later (§3).

'These results were part of joint work with Ali Rahimi. The figures were published previously.

26

4

3 2

Figure 2-11: A result with data collected from the iPaq network with horizontal cameras.

The thin line is the actual trajectory, and the thick line is the perceived one. The grey cones

are the fields of view. The black bars are the walls. Notice that the generated trajectory

goes directly through three walls.

2.5.1 Measuring Bearing

The first demonstration of the model with experimental data from the network was

tracking people using the iPaqs as horizontal bearing sensors (Figure 2-11). The

camera was placed horizontally (Figure 2-9), and a person walking by had their

bearing and distance calculated. The sensor's exact locations were measured manually

so that those parameters were known before calculation. The camera's snapshot was

analyzed, as described in Section 2.3.1 to determine the bearing and distance. Using

these observations, the trajectory model generated a likely trajectory. The results

were accurate, except when walls were incorporated into the layout.

2.5.2 Measuring Location

The second demonstration was simultaneous tracking and calibration with the iPaq

network as vertical location sensors (Figure 2-12) [12]. The iPaqs were mounted to

the ceiling (Figure 2-10) and, using a snapshot from its camera, computed a person's

27

600 V

400

-400 -

I Iq
-600 -400 -200 0 200 400 600 800

Figure 2-12: A result with data collected from the iPaq network with vertical cameras.
The dotted line is the recovered trajectory. The grey boxes are the recovered locations and
orientations of the sensors, and the dotted boxes are the actual locations and orientations
of the sensors.

relative location within the field of view. Using only this relative location, without

knowing any information about each iPaq's location in the network, the model infers

both the trajectory of a person and the relative location of the iPaq with each other.

28

Chapter 3

Wall Constraints

The trajectory tracking algorithm devised for the research project took data points,

from either Matlab or the iPaq network, and produced a likely trajectory closely

mimicking the real one. Originally, the only other constraint was the smoothness of

the trajectory, included because people generally walk smoothly in arcs. The most

important constraint missing from this model was walls. The presence of a wall was

entirely ignored (Figure 2-11), so while the real trajectory wrapped around a wall,

the calculated trajectory continued through it. This constraint severely limited the

types of network configurations that would yield accurate experimental results.

Allowing walls opens the door to a large number of two-dimensional layouts. The

iPaqs could be arbitrarily placed, and a person could walk smoothly anywhere; the

algorithm would automatically wrap around any obstacles it encountered. It was

assumed that the locations of the walls were already know.

The focus of the research was to represent the walls mathematically. Although

Matlab performed all the calculations, the goal was a mathematical expression for

the walls, in some form.

3.1 Mathematical Programming Overview

Since the main algorithm was implemented as a mathematical program [8], a brief

overview of it would be useful. There are two high-level aspects to a mathematical

29

program: a set of linear constraints and an objective function. The linear constraints

dictate what forms a solution can take. The objective function evaluates a solution,

in effect ranking it against other potential solutions and allowing the overall program

to find the best solution, either locally or globally.

Originally, the goal was to represent a set of walls as a set of linear constraints.

However, because a wall represented a non-convex space, we could not translate it

into a linear constraint (§3.2). Instead, the walls were incorporated into the objective

function, by heavily penalizing any solution that overlapped with any walls (§3.3).

There are no linear constraints in the final program.

3.2 Linear Constraints

For the project, walls cannot be reduced to a set of linear inequalities. The set of

linear inequalities must form a convex space within the trajectory model, and walls

do not satisfy that. Intuitively, the simplest way to represent a wall is as a very thin

box using four inequalities. However, as T. Schouwenaars et al. [7] found, these need

to include boolean logic to function correctly. Either the point is above the box or

the point is below the box. As boolean logic is necessary, the space is non-convex and

optimization becomes much more complex.

3.3 Objective Function

Because we could not represent walls as linear constraints, we had two options: rep-

resent walls as nonlinear constraints that we then linearize, or incorporate walls into

the cost function. We chose to pursue the latter first because we had a clearer idea

of how to go about it. To incorporate walls in the the cost function, we had to define

a function G that could be added to the existing cost function. There were several

constraints that our additional term had to satisfy, as seen in Figure 3-1.

These constraints were constructed to test the various domains of the function,

to weed out false positives and false negatives. The penalty should be negligible for

30

(a) Valid path. (b) Valid path. (c) Invalid path.

Figure 3-1: The three subdomains of the constraint problem.

points on the same side of a wall but large if the points cross a wall. Figure 3-1(a)

represents a typical path that does not cross the wall. Figure 3-1(b) is a corner case

that should not be penalized. Finally, Figure 3-1(c) is an invalid path that should be

heavily penalized.

There were several mathematical tools that proved useful to achieve this precision

in the penalty. In essence, the problem broke down into two parts: the polarity of

the two points and the magnitude of the penalty. The polarity equation (3.2) and

the magnitude equation (3.1) could be found using the dot products.

3.3.1 Dot Products

The dot product is defined as the magnitude of a vector A multiplied by the magnitude

of a vector B multiplied by the cosine of the angle between them. We took advantage

of this calculation because it allowed us to compute a binary indicator for whether

two points in the trajectory were on the same side of a wall or were on opposite sides.

This result came from the cosine calculation.

If two points were on the same side, they would produce a dot product of the same

sign, so when multiplied together, the result would always be positive. Conversely,

the result would always be negative if they were on opposite sides of the wall. This

mathematical tool allowed us to coarsely determine whether a solution was good.

31

3.3.2 The penalty

The wall will be represented by its two endpoints, x1 and x 2. The trajectory p will

be the set of points pt where

pt Ut Ut , XI=2 -~ X2-

Let xm be the midpoint of the wall,

Next, K is the magnitude rating for the trajectory,

K =I 1m 1 . (3.1)
2 min(Jlpt-x.m|, |pt+1-xrm||)

and H is the polarity of the trajectory, or whether or not it crosses the wall

segment,

-1 1H =- + -. (3.2)
1 pa((Pt-1)-() (Pt+1-X1).(.) 2(+ exp T Y

Finally, G was concatenation of the previous expressions, using exponentials to

compound small changes,

G = exp (- exp (K) (H)) , or

G = exp - exp (K) __+
1 (3 3)

1+ expea (P -) -(I) ((Pt+ -X1).(lI 2)

lipt- il IIPt+I-il|

(3.3) correctly weighted the polarity and the magnitude to penalize only the paths

that crossed the wall. Used in combination with the wall's midpoint, an appropriate

penalty could be calculated, given well-chosen constants. Added to the existing cost

function, it penalized only pairs of points that straddle the wall line segment. One

32

nice property of this equation was the modularity of it. Given a better method for

calculating the polarity or the magnitude, the new expression could be dropped into

the full equation instantly.

3.4 Implementation

Since the main algorithm for trajectory tracking was implemented in Matlab, this

addition to the cost function was implemented there as well. The resulting cost

function was S(x) + D(x) + G(x) using (2.2) and (2.1).

The implementation went through two versions. Originally, differentiability of

G was a requirement. Gradients seemed necessary at the time, and although that

requirement was relaxed for the revision, it should be required for efficiency reasons

(§3.7).

3.4.1 First Version

The first version calculated the magnitude K differently. Instead of using minO, (3.1)

was structured as follows,

1 [1| |
K = 4 1. (3.4)

2 _{||pt- x.||+ ||pt+ - x.||

This structure caused the optimization algorithm to favor pushing only one point

away from the wall, leaving the other very close, because it still decreased the fraction.

3.4.2 Second Version

Instead of averaging, using min() in (3.1) greatly improved the precision of the overall

function. Because there was no gradient, the algorithm used Matlab's Optimization

Toolbox, specifically the Matlab function fninsearch.

The flow of the program was in two parts. First, the original algorithm from

[13, 12] produced a smooth trajectory that matched the observations. Second, the

33

revised algorithm used this trajectory as its initial state and then attempted to push

the trajectory away from walls. (See the Matlab code in Appendix B.)

3.5 Results

A number of results were generated with the revised, wall-observant, trajectory-

tracking algorithm from simulated data. In each set of figures, there is a trajectory

from an unmodified version of the algorithm, where the goal is only smoothness and

accuracy, and there are one or more results from the modified version, with walls ac-

counted for. The walls are represented as line segments; observations are represented

by circles; and, trajectories are represented by a series of line segments, with points

to mark the distance traveled in a time step. Throughout, several constants in the

algorithm were varied to achieve the displayed results.

The first set of results (Figure 3-2) reflected the simplest possible scenario for

overlap, where a short trajectory crossed one wall once. The final snapshot (Figure

3-2(b)) lacks complete smoothness, but it achieves its objective. The second set of

results (Figure 3-3) is slightly more complex, with four observations. Again, the

trajectory avoids the wall with negligible impact on smoothness. The third set of

results (Figure 3-4) adds a second and third wall to the scenario. The fourth set of

results (Figure 3-5) adds a another wall. The final set of results (Figure 3-6), with

four walls, shows the limitation in the revised algorithm's ability to scale. If there are

too many points it needs to relocate simultaneously, it has trouble deciding which to

move and how far.

3.6 Discussion

The fundamental drawback is the speed of the revised algorithm. It takes on the

order of days to compute a valid trajectory through a realistic maze of walls, such

as that found in a typical office layout. The algorithm also suffers from a scaling

problem. Increasing the number of walls included in the environment complicates

34

the task for the minimization tool. These bottlenecks restrict the project's usefulness

and limit it to research. Finally, there is a heavy reliance on constants to ensure a

valid trajectory. There were no obvious choices for the individual numbers that would

produce the best result for every scenario.

However, the efficiency problem is separate from the theoretical underpinnings

described above. Decoupling the polarity and the magnitude enable the mathematics

to be worked out in isolation.

3.7 Future Work

Again, the central failure of the wall-constrained algorithm was its speed. There are

a couple avenues to pursue to fix this problem. Because (3.3) used an exponential

to exaggerate any problem, the number exploded, increasing computation and com-

plicating the work for the Matlab's minimization function. Instead, a polynomial

equation or logarithm could be used to penalize incorrect trajectories but without

the heavy computations from the multiple exponentials. Furthermore, using min()

in (3.1) prevented any derivatives, so creating a differentiable expression would allow

gradients and undoubtedly help the minimization algorithm.

35

3

2i'

-2

-4. ...
0.5 1.5 2 Z5 3 3.5

(a) The trajectory without wall constraints.

3.

01

0

-2-

-3,

0

-4
0.5 1.5 2 2.5 3 3.5

(b) The trajectory with wall constraints.

Figure 3-2: A scenario with one wall and two observations.

36

-0,

0"

I

16,

14

12

10

8

6

4

2 3 4 5 6 7 8 9 10 11

(a) The trajectory without wall constraints.

18

16

14 i

12

10

8

10'

0
0.

47

2.... 3 4.....
2 3 4 5 6 7 8 9 10 11

(b) The trajectory with wall constraints.

Figure 3-3: A scenario with one wall and four observations.

37

T 0-

0

II
T - ------T --------------

-0

30

25

20

15

10

5

0
0 5 10 15 20 25 30

(a) The trajectory without wall constraints.

- - - - --........... -- - - - - - r - - - - --........... --.... r --........... - -.......... -......-- r- ----..... --
30

25F

20

151

10

5

0 10 15 20 25 30

(b) The trajectory with wall constraints.

Figure 3-4: A scenario with two walls and three observations.

38

0 0
/

0

- -- - - -r - - - - - - r - - -- --................r - - --........

0

'V-,,

0 5 10 15 20 25

(a) The trajectory without

- - --.. ...I...- - - - - - - -......- - -.. -...... .

wall

F--1

0

0

5 10 15 20 25

30 35 40

constraints.

-r ---- r -

30 35 40

(b)

Figure 3-5:

The trajectory with wall constraints.

A scenario with three walls and four observations.

39

30

25

20-

15

10l

- - -.-- - -.-- - -. - -.-. r --0- -.- ------ - ----- r- -

0

S

30

25'

20 F

151

10

5

0

30,

25

20

15

10

5

0 L

0 5 10 15 20 25 30 35 40 45 50

(a) The trajectory without wall constraints.

40

35

301

25 0 0

20

15i

I0 0.
0... '

0 - -.. - -..

0 5 10 15 20 25 30 35 40 45 50

(b) The trajectory with wall constraints.

Figure 3-6: A scenario with five walls and five observations.

40

0

V

----------------- -

0

,j

Chapter 4

Conclusion

Many organizations have a vested interest in tracking the movements of people

through a physical space. However, they dont want a sensor network that requires

overlapping fields of view. They prefer not to invade peoples space, and the cost of

the minimum number of sensors to canvas a large office is prohibitive. These orga-

nizations would benefit from a network designed without this requirement in mind,

one that could be expanded incrementally for increasingly accurate results.

Furthermore, they would find it much more helpful if the network would calibrate

itself based solely on the trajectories it sees and accounted for walls when given the

floor layout. It is a low-cost, scalable solution to the tracking problem.

This project demonstrated the practicality of setting up such a network (§2.3)

and using it (§2.5). Furthermore, it showed the feasibility of avoiding walls when

computing a person's trajectory (@3). This research was a first step towards moving

research out of academic labs and applying it to real-world situations.

41

42

Appendix A

TinyOS Distance Module

includes BrianMsg;
module Snet-streamM {
provides {

interface StdControl;
interface ProcessCmd;

}
uses {

interface Leds;

interface ReceiveMsg as ReceiveMsg;
interface StdControl as CommControl;
interface SendMsg as SendMsg;
interface Timer as Timer-sample;
interface Timer as Timersend;
interface StdControl as SensorControl;
interface StdControl as TimerControl;
interface ADC;

interface Clock;

}
}

/*
* Module Implementation

implementation

{

enum {
NUMSAMPLES = 3,
INTERVAL = 20,
ADC-HIGHTHRESH = 380,
ADCLOWTHRESH = 280

};
// module scoped variables
TOSMsg dmsg;

TOSMsgPtr dmsgptr;
uint16_t timestamp[2];
uint16_t data-timestamp[NUMSAMPLES*2];
uint16_t total-samples;

uint16_t data-sample[NUMSAMPLES];

TOSMsgPtr msg;

int8_t pending;

TOSMsg buf;

command resultt ProcessCmd.startSampling() {
timestamp[0] = 0;
timestamp[1] = 0;

43

total-samples = 0;
call Timer-sample.start(TIMERREPEAT, INTERVA');

call Clock.setRate(32, 1); //100 ticks/second
return SUCCESS;

}

//sends sampled ADC data with timestamps over radio
task void sendDataPacket() {

struct BrianMsg * time = (struct BrianMsg *) dmsg.data;

//fill packet with ADC data and time stamps
time->sourceMoteID = OxO1;

time->channel = 3;
time->data[0]
time->data[1]
time->data[2]
time->data[3]
time->data[4]
time->data[5]
time->data[6]
time->data[7]
time->data[8]
time->data[9]

= total-samples;
= data-timestamp [0];
= datatimestamp[4];
= data-sample[0];
= data-timestamp[1];
= data-timestamp[5];
= datasample[1];
= datatimestamp[2];
= datatimestamp[6];
= data-sample[2];

//attempt to send packet over radio
if (call SendMsg.send(TOSBCASTADDR,

&dmsg))
call Leds.yellowToggle(;

else {
call Leds.redToggleo;

}

sizeof(struct BrianMsg),

//collects data from ADC and stores in a buffer with timestamps
event result-t ADC.dataReady(uint16_t adc-data) {
dbg(DBGCLOCK, "adc got data\n");

//only save valid data points

if (adc-data >= 280 & adcdata <= 380) {
//store sampled data and timestamps
datasample[total-samplesY.NUMSAMPLES] = adc_data;
datatimestamp[total-samplesNUMSAMPLES] = timestamp[0];
data-timestamp [total-samples7.NUMSAMPLES+NUMSAMPLES] = timestamp[1];
totalsamples++;

//send packet (NUMSAMPLES readings)

if (total-samplesXNUMSAMPLES == 0)
post sendDataPacketo;

}

//turns on green LED for data higher than
if (adc-data >= ADCLOWTHRESH & adcdata
call Leds.greenOn(;

else

call Leds.greenOff();

return SUCCESS;

512
<= ADCHIGHTHRESH)

//updates the timestamp bytes and requests data from ADC
I/(called for every timer fire)

command result-t ProcessCmd.updateTimeStamp() {
//update two-byte timestamp

timestamp [0] ++;

if (timestamp[O] == 0) {
timestamp[1]++;

}

//request ADC data

if (timestamp[0]X20)

44

}

}

call ADC.getDatao;

return SUCCESS;

}

//sampling timer

event resultt Timersample.fired() {
dbg(DBGCLOCK,"timer-sample fired\n");

call ProcessCmd.updateTimeStamp(;

return SUCCESS;

}

//radio timer (unused)
event result-t Timer-send.fired() {

return SUCCESS;

}

event result-t Clock.fire() {
return SUCCESS;

}

command result-t StdControl.init() {
total-samples = 0;

timestamp[0] = 0;
timestamp[l] = 0;
call SensorControl.init(;

call CommControl.init(;

return SUCCESS;

}

//turns sampling timer on at 5ms sampling rate
command result t StdControl.start(){

call SensorControl.starto;

call CommControl.starto;

return SUCCESS;

}

command result-t StdControl.stopo{
call Timer-sample.stopo;
call Timer-send.stopo;
call SensorControl.stopo;

call CommControl.stopo;

return SUCCESS;

}

task void cmdInterpret() {
call Leds.redToggleo;

}

* Posts the cmdInterpret() task to handle the recieved command.
* @return Always returns <code>SUCCESS</code>

command result-t ProcessCmd.execute(TOSMsgPtr pmsg) {
return SUCCESS;

}

* Called upon message reception and invokes the ProcessCmd.execute()
* command.

* @return Returns a pointer to a TOSMsg buffer

event TOS-MsgPtr ReceiveMsg. receive (TOSMsgPtr pmsg){
call ProcessCmd.startSamplingo;

return pmsg;

I

45

* Signalled when the previous packet has been sent.
* @return Always returns SUCCESS.

event result-t SendMsg.sendDone(TOS-MsgPtr sent, result-t success) {
return SUCCESS;

}
} // end of implementation

46

Appendix B

Matlab Code

function [G] = G(pl,p2,xl,x2)
% p1 and p2 are 4D points on a trajectory [x,y,x',y']
% x1 and x2 are 2D points for the beginning and end of a wall [x,y]
% This function will return G

% modify p's so they are just 2D for math with x's
pl_2D = [pl(1) p1(2)];
p2_2D = [p2(1) p2(2)];

a = 100;

x = x1 - x2;

x_mag = norm(x);
n = 1/x-mag*[x(2) -x(1)];
R = norm(p12D - x1);

S = norm(p2_2D - x1);

I = dot(p1_2D - xl,n)/R;

J = dot(p2_2D - xl,n)/S;

xmid = [.5*(xl(1) + x2(1)) .5*(xl(2) + x2(2))];
ave = min(norm(p1_2D - xnmid),norm(p2_2D - xmid));
K = 1.7*(.5*x-mag/ave);

H = -1/(1 + exp(a*I*J)) + .5;
G = exp(-exp(K)*H);

47

48

Bibliography

[1] Q. Cai and J.K. Aggarwal. Tracking human motion in structured environments

using a distributed-camera system. In IEEE Transactions on Pattern Analysis

and Machine Intelligence, 1999.

[2] Crossbow Technology. http://www.xbow.com/.

[3] David E. Culler and Hans Mulder. Smart sensors to network the world. Scientific

American, 2004.

[4] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and

Kristofer S. J. Pister. System architecture directions for networked sensors. In

Architectural Support for Programming Languages and Operating Systems, 2000.

[5] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Emerging challenges: Mobile

networking for smart dust. In Journal of Communications and Networks, 2000.

[6] S. Khan and M. Shah. Consistent labeling of tracked objects in multiple cameras

with overlapping fields of view. In IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2003.

[7] I. Martinos, T. Schouwenaars, J. De Mot, and E. Feron. Hierarchical coopera-

tive multi-agent navigation using mathematical programming. In Proc. Allerton

Conference on Communication, Control and Computing, 2003.

[8] Mathematical Programming. http://www.mathprog.org/.

49

[9] A. Mittal and L. S. Davis. M2tracker: A multi-view approach to segmenting and

tracking people in a cluttered scene using region-based stereo. In Proc. European

Conference on Computer Vision, 2002.

[10] H. Pasula, S. J. Russell, M. Ostland, , and Y. Ritov. Tracking many objects with

many sensors. In Proc. IJCAI, 1999.

[11] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The cricket

location-support system. In Proc. 6th A CM MOBICOM, 2000.

[12] A. Rahimi, B. Dunagan, and T. Darrell. Simultaneous calibration and tracking

with a network of non-overlapping sensors. In Proc. Conference on Computer

Vision and Pattern Recognition, 2004.

[13] A. Rahimi, B. Dunagan, and T. Darrell. Tracking people with a sparse network

of bearing sensors. In Proc. European Conference on Computer Vision, 2004.

[14] University of California at Berkeley Motes. http://webs.cs.berkeley.edu/.

[15] Kamin Whitehouse. The design of calamari: an ad-hoc localization system for

sensor networks. Master's thesis, University of California at Berkeley, 2002.

50

