
Spatial Software Pipelining on Distributed

Architectures for Sparse Matrix Codes

by

Michelle Duvall

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and

Master of Engineering in Electrical Engineering and Computer Science
MASSACHUSETTS INSTrMLMEa

at the OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUL 2 0 2004

June 2004 LIBRARIES

© Massachusetts Institute of Technology 2004. All rights reserved.

A uthor

Department of Electrical Engineering and Computer Science

A

Certified by....'

)

, May 20, 2004

...........
Anant Agarwal

Professor

x-Thesis Supervisor

Accepted by......
Arthur C. Smith

Chairman, Department Committee on Graduate Students

BARKER

,\A

2

s - , - .. . in- -er.-. - 1.1. .11 1..stweell.wipi:im.

Spatial Software Pipelining on Distributed Architectures for

Sparse Matrix Codes

by

Michelle Duvall

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2004, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Electrical Engineering and Computer Science

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Wire delays and communication time are forcing processors to become decentralized
modules communicating through a fast, scalable interconnect. For scalability, every
portion of the processor must be decentralized, including the memory system. Com-
pilers that can take a sequential program as input and parallelize it (including the
memory) across the new processors are necessary. Much research has gone towards
the ensuing problem of optimal data layout in memory and instruction placement,
but the problem is so large that some aspects have yet to be addressed.

This thesis presents spatial software pipelining, a new mechanism for doing data
layout and instruction placement for loops. Spatial software pipelining places instruc-
tions and memory to avoid communication cycles, decreases the dependencies of tiles
on each other, allows the bodies of loops to be pipelined across tiles, allows branch
conditions to be pipelined along with data, and reduces the execution time of loops
across multiple iterations. This thesis additionally presents the algorithms used to
effect spatial software pipelining. Results show that spatial software pipelining per-
forms 2.14x better than traditional assignment and scheduling techniques for a sparse
matrix benchmark, and that spatial software pipelining can improve the execution
time of certain loops by over a factor of three.

Thesis Supervisor: Anant Agarwal
Title: Professor

Acknowledgments

I would like to thank several people who have been key in helping me to complete

this thesis and in supporting me throughout my work. First, I would like to thank

my advisor, Anant Agarwal. His support and direction have not only made this

thesis possible, they have made my work here enjoyable. Second, I would like to

thank Walter Lee. He has always been willing to implement additions to RawCC or

read my papers on the slightest notice, and his help in developing this system has

been invaluable. Third, I would like to thank my fiance, Chris Leger. He has been

a bastion of support for me, always encouraging me and ever ready to listen to my

plans of action, to evaluate new ideas with me, and to walk through crazy examples

to help me figure out where my code is wrong. I have learned heaps about C++

and memory thanks to his help and debugging skills. Finally, I would like to thank

my parents, Mary and Dan Duvall, and my siblings for their constant support and

understanding. They have always been ready with encouragement when I needed it,

and have accepted and understood all the times I have told them "I just don't have

time - maybe later". Also, I would like to thank Walter and Chris for their help in

editing this thesis.

6

.:r -m :, n.. s....r..re...e.se . :...--r -,e -n. -. - - - -

Contents

1 Introduction

2 Background

2.1 Sparse Matrix Applications .. .

2.2 Software Pipelining

2.3 Raw Architecture

2.4 RawCC

2.5 Maps and the Space-Time Scheduler

2.6 Asynchronous Global Branching .

3 Spatial Software Pipelining

3.1 M otivation .

3.2 Example Motivating Tree-shaped Communication

3.3 The Basic Idea .

4 Algorithms

4.1 Input Information

4.2 Create Map

4.3 Merge

4.4 Tile Assignment

4.5 Branch Propagation Path

4.6 Reconciliation

7

15

21

21

22

23

23

24

25

27

27

30

32

35

36

37

40

48

52

54

5 Module Interface Specifications

5.1 Interaction with RawCC . . .

5.2 The Memory Map

5.3 Objects Files

5.4 Schedule Files

5.5 The Basic Block Map.....

6 Results and Analysis

6.1 Implementation Assumptions

6.2 Performance

6.3 Unstructured Results

6.4 Applicability

6.5 Compatible Optimizations and Effects

7 Future Work

7.1 Handling Communication Cycles

7.2 Loop Unrolling and Software Pipelining

7.3 Integrating with RawCC

7.4 Using Profiling Information

7.5 Using Influence Across Basic Blocks

7.6 Improving the Tile Assignment and Virtual Tile Merge

7.7 Determining and Increasing Applicability

Algorithms

8 Related Work

8.1 Bottom-Up-Greedy

8.2 Partial Component Clustering .

8.3 Convergent Scheduling .

9 Conclusion

8

67

. 6 7

. 6 9

. 7 0

. 7 3

. 7 5

79

79

81

82

83

84

87

87

88

89

90

91

92

92

95

96

96

97

99

List of Figures

4-1 The final tile assignment of the canonical case described in Chapter 1.

Rectangles represent physical tiles on Raw and surround the instruc-

tions assigned to execute on the tiles; the switch for each tile is repre-

sented by the dotted oval labelled comm. Ovals represent instructions;

directed solid arrows between ovals represent data-bearing dependen-

cies. Each dependency is drawn in the color of its source instruction's

tile; inter-tile dependencies are represented by a chain of arrows con-

necting the instructions through the comm switches along the route.

The root tile is shown in black, as are all branch dependencies. If a

node is memory mapped, the text of the node is in the color corre-

sponding to the memory id. The dashed ovals share a common defId. 56

4-2 The intermediate stages of the virtual dependency graph when per-

forming spatial software pipelining on the canonical case described in

Chapter 1. Figure (a) shows the virtual dependency graph immedi-

ately after creation; figure (b) shows the result of merging virtual tiles

with dependencies to the root tile into the root tile; figure (c) shows

the result of removing cycles. The figure specifications are the same as

in Figure 4-1, which shows the final layout found by spatial software

pipelining. 57

9

4-3 Three examples demonstrating EST, path, and cost of virtual tiles, and

color and palette of virtual dependencies. Figure (a) demonstrates how

the palette is constructed for each virtual edge, figure (b) demonstrates

how EST and path are calculated for each virtual tile, and figure (c)

demonstrates the effects of dependency cycles on palettes. Note that

the EST and path variables in (c) are in parentheses; these are not the

EST and path used by the current module, but are possibilities for a

more correct implementation. All other EST and path variables are

shown as calculated in the current module. Recall that when consider-

ing the merge of two virtual tiles, the merge creates a new dependency

cycle when the palette of some incoming dependency to one of the tiles

is a strict superset of the palette of some outgoing dependency from

the other tile. 58

4-4 An example demonstrating how the cost function is calculated in sim-

ulated annealing in the tile assignment phase. Each square represents

a physical tile, each oval a virtual tile, and each arrow a virtual de-

pendency. The dotted arrows all represent the same data word being

sent to different destinations. The window size is assumed to be 2,

and the number next to each edge on each link represents the amount

added to the cost due to that edge on that link. The numbers within

or just next to cycles represent the additional cost added because of

the cycles. The total cost of this layout is 236. 59

4-5 C-like pseudocode exhibiting how to create the virtual dependency graph. 60

4-6 C-like pseudocode for loop to enforce memory id and defId mapping

consistency across basic blocks. 61

4-7 C-like pseudocode for the function used to merge virtual tiles. This

function is called after dependency cycles have been merged away (if

such merges were possible). 62

10

4-8 C-like pseudocode for the cost function for simulated annealing. The

function calcLayoutEntropy walks through each dependency and adds

the appropriate cost due to that dependency; additionally, it calls two

helper function to add in the cost due to conflicting data flow and too

m uch data flow. 63

4-9 Additional C-like pseudocode for the cost function for simulated an-

nealing. This function calculates the appropriate entropy due to each

dependency. 64

4-10 C-like psuedocode for the algorithm to determine the branch condition

source tile for each non-root tile . 65

4-11 C-like pseudocode for verifying appropriate construction of branch con-

dition propagation route. 66

5-1 Model of the interaction between RawCC and the spatial software

pipelining module. Phases of RawCC are shown with solid lines; items

added by the module are shown with dotted lines. The phases of

RawCC that are replaced by the spatial software pipelining module

are grayed out. 76

5-2 A skeletal perl script to create the memory mapping file sched.map

using RawCC. 77

5-3 A snippet of a sched file, used for communicating the instruction-level

dependency graph and instruction assignments. 78

11

12

List of Tables

3.1 Sequence of events for one iteration of the canonical case loop with

induced communication cycle as compared to one iteration of the spa-

tial software pipelined layout. This shows the instruction executed on

each of tiles 0 and 1 in each cycle, and also shows each data word as

it moves through the network. Note that there are 9 additional cycles

per iteration in the induced loop. 33

3.2 The effects of removing cache conflicts (due to arrays A and B) with

extra synchronization between tiles and without such synchronization.

Note that removing cache conflicts has less of a performance benefit

when the tiles are decoupled. We show here bloodgraphs for one it-

eration of the loop in each of the layouts; each bloodgraph is taken

from an iteration in which no cache conflicts occur on any tile, and

each begins with the first instruction after the branch on the tile that

houses i. Note that white represents useful work being done; all other

colors represent stalls. Each line in each bloodgraph shows the time

and cause of stalls on that tile; the first line shows Tile 0, the second

Tile 1, etc. For the induced loop layout, the tile that houses i is Tile

1; for the others, it is Tile 0. A key is included to show which color

represents which kind of stall. 34

6.1 Performance comparison of RawCC to RawCC with spatial software

pipelining. 82

13

6.2 Breakdown of improvement to unstructured (not unrolled) for each

loop of interest. Loops are presented in the order in which their basic

blocks are evaluated by the spatial software pipelining module. Addi-

tionally, the actual execution time for each loop is compared with the

execution time for that loop obtained by evaluating that loop first. . . 83

14

Chapter 1

Introduction

Current technological trends indicate that wire delay will become the primary bound

on chip complexity and scalability in microprocessor design [1]. As such, scalable

microprocessors must be built of decentralized components, including a decentralized

memory system, in order to limit wire delay and allow scalability. Processors with

replicated compute units connected together via a fixed interconnect are necessary

for such scalability. Each compute unit must contain a processing element (dispatch

unit, register file, and functional units), a tightly-coupled memory bank (cache), and

a decentralized interconnect (interconnect control) with which it can access other

portions of the memory. For efficiency, such an architecture exposes the distributed

memory as well as distributed processors to the compiler and is called a bank-exposed

architecture [5].

Each memory bank is directly addressable by its local processing element but must

be accessed through the interconnect when addressed by other processing elements.

Thus the latency of a memory access increases when a processing element addresses

non-local memory. As the interconnect must be decentralized for scalability, a mem-

ory access may have to go through a number of "hops" to be satisfied. The memory

system then is like that of a NUMA, a Non-Uniform Memory Access machine, and

the latency for memory accesses differs depending on the source processing element

and destination memory bank of the access. Furthermore, such a system may have

two mechanisms for accessing memory. The first mechanism may be used when the

15

memory bank in which the data resides can be determined at runtime; call these

accesses static accesses. Static accesses are much faster than the second mechanism,

dynamic accesses, in which the data's location (memory bank) must be determined

at runtime.

Let us consider a compiler that takes a sequential program written for a uniform

memory system and distributes the data and intructions across a system as described

above. The goal of the compiler is to minimize runtime while ensuring correctness.

To do this, the compiler must utilize the parallelism (instruction level parallelism -

ILP - or otherwise) inherent in the program, create and utilize as many static accesses

as possible, utilize knowledge of latency differences between processing elements and

memory banks, and maximize data affinity without sacrificing parallelism. Data

affinity is maximal when every instruction accesses memory locally addressable by

the instruction's assigned processing element. The trade-off, of course, is to balance

processor load while maximizing data affinity.

Several techniques have been evaluated and implemented in compilers to aid ap-

propriate layout of data in the distributed memory of such a system. Static promotion

creates static memory accesses that may be scheduled using the fast interconnect [4].

Static promotion makes use of equivalence class unification (ECU) and modulo un-

rolling [5]. ECU uses pointer analysis to help determine data placement such that data

that may be accessed by a group of instructions is placed in the same compute unit

as those instructions. In ECU, however, arrays are treated as a single object, forcing

an array to be mapped to a single memory bank. (In contrast, fields of structs are

treated as individual objects, allowing a single struct to be mapped across multiple

memory banks.) Using loop unrolling, modulo unrolling creates static accesses out of

array accesses in which the index expressions are affine transformations of enclosing

loop induction variables [3]. This allows the arrays to be low-order interleaved across

N memory banks while preserving data affinity: the unrolled loop instructions are

also low-order interleaved across N memory tiles. ECU and modulo unrolling are use-

ful when compiling dense matrix applications, but are not as useful when compiling

sparse matrix applications. Software serial ordering enforces memory dependence of

16

dynamic accesses through explicit synchronization using static communication, al-

lowing the latencies of dynamic accesses to be largely overlapped; this is particularly

useful in sparse matrix applications when dynamic accesses must be used to obtain

the desired parallelism.

These transformations allow the compiler to appropriately lay out data that is

accessed deterministically. For arrays, the compiler can efficiently distribute array

accesses located inside nested loops when the index expression is an affine transfor-

mation of the loop induction variables. For example, a loop of the form

for(i = 0; i < bound; i++) {
for(j = 1024; j > jbound; j--) {

A[i] = B[j/4 + 3i];
}

}

may be distributed across available compute units. However, consider array ac-

cesses of the following form, an example of a sparse matrix application:

for(i = 0; i < bound; i++) {
A[X[i]] = B[Y[i]];

}

This canonical example is essentially a series of random accesses of A and B.

While X and Y may be distributed across compute units using modulo unrolling, A

and B may not unless other loops exist to govern their placement. Distributing A

and B forces all accesses to A and B within this loop to be dynamic accesses; such

distribution can utilize software serial ordering to decrease synchronization overhead,

but the dynamic accesses themselves are much more expensive than static accesses.

On the other hand, if A and B are placed onto single compute units, all accesses

to them become static but all are mapped onto a single compute unit, allowing no

memory parallelism for A and B. This placement of A and B puts a lower bound

on the execution time of the loop. However, if A and B are the bottleneck, then

mapping X and Y to single compute units as well may be wise: it would remove

execution pressure of the loads of X and Y from A's and B's compute tiles while not

17

increasing the running time, and it would free other tiles for any other computations

that may be necessary. Each layout then limits the way in which accesses to the

arrays may be scheduled. For example, if all of A, B, X, and Y are on the same tile,

then loop unrolling will provide all speedup possible. If A, B, X, and Y are each on

a different tile and if the communication latencies between X's and A's tiles, Y's and

B's tiles, and B's and A's tiles can be determined at compile time, then appropriate

loop unrolling and software pipelining may be utilized to obtain more speedup (due

to utilization of parallel functional units) than in the first case. The difficulty here

is to determine which memory and instruction layout will provide the best runtime

speed and utilization. Spatial software pipelining, described in this thesis, does this

assignment by placing each of X, Y, A, and B onto separate tiles; Figure 4-1 shows

the final layout generated by our spatial software pipelining module.

Other issues that might affect the execution are describes in the next paragraphs.

The branch condition that determines whether all tiles will continue executing the

loop needs to be propagated to all tiles involved in computation. If the data flow in

the layout interferes with the propagation path (to all tiles) of the branch condition,

cycles are lost due to the interference. Thus either the layout must take into account

the branch condition propagation path, or the branch condition propagation path

must be specified to correspond to the layout such that interference between data

flow and the flow of the branch condition does not arise.

Additionally, data flow between the tiles may interfere with itself in a given layout.

That is, the data flow between tiles provides a certain amount of synchronization

between tiles, and if the data flow is not orchestrated in an appropriate manner, the

synchronization between tiles may become much tighter than is desirable. Tighter

synchronization between tiles implies more possibilities for wasted processing cycles

due to unforseen stalls and mutual data dependencies that must be satisfied in certain

orders. Thus any layout algorithm must attempt to reduce the amount of unnecessary

synchronization induced by data flow patterns. Chapter 3 explains this concept in

more detail.

This thesis presents the mechanism spatial software pipelining, which may be

18

used to help reduce unnecessary synchronization when performing data and instruc-

tion layout, and describes the module that we have implemented to perform it. We

begin this thesis in Chapter 2 by presenting background relevant to understanding

spatial software pipelining as well as a brief background of the systems on which the

implemented module is built. Next, in Chapter 3, we explain the motivation and

basic philosophy behind spatial software pipelining and give a motivating example.

In Chapter 4 we present the algorithms used in our spatial software pipelining module

as well as pseudocode for those algorithms. In Chapter 5 we give the specifications

for the interfaces between the module and the compiler on which it was built. We

then present an analysis of the efficacy and applicability of spatial software pipelining

and give results (obtained via a cycle-accurate simulator) in Chapter 6. We go over

future work in Chapter 7, and then we briefly discuss related work in Chapter 8 before

concluding.

19

20

Chapter 2

Background

This chapter presents background information helpful in understanding spatial soft-

ware pipelining and briefly explains the system on which we have implemented the

spatial software pipelining module. We first explain sparse matrix applications and

traditional software pipelining (Sections 2.1 and 2.2), which help to understand the

motivation behind spatial software pipelining. The later sections explain Raw and

RawCC, the architecture and compiler on which we have implemented the module.

2.1 Sparse Matrix Applications

Spatial software pipelining specifically targets sparse matrix applications. Sparse ma-

trix applications use quite large data sets in array or matrix form, but frequently have

nondeterministic access patterns. As described in Chapter 1, it is very difficult to

determine how to place data objects (or memory objects) across the distributed mem-

ory in a NUMA. Distributing nondeterministically accessed arrays forces expensive

dynamic accesses and often increases execution time. This may be due either to the

increased synchronization necessitated by preserving the order of dynamic accesses

or simply to the increased cost of each access. However, determining how to place

such arrays appropriately is very difficult, and is a problem not addressed by RawCC.

Spatial software pipelining has been developed to help find appropriate memory and

instruction assignments in the presence of such arrays.

21

2.2 Software Pipelining

Software pipelining is the inspiration for spatial software pipelining. Traditional soft-

ware pipelining is a mechanism used to lengthen data dependencies between instruc-

tions in a single iteration of a loop. The basic idea is to restructure the kernel of

the loop such that short dependencies between instructions within an iteration of the

loop are remade into longer dependencies that span multiple iterations of the loop.

The resulting code has: a prologue, the instructions necessary to prime the resulting

software pipeline so that the new kernel of the loop can execute appropriately; the

new kernel, in which a single iteration contains instructions executing from each of

the multiple iterations of the original loop kernel; and an epilogue, the instructions

necessary to drain the software pipeline after the new kernel finishes executing. Tra-

ditional software pipelining is particularly useful in conjunction with loop unrolling

and VLIWs.

Spatial software pipelining extends software pipelining to apply across distributed

architectures. Where software pipelining restructures the kernel of the loop to lengthen

short dependencies, spatial software pipelining assigns the instructions in the loop to

functional units to try to minimize the number of communication dependencies (not

words) with other functional units. That is, spatial software pipelining attempts

to pipeline the loop across multiple functional units; rather than decreasing the la-

tency of one iteration as in traditional software pipelining, spatial software pipelining

increases the throughput of the loop by removing the causes of unnecessary synchro-

nization. We will show that spatial software pipelining thus allows a certain amount

of slack to exist between the functional units, decreasing the effects of stalls on other

functional units. Additionally, because spatial software pipelining effects the pipelin-

ing across functional units simply through instruction assignment, the code genera-

tion is much simpler than in traditional software pipelining; no prologue or epilogue

is required. However, spatial software pipelining may not produce an assignment of

instructions to functional units that is as load balanced as an assignment produced

with more conventional means; this is because spatial software pipelining gives the

22

......... ..

highest priority to removing communication cycles between functional units.

2.3 Raw Architecture

This section describes the Raw architecture, the architecture targeted by our spatial

software pipelining module. The Raw microprocessor consists of a 2-dimensional

mesh of 16 identical, individually programmable tiles. Each tile contains an in-order

single-issue MIPS-4000-style processing element, a cache memory bank with a 32

KB data cache and a 32 KB instruction cache, and a switch with a static router, a

dynamic router, and a 64 KB instruction cache for the static router [13], [8]. Each tile

is fully connected with two communication networks: a static network and a dynamic

network. The static network is used for static accesses as discussed above; it is much

faster than the dynamic network as it has only a single-cycle latency from processor

to switch (or vice versa) and a single-cycle latency across each tile. However, as

discussed previously, memory accesses completing over the static network must have

destination memory banks (here, tiles) known at compile time. The slower dynamic

network is used for dynamic accesses; messages over the dynamic network are routed

at runtime. Because each tile has its own pair of instruction streams for its processor

and switch, different tiles may execute independently, using the networks (primarily

the static) for memory and control dependences. See [13] for more details on the Raw

architecture.

2.4 RawCC

RawCC is the parallelizing compiler developed to target Raw and the compiler on

which the spatial software pipelining module is built. RawCC is built on top of the

SUIF compiler infrastructure [14]; it takes a sequential C or Fortran program and par-

allelizes it, assigning instructions and data across the available tiles of Raw. RawCC

consists of two major components: Maps and the space-time scheduler. Maps, the

memory front end, is responsible for memory bank disambiguation, i.e., determining

23

which memory references may be static accesses and to what data such accesses re-

fer. The space-time scheduler, the back end of RawCC, is responsible for mapping

instructions and data to the Raw tiles as well as for scheduling instructions and com-

munication. Both portions of RawCC are discussed in more detail in the following

section.

2.5 Maps and the Space-Time Scheduler

Maps consists of three main sub-components. The first sub-component performs

pointer analysis and array analysis, which provide information used for memory bank

disambiguation. The second sub-component performs static promotion, identifying

and producing static references through equivalence class unification (ECU) and mod-

ulo unrolling. Finally, the third sub-component performs dynamic access transforma-

tions, including software serial ordering (described previously) [2]. More detail on

Maps can be found in [4], [3], [5] or [2].

The space-time scheduler handles coordination, both in terms of control flow across

basic blocks (the control orchestrator) and in terms of exploiting parallelism within

basic blocks (basic block orchestrator). The control orchestrator implements asyn-

chronous global branching, branching across all tiles using the static network, and

control localization, an optimization that allows some branches to affect only a local

tile [9]. The basic block orchestrator assigns instructions and data to the Raw tiles,

schedules the instructions, and orchestrates communication between the tiles. First,

assuming N available tiles, the basic block orchestrator's instruction partioner uses

clustering and merging to partition the original instruction stream into N instruc-

tion streams, balancing parallelism against locality (data affinity). Second, the global

data partioner partitions the data into N data sets and associates each data set with

one instruction stream, attempting to optimize for data affinity. Third, the data

instruction placer uses a swap-based greedy algorithm to minimize communication

bandwidth and place each data set-instruction stream pair on a physical tile. Fourth,

the communication code generator creates the static switch code for each tile. Finally,

24

the event scheduler schedules the computation and communication instructions for

each tile, attempting to minimize runtime while ensuring the absence of deadlock on

the static network. More detail on the space-time scheduler can be found in [9].
RawCC currently uses loop unrolling to help partition instructions in the loops of

sparse matrix codes, placing the instructions on functional units to minimize the num-

ber of inter-iteration dependencies that cross functional units. In contrast, spatial

software pipelining tries to minimize the number of pairs of functional units between

which intra-iteration dependencies exist. The main difference between the two is in

the partitioning: RawCC places different iterations of the loop onto different func-

tional units, but spatial software pipelining pipelines a single iteration of the loop

across multiple functional units. Additionally, when placing conditional basic blocks

like loops, spatial software pipelining determines the route by which the branch con-

dition should be propagated (see the next section); this route is created to facilitate

pipelining a single iteration of the loop. On the other hand, RawCC simply uses a

fixed propagation route to broadcast the branch condition.

2.6 Asynchronous Global Branching

As mentioned above, asynchronous global branching is the mechanism that Raw uses

to orchestrate a branch across all tiles. On such a branch, the root tile computes

the branch condition and then broadcasts the condition to all other physical tiles

via the static network. Each tile then receives the branch condition and takes a

local branch on it at the end of the tile's basic block execution; each corresponding

switch branches appropriately as well. Note that the local branches are performed

asynchronously with respect to one another, giving rise to the name.

25

26

- --- -- --- eamaswarmamusamawa

Chapter 3

Spatial Software Pipelining

This chapter presents the motivation and basic idea behind spatial software pipelin-

ing, the mechanism that we have developed to help partition loops in sparse matrix

codes appropriately. We explain how communication cycles and other communica-

tion dependencies enforce synchronization between tiles and and show that when such

synchronization can be avoided, the execution time of loops decreases. We give an

example demonstrating the detrimental effects of communication cycles and give num-

bers comparing them. We explain that the basic idea in spatial software pipelining

is to decouple the tiles by removing unnecessary synchronization due to the commu-

nication dependency graph between tiles. Specifically, the goal is to remove cyclic

communication dependencies and to cluster instructions and data such that the com-

piled code efficiently uses the processing power available. We explain that removing

cycles and other unnecessary synchronization may be done by forcing the communi-

cation dependency graph to resemble a tree by pipelining portions of a loop across

multiple functional units as well as across the interconnect between functional units.

3.1 Motivation

As mentioned in Chapter 2, loops in sparse matrix codes frequently access arrays

in ways that cannot make use of distributed data, or rather, in ways in which a

deterministic access pattern can not be found. Such accesses to arrays cannot be

27

statically scheduled, and if an array is placed across multiple tiles then such a loop

must use unacceptably slow, dynamic accesses. When an array is placed on a single

tile, however, each iteration of the loop has at least two instructions that must be

executed on the tile: the access (due to data affinity) and the branch on the loop

condition. If the loop does not simply consist of an array access, which is generally

the case, it may still be possible to exploit the parallelism in a single loop iteration

by appropriately placing surrounding instructions and their related memory. The

problem remains to find a good assignment of instructions and data to tiles. A good

assignment will make use of as many tiles as are necessary to exploit the parallelism

of the loop and no more.

We have developed spatial software pipelining on Raw to help create good assign-

ments for loops such as those described above. Good assignments for such loops will

in turn help to speed the execution time of RawCC's generated code for sparse ma-

trix codes. Specifically, spatial software pipelining helps loops that cannot gain from

other parallelization techniques such as modulo unrolling. Spatial software pipelining

places instructions such that loop iterations are efficiently pipelined across the phys-

ical Raw tiles while problematic accesses to specific arrays are scheduled on a single

tile. Data flow in each iteration is pipelined along with control flow information using

Raw's aynchronous global branching. Thus spatial software pipelining is useful in

loops where iterations can be easily pipelined and interleaved with each other - where

a write to some problematic array is not connected via a long chain of instructions in

the dependency graph to another access to that array.

Let us now look at a single iteration of a loop containing accesses to problematic

arrays. For the rest of this section, unless otherwise specified, a tile refers to the

collection of instructions scheduled to execute on a single physical tile as well as the

collection of data to be placed on that phsyical tile. Working under the assumption

that an array that is accessed randomly is better off on a single tile than interleaved

across tiles, if a tile contains an instruction with a reference to such an array then the

tile must contain every instruction with a reference to that array in that loop. A tile

dest has an incoming dependency from another tile src if dest needs to receive any

28

data from src within a single loop iteration. The converse is an outgoing dependency.

Thus both data and control flow information create dependencies between tiles on the

paths by which they travel. Each dependency is fulfilled when the source tile routes

the necessary data to the destination tile. Though statically scheduled, these routes

need not be consumed immediately by the destination; the destination's switch may

stall until the incoming data is ready to be used.

If a tile tile has both outgoing and incoming dependencies with a single neighbor

nt, tile and nt are in a communication cycle with each other and are forced to

execute in approximate lockstep, i.e., tile and nt must work on the same iteration

at approximately the same time. If tile does not have enough instructions to fill

the delay caused by communicating with nt, then tile stalls on every iteration,

the utilization of tile's physical tile goes down, and the total loop execution time

increases. However, if the two tiles do not have cyclic communciation dependencies,

then tile may be able to inject data from one iteration into the network and continue

on to the next iteration even before nt consumes the data. This allows tile to pipeline

data to nt using the static network, thus effectively pipelining the loop across tile,

nt, and the static network. To sum up, while each communication dependency acts

as a loose form of synchronization between two tiles, the combination of dependencies

and the structure of the dependency graph can tighten the synchronization between

tiles. Tighter synchronization is not ideal: it reduces the beneficial effects of individual

control that Raw gains using separate instruction streams.

Extending the above observation, if a tile is part of a dependency cycle of any size,

all tiles in that cycle must execute in approximate lockstep. Similarly, if a tile has two

(or more) incoming dependencies from neighboring source tiles, the source tiles must

execute in approximate lockstep with each other, and the chain extends backwards

through the dependency graph. It may happen that ancestor synchronization is not

a problem; however, if a tile has a single ancestor with two paths in the dependency

graph from the ancestor to the tile, and if the paths are of vastly different lengths,

then this could be a major problem due to the fact that the interconnect between

processing units has limited buffer space. This gives rise to the observation that the

29

more the communication dependency graph resembles a tree, the less synchronization

between tiles exists. This is the key idea in spatial software pipelining.

3.2 Example Motivating Tree-shaped Communi-

cation

This example shows the motivation behind trying to avoid communcation cycles.

To show the adverse effects of communication cycles and dependencies, we examine

the assignment found by our spatial software pipelining module for the loop in the

canonical case described in Chapter 1. We make small modifications and compare

the runtime of the loop to see the adverse effects mentioned. Recall that the C code

for the canonical case is as follows.

for(i = 0; i < bound; i++) {
A[X[i]] = B[Y[i]];

}

The execution times for each layout are given in cycles and are generated using

Raw's cycle accurate simulator btl. The tile assignment for this dependency graph

is shown in Figure 4-1. Each rectangle represents a physical tile on Raw. Each

oval represents an instruction. Data-bearing dependencies from one instruction to

another are shown by arrows; non-data bearing dependencies are not shown. Each

dependency is drawn in the color of the source instruction's tile. The dotted ovals

labelled commi represent the switches of each tile i; each data-bearing dependency

that must be routed through multiple tiles to reach its destination is represented by

a chain of arrows through the comm nodes on the data's actual route.

Figure 4-1 shows that the module-generated layout for the canonical case has data

flowing in only one direction between each pair of connected tiles. This shows the

freedom from enforced synchronization that is the result of spatial software pipelining.

The runtime for this data and instruction layout is 179,230 cycles.

To see the effect of communication cycles, let us move instructions 0, 1, and 22

from tile 0 to tile 1. This is equivalent to moving the home tile of the loop induction

30

variable. Note that no computation is being moved: only the variable's home is being

shifted. Running the loop for the same number of iterations with this slightly different

layout gives an execution time of 377,662 cycles. The change in execution time is due

to the fact that tiles 0 and 1 have been forced to synchronize with each other more

fully through their communication. Previously the only synchronization between tiles

0 and 1 was due to the order of the data sent by tile 0 and the restricted network

bandwidth between the tiles (that is, the fact that the network could only hold so

many data words at once). Now there is additional synchronization due to the order

of the data sent by tile 0 and tile 1 in relation to each other.

The following sequence of events demonstrates how the added synchronization

affects the execution time (each instruction has cost 1). Table 3.1 shows in tabular

form exactly which instruction is executed in each cycle, and also shows which words

are in transit over the network on each cycle. The bottom half of the table shows for

comparison the same sequence without the induced cycle; note that the moves are

not necessary in that layout. In each iteration, tile 1 must first send the current value

of i to tile 0 via instruction 0 while tile 0 executes instruction 4. Tile 1 then executes

instruction 3; as soon as tile 0 receives i via instruction 1 (a delay of three cycles) tile

0 executes instructions 2, 5 and 6. While waiting for the load (6) to complete, tile 0

executes instructions 17 and 19, then sends the result of 6 to tile 1 while executing

20. Tile 0 continues with instructions 21, 18, which sends the updated value of i to

tile 1, and finally 23 (the branch); then tile 1 receives the data of 6 from tile 0 and

executes instruction 7, receives the branch condition (result of 21) and notes it, and

finally executes instructions 8 and 9. Immediately tile 1 receives the updated value

of i, executing instruction 22. Tile 1 can finally branch (24) on the branch condition

and repeat the loop as given. Note, however, that tile 0 was idle while tile 1 executed

the branch receive, 8, 9, 22, and 24 in addition to the idle cycles at the beginning of

the loop iteration. As tile 0 was the bottleneck in any case, this clearly increases the

execution time of the loop dramatically.

This is a simple example, but the increased synchronization between the two tiles is

clearly apparent, as is the detrimental value of increased synchronization. Initializing

31

arrays X and Y to remove cache conflict in arrays A and B (here, setting every X[i]

to one constant and every Y[i] to a non-conflicting constant) and comparing exection

times demonstrates the detrimental value of increased synchronization even more

forcefully. Table 3.2 compares the execution times with and without cache conflict

for each of RawCC's unmodified layout, the layout produced by the spatial software

pipelining module, and the modified layout with an induced communication cycle;

additionally, it shows the speedup gained by removing all cache conflicts due to A

and B. Note that with spatial software pipelining the speedup gained by removing

cache conflicts is much less than that gained in the original layout. This is due

to the fact that spatial software pipelining decouples the tiles to a certain extent;

because the synchronization between tiles is much less, cache misses have less chance

of influencing adjacent tiles. Even in the case where one communication cycle is

induced, the removal of cache conflicts does not decrease execution time by the same

factor as that in the original layout. This is yet another indication that decoupling

the tiles - decreasing the synchronization between tiles - is beneficial to the execution

time of a program.

3.3 The Basic Idea

The goal of spatial software pipelining is thus to remove cyclic communication depen-

dencies and to cluster instructions and data such that the compiled code efficiently

uses the processing power available. (If cyclic dependencies cannot be removed with-

out dramatically reducing possible parallelization, we can leave the cyclic commu-

nication and utilize software pipelining appropriately on involved tiles to get better

results. See Chapter 7 for more details.) Additionally, though not implemented, any

assignment that turns a dependency graph into more of a dependency tree will have

a better execution time.

We have implemented a module to perform spatial software pipelining at the basic

block level. The module takes in the dependency graphs of instructions for each basic

block within a program and creates memory and instruction assignments consistent

32

Table 3.1: Sequence of events for one iteration of the canonical case loop with induced
communication cycle as compared to one iteration of the spatial software pipelined
layout. This shows the instruction executed on each of tiles 0 and 1 in each cycle,
and also shows each data word as it moves through the network. Note that there are
9 additional cycles per iteration in the induced loop.

11 Cycle f1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 14 1 15 1 16 1 17 1 18 1D

T1,cyc 0 3 3 - - - - - - 7 21 8 9 22 24
net, - 0 0 0 - - - ---- 6 6 6 21 18 18 - - -
cyc - - - - - - - - 21 21 18 18 18 - - -

TO,cyc 4 4 - - 1 2 5 6 17 19 20 21 18 23 - - - - -

T1 7 8 21 9 24 3 3 - - -
net 21 21 - - - - - 6 6 6
net - - - - - - - - - 21

TO 2 4 4 5 6 17 19 20 21 23

across basic blocks.

In RawCC's clustering, a preset propagation pattern is used to propagate branch

conditions, and control flow information propagation paths are not taken into account

when doing placement. This is a large contributor to extraneous communication de-

pendencies; clearly if the control flow information is propagated over a path already

being used for data propagation, communication dependencies are reduced. To ad-

dress RawCC's problem, the module we have implemented generates a branch propa-

gation route for each basic block, and RawCC generates the switch code necessary to

propagate control flow information by means of the generated route. This increases

the likelihood that the communication dependency graphs can be made to resemble

trees.

As mentioned previously, the key idea in spatial software pipelining is that when

communication patterns resemble trees, the execution time in loops is better. While

spatial software pipelining does try to minimize communication, the main difference

between spatial software pipelining and traditional heuristics minimizing communi-

cation is that spatial software pipelining assumes that commincation bandwidth is

not the primary limiting resource. That is, spatial software pipelining assumes that

enough bandwidth exists between tiles that extra words of data may be easily sent

over the interconnect, but that the number of paths by which the data is sent should

be minimized.

33

Table 3.2: The effects of removing cache conflicts (due to arrays A and B) with extra

synchronization between tiles and without such synchronization. Note that removing

cache conflicts has less of a performance benefit when the tiles are decoupled. We

show here bloodgraphs for one iteration of the loop in each of the layouts; each

bloodgraph is taken from an iteration in which no cache conflicts occur on any tile,

and each begins with the first instruction after the branch on the tile that houses i.

Note that white represents useful work being done; all other colors represent stalls.

Each line in each bloodgraph shows the time and cause of stalls on that tile; the first

line shows Tile 0, the second Tile 1, etc. For the induced loop layout, the tile that

houses i is Tile 1; for the others, it is Tile 0. A key is included to show which color

represents which kind of stall.

Cache Original RawCC With Spatial SSP Layout

Conflict Execution Time Software Pipelining With Induced Loop

yes 259,141 179,230 377,662

bloodgraphs
no 184,059 171,239 324,830

Speedup 1.408 1.047 1.163

mht on-floating point op

;red :net receive stall

iblue Inet send stall

'prei iresource/bypass stall

black icache stall

34

Chapter 4

Algorithms

This chapter describes first, the input required for the spatial software pipelining

module and second, the algorithms used within the module to perform memory to

(physical) tile and instruction to tile mappings. Recall that the hoal of spatial soft-

ware pipelining is to remove cyclic dependencies and reduce the amount of inter-tile

synchronization created by communication. As we describe the algorithms, we will

keep a running example to help explain each. The example will walk through the

steps taken by the spatial software pipelining module to produce a layout for the

canonical case described in Chapter 1. Recall that the C code for the canonical case

is as follows.

for(i = 0; i < bound; i++) {
A[X[i]] = B[Y[i]];

}

In our example, the number of target tiles on Raw is 4 (a 2 by 2 grid), and the loop

is not unrolled. The dependency graph (less non-data bearing dependencies, which

are used but not shown) is contained in Figure 4-1, which also shows the final layout

assigned. Instruction 6 is the access of array Y, 13 that of X, 9 that of B, and 16 is

the store to array A. As we walk through this example, this graph will be changed in

various ways; these changes are shown in Figure 4-2, and we will refer to this figure

throughout our descriptions.

35

4.1 Input Information

The input required for the spatial software pipelining module is as follows. First, the

module requires the order in which basic blocks should be processed. As the module

currently works on basic blocks independently of each other, a simple ordering is all

that is required; Chapter 7 discusses possible extensions that would require more

information. In our example, we will consider only the one basic block.

Second, the module requires the dependency graph between instructions on a basic

block level. That is, it needs a list of the instructions to be executed in each basic

block including information about each instruction (e.g. cost, latency); lists of the

dependencies between instructions within the same basic block; and a mapping from

each instruction to a defld, where two instructions that have the same defld must be

executed on the same tile. Note that the first two lists together specify a dependency

graph (specifically, a directed acyclic graph, or DAG) on the instructions, and note

that the last mapping is a mechanism for ensuring that certain instructions, possibly

in different basic blocks, execute on the same tile. Again, the dependency graph for

our example is contained in Figure 4-1; in this figure, instructions 0, 1, and 22 share

a defId and are thus pictured with dashed ovals.

Third and finally, the module requires a list of the memory objects and a mapping

from each memory instruction (e.g. a load) to the memory id of the object that the

instruction accesses. This map provides another mechanism for determining which

instructions must execute on the same tile; all loads and stores to and from a given

memory object (e.g. an array - currently treated as an entire object - or a field in a

structure) must be located on the same tile as the object to make use of data affinity.

The memory map ensures that this occurs. In Figure 4-1, each memory id is assigned

a color; if an instruction is mapped to a memory id, then the text of the instruction

is shown in the color of the memory id.

The spatial software pipelining module then works in five phases. In the first,

it creates a virtual dependency graph based on the previously specified dependency

graph; the new graph encapsulates the fact that all instructions with the same defid

36

must be on the same tile and, similarly, that all instructions with the same memory

id must be on the same tile. We define the nodes in this graph as virtual tiles

and the communication and other dependencies as virtual dependencies. Second,

the module merges the virtual tiles together in a bottom up greedy fashion until the

number of virtual tiles is less than or equal to the number of physical tiles. Third, the

module assigns each virtual tile to a physical tile using simulated annealing and a cost

function, described below, that encapsulates the ideas of spatial software pipelining.

Fourth, the module creates the branch propagation paths as needed based on the

ultimate tile assignment. The first phase occurs for all basic blocks before any later

phase occurs for any basic block; the later phases are all performed on one basic

block before the final phase, reconciliation, is performed on the next basic block. The

following sections describe these phases in more detail.

4.2 Create Map

This section describes the phase that creates the virtual dependency graph. To con-

struct the graph, the following steps are taken on each basic block. First we construct

the virtual tiles, and then we construct the virtual dependencies. Once we have cre-

ated the graph, we merge all virtual tiles in the same equivalence class as determined

by memory ids and defIds. The rest of this section describes these steps in more

detail.

Each instruction is represented by a node, which contains all relevent information

about the instruction, including lists of outgoing and incoming dependencies. Each

dependency between two nodes is represented by an edge, which encapsulates the

dependency type, data type, source node, destination node, and any other relevent

dependency information. In Figure 4-1, nodes are represented by ovals and edges are

represented by arrows. Edges that do not represent the transfer of data (i.e. edges

that are not true dependencies) are not shown.

The module begins by walking through each node and assigning it to a virtual tile

in the following fashion. If the node has a memory id memId that has been seen before,

37

the node is added to the virtual tile corresponding to memId. If the node has a defId

def Id that has been seen before, the node is added to the virtual tile corresponding

def Id. If both memId and def Id have been seen before, the corresponding virtual

tiles are merged and the node is added to the resultant virtual tile. (Note that a node

can have at most one memory id and at most one defId.) If the node must be placed

on a given physical tile, the node is placed on the virtual tile corresponding to the

appropriate physical tile; if such a physical tile has not been required thus far, a new

virtual tile is created and marked as being necessarily assigned to the physical tile.

(Except for branches on loop conditions, which will be discussed later, and memory

ids and defIds, which may not be mapped to a specific physical tile, this is very rare.)

Pseudocode representing the creation of the virtual dependency graph is given in

Figure 4-5.

In our example, nodes 3 and 9 are mapped to the same memory id, red, because

node 3 loads the base address of B and node 9 accesses B (this example is with no

optimizations, so there is no code hoisting to move node 3 out of this basic block).

Since 3 and 9 are mapped to the same memory id, they are placed in the same virtual

tile. Similarly, 4 and 6, 10 and 16, and 11 and 13 are each placed in the same virtual

tile. Additionally, nodes 0, 1, and 22 all share the same defId and are thus placed in

the same virtual tile. All other nodes have their own virtual tiles. The virtual tiles

resulting from the create map phase are shown in Figure 4-2(a).

Each virtual tile is responsible for maintaining state about the nodes that it en-

capsulates. Items such as which memory ids are represented, which defIds are repre-

sented, the cost of executing the virtual tile as a whole (as determined by a simple

list scheduler), and the latency are among the data maintained by virtual tiles.

Because branches on loop conditions have dependencies due to branch condition

propagation, including the branches in the virtual dependency graph effectively forces

physical tile assignment to occur at the same time as virtual tile merges. Since the

branch condition propagation path can be set after virtual to physical tile assignment,

the branch dependencies should not affect either the virtual tile merge algorithm or

the tile assignment algorithm. Thus the branches are added to dummy virtual tiles

38

that are not included in the graph being created; all other virtual tiles are included

and are maintained in a list for future phases. In our example, nodes 23, 24, 25,

and 26 are each assigned to a dummy virtual tile and not included in the virtual

dependency graph; these nodes are not shown in Figure 4-2.

Each edge is assigned a virtual dependency as follows (note the similarity to the

assignment of nodes to virtual tiles). The virtual tile src is the virtual tile to which

the edge's source node has been assigned. Similarly, the virtual tile dest is the virtual

tile to which the edge's destination has been assigned. If a virtual dependency already

exists from src to dest, the edge is added to that virtual dependency. Otherwise, a

new virtual dependency is created. In our example, each edge shown in Figure 4-2 is

assigned to a new virtual dependency because no two dependencies share the same

source and destination virtual tiles. However, for the sake of illustration, we assume

that node 1 also has outgoing edges to nodes 4 and 6. Then the edge from 1 to 4

would have a new virtual dependency vdep created to house it, but the edge from 1

to 6 would be added to vdep.

Each virtual dependency is responsible for maintaining state about the edges it

encapsulates; examples are the source nodes of the edges and the number of words of

data moving across the virtual dependency (i.e. the number of different source nodes

from which data-bearing dependencies emanate). Additionally, each virtual depen-

dency is responsible for identifying its source and destination virtual tiles; similarly,

each virtual tile is responsible for maintaining a list of its incoming and outgoing

virtual dependencies.

After each basic block has had its virtual dependency graph constructed, we create

equivalence classes by partitioning the set of memory ids and defIds such that if two

ids are in the same virtual tile, then they are in the same partition. All virtual tiles

in a partition are merged together such that after this portion of the create map

phase no virtual tile is in the same partition as another virtual tile in the same basic

block. To do this, this phase creates three lists: mem-mem, consisting of (memory id,

memory id) pairs; def -def, consisting of (defld, defld) pairs; and mem-def, consisting

of (memory id, defld) pairs. This representation is more efficient to compute and store

39

than traditional representations used to compute equivalence classes. Again, these

lists represent memory ids and defIds that must be placed on the same physical tiles

as each other and thus must be on the same virtual tiles as each other.

The following loop is executed until none of the virtual dependency graphs changes,

performing the merges of virtual tiles in the same partition. First, for each basic block

id pairs are added to the lists as follows. If a virtual tile vtile has multiple memory

ids represented in it (remember that all nodes of the same memory id must be on

the same virtual tile), all new pairs are added to mem-mem. If vtile has multiple

defIds represented, all new pairs are added to def-def. If vtile has both memory

ids and defIds represented, each new (memory id, defld) pair is added to mem-def.

Next, for each basic block, mem-mem, def-def, and mem-def are walked through and

virtual tiles are merged appropriately. That is, for each pair (idi, id2), if a virtual

tile represents idi and a different virtual tile represents id2, merge the two virtual

tiles. Since each such merge could create more id pairs, the entire list-merge loop

must be repeated until no basic block has a virtual tile merge (note that this is a

simple fixed-point algorithm). Pseudocode for this loop is provided in Figure 4-6. In

our example, no id pairs are created and no virtual tiles are merged due to this part

of the create map phase.

The resulting virtual dependency graphs, one for each basic block, represent a

consistent view of the virtual universe at the end of this phase. That is, all defIds

or memory ids that must be on the same physical tile are contained within the same

virtual tile and all tile constraints from a given basic block have been propagated

to all other basic blocks. In the next phase, the virtual tiles are merged together to

reduce their number to less than or equal to the number of physical tiles; additionally,

merges deemed appropriate due to spatial software pipelining are performed.

4.3 Merge

This section describes the phase that merges the virtual tiles until their number is at

most the number of physical tiles. This and the next two phases occur on a single basic

40

block before assignments are reconciled with the virtual tiles of the next basic block.

The next basic block is then put through these three phases itself. A merge can not

occur between two virtual tiles corresponding to two different physiscal tiles; for this

section, we will use "merge" to mean "merge if possible" and will omit the "if possible"

from the rest of the discussion. This phase occurs in six steps. First, all virtual tiles

that would be in a communication cycle due to branch condition propagation are

merged together. Second, all dependency cycles in the virtual dependency graph are

removed if possible. Third, data is collected for each virtual tile for use in the later

parts of this phase. Fourth, two quick optimizations force some merges to occur early

in the merge process. Fifth, the virtual tiles are sorted by critical value for the last

phase. Sixth, the virtual tiles are merged in a bottom up greedy fashion until the

number of virtual tiles is at most the number of physical tiles. The rest of this section

describes these six steps in more detail.

In the first step of the merge phase, any virtual tiles with virtual dependencies

from themselves to the virtual root tile are merged into the root tile. In a loop,

the root tile is the tile on which the branch condition is calculated. The root tile

essentially has outgoing dependencies to all other virtual tiles within the basic block

because all physical tiles must obtain the loop condition from the root tile to be able

to execute the end of loop branch. Thus, any tile which has an outgoing dependency

to the virtual root tile has a cyclic communication dependency with that tile; in the

spirit of spatial software pipelining, all dependency cycles should be removed. Note

that this step does not occur in a basic block that does not have a branch condition

to propagate.

In our example, the branch condition is calculated by node 21, shown in black in

Figure 4-2. Thus the virtual tile with node 21 in it is the root tile, and all ancestor

virtual tiles of it are merged into it. Looking at Figure 4-2(a), we see that the virtual

tiles of nodes 20, 19, 17, and the tile of nodes 0, 1, and 22 must be merged into

the virtual tile of 21 in that order. Additionally, the tile of 18 is merged in because

of its outgoing dependency to 22, and the tile of 2 is merged in because it has an

antidependency (not shown) to node 22. This last merge is not necessary since an an-

41

tidependency does not represent communication, but we do not currently distinguish

between types of virtual dependencies when determining whether to merge. (An-

tidependencies are helpful later in creating dependency cycles that should be merged

away.) The virtual tiles resulting after these merges are shown in Figure 4-2(b).

In the second step of the merge phase, a depth first traversal of the virtual de-

pendency graph with a visited list allows this phase to find and remove dependency

cycles by merging all virtual tiles in each cycle together. It is important to note here

that although a DAG may be assumed for the dependency graph on nodes, the vir-

tual dependency graph is most likely not a DAG. This portion of the merge phase is

responsible for attempting to make the dependency graph between virtual tiles into

a DAG again given the previous assignments and the memory id constraints.

The merging of dependency cycles in our example proceeds as follows. The virtual

tile of nodes 3 and 9 has an outgoing virtual dependency (from 3) to the virtual tile

of node 8, which has an outgoing virtual dependency itself (to 9) back to the virtual

tile of 3 and 9, creating a cycle. This cycle can be seen in Figure 4-2(b). To get rid

of this cycle, the virtual tile of 8 is merged with that of 3 and 9. Similarly, that of 15

is merged with that of 10 and 16, that of 5 with that of 4 and 6, and that of 12 with

that of 11 and 13. This results in seven virtual tiles: the root (nodes 0, 1, 2, and 17

through 22), the access of Y (4, 5, and 6), the access of X (11, 12, and 13), the logical

shift of Y[i] (7), the logical shift of X[i] (14), the access of B (3, 8, and 9), and the

store to A (10, 15, and 16). The seven virtual tiles, Root, Y, X, shift Y, shift X, A,

and B are shown in Figure 4-2(c).

In the third step of the merge phase, various data are collected for the virtual

tiles and virtual dependencies. (Currently, gathering this information for dependency

cycles is not handled well, so the data for virtual tiles in dependency cycles is not

helpful. The reason is that rare virtual dependency cycles at this point are formed

because of assignments in previous phases, and there is no way to remove these cycles.

However, the data gathering techniques could be carefully thought out and corrected

to gather the correct information for virtual tiles in cycles.) A virtual tile is a parent

of another virtual tile if the one has an outgoing virtual dependency to the other.

42

.....

The following paragraphs detail the data collected in this step, and Figure 4-3 shows

examples demonstrating each.

The estimated start time (EST) of each virtual tile is an integer set to the greatest

number across the parents of the virtual tile, where the number corresponding to a

given parent is the parent's EST plus the parent's cost. The EST of a virtual tile

with no parents is 0.

The resident path cost of each virtual tile, hereafter referred to as path, is an

integer set to the greatest number across the children of the virtual tile, where the

number corresponding to a given child is the path of the child minus the EST of the

child plus the EST of the tile plus the cost of the tile. The path of a virtual tile with

no children is the EST of that tile plus the cost of that tile. Thus, the paths of all

virtual tiles on the critical path are exactly equal to the length of the critical path,

while the paths of any tiles not on the critical path but merging into it are less than

the length of the critical path by the amount of leeway between the sub-path and the

critical path at the point of the merge.

The path id of each virtual tile is a bit vector in which each bit identifies a leaf

tile (i.e. a tile with no children). On a virtual tile, the bit corresponding to a leaf tile

is set if and only if the leaf tile is a descendent of the virtual tile.

Each virtual dependency is uniquely identified by a color, and the palette of each

virtual dependency is computed as follows. The palette of each virtual dependency

vdep contains color cir if one of the following is true: if cdr is the color of vdep; or

if cir is in the palette of some incoming virtual dependency to the source virtual tile

of vdep. It is easy to see that the palettes for every virtual dependency in a cycle

will be identical. Additionally, when one considers merging two virtual tiles, if some

incoming virtual dependency of one has a palette that is a superset of the palette in

some outgoing virtual dependency of the other, then merging those two virtual tiles

will create a dependency cycle. (If the palettes are identical, then the dependency

goes from one tile to the other or the two tiles were already in a cycle.) The palettes

are a mechanism used to quickly determine when a cycle will be created by a merge

of two virtual tiles; this allows us to consider merging together all nodes in a cycle as

43

soon as the cycle is created, thus removing it immediately.

Of course, if we handled dependency cycles properly with respect to EST and

path, the module could gather all this data as soon as the virtual dependency graph

is created (at the end of the first step). The dependency coloring mechanism could be

used to do cycle detection and resolution instead of a depth first search with visited

list. Since we do not handle dependency cycles correctly in this respect, we wait to

gather all this data and do dependency coloring until after we have merged the cycles.

The initial window size is either the maximum cost of the virtual tiles or the sum

of the cost of the nodes divided by the number of physical tiles. The initial window

size represents the first bound that we will place on the size of virtual tiles; all merges

should result in tiles with cost less than or equal to the window size (unless other

conditions are met).

The values cost, EST, and path for each virtual tile in our example are included in

Figure 4-2(c), which shows the virtual dependency graph after the cycles have been

merged away. Note that virtual tiles X and Shift X are not included on the critical

path from Root to A, so the paths of X and Shift X are lower than the paths of the

other virtual tiles (17 instead of 21). The initial window size in our example is set to

8; this is the cost of virtual tile Root, the largest virtual tile in our virtual dependency

graph. Note that if Root had only one node with cost 2, then the initial window size

would be 5, the average cost of the nodes per physical tile.

In the fourth step of the merge phase, this phase runs through the virtual tiles

twice to make two quick optimizations. In the first optimization, small virtual tiles

(tiles with a small cost) that have no incoming dependencies and only one outgoing

dependency are merged directly into their descendents if the resulting cost is less than

the initial window size. This allows instructions such as moves and load immediates

to be placed on the same tiles as their children, assuming it would cost more to

communicate their results than to force the instructions to reside with their children.

In the second optimization, if a virtual dependency between two virtual tiles has a

cost greater than one (if it is responsible for communicating more than one word of

data), then the two tiles on either end of that virtual dependency are merged together

44

~-~--~ ~-

if the resulting cost is less than the initial window size. Both of these optimizations

are ways to circumvent the virtual tile merging functionality and force instructions

that might otherwise be split up to reside on the same tile. While it is probable

that these merges would be made in any case to reduce the communication between

virtual tiles, doing these merges now allows the cost to be taken into account before

considering merges with other tiles rather than after. In our example, neither of these

optimizations has any effect, and the virtual tiles remain as in Figure 4-2(c).

In the fifth step of the merge phase, the virtual tiles are sorted based on the

following properties, in this order: path, path id, EST, and virtual tile id. The

resulting order of virtual tiles determines which tiles will be considered first in the

following merges. Note that all leaf tiles will occur before their ancestors in this

ordering if the ancestors are not part of a path to another leaf tile. This is because

all ancestors will have a path less than or equal to the path of their leaf descendants

and will have earlier ESTs.

In our example, Root, Y, Shift Y, A and B all have the highest path, and all of

the virtual tiles have the same path id. (A is the only leaf tile, so all path ids are '1'.)

Ordering these five virtual tiles by EST, we obtain A, B, Shift Y, Y, Root. Ordering

X and Shift X by EST because they have the same (lesser) path, we obtain Shift X,

X. Thus the final order of the virtual tiles in our example is A, B, Shift Y, Y, Root,

Shift X, X.

At this point, the virtual dependency graph is copied for reversion. If the next

part of the merge phase does not produce the necessary number of virtual tiles, the

virtual dependency graph is reset to this point.

Finally, in the sixth step of the merge phase, the virtual tiles are merged together

in a bottom up greedy fashion in the following way. The algorithm walks through

each virtual tile vtile and attempts to merge vtile with other related virtual tiles

until no other merges are possible. Currently we only consider merging vtile with

its parents or with spouses (parents of children) that share a path id with the original

(pre-merge) vtile, but we are investigating when it is reasonable to add siblings

(children of parents) or children as well. In order to encourage merges that reduce

45

communication along the critical paths, the algorithm keeps a priority queue priQ

sorted as before, and considers merges with relatives in the order that they appear on

priQ. PriQ is initialized with all parents and spouses of vtile, and whenever a merge

with some virtual tile on priQ is successful (determined as described below), any new

parents or spouses are added to priQ. Each virtual tile is removed from priQ after a

merge between it and vtile is considered, and this continues until priQ is empty, at

which point vtile is set to the next virtual tile in the ordered list. Pseudocode for

this loop is given in Figure 4-7.

While the priority queue remains non-empty, we determine whether a merge be-

tween priQhead, the element at the head of priQ, and vtile succeeds or fails. The

list toMerge is initialized with priQhead and vtile, and is then defined recursively:

if merging the virtual tiles of toMerge would create a cycle (this is where the palettes

are used), then all virtual tiles in that cycle are added to toMerge. Next, the following

terms are determined:

cost := the execution time of all the nodes in toMerge as determined by a simple list

scheduler

conf := the number of virtual tiles in toMerge that represent a memory id

conf c := 20 (the cost of data conflict; this value has been used because it has empir-

ically been shown to work well; additional possibilities for determining conflict

cost are presented in Chapter 7)

commc := 5 (the cost of additional communication; again, this value has been used

because it has empirically been shown to work well)

ncm := the number of virtual dependencies between virtual tiles in toMerge and

virtual tiles not in toMerge

ocm := the number of virtual dependencies between vtile and other virtual tiles

phystiles := the number of physical tiles to which the virtual tiles in toMerge are

mapped

46

If phystiles < 2 and

cost + conf c * (conrf - 1) + commc * ncm <= windowsize + commc * ocm,

the considered merge is deemed successful and all virtual tiles in toMerge are merged

together. In this case, all nodes in toMerge are removed from priQ and new parents

and spouses of vtile are added to priQ. If the merge fails, we note whether the

merge failed because we tried to merge fixed virtual tiles (phystiles >= 2) or because

the window size was not large enough. We remove priQhead from priQ whether the

merge succeeds or fails.

After walking through all of the virtual tiles, some number of post-merge virtual

tiles exist. If the number of virtual tiles is less than or equal to the number of

physical tiles, then the basic block moves on to the next phase, tile assignment. If

the number of virtual tiles is greater than the number of physical tiles, however, one

of two things happens. If all failed merges in this phase were due to trying to merge

fixed virtual tiles (as opposed to having too small of a window size), the walk through

each virtual tile is repeated, ignoring any cycles. That is, in considering each merge,

only priQhead and vtile are added to toMerge; any virtual tiles in created cycles

are ignored. This allows us to do placement for basic blocks in the presence of cycles

that can not be merged away. Otherwise, the window size was too small for some

merge to succeed. In that case, the virtual tiles are reverted to a pre-merge state, the

window size is increased, and the last (sixth) step of the merge phase is attempted

again. This continues until a suitable number of virtual tiles is obtained.

In our example, the seven virtual tiles shown in Figure 4-2(c) are merged down

into the four virtual tiles shown in Figure 4-1 in the following way. First, tile A is

considered for merges first because it appears first in our ordering (constructed in

step five). Recall that the window size is 8 and that this puts a limit on the final cost

of any merges. Virtual tiles A and B conflict because they are mapped to different

memory ids, so the conflict cost (20) plus the cost of the resulting virtual tile (10:

cost 4 plus cost 4 plus the latency of the load of B, 2) is too high; tiles A and B are

not merged. However, A is considered for a merge with Shift X; this merge succeeds,

creating virtual tile A Shift X cost 5. B is then merged with Shift Y but not with

47

Y (Y and B conflict). Y is not merged with Root because the resulting virtual tile

would be cost 12 (which is greater than the window size) and the communication of

Y would not be reduced. X is not merged with Root for the same reason. There are

thus five virtual tiles formed by this process, and since four are needed, the virtual

tiles revert to the original seven, the window size is increased, and the process repeats.

This occurs until the window size reaches 12, at which point Y is merged with Root

and four virtual tiles result.

4.4 Tile Assignment

This section describes the tile assignment phase, the phase responsible for taking

the final virtual tiles and assigning them to physical tiles. Note that, as mentioned

previously, the tile assignment occurs independently from the merge phase. Certain

restrictions are enforced due to the assignments of previous basic blocks, but otherwise

we assume first, that we can find a decent placement given the final virtual tiles and

second, that creating the appropriate number of virtual tiles without considering

placement yields an easier, cleaner merge algorithm and better clusters.

The tile assignment phase uses simulating annealing to determine a final place-

ment. Any virtual tile that already corresponds to a physical tile is immediately

placed on the appropriate physical tile. The remaining unmapped virtual tiles are

placed randomly across the remaining unoccupied physical tiles, with the constraint

that each physical tile can have at most one virtual tile (excluding the branches that

were removed from the virtual dependency graph at the first). This constraint is

held throughout the mapping process, as is the constraint that fixed virtual tiles

are mapped to their corresponding physical tiles. The simulated annealer then tries

to minimize communication distance, communication size, and most importantly, the

number and size of communication cycles. We determine number and size of cycles by

doing essentially a depth first traversal with visited list of the directed graph formed

by the physical tiles and the data sent across the interconnect between adjacent tiles.

After the initial assignment, simulated annealing is performed with the following

48

cost function, described below, until either an appropriate number of iterations has

been executed or the cost function returns cost 0. (This is the optimal cost.) Currently

the appropriate number of iterations is a hard-coded 5,000, but one could imagine

having the number of iterations decrease as the number of non-fixed virtual tiles

decreases. Clearly having a fixed number of iterations is not helpful given that the

number of target tiles can change (specifically, can increase), but currently we are

testing this module on at most 16 physical tiles; the bound for simulated annealing

does need to be more carefully planned and implemented for this module to be more

generally applicable. At each step, if the cost of the assignment at that step is less

than the optimal cost, then the optimal cost and assignment are set to the cost and

assignment evaluated at that step. When the simulated annealer exits, the assignment

chosen is that of the lowest-cost assignment found during the annealing process.

Define a link as a connection between two neighboring tiles across which data may

flow in a single direction. The cost function to evaluate each assignment takes into

account the premises of spatial software pipelining using the following rules: one, that

data travelling from a tile to a neighboring tile travels for free; two, that if the same

piece of data travels along two routes and the second route shares some initial links

with the first route, then the shared links are free for the second route; additionally,

if only the last link of the second route is different, then it is similar to point one,

and the last link of the second route is also free; three, that otherwise each piece of

data adds cost one for each link it must cross; four, that data entering an unoccupied

tile is doubled in cost (this represents the idea that unoccupied tiles may be used to

run other things); five, that if there is no dependency between any one tile and its

neighbor tile along a given route, then the data has "left the path", and data on every

link in that route after the path has been left is doubled in cost (this represents the

idea that dependencies between neighboring tiles forge channels by means of which it

is easier to propagate data); six, that the number of data words over the window size

(defined in the merge phase) that travel in either direction between two neighboring

tiles affects all tiles, and so the product of the difference and the number of tiles

is the additional cost due to too much traffic between two tiles; and seven, that

49

...............................

communication cycles affect the tiles by effectively multiplying the window size by

the number of tiles in the cycle, and so the additional cost due to each cycle is the

product of the window size, the number of tiles, and the number of tiles in the cycle.

Pseudocode for the cost function is given in Figures 4-8 and 4-9.

In our example, none of the virtual tiles must be placed on specific physical tiles,

so the initial assignment is random. However, the simulated annealer quickly finds

an optimal assignment for our example in which the cost is zero. The final placement

puts tile A on physical tile 3, B on 1, X on 2, and Y on 0 (see Figure 4-1). Recall

that the possible communication channels for the given tiles look like this:

0 -1
1 1
2 -3

Thus physical tile 0 has interconnect channels to and from tiles 1 and 2, but not to

3. Similarly, 1 and 2 cannot communicate directly. The final placement is appropriate

since tile 3 only receives data from tiles 2 and 1 (not counting the branch condition,

which originates on tile 0), tiles 2 and 1 each only receive data from 0 and send data

to 3, and tile 0 only sends data.

Since our example thus far is too simple to adequately show how the cost function

of simulated annealing is calculated, let us walk through a calculation of the layout in

Figure 4-4. In the figure, each square represents a physical tile, each oval represents

a virtual tile, and each arrow represents a virtual dependency. We assume that each

virtual dependency represented as a solid arrow represents one word of data, and that

the dotted arrows represent dependencies that encapsulate the same data word; that

is, the dotted arrows represent a single data word being sent to multiple destinations.

Each physical tile is labelled with a letter that we will use to refer to both the physical

tile and the corresponding virtual tile. Note that F and D do not have corresponding

virtual tiles. We will refer to virtual dependencies as edges for the rest of this example.

According to the first rule, all edges from a tile to a neighboring tile are free; thus

50

A-B, C-G, G-K, H-L, L-H, K-0, 0-N, N-M, M-I, I-J, and I-E are all free. The second

rule says that data already travelling along a given route is also free, including one

additional free edge. The dotted edges represent the same piece of data, therefore

C-K is completely free, and the C-K portion of C-P and C-O portion of and C-N are

free. The third rule says that otherwise each piece of data on each link adds cost 1;

we add 1 each for the B-F and F-G portions of B-G, 1 each for the G-K and K-0

portions of G-0, 1 each for the K-0 and O-P portions of C-P, and 1 for the O-N

portion of C-N. The cost is now 7. The fourth rule says that data entering an empty

tile should double in cost, so we add 1 additional for the B-F portion of B-G bringing

the total cost to 8. The fifth rule says that neighbors should communicate, stipulating

that data that has "left the path" should double in cost. We see that there is no edge

directly from B to F nor from 0 to P, but that certain edges do cross these links.

Thus the B-F portion of B-G is doubled, adding 2 to our cost, the F-G portion of

B-G is doubled, adding 1, and likewise, the O-P portion of C-P is doubled, adding 1

to our cost. This brings our total cost to 12. The sixth rule says that each word of

data over the window size increases the cost by the number of tiles. In our example

here, we assume that the window size is 2 and that the number of tiles is 16. The link

from G to K is shown carrying three words of data, adding 16 to our cost; similarly,

the link from K to 0 adds 16 to our cost, bringing the new cost to 44. Finally, the

seventh rule says that each cycle increases the cost by the product of the window size,

the number of tiles, and the number of tiles in the cycle. We see in Figure 4-4 that H

and L are in a two tile cycle, increasing the cost by 2 * 2 * 16 = 64, and that I, J, M,

and N are in a four tile cycle, increasing the cost by 2 * 4 * 16 = 128. Thus our final

cost in this example is 236. A better assignment would place P the virtual tile on P

on tile D, that on B on F, and that on A on B, reducing the cost by 8 (2 for the O-P

link, 4 for the B-F link, and 2 for the F-G link).

Recall that the final assignment is the assignment with the lowest cost found at

51

any point by the simulated annealer.

4.5 Branch Propagation Path

Once the tile assignment phase has completed, the branch propagation phase creates

the branch propagation route for the basic block. This phase only executes if a

branch condition needs to be propagated to all of the physical tiles. However, if a

branch condition does need to be propagated, this phase is responsible for trying to

reuse paths that already exist from the previous phases; if we use pre-existing paths

between tiles, we can avoid creating new inter-tile dependencies that could result in

unnecessary synchronization. This phase executes in two parts: in the first, each link

between two neighboring tiles is assigned a cost representing whether a dependency

exists between the two tiles; in the second, each tile is assigned a neighboring tile

from which to receive the branch condition. Note that this algorithm assumes that

some path connects the root tile to every other tile.

The first part of this phase is a simple test on each outgoing dependency from

each occupied tile ptile. (The virtual tiles have by this point all been assigned to

physical tiles.) If a dependency from ptile to its neighbor nt exists, then the link

from ptile to nt is assigned a cost equal to the EST of ptile. If a dependency from

nt to ptile does not exist, then the corresponding link is assigned a negative cost.

If no dependency in either direction between nt and ptile exists, the links in both

directions are assigned cost zero. In our example, the links from tile 0 to tiles 1 and 2

are assigned 0, the EST of tile 0, and the links from tiles 1 and 2 to tile 3 are assigned

12.

The second part of the branch propagation phase proceeds as follows. First, the

root tile is assigned to itself as its branch condition source (since the root tile is the tile

from which the branch condition propagates). While some tile still has an unassigned

52

source, the following steps are executed. For each physical tile (including those that

are unoccupied), a branch condition source is assigned to any tiles that do not already

have one if possible; the methodology for assigning such a source is described in the

following paragraph. If all tiles have assigned sources, the loop exits. If no tiles were

assigned sources in this iteration, the tile with the earliest EST that can accept a

forced assignment is forced. Note that some unassigned tile must accept a forced

assignment at this point. This loop is repeated until all tiles have been assigned a

source, at which point the branch condition propagation path has been generated,

and the path may be noted for RawCC.

The algorithm for determining the branch condition source tile for each non-root

tile is as follows. (Pseudocode is given in Figure 4-10.) If some of the tile's parents

have not been assigned and the assignment is not currently being forced, no source

tile is assigned. If a tile has no incoming dependencies (i.e. all links to it were assigned

a value less than or equal to zero in the first portion of this phase), the source tile is

set to be the neighboring tile with the least EST that has already received the branch

condition. If no neighboring tile has received the branch condition, no source tile is

assigned - the assignment fails. If a tile does have incoming dependencies, the source

tile is set to be the neighboring tile that has already received the branch condition

and for which the link value is minimal but positive. If this fails and the assignment

must be forced, the source tile is set as before to be the neighboring tile with the

least EST that has already received the branch condition.

In our example, every tile is assigned a branch condition source tile on the first

iteration. Tile 0 is assigned itself because it is the root tile. Tile 1 has one incoming

dependency from tile 0; since tile 0 has already received the branch condition, tile

1's branch condition source tile becomes tile 0. Similarly, tile 2's branch condition

source tile becomes tile 0. Tile 3 has two incoming dependencies, one each from tiles

1 and 2. Since both tiles 1 and 2 have received the branch condition, tile 3 receives

53

the branch condition via the length with the lowest value; since both links from tiles

1 and 2 to tile 3 have value 12, tile 3's branch condition source tile becomes 1.

Once all of the tiles have been assigned a branch condition source tile, it is easy to

verify that the branch condition propagation route has been constructed appropriately

(with no cycles, for example) while creating the text required for the compiler. First,

initialize an array of length two times the number of tiles to -1, and ensure that each

tile has a unique id between zero and the number of tiles. Then call a recursive

function, defined as follows, on the root tile. The recursive function, called on tile

ptile, first verifies that the value at index two times ptile is less than zero; if not, the

route was constructed in error. Next, the function sets the value at index two times

ptile to the assigned branch condition source tile, srct, and it then sets the value at

the next index to ptile. Finally, for each neighboring tile nt, if nt's branch condition

source tile is ptile, the function calls itself with nt as the argument. Note that srct

is a neighbor of ptile, but can not have ptile as its source tile. Pseudocode may

be found in Figure 4-11. Once the function returns from the root tile, any indices in

the array still less than zero indicate that the branch condition propagation route has

not reached all tiles appropriately. (With the above algorithm for creating the route,

though, the route is always created appropriately.) The final route for our example

would be '0 0 0 1 0 2 1 3', indicating, as expected, that our route was correctly

generated.

4.6 Reconciliation

After the merge, tile assignment, and branch propagation path phases complete for

a given basic block, as discussed in Sections 4.3, 4.4, and 4.5, the next basic block to

undergo these phases must be reconciled to previous assignments. This phase may

actually be thought of as occuring before the merge phase for a given basic block, but

54

for clarity we have left it until now for discussion. Essentially, this phase is responsible

for updating the virtual dependency graph based on the assignments of previous basic

blocks. That is, any defId or memory id that appears in basic block bblock and that

has been assigned to a physical tile ptile in a previous basic block must also be

assigned to ptile in bblock. Additionally, multiple virtual tiles in bblock may have

nodes with defids or memory ids that must be mapped to ptile; all of these virtual

nodes must be merged together in bblock before the merge phase of bblock initiates.

Once all virtual tiles in all basic blocks have been assigned physical tiles, the

resulting clustered instructions may be scheduled and run. Note that the outcome is

very dependent on the order in which basic blocks are assigned. As mentioned earlier,

this is still done by hand.

55

1! ~

12

conma2:

25

0
move

move

17
addiu

4 2 18 19
la sl move siti

5 22 20
addu move xori

6 21
1w sltiu

commO

comi3

14

15
addu

3
la

8
addu

9
1W

7
s1.

Figure 4-1: The final tile assignment of the canonical case described in Chapter 1.

Rectangles represent physical tiles on Raw and surround the instructions assigned to

execute on the tiles; the switch for each tile is represented by the dotted oval labelled

comm. Ovals represent instructions; directed solid arrows between ovals represent

data-bearing dependencies. Each dependency is drawn in the color of its source in-

struction's tile; inter-tile dependencies are represented by a chain of arrows connecting

the instructions through the comm switches along the route. The root tile is shown

in black, as are all branch dependencies. If a node is memory mapped, the text of

the node is in the color corresponding to the memory id. The dashed ovals share a

common defid.

56

x
01314 1.
5578 \tl,

path I?

12
.4th

Stall X
coati 14

55712 tO
path 17

A
80864
ES! I?
path 21

65

0

177

10 2

1
19

is

O

,-- I0

SH

L 22
4?

19SM \,

20 1 -- 7

L z

(a) Virtual tiles after creating virtual map (b) Virtual tiles after merging in to root tile

Y
80614
Esro \jaJT

.4th

shiftY
B 80611 7

caal4 (~\
ESTI3 \~t~j 55712 \ dl /
path 2I~ p162!

~tdd6-i

/
K:

(c) Virtual tiles after merging cycles together

Figure 4-2: The intermediate stages of the virtual dependency graph when performing
spatial software pipelining on the canonical case described in Chapter 1. Figure (a)
shows the virtual dependency graph immediately after creation; figure (b) shows the
result of merging virtual tiles with dependencies to the root tile into the root tile;
figure (c) shows the result of removing cycles. The figure specifications are the same
as in Figure 4-1, which shows the final layout found by spatial software pipelining.

57

4 6J

owS 0

4

17

21

0
(a) 1

4

0
1

3

1

4

0
(b) 1

10

0

1
2

o 10

3

110 44

10

(0)
(c)

A (4) 0)0 0)

0) (4)
0) A

1 A

(4)

Virtual Virtual
Tile: Dependency:

T
Plete

color of the

C o stG
de ncy

_LEG END *

Figure 4-3: Three examples demonstrating EST, path, and cost of virtual tiles, and
color and palette of virtual dependencies. Figure (a) demonstrates how the palette
is constructed for each virtual edge, figure (b) demonstrates how EST and path are
calculated for each virtual tile, and figure (c) demonstrates the effects of dependency
cycles on palettes. Note that the EST and path variables in (c) are in parentheses;
these are not the EST and path used by the current module, but are possibilities
for a more correct implementation. All other EST and path variables are shown as
calculated in the current module. Recall that when considering the merge of two
virtual tiles, the merge creates a new dependency cycle when the palette of some
incoming dependency to one of the tiles is a strict superset of the palette of some
outgoing dependency from the other tile.

58

Window size = 2

0

17

J K

128

Co

D

64

2

st = 236

Figure 4-4: An example demonstrating how the cost function is calculated in simu-
lated annealing in the tile assignment phase. Each square represents a physical tile,
each oval a virtual tile, and each arrow a virtual dependency. The dotted arrows all
represent the same data word being sent to different destinations. The window size
is assumed to be 2, and the number next to each edge on each link represents the
amount added to the cost due to that edge on that link. The numbers within or just
next to cycles represent the additional cost added because of the cycles. The total
cost of this layout is 236.

59

void createVirtualDepGraph(int numtiles) {
make physical tile representations to hold end-of-loop branches;
for each node n (instruction) {

if (n is an end-of-loop branch on physical tile pt) {
add n to pt; continue; }

Virtual Tile n-so-far = null;
if (n has a memory id mi) {

if (mi has been seen before on some virtual tile tmi) {
add n to tmi; n-so-far = tLmi; } }

if (n has a defId di) { 10

if (di has been seen before on virtual tile tLdi) {
if (n-so-far) {

merge(n-so-far, tdi); }
else {

add n to tdi; n-so-far = tdi; } } }
if (n is fixed on physical tile pt, but has no memory id or defld) {

if (pt has been seen before on virtual tile tpt) {
add n to t-pt; /* Lpt is a virtual, not a physical, tile *7
n-so-far = tpt; } }

if (n-so-far is still null) { 20

create a new virtual node t to encapsulate n; } }

for each virtual tile t in the set of virtual tiles {
for each node n in t {

for each incoming dependency d to n {
virtual tile src = the virtual tile of the src node of d;
if (src == t) { /* self-edge; nothing to create */ }
if (there exists a virtual dependency vd from src to t) {

add d to vd; }
else { 30

create a virtual dependency from src to t encapsulating d; } } } } }

Figure 4-5: C-like pseudocode exhibiting how to create the virtual dependency graph.

60

forceIdsTogether({
for each basic block b { lsForcedMerges(b, mem-prs, def-prs, mem-deLprs); }
do until no more change {

changed = false;
for each basic block b {

if (doForcedMerges(b, mem-prs, def-prs, mem-deLprs)) {
changed 1= lsForcedMerges(b, mem-prs, def-prs, mem-deLprs); } } } }

bool doForcedMerges(BasicBlock b, list mem-prs, list def-prs, list mem-deLprs)
{

bool changed = fa
for each pair (ml

if (a virtual tile
a virtual tile

merge(tl, t2);
for each pair (dl,

if (a virtual tile
a virtual tile

merge(tl, t2);
for each pair (ml

if (a virtual tile
a virtual tile

Ise;
m2) in mem-prs {
tl mapped to ml exists in b &&
t2 mapped to m2 exists in b && t1= t2) {

changed = true; } }
d2) in def-prs {
t1 mapped to dl exists in b &&
t2 mapped to d2 exists in b && t1 != t2) {

changed = true; } }
d2) in mem-def-prs {

t1 mapped to ml exists in b &&
t2 mapped to d2 exists in b && t1 != t2) {

merge(tl, t2); changed = true; } }
return changed; }

bool IsForcedMerges(BasicBlock b, list mem-prs, list def-prs, list mem-deLprs)

{
bool changed = false;
for each virtual tile t {

if (a node (instruction) n1 exists in t mapped to memory id ml &&
a node n2 exists in t mapped to a different memory id m2 &&
the pair (ml, m2) is not in mem-prs && nor is (m2, ml)) {

add (ml, m2) to mem-prs; changed = true; } }
if (a node n1 exists in t mapped to defId dl &&

a node n2 exists in t mapped to a different defid d2 &&
the pair (dl, d2) does not exist in def-prs && nor is (d2, d1)) {

add (dl, d2) to def-prs; changed = true; } }
if (a node n1 exists in t mapped to memory id ml &&

a node n2 exists in t mapped to defid d2 &&
the pair (ml, d2) does not exist in mem-deLprs) {

add (ml, d2) to mem-def-prs; changed = true; } }
return changed; }

Figure 4-6: C-like pseudocode for loop to enforce memory id and def~d mapping

consistency across basic blocks.

30

40

61

10

20

,I

int mergeNodeso {
7* returns the number of virtual tiles that result from this

function; this function is called within a loop that first resets
the virtual tiles to those of just before the first time this was
called, calls this, and then repeats if the number returned by
this is > the number of physical tiles *7

for each tile t in the list of virtual tiles {
resetPriQo;
path-o-interest = t->path-id;
addParentsToPriQ(t); 10
7* adds the other relatives - spouses, siblings, children - to the

priQ if their path-ids are the same as the path-o-interest*/
addRelativesToPriQ(t, path-o-interest);
while (!priQ.empty() {

Tile toCheck = pop the head off priQ;
int new-comm-cnt = 0;
7* checkMerge returns the estimated cost of merging t, toCheck

and all virtual tiles in any dependency cycles */
int tmp = checkMerge(t, toCheck, new-comm-cnt);
int curr-comm-cnt = getNumComms(t); 20

int COMM-CYCLES = 5; /* count each communication as 5 cycles *7
if ((tmp + (COMMCYCLES * new-comm-cnt)

<= winSize + (COMMCYCLES * curr-comm-cnt))) {
addParentsToPriQ(toCheck);
addRelativesToPriQ(toCheck, path-o-interest);
merge(t, toCheck); } } }

return size of virtual tiles; }

Figure 4-7: C-like pseudocode for the function used to merge virtual tiles. This
function is called after dependency cycles have been merged away (if such merges
were possible).

62

int calcLayoutEntropy() {
for each tile t in the list of virtual tiles {

/* empty all incoming links to t of any source instruction ids *7
zeroSrcs(t);
for each outgoing dependency d from tile t { d->flag = false; } }

int ent = 0;
for each tile t in the list of virtual tiles {

for each outgoing dependency d from tile t {
ent += calcEdgeEntropy(t, d, d->dst->phsyical tile id); } }

for each tile t in the list of virtual tiles { 10
ent += NEEdgesConflictCost(t);
ent += NEEdgesOversizeCommCost(t, nTiles); }
ent += inCommCycle(t, winSize, tGoal, nTiles);

return ent; }

int NEEdgesConflictCost(Tile t) {
int ret = 0;

/* conflict due to bidirectional movement *7
for each neighbor tile nt that t monitors { /* N and E neighbors *7

if (link(t, nt)->srcs->size != 0 && link(nt, t)->srcs->size != 0) { 20

ret += nTiles * (link(t, nt)->srcs->size+link(nt, t)->src->size); } }
return ret; }

int NEEdgesOversizeCommCost(Tile t, int nTiles) {
int ret = 0;

/* conflict due to too much movement *7
for each neighbor tile nt that t monitors { /* N and E neighbors *7

if (link(t, nt)->srcs->size + link(nt, t)->srcs->size > wSize) {
ret += nTiles*(link(t,nt)-> srs->size+link(nt,t)->srcs->size-wSize);

return ret; }
int inCommCycle(Tile t, int winSize, Tile goal, int nTiles) { 30

if (t->flag) {
if (t == goal) { t->comms += winSize * nTiles; }
return 0; }

t->comms = 0; t->flag = true;
for each neighbor tile nt { /* N, S, E, W *7

if (link(t, nt)->srcs->size() > 0) {
inCommCycle(nt, winSize, goal, nTiles); } }

t->flag = false; return t->comms; }

Figure 4-8: C-like pseudocode for the cost function for simulated annealing. The
function calcLayoutEntropy walks through each dependency and adds the appropriate

cost due to that dependency; additionally, it calls two helper function to add in the

cost due to conflicting data flow and too much data flow.

63

int calcEdgeEntropy(Tile first-tile, Dependency me, int dst-id) {
if (me->flag) { return 0; } /* saw already; cost included *7
Tile src-tile = first-tile;
/* getRoute returns the next tile in routing from src to dst_id;

in Raw, this is dimension ordered routing by assumption *7
Tile next-tile = getRoute(src-tile, dst-id, x);
if (next-tile->id == dst-id) {

7* add the srcs - the ids of source instructions - of this dependency
to this link if they are not already there *7

addSrcs(src-tile, next-tile, me); 10
/* don't add anything to the entropy cost; this is a free edge *7
me->flag = true; return 0; }

int ent = 0;
while (src-tile->id != dst-id) {

/* look at all smaller dependencies that might use the same route
path first so that their srcs are added to links first *7

if (next-tile->id != dstid &&
there is a dependency de from first-tile to next-tile) {

ent += calcEdgeEntropy(first-tile, de, next-tile->id); } 20

src-tile = nexttile; next-tile = getRoute(next-tile, dst-id, x); }

src-tile = first-tile; next-tile = getRoute(src-tile, dst-id, x);
bool on-path = true; int old-ecnt = INTMAX;
while (src-tile->id != dst-id) {

if (on-path && there is no dependency from src-tile to next-tile) {
on-path = false; }

/* if any srcs are already on this link from src to next, those srcs
are free; addSrcs returns the number of new srcs on this link *7

int ecnt = addSrcs(src-tile, next-tile, me); 30

int toadd = ecnt;
if (old-ecnt < ecnt && next-tile->id == dst-id && on-path) {

/* free edges for those already heading to src-tile *7
toadd = old-ecnt; old-ecnt = ecnt; }

if (next-tile is not occupied) { toadd *= 2; }
if (!on-path) { toadd *= 2; }
ent += toadd;
src-tile = next-tile; next-tile = getRoute(next-tile, dst-id, x); }

me->flag = true; return ent; }

Figure 4-9: Additional C-like pseudocode for the cost function for simulated anneal-
ing. This function calculates the appropriate entropy due to each dependency.

64

bool choosePropIn(Tile t, bool force) {
/* returns true iff incoming changes */
if (t->incoming >= 0) {

return false; }
if (t has root) {

t->incoming = t->id;
return true; }

else if (t has virtual tile assigned && !force) {
for each dependency d incoming to t {

if (source of d is unassigned) { 10
return false; } } }

if (t has no incoming dependencies) {
/* that is, every link(nt, t)->value is <= 0 for every neighbor

tile nt */
int min-est = INTMAX;
for each tile nt neighboring t {

if (nt->incoming >= 0 && nt->EST < min-est) {
min-est = nt->EST;
incoming = nt; } } } 20

else {
int link-value = INT-MAX;
for each tile nt neighboring t {

if (nt->incoming >= 0 && link(nt, t)->value < link-value) {
link-value = link(nt, t)->value;
incoming = nt; } }

if (incoming < 0 && force) {
int min-est = INT-MAX;
for each tile nt neighboring t {

if (nt->incoming >= 0 && nt->EST < min-est) { 30

min-est = nt->EST;
incoming = nt; } } }

}

if (t->incoming >= 0) {
return true; }

else {
return false; } }

Figure 4-10: C-like psuedocode for the algorithm to determine the branch condition
source tile for each non-root tile.

65

traverseBBroute(tile t, int[] visited) {
if (visited[2*t->id] >= 0) {

error; }
visited[2*t->id] = t->incoming; /* src in route *7
visited[(2*t->id) + 11 = t->id; /* dst in route */

for each tile nt neighboring t {
if (nt->incoming == t->id) {

traverseBBroute(nt, visited); } } }

Figure 4-11: C-like pseudocode for verifying appropriate construction of branch con-
dition propagation route.

66

Chapter 5

Module Interface Specifications

This chapter gives the exact specifications for the spatial software pipeling module's

interaction with RawCC. In addition to explaining how to produce and use the assign-

ments of the module, this section delineates the format of all files used as interfaces

between RawCC or the user and the module. The module uses a post-optimization

dependency graph based on RawCC's low-level IR to determine appropriate memory

object and instruction assignments. Figure 5-1 illustrates how the spatial software

pipelining module interacts with RawCC and shows that the module essentially re-

places the memory bank management and instruction assignment phases of RawCC.

The figure may be referred to throughout the rest of this chapter; in the figure,

solid lines indicate RawCC, dotted lines indicate the additions of the spatial software

pipelining module, and the grayed boxes indicate the phases of RawCC replaced by

the module. Each arrow represents communication of some form via the interfaces

described in the rest of this section.

5.1 Interaction with RawCC

This section describes the interactions between RawCC and the spatial software

pipelining module. RawCC has the ability to write memory object types and place-

67

ments to a file (objects.out) and to place memory objects based on the input file ob-

jects.in. Similarly, RawCC can write instruction dependendency graphs and intsruc-

tion placements to a file (sched.out) and can force instruction placement based on the

input file sched.in. RawCC can do any of these four things in any combination. A perl

script uses objects.in, objects.out, and sched.out along with multiple runs of RawCC

to create the memory map file. An additional run creates an appropriate sched.out

file for use by the spatial software pipelining module. The module produces objects.in

and sched.in representing the final placement; these are used by another full run of

RawCC to create the final executable.

The various input files required by the spatial software pipelining module are

produced as follows (see Chapter 4 for a full description of the maps needed for

the module). First, the user must provide the basic block ordering required by the

module. This ordering is provided in the file block.map, described in Section 5.5. A

shell script performs the remaining steps described. Second, a perl script described

in Section 5.2 uses multiple runs of RawCC on the target program to create the

required memory map; the script produces the file sched.map. Third, RawCC is used

to produce objects.out for the target program, and another perl script modifies this

file to produce the zero memory map, an objects.in that maps every memory object

to Tile 0. The format of the objects.in/out files is described in Section 5.3. Fourth

and finally, RawCC is used to produce the zero instruction map (via objects.in), a

sched.in that maps every instruction to Tile 0. The format of the sched.in/out files

is describe in Section 5.4.

Once all files required by the module have been produced (i.e. block.map, sched.map,

the zero objects.in, and the zero sched.out), the module is run to produce the files

objects.new and sched.new. These two files represent the final memory object to tile

and instruction to tile mappings determined by the modules, and they are in the

format of the objects.in/out and sched.in/out files respectively. Objects.new may be

68

used immediately as objects.in, and sched.new may be used as sched.in for a final tile

assignment. Note that scheduling is done by RawCC after the final assignments ob-

jects.new and sched.new are produced. Again, Figure 5-1 illustrates this interaction.

5.2 The Memory Map

This section presents the perl script used to generate the instruction to memory map

needed by the spatial software pipelining module. This perl script is a hack; it would

be much faster, easier, and cleaner to have RawCC generate the memory map directly,

and this would allow for more flexibility as well. However, this would also entail

developing a new mechanism for specifying to RawCC which memory objects should

be assigned to which tiles. Integrating the memory map generator into RawCC, or

rather, integrating the spatial software pipelining module more fully with RawCC, is

one item left for future work (see Chapter 7).

The memory map is the interface defining which instructions correspond to which

memory objects. That is, every instruction in every basic block is mapped to at most

one memory id, and each instruction mapped to a memory id must be mapped to the

same tile as the corresponding memory object. This means that multiple instructions

mapped to the same memory id must be executed on the same tile. Note that in

general only loads, stores, and certain instructions involved in calculating the base

address of a load or store are memory mapped (i.e. mapped to a memory id). Most

instructions, such as floating point and alu operations, are not memory mapped.

The file specifying the memory map, sched.map, is formatted as follows. Each

line specifies a basic block identifier, an instruction identifier, and a memory object

identifier. The lines are sorted in order of basic block id and then instruction id. Thus

a portion of sched.map might look like this:

Block 13 Node 168 MemId 1

69

Block 14 Node 3 MemId 78

Block 14 Node 4 MemId 78
Block 16 Node 2 MemId 17

Block 16 Node 5 MemId 15
Block 16 Node 8 MemId 16

The perl script used to create sched.map works as follows (skeletal perl is provided

in Figure 5-2). First, it obtains the memory ids of all memory objects in the target

program; that is, it obtains the memory id of each memory object that appears in

objects.out. Next it places every object on tile 0 (not distributed). If the target

number of tiles is i + 1, the script iterates through i memory objects at a time,

assigns each memory object in that iteration to one each of tiles 1 through i, and

leaves all other memory objects assigned to tile 0. The script then uses RawCC to

produce a schedule for that iteration. (Note that it only makes sense to use the spatial

software pipelining module if the target number of physical tiles is greater than one.)

Then, if an instruction instr in basic block bblock in the resulting schedule is fixed

on tile tile (i.e. the instruction may not be assigned to any tile besides tile), then

(bblock, instr) is memory mapped to the memory object assigned to tile in that

iteration. Once all of the memory mapped instructions in the target program have

been discovered and noted, the perl script sorts the mappings by basic block id and

instruction id and finally creates the file sched.map.

5.3 Objects Files

The objects.in/out/new files specify a mapping from memory objects to physical

tiles. Objects.in specifies the tiles on which RawCC must place the memory objects,

objects.out lists the tiles on which RawCC did place the memory objects, and ob-

jects.new is the objects.in file produced by the spatial software pipelining module.

For each memory object in the target program, a line in the object file of interest

specifies a unique memory id, an object type (e.g. whether it should be distributed),

70

the physical tile on which the object resides or to which the object is mapped (the

two are equivalent), the number of tiles across which an object should be distributed,

the grain size by which an object should be distributed (e.g. four words of an array

per tile), and the source variable name to which the object corresponds. The lines are

ordered by increasing memory id. An object file might look like this (this is the actual

objects.out file used to distribute array B in the canonical case discussed throughout

this thesis):

Id 0 Type 0 Tile 1 Ntiles 1 Grain 1 Vars i
Id 1 Type 0 Tile 2 Ntiles 1 Grain 1 Vars a

Id 2 Type 1 Tile 0 Ntiles 4 Grain 4 Vars b

Id 3 Type 0 Tile 3 Ntiles 1 Grain 1 Vars x

Id 4 Type 0 Tile 0 Ntiles 1 Grain 1 Vars y

Id 5 Type 0 Tile 1 Ntiles 1 Grain 1 Vars time

Id 6 Type 0 Tile 2 Ntiles 1 Grain 1 Vars suiftmp

Id 7 Type 0 Tile 3 Ntiles 1 Grain 1 Vars

The rest of this section explains certain restrictions imposed on the current system

by the method used to create the memory map.

The current version of the spatial software pipelining module assumes that it is

best to place every distributable array on a single tile; that is, although an array may

be distributed across multiple tiles, each array is considered for assignment to only a

single tile. This assumption is merely a byproduct of the method for producing the

sched.map file. If RawCC were modified to assign memory ids to instructions directly,

it could easily assign different memory ids to the instructions in different iterations of

an unrolled loop. Suppose, for example, that a loop simply accesses each element of

an array with memory id arr. Then, unrolled four times, the body of the loop would

contain at least these four instructions accessing arr, supposing that the address of

the current index of arr is in ri:

Node Id 5 Tile 1 Fixed 1 lw r2, 0(r)

71

...............

Node Id 6 Tile 1 Fixed 1 lw r2, 4(rl)

Node Id 7 Tile 1 Fixed 1 lw r2, 8(rl)

Node Id 8 Tile 1 Fixed 1 lw r2, 12(r)

With the current method of mapping instructions to memory ids, each of nodes

5, 6, 7, and 8 will be mapped to memory id arr. However, RawCC would already

have the information that the array could be distributed across four tiles, one for

each original iteration in the unrolled loop; as such, RawCC could create a memory

id for each original iteration, arrO, arr, arr2, arr3. Then the indices of the array

in the first subset (such that index mod 4 is 0) would correspond to memory id arrO,

those in the second to arr, those in the third to arr2, and those in the fourth to

arr3. RawCC would then map node 5 to memory id arro, node 6 to arr, node 7

to arr2, and node 8 to arr3. This would allow the array to be distributed across

tiles if appropriate; there would not exist the current artificial restriction that all of

nodes 5, 6, 7, and 8 execute on the same tile. However, a new interface for passing

the final memory object assignments to RawCC would have to be developed, since a

legal memory object to tile mapping would be, for example, arrO and arr2 on Tile 0,

arri on Tile 1, arr3 on Tile 3. Such an assignment is currently not communicable to

RawCC as the array is still treated as a single memory object; a single object may be

either on a single tile or distributed evenly across a given number of tiles. Thus this

extension remains to future work. Currently the only way to enforce that an array

be distributed is to remove from the memory map all entries mapping instructions to

the array's memory id and to make sure in the sched.out file that all array accesses

(e.g. Nodes 4-7 in the above example) are fixed on their corresponding tiles and do

not share defIds with any other instructions.

Additionally, this method of determining instruction to memory id mappings and

passing the final memory assignments back to RawCC does not allow for migrating

objects. That is, the method enforces the restriction that a memory object must

remain on a given physical tile throughout the life of the program. However, it may

72

make sense for a memory object to be able to migrate from tile to tile, for example if

the cost of placing all accesses from every basic block onto the same tile is much more

than the cost of moving the memory object from one tile to another between basic

blocks. Again, RawCC may have the cost information available; if it could determine

that migrating a memory object beween two basic blocks would be cost effective, it

could simply give the same memory object different memory ids depending on which

basic block was accessing it. Then accesses to the object in one basic block would

be memory mapped to a different id than accesses to the same memory object in

another basic block. Again, this would require a different mechanism for creating

the memory map file sched.map and a different mechanism for handing the resulting

memory assignments back to RawCC.

5.4 Schedule Files

The sched.in/out/new files specify a mapping from each instruction in each basic block

to a physical tile. As with to the objects files, sched.in specifies the tiles on which

RawCC must place instructions, sched.out specifies the tiles on which RawCC did

place instructions, and sched.new is the sched.in file produced by the spatial software

pipelining module. Each basic block is listed in the sched files in the following manner.

Each basic block begins with a block header, followed by a list of all instructions in

the basic block (in identifier order) and information about each instruction. After

the list of instructions comes a list of intra-basic block dependencies and information

about each dependency. Each dependency is assumed to go from a source instruction

of lower id to a destination instruction of higher id; a minor change to the module

code could address this assumption.

Each basic block header is formatted as follows. First is a line listing the block

identifier. Following that is the total number of tiles, the number of tiles in the x

73

dimension, and the number in the y dimension on which the basic block may execute.

(The module currently assumes that the total, x, and y number of tiles is the same for

all basic blocks; when doing placement, it makes no checks to ensure that a memory

object or defId used in one basic block is placed onto a tile that exists in a later basic

block.) If the basic block ends with a conditional jump, the id of the instruction that

creates the branch condition, the root node, appears on the next line. The result of

the root node must be propagated to all physical tiles, and the path by which this is

done appears on the line after. The propagation path is a list specified as follows: for

each tile tile, if the tile is not assigned the root node and should receive the branch

condition from a neighbor tile nt, then the list includes 'tile nt'.

The lines after the basic block header represent instructions and are formatted as

follows. First is the instruction identifier, followed by the tile on which the instruction

is scheduled to execute. Next is a time, a cost representing the number of functional

unit cycles needed to execute the instruction, and a latency representing the number

of cycles after the cost before the result of the instruction becomes available. For

example, a lw (load word) instruction, cost 1, latency 2, takes one cycle of ALU time

for memory address calculation after which two cycles are needed for the memory

access to complete before other instructions can use the value loaded. Next is the

fixed variable indicating whether the instruction must be executed on the specified

tile or whether the instruction may be reassigned to a different tile. Immediately

following is a defld followed by the defCount, the number of instructions to which

that defld has been assigned. (Recall that instructions that share a defId must be

assigned to the same physical tile; the exception is stores and branches, which do

not have valid defIds.) Finally, each line includes the assembly representation of the

instruction.

The lines after instruction lines represent dependencies (edges) and are formatted

as follows. Each line representing a dependency contains the source instruction iden-

74

tifier, the destination instruction identifier, a variable representing a data type, and a

variable representing a dependency type. Dependency types may be true dependen-

cies (write-read), output dependencies (write-write), anti-dependencies (read-write),

or serial dependencies. True dependencies are those that actually represent data be-

ing transmitted between instructions and thus are the only dependencies that can

generate sources in the simulated annealing cost function described in Section 4.4.

All other dependencies are used to enforce instruction ordering; they must be included

in the dependency graph to generate cycles during the merge phase of the module

(Section 4.3) so that no dependencies are violated, but they do not represent actual

data movement and so need not be considered in the tile assignment phase.

A snippet of a sched file is shown in Figure 5-3.

5.5 The Basic Block Map

The file block.map simply specifies the order in which basic blocks should be evaluated

by the spatial software pipelining module. Recall that the merge and tile assignment

phases occur on each basic block independently of any basic blocks later in the list;

this makes it very important for the order of basic blocks given in block.map to be

appropriately determined. A bad ordering will yield bad clustering results. Currently

block.map is generated by hand by sorting the basic blocks by the product of the

number of times the block is executed and the initial window size as determined by

the module; any ties go to the basic block with higher id. Clearly the number of

times each basic block is executed could be generated by a profiler and included in

block.map, and the module could easily produce the order of the basic blocks itself

based on the appropriate product. However, this is left to future work.

75

Code
Optimizations

User or

. objects.ou. ---- --------- Profiler
Memory BankoCreate

men----------.- MemrytMap
objects.in- block map

~sched.map
Code

Generation
lobjects.new- --- --- --

.............

sc.ed... SSP Module
Instruction -- --------

Assignment 4_sched.in - -
... _. ... ~ c eg e

Instruction
Scheduling

Register
Allocation

Figure 5-1: Model of the interaction between RawCC and the spatial software pipelin-
ing module. Phases of RawCC are shown with solid lines; items added by the module
are shown with dotted lines. The phases of RawCC that are replaced by the spatial
software pipelining module are grayed out.

76

#!/usr/bin/perl -w
$UNROLL = shifto I I"";
call RawCC on the target program to create sched.out
system "make clean"; system "make MEMSOUT=1 $UNROLL";
get the original lines.
open(MEMSOUT,"<objects. out"); @lines = <MEMSOUT>; close(MEMSOUT);
$max = 0;
foreach $var (@lines) {
initialize every memory object to be on tile 0, not distributed

$var = s/Type \d+/Type 0/; $var =~ s/Ntiles \d+/Ntiles 1/; 10
$var s/Grain \d+/Grain 1/; $var =~ s/Tile ([^\d]?\d+)/Tile 0/;
if ($1 > $max) { $max = $1; } }

$ength = @lines;
%map-arr = ();
for ($id = 0; $id < $eength; $id += $max) {

if ($ength < $id + $max) { $max = $eength - $id; }
for ($i = 0; $i < $max; $i++) {

assign the next mem objs to the tiles from 1 to max-tile
$num = $i + 1; $eines[$id + $i] =~ s/Tile 0/Tile $num/; }

open(MEMSIN,">objects.in"); print MEMSIN @lines; close(MEMSIN); 20

call RawCC to create an instruction assignment using objects.in as base
system "make clean"; system "make MEMSIN=1 SCHEDOUT=1 $UNROLL";
open(SCHEDOUT,"<sched. out");
$beock = 0;
while ($sched = <SCHEDOUT>) {

if ($sched /Block (\d+)/) { $bock = $1; }
elsif (($sched =~ /Tile (\d+)/) && ($1 > 0)) {

(HACK) ignore fixed branches; otherwise, map it to the mem id
if (($sched /Fixed 1/) && !($sched =~ /bnez/)) {

$sched = /Node Id (\d+) Tile (\d+)/; $node = $1; 30

$mem = $id + $2 - 1;
$map-arr{$bfock}->{$node} = $mem; } } }

close(SCHEDOUT);
for ($i = 0; $i < $max; $i++) {

$eines[$id + $i] =~ s/Tile (\d+)/Tile 0/; } }
open(SCHEDMAP, ">sched. map");
sort this before printing
foreach $beock (sort {$a <=> $b} keys %map-arr) {

foreach $node (sort {$a <=> $b} keys %{$map-arr{$bfock}}) {
print SCHEDMAP "Block $block Node $node MemId " 40

."$map-arr{$block}->{$node}\n"; } }
close(SCHEDMAP);

Figure 5-2: A skeletal perl script to create the memory mapping file sched.map using

RawCC.

77

Block 26
Ntiles 16 X 4 Y 4
BBroot 28
BBroute 1 0 2 1 6 2 7 3 5 4 6 5 10 6 6 7 9 8 10 9 10 11 8 12 9 13 10 14 14 15
Node Id 0 Tile 10 Time -1 Cost 1 Latency 0 Fixed 0 Defld 2.147 DefCount 4

move $vr502.s32,$vr502.s32 #

Node Id 4 Tile 10 Time -1 Cost 1 Latency 0 Fixed 0 DefId 2.147 DefCount 4
move $vr502.s32,$vr502.s32 #

10
Node Id 20 Tile 12 Time -1 Cost 1 Latency 2 Fixed 0 DefId 2.161 DefCount 1

lw $vr516.f32,0($vr515.p32) #
Node Id 21 Tile 12 Time -1 Cost 2 Latency 0 Fixed 0 Defld 2.162 DefCount 1

li $vr517.f32,0x3727c5ac #
Node Id 22 Tile 12 Time -1 Cost 1 Latency 3 Fixed 0 Defid 2.163 DefCount 1

mul.s $vr518.f32,$vr516.f32,$vr517.f32 #
Node Id 23 Tile 12 Time -1 Cost 1 Latency 0 Fixed 0 Defld -1.-1 DefCount 0

sw $vr518.f32,0($vr515.p32) #
Node Id 24 Tile 10 Time -1 Cost 1 Latency 0 Fixed 0 DefId 2.164 DefCount 1

addiu $vr519.s32,$vr502.s32,1 #

Node Id 28 Tile 10 Time -1 Cost 1 Latency 0 Fixed 0 DefId 2.168 DefCount 1
sltiu $vr523.s32,$vr522.s32,1 #

Node Id 29 Tile 10 Time -1 Cost 1 Latency
move $vr502.s32,$vr520.s32 #

0 Fixed 0 Defid 2.147 DefCount 4

Src 4 Dst 24 DataType 1 DepType 0
Src 4 Dst 29 DataType 1 DepType 2
Src 4 Dst 29 DataType 1 DepType 1

30

20 Dst 22 DataType
20 Dst 23 DataType
21 Dst 22 DataType

1 DepType 0
2 DepType 2
1 DepType 0

Src 22 Dst 23 DataType 1 DepType 0

Src 24 Dst 29 DataType 1 DepType 2

Edge Src 0 Dst 4 DataType 1
Edge Src 0 Dst 4 DataType 1
Edge Src 0 Dst 4 DataType 1

DepType 1
DepType 0
DepType 2 40

78

20

Edge
Edge
Edge

Edge
Edge
Edge

Edge

Edge

Src
Src
Src

Figure 5-3: A snippet of a sched file, used for communicating the instruction-level
dependency graph and instruction assignments.

Chapter 6

Results and Analysis

This chapter briefly lists the assumptions made (Section 6.1) in the spatial software

pipelining module. In Section 6.2 this chapter presents the performance results the

spatial software pipelining module as compared to RawCC. Additionally, in Sec-

tion 6.4 this chapter goes over the conditions under which spatial software pipelining

is applicable. Finally, it covers which other optimizations may be useful when used

in conjunction with spatial softare pipelining (Section 6.5).

6.1 Implementation Assumptions

This section briefly lists the assumptions made by the implemented spatial software

pipelining module. These assumptions are either related to the module-RawCC in-

terface, removable by future work, related to the input, or easily fixed.

The assumptions related to the interface between the module and RawCC are

as follows. First, in Chapter 4, all branches ending a conditional basic block were

removed from the virtual tile and virtual dependency graph; to do this, the module

assumed that all such branches are fixed and of the form bnez, that such instructions

have no outgoing dependencies and only one incoming dependency from the root in-

struction, that there is exactly one such instruction per tile in corresponding basic

79

blocks, and that no other fixed bnez instructions exist. Clearly this is an erroneous

assumption (it precludes some of the benefits of asynchronous global branching), and

should be fixed. Second, to allow instructions with defIds and memory ids to be

mapped to alternative tiles, the module assumes that the fixed variable has no mean-

ing on instructions that are memory mapped or share defIds with other instructions

has no meaning. However, other fixed instructions are forced to remain on the phys-

ical tiles to which they were assigned. Additionally, the module assumes that all

negative defIds are unique.

These next assumptions may be removed by future work, Chapter 7. As discussed

in Chapter 4, the module assumes that a decent assignment can be found even when

the layout of each basic block is done without taking into account the effects on

later basic blocks. Additionally, the algorithms assume that separate merge and then

assign phases are better. Chapter 5 touched on the assumption that an array must be

assigned a single tile and cannot be considered for distribution; recall, however, that

this was solely due to the mechanism for mapping instructions to memory ids, and

that this assumption may be bypassed. That chapter also discussed the assumption

that memory cannot migrate between basic blocks, and again discussed the means to

bypass that assumption.

There are a few assumptions about the input dependency graphs that are due to

deficiencies in the current implementation. The first assumption is that the number

of totally unconnected subgraphs in a basic block's dependency graph is less than

the number of tiles. This assumption is due to the fact that there is currently no

mechanism for determining whether a merge phase failed because there were too

many unconnected subgraphs or whether it failed because the window size was too

small. In the first case, the module would need an additional bit of code to consider

merges between virtual tiles in different subgraphs. However, without the guarantee

that the tiles were in different subgraphs, such code could wreak havoc with the

80

current merge system by allowing non-cycle creating merges between tiles that were

very distantly related in the dependency graph. Such merges would violate spatial

software pipelining. The second assumption is simply that enforced communication

cycles are uncommon; this assumption is primarily due to the fact that the current

module does not handle cycles well (see Chapter 7).

These last few assumptions can be easily fixed if it turns out that they are in

error. First, the module assumes that RawCC's Space-Time scheduler [9] generates

switch code that routes data in dimension order (i.e. in the y dimension and then

the x dimension). This assumption is made when calculating the energy in a layout

for the simulated annealing phase. Second, the module assumes that two instructions

with different memory ids will have cache conflicts if placed on the same tile, and

the estimated cost of such a merge is increased correspondingly. Finally, the module

assumes that a true dependency is the only data-bearing dependency.

6.2 Performance

This section presents the performance numbers comparing the original execution times

of programs when RawCC alone performs the assignment to the new execution time

when the implemented spatial software pipelining module performs the assignment.

Speedup factors as well as execution times are shown in Table 6.1. Note that the

speedup for the canonical case with no optimizations looks fairly low. This is because

the code produced by RawCC does not distribute any of the arrays as it used to; the

runtime when distributing all of the arrays as before is 569,643, compared to which

the spatial software pipelining speedup is 3.178x.

The improvement for unstructured, not loop unrolled, is 2.142x. We believe,

however, that this number could improve significantly with the module modifications

discussed in future work.

81

Table 6.1: Performance comparison of RawCC to RawCC with spatial software
pipelining.

Source Number Optimizations Original Execution Speedup
Program Tiles Execution With SSP Factor
unstructured 16 none 7,465,525 3,484,997 2.142
canonical 4 none 259,141 179,230 1.446
canonical 16 unroll 4x 232,310 147,329 1.577

6.3 Unstructured Results

The spatial software pipelined version of the sparse matrix benchmark unstructured

gains a 2.142x speedup over the original layout produced by RawCC when no loop

unrolling is performed. Table 6.2 shows how this gain is apportioned to each inter-

esting loop in unstructured, and additionally shows how spatial software pipelining

performs on each loop when that loop is placed first. Note that some loops (3, 10, 77,

73, and 26) perform better when placed after other basic blocks than when place first

in spatial software pipelining; these loops benefit from being forced into certain as-

signments. 77, 73 and 26 are all traditional loops that regularly access certain arrays;

as mentioned, spatial software pipelining may not be able to help such traditional

loops. However, for comparison, other traditional loops (both large and small) are

17, 1, 22, 26, 70, 73, 80, 31, and 34; spatial software pipelining was able to help in

most of these loops. In each of the cases of 3 and 10, the undeveloped state of the

merge function is apparent; in both cases, the merge function made some bad local

merges that adversely affected the entire loop. In both cases, the dependency graph

is very unbalanced with many values used multiple times each throughout a single

calculation; this increases the number of outgoing dependencies from the virtual tiles

calculating (or loading) the values, and in general makes it harder for the merge func-

tion to work effectively. As we mentioned, this is a result of the undeveloped state of

the merge function; future work should investigate how to guide the merge function

82

Table 6.2: Breakdown of improvement to unstructured (not unrolled) for each loop
of interest. Loops are presented in the order in which their basic blocks are evaluated
by the spatial software pipelining module. Additionally, the actual execution time for
each loop is compared with the execution time for that loop obtained by evaluating
that loop first.

Source Times Original Execution Speedup Execution Optimal
Loop Executed Execution With SSP Factor If First Speedup
75 10 194,409 59,530 3.266 59,530 3.266
8 5 373,154 153,675 2.428 122,347 3.050
5 5 225,789 163,057 1.385 119,148 1.895
3 5 203,858 65,827 3.097 90,915 2.242
10 5 97,309 68,551 1.420 70,183 1.387
77 10 24,011 13,702 1.752 20,654 1.163
13 5 49,007 27,189 1.802 22,207 2.207
73 10 3,821 3,862 0.989 3,871 0.987
17 1 31,026 15,145 2.049 14,994 2.069
34 5 20,220 15,304 1.321 6,578 3.074
26 5 6,517 5,454 1.195 5,528 1.179
1 5 14,306 13,070 1.095 10,894 1.313
38 5 4,084 1,238 3.299 1,227 3.328
80 5 13,628 6,073 2.244 4,371 3.118
70 5 12,543 7,623 1.645 4,348 2.885
22 5 8,227 7,123 1.155 5,632 1.461
31 5 11,832 5,708 2.073 3,630 3.260
averagej- - - 1.895 T- 12.228

appropriately in such cases to produce better assignments and should investigate the

merge algorithm in more depth in any case.

6.4 Applicability

This section briefly describes the applicability of spatial software pipelining. Spatial

software pipelining is useful when compiling sparse matrix applications or applica-

tions with pipelinable loops with irregular accesses to memory. Clearly it is only

useful when targetting a multiprocessor, and it is most useful when compiling a pro-

gram in which most of the execution time is spent in loops. While spatial software

83

pipelining is also applicable when compiling traditional pipelinable loops with reg-

ular accesses, there is generally less pipeline parallelism than parallelism from loop

unrolling and modulo unrolling; in such cases, spatial software pipelining would not

do as well. The following features may affect the amount of parallelism that spatial

software pipelining can exploit in a given application. When the data flow graphs

cannot be easily pipelined because merging memory accesses creates large cycles, or

when memory objects within a program can not be partitioned to a fine enough de-

gree, spatial software pipelining may not be able to merge virtual tiles intelligently.

When the number of available processing units is high and necessary synchronization

for dynamic accesses is low, the cost of dynamic accesses may be amortized by the

distribution of compute cycles; in this case, spatial software pipelining may not be

able to find a similar amount of parallelism. Note that if spatial software pipelin-

ing produces a layout without iterating in the merge phase, then the presence of

additional tiles will only allow a better layout if there was conflict due to the tile

assignment phase. With respect to these constraints, there are two items of future

work: determining how important each of these factors is in general, and developing

spatial software pipelining mechanisms to relax these constraints.

6.5 Compatible Optimizations and Effects

This section mentions other compiler optimizations that are compatible with spa-

tial software pipelining. Most traditional compiler optimizations are compatible if

they are performed before the spatial software pipeliner. For example, code hoisting,

peephole optimizations, dead code elimination, and partial redundancy elimination

are all useful in conjunction with spatial software pipelining if they are performed

first. Performing these optimizations before spatial software pipelining allows the

module to work with accurate cost and instruction information. Loop unrolling and

84

modulo unrolling are also quite compatible with spatial software pipelining if done

before pipelining. Additionally, it would be very interesting to give the pipeliner the

power to replicate an instruction across some tiles if appropriate, to determine how

many times to unroll a loop, and, together with the rest of the compiler, to deter-

mine whether or not memory should migrate from one tile to another between basic

blocks (or even if the migration could be done while other useful work was taking

place). The first would allow the module to remove communication dependencies by

replicating certain instructions; the second would allow the module to fill idle cycles

(created, for example, by communication cycles) with useful work; the benefit of the

third has been discussed before.

85

86

..... - -19*.- u ardwa assummaluswillielmildhma.Maine.agisseldlEQataWUdidld

Chapter 7

Future Work

This presents future work stemming from this thesis. Although future work exists

both on my specific implementation and on developments on the idea of spatial soft-

ware pipelining in general, this chapter primarily relates future work on my specific

implementation.

7.1 Handling Communication Cycles

As mentioned in Chapter 4, the current implementation of the spatial software pipelin-

ing module performs badly with communication cycles that can not be removed. Pri-

marily this deficiency is due to the fact that we have not thought extensively about

how to define the EST and the path for virtual tiles that form part of a communi-

cation cycle. Not having the EST and path variables appropriately defined for such

virtual tiles affects the EST and path variables of all ancestors and descendants of

such tiles and adversely affects the merge phase of my spatial software pipelining

module. This in turn could lead to a bad memory and instruction assignment for

the affected basic block. Unfortunately, a bad assignment for one basic block could

adversely affect any subsequent basic blocks if subsequent basic blocks contain in-

structions using either the same memory objects or the same defIds as the badly

87

A"Ww" WW, "I'll", II_. -1- 11 .. - I

assigned basic block. Clearly, then, careful thought as to the appropriate assignment

of EST and path to virtual tiles involved in communication cycles would yield more

appropriate merges, assignments, and schedules than the current module. Luckily,

it appears that unavoidable cycles are rare in the most computation intensive loops

studied thus far.

7.2 Loop Unrolling and Software Pipelining

Once communication cycles are handled appropriately with respect to EST and path,

it should be a simple extension to add software pipelining to tiles involved in data

communication cycles. After the final tile assignments have been made, analysis

may be able to determine how to do traditional software pipelining on the tiles to

effectively utilize the parallel processing power available.

Any tile in a communication cycle may determine whether it needs to be unrolled

and software pipelined to make use of otherwise idle cycles. If a tile in a com-

munication cycles produces data in one instruction that is connected through true

dependencies and instructions on other tiles to an instruction on the original tile,

then the communication cycles terminates on that tile and the tile should be unrolled

and software pipelined. Traditional software pipelining in addition to spatial software

pipelining is aided by the fact that control flow information can be pipelined along

with data flow information; since the branch conditions can be pipelined right along

with the data, intermediate tiles may not need to be unrolled at all. This would be

the case, when, for example, all destination instructions of incoming dependencies

must be executed before any source instructions of outgoing dependencies.

Additionally, a tile in a communication cycle that should be unrolled and soft-

ware pipelined may determine the number of times it should be unrolled. Given a

window size, the number of intervening cycles may be calculated assuming that each

88

tile through which the data must propagate must be executed in full; the number

of intervening cycles is then the number of intervening tiles times the window size

plus a constant number of cycles for each interconnect. This number may then be

used to determine how many times to unroll the tile, and the prefix and cleanup code

are mutually exclusive exhaustive subsets of the instructions on the tile, and may be

determined by the software pipelining module. Of course, it becomes much more dif-

ficult when multiple communication loops terminate at the same point, or a separate

communication loop terminates at one of the virtual tiles in a communication loop,

or a dependency chain extends more than once around the communication loop.

7.3 Integrating with RawCC

As mentioned in Chapter 5, there is much room for improvement if the interface

between RawCC and the spatial software pipelining module is redefined. Having

RawCC generate the memory map directly rather than using the current perl script

hack would be much faster, easier, and cleaner and would allow for more flexibility.

RawCC, or an extension of RawCC, could then assign different memory ids to the

memory instructions corresponding to different iterations of an unrolled loop. This

would provide a nice mechanism for allowing distributed arrays, but would require

that RawCC treat different portions of an array as different objects (which it does not

currently do). Additionally, this may be more effective if different conflict costs for id

pairs were used instead of a single static conflict cost (see Section 7.5). Having RawCC

generate the memory map would also allow RawCC to determine when migrating a

memory object beween two basic blocks would be cost effective and to encapsulate

this in producing the memory map. (However, this does give rise to the thought that

other heuristics, such as "Place this memory object here if it is not too much trouble,"

would be useful in the simulated annealing portion of the spatial software pipelining

89

module.)

Additionally, it would be interesting to work more closely with the compiler to

help determine whether or not to use spatial software pipelining on given loops. That

is, as each basic block is processed by the spatial software pipelining module, the

resulting placement could be compared with that generated by RawCC alone (given

the defId and memory id restrictions thus far) to determine whether the module's

assignment is highly beneficial or highly detrimental to the estimated execution time

of that basic block.

7.4 Using Profiling Information

Currently the module user must generate block.map by hand for every program and

each unroll factor. A profiler used in conjunction with RawCC could generate iteration

counts and store these to block.map instead. A small addition to the current module

could easily take the iteration counts and generate the basic block orderings that we

are now generating by hand; this would decouple the ultimate effects of the module

from the clever machinations of the module user. Additionally, the profiler would help

determine when memory can afford to migrate, and the profiler results also could be

used to generate weights for each of the basic blocks in comparison to the others.

These weights would be useful in allowing cross basic block influence, described in

Section 7.5.

Additionally, the profiler could be used to generate conflict costs for each pair

of memory ids, where each cost represents the amount of conflict the two memory

objects are likely to have if they are placed on the same tile. However, a means of

communicating this information to the spatial sofware pipelining module would have

to be developed.

90

7.5 Using Influence Across Basic Blocks

There are two interesting ways in which the current module could be improved to

take into account information from basic blocks not yet processed. First, basic block

weights (mentioned above) could be used to help create conflict costs that differ

depending on which ids are being considered in a merge of two virtual tiles. Before

the merge function of each basic block begins, each id pair that occurs in later basic

blocks could be analyzed in each later basic block. For each pair a data structure

could store a number corresponding to the effect of assigning the pair to a single

tile. Such a number might be determined as follows. For each remaining basic block,

take the virtual tiles representing the two ids and simulate a merge between them.

Additionally, simulate the merge of any communication cycles created by their merge;

this will result in a cost, which may be divided by the initial window size of the basic

block. This number may be multiplied by the weight assigned to that basic block.

The final number assigned to a pair could be the maximum produced across all the

remaining unassigned basic blocks. Since any pairs already forced together by earlier

basic blocks will be assigned tiles and forced together during reconciliation, these pairs

need not be considered. Possible additional forced merges may be made incidentally

by the assignment if an id pair is assigned to the same tile in unrelated basic blocks;

the id pair costs could thus similarly influence the tile assignment phase.

This brings us to the second way in which the current module could be improved

to take into account information from unassigned basic blocks. In a neat alternative,

all of the merges could be done as now, but all of the tile assignment phases could

wait until after all merge phases had completed. Then, the simulated annealing cost

function could try to take into account the effects of any one tile assignment on later

basic blocks. The reconciliation phase would have to happen before each merge phase,

of course, but the implementation would not be much different. The difficulty would

be in getting the tile assignment phases to cooperate with each other, and it is not

91

clear how best to take into account later blocks, except that in all likelihood the basic

block weights would be quite convenient.

7.6 Improving the Tile Assignment and Virtual

Tile Merge Algorithms

The algorithms used for the tile assignment and virtual tile merge algorithms were

implemented without studying alternatives in depth. It would be interesting to see

how other algorithms affected the efficacy of the implemented module. Both the tile

assignment cost function and the merge algorithms most likely have a lot of room

for improvement, and should be revisited. Additionally, it would be interesting to

implement a check after the simulated annealing tile assignment phase to see if the

entropy for the optimal assignment was horrible. If so, increasing the window size,

redoing the merges, and retrying the simulated annealing step could help.

Also, currently the simulated annealer is not well written in terms of determining

how long the annealer should run. Currently this is hard-coded, which is clearly bad

when the algorithm is being run for an increased number of target tiles. This should

be fixed.

7.7 Determining and Increasing Applicability

In addition to providing appropriate data and instruction partitioning within loops, it

seems reasonable that spatial software pipelining could provide beneficial placement

for other types of code. Specifically, if the data flow in adjacent basic blocks can

be forced to follow the same channels, spatial software pipelining might provide the

same effect as in loops without actually having the basic blocks be loops.

As mentioned in Chapter 6, much work remains to be done in determining exactly

92

when spatial software pipelining is applicable to increase the applicability of the

spatial software pipelining module.

93

94

Chapter 8

Related Work

This chapter will briefly touch on aspects of other work related to spatial software

pipelining. Because spatial software pipelining is ultimately a clustering algorithm,

most of the work bearing on this thesis investigates alternative clustering algorithms.

Keep in mind, however, that the problem of optimally assigning instructions and data

to clusters is NP-complete; as such, each reasonably tractable and effective clustering

algorithm targets some subset of application types to try to schedule well, and simply

tries to avoid creating bad cluster assignments for the other applications. If a given

application type can be classified, then the appropriate clustering algorithm can be

used to generate clusters for that application. Spatial software pipelining targets

sparse matrix codes; specifically, it targets data heavy applications whose memory

access patterns to each memory object are nondeterministic.

Sections 8.1 and 8.2 will briefly discuss two clustering algorithms, Bottom-Up-

Greedy (BUG), and Partial Component Clustering (PCC). While these algorithms

are relevent in their approach to instruction placement, neither takes into account

memory placement when doing instruction placement. Dealing with the restrictions

imposed by memory placement is one of the main problems that spatial software

pipelining addresses, and as such spatial software pipelining must perform clustering

95

on a dependency graph that is not guaranteeably acyclic. Since BUG and PCC both

assume that the graph on which they are performing clustering is a DAG, neither is di-

rectly applicable to the problem at hand. Section 8.3 describes convergent scheduling,

a recent development in instruction scheduling with which spatial software pipelining

may be able to be integrated.

8.1 Bottom-Up-Greedy

Bottom-Up-Greedy, or BUG, uses two phases to do instruction placement, first walk-

ing a DAG from the leaves to the root nodes to create sets of possible functional

unit assignments for each node, and second walking back down the DAG from the

roots to the leaves to create the final instruction assignment. The final assignment of

each node is based on the estimated time the operands become available and avail-

able resources on each possible functional unit. Like BUG, spatial software pipelining

ignores register pressure and assigns nodes based on local information in the depen-

dency graph. However, spatial software pipelining additionally takes moves between

functional units into account and explicitly schedules such moves. BUG was originally

described in [6].

8.2 Partial Component Clustering

The first phase of Partial Component Clustering (PCC) closely resembles the merge

phase of spatial software pipelining. Like the merge phase in spatial software pipelin-

ing, the partial component growth phase of PCC works from the leaves up to the root

nodes, following the longest path backwards and merging nodes into a partial compo-

nent (like a virtual tile) until either the number of nodes in the partial component is

equal to a threshold or no more merges are possible. This is quite similar to the cre-

ation of virtual tiles, in that the threshold resembles the window size. However, here

96

the similarity ends. While spatial software pipelining iteratively repeats the merge

phase, PCC takes the partial components and assigns each one to some processing

unit, then tries to improve the assignment through iterative descent. Spatial software

pipelining does not do any assignment of instructions to functional units until the

number of virtual tiles has been reduced to at most the number of functional units.

PCC, however, does take into account register pressure and uses a reasonably accu-

rate model to predict the actual generated schedule. It would be interesting to see

if the model used here could be adapted and integrated with the cost function used

to generate the cost of a merge. This could be quite beneficial to spatial software

pipelining. More on PCC can be found in [7].

8.3 Convergent Scheduling

Convergent scheduling is another clustering mechanism recently developed to help

satisfy different constraints in a relatively independent manner when doing instruction

scheduling. Each type of constraint (e.g. register pressure, limiting communication

between processing units, scheduling the critical path without delays) is represented

by a pass that uses a defined interface to communicate its preferences for specific

assignments of instructions to functional units. Each instruction is assigned a weight

for each processing unit, and the passes use the defined interface to alter these weights

to reflect preferences for final instruction assignment. Thus each set of heuristics for

the different constraints can independently affect the final instruction placement,

allowing new heuristics to be developed and added easily to the instruction space-

time scheduler. More information can be found in [10]. It would be very interesting

to develop the premises behind spatial software pipelining into another pass to be

used in convergent scheduling. The method for limiting unnecessary synchronization

between functional units due to communication would have to be quite different, but

97

it may be possible to get the better results both for sparse matrix codes and for

other applications that might benefit slightly from the application of spatial software

pipelining.

98

Chapter 9

Conclusion

In this thesis, we have presented spatial software pipelining, a mechanism for de-

termining memory and instruction placement for pipelineable loops in sparse matrix

codes. Because such loops frequently do not have deterministic access patterns, an

alternative to simply interleaving the memory across available processing units (re-

sulting in expensive dynamic accesses) needed to be found. Spatial software pipelining

attempts to pipeline iterations of the loops across both processing units and intercon-

nect, avoiding dependency cycles between processing units and placing memory to

make use of data affinity. The primary concern in spatial software pipelining is to re-

duce unnecessary synchronization between processing units, allowing dynamic events

such as cache misses to affect surrounding processing units only through overflow of

the interconnect buffer space. That is, the goal of spatial software pipelining is to

attempt to force the communication dependency graph between tiles to resemble a

tree in order to decouple the processing units as much as possible.

We have presented the motivation behind spatial software pipelining, both in

theory and in practical application Chapter 3). We have presented the algorithms

used to implement spatial softare pipelining in a module on top of RawCC, and

have presented the speedup gained by spatial software pipelining as compared to the

i99

layout generated by RawCC with the same optimizations. We have shown that spatial

software pipelining can reduce the amount of time spent in execution of certain loops

by more than a factor of three, and have shown that decoupling processing units while

pipelining data across the interconnect as well as the processing units can drastically

reduce the effects of dynamic events (such as cache misses) on processing units other

than the receiving unit.

We have listed the assumptions that the implemented module makes, and we have

touched on some interesting aspects of the module and spatial software pipelining that

could be explored in future work. Many items left to future work involve increasing

the applicability and efficacy of the module, though also interesting would be studies

on the effectiveness of different merge and assignment algorithms in obtaining loops

that are appropriately pipelined. Finally, we have presented other work related to

this thesis.

100

Bibliography

[1] Vikas Agarwal, M.S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock

Rate versus IPC: The End of the Road for Conventional Microarchitectures. In

Proceedings of the 327nd International Symposium on Computer Architecture

(ISCA 2000), June 2000.

[2] Rajeev Barua. Maps: A Compiler-Managed Memory System for Software-

Exposed Architectures. PhD dissertation, Massachusetts Institute of Technology,

Department of Electrical Engineering and Computer Science, January 2000.

[3] Rajeev Barua, Walter Lee, Saman P. Amarasinghe, and Anant Agarwal. Memory

Bank Disambiguation using Modulo Unrolling for Raw Machines. In Proceed-

ings of the ACM/IEEE Fifth Int'l Conference on High Performance Computing

(HIPC), December 1998.

[4] Rajeev Barua, Walter Lee, Saman P. Amarasinghe, and Anant Agarwal. Maps:

A compiler-managed memory system for raw machines. Atlanta, GA, June 1999.

In Proceedings of the Twenty-Sixth International Symposium on Computer Ar-

chitecture (ISCA-26).

[5] Rajeev Barua, Walter Lee, Saman P. Amarasinghe, and Anant Agarwal. Com-

piler Support for Scalable and Efficient Memory Systems. In Proceedings of IEEE

Transactions on Computers, November 2001.

101

[6] John. R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD dissertation,

1985.

[7] Paolo Faraboschi, Giuseppe Desoli, and Joseph A. Fisher. Clustered instruction-

level parallel processors. Technical Report HPL-98-204, Hewlett Packard, HP

Laboratories Cambridge, December 1998. This is a full TECHREPORT entry.

[8] Walter Lee and Anant Agarwal. Evaluation of the Raw Microprocessor: An

Exposed-Wire-Delay Architecture for ILP and Streams. March 2004.

[9] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan

Babb, Vivek Sarkar, and Saman P. Amarasinghe. Space-time scheduling of

instruction-level parallelism on a raw machine. San Jose, CA, October 1998.

In Proceedings of the Eighth International Conference on Architectural Support

for Programming Language and Operating Systems (ASPLOS-8).

[10] Walter Lee, Diego Puppin, Shane Swenson, and Saman P. Amarasinghe. Con-

vergent Scheduling. Istanbul, Turkey, November 2002. In MICRO-35.

[11] Jesus Sanchez and Antonio Gonzalez. Modulo Scheduling for a Fully-Distributed

Clustered VLIW Architecture. Monterey, CA, December 2000. In Proceedings of

the 33rd Int. Symp. on Microarchitecture (MICRO-33).

[12] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors.

PhD thesis, 1989.

[13] Michael B. Taylor. The Raw Processor Specification. MIT Laboratory for Com-

puter Science, October 2003.

[14] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amaras-

inghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-Wen

102

Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy. Suif: An infras-

tructure for research on parallelizing and optimizing compilers. A CM SIGPLAN

Notices, 29(12), December 1996.

103

