
Machine Learning on Web Documents

by

Lawrence Kai Shih

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2004

@Massachusetts Institute of Technology, 2004

1
Author ..............

Department of ectrical Engineering and Computer Science
V, November 23, 2003

Certified by.. e

L-cLid R. Karger
Associate Professor

Thesis Supervisor

2

Accepted by..........

- Arthur U. smith
Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUI E
OF TECHNOLOGY

APR 15 2004 BARKER

LIBRARIES



2



Machine Learning on Web Documents
by

Lawrence Kai Shih

Submitted to the Department of Electrical Engineering and Computer Science
on November 23, 2003, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

The Web is a tremendous source of information: so tremendous that it becomes
difficult for human beings to select meaningful information without support. We
discuss tools that help people deal with web information, by, for example, blocking
advertisements, recommending interesting news, and automatically sorting and com-
piling documents. We adapt and create machine learning algorithms for use with
the Web's distinctive structures: large-scale, noisy, varied data with potentially rich,
human-oriented features.

We adapt two standard classification algorithms, the slow but powerful support
vector machine and the fast but inaccurate Naive Bayes, to make them more effective
for the Web. The support vector machine, which cannot currently handle the large
amount of Web data potentially available, is sped up by "bundling" the classifier
inputs to reduce the input size. The Naive Bayes classifier is improved through a
series of three techniques aimed at fixing some of the severe, inaccurate assumptions
Naive Bayes makes.

Classification can also be improved by exploiting the Web's rich, human-oriented
structure, including the visual layout of links on a page and the URL of a document.
These "tree-shaped features" are placed in a Bayesian mutation model and learning
is accomplished with a fast, online learning algorithm for the model.

These new methods are applied to a personalized news recommendation tool,
"the Daily You." The results of a 176 person user-study of news preferences indicate
that the new Web-centric techniques out-perform classifiers that use traditional text
algorithms and features. We also show that our methods produce an automated
ad-blocker that performs as well as a hand-coded commercial ad-blocker.

Thesis Supervisor: David R. Karger
Title: Associate Professor

3



4



Acknowledgements

My thesis begins, as I did, with my parents, who have always supported my dream
of achieving a PhD. My mom taught me, by example, to be self-sufficient, practical
and efficient; without those attributes, I would doubtless be graduating years from
now. My dad's intellectual curiosity, his joy in exploring and learning, is also a part
of me; without his influence, I would probably not be in graduate school in the first
place. My admiration of my parents only grows with time.

My committee was full of terrific professors who pushed me to grow by challenging
me to improve in areas that are not necessarily my strengths. David Karger, my
advisor, got me to think about broader, theoretical issues; about how I could formalize
and sharpen my intuitive ideas. Leslie Kaelbling taught me to pay attention to
scientific details: those items that transform good ideas into a good, clear, scientific
argument. Randy Davis taught me to improve the organization, flow and accessibility
of the thesis. It makes me happy to think about the talent and ability that was focused
on reviewing my thesis.

My roommates at Edgerton were a constant source of companionship and fun.
Along with my original roommates, Tengo Saengudomlert and Yu-Han Chang, we
had many great times-we ate well, played well, and competed in almost everything.
To their credit, they let me pretend foosball was a "sport" so I could be good at
something. Anyways, they were terrific and fun roommates. I also had good times
with many other Edgerton residents: Pei-Lin Hsiung, Eden Miller, Fumei Lam, Erik
Deutsch, Ayres Fan, and George Lee.

The Al Lab was also a great working environment, where my collaborators were
also my close friends. Jason Rennie, Jaime Teevan, and Yu-Han Chang all co-authored
papers with me; but we've also shared drinks, food, and laughs often. I also regularly
ate lunch with a group of people that included Jaime Teevan, Christine Alvarado,
Mike Oltmans, and Metin Sezgin. The AI Lab had many special events like Graduate
Student Lunch, the Girl Scout Benefit, and the Al Olympics (to editorialize, I think
some of the special culture of the Al Lab is diminishing with our merger into CSAIL).

Finally, I'd like to acknowledge those people who have stuck with me through the
years: Andy Rudnik has been a close friend for as long as I can remember; Joshua
Uy, my best friend all the way back in elementary school; Kristen Nimelli Truong and
Hajime Inoue who have kept in contact since college; Rudy Ruggles and Eric Droukas
from my days at Ernst & Young; and Sarah Rhee, a close friend through graduate
school.

5



6



Chapter 1

Introduction

People spend an enormous and increasing amount of time using the Web. According
to the October 2003 Nielsen/Net Ratings estimates1 , Americans now average 8 hours
at home and 18 hours at work surfing the Web. Some significant fraction of that time
is spent in navigation overhead-clicking links, opening new Web pages, locating
content, avoiding and closing advertisements, and so forth. This work focuses on
applications, like ad-blocking or content recommendation, that save users time and
aggravation when surfing the Web.

This work attempts to build applications that learn appropriate behaviors, rather
than receiving hand-written rules. Traditional ad-blocking involves periodic human
effort; an engineer writes new code and rules ("an ad is an image 250 by 100 pixels")
to block the evolving advertisements that appear. Our approach stresses that the
machine learn rules to distinguish between ads and content, since such approaches are
minimally intrusive to users. Similarly, we emphasize learning what content interests
a user, rather than having a user manually specify those interests.

A general and well-studied framework for such learning is the field of classification.
Classification algorithms take a "training" set of labeled documents (these documents
are ads; those documents are content), and tries to find a relationship between the
labels and a set of features, such as the words in the documents. For example, one
algorithm might find the relationship that documents with the word "Viagra" are
always advertisements, but that documents containing the word "baseball" are not.
The algorithm, upon seeing a new "test" document with the word "Viagra" would
label it an advertisement. The algorithm would then be judged by its accuracy, or
the fraction of test documents that it labeled correctly. Classification, and common
classification algorithms, are covered in more detail in the background, Chapter 2.

This work traces out a path from standard classification techniques to a work-
ing news recommendation system. In between are several improvements to existing
classification techniques that make them better suited for the Web application.

Consider a Web application like ad-blocking. The Web typically generates large
amounts of training data, and usually, more training data (images labeled as adver-
tisements or not) leads to better performance. However, more training data (even

lhttp://nielsen-netratings.com

7



moderate amounts) can lead to situations in which standard classifiers can not com-
plete in a span of weeks. To build a working Web application based on classification,
one needs to find fast, scalable, accurate classification algorithms.

We modified two standard classification algorithms, the fast but inaccurate Naive
Bayes, and the slow but powerful support vector machine, to make them more effective
for Web usage.

The Naive Bayes classifier is improved through the application of three techniques
aimed at fixing some of the severe, inaccurate assumptions Naive Bayes makes with-
out slowing down the classifier significantly. Empirically, this improves Naive Bayes's
accuracy dramatically, even approaching state of the art on some standard text clas-
sification tasks.

Working from the opposite direction, we take a slow but accurate classification
algorithm and speed it up. Our method, known as bundling, combines training points
together to form a smaller number of representative points. The smaller number of
representative points gives the slow classifier enough information to write good rules,
but takes a fraction of the time that training over all the original documents would.

While the size of the Web makes algorithmic scalability a challenge, the Web's
rich, human-oriented structure offers features that may usefully augment standard
document text features. Web search engines became dramatically better with algo-
rithms like PageRank [7] that observed that the Web's interconnections contained
information about what pages might be interesting to a Web searcher. Similarly,
in Chapter 5 we note that it is a Web editor's job to make Web sites that provide
a consistent interface that provides contextual clues to the Web site's readers. We
discuss how portions of a Web site's structure, like the URL and the table layout,
can be viewed as a tree. That structure might help a computer algorithm understand
relatedness. We make the observation that items near one another in a tree often
share similar characteristics, and then create a formal, probabilistic model that re-
flects that observation. We discuss algorithms that classify over the model and are
appropriate for real-world classification problems.

In Chapter 6 we discuss the application of the algorithms and features described in
Chapter 5. We describe one way to build an ad-blocker by learning new rules based on
the URL of the links. We show that our ad-blocking techniques performs comparably
to a commercial ad-blocker, even when trained by a simple heuristic requiring no
human input. We also describe a user study of 179 people who hand-labeled news
recommendation stories. We compare various techniques for predicting the way users
empirically labeled the data. The tree-based features coupled with the tree-based
algorithms performed significantly better than existing algorithms applied to the text
of the target document.

We use the various classifiers together in creating our filtering/recommendation
system for Web news, the Daily You 2 . The Daily You generates news recommenda-
tions based on past clicked-upon stories. Chapter 7 discusses the real-world aspects
of engineering such a system.

2available for public use at http://falcon.ai.mit.edu

8



1.1 Tackling the Poor Assumptions of Naive Bayes
for Text Classification

We have already discussed our desire to create real-world Web applications using
classification. In Chapter 3, we take the so-called "punching-bag of classifiers" [36]
and try to improve its performance on text problems so that it is competitive with
state of the art classification algorithms.

Naive Bayes' severe assumptions make it scalable but often inaccurate. We iden-
tify some of the problems that Naive Bayes suffers from, and propose simple, heuristic
solutions to them. We address systemic issues with Naive Bayes classifiers and prob-
lems arising from the fact that text is not generated according to a multinomial model.
Our experiments indicate that correcting these problems results in a fast algorithm
that is competitive with state of the art text classification algorithms such as the
support vector machine.

One such problem is that when there are an unequal number of training points
in each class, Naive Bayes produces a biased decision boundary that leads to low
classification accuracy. We propose a "complement class" method that boosts the
absolute amount of training data per class while also making the ratios of training
data in different classes more equal.

We also show that applying some pre-processing steps, commonly used in informa-
tion retrieval (a variant of TFIDF, or term-frequency inverse document frequency),
can significantly boost Naive Bayes' accuracy on text classification problems. We give
some empirical analysis of the data that helps to explain why the transforms might
be useful. For instance, we show how the transforms convert the data such that the
transformed data matches our target multinomial model better than the original data
did.

We borrow tools commonly used to analyze other classifiers to show that the
standard Naive Bayes classifier often generates weight vectors of different magnitudes
across classes. This has the effect of making some classes "dominate" the others; that
is, they have a disproportionate influence on the classifier's decisions. We propose
this effect is partially due to Naive Bayes' independence assumption and suggest that
normalizing those weights-equalizing the magnitude of each classes' weight vector-
helps reduce the problem.

Modifying Naive Bayes in these ways results in a classifier that no longer has a
generative interpretation. However, since our concern is classification, we find the
improved accuracy a valuable trade-off. Our new classifier approaches the state-of-
the-art accuracy of the support vector machine (SVM) on several text corpora. We
report results on the Reuters, 20 News, and Industry Sector data sets. Moreover, our
new classifier is faster and easier to implement than the SVM.

1.2 Statistics-Based Bundling

In Chapter 3, we described work on making a fast, inaccurate classifier more accurate
in our overarching goal of finding fast, accurate classifiers suitable for Web appli-

9



cations. In Chapter 4, we take an accurate but slow classifier, the support vector
machine (SVM), and speed it up (Chapter 4). Our method, known as bundling, tries
to summarize sets of training points into a condensed set of representative points.
Having fewer points speeds up the SVM algorithm, and we argue that enough infor-
mation is retained that the SVM still produces a good classification boundary.

Suppose one wanted to perform classification on a problem with only two classes.
One standard approach, used when each data point is represented by a "feature
vector" in some high-dimensional space, is to assume that a plane can be used to
divide the classes. Classifiers that assume a plane can be used to separate two classes
are called "linear classifiers."

Perhaps the simplest linear classifier is known as Rocchio [47]. Rocchio simply
takes the centroids (means) of each class, and uses the perpendicular bisector of the
centroids as the separating plane. Rocchio is a fast, but somewhat inaccurate, linear
classifier.

The SVM has been proven an excellent general-purpose classifier, performing well
across a variety of domains. On many head-to-head classification tasks, it achieves
high accuracy (e.g. Yang's comparison of various algorithms on the text domain [59]).
This sort of general purpose, high-accuracy algorithm comes at the cost of scalability:
the standard SVM implementations, SvmFu and SvmLight, can take a very long time
to complete. When applied to real-world data discussed in Chapter 4, some tests took
more than a week to complete.

Rocchio can be thought of as replacing a set of points with a single representative
point-the centroid-before finding the separating plane. Bundling tries to replace
smaller clusters of points with their representative centroids, and then to apply the
SVM to the representative set.

Our bundling work views the SVM and Rocchio as two classifiers along a con-
tinuum that moves from slow but accurate to fast and less accurate. By sending
different numbers of representative points (a sort of "partial Rocchio") to a SVM
(ranging from all the points to one per class), one can control the amount of speed-up
the SVM realizes.

Bundling consists of two pre-processing steps: partitioning the data and combining
the data. Partitioning the data is the process of selecting which points should be
bundled together. The step needs to be fast but also do a reasonable job of grouping
together similar points. We suggest two possible partition algorithms: a random
partition and a partition based on Rocchio which tries to group together nearby
points.

The next step, combining the data, takes each set of the partitioned data and
"bundles" them into the centroid of that bundle.

We compared the bundled-SVM technique to several other existing speed-up tech-
niques like subsampling, bagging, and feature selection. On several standard text
corpora, including Reuters, Ohsumed, 20-News and Industry Sector, the bundled-
SVM technique performs consistently well at speeding up classification and usually
outperforms the other techniques. In addition we suggest a more general framework
for applying bundling to other domains.

10



1.3 Using Pre-Existing Hierarchies as Features for
Machine Learning

In Chapter 5 we observe that the Web's rich, human-oriented structure produces fea-
tures that may be more effective than text classification for certain Web applications.

As the field of information retrieval moved from flat text to the Web, researchers
noticed that search performance could benefit greatly by paying attention to the link
structure of the Web. Work such as PageRank observed that multiple links to a page
indicated a quality page [7]. Rather than trying to understand a page by looking
at the text alone, PageRank sought to use the structure of the Web to estimate
the answers to more human-oriented questions like "what is high quality?" Later
extensions of PageRank also dealt with personalized versions of the algorithm [24].

In a similar vein, we want to exploit structures in the Web that might help us
answer, for example, a human-oriented question like "what is interesting?" We ob-
serve that many Web-sites work hard to find and highlight stories of interest to their
readership. A Web editor tries to drop semantic clues to orient readers to context
and meaning. It is these clues we want to exploit for answering questions like "is this
interesting to the user?" or "is this an advertisement?"

Most people intuit that the top-center "headline" portion of most news pages is
the story the editors think is of the widest possible interest at that moment in time.
We want our classification algorithm to leverage the editor's work in choosing and
placing stories; it may be easier to decipher the editor's clues than to imitate the
editor and understand the content of a document based on its text alone.

We observe that many editors use the visual placement of a link in a page to
provide clues about the document. The visual placement, which depends on HTML
table elements, can be parsed into a tree. We suggest classification algorithms that
follow our intuitions about how position in a hierarchical tree might relate to our
classification problems. For example, we might intuit that the top-center of a news
page contains a collection of links that will be interesting to the average user of the
Web site.

To implement the idea of classification using tree-based features, we solved several
problems. We developed a classification model that allows us to train and make
predictions using a tree-based feature. That model is a formalization of the idea that
"things near one another in a tree are more likely to share a class." We use the
concept of a mutation, a low-probability event that flips the class of a child from
its parents, to convert our intuitions about trees into a Bayes-net over which we can
perform standard inference procedures.

On the algorithmic front, we adapt Bayes-net learning to our application domain.
Our problem is "online" in that a user will be expected to interleave labelings of items
(interesting Web pages) with queries (requests for more interesting Web pages). We
show how to update our classifier incrementally when new examples are labeled,
taking much less time than reevaluating the entire Bayes-net. The update time is
proportional to the depth of the new training point in the taxonomy and independent
of the total size of the taxonomy or number of training examples. Similarly, we give

11



an algorithm for querying the class of a new testing point in time proportional to its
depth in the tree, and another algorithm for dealing with real-world precision issues.

1.4 Empirical Results of Tree Learning

We follow our more theoretical description of tree-based features and algorithms with
empirical results that support their use in Web applications (Chapter 6).

First we discuss ad-blocking, an example we have used to motivate much of our
work. Ad-blocking is a difficult problem because advertisements change over time,
in response to new advertising campaigns or new ad-blocking technology. When new
advertisements arrive, a static ad-blocker's performance suffers; typically engineers
must code a new set of rules, and users must periodically download those rules.

As we have mentioned, our approach is to have the computer learn sets of rules;
such an approach means less work for the engineers and fewer rule updates for the
users. In order to require no human training, we use a slow, but reasonably accurate,
heuristic to label links on a page as either advertisements or not. Our tree-learning
technique then tries to generalize from the labeled links to produce rules for ad-
blocking which are applied to the links on previously unseen pages. We show that
such a system can have commercial-level accuracy, without requiring updates on the
part of either engineers or users.

Second we discuss recommendation systems, another example of the type of time
and attention saving applications we are interested in building. We performed a 176-
person user study which asked users to indicate what stories were interesting to them
on several day's worth of the New York Times. We used a variety of algorithms and
features, including the tree-algorithms and tree-features we have mentioned, to predict
each user's interest in stories, given examples of other stories labeled as interesting
or not.

The results of our user-study and classification test showed that our tree-learning
algorithm coupled with the URL feature performed better than other combinations
of algorithms (including the SVM) and features (like the full-text of each story).
Our results helped us build the Daily You, a publicly-usable recommendation system
discussed next.

1.5 The Daily You News Recommendation System

We put our algorithms and insights into use in our application, the Daily You. Like
a good assistant, it strives to save your time by anticipating your interests (defined
here as predicting the links a user will click on), then scanning the Web and saving
the content you might have clipped yourself. In Chapter 7 we describe the work it
takes to build and evaluate a real system for news recommendations.

All of these issues arise because we want the system to be stable and responding
to requests in real-time. We describe the building of such a system, which includes
frequent caching of information, prioritization of activities and other tradeoffs to make
the system really work.

12



MORE TOP STORIES

Engline room blast, fire kill at
-Vetrans honored amidi terro
Nmy ship heads home withc

Taian reports 12 new SAR
Vo tests Spanish oyernm
MCartney stars in Moscow

-SI.rCM: Nets sweep Pistons

CNNRADIO VIDEO
Listen to latest SouthA

Israel OKs road map uodatesr drea
The Israeli Cabinet Sunday approved the US.-
backed Mideast road map to peace The White
House praised the move as 'an important step IRAQ OIL
forward,"while a Palestinian spokesman said if Atop oil official says Iraq court
setthe stage for Israel's Arel Sharon and within the nexu two weeks -- br
Palestinian Prime Minister Mahmoud Abbas to needed revenue Full stor,
meet Monday to discuss implementation.
FVLL STORY BUSINESS -t

-Map: Road way key points STOOC/1FUND QUOESr
. Special Report: Land ofiConfliot ~.Y -

.p.-.4 by!P.o~see

MORE TOP STORIES

- oc: Engine room blast. fire kill at lea
- prc Veterans honored amid terrorw
- Naw ship heads home without missi
-Taiwan reports 12 new SARS deaths
- Vote tests Spanish government-s Iraq

tetdKs road - Mc Cartnen stars in Moscow hit
- S Lcee: Nets sweep Pistons advance

CNNRADIO VIDEO
4 Listen tolatest SouthAfricanwo

pick Israel OKs road map udates4 dream comes trL

The Israeli Cabinet Sunday approved the U S -
backed Mideast road map to peace. The White
House praised the move as *an important step
forward,' while a Palestinian spokesman said it
set the stage for Israers Arel Sharon and
Palestinian Prime Minister Mahmoud Abbas to
meet Monday to discuss implementation.

FULL STOR

-Ma: Road m a key poisn
.Special Report: Land of Co nflict

IRAQ OIL
Atop oil official says Iraq could start ex
within the next two weeks -- bringing in
needed revenue Full stou

Figure 1-1: Screen-shots from an original CNN page (left) and the same page viewed
through the Daily You (right). Notice the Daily You's version removes the advertise-
ments, some of the navigation boxes, and also writes the word "pick" near recom-
mended news articles.

A screen-shot of the Daily You is shown in Figure 1-1, with the original version
of a page on the left and the Daily You's version of the same page on the right.
The image on the right has less visual clutter on the page. The ad-blocking system
removes the advertisements (for instance the advertisement at the top, to the right
of the CNN logo); and the recommendation system adds in the work "pick" next
to recommended links (the headline of the day). Other systems within the Daily
You are also described. One system, the portal, invisibly tracks a user's clicked links
and sends the information to the recommendation system. Another system, the page
filter, removes certain templated content like the navigation bar on the left side of
the page. We removed the navigation bars because from a brief user-study, it appears
that most people were interested in the dynamic contents of a page.

1.5.1 Related Work

Our application resembles that of other prominent Web news services. Most existing
work only operates on pre-set sites, while ours allows the users to specify arbitrary
target sites. The large commercial services aggregate pages together (3), but require
pre-set sites and do not make user-specific recommendations. Some research applica-
tions like NewsSeer.com and NewsDude [4] do make recommendations, but only from
pre-set news sources. NewsDude specifically uses text-based classifiers both to select
good articles, and to remove articles that seem overly redundant with already seen
articles. An earlier attempt at user-profiling, called Syskill & Webert [42], also used a
Bayesian model of text to predict interesting Web pages. Newsblaster [2] and a sim-

3http://my.yahoo.com

13



ilar service at Google (4) scan multiple pre-set sites and summarize similar articles.
Newsblaster uses complex natural language parsing routines to combine articles from
multiple sites into one summary article.

Other Web applications allow the user to select their own set of news sources,
like the Montage system [1]. Rather than focusing on new information, Montage is
more like an "automated book-marks builder." It watches the user to identify pages
they visit frequently, and creates collections of Web pages that let the user get to
those pages more quickly. It uses traditional text-classification algorithms (SVMs) to
break these book-marks into coherent topic categories. In contrast, our system aims
to recommend Web pages that are new but that we believe will be interesting to the
user.

RSS is a system for publishing news information automatically in a format that is
easy for machines to understand '. In practice, major news sites do not publish their
content in machine-understandable formats, because such publication is at odds with
their major revenue stream of advertising. The Daily You tries to learn some of the
information that an RSS feed might make explicit, if an RSS feed were available.

Another type of related work is wrapper induction [33]. In wrapper induction, the
goal is to identify the part of a Web page containing a specific piece of information.
An example goal would be to find a specific pattern, like a stock's quote on some
financial Web page, day after day. In contrast, we try to generalize from a specific
item to other similar items (for example, breaking news about the same company as
the stock quote).

There are several potential and existing ways to perform news recommendations,
briefly detailed below.

Some approaches can broadly be viewed as using explicit or implicit "voting"
information to inform recommendations. Collaborative filtering statistically finds
similarities between a given user and other users in the system [51]. The typical
method is to identify a user with a vector of 1's (clicked) and O's (not-clicked) for
each possible recommendation item. By taking a dot product (or other similarity
measure) with other user's interest vectors, they identify people or groups of people
who are similar. The system then recommends items the similar group has chosen
that the user has not. Collaborative filtering is one of the most popular methods for
recommendations but isn't as useful for the news service. Collaborative filtering needs
a large user base, which the Daily You does not have, and it recommends commonly-
viewed items which tend to be things that are "not news" (like events that everyone
already knows about).

There is also a more implicit method for measuring user votes, the sub-field of
link analysis, where the algorithm scores a page by its position in the topology of
the Web. Common examples include PageRank, which is a part of the Google search
engine [7], and Kleinberg's hubs and authorities algorithm [30]. The PageRank algo-
rithm calculates the probability a "random surfer" on the Web, who randomly picks
out-links on a page, will end up on a given page. The higher the probability, the

4http://news.google.com
5http://www.w3.org/2001/10/glance/doc/howto

14



more recommended that page becomes. The hubs and authorities algorithm gives a
higher "hub" score to pages that point to lots of good "authorities" and gives high
"authority" scores to pages pointed to by good "hubs." These are not appropriate
for the recommendation problem because they are not personalized to the user; as
with most search engines, the results are not based on past interests on the part of
the user.

15



16



Chapter 2

Background

2.1 Classification

Classification is a problem where a learner is given several labeled training examples
and is then asked to label several formerly unseen test examples. This is done regularly
by humans: a child might be told the color of some blocks, then asked to identify
the color of other objects. A friend might list a series of movies they enjoy, and one
might then suggest other movies she will enjoy.

Within computer science, classification has also been applied to a variety of do-
mains. For example, Amazon's' familiar recommendation system predicts what prod-
ucts you might want to buy given past behavior. Other systems receive pictures of
handwritten numbers and learn to read new hand-written numbers [35]. UCI main-
tains a large database of machine learning problems 2 ranging from breast-cancer
detection to guessing whether solar flares will occur.

Throughout this thesis, we use X= {X 1 ... xn} to represent a vector of n training
points, and ' {yi ... y,} to represent its labels. Each training point xi typically
has a set of j features = {xai, xi2,..., Xij} that may or may not help the learner
predict labels. For example, a child's blocks might have features like shape, color, and
weight; eventually they will learn to disregard the shape and weight when deciding
what color label the block receives.

One common way to visualize the problem is to think of each of the n points in
a j dimensional space, where j is the number of features. Then, one simple way to
classify new test elements is known as the k-nearest neighbors classifier: you predict
a label based on the majority-label of the k nearest training points [59]. This can be
slow-one doesn't compare a fire hydrant to every block from child-hood in order to
deduce that the hydrant is red. The goal is to generalize from those initial examples
and to make new classifications based on that generalization.

One simple generalization is to take a plane that cleaves through this j dimensional
space. These are known as "linear classifiers." If there are only two possible labels
-1 and 1, then one side of this plane will receive a -1 label and everything else will

lhttp: //amazon. com
2http://www.ics.uci.edu/ mlearn/MLRepository.html

17



receive a 1. This approach is seen in many common classifiers like Naive Bayes [15],
the perceptron [5], and the linear support vector machine [8]. The only difference
between these classifiers is the method in which they find that separating hyper-
plane.

Sometimes a more complicated shape than a simple plane is needed to generalize.
The most common method for generalizing such shapes is to use so-called kernel
methods (see Burges [8] for a tutorial) which project the problem into a higher-
dimensional space, and create a linear separator in that space. When that plane is
returned to a lower dimensional space, it takes on a more complex form than a simple
plane.

2.1.1 Text Classification

Text classification has many properties that have made it one of the most common
classification domains. Document text is easily and broadly available to researchers,
and covers a broad range of topics. One standard text dataset labels the corpora ac-
cording to news subject [34]; another according to keywords used to describe medical
documents [22].

Text problems are among the largest standard classifier problems. Text is gener-
ated during the normal course of work, so the number of training points (documents)
is often larger than other problems. The Ohsumed text dataset has about 180,000
documents; most non-text problems have several orders of magnitude less data. For
example, most of the UCI datasets have only hundreds of instances because the in-
formation is difficult to collect. The breast cancer database, for example, is limited
to the number of patients a particular doctor interviewed. Text also has orders of
magnitude more features than many standard problems. There are tens of thousands
of words even if one ignores word ordering, and all of them are potentially features.
In most other domains, features are fairly limited because every new feature must be
measured; most of the UCI datasets have fewer than a hundred features.

Besides having extremely large data sets, text classification has a tendency to be
used in user-oriented applications, meaning that speed is more important. There are
natural applications of text learning to Internet data (for example news recommen-
dations [4]) and the application, including the recommendations, needs to complete
in reasonable amount of time.

This is part of what makes text classification so interesting: it is larger than most
problems, but also needs to complete in a practical amount of time. One nearly
standard way of reducing the size of the problem is to assume that word ordering is
irrelevant. This reduces the problem from having a large number of word-ordering
relationships to a merely huge number of words. The standard representation, which
we use, is called "bag-of-words", in which every document xi is composed of features
X 1 , Xi2,. ... , Xiv such that xij is the number of times word j appears in xi, and V is
the total number of words (vocabulary) of all the documents.

18



2.1.2 Standard Classification Algorithms

In this section, we describe several common classification algorithms that will be used
and compared in this thesis.

Rocchio

Several times in this thesis, we mention the Rocchio classification algorithm [47]. For
completeness we describe it in full detail here. Consider a binary classification prob-
lem. Simply put, Rocchio selects a decision boundary (plane) that is perpendicular
to a vector connecting two class centroids. Let {+ .... , s+ } and {_,... , 7 -i }
be sets of training data for the positive and negative classes, respectively. Let
C1 = g Zs X+i and d2 = - _ 7j be the centroids for the positive and negative
classes, respectively. Then, we define the Rocchio score of an example x as

RocchioScore() = 7 - (J1 - '2). (2.1)

One selects a threshold value, b, which may be used to make the decision boundary
closer to the positive or negative class centroid. Then, an example is labeled according
to the sign of the score minus the threshold value,

lRocchio() = sign (RocchioScore(7) - b). (2.2)

Multinomial Naive Bayes

The Naive Bayes classifier has a long history. One of the earlier descriptions is given
by Duda and Hart [14]. It is commonly used because it is fast, easy to implement
and relatively effective. Domingos and Pazzani [13] discuss the independence assump-
tion and why Naive Bayes is able to perform better than expected for classification
even though it makes such a poor assumption. McCallum and Nigam [37] posits the
multinomial as a Naive Bayes-like model for text classification and shows improved
performance compared to the multi-variate Bernoulli model due to the incorporation
of frequency information. It is the multinomial version, which we will call "multino-
mial Naive Bayes" or MNB for short, that we discuss and analyze in this paper.

The distribution of words in a document can be modeled as a multinomial. A
document is treated as a sequence of words and it is assumed that each word position
is generated independently of every other. For classification, we assume that there
are a fixed number of classes, c E {1, 2, ... , m}, each with a fixed set of multinomial
parameters. The parameter vector for a class c is 0c ={Oci, 0 c2, . , Ocn}, where n is
the size of the vocabulary, E Zei = 1 and Oci is the probability that word i occurs in
class c. The likelihood of a document is a product of the probabilities of the words
that appear in the document,

19



where xij is the frequency count of word j in document xi. By assigning a prior distri-
bution over the set of classes, P(Oc), we can arrive at the minimum-error classification
rule [14] which selects the class with the largest posterior probability,

l(xi) =argmax g + xij logoc, (2.4)

=argmaxc [bc + E XijWcj~ (2.5)

where be is the threshold term and wcj is the class c weight for word j. These values
are natural parameters for the decision boundary. This is especially easy to see in
the binary classification case where the boundary is defined by setting the differences
between the positive and negative class parameters equal to zero,

(b+ - b_) + Exij (w+i - w-i) = 0.

The form of this equation (i.e. linear) is identical to the decision boundary learned
by the (linear) support vector machine, logistic regression, linear least squares and
the perceptron. Naive Bayes' relatively poor performance results directly from how
it chooses the be and wci.

Parameter Estimation

For the problem of classification, the number of classes is known, but the parameters
of each class are not. Thus, the parameters for the classes must be estimated. We do
this by selecting a Dirichlet prior and taking the expectation of the parameter with
respect to the posterior. Instead of going into details, we refer the reader to section 2
of Heckerman [21]. Suffice it to say, we arrive at a simple form for the estimate of the
multinomial parameter, which involves the number of times word j appears in class c
documents (Ne,), divided by the total number of class c word occurrences (Nc). For
word j, the prior adds in a2 imagined occurrences so that the estimate is a smoothed
version of the maximum likelihood estimate,

N -+ aj
Oci = N , (2.6)

where a denotes the sum of the aj. Technically, this allows a different imagined count
for each word, but we follow common practice by using the same count across words.

The prior class probabilities, p(Oc), are estimated in a similar way. However, they
tend to be overpowered by the multiplied effect of the per-word probabilities that
Naive Bayes produces, and have little effect on the decision boundary.

Substituting our estimates for the true parameters in equation 2.4, we get the

20



multinomial Naive Bayes classifier,

IMNB(Xi) = argmaxc logzP(Oc) + xij log N + a ,
N, + a

where P(Oc) is the class prior estimate. The weights for the decision boundary defined
by this classifier are the log parameter estimates,

C3 = logOcy. (2.7)

We will refer back to this fact during our discussion of skewed data bias in sec-
tion 3.2.1.

The support vector machine

The support vector machine (SVM) is a classifier that finds a maximal margin sepa-
rating hyper-plane between two classes of data [56]. In an intuitive sense, the SVM
tries to place a block of wood such that everything on one side of the block is in one
class and everything on the other side of the block is in the other class (the equation
constraints). The optimization problem is to find the widest possible block of wood
represented in the equations by ||w1|2. The idea is a wider block of wood is a better
separator of the two class points.

One common variant is to "soften" the boundary; rather than completely ruling
out points on the wrong side of the wooden block, it simply punishes the "score" for
every point that is on the wrong side of the block. The C E> term in the equations
tells the optimization how much to punish points on the wrong side of the block (at
C=infinity, the constraint is absolute; as C decreases, the algorithm is more accepting
of points on the wrong side of the wooden block).

An SVM is trained via the following optimization problem:

= argmin4 w |2 + C

with constraints

yi(xi -w + b) > I - (iVi,
j > 0 Vi,

where each di is a document vector, y, is the label (+1 or -1) for di and 7b is the
vector of weights that defines the optimal separating hyper plane. This form of the
optimization is called the "primal." By incorporating the inequality constraints via

21



Lagrange multipliers, we arrive at the "dual" form of the problem,

= argmax c - E ai o c i yj (di -dj)

subject to

0 < a < C Vi

oZciyi = 0

Given optimized values for the ai, the optimal separating hyper plane is

For more information about the SVM, see Burges' tutorial [8], Cristianini and
Shawe-Taylor's book [11], and Vapnik's book [57].

2.1.3 Evaluating Classifiers

In order to compare classifiers against one another, typically the experimenter will
split all the labeled into two disjoint sets, the training and testing sets. The training
set is used to create a set of rules about how to classify points, and the testing set is
then classified with those rules.

Those rules produce guesses for the test data that are compared with the actual
labels. One common method of evaluating classifiers, accuracy, is simply seeing the
percentage of the test data where the guesses equaled the actual labels.

For some domains like information retrieval, a different evaluation method is more
common, which emphasizes the ranking a classifier produces. The most common way
of evaluating a system is by using precision-recall curves. There are two sets of
documents: a set of m documents that are actually relevant (as judged by a human)
and a set of n documents that the system "retrieves", i.e., believes are relevant.
The more these two sets match, the better, and this is what precision-recall tries to
describe. Let o be the number of documents that the human and computer agree are
accurate. Then precision is defined as o/n and recall is defined as o/m.

If the computer were perfect, and retrieved exactly the same set of documents as
the human-labeled relevant set, then both precision and recall would equal 1 (o =
n = m). In the normal case, the computer-retrieved and human-relevant sets will
be different. Precision then is generally at odds with recall. For example, if the
computer simply labels everything as relevant, then the computer will have high
recall (it found all the relevant documents) but low precision (but it found too many
irrelevant documents, too). Conversely, if the computer only makes one very good
guess, it will receive high precision (everything the system retrieved was relevant) and
low recall (only a small fraction of the relevant documents were found).

The typical way to show precision-recall graphically is to vary the number of

22



documents retrieved (retrieve the top document, then the top two, then the top
n...) and for each value of n plot precision against recall. To reduce precision-recall
to a single number, often people employ precision-recall breakeven, which is when
o/n = o/m. Mathematically, that corresponds to when n = m (when the set of
retrieved documents is equal in size to the set of relevant documents).

23



24



Chapter 3

Tackling the Poor Assumptions of
Naive Bayes for Text Classification

3.1 Introduction

Given our desire to build Web applications that function in real time, and can handle
the huge amounts of data available on the Web, one natural approach is to take
a fast but inaccurate classifier and improve it. We aim to improve Naive Bayes,
which is often used as a baseline for text classification tasks because it is fast, easy
to implement, and has a clear set of assumptions about the way data is generated.
Background on the Naive Bayes classifier can be found in Chapter 2. This chapter
is the expanded version of joint work with Jason Rennie, Jaime Teevan and David
Karger [45].

Naive Bayes is often used as a baseline for text classification tasks because it is
fast and easy to implement. Its "naive" assumptions make such efficiency possible
but also adversely affect its performance. We identify some of the problems that
Naive Bayes suffers from, and propose simple, heuristic solutions to them. We first
address systemic issues with Naive Bayes, which are problems that arise out of in-
herent problems with the way Naive Bayes produces a classification boundary. Then
we address problems that arise from the fact that text is not generated according
to a multinomial model. Our experiments indicate that correcting these problems
results in a fast algorithm that is competitive with state-of-the-art text classification
algorithms such as the support vector machine.

Naive Bayes has been denigrated as "the punching bag of classifiers" [36], and
has earned the dubious distinction of placing near last in numerous head-to-head
classification papers [59, 26, 16]. Still, it is frequently used for text classification
because of its speed and ease of implementation. Algorithms that yield lower error
tend to be slower and more complex. In this chapter, we investigate the reasons for
Naive Bayes' poor performance. For each problem, we propose a simple heuristic
solution. In some cases, we treat Naive Bayes as a linear classifier and find ways to
improve the weights that it learns for the decision boundary. In others, we try to
better match the distribution of text with the distribution assumed by Naive Bayes.

25



In doing so, we fix many of the problems without making Naive Bayes significantly
slower or more difficult to implement.

In Section 3.2, we discuss some systemic problems with the classifier. One such
problem is that when there are more training examples in one class than another,
Naive Bayes chooses weights for the decision boundary poorly. This is due to an
under-studied bias effect that causes the weights for the class with fewer examples to
be more extreme than they should be. For example, after one flip of a coin (without
smoothing), the probability of heads looks like either 100% or 0%. We solve this
problem by introducing a "complement class" formulation of Naive Bayes that evens
out the amount of training data per class.

Another systemic problem with Naive Bayes is that it does not account for depen-
dencies between words. As a result, when multiple words are inter-dependent, they
will receive their own independent weights (as opposed to perhaps a single weight
for an entire phrase). This leads to double counting for words like "San" and "Fran-
cisco." If one class has stronger word dependencies, the sum of weights for that class
will tend to be much larger. To keep classes with more weight from dominating, we
normalize the classification weights.

In addition to other problems, multinomial Naive Bayes does not model text well.
It uses the multinomial model for term occurrence, which is a poor model of text.
In Section 3.3 we suggest several transforms to make text work better within the
multinomial model. These transforms are common in information retrieval, so we
present arguments why they should work well with Naive Bayes. For example, we
show that a simple transform allows us to emulate the power law, a distribution
that better matches real term frequency distributions. We also discuss two other
pre-processing steps that incorporate knowledge of how text documents are usually
created. Empirically, the use of these transforms significantly boosts classification
accuracy.

Modifying Naive Bayes in these ways results in a classifier that no longer has a
generative interpretation. However, since our concern is classification, we find the
improved accuracy a valuable trade-off. Our new classifier approaches the state-
of-the-art accuracy of the support vector machine (SVM) on several text corpora.
Moreover, our new classifier is faster and easier to implement than the SVM and
other modern-day classifiers.

3.2 Correcting Systemic Errors

Naive Bayes has many systemic errors-byproducts of the algorithm that cause an
inappropriate favoring of one class over the other. In this section, we will discuss two
errors that cause Naive Bayes to perform poorly. What we call "skewed data bias"
and "weight magnitude errors" have not been discussed heavily in the literature, but
both cause Naive Bayes to routinely make misclassifications. We discuss how these
errors cause misclassifications and propose solutions to mitigate or eliminate them.

26



Coin 1 Coin 2 Coin 3 p(event) 01 02 03 NB Label
0 = 0.6 0 = 0.4 0 = .8 for H

H T .8H, .2T .36 1 0 .8 Coin I
H H .8H, .2T .24 1 1 .8 Coin I or 2
T T .8H, .2T .24 0 0 .8 Coin 3
T H .8H, .2T .16 0 1 .8 Coin 2

Figure 3-1: Shown is a simple classification example. There are three coins. Each
has a binomial distribution with probability of heads 0 = 0.6, 0 = 0.4, and 0 = .8
respectively. The first two coins are flipped once each, and the third coin is flipped a
million times. Even though the probability for heads is greatest for the third coin, it
only appears as the most probable coin 24% of the time, versus 60% of the time for
coin 1.

3.2.1 Skewed Data Bias

In this section, we show that skewed data-more training examples in one class than
another-can cause the decision boundary weights to be biased. This causes the
classifier to perform poorly and unwittingly prefer one class over the other. We show
the reason for the bias and propose a fix that alleviates the problem.

A simple example shows that a small amount of training data can skew proba-
bilities towards extremes. Suppose we have three coins, and we flip them a varying
number of times. In reality, the first coin has a 60% chance of landing heads, the
second coin a 40% chance of landing heads, and the third coin has an 80% chance
of landing heads. We flip the first two coins once each, and the third one a million
times. Let's say the most likely outcome (with 36% probability) has the first coin
coming up heads, the second one tails, and the third one consistently shows heads
80% of the time after a million flips.

Someone randomly takes one of the three coins, flips it, and announces it is a
head. Which coin might it be? One might suppose the first coin, since the evidence
shows it has a 100% chance of landing heads-perhaps it is a two-headed coin. Or
one might suppose the first two coins were fair, and that randomly one of the two
landed heads. Figure 3-1 shows that even when coin 3 has the highest probability of
heads, it is chosen less often than coin 2, even though coin 2 is half as likely to show
a head.

The problem is that empirical probabilities are extreme-either one or zero. The
problem isn't solved by smoothing; light smoothing does not change the example,
and heavy smoothing causes other problems as the empirical evidence is ignored in
favor of the smoothing effects.

Our problem is caused by the small amounts of training data per class. Were coins
1 and 2 to receive additional flips, coin 3 would seem increasingly likely when presented
with a head. One idea might be to replicate some of the examples ("pretend" that
coin 1 was in fact flipped as many times as the other coins). Replicating examples
does not solve this problem, because it leaves the empirical probabilities of coins 1

27



Coin 1 Coin 2 Coin 3 p(event) 0'1 0'2 0'3 Label
0 = 0.6 0 = 0.4 0 = .8 for H

H T .8H, .2T .36 .8- .8+ .5 Coin 3
H H .8H, .2T .24 .8+ .8+ 1 Coin 1 or 2
T T .8H, .2T .24 .8- .8- 0 Coin 3
T H .8H, .2T .16 .8+ .8- .5 Coin 3

Figure 3-2: Shown is the same classification example, when classification is done using
the complement class formulation, with the same set-up as Figure 3-1. CCNB uses
everything outside a class to produce an estimate for 0', then chooses the class which
has the lowest estimate. The symbol ".8+" means that the estimate is slightly higher
than .8; and ".8-" is slightly lower than .8. In this case, coin 3 is properly chosen 76%
of the time, versus only 24% of the time when using the standard formulation.

and 2 unchanged at either 0% or 100%.

Rather, our proposed solution is to use the other classes to supplement the existing
empirical data. Note this is only applicable to multi-class problems, or problems
involving more than two classes (different coins in our example). We introduce a
"complement" version of Naive Bayes, called Complement Class Naive Bayes, or
CCNB for short. In CCNB we use everything outside the class to build a model.
When our classification problem involves multiple classes, we can reformulate our
classification rule so the amount of training data we use for the parameter estimates
is more even between the classes. This yields less extreme weight estimates and
improved classification accuracy.

In Figure 3-2 we show how the complement class formulation changes our three
coin example. Rather than calculating 0, the probability that a given coin has heads,
we calculate 0', the probability that the other coins come up heads. We guess the
coin with the lowest 0' (the one whose complements are least likely to show heads),
to be the most likely to flip a heads.

In estimating weights for regular MNB, we use equation 2.6. This only uses
training data from a single class, c. CCNB estimates parameters using data from all
classes except c,

= aj , (3.1)
JNa + oz

where Naj is the number of times word j occurred in documents in classes other than
c and N is the total number of word occurrences in classes other than c; aj and a
are smoothing parameters. As before, the weight estimate is zi3i = log 0 , and the
classification rule is

ICCNB(d) = argmaxc log p(0c) - xij log Ncj + vj]
Nj + a

28



MNB OVA-NB CCNB
Industry Sector .577 (.008) .651 (.007) .890 (.004)
20 Newsgroups .847 (.006) .853 (.005) .857 (.004)

Figure 3-3: Experiments comparing a variety of ways to handle multi-class problems
which are described in the text: multinomial Naive Bayes (MNB); one-versus-all Naive
Bayes (OVA-NB); and complement class Naive Bayes (CCNB). Industry Sector and
20 News, the two multi-class problems studied in our work, are reported in terms of
accuracy, with standard deviations in parentheses. CCNB generally performs better
than both MNB and OVA-NB, which are more standard formulations.

The negative sign represents the fact that we want to assign to class c documents that
poorly match the complement parameter estimates. We think these estimates will be
more effective because each uses a larger amount of training data per estimate, which
will lessen the bias in the weight estimates.

CCNB is related to the one-versus-all technique that is commonly used in multi-
label classification, where each example may have more than one label. The one-
versus-all technique builds a classifier for each class that subtracts the probability
something is outside the class ("all"-more precisely "all but one") from the probability
something is inside the class ("one"). Berger [3] and Zhang and Oles [61] have found
that one-versus-all MNB works better than regular MNB. The classification rule for
one-versus-all MNB is

Nc + a
1,,() --[log + a 

- Zxij log N±a + 1. (3.2). Ne + a

This is a combination of the regular and complement classification rules, where the
first summation comes from the regular rules and the second summation comes from
the complement rules. We attribute the improvement with one-versus-all to the use
of the complement weights. We find that the complement version of MNB performs
better than one-versus-all and regular MNB since it eliminates the biased regular
MNB weights.

Figure 3-3 compares multinomial Naive Bayes, one-versus-all Naive Bayes and
complement class Naive Bayes on two multi-class data sets. For all the Naive Bayes
experiments, we used our own Java code and set a = 1. See the Appendix at the
end of the thesis for a description of, and pre-processing for, the Industry Sector and
20 Newsgroups data sets. The differences between the various formulations were all
statistically significant (p < 0.05) according to Student's T-test above 95% for both
Industry Sector and 20 Newsgroups.

29



3.2.2 Independence Errors

In the last section, we discussed how uneven training sizes could cause Naive Bayes to
bias its weight vectors. In this section, we discuss how the independence assumption
can erroneously cause Naive Bayes to produce classifiers that are overly biased towards
one class.

When the magnitude of Naive Bayes' weight vector W'J is larger in one class than
the others, the larger-magnitude class may be preferred. For Naive Bayes, differences
in weight magnitudes are not a deliberate attempt to create greater influence for
one class. Instead, as we will show, the weight differences are partially an artifact
of applying the independence assumption to dependent data. In other words, Naive
Bayes gives out more influence to the classes that most violate the independence
assumption. The following simple example illustrates this effect.

Consider the problem of distinguishing between documents that discuss the Yan-
kees and those that discuss Red Sox. Let's assume that "Yankees" appears in Yankees
documents about as often as "Red Sox" appears in Red Sox documents (as one might
expect). Let's also assume that it's rare to see the words "Red" and "Sox" except
when they are together. Thus the three terms "Red", "Sox" and "Yankees" all have
the same weight after training. Then, each time a test document has an occurrence
of "Red Sox," Multinomial Naive Bayes will double count-it will add in the weight
for "Red" and the weight for "Sox." Since "Red Sox" and "Yankees" occur equally
in their respective classes, a single occurrence of "Red Sox" will contribute twice
the weight as an occurrence of "Yankees." Hence, the summed contributions of the
classification weights may be larger for one class than another-this will cause MNB
to prefer one class incorrectly. For example, if a document has five occurrences of
"Yankees" and three of "Red Sox," MNB will erroneously label the document as "Red
Sox" rather than "Yankees."

A baseball analogy would have the Red Sox receiving 6 outs per inning as com-
pared to the Yankees' 3 outs. This would (hopefully) bias most games towards the
Red Sox-they would simply receive more chances to score. Our solution, technically
expressed as weight normalization, would be to give the Red Sox shorter bats-in
other words normalize the overall batting abilities of each team, even if one team had
received more outs.

We correct for this by normalizing the weight vectors. In other words, instead of
calculating tcj = log cj we calculate

=c log Otj (3.3)
k log 0 ck

One could also reduce the problem by optimizing the threshold terms, b. Webb
and Pazzani give a method for doing this by calculating per-class weights based on
identified violations of the Naive Bayes classifier [58].

Since we are manipulating the weight vector directly, we can no longer make use
of the model-based aspects of Naive Bayes. Thus, common model-based techniques
to incorporate unlabeled data and uncover latent classes, such as EM, are no longer

30



Industry Sector 0.577 (.008) 0.890 (.004)
20 Newsgroups 0.847 (.006) 0.859 (.005)
Reuters (micro) 0.739 0.782
Reuters (macro) 0.270 0.548

Figure 3-4: Experiments comparing multinomial Naive Bayes (MNB) to weight nor-
malized Complement Class Naive Bayes(WCCNB) over several datasets (left column).
Industry Sector and 20 News are reported in terms of accuracy; Reuters in terms of
precision-recall breakeven. WCCNB generally performs better than MNB. Standard
deviations are listed in parenthesis for Industry Sector and 20 Newsgroups. The differ-
ences between the classifiers are statistically significant (as outlined in the Appendix)
on the Industry Sector and 20 Newsgroups data sets.

applicable. This is an unfortunate trade-off for improved classification performance.

3.2.3 Bias Correction Experiments

We ran classification experiments to validate our techniques. Figure 3-4 gives classifi-
cation performance on three text data sets. We used different metrics for the different
test sets according to convention in past experiments done by the community. We re-
port accuracy for 20 Newsgroups and Industry Sector and precision-recall breakeven
for Reuters. As mentioned before, we use a smoothing parameter of a = 1. Details
on the pre-processing and experimental set up for the experiments is found in the
Appendix at the end of the thesis.

Reuters is a collection of binary-class problems, but the complement class formu-
lation we explained only works on multiple-class problems. Therefore, we applied an
analog of the complement class formulation to the Reuters problem. In Reuters, there
is a one-to-many relationship between a document and the classes; so the standard
way for running the experiment is to build a classifier that compares documents in-
side a class against a classifier built on all the documents. In the complement class
formulation, WCCNB, we build a classifier that compares all the documents outside
of a class, against a classifier built on all the documents. This only contributed a
small amount to higher precision-recall scores, with the weight-normalization helping
more.

WCCNB showed marked improvement on all data sets. The improvement was
greatest on data sets where training data quantity varied between classes (Reuters
and Industry Sector). The greatly improved Reuters macro P-R breakeven score
shows that much of the improvement can be attributed to better performance on
classes with few training examples (as explained in the Appendix, macro P-R scores
are heavily dependent on classes with only a few training examples).

WCCNB shows a small but significant improvement on 20 Newsgroups even
though the distribution of training examples is even across classes (though the number
of word occurrences varies somewhat).

Our multinomial Naive Bayes (MNB) results are similar to those of others. Our 20

31

MNB3 WCCNB3



10' 10'-- Data
P-ower law

10-s 10 '

10- 10-4

10, 10

10 10

0 5 6 7 8 9 00 6 7 B

(a) Term Frequency (b) Term Frequency

Figure 3-5: Shown are various term frequency probability distributions. The data
has a much heavier tail than predicted by the multinomial model. A power law
distribution (p(xij) oc (d + xij)Io9o) matches the data much more closely. Figure (b)

compares the data with the best fit power law distribution, and Figure (a) compares
it when d = 1.

Newsgroups result exactly matches that reported by McCallum and Nigam [37] (85%).
The differences in Ghani's [18] results (64.5%) on Industry Sector are likely due to
his use of feature selection. Zhang and Ole's [61] result on Industry Sector (84.8%) is
significantly different due to their optimization of the smoothing parameter, which,
depending on the method used, can also remove redundant features. Our micro and
macro scores on Reuters differ from Yang and Liu [59] (79.6%, 38.9%), likely due to
their use of feature selection, and a different scoring metric (the F1 metric).

3.3 Modeling Text Better

So far we have discussed issues that arise when using a Naive Bayes classifier in
many applications. We are using a multinomial to model text; in this section we look
at steps to better align the model and the data. In this section we describe three
transforms that make multinomial Naive Bayes a more effective text classifier. These
transforms are known in the information retrieval community; our aims in this section
are to show why these transforms might work well coupled with Naive Bayes, and to
give empirical evidence that they do improve Naive Bayes' performance.

There are three transforms we discuss. One transform affects frequencies-empirically,
term frequency distributions have a much heavier tail (e.g. are more likely to exhibit
for high frequencies) than the multinomial model predicts. We also transform based
on document frequency, since we don't want common terms to dominate in classifica-
tion, and based on length, so that long documents do not dominate during training.
By transforming the data to be better suited for use with a multinomial model, we
find significant improvement in performance over using MNB without the transforms.

32



3.3.1 Transforming Term Frequency

In order to understand whether MNB would do a good job classifying text, we inves-
tigated if the term distributions of text actually followed a multinomial distribution.
We found that the distributions had a much heavier tail than predicted by the multi-
nomial model, instead appearing like a power-law distribution. We show how these
term distributions that look like power-law distributions can be transformed to look
more multinomial.

To measure how well the multinomial model fits the term distribution of text, we
compared the empirical distribution of a term to the maximum likelihood multinomial
for that term. For visualization purposes, we took a set of words with approximately
the same occurrence rate and created a histogram of their term frequencies in a set
of documents with similar length. These term frequency rates and those predicted by
the best fit multinomial model are plotted in Figure 3-5 on a log scale. This figure
shows that the empirical term distribution is very different from the term distribution
a multinomial model would predict. The empirical distribution has a much heavier
tail, meaning that high frequencies are more probable than the multinomial model
predicts. The probability of multiple occurrences of a term is much higher than
expected for the best fit multinomial. The multinomial model assumes that whether
a term occurs again in a document is independent of whether it has already occurred,
while clearly from Figure 3-5(a), this is an inaccurate assumption. For example, the
multinomial model predicts that the chance of seeing an average word occur nine times
in a document is p(fi = 9) = 10-21.28-so low that such an event would be unexpected

even in a collection of all news stories that have ever been written. In reality the
chance is p(f2 = 9) = 104 -very rare in a single document, but not unexpected in

a collection of 10,000 documents. This behavior, also called "burstiness", has been
observed by others [9, 291.

While Church and Gale [9] and Katz [29] develop sophisticated models to deal with
term burstiness, we find that even a simple heavy tailed distribution, the power law
distribution, can better model the text and motivate a simple transformation to the
features of the multinomial model. Figure 3-5(b) shows an example of the empirical
distribution, alongside a power law distribution, p(fi) cx (d + fi)1og, where d has

been chosen to closely match the text distribution. This means the probability is also
proportional to 0 Iog(d+fi). This shares a form that is very similar to the multinomial
model, in which the probability is proportional to Of. Thus, using the multinomial
model we can generate probabilities that are proportional to a class of power law
distributions via a simple transform, fj log(d + fi). More precisely, if fi has a
power law distribution, then

fi = log(1 + fi)

has a multinomial distribution.

has the advantages of being an identity transform for zero and one counts, while,
as we would like, pushing down larger counts. The transform results in a much more
realistic handling of text without giving up the advantages of MNB. While setting

33



d = 1 does not match the data as well as an optimized d, it still results in a distribution
that is much closer to the empirical distribution than the best fit multinomial, as can
be seen in Figure 3-5(a).

3.3.2 Transforming By Document Frequency

Another useful transformation is to discount terms that occur in many documents.
Such common words are unlikely to be related to the class of a document, but random
variation creates an apparent fictitious correlation. This simply adds noise to the
parameter estimates and hence the classification weights. Since these words appear
often, they can hold sway over a classification decision even if the weight difference
between classes is small. It would be advantageous to down-weight these words.

For example, suppose that the word "I" appears frequently in many documents
of all classes. Just by chance, it will probably occur in one class more than the other;
and this will lead Naive Bayes to draw chance correlations about the number of times
"I" appears in each class (when there is no real correlation). Conversely, if the word
"baseball" only appears a few times in one class (sports), we might believe it has a
greater significance when present. Heuristically, we want a transform that decreases
the strength of words that occur in many documents; while increasing the strength
of words that only occur in a few.

To correct for this, a common heuristic transform in the information retrieval (IR)
community is to discount terms by their document frequency [281. This is known as
"inverse document frequency." One such transform is

fl = filog E ,
Li 6i

where 6ij is 1 if word i occurs in document j, 0 otherwise, and the sum is over all
document indices [49]. Rare words are given increased term frequencies; common
words are given less weight. Its common use in IR led us to try it for classification,
and we also found it to improve performance.

3.3.3 Transforming Based on Length

Documents have strong word inter-dependencies. After a word first appears in a
document, it is more likely to appear again. Since MNB assumes occurrence indepen-
dence, long documents can negatively effect parameter estimates. We normalize word
counts to avoid this problem. Figure 3-6 shows empirical term frequency distributions
for documents of different lengths. It is not surprising that longer documents have
larger probabilities for larger term frequencies, but what is worth noting is that the
jump for larger term frequencies is larger than the jump in average document length.
Documents in the 80-160 word group are, on average, twice as long as those in the
0-80 word group, yet the chance of a word occurring five times in the 80-160 word
group is larger than a word occurring twice in the 0-80 word group. This would not
be the case if text were multinomial.

34



10
Doc Lengl 0-80
Do 00 ' 0

-0- Doc Length 160-240

10

Io- -~

10

10-4

10'
0 1 2 3 4 5

Term Frequency

Figure 3-6: Plotted are average term frequencies for words in three classes of Reuters-
21578 documents-short documents, medium length documents and long documents.
Terms in longer documents have heavier tails.

We deal with this by again turning to a transform that is common in the IR com-
munity, but not seen with Naive Bayes. We discount the influence of long documents
by transforming the term frequencies according to

, Ai
L Af )2'

yielding a length 1 term frequency vector for each document. The transform is com-
mon within the IR community because the probability of generating a document
within a model is compared across documents; in such a case one does not want short
documents dominating merely because they have fewer words. For classification,
however, because comparisons are made across classes, and not across documents,
the benefit of such normalization is more subtle, especially as the multinomial model
accounts for length very naturally [36]. The transform keeps any single document
from dominating the parameter estimates.

The three transforms convert integer frequencies into floating point numbers.
Some of the transforms, like the log of the term frequencies, can still be understood
in generative model terms. The new model of word distributions becomes a power
law rather than a multinomial. Others, like term frequency, are harder to understand
on generative grounds. Therefore, the trade-offs for this transform approach is the
loss of a clean generative model (which was already lost in our other modifications to
the algorithm); the benefits seem to be improved text classification.

In tests, we found the frequency transform to be the most useful, followed by the
length normalization transform. The document frequency transform seemed to be
of less import. Results for these tests are in figure 3-7. Full results comparing the
combined transforms are in the next section.

35



WCCNB F-WCCNB L-WCCNB I-WCCNB
Industry Sector 0.890 (.004) 0.914 (.002) 0.904 (.003) .813 (.004)
20 Newsgroups 0.859 (.005) 0.867 (.004) 0.851 (.004) .848 (.004)

Figure 3-7: Experiments comparing weight-normalized complement class Naive Bayes
(WCCNB) with various transforms: the frequency transform (F-WBCCNB), the
length transform (L-WCCNB) and the inverse document transform (I-WCCNB). Ac-
curacy is reported and standard deviations are shown in parenthesis. We found the
transform that increased accuracy the most was the frequency transform, followed by
the length transform. While the inverse document transform sometimes hurt accu-
racy alone, when combined with the other transforms, as shown in the next section,
it benefited classification accuracy. The Industry Sector results are all statistically
significant, but some of the 20 Newsgroups results are not.

MNB WCCNB TCCNB SVM
Industry Sector 0.577 (.008) 0.890 (.004) 0.919 (.004) 0.928 (.003)
20 Newsgroups 0.847 (.006) .859 (.005) 0.868 (.005) 0.865 (.003)
Reuters (micro) 0.739 0.782 0.844 0.887
Reuters (macro) 0.270 0.548 0.650 0.694

Figure 3-8: Experiments comparing multinomial Naive Bayes (MNB) to Transformed
Complement Class Naive Bayes (TCCNB) to a support vector machine (SVM) over
several datasets (left column). Note that our linear-time TCCNB's performance is
substantially better than MNB, and comes close to the SVM's performance. Industry
Sector and 20 News are reported in terms of accuracy; Reuters in terms of precision-
recall breakeven. Standard deviations are reported in parenthesis. All of the Industry
Sector and 20 Newsgroups data are statistically significant, with the exception of the
TCCNB and SVM results for 20 Newsgroups.

3.3.4 Experiments

We have described a set of transforms for term frequencies. Each of these tries to
resolve a different problem with the modeling assumptions of Naive Bayes. When
we apply the transforms in the sequence described, and in conjunction with CCNB
and weight normalization schemes from before, we find a significant improvement in
text classification performance over MNB. Figure 3-8 shows classification accuracy
for Industry Sector and 20 Newsgroups and precision-recall breakeven for Reuters.
TCCNB is the application of the described transforms on top of the CCNB classifier.
We show results on the Support Vector Machine (SVM) for comparison [8]. We
used the transformations described in Section 3.3 for the SVM since they improved
classification performance.

We discussed how our results compared to other results in section 3.2.3. Our
support vector machine results are similar to others'. Our Industry Sector result
matches that reported by Zhang and Oles [61] (93.6%). The difference in Godbole
et al.'s [19] result (89.7%) on 20 Newsgroups is due to their use of a different multi-

36



class schema. Our micro and macro scores on Reuters differ from Yang and Liu [59]
(86.0%, 52.5%), likely due to their use of feature selection, and a different scoring
metric (Fl). The larger difference in macro results is due to the sensitivity of macro
calculations, which weights the smallest classes most heavily.

3.4 Conclusion

" Let X= (1 , ... , A) be a set of documents;

" Let xii be the count of word j in document i.

" TCCNB(z)

- Pre-process data with transforms
replace xii with log(xij + 1) (TF transform Section 3.3.1 t)
replace xij with xij log Ek 1 (IDF transform Section 3.3.2 t)

Zk 6 ik

replace xij with " )2 (length normalization Section 3.3.3 t)
VT k -(Xkj)

- Use the complement class formulation (Section 3.2.1)

C3 Zj:yj'c Ek Xkj +a

- Weight normalization (Section 3.2.2)
wej = log Oej

z:i wcj
- Let t = (tj, .. , t,,) be a test document; let tj be the count of word i in the

document.

- Label the document according to

1 (t ) = ar g min tj twej (3.4)
C

Figure 3-9: Our Naive Bayes procedure. Assignments are over all possible index
values. Steps denoted with t are not part of the CCNB classifier.

We have described several techniques, summarized in Figure 3-9, that attack defi-
ciencies in the application of the Naive Bayes classifier to text data. The complement
variant solves the problem of uneven training data. Normalization of the classification
weights improves Naive Bayes' handling of word occurrence dependencies. Also, a se-
ries of transforms from the information retrieval community improves Naive Bayes'
text classification performance. In particular, one transform converts text, which is
closely modeled by a power law, to look more like a multinomial. These modifications
better align Naive Bayes with the realities of bag-of-words textual data and, as we
have shown empirically, significantly improves its performance on a number of data

37



sets. This modified Naive Bayes is a fast, east-to-implement, near state-of-the-art
text classification algorithm.

The cost of making these somewhat heuristic fixes is that the modified Naive
Bayes no longer has a generative interpretation, and that the modifications are aimed
particularly at text classification. While some of the steps can be thought of in gen-
erative terms, like the log transform, other steps, like weight normalization, have no
generative analog. The output of Naive Bayes is no longer a probability, so algorithms
like Expectation Maximization can no longer work with our modifications.

38



Chapter 4

Statistics-Based Data Reduction
for Text

4.1 Introduction

In the last chapter, we discussed ways to improve a fast but inaccurate classifier, Naive
Bayes, with the goal of finding algorithms suitable for use with Web applications. In
this chapter, we discuss how a slow but accurate classifier, the Support Vector Machine
(SVM), can be made faster. This chapter is the expanded version of joint work with
Jason Rennie, Yu-Han Chang and David Karger [52] [54].

There is a great need to find fast, effective algorithms for text classification. A
KDD panel headed by Domingos [12] discussed the tradeoff of speed and accuracy
in the context of very large (e.g. one-million record) databases. Most highly accu-
rate text classifiers take a disproportionately large time to handle a large number of
training examples. These classifiers may become impractical when faced with large
datasets, like the Ohsumed data set with more than 170,000 training examples [22].

The SVM is one such highly accurate, general classifier (see the background chap-
ter 2.1.2 for more information). The SVM has consistently outperformed other algo-
rithms [59, 25, 16, 44]. However, the SVM's ability to classify well over many domains
means it can take a long period to train. Joachims [27] estimates a training time be-
tween 0(n1 7 ) and Q(n2 1 ) for n training examples. In our own experiments with
the Ohsumed data set, a standard implementation of the SVM [46] did not complete
training within a week.

In contrast, a fast algorithm like Rocchio [47] can complete training on the same
data set in around an hour. Rocchio is a simple, fast classifier that finds the plane
exactly between the centroids of the two classes (more technically, the perpendicular
bisector of the centroids of the two classes). By throwing away some information-the
exact location of each point-Rocchio comes up with a fast decision boundary that
has reasonably high accuracy. More information on Rocchio can be found in Chapter
2.

Bundling forms a continuum of classifiers between the SVM and Rocchio, allowing
one to choose a time-appropriate classifier for a given task. Bundling averages sets

39



of points by class into representative points and sends them to the SVM. At the fast
"Rocchio" end, bundling combines all the points by class. When sent to the SVM, this
method produces the same decision boundary as Rocchio would (the SVM, applied to
two points, also finds the perpendicular bisector decision plane). At the slow "SVM"
end, bundling does not combine any points at all, and acts identically to the SVM.
In between, however, bundling combines points such that the algorithm runs faster
than the SVM, and probably more accurately than Rocchio.

There are standard alternatives to bundling, which also reduce the inputs to the
SVM. Subsampling, for example, reduces the data set by removing training points.
Conceptually, bundling is combining information from the original points together,
whereas subsampling is cutting information. Suppose they were both used to reduce
the original data to one point per class-intuitively, the one subsampled point would
not produce a very good decision boundary when compared to the decision boundary
a known algorithm like Rocchio would.

In the next section, we describe more fully the alternative data reduction tech-
niques. Section three gives a description of the bundling technique applied to text
problems, and Section four follows with a more formal and general approach to
bundling. Section five contains experimental results on four text data sets that shows
how bundling can be effective in speeding up the SVM, without sacrificing significant
accuracy.

4.2 Existing Data Reduction Techniques

Given the current state-of-the-art theory on SVMs, we argue that current implemen-
tations will always take at least 6(n2) time on most text classification problems. As
mentioned in the background, the SVM tries to optimize a value function that is
based on the "dual form" equations (see the SVM background 2.1.2). Part of that
equation shows two summations over all support vectors (all items in the summations
that are not equal to zero); merely computing the function the SVM tries to optimize
takes time proportional to the square of the number of support vectors.

We argue that the number of support vectors in text problems is proportional
to the number of training documents, which in turn shows that current theories on
SVMs lead to an O(n 2 ) bound. Merely computing the function we want to optimize
requires time proportional to the square of the number of support vectors. So we
argue that the number of support vectors are proportional to the number of training
documents (in the text domain).

'Most new documents contain at least one new word (feature); perhaps a proper
name (the author's name, for instance), a typo, or a new concept. Recalling that sup-
port vectors help define the SVM's decision boundary, every document that contains
a unique word (feature) must be a support vector. The SVM will try to correlate
every feature with one class or the other, and in order to make that correlation, the
SVM needs to create a support vector from each document with a unique word. As
long as some fraction of documents contain a new word, the 0(n2 ) bound holds.

In the context of the SVM's slow training times, we discuss existing techniques

40



for reducing data, including subsampling, feature selection, bagging and squashing.
Note that all of these algorithms reduce the data, meaning any of these (along with
bundling) could be used in conjunction with any algorithm, not just the SVM. As
mentioned before, throughout the thesis, we have adopted the notation that an indi-
vidual data point is xi, where i indexes the training point, and j indexes the feature.
One way to visualize the training points is to imagine a large matrix with the training
points representing rows and the features representing columns.

Subsampling is probably the simplest method for reducing the data; one just
removes training points. This may be thought of as removing rows from the i by j
matrix of training points discussed above. Often when people refer to subsampling
they mean removing data randomly; this procedure is probably the fastest and easiest
to implement of the data reduction techniques.

Given a classification algorithm that is super-linear, another potential solution
is bagging [6]. Bagging partitions the original data set and learns a classifier on
each partition. A test document is labeled by a majority vote of the classifiers.
This technique makes training faster (since each classifier on a partition has fewer
examples), but slows down testing since it evaluates multiple classifiers for each test
example. Hence the overall training and testing time does not always decrease.

We can also speed up classifiers by reducing the number of features. While sub-
sampling was removing rows from the matrix of training points, feature selection
removes columns. Feature selection has been the focus of much work [60] [39]. Note
that all classifiers already perform a type of feature selection: if the classifier sees
a feature as irrelevant, it simply ignores that feature by zeroing out a weight corre-
sponding to that feature. Thus, an important contribution of feature selection is to
have a fast pre-processing step that reduces the overall training time.

Our general method of using statistics to compress data is similar in nature to
squashing, a method first proposed in Dumouchel et al. [17]. The squashing method
involves three steps, which mirror bundling's steps: partitioning the data, computing
statistics over the data, and the generation of data. However, squashing does each of
these steps in a different way and produces a different output from bundling.

The original squashing algorithm has a large dependency on the number of features
in the dataset. The second stage of the algorithm, computing moment statistics over
the data, requires time proportional to the number of features to the fourth power.
This time comes from their computations of the means, minima, maxima, along with
all the second, third and fourth moments, as well as the marginal fifth moment. This
is appropriate for a small constant number of features, but inappropriate for text
classification. In text classification, the features are distinct words, and the number
of features is typically larger than the number of training examples (and grows with
more examples). When the number of features is large, the squashing algorithm is
slower than many of the classification techniques squashing is attempting to speed
up.

In order to satisfy all of the squashing algorithm's statistical constraints, the out-
put of squashing requires that weights be attached to each point. The traditional clas-
sification problem (described fully in the background, 2.1) does not accept weighted
points as a portion of the input set, and this means squashing is not immediately

41



applicable to classification problems.
A later paper addresses squashing's problem of putting weighted points into a clas-

sification algorithm by proposing a modification of the SVM to accept weighted input
points [41]. Their approach was useful in that it modified the SVM's optimization
routine to take advantage of the weights produced by squashing.

Our general approach differs from the squashing approach in being a practical
method for large numbers of features, especially when applied to text classification.
Specifically, it operates in linear time with respect to the number of features (and
training examples) and it produces an output which is usable by standard classifica-
tion techniques without modification.

4.3 Text Bundling

Bundling, parametrized by the bundle size, generates a continuum of classifiers be-
tween the SVM and Rocchio. On the fast end of the continuum, Rocchio uses only
the mean statistics of the data and thus achieves fast running time. Rocchio only
requires one input point per class, namely the mean. Training and testing for Rocchio
are clearly linear time. On the other end of the continuum, the SVM achieves high
accuracy but requires a prohibitively long training time on large data sets. The SVM
uses each individual document to train its classifier so it trains slower but has higher
accuracy.

In order to achieve both high accuracy and fast training time, we explore the
space of classifiers between Rocchio and the SVM. The bundled SVM is designed
to combine the speed of Rocchio and the accuracy of the SVM by forming a new
input data set that is smaller than the original data set but larger than the one mean

(centroid) per point used by Rocchio. The bundle-size parameter, s, determines the
size of the new input data set, and we will sometimes refer to the bundled SVM with
parameter s = k as a bundled SVM (s = k). The bundled SVM combines documents
in the original data set together to form new training documents, each composed of
s original documents of the same class. This preserves the proportion of documents
per class between the original data set and the bundled set.

The bundled SVM (s = 1) performs no combinations and behaves identically to
the SVM in both accuracy and training time. Training time is approximately cn 2,
where n is the number of training examples, and accuracy is generally high. When
each class is reduced to one point, denoted s = max, the bundled SVM gives the SVM
one point per class as input, namely the combination of all documents in a class.
In the binary classification case, the SVM receives two vectors, one for each class,
and the SVM will find the widest separating hyper-plane between the two vectors,
which happens to be the perpendicular bisector, the same as Rocchio. Training time
becomes linear, cn, but accuracy is generally lower than in the s = 1 case.

In between these extreme values of the bundle-size s = 1 and s = max, the training
time is somewhere between cn and cn 2, and we expect the accuracy to be somewhere
between the accuracies of the original SVM and Rocchio. It is clear that training
time can be improved over the usual SVM as we decrease the size of the input data

42



procedure Randomized Bundling

1: Let n be the number of documents.
2: Let m be the chosen partition size (we assume n/m is an integer).
3: Randomly partition the set of documents x into m equal-sized partitions

P,. .. ,Pm.
4: Compute x'i = s (P), where i'i is the Zth reduced (mean) data point and x' is

the count of word j.
5: X' = {i,. . . , i' 1} is the reduced data set.

set by increasing the bundle size s. Accuracy probably improves over Rocchio as
we decrease the bundle size s because combining documents into bundles preserves
more information about the distribution of the documents than the mean alone. Each
bundle provides some additional information about the underlying structure of the
distribution of document vectors within each class.

As a particularly noteworthy example of the tradeoff between accuracy and speed
within this continuum, we can choose a bundle size of s = Gn/m, where m is the
number of classes given to us in the classification problem. Our approach proceeds by
concatenating documents together on a per-class basis until we are left with n/m
documents. We are thus left with at most V/nrn documents. Using this set as our
input data, the SVM training time is cn, when m, the number of classes, is fixed.

The remaining question is determining how to partition the points. We present
two algorithms, randomized bundling and Rocchio bundling. In randomized bundling,
we simply partition points randomly (see Figure 4.3 for pseudo-code). This takes very
little time: one pass over the n training points-the same as subsampling.

Randomized bundling puts together random points, so it poorly preserves data
point locations. Ultimately we would like to preserve as much location information
as possible by bundling nearby points. We might try doing a bottom-up clustering
where we combine elements closest to one another; but simply computing all pairs
of distances is too time consuming. An alternate, faster clustering algorithm is k-
means, an algorithm that iteratively attracts points to k centroids. Empirically this
did not perform favorably: it raised the pre-processing time without yielding signifi-
cantly better results than the randomized bundling. Next, we describe an algorithm
that preserves more location information than random, but runs faster than the two
clustering algorithms.

It is difficult to do any fast clustering while considering all dimensions of the data.
If we can project the points onto one important dimension, then we can cluster as fast
as we can sort. Rocchio bundling projects points onto a vector and then partitions
points that are near one another in the projected space. For binary classification,
that vector is the one that connects the two class centroids. For multi-class problems,
we choose a vector for each class that connects the class centroid with the centroid
of all the other classes' data.

Let c be the centroid of one class, and -' the other centroid. Let Yi be the data

43



procedure Rocchio Bundling

1: Let n be the number of documents.
2: Let m be the chosen partition size (we assume n/m is an integer).
3: Sort the document indices {1,...,n} according to RocchioScore(Yi). Let

ri, . . ,rn be the sorted indices.
4: Partition the documents according to the sorted indices. Let Pi =

{Xri_1 1, . . .*, Xr} be the ith partition.

5: Compute x' = s (P), where x' is the ith reduced (mean) data point and x' is
the count of word j.

6: X' ={', . . , 'm is the reduced data set.

point. Our score is the projection of Yi on to i - ':

RocchioScore(5i) = Yi - (*- c-'), (4.1)

By sorting documents by their score, then bundling consecutive sorted documents (the
number of documents is controlled by the bundle-size parameter, s), we combine sim-
ilar (by Rocchio score) documents. This algorithm is O(n log n. The pre-processing
time for Rocchio bundling can be made as fast as 0(n log m), because a full sort is
not necessary: the documents within each partition can remain unsorted. Such a
partial sort can be done recursively with known algorithms: briefly, one does a binary
recursive split around the original set of scored documents. The standard sort is not
much slower and is easier to implement using standard sorting libraries.

This provides a quick way to decide which points fall within a bundle. Further de-
tails on the algorithm are provided in the Rocchio bundling pseudo code (Figure 4.3).

4.4 General Bundling Algorithm

In the previous section, we described a method for bundling on text (or other domains
where the mean statistic is important). In this section, we generalize and formalize
bundling to other domains.

One way to understand a large body of data is to summarize them with statistics,
which are functions over the data. Let X' {xi, X2, . . . , Xn} E R be a set of data.
Then a statistic, s(s), is a function that maps the data to a single value in R. For
example the mean statistic is simply the average value of the data points.

Subsampling does not preserve the entire set of data, rather it preserves all statis-
tics on a subset of the data. In contrast, we propose to preserve certain statistics of
all the data. For example, in text we preserve the mean statistic.

4.4.1 The General Bundling Algorithm

We can think of the tradeoffs between speed and accuracy in an information sense:
the less raw information we retain, generally the faster the classifier will run and the
less accurate the results. Each data reduction technique operates by retaining some

44



information and removing other information. By carefully selecting our statistics for
a domain, we can optimize the information we retain.

Bundling preserves a set of k user-chosen statistics, s' = (s1, ... , s), where si
is a function that maps a set of data to a single value. Bundling imposes a global
constraint as follows.

global constraint Let S be a set of data. Let 5' be a reduced set of training data,
the "bundled" set. Bundling requires that si() = ss(S') Vi.

There are many possible reduced data sets, :', that can satisfy this constraint.
But, we don't only want to preserve the global statistics. We also want to preserve
additional information about the distribution. To get a reduced data set that satisfies
the global constraint, we could generate several random points and then choose the
remaining points to preserve the statistics. This does not retain any information
about our data except for the chosen statistics. We can retain some of the information
besides the statistics by grouping together sets of points and preserving the statistics
locally:

local constraint Assume that the data points, 5, and the reduced data, 5' are
partitioned into the same number of sets. Let 'j) be the data points from
the ]th partition of Y. Let y be the data points from the jth partition of 5'.
Bundling requires that si(,(j)) = si(yg) Vi, j.

The bundling algorithm's local constraint is to maintain the same statistics be-
tween subsets of the training data.

The focus on statistics also usually implies that the bundled data will not have
any examples in common with the original data. This is a necessary consequence of
our wish to fully preserve certain statistics rather than the precise examples in the
original training set. The bundling algorithm ensures that certain global statistics
are maintained, while also maintaining a relationship between certain partitions of
the data in the original and bundled training sets.

Here we describe how bundling might be used in domains where more statistics
need to be preserved or where statistics other than the sample mean are important.
This section is not relevant to text, but may be of interest to a wider audience
interested in applying it to different domains.

For single, simple statistics like maximum, minimum or means of each feature can
be solved in a straightforward fashion like the text example. If each local bundle has
the maximum of each feature, then the global maximum for each feature will also be
conserved.

One can also bundle with two or more statistics simultaneously, though only
in special cases. Instead of bundling a partition to one point, we bundle to two or
more. One can preserve the minimum and maximum statistics by creating two points,
one of which contains the minimum value for each feature, the other containing the
maximum. One can preserve mean and variance statistics by converting each partition
into two points that have the same mean and variance statistics as the partition. Both
of these examples simultaneously satisfy the local and global constraints.

45



20 News IS Reuters Ohsumed
Train Size 12,000 4797 7,700 179,215
Test Size 7,982 4,822 3,019 49,145
Features 62,060 55,194 18,621 266,901
SVM time 6464 2268 408 ?
& accuracy 86.5% 92.8% 88.7% ?

Table 4.1: This table summarizes the four text datasets used in our experiments.
SVM timing and accuracy are based on SVMFu; question marks (?) indicate SVM
runs that did not finish within a week. The Reuters accuracy is based on precision-
recall break even; 20 news and Industry Sector are based on multi-class accuracy; and
Ohsumed on binary accuracy. Features refer to the number of features found in the
training set.

4.5 Results

4.5.1 Data Sets and Experimental Setup

Our experiments try to quantify the relationship between speed and accuracy for
five different data reduction techniques at varying levels of speed-ups. In order to
perform these comparisons, we made a test bed as broad and fair as possible. We
compared the various reduction techniques on SvmFu, a fast, publicly available SVM
implementation [46]. We coded each pre-processing step in C++, and compared the
total reported preprocessing, training and testing time reported by the UNIX time
command, for user process time. We use a fast, relatively un-used machine (1GB
RAM, 1.6GHz PIII processor) to perform all the experiments.

We use four well-known text data sets: 20 Newsgroups [37, 55, 3], Industry Sec-
tor [18], Reuters-21578 [59, 25, 50], and Ohsumed[22]. The data sets are summarized
in Table 4.1. According to past convention, we reported accuracy for 20 Newsgroups,
Industry Sector and Ohsumed along with precision-recall for Reuters. Please see the
Appendix at the end of the thesis for further details on the data sets and how we
pre-processed and recorded results and statistical significance results for them.

We chose to base our tests on the Support Vector Machine (SVM), a highly accu-
rate, but slower (super-linear) algorithm for classification. In many text-classification
tasks, it has consistently outperformed other algorithms [59, 25]. The SVM takes the
positive and negative training points, and tries to place a hyper-plane between them
that optimizes a tradeoff between classification error and margin width. It is more
sensitive to the exact location of the training points than algorithms that simply use
the feature's means. For more information about the SVM, see the Burges [8] tutorial
and our background section on SVMs (Chapter 2.1.2).

For our experiments, we use the preprocessing transforms described in the "trans-
forms" section of the Naive Bayes chapter (Chapter 3.3). The SvmFu package is used
for running experiments [46]. Exact command line parameters for the SvmFu are
listed in the Appendix at the end of the thesis. We produce multi-class labels by

46



training a one-versus-all SVM for each class and assigning the label of the most confi-
dent SVM. We use the linear kernel for the SVM since after applying our transforms
from Chapter3 (which we did), the linear kernel performs as well as non-linear kernels
in text classification [59].

Besides our bundling technique, we implemented the subsampling, bagging and
feature selection techniques described in the section on other data reduction tech-
niques. We did not implement squashing which seemed impractical in light of its
time bounds (f 4 where f is the number of features; slower than the SVM's bounds),
and impracticality (the output is weighted points, which the standard SVMs do not
accept as input).

For subsampling we selected points randomly by class; this was the fastest to code
and also had the fastest running times. We parameterized subsampling similarly to
bundling's parameters. We indicated a partition size (s = 1... s = max), and one
element from each partition was picked to go to the reduced data set. Like bundling,
this preserves the proportion of original documents in the subsampled document class.
When s = 1, the SVM runs as normal; when s = max, one random point from each
class is sent to the SVM.

The general bagging procedure again begins by partitioning the data. Each set
of s points from a class would be sent to an SVM classifier (implying n/s partitions)
if there were n points in the original class. For example, if there were 150 points
in each class, and s = 3, then bagging would generate three separate classifiers that
each had 50 points per class. The three classifiers would each produce a classification
on a given test point, and the majority labeling of the three classifiers would be the
final label. In the example above, bagging would take at least three times longer
than subsampling, which would only train on one of the three classifiers that bagging
used. Consistent with our other notation, s = max is the value of s at which bagging
went the fastest, and s = 1 (i.e. one partition containing all the original points) is
equivalent to the SVM.

We use one of the best performing feature selection algorithms proposed in Mladenic [39],
which ranks features according to lp(fil+) - p(fil-)I, where p(filc) is the empirical
frequency of fi in class c training documents. Each feature was scored according to
these probability heuristics. The features were then sorted by its score, and the ones
with the lowest scores were removed. The parameterization again ranges from s = 1
to s = max. To keep consistent with our other notation, s means that s - 1 features
were removed; this allows s = 1 to mean the regular SVM is run (i.e. no features are
removed) and s = max means only one feature is retained.

The remaining two algorithms, Randomized bundling and Rocchio bundling are
the focus of this paper. The s parameter applies to all of the algorithms mentioned; so
s = 1 is always the original SVM, corresponding to sending the SVM a maximum of
information, and s = max is always the "fastest" algorithm, corresponding to sending
the SVM the minimum information.

47



20 News Industry Sector
Slowest Results

Time Accuracy Time Accuracy
Bagging 4051 (5.68) .843 (.004) 1849 (1.55) .863 (.006)
Feature Selection 5870 (8.23) .853 (.002) 2186 (1.03) .896 (.005)
Subsample 2025 (2.84) .842 (.004) 926 (.774) .858 (.005)
Random Bundling 2613 (1.31) .862 (.005) 1205 (.552) .909 (.004)
Rocchio Bundling 2657 (1.01) .864 (.002) 1244 (.573) .914 (.004)

Fastest Results
Time Accuracy Time Accuracy

Bagging 2795 (4.81) .812 (.005) 1590 (.249) .173 (.006)
Feature Selection 4601 (4.71) .649 (.004) 1738 (1.81) .407 (.003)
Subsample 22 (.241) .261 (.02) 59 (.142) .170 (.005)
Random Bundling 117 (.08) .730 (.007) 177 (.064) .9 (.005)
Rocchio Bundling 173 (.078) .730 (.007) 248 (.064) .9 (.005)

Reuters Mod-Apte Ohsumed
Slowest Results

Time Accuracy Time Accuracy
Bagging 346 .886 ? ?
Feature Selection 507 .884 11010* .647
Subsample 173 .859 39340 .808
Random Bundling 390 .863 25100 .830
Rocchio Bundling 404 .882 26710 .804

Fastest Results

Bagging
Feature Selection
Subsample
Random Bundling
Rocchio Bundling

Time
295
167
9.6
105
129

Accuracy
.878
.423
.213
.603
.603

Time

11010*
13
74
134

Accuracy

.647

.603
.731
.731

Table 4.2: This table summarizes results for various text corpora (columns) against
various data reduction algorithms (rows). Results are expressed as empirical time-
accuracy pairs, with standard deviations in parenthesis. Boldface items have statis-
tically higher accuracy than the other methods at the 95% confidence range, using
statistical significance tests specified in the Appendix. The rows headlined by "Slow-
est Results" show the time and accuracy for the algorithms resulting in the slowest
classification times (not including the base-case where no pre-processing algorithms
are used); the other rows ("Fastest Results") represent the fastest classification times
(i.e. subsampling down to one point per class). The maximally bundled data is
functionally similar to the Rocchio algorithm. Question marks (bagging) indicate
runs that did not complete in the allotted time. Only one run of feature selection
completed within the allotted time (*).

48

11 Industry Sector20 News



-- Subsampe

-K- Bagging

n Imoro-ed Nae Baves

-- Random BLncde

-e- Feature Selection

- H- Rccoo Bunde

SFegular Naire Bayes

0.88

0.86

0 084
a 082

4 0.8

2 0.78

0.76

2 0.74

0.72

0.7
0 1000 2000 3000 4000

Total Empirical Time

0.85

0.8

0.75

0 0.7

m 0.65

0.6
0 5000 10000 15000 20000 25000

Total Empirical Time

5000 6000

30000 35000 40000

Industry Sector Time vs. Accuracy

1 --- ---- ~---- ------ ------------------- ---------

0.9 r-DK

0.8

0.7
0.6

a 0.5

S0.4

0.3
2 0.2

0.1 -

0
0 500 1000 1500 2000

Total Empirical Time

Reuters Time vs. P-R Breakeven

1

0.9

S0.8

S0.7

0.6

0.5

C 0.4

0
S0.2

0.1

0

0 50 100 150 200 250

Total Empirical Time
300 350 400

Figure 4-1: Speed against accuracy plotted for the four data sets, and the five data
reduction techniques included in this study. The key is at the top of the figures

49

20 News Time vs. Accuracy

-- -- -- -- -- --- -- ---- -- - -

Ohsumed Time vs. Accuracy
- - - - - - - - - - -- - ---------.... ..... .. ...... ... ... - - - ---....~ -.. ... ~ - - ---... ................. .....



4.5.2 Experimental Results

In this section, we analyze the results from our empirical work found in Table 4.2 and
in Figure 4-1 showing the exact tradeoffs between speed and accuracy on the various
datasets. We discuss how each of the five speed-up techniques worked.

Our results on Ohsumed explain how different data reduction techniques work on
truly large datasets. Neither bagging nor feature selection were useful on the dataset.
No bagging runs completed within the allotted time (8 hours per run) and feature
selection required reducing the feature set to 50 features, which yielded very poor
results.

In general, feature selection was a disappointment on both speed and accuracy
grounds. The actual feature selection algorithm is empirically a small factor slower
than the other algorithms: one must perform calculations for every feature, and the
number of features tends to be larger than the number of data-points. This effect
is relatively minor. More importantly, the speedups in training times for our SVM
were relatively minor. This might be due to the previously mentioned effect where
SVMs will be have quadratically in the number of training points, which under feature
selection, is not changed. In our tests, reducing the number of training points sped
up the algorithm more than reducing the number of features.

Our results on Ohsumed help explain why feature selection does so poorly in
our empirical results. At the fast, inaccurate end, we chose the top 50 features.
However, those 50 features were distributed among 170,000 training points, so many
documents ended up consisting of a single non-zero feature. If a document's single
feature was a somewhat common word, it tended to appear at least once in both
the class and its opposite class. So common words (features) resulted in situations
where any algorithm would have a difficult time understanding which class a feature
was correlated with. If the document's single feature was somewhat rare, and only
appeared in one class, it generally could only help classify a small percentage of the
test documents. So when a large amount of feature selection was used, classification
accuracy became near random. When we chose more features for Ohsumed (even 100
total features) we found that the SVM takes much longer than our eight hour time
limit.

Bagging generally achieved higher accuracy than feature selection, but could not
operate very quickly. As discussed before, splitting the training set into more bags
reduced the training time, but increased the test time. The total training time versus
the number of bags was shaped like a "U": early speed increases were due to less
training time, later speed decreases were due to more testing time. This means that
bagging could only speed up an algorithm to a certain point; this point was often
slower than the speed-ups experienced with some of the other algorithms. On the
Ohsumed database, there were no bagging sizes that came close to completion within
our eight hour time limit.

Bagging yielded good accuracies for Reuters, and acceptable accuracies for 20
news and industry sector. Bagging's accuracy was tied to subsampling's accuracy:
the sharp drop off visible in the Industry Sector graph was due to the fact that sub-
sampling too much yielded extremely low (nearly random) accuracies; and combining

50



a series of almost random classifiers through voting does not really help create a
better classifier.

Subsampling worked overall better than expected by the authors. Relative to the
other algorithms, the process of randomly selecting documents is fast. For a given
reduced training set size, subsampling's pre-processing time ran faster than any of the
other data reduction algorithms. More importantly, the data points that it produces
were more sparse (more zero entries) than bundling, and hence an algorithm like the
SVM will run faster with subsampled points than with denser bundled points. For
example, on Ohsumed we could run the SVM with 18,000 subsampled points, but
with only 12,000 bundled points.

Subsampling also led to surprisingly accurate classification on the two binary
problems, Reuters and Ohsumed. On Reuters, it appeared that a small number
of documents could adequately define a class; so for a given amount of time, sub-
sampling would often perform better than the other algorithms. On Ohsumed, the
accuracy seemed to level off in certain ranges, performing worse than bundling for
higher amounts of time, but better than bundling for intermediate amounts of time.
Subsampling did not work well on the multi-class problems. We believe this is be-
cause the multi-class problems were more difficult and required more training points
to generate a good classifier. The drop off in accuracy begins from the start and keeps
falling (as opposed to bundling where it might flatten off for some ranges of s).

In all of our datasets, subsampling has a steep drop off in accuracy; eventually
at 1 point per class, it will intuitively do poorly. The difficulty with subsampling is
knowing when that drop off will occur. One might get lucky, like with Reuters, where
we found the heavy drop off doesn't occur until you remove 19 of every 20 documents.
Or one might get unlucky, like with 20 News, where removing every other document
causes an immediate drop in accuracy.

Certainly the most consistently good algorithms, and arguably the best perform-
ing algorithms were the two bundling algorithms. They had the best performances
for 20 news and industry sector, and alternated the lead on Ohsumed with subsam-
pling. For most datasets, they had the highest scores at the slow/high accuracy
end (bundling pairs of points generally performs as well as the unbundled SVM; for
Ohsumed, combining every 14 points into 1); and also did not drop as sharply as sub-
sampling on the fast/low accuracy end. As mentioned before, full bundling combined
with the SVM acts like the Rocchio classifier.

The Rocchio and random bundling methods have different strengths and weak-
nesses. As Table 4.2 shows, with minimal amounts of bundling (two points per bun-
dle), Rocchio usually outperforms random and most other algorithms. At the other
end of the spectrum, Rocchio has very few choices. For example, when bundling to
one point Rocchio has no choices-it bundles identically to random. However, Roc-
chio takes more time to complete. Thus, Rocchio works well when bundling to more
points, but suffers from higher preprocessing times when fewer points are retained.

We also compared all of these algorithms to both multinomial Naive Bayes and the
modified Naive Bayes presented in the previous chapter 3. These points are shown on
the graph as, respectively, an "X" and a "+". While multinomial Naive Bayes did not
yield good results, our modified Naive Bayes did; in 20 News, Reuters and Industry

51



Sector, the modified Naive Bayes was along the same line as the best performing
algorithm for those data sets. For the text data sets, at least, the modified Naive
Bayes performs well. The only drawback is that modified Naive Bayes is "tuned" for
text and may not work well on other domains, and that its time is not adjustable.
On the other hand, since Naive Bayes is a linear time algorithm, its times should
generally be fast (an optimization focused on speed and written in a faster language
than our java-based algorithm would show even better performance characteristics).

Subsampling and bundling seem to give the best results of the data reduction
techniques, so in Figures 4-2 and 4.3 we studied them further.

Figure 4-2 shows that, for a given number of points, bundling usually performs
better than subsampling (true in all cases with the exception of Ohsumed). This
verifies our earlier argument that given an equal number of points, then combining
points, like bundling, is to be preferred to cutting points, like subsampling. On
Industry Sector and Reuters, the two bundling techniques perform approximately the
same; while on Ohsumed, random bundling performs better and on 20 Newsgroups,
Rocchio bundling performs better.

Figure 4.3 shows the empirical times and accuracies for a given number of points
on the 20 Newsgroups data set. Note that, for an equal number of training points,
Rocchio bundling always takes longer than subsampling. This is because Rocchio
has a longer pre-processing time, and because each vector of the bundled points is
more dense than the vectors of the subsampled points. When there are many points,
the time differs by around 30%; in this case, the 0(n2) nature of the SVM probably
dominates. For smaller numbers of points, the effects of having a longer pre-processing
time dominates and with one point per class, Rocchio bundling takes about 8 times
longer than Subsampling.

In conclusion, we have shown a variety of methods for dealing with the problem of
large data sets. From our empirical results, we have a few recommendations. When
training time does not matter, or for sufficiently small data sets, the SVM untouched
works very well; it produces the highest accuracies, though it may take a long time
to complete. When an extremely low training time matters, then subsampling is the
fastest of the techniques tested; though the accuracy can drop to near-random. In
between, when scalability is an issue in the context of accuracy, both the modified
Naive Bayes and the bundled SVMs have advantages according to the situation. On
one hand, the bundled SVM has the advantage of being a general purpose classifier,
so it would be used on large problems that are not textual in nature. The bundled
SVM is also flexible in the sense that one can choose a point along the continuum
that is time-appropriate to the application. On the other hand, the modified Naive
Bayes performs well (particularly on text), often achieving a good trade-off between
time and accuracy.

52



-- Subsample --- Random Bundle --A- Rocchio Bundle

0.88

0.86
0.84

0.82
0.8

_ 0.78 -

0.74

0.72

0.7

0.84

0.82

0.8

< 0.78

0.76

0.74

0.72

0.7

0.9

0.8

0.7

0.6

0.5

0.3-

0.2

0.1

0

20 News Training Points vs. Accur

0 2000 Tra*V
9

j Points WO Pre-Pro9Q9ing 10000 12000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Training Points after Pre-Processing

Industry Sector Training Points vs. Accuracy- ,

0 1000 Trainino8ihts after Pr cessing 4000

0.95 Reuters Training Points vs. P-R Breakeven

0.9

* 0.85

0.8

0.75

C 0.7

0.65

0.6-

0.55

0 1000 2000 TrRaM% Pot after RWPro&Q9ng 7000 8000 9000

Figure 4-2: Number of points is plotted against accuracy plotted for the four data
sets, and the three data reduction techniques that reduce the number of points: sub-
sampling, random bundling and rocchio bundling. The key is at the top of the figures.

53

Ohsued Training Points vs. Accuracy

5000

'
-

V.5



Training Size
6000
4000
3000
1500
1200
600
300
150
120
60
40
20

Subsampling
time I accuracy
2025
1189
841
369
285
140
71
39
35
26
24
22

0.84
0.82
0.81
0.77
0.75
0.70
0.62
0.51
0.49
0.38
0.33
0.26

Rocchio Bundling
time I accuracy
2657
1864
1485
919
799
545
400
326
292
233
207
173

0.87
0.87
0.86
0.87
0.86
0.86
0.86
0.86
0.84
0.83
0.81
0.73

Table 4.3: Shown is a comparison of subsampling and Rocchio bundling for reducing
to various numbers of training points.
takes longer (due to denser vectors to
better accuracy. Results are shown as

For a given number of points, Rocchio bundling
dot-product) but has statistically significantly
accuracy on the 20 Newsgroups data set.

54



Chapter 5

Using Pre-Existing Trees as
Features for Machine Learning

5.1 Introduction

In this previous two chapters, we discussed modifying existing algorithms in order
to make fast, scalable classifiers primarily for learning text on the Web. In this and
the next chapter, we explore features and algorithms that exploit the Web's rich,
human-oriented structure towards building learning Web applications. This chapter
is the expanded version of work done with David Karger [53].

Suppose someone was given a Web page, like the one featured in Figure 5-1, and
asked to recommend a link to a Chinese friend. Suppose they could not read any
Chinese, had never visited the particular site 1, and generally could not decipher any
of the contents of the page. They might reasonably recommend the story in the "top
headline" area of the page. In fact, they might suggest that same "top headline" area
as a candidate recommendation for next week, page unseen, even though no one even
knows the exact content that will reside there. Without knowing any specifics of the
Web page, most people can make good guesses about certain semantic attributes of
that page.

This is not accidental; Web editors spend considerable effort trying to drop easily-
understood human clues for the readership's benefit. We attempt to exploit human-
oriented clues, like the spatial clues that allow one to understand where the "top
headline" resides, for the benefit of recommendation systems and ad blocking.

As we attempt to transition from the domain of flat-text files (as discussed in
the previous chapters) towards the rich, semantic world of the Web, there are many
new, human-oriented features we can exploit. These features have the ability to
make hard problems in the domain of text much easier. For example, as the world of
information retrieval came to the Web, work like PageRank [7] noticed that the link
structure of the Web contains lots of information about quality. The work proceeded
from the observation that links into a page indicated some type of interest; and that
observation rooted a series of algorithms that improved search engines dramatically.

lhttp://dailynews.sina.com

55



RFDAM1J,

s7vIFmfR, II

Y31 ffi

MMM

-3;1 m
...... ...

lif 101Aasiy

imuui . ipmmim rzmj in. - h

9, ailmaaam -

,2CVMMMRM

- J Iff-k - DNS !hM !

sM±N:0mhOff - lodt Oft . "I]*
Vtiafib- , IRDt!03Ef LMMIMMEM-LTO14M#MehNM-

MA -atWIS*ti D±jMTRMS

[ MM.. I

Figure 5-1: Without understanding Chinese or having seen this exact layout before,
most humans could guess what portion represented the "top headlines."

56

- IKII*hMT~jij;2M

mc w



Similarly, our work proceeds from the observation that Web editors want to pro-
vide consistent clues towards the contents and context of a page. It may be difficult to
build correlations between the Chinese characters displayed on the Chinese news site
and a particular user's interest; but luckily, the Web site's editor is already filtering
and implicitly recommending interesting stories by their placement of stories on the
page.

There is a certain logic that goes into most Web sites, and we want to codify
that into algorithmic terms a computer can understand. Referring to Figure 5-2,
a reasonable guess is that the sets of items in each box are somehow related. We
might not know what the elements inside box A are (advertisements? indices? minor
news stories?); but if your Chinese friend told you the first element in box A was
an advertisement, one might (correctly) assume everything else in box A was an
advertisement too. Similarly, if your friend indicated that B-1 was interesting, one
might guess that B-2 was interesting as well, even if you weren't fully sure what made
B-2 interesting.

In Figure 5-3, we show how a computer algorithm might understand the earlier
stated intuition that items visually clustered might have similar properties-for ex-
ample, that box A might contain a series of advertisements. On the upper right-hand
side we display snippets of the HTML that describes the site; various visually distinct
areas from the Web page are encoded into continuous blocks of HTML. The HTML
forms a tree, shown by indentations. That tree is abstracted on the bottom left.
Suppose someone labels that node A-1 is an advertisement (white), while node B-1
is content (black). The tree on the bottom right shows a potential generalization of
that information in which everything in box A is considered an a advertisement. The
work described here tries to formalize and build algorithms that might automatically
make generalizations like these.

Our discussion of tree learning algorithms spans two chapters. In this chapter, we
describe the algorithms that facilitate learning relationship like the ones described in
our advertisement example above. In the next chapter, we describe empirical results
for experiments done on the advertisement-blocking and recommendation domains.

5.1.1 Related Work

In discussing related work, it is worth devoting some time to work that appears
related but is not. Much work has been done on the problem of placing an item in
a tree. Both McCallum et al. [38] and Koller and Sahami [31] tackle the problem of
classifying text documents into a hierarchy using words in the documents as features.
In their problems an item's place is the output based on other features, while we use
item position as a predetermined input feature for classification. McCallum uses a
method called shrinkage that generates a classifier at each node in the tree, along
with a weight for that classifier. New documents are placed within the tree by finding
the node which maximizes the weighted sum of the classifiers between the root and
each leaf. Koller's work creates a classifier at each node in the tree which indicates
which child to move towards. The document moves downward from the root, greedily
selecting the most likely child, until it finally ends at a leaf node. In effect, McCallum

57



S4TIN KW~nt~I~ nn
WWWW645a Ide-460917)-tv

SRJMP4

bA58i4_q@Q |B- | <MORE>

F-4 a ' W&I T
ffi8% AR Bo94 R-1 19RE

- JA DivX

Xeffigs r)AN*MtA 1*tmEAI H W Witt AU$9EA3 *WM EWAgrlaiMn#' M0t

9! t <MORE>

B-2

m, mm
DIS- <MORE>

Network - ANGW

-8m tili±t~EULR~l~Uf

r Mo 1 <MORE)

Figure 5-2: Web sites have a certain logic to them that is easily intuited by most
Web surfers; everything in box A probably has something in common-for example,
they might all be advertisements. Given that B-i is interesting, it intuitively feels
more likely that B-2 would be interesting than something in A. We can use the

spatial layout to make educated guesses about content without being able to decipher
anything specific about the contents themselves.

58



lI RE>

<HTML> ...
<Table.. .></Table>
<Table...>

<Td><Table>...
<a href=...> A-1

<a href=...>
<a href=...>
<a href=...>

</Table></Td>

<Td><Table>...
<a href=...> B

<a href=...> B

</table></td>

3UUN3411131. *1%

A B-1

B-2

16u~w~
13333*31*&3*3tk

NOWAMNA IN13*31* MAR 31E1113ff

A-1 B-1 B-2

AA

</HTML>

A-1 B-1 B-2

Figure 5-3: Shown is an abstraction of Web problem to the domain of "tree learning."
The top-left shows the original Web-site. The top-right shows that visual portions of
the page are collected in chunks of HTML, which are indented to show the HTML's
tree structure. The bottom left shows the abstracted tree, receiving a partial label-
ing of the page: white ("advertisement"), black ("content") and grey ("unknown")
nodes. The bottom right shows one potential generalization of the tree which suggests
everything in box A is an advertisement.

59

-1
-2

>A

4 X: lz , '14 9, A R * 4 K 7);F N 1114
[g - I



is maximizing a score with respect to a weighted sum of classifiers along a path
through the tree; and Koller is making a series of local decisions to choose between
children along a path through the tree.

Both McCallum's and Koller's work assume a greater amount of information re-
sides at each node. They assume that each node has a related textual document or
documents that can be used to build local classifiers that might inform the global
classification task. Our approach abstracts away the exact contents of the node, and
only relies on the node's position in a tree for classification.

Natural language work also involves trees, often in describing some grammar.
Collins and Duffy [10] develops a special kernel for use in comparing multiple trees;
however, this does not appear relevant to our problem of using a single specific tree.

There is also truly related work. Haussler [20] is perhaps the first to propose
using position in a preexisting tree as a feature for classification. He proposes a
more restricted model (requiring that the concept to be learned form a conjunction of
subtrees) and performs a VC-dimension analysis. Among other differences with our
work, Haussler's model does not capture classes that are complements of subtrees. In
the terminology we will introduce shortly, he only allows for forward mutations, but
do not allow for backward mutations.

There is also work that extends the work presented here. Derryberry [43] extends
the basic algorithms in a variety of ways and provides an analysis of situations in
which these algorithms do not appear effective.

5.1.2 Model-Based versus Discriminant Classifiers

One might wonder why investigate a model-based classifier when a good discrimi-
nant classifier, like the SVM, might be able to work equally well or better. Ng and
Jordan [40] noted that "the prevailing consensus seems to be that discriminative
classifiers are almost always to be preferred to generative ones."

Ng also provides some of the reasons we have taken the model-based approach.
Model-based classifiers can theoretically and empirically outperform discriminant
classifiers when there is not much training data available [40]. Discriminant clas-
sifiers are general, and can choose from many potential solutions when there is only
a small amount of training data. On the other hand, model-based classifiers can use
domain knowledge as a substitute for training data, when the amount of real training
data is small. For example, returning to our advertising example, there is no way to
suggest to the SVM that most links on a page are not advertisements. Such sugges-
tions are possible in probabilistic models, where priors can pre-dispose the classifier
one way or another. In our own experiments detailed in the following chapter, we
empirically found that our model-based classifier could out-perform the SVM.

As discussed in the previous chapters on scalability, SVMs are not always fast.
The time it takes to search through all possible solutions may take longer than the
more constrained search over a model's possible solutions. Empirically on the recom-
mendation problems, a standard SVM implementation took more than three hours
to learn from a relatively small amount of training data, while our algorithm took
seconds. This is impractical for the type of Web applications we are trying to build.

60



There are also philosophical reasons to prefer a model-based classifier; it clar-
ifies and sharpens one's assumptions about a domain. Those assumptions can be
empirically tested or discussed, all to the benefit of understanding the domain better.

5.2 Models for Classification in a Tree

Returning to Figure 5-3, the bottom pictures of trees presented a partially labeled
tree (left) and one that had been generalized such that only box A (white) was labeled
as advertisements (right). Our basic assumption, one that we want to codify, is that
the coloration of the tree will prefer consistent labels (coloration) in similar areas of
the tree.

One way to codify that intuition is to make it more likely for a parent to match
than to mis-match its parent's label. Then the most likely coloration of the tree will
be the one that has the fewest mis-matches (given certain pre-specified labels). We
use the phrase "mutations" to mean a change in labels between a parent and a child
node; and later we will give a formal description of these mutations that gives rise to
a Bayesian network.

We mentioned earlier that it might be useful to lend prior knowledge to the model
in order, for instance, to suggest that advertisements were less likely than content.
Thus, our model has two types of mutations: one "forward" mutation rate that
expresses the probability that a parent will be black (content) and its child white
(ad); and a "backward" mutation rate that a parent will be white and its child black.
Changing the relative rates of those mutations allows one to influence the model
towards or against a particular label.

In the next sections, we formally discuss our model, which takes the form of a
Bayes-net. One can run standard inference procedures on the Bayes-net to generate
probabilistic answers (give that node A is an ad, what is the probability that node
B is also an ad?) We also suggest an incremental algorithm that allows adding
evidence nodes or doing certain inference problems in time proportional to the tree's
height. This is followed by a method that solves the real-world problem of precision
in probabilistic computations.

5.2.1 A Model of Classes Correlated to a Hierarchy

Our model consists of a Bayes-net that has a structure identical to the tree that we
are studying. Our assumption that the class to be learned is "correlated" to the tree
is captured in a model based on mutations. Although the items to be classified are
leaves in the tree, we extend the notion of class label to the internal nodes of the
tree. The class of an internal node is chosen to represent the class that leaves below
that node tend to have. Tendency is the appropriate word here: we wish to capture
cases where a substantial majority, rather than all, descendants have the class. For
example, in Figure 5-3, most of the nodes might not be advertisements, so they are
colored black; but a mutation occurs that leads one branch of the tree to be entirely
advertisements (white).

61



To formalize this model in a generative fashion, we declare that some class-
tendency is chosen at the tree root, and that this tendency is then propagated down
the tree, with mutations happening probabilistically on the way. Formally, let Ni
denote the class of node i (class tendency if i is an internal node). Then if Ni is Nj's
parent, we declare that:

1
p(Nj = 1|N = 0) = 0; 0 < 0 < and (5.1)

2

p(Nj = 0jNj = 1) = 0; 0 < < I. (5.2)
2

Thus the probability of a "forward mutation" -shifting from a tendency for class 0
to a tendency for class 1- is 0, while the probability of a "backward mutation" is #.
Both parameters have a probability less than 1, which means that mutations are a2'
less common event than non-mutations. Propagating this rule down to the leaves of
the tree defines classes for the tree leaves.

The ratio of forward to backward mutations induces a behavior on large-depth
leaves. The probability that a deep leaf has a given characteristic converges towards
a expression in terms of the mutation rates, 0/(0 + 0). This also suggests a natural
prior distribution for the root's class-tendency. If we set p(Ni = 1) = 0/(0 + 0) then
any node in the tree will, prior to any evidence, have a tendency towards class 1 with
probability 0/(0 + 0).

In standard Bayesian terms, evidence nodes are those nodes whose class is given
to us. Our goal is to predict the class of node i given the evidence nodes: p(Ni =
1 evidence). We simply see if the probability of a class is greater or less than a
half, given the evidence. If p(Ni = Ievidence) ;> - then we predict it is in class 1;
otherwise we predict it does not. Of course, other thresholds may be preferable, for
example, to minimize the number of false positives. Or, in a ranking problem, we
may sort based on this probability measure.

At this point, we have converted the original, intuitive problem into a formally
specified Bayes-net. To summarize the steps in creating a Bayes net out of the given
hierarchy:

" set conditional probabilities for all edges in tree for node i with child j,
p(N= 1 | Ni = 0) = 0
p(Nj = 0 Ni = 1) = 0

" set the root prior: p(No = 1) = 0/(0 + 0)

" assert the classes of evidence nodes.

Note that more complex models, such as mutation probabilities being a function
of node location, are also possible.

62



Figure 5-4: Shown is a sample tree with no evidence nodes, and equal forward and
backward mutation rates. At each square, we show the probability of the node given
the evidence, given that the node is white and black, by proportionally shading the
nodes white and black. Since there is no evidence, the probability of the evidence at
each node is split evenly at 50% white and 50% black.

5.2.2 Intuition Behind Model

In this section, we show some of the consequences of the model, and argue that the
model fits with our intuition of how trees are correlated with classes.

Figures 5-4 through 5-8 display a set of increasingly complex situations in which
new evidence nodes are added to a tree. Figure 5-4 shows a tree without any evidence
nodes, which has no bias towards one label or the other; this is graphically represented
by boxes that are half shaded black and half shaded white. Adding a white evidence
node (Figure 5-5) creates a bias towards white. Following our intuition, the bias
is greater nearer the evidence node and decreases with the distance from the node.
Adding a black evidence node (Figure 5-6) induces the sub-trees to be biased towards
white, other sub-trees biased black, and other sub-trees which seem unbiased. Adding
a further black evidence node (Figure 5-7) turns most of the tree biased towards black,
with the exception of the left sub-tree which remains white. Figure 5-8 shows the
same example with the mutation rate turned up; this corresponds to a model in
which the labels are not thought to correlate with the tree, and as a result most of
the non-evidence nodes have a high degree of uncertainty.

In the next section, we discuss a fast algorithm for computing the conditional
probabilities p(Ni jevidence).

63



Figure 5-5: Shown is the same tree with one evidence node, the far left leaf, which is
marked white. The nodes nearest to that evidence node have the highest probability
of being white as well; as the nodes increase their distance from the evidence, the
probability of being white decreases, but is always greater than the probability of
being black. Again the shading is done in terms of the probability of the node given
the evidence.

Figure 5-6: A black evidence node is added to the fourth leaf from the left. The
nodes in the immediate vicinity of that black node favor black; and the nodes in the
immediate vicinity of the white node favor white. The nodes far from both (right
branches) are unsure about what color to favor.

64

Ono



Figure 5-7: Another evidence node, black, is added to the third node from the right.
This induces most of the tree to strongly favor a black label, with the exception of
the four nodes on the far left.

Figure 5-8: The same tree is displayed with a much higher mutation rate. The higher
mutation rate means that the certainty of each node becomes much lower, almost
random. This reflects the case when the model does not believe the tree is correlated
with the labels, and thus it suggests a high degree of uncertainty for the non-evidence
nodes.

65



5.3 Fast Classification in Trees

As discussed above, given a set E of evidence nodes, our goal for a particular test
node i is to compute the posterior distribution p(N, = k I E) = p(NI = k A E)/p(E).
We can use this calculation to classify new nodes using argmaxkp(Ni = k I E), the
probability of having a characteristic given the evidence. Alternatively we can use
the posterior probabilities to rank nodes and select some top set of them as "best
candidates."

There are many exact algorithms for solving this problem on trees, all doing
fundamentally the same thing but with qualitatively different flavors. Russell and
Norvig [48] describe backward chaining (a linear-time algorithm for computing the
posterior distribution for one node) and forward chaining (a linear time algorithm
for computing the posterior distribution at all nodes simultaneously). Our goal is to
memoize some intermediate probabilities so that updates-new pieces of evidence-
can be done quickly.

The specifics of our intended application make these algorithms inappropriate
in their original forms. Our application is an online learning problem, in which
updates (the arrival of new evidence labels on nodes) are interleaved with queries

(evaluations of the posterior distribution at unlabelled nodes). For example, a user
may mark several new Web pages as interesting/uninteresting, and then immediately
ask for some new recommendations. An algorithm such as backward chaining that
takes linear time to resolve a query, or an algorithm such as forward chaining that
must be re-run from scratch whenever new evidence arrives, will have unreasonably
high algorithmic complexity in our application. We instead devise an algorithm that
supports fast updates and queries to the Bayes net.

The observation behind our online algorithm is that the addition of a single ev-
idence node only makes incremental changes in the tree's probabilities. That is, we
can memoize certain probabilities at every node in the tree, and the addition of a sin-
gle evidence node will only adjust a small number of those probabilities (specifically,
the probabilities that lie between the evidence node and the root).

We start by describing the calculation of the evidence probability p(E). Comput-
ing p(E A Ni = k) can be done the same way (using our fast update algorithm), and
from these two quantities we can compute p(Ni = k I E). Let Ei denote the evidence
in the subtree rooted at node i. Then standard Bayes net inference asserts that for
node i,

p(Ei | Ni = k)= 7 ( p(E| =Ie)p(Nj = | f I = k) . (5.3)
jEchildren(i) ( EO,1

This expression says that the probabilities p(Ei I Ni = k) can be written in terms
of i's children's probabilities. The product is because in a Bayes-net, the children are
(by definition) independent from one another given that the parent's value is known.
Inside the product is a summation which sums out the probability over the possible
values of the children, which is the expression indexed by f.

66



We simplify notation by writing

Pik = p(EijNi = k).

At the leaves, the starting value of the probability Pik is easy to compute. If Ni is
an evidence node with value k, then:

p(EiIN = k) = 1

and
p(EI|Nt # k) = 0.

These are simple leaf starting conditions that say a node's value matches its evi-
dence (if it is an evidence node). If the leaf is not an evidence node, then the starting
values are:

p(EiIN= 1) 1

and
p(EINi= 0) 1.

Recalling also our mutation parameters 0 and q we can rewrite the recursive
equation, 5.3.

Pio = (PjO(1 - 0) + PjiB) (5.4)
jEchildren(i)

Pii = 11 (pjo + Pj(1- #)). (5.5)
jEchildren(i)

If we recursively move from the leaves to the root applying this definition, at the root
N1 we will have calculated pio and pu -the probability of all the evidence conditioned
on the root's class-tendency. We then incorporate the root prior and the probability
of all the evidence E1 :

p(E) = p(E1) piop(Ni = 0) + plip(Ni = 1) (5.6)

_ Pio# + (5.7)
0/+0 0b+0

The above calculation can be applied recursively to compute p(E) in linear time
(in this size of the tree). We now modify the approach in order to quickly update
P(E) when a new evidence node is observed. To do so, we memoize the quantities

Pik computed at each node in the above recursion. We can then observe that when a
new evidence node e is introduced, the only values that change are those on the path
from the node to the root. As we work up from e to the root, all inputs needed to
compute the changed memos at a node are already memoized at the children of that
node.

More precisely, let g range over nodes along the path from e to node 1 (the root)

67



and let j denote g's child on that path. Then the algorithm moves from leaf to root
with the following update rule:

Pgo Pgo(Plo(1 - 6) + p10)/(pjo(1 - 0) + Pilo) (5.8)

p' =Pg1(Plo± + pi1( - 401(pooq -±p(l - q). (5.9)

This says you can update the probability in the tree by multiplying in the "new"
contribution of Nj on Ng, and dividing out the "old" contribution of Nj on Ng.

The above calculation incorporated evidence from a new labeled node e, deter-
mining p(E A Ne) in time proportional to the depth of node e, independent of the
size of the tree or data. The same calculation can be applied to an unlabeled node
j to compute its posterior probability p(Nj I E) = p(E A Nj)/p(E). The numerator
p(E A N] = k) can be computed using the update rule (as if Nj = k were evidence)
while the denominator is already memoized.

In many human-designed trees, the depth of the tree has a fixed maximum number.
For example, the hierarchy of all organisms only has ten fixed levels (kingdom, phylum
... , species); new organisms create more branches, but not more depth. In such cases,
our algorithm updates in a fixed time, regardless of how many other items have already
been added to the tree.

5.3.1 Numerical Precision

In many probabilistic applications, including this one, there is a problem manipu-
lating and storing the raw probabilities the algorithm generates. For example, the
probability of all of the aggregated examples monotonically decreases as the number
of examples increases. In real-world applications, these numbers can easily become
lower than the precision offered by floating point numbers.

The Naive Bayes classifier handles precision by calculating log probabilities. The
log function has the advantage of being monotonically decreasing with the original
number, but declining at a much slower rate. While one hundred examples might in-
duce precision problems in the regular space, it would take e100 examples for precision
problems to occur in the log space.

In the case of Naive Bayes, the log probability is easy to compute, by simply
converting the original equation

p(xi Ic) = p(Oc) 1(oci)xiJ

in a straightforward manner into log space:

p(Xi| c) = argmax, log p(0c) + Xij log 0c

68



In the case of our tree learning algorithm, the log probabilities are not as easy to
compute. The algorithm we earlier derived (equation 5.9) updated relevant proba-
bilities by traveling from the new evidence nodes to the root. That computation is
re-written here:

Po =Pgo(Pjo(1 -9) + '0)/(PjO(1 -9) +pj1O). (5.10)

This computation contains summations (unlike naive Bayes which is entirely prod-
ucts), and those summations remain inside the logs:

log po=log pgo + log(p;o(1 - 9) +- p1 ) - log(p1 O(1 - 9) + PjiO).

This does not solve the precision problem because pjo(l - 0) + pjiO must still be
calculated outside of log-space. We can only work with a limited set of numbers
in log-space-those that could have been computed in earlier steps: log pjo, log pji
(along with their primed versions), 0 and # (along with their logs).

We can rewrite the difficult part of the computation:

log(pjO(1 - 0) + pj10)

=log(elogpio(1-) + elogPiO).

We can factor this expression such that we retain the most significant part of the
computation. With no loss of generality, assume that logpjo(1 - 0) > logp 19. We
factor the larger portion out:

= log(elog2po(1-O)(1 + eloPiOoPi (-)))

= log(pjo(1 - 9)) + log(1 + e O"PiOlogPio(1-O))

= log pjo + log(1 -9) +log(1 + e lo)P.OlogPio(lO)

known in log space approximated numerically

We have access to the two leftmost expressions, logpjo and log(1 - 9), as they are
already in log space. Precision is retained for those expressions which are the most
significant in the overall calculation. The rightmost expression, log(1 +e ... ) contains
the ratio of logpj1 9 and logpjo(1 - 0). The expression must be computed outside of
log space. If the ratio is very small, then computer precision will set the rightmost
expression to zero. This causes a very small loss in precision, but the significant part
of the computation (the two leftmost expressions) are retained.

To summarize, these are the original recursive equation:

pgo(p1o(1 - 0) +p > )/(po(1 - 0) + p,1O);

i4gi Pg(Pio# + 11(1 - #))/(Po + Pi(l - q).

69



We replace this with equations for the log of both sides:

log p'O =log pgo + f (P'o,P'i, 0) - f(pjo,pji, 0);

logp 1 =log pgi + f(p'O,p 1 , ) - f(pjo, pI, #).

where

f (x, y, z) =
if x(1 - z) > yz return log x + log(1 - z) + log(1 + elog yz-log X(I-Z)

otherwise return log y + log z + log(1 + elog x(1-z)-log yz).

70



Chapter 6

Ad Blocking and Recommendation
Results

In the previous chapter, we described details of a model-based classifier that could
learn correlations between certain tree-structured features and learning problems cor-
related with those features. In this chapter, we apply our classifier to two real-world
Web domains that we have discussed throughout the thesis: ad blocking and recom-
mendations. Ad-blocking is the problem of automatically identifying and removing
advertisements from a Web-site, and recommendations is the problem of finding and
presenting interesting information on a user-specific basis. This chapter is the ex-
panded version of work done with David Karger [53].

6.1 Tree Structured Features for the Web

In this section, we describe in more detail two tree-structured features, URLs and
HTML-tables, and why they might help for our ad-blocking and recommendation
domains.

6.1.1 URL Features

The World Wide Web Consortium argues that document URLs should be opaque
(http: //www. w3. org/Axioms. html#opaque). On this Web page, Tim Berners-Lee writes
his axiom of opaque URIs: "... you should not look at the contents of the URI string
to gain other information...".

In contrast to those style guidelines, most URLs nowadays have human-oriented
meanings that are useful for recommendation problems. Indeed, the guideline's URL
contain semantics including authorship (w3.org), that the page is written in HTML,
and that the topic relates to an "Axiom about Opaqueness." As the document's URL
demonstrates (somewhat ironically), URLs are more than simply pointers: authors
and editors assign important meanings to URLs. They do this to make internal
organization simpler (authorship rights, self-categorization), and sometimes to make
that organization scheme clear to readers. Readers often make inferences from URLs,

71



which is why browsers and search engines usually display URLs along with the text
description of a link. We can infer from a URL that a document serves a particular
function (a specific Web directory might always serve ads); or relates to a topic
('business' stories might be under one directory); or has a certain authorship. In
short, similar documents (as defined by the site's authors) often reside under similar
URLs. A good URL structure provides helpful contextual clues for the reader. Note
that URLs, which usually start with "http://" are distinct from the Web site structure
(the graph of links within a Web site).

The URLs themselves are extremely good features for learning techniques. First,
they are easy to extract and relatively stable. Each URL maps uniquely to a docu-
ment (at a given time), and any fetchable document must have a URL. In contrast,
other Web features like anchor text, alt tags, and image sizes, are optional and not
unique to a document. URLs can be obfuscated, but such schemes require effort
and knowledge beyond simple HTML. Second, URLs have an intuitive and simple
mapping to certain classification problems. For example, we argue and give empirical
evidence in Section 6.2 that the URL is highly correlated with whether a link is an
advertisement or not. Most advertisement clicks are tracked through a small number
of programs; these programs are usually contained in subtrees of the URL tree, like
http: //doubleclick. net or http: //nytimes. com/adx/. .. . Third, URLs can
be parsed without downloading the target document, which makes them fast to read.
This is a necessary condition for real-time classification tasks like ad-blocking.

To convert a URL into a tree-shape, we tokenized the URL by the characters /,
? and &. The / is a standard delimiter for directories that was continued into Web
directories; ? and & are standard delimiters for passing variables into a script. The
left-most item (http:) becomes the root node of the tree. Successive tokens in the
URL (i.e. nytimes. com) become the children of the previous token.

6.1.2 Table Features

Similarly, the visual layout of a page is typically organized to help a user understand
how to use a site. This layout tends to be templated-most pages will retain a 'look
and feel' even though the underlying content might be dynamic. For example, differ-
ent articles on one particular topic might appear in the same place on the page day
after day. The page layout is usually controlled by HTML table tags, corresponding
to rectangular groupings of text, images and links. Often, one table along the side or
top of a page will contain much of the site's navigation. A site might use tables to
group together articles by importance (the headline news section of a news-magazine),
by subject, or chronologically (newest items typically at the top). Like the URL, this
page layout can be used to eliminate certain content (such as the banners at the top of
the page); or to focus on other content (the headlines, or the sports section). Like the
URL feature, tables make good features for machine learning. For a page to display
properly in browsers, the tags have to be in a specific form specified by the World
Wide Web Consortium; this also makes the table feature easy to extract. In the next
section, we give the example of a Chinese Web site that might be understood even
barring understanding the specifics of the content on the site.

72



Semantic Meaning/
URL Location

5s~a EARCH *i~aoeefWrm

0 1Past 30 Days d

AUO NfWU.S. CW ers urnd Bck n ntral Iraq-
s~neStreet Wtes in Key Southern Ctv o6nn

n - e Franks Savs C'oalition Is
11Ivpassin Some Fnemy
Forces

NmwYolk Ruion -

dE From Hussein, Defiare
and Praise for His Troops

NYT Fr-t P-ne

WXounded U.S Soldiers
Editoreal/Oo.Ed Flon to Gens r

Anntan Seeks Urlent Steps
M mannes ofTakForce TNewsgtigtodayinthe to Get ater to Basra

055 southergisityofNasiy-
M oio OTHER NW
iaTOc Hail of Gunfire and Grenales
NYCOO~. Form Apmaces to Pl Back s

eo& Od, By JIMDWYER 12 PM ET D More T a
FShiou & StlA The attack on the heicopters today surposed moo on Frs of
Esto* Amencan Army leaders and may cause them Pr d Ws
Maacint to adjust their strategy
Wtek mn Neew
MWO-MatPhsto Audio: JimDwerWithhe10IstAirmbre

Y-Oo P.10 o
E-Mail P,,-een.e

Prqium A-on

0n he Oround H*.vvFieie Lvz W.,kend Notes
"-D. mB.ghdad xnm.n th, Path ofW.r Arond the World

El-tos Edit-on
c m n A a .... ............. ...................

F14UAMTMONAL

Dow Falls More Than 300 Points on In Crucial Ste U.S Starts Pu
Fears ofProloed War ar a

Officials See War Costing at Least Fears ofRespato DI ase

$70 Bilion

Skeptical Economic View Takes is News Analysis Bush Moves to

More Than Iraq Prepare Public for a Harder War

NATIONAL

V5 suspct: AsuyCObfers a Few Bloomberg Rallies the Congreganon
_ Til arn olhocu c f at a Black Church

Troops at Home' Biding Their Time in Political Memo Pataki's Eye Is
shtary Limbo. Losars for Action Wandering to Washington, Critics

Say
Rales Thousands Gather to Back
US. Troops andPolicy Armed With Persistence, the

Goes to New Yorkh Scho

SP
Cnihans: Rusfeld Says Important
Targets Have Been Avoided Et R ional Butder Sh s

RFO]STER NOW to Fo-o 1) Links to the homepage
Root of the URL tree

A Nation at War

DEELOPMENTS 2) Special International Story
MOVING NORH The Third nytitnes.corninternational/worldspecial/...
InfantryDivisionis reportedto
be within 50 sies of Baghdad.
(AtticlO

MOVING SOUrH Warplaos
oeportedlyibombedhiq
bunkerinKurditshqued
oodtceoliuforlssrootie.nArthcenIa o hefrttm

MISSINGIROOPSA two-

its Apache helicopterw
forceddownin c raq

P174 N BRIENGWitch 4)

3) Business Story
Nytimes.cor/business/...

International Story in Asia
o fe"e ytirnes.corn/intemnational/asia/...f e at 33 FM E

CggkBC rm 5) Basketball Sports Story
Nytines.comn/sports/ncaabasketb

INTERACTIVE IUM
A Os
Sunda
PatnckE. 4 rf Th. sdsis the

pu to BeghdAd Festo Tree Locatuds ap. And phot..

(portion of UR
The New
Patriot

Missile

-ffectie oss.

u.

a soti Ot

Questions for ... Patrich
. TAotr

Th. Tiosioes -usit
Kwert it in-1itw.c s

fraders qua05550
dseryy.

.-- P.-in not- Ar2

all/...

ion
L tree)

nytimes

international
s bus ess

as

3

hockey, worl special
baseball other

etc bus'
5sarticles 4 2

nCaabasketball

Figure 6-1: Shown is how the URL can be de-constructed into a tree that contains
some human-oriented meanings.

73

Web Page

UPDATED MONDAY, MARCH24.2032.30 PM ET IP.--fte"zYo., W.,th.,



To convert the HTML table structure into a tree-shape, we used a hand-written
perl program that extracted the HTML table tags (<table> and <td>). The root of
the tree is the entire page's HTML. The children of a node are the next lower level
of table elements.

6.2 Ad Blocking

Throughout this thesis, we have discussed our desire to build real-world Web appli-
cations that save users time and effort, such as an ad-blocker. In this section, we give
experimental evidence that our tree learning algorithm can yield performance that
matches a hand written, commercial ad blocker.

Conventional wisdom says blocking ads is as simple as blocking certain fixed as-
pect ratios on incoming images. This is simplistic, and belies the fact that entire
companies have formed around the problem of ad-blocking-and ad-creation. Ad-
vertisers constantly change the form of advertisements: they are becoming larger,
shaped more like content images, or even come in the form of text or colored tables.
A static ad-blocker goes out of date in so-called "Internet time."

The conventional way to adapt to advertising changes is time-intensive for hu-
mans. Engineers write new sets of rules that match the advertisements but not
the page's content. The rules might include combinations of any number of factors:
height, width, or size of an advertisement; the domain serving the advertisement; or
certain word patterns. These rules are not easy to write, as they must be general
enough to accommodate next week's advertisements but specific enough that they
don't accidentally block next week's content. After coding and testing the new rules,
the software is released and users have to periodically update their systems with new
rules. All of these steps take time, for both the engineers and the users.

Our general goal is to save human time by building a system that finds its own
rules, eliminating the need for human input whatsoever. Our goal is to see whether an
entirely self-directed computer can achieve accuracies comparable to teams of humans
working on the identical problem. If so, our ad-blocker can learn new rules nightly,
adapting daily to new ad forms.

Our work is similar in spirit to the AdEater system which also learns ad-blocking
rules [32]. AdEater has a 97% accuracy (the only metric reported) on their ad blocking
experiments, though it requires 3,300 hand labeled images to achieve that accuracy.
AdEater uses humans to perform the relatively simple task of labeling images as ads
or not; the machine learning takes on the more difficult task of discovering rules.
However, AdEater suffers in the same way that most ad-blocking programs do: it
takes considerable human effort and time to produce an update; hence its accuracy
decreases as new ad forms surface.

We want to label our data for training our classifier. One alternative is to use
human labeled data, the way AdEater does. However, this is time consuming and
eliminates much of the benefit of having the computer learn ad-blocking rules. Instead
of using high-quality human data, we use a heuristic called Redirect. Redirect labels
ads if a link goes to one site then redirects to another place. The redirect heuristic

74



Semantic Meaning/
Table Location

Past 3 DayREysTER NOW, Ifs Fse

U.S. Copterslrei-Bsk in Centr al Iraq; A Nation at War
Street Battles* Key Sog eMn-i 5'ontinue E

!VL Fr-anks S3avs Coalition Is DEVEL
b L I Bypassing Soine Enemy MOVING The Third

Fm uFoces I ivisionis reported to
NewYIr Rniov within50 mile, ofBaghdad.

sth From Mss e lance
Obtaisall far His Tironps MOVING SOUIH Warplanes

NYT Fr- t P... reportedy bombed Ira

enca*Ana leaers od my caoeiesh-rlsle Wu

Wounded U.S. Soldiers northeIraqfr the firstim--
EditorikN/O, Ed Fown to Genro (A )

J.RM~t swAimam Seeks Urzent teps oMb m cfe, OOP iAi v- r
MarnasofT k For"Tarawa fightingtodayinthe to GetWater toBa T itsApachehelicopterwas

E southern oraq acity ofNasiriyarosrcfdWs ntTaos

Hail IDL(;wah*-quj GrenkAde PrrjB-ENGwa:
D.ansW- For~i sApaches to~ , BUSINESS apentagonnesconference
H ., & rden Bytl 12:ti .- Dow Falls More Than300 beteat3:30PMET

F & T Re attack on the helicopters today surprised poiton Fears of
ean Army leaders and may cause them holoned WNselre

=hit ajst their strategy- oa ern
M; e d Ph os * Audio:sJiooDwy

VMT .INTERACTIVE FlEATUM
- AAus

570Bsso .ee.esas . on. os a Sna

WiAmm HeavFiuhAin Lvinsrn Feed A atrickE yer
MN ho tes a th Path PfbW World off'e aim.r W

di,0 0. ss the 000
- - -u*ht.Ba ghdad Fat.r

f'o--ow At~iL inchid----a mpan bts

INTfERNATIONAL NMCTV l

.ow aMe "Po In Cruciao Step, U.S. Starts Push AntoC
Fars of Prolo udsar NeTr Bahdad yssile

Advaceet

Offcials See War Costia at Least Fears ofRespratory Disease

S70 Billion Deepens n Hong KoWo Prsuildites o hetinr yrOdPe

Skeptical Economic View Takes in News Analysis: Bush Moves to -Bahdad For PAbo si

M ore Than Iraq Prepare Public for a Harder W ar ......................................
NATERACrra MAP

NATIONAL NEWYORK REGONea
Ba1.hdad

S T ect: Annv I ffe a l Bloomberg Ralie s the Conscregation, Aft reec day, Co
sas aR ed Sy tofoseatiTonTi at a Black Church

dCssrt with minimals s ,

Troops at Home: Biding Their Time inPolitical Memo: Pataki's Eve is US, -nd BritUh fore. -ovd
Mfilitar-y Limbo, Loruing for Action Wanderitw to WashgoCiis o t a dyR
Rallies Thousands Gather to Back
U S. Troops and Polic Armed With Perslstence, theAry "M

Goes to New Yok IF-mlschoo.s _(uestions for- Patrick Lin
WASIHGTONE. Tvler

SPORT Th. Timee's bureau chiefi.

Civilians:Rumrsfeld Says Imnportant $T'"*1

1) Banner
First Table

2) Indexes into various sections
Second Table, First Column

3) Top Headline
Second Table, Second Column,
Second Row, First Link

4) Secondary Headline
Second Table, Second Column,
Second Row, Second Link

5) Stories with Pictures
Second Table, Second Column,
Third Row

6) Index into Business Section
Second Table, Second Column,
Fourth Row, First Link

7) Top Business Story of Today
econd Table, Second Column,

Fourth Row, Second Link

Tree Location
(portion of table tree)

ble

lumn

w 5

sk 3 4 6 7

Figure 6-2: A Table can be de-constructed into a tree that contains some human-
oriented meanings.

*Ad
ONnt Ad

Training Le

nyti .com

aponhn reu rs 2003 a

arned Ad Location

nyti .com

aponine

uters 2003a

Figure 6-3: (Left) A portion of the parsed New York times hierarchy, as applied to the
ad blocking problem. Notice that a portion of the real news (APOnline) is incorrectly
labeled as an ad. (Right) Shown is the algorithm's maximum likelihood guess of the
color of internal nodes. Despite some mis-labelings of training data, the algorithm
quickly identifies the "Adx" sub-directory as filled with ads.

75

Web Page

UPDA TED MONDAY. MARCH 24. 2000 2:30 PM E T IPermor-lize Yout Wtathe,



makes sense because it captures the normal process that advertisers use: tracking
the click, then sending the user to the advertised site. Notice that this is much more
of a "content" based heuristic than image sizes which are "form" heuristics; ads can
take any shape and size, but most current advertisements incorporate some type of
tracking mechanism.

As we shall see, the Redirect rule is about as accurate as AdEater at identifying
ads. But there is a big barrier to using Redirect itself as an ad blocker: to decide
whether to block an ad, Redirect must fetch it first. This generates a significant
overhead in additional connections and downloads-one which in today's network
environment makes the Redirect heuristic too slow to use in real time ad blocking.
However, we will show that our tree-based learner can predict a redirect without
actually trying it-this gives us an approximation to the redirect heuristic that can
be used for real-time ad blocking.

In practice, click through tracking requires back-end infrastructure like databases
and CGI scripts. Therefore, click-through ads tend to be located together under a
small number of URL directories per site (i.e. under xyz.com/adserver). It is rare
for a site to have advertisements and content in the same leaves of the URL tree.
Therefore, we use our tree learning algorithms to associate existing URLs with an
'ad' or 'not ad' label provided by the Redirect heuristic. As a new page is loaded,
the learning model predicts whether new URLs are 'ads' or 'not.' A big advantage of
the redirect heuristic is that training examples can be provided automatically by an
off-line algorithm that, when the user is doing other things, visits sites and takes the
time to check and follow redirects. In other words, we can train without any human
input. Figure 6-3 shows how our algorithm might find ads on the New York Times
Web site. One drawback to this approach is that each Web site must be trained on
a per-site basis; more standard rules like "an ad is a 300 x 250 image" can apply to
many Web sites simultaneously.

What follows is an experiment that compares the performance of our ad-blocker
to a commercial system. We compared two control ad-blocking 'trainers' with two
ad-blocking 'learners.'

6.2.1 Experimental Setup

In order to label the advertisements on a given page, we downloaded the page and
saved the HTML into a cached file. The cached file was necessary so that every
technique would be viewing exactly the same Web page. We went through the cached
file locating links on the page. We used perl to find all links on a page, with a regular
expression that matched <a href= ... /a>. This corresponds to a standard HTML
definition of links on pages.

From the list of links we found on the cached page, we only used links that
contained images. This is because, at the time of our experiments, the commercial
ad-blocker (WebWasher) only blocked image-based advertisements. To detect images
embedded within links, we only took the subset of links that contained the text <img
which is a standard HTML definition for displaying images. For a given page, we call
this subset of the links on a page image-links. While we solely train on image-based

76



links, later we talk about how such rules might apply to text-based links as well.
Given this list of image-links, we used four rules to label whether a link contained

an advertisement or not. The four systems are listed below:
e Web Washer is a commercial product with handwritten rules that uses many

features like the dimensions of the ad, the URL and the text within an image. It is
in use by four million users. WebWasher can be downloaded free for educational and
personal use1 . We used the WebWasher Linux version, which was installed as a proxy.
The WebWasher proxy reads in the requested Web page, erases the advertisements,
then forwards the modified page to the Web client.

In order to have WebWasher label a page, we ran our cached file through the
WebWasher application. This removed all the image-based links it deemed adver-
tisements. Any link that was in our original list of image-links, but was not present
in the WebWasher-processed page, was deemed an advertisement by our WebWasher
rule.

* Redirect is the simple heuristic mentioned above that monitors third-party redi-
rects. As we mentioned, it is a somewhat noisy heuristic, meaning its accuracy is less
than human's; but it can run in the background without human input.

The first step is to write a simple perl script to check for third-party redirects.
The script goes through the list of image-links and tries to fetch each link using the
program lynx2 . Lynx downloads the resulting pages, expressed as HTML (rather than
graphically), which allows the program to check for certain conditions that might
serve as redirects. Redirects are defined in the program as anything that has the
phrase "Location:" at the top of the page (a standard way to redirect pages quickly
in HTML). The text after the "Location:" phrase contains the target (redirect) site;
the text is parsed to arrive at the top-level domain. Other forms are redirects are
described below.

The domain was defined as anything after "http://" but before the next "/" (i.e. in
"http://nytimes.com/adx/...", the domain is "nytimes.com"). We extracted the top-
level domain from the domain. The top-level domain is only the right-most portion of
the domain, the two strings separated by a ".". For example, "sports.yahoo.com" and
"finance.yahoo.com" both share the same top level domain, which is "yahoo.com".
If the domain of the redirect differed from that of the originally cached page, then
Redirect labeled the image-link as an advertisement.

There were instances of links and redirects that the lynx program could not un-
derstand like some javascript or flash-based links. Lynx would return either a blank
page or the phrase "no content." Heuristically, we found many of these links (but not
all) were advertisements, and we had Redirect label empty or "no content" pages as
advertisements.

* Learn- WW is our tree-based URL algorithm, trained on Web Washer's output.
The URL provided the tree-structure as discussed in Section 6.1.1, and WebWasher
provided the labeling for the leaf nodes. The tree-algorithm was then run to label
new, unseen links as either advertisements or not according to our tree-algorithm as

'http: //www. Webwasher. com/client/download/private-use/index. html
2http://lynx.org

77



specified in Chapter 5.
We had mentioned before that some links contained javascript which were not

understandable by lynx. While Redirect and WebWasher might not understand
javascript, the links were read into the tree-learner as "javascript: ..." As described,
our tree-algorithm would view the various javascript-based links as siblings of one
another, and classify them with the same labels. Empirically, this tended to have
good results.

* Learn-RD is our tree-based URL algorithm, trained on Redirect. The method for
training Learn-RD is identical to that of Learn-WW, except that the RD (third-party
redirect) heuristic was used in place of WebWasher to label the leaf nodes.

As we have mentioned before, RD alone is a good heuristic, but cannot operate
in real-time. Our hope is to train a classifier like Learn-RD off-line periodically with
RD, allowing for a fast ad-blocker that has been trained by the RD heuristic.

6.2.2 Testing and Training Data

In the previous sub-section we described a variety of algorithms designed to label
whether the links on a page contained advertisements or not. In this section, we
describe how we acquired training and testing data.

We generated a dataset from Media Metrix's largest 25 Web properties as of
January 20023. Empirical evidence shows the average user spends all their time on
a small number of the largest sites. We felt that blocking ads of the largest 25 Web
properties would be both representative and beneficial to many, if not most, users.

We crawled through a given Web site, randomly picking eleven pages linked from
the front page that shared the top-level domain with the front page. We checked
whether the top-level domain of the target and front page matched with the method
described in the Redirect heuristic from the previous sub-section.

The links on those eleven pages, along with the links on the front page, were
divided randomly into a six-page training and a six-page test set. Each Web site
went through random training and testing twice. WebWasher and Redirect classified
each linked image in the training group, and those classifications, along with the link
URL, were used to train Learn-WW and Learn-RD respectively.

Next, all four classifiers were applied to the linked images on the test group. If all
four classifiers agreed that an image was either an ad or all agreed it was not an ad,
they were all deemed to have classified the image correctly. Spot-checks suggested
that agreement between all methods almost always lead to the correct prediction.
If one technique disagreed with the others, a human was used to judge whether the
image was really an ad or not.

6.2.3 Experimental Results

In total, 2696 images were classified, and all four classifiers ended up with an average
classification accuracy across all sites of within a quarter percent of 93.25% (see Ta-

3 http://www.jmm.com/xp/jmm/press/MediaMetrixTop5O.xml

78



Table 6.1: shown are the Web blocking accuracies for several Web sites, along with
standard deviation information for the top 25 Web sites.

Top 25 Sites weather look euniverse
smart

Web-Wash .935 (.136) .907 .857 .517
Learn-WW .931 (.118) .860 1 .517
Redirect .933 (.08) .842 .857 1
Learn-RD .934 (.08) .837 1 1

ble 6.1). The first column contains average error rates for the 25 sites, with standard
deviations in parenthesis. Standard deviations are based on site-to-site comparisons.
The overall false negative rates (labeling an ad as content) and false positive rates
(labeling content as ads) were approximately 26% and 1% respectively, and that was
fairly consistent between all the classifiers. Note that the mistakes were biased to-
wards false negatives, which means the classifiers let through some ads, but rarely
blocked content. This is probably the appropriate behavior for an ad-blocker.

Table 6.1 also shows data for specific sites. On various sites, trainers beat learners

(weather.com); and learners beat their trainers (looksmart.com). Thus learners are
not exact imitations of their trainers, but on average end up with the same accuracy
rates.

The standard deviations of the four classifiers are relatively large because errors
tend to cluster around a few Web sites. WebWasher, for example, does poorly marking
ads on euniverse.com, which uses different dimensions for its ad images than many
sites. Redirect does poorly on portals and internal ads. For example, Redirect would
not label a New York Times advertisement for its own newspaper as an advertisement.

It is possible for the learners to generalize to better performance than the trainers.
For example, all of the New York Times advertisements are in a few URL directo-
ries. Thus, a few incorrect examples from Redirect (internal ads that don't redirect)
are ignored in favor of the larger number of correct examples; the learner correctly
"overrides" Redirect. Conversely, the learners can also generalize incorrectly; if the
trainers were a little more wrong than right, the learners could end up generalizing in
the wrong direction and consistently mis-labeling the links. Such problems happened
on the weather.com Web site.

The Redirect heuristic worked well; its accuracy was not different by a statistically
significant factor from the commercial ad-blocking program. Redirect's simplicity
suggests that, for now, that it is correctly understanding the mechanisms by which
most sites serve up ads (i.e. through third party redirects). That mechanism can
certainly change, but such changes would be harder for advertisers to make than
simply changing the advertisement sizes, which can foil WebWasher at times.

The URL seemed to be a good feature for ad-blocking. Both WebWasher's and
Redirect's rules seemed to be expressible in many cases by the single URL feature.
Had the URL been a poor feature, one would expect the tree-learning based ad-
blockers to have much lower accuracies.

79



A spot-check of random sites (using a random link generator like Mangle4 ) suggests
that the URL feature works even better on smaller sites than larger sites, because
smaller sites tend to use third party advertisers whose URLs are almost entirely used
to serve advertisements, like doubleclick.com'. For a service like Overture, which is
owned by Yahoo, the advertisements appear in a subdirectory of Yahoo,6 .

We wish to make a few points about our results. First, our Learn-RD algorithm
achieved performance comparable to a commercial ad-blocker, without needing com-
plex, hand-written rules. In fact our system performs better in some respects. Most
ad-blocking systems do not remove text-based ads (ads, for example, placed within
search engine results), while both Redirect and our learner trained on Redirect acts
no differently for image-based ads and text-based ads. Second, we argue that our
ad-blocking classifier will adapt in the long term better than a static version of Web-
Washer, since it can update rules nightly without any human input. Of course, in
the adversarial world of advertisements, it is probable that this system, too, would
be defeated if it became widespread: an advertiser could deliberately obfuscate their
URLs. Third, we point out that unlike the black and white "redirect" heuristic, our
learner gives pages a range of "blackness" scores. It can thus be tuned to tradeoff
false positives and false negatives depending on the user's preference.

6.3 Recommendation Experiments

In the previous section on Ad blocking, we showed that machine learning on tree-based
features could match or outperform hand-coded rules (WebWasher) and an inefficient
heuristic (Redirect). In this section, we demonstrate that tree-based learning can
also outperform classification algorithms based on traditional textual (and other)
features. As we mentioned in the introduction, it is our goal to build real-world Web
systems that save time and effort on behalf of users. One of those systems was a
recommendation system designed to find interesting links customized to individual
users. In this section, we discuss experiments to judge the effectiveness of such a
system.

Recommendation problems are typically difficult, especially for domains that are
greatly subjective (like news, movies, and music). There are a few common problems
that span all recommendation systems. One problem is that most systems have no
real semantic knowledge of most of these domains. They do not understand the news,
have never bought a movie ticket, and have a terrible ear for music. This puts them
at a terrible disadvantage; for the most part, their recommendations are not based
on an understanding of their domain.

Artificial intelligence, to date, has a hard time understanding things that would
be useful in a human context. On the other hand, that is precisely the job of all
the human editors. It may be difficult for a computer, or even an unknowledgeable
human, to distinguish between college and professional football articles-but sports

4http: //www.mangle. ca
lhttp://doubleclick.com
6/partner/... /overture

80



editors can differentiate between the two easily. It is the job of such a sports editor to
place a web page within the site, at a URL, and within the page layout. Our learning,
then, strives to use all this information crafted by editors to help learning progress.

Humor is typically hard for a computer to understand, and yet one correct recom-
mendation is for a humorous article titled "Food pantry gets 3,600 confiscated eggs."
It would be difficult to teach a computer that the text of this article was humorous,
but the system has quickly learned that these sorts of articles reside near other clicked
articles in a certain place on the boston.com web site. In fact, the URL that it has
keyed upon would not be intuitive to humans (under boston.com/news/daily/).

Overall the two tree algorithms performed well, even against the Support Vector
Machine which is commonly thought of as one of the best general purpose learning
algorithms. In the next sub-section (6.3.1) we describe the set-up of the user study,
followed by a sub-section (6.3.2) on the algorithms we tried and their advantages and
disadvantages. That is followed with empirical results and analysis of our algorithms
(6.3.3).

6.3.1 User-Study Set-Up

We asked study participants, totalling 176 users, to indicate any news articles they
would normally click on. Users were asked to click on links for 7 front pages of data.
The pages were visually unaltered replicas of pages downloaded from the Web, con-
sisting of 5 consecutive days worth of the New York Times (September 15th through
19th, 2003). The pages and user study are available from our server '. Based on the
submitted email addresses of the participants, the users encompassed a broad range
of people extending all the way from the United States to Australia.

In order to encourage a large number of participants, we made the experiments
easy to complete and gave financial incentives for doing the experiments. The exper-
iment was entirely conducted in one session on the Web, by using the cached news
stories mentioned above.

Some users did not complete the study, and a small number of others did not
click on any links; these were discarded from the study and are not considered part
of the 176-user sample set. Note that according to our statistical methodology (see
Appendix), this does not change the significance of our results.

Each click on a link within the user study would place a check-mark in a check-
box corresponding to that link, and when the user submitted the page, a list of all
the clicked (and un-clicked) links was noted on the server. The clicked (and un-
clicked) links were used to generate positive and negative examples with a variety of
data sources (next subsection) which were then made available to various learning
algorithms for prediction of unseen clicks.

We chose the New York Times as one of the most popular news sites in the
world, meaning that the content of those pages was broadly focused. We believe it is
representative of news sites that many users read.

7http://e-biz.mit.edu/data3

81



Data Sources

For each link on each page, we collected a variety of data for use in our algorithms,
to the extent practicable. For each link, we have a copy of the link's URL, the anchor
text of the link, the position of that link in the table structure of the page, and the

8full text of the article. In total there were 1105 links across the five pages
There are some difficulties with collecting the data for every link, particularly the

textual data.
For example, not every link has anchor text inside it, since some links are only

images. Therefore, when available, we took the "alt" tags to stand for the text. Even
so, there are several image-only links that have no available anchor text. In total,
approximately 1% of the links did not have anchor text we could parse within them.
We will refer to data based on the anchor text in the link as "Anchor."

It is even more difficult to fetch all of the pages behind the links. For example,
many sites (including the ones we chose) only allow registered users, which generally
means that the fetching agent needs to understand and respond to cookies. Harder
still is following the many types of redirects and translating properly between absolute
and relative links. Also many pages (again, including the pages we chose), have
javascript links that require a javascript interpreter to understand. We used lynx
as a browser, and wrote special routines to follow redirects, to automatically log in
to the site via cookies, and to translate between absolute and relative links. While
not perfect, we believe we gathered as many of the target pages as was reasonably
possible. We did not follow javascript-based links because we were not aware of any
reasonable way to write a javascript parser within lynx.

There is also a problem of rights for visiting Web sites. Many Web sites (including
those we chose) do not allow spiders on the pages underneath the home page. Also,
standard etiquette says you may not download more than one page every five seconds.
We followed the second rule but not the first since the first makes it impossible to grab
the full text of articles. One occasional consequence of having a slight delay between
downloading Web pages is that sometimes the pages disappear before downloading.
Though we tried to get as much of the pages as possible, around 5% of them were
not download-able for the reasons given above. We will refer to the data based on
the full text of the fetched document as "Doc."

The URL of the link is comparatively easy to read, as it is a pre-requisite to having
a usable link (and a pre-requisite to being able to download any pages, for both our
robot and for a user). The table structure the links sits in is slightly more difficult,
because it requires parsing the page into table elements, but every link has a position
in the table structure. The table features and the URL were extracted directly from
existing code from the Daily You (the application based on these empirical tests,
described more fully in Chapter 7) without modification. Both of these datasets were
complete: i.e. for every link a person could click on, there is a corresponding URL
"URL" and table element "Table" that link sat within.

A drawback to both the table and URL features is they are almost always site-
8The raw recommendation data and features are available at

http://www.ai.mit.edu/ kai/recommendation-dataset.txt

82



specific. That is, learning a certain subdirectory or visual block of the Times Web-site
does not help us learn anything about other news Web-sites.

To summarize, there were five basic features used:
Anchor: the anchor text within the link.
Doc: the full text of the words in the linked document
Url: the URL in a form that retains its path through the tree
Table: the location of the link in the table, in a form that retains its path through

a tree.
All: a vector of all the features. (See Chapter 2 for the standard method, which

we used, of converting textual features into vectors).

6.3.2 Recommendation Algorithms

We tried several algorithms with various datasets labeled with each user's click data.
That is, for each of the 1105 data points, 176 different combinations of positive and
minus labelings was found based on the user's empirical news selection.

We used two "general purpose" classifiers, Naive Bayes ("NB") and the Support
Vector Machine ("SVM"), across all four of the feature sets, plus our tree learner

("TL") on the two tree-structure features. Naive Bayes is detailed in Chapter 3, the
SVM is discussed in the background and in Chapter 4 and the tree learner is discussed
in Chapter5.

We chose the SVM because it is considered to be one of the best general purpose,
discriminant classifiers [25]. We used a standard, fast, publicly available implemen-
tation called SVMFu [46].

In order to give the various non-tree algorithms (SVM, Naive Bayes) a chance
to learn based on the URL and Table tree-features, we took each node from the
tree and translated it into a 'word' that contained information about the path to
that node. For example, the URL http://nytimes. com/business was tokenized into
three 'words': http: //, http: //nytimes .com, and http: //nytimes. com/business. We
chose this "nested" tokenization instead of the obvious splitting up of the URL so
that the representation would still convey the exact position of a node in the tree,
giving the non-tree algorithms the opportunity to generalize in the same way that
our tree-algorithms might.

Test Environment Parameters

The algorithms we used required specific parameter settings that we describe here
so the experiments can be replicated. We chose Naive Bayes because it is a fast,
common model-based classifier whose model does not work well with tree structures.
Specifically, NB assumes independence between features whereas a tree implies certain
strict dependencies. For NB we used an o smoothing parameter of 1 [14].

The SVM required the setting of a "C" parameter that measures the outlier
penalty. We used a smaller portion of the test set (2 pages) to determine an op-
timal C parameter for the four different feature sets. We tried C values of 1, 3, 5
and 10. Across the four feature types (Link, Doc, Url, Table), changing C did not

83



substantially change the results, so we fixed a C parameter of 1. Other parameters
included setting the number of cache rows to 3000 (a switch that changed speed but
not accuracy) and setting the kernel to linear. Both the kernel and the data were
represented as floating point numbers.

Overall we tried a wide variety of algorithms on a cross-validated set of the New
York Times data. We used 4 training and 1 test document (that contained multiple
links to other documents) per user to compile our final results, across all of the 176
users. In total, this corresponds to 182,325 classified links per experiment (1105
Times links x 176 users).

We tried a total of 10 different algorithms corresponding to mixtures of different
algorithms and features:

Support Vector Machine (C=1): SVM-Anchor SVM-Doc SVM-Url SVM-
Table SVM-All

Naive Bayes (a = 1): NB-Anchor NB-Doc NB-Url NB-Table NB-All
Tree Learning (0 = .2 b = .05):TL-Url TL-Table
For example, NB-Url means we used Naive Bayes on the URL feature.

6.3.3 Recommendation Results

Our recommendation results are from the five-page New York Times data set. We
used 5-fold cross validation, across each of the pages. For each of the 176 users,
each page was used once for testing and four times for training. We used the sta-
tistical significance methodology found in the Appendix as described in Hollander
and Wolfe [23]. Briefly, we used a non-parametric statistical test which compared
two algorithms. If one algorithm consistently outperformed the other across much
of the 176-user sample, then the difference between the algorithms was considered
significant.

On average, users selected nine stories a day out of an average of 221 possibilities
each day (that is, for each front page presented, they picked nine links from that
page). Each of the classifiers produced a ranked list of one page recommendations for
each user and each page (one page holds one day of stories). Results are written in
terms of the number of correct recommendations across all users and pages within the
top recommendation, top three recommendations, top five recommendations, and top
ten recommendations. Complete results are shown in Table 6.2. A perfect classifier

(second row) would have achieved 857 correct recommendations when producing one
recommendation per day per user (176 users times 5 days; a small number of users
did not click on any recommendations for some days). A random classifier, on the
other hand, would have done a statistically significantly worse job than any of the
trained classifiers.

Overall the best performing algorithm was the tree learning algorithm applied to
the URL feature, which had the best scores for three out of the four categories. The
second best algorithm was a tie between the SVM applied to the URL feature and
the tree learning algorithm applied to the table feature. Each of these performed well
in different categories.

84



Random 29 104 162 330
Perfect 857 2488 3899 6093
NB-Doc 81 232 342 594
NB-Anchor 302 713 1021 1615
NB-Table 72 180 278 576
NB-Url 80 319 507 1036
NB-All 121 271 372 464
SVM-Doc 59 156 257 520
SVM-Anchor 220 614 913 1438
SVM-Table 177 472 662 934
SVM-Url 308 839 1268 1953
SVM-All 203 542 786 1311
TL-URL 385 979 1388 2149
TL-Table 401 900 1176 1512

Table 6.2: Summary of all the classifiers and features on the New York Times datasets.
The numbers represent the number of clicked recommendations each classifier would
get, if they (columns) recommended the top, top three, top five, and top ten highest
scoring links. Bolded items have higher accuracies than non-bolded items for a given
column (statistical significance methodology is reported in the Appendix).

Figure 6-4 shows a comparison between two of the text features (Anchor and
Doc) against two algorithms (SVM and NB). Results are drawn as the percentage of
perfect (as defined in the table) that each classifier reached for, respectively 3 and
10 recommendations. In both cases, the anchor text provides a much better feature
than the fetched document's text. This may be because the anchor text is supposed
to contain a summary of the document, and it is easier for the classifier to understand
these summaries than the documents themselves. This is a positive result for text
classifiers because the anchor text is much easier to fetch than the target document's
text (which, as mentioned before, can be slow and can be difficult technically to
download). The differences are all statistically significant.

Figure 6-5 shows the difference between the various algorithms on the tree struc-
tured features. As mentioned previously, we "tree-ified" the features for the benefit of
NB and the SVM so each algorithm would be aware of the position in the tree. The
tree algorithm does the best job of taking advantage of the tree-structured features.
This may be partially due to its domain knowledge of the problem, coupled with a
relatively small amount of training data. In those situations, model-based classifiers
often perform better than discriminative classifiers [401. This is particularly true on
the table features, which tend to be much flatter than the URL: the depth of the
table tree fluctuates less than the depth of the URL tree. The next best performing
algorithm is the SVM, which generalizes well considering it has no domain knowledge.
The worst classifier on tree-structured features is NB. We believe this is because NB
assumes independence between features while a tree actually generates highly depen-

85

Top RecClassifier Top 3 Recs Top 5 Recs Top 10 Recs



Naive Bayes Works Better on Anchor
Text than Full Text

ONB on fulltext of docs

E NB on Anchor Text

Top3Recs Top1ORecs

# Recommendations/User

O SVM on fulltext of docs

OSVM on text of links

SVM Works Better on Anchor Text than
Full Text

0.3

E 0.25
0

r- 0.2
E
E
0 01

0.1-

~f0.05
0-

Top1ORecs

# Recommendations/User

Top3Recs

Figure 6-4: A comparison of using the SVM and NB classifiers on text features.
The bars are measured in terms of the percentage of clicked recommendations each
algorithm made when respectively suggesting their top three and top ten best scoring
links. The graph shows that the anchor text is a better feature than the document
text for our recommendation problem.

86

0.35 -

0.3
0

0.25

E 0.2
0

E 0.15

0.1

0.05 -

0 -



dent features (a given child always has the same parent). The differences shown are
all statistically significant according to the methodology described in the Appendix.

When all the feature classes were combined together (SVM-All and NB-All), clas-
sifier performance degraded when compared to the single best feature class (respec-
tively SVM-Url and NB-Anchor). In the case of naive Bayes, the addition of the tree-
structured features probably hurt the classifier. As mentioned before, tree-structures
are in conflict with naive Bayes' model, and the addition of those features probably
causes erroneous weightings of those features (see Chapter 3 for a description of why
Naive Bayes does poorly on features that are dependent). In the case of the SVM,
given enough information it should be able to combine all the features fairly well.
Unfortunately, with the small amounts of training data available, the extra features
probably caused it to over-fit and generalize improperly.

Figure 6-6 shows the performance using the best feature with the various algo-
rithms on our data sets. Naive Bayes needs to use the text-based features (since it is
unsuitable for the tree-based features), and as discussed before, the best text-based
feature was the anchor text. Both the SVM and the tree-learner did best on the URL
feature, suggesting that the URL feature is a good feature for use on recommendation
problems like the one we posed. The tree-learner slightly outperformed the SVM on
the URL feature, and all the differences were statistically significant.

Figures 6-7 and 6-8 show scatter plots with the rank of one classifier's recom-
mendations against the rank of the second classifier's recommendations. The figures
show that the way recommendations are made through various features (Figure 6-7)
have only small amounts of correlation; but that the SVM and tree-learning applied
to the same features (Figure 6-8) have similarities in many regions.

6.4 Conclusions

We began with the observation that the proper choice of features can have a significant
impact on the performance of classification algorithms. Since Web site authors have
an incentive to organize their materials, for the sake of both the author and their
audience, we hypothesized that the URL of documents and the physical placement of
elements on a page could provide clues into the Web site's fundamental organization.

To take advantage of this observation, we noted that URLs and table structure
can both be viewed as trees, and this facilitated certain machine learning algorithms.
These learning techniques try to find correlations between certain properties (i.e. the
document being an ad) with the document's location in either the URL or table tree.

We argued that our new features and learning would produce fast, good classifica-
tion schemes. We gave empirical results on two Web applications: an ad-blocker and
a recommendation system. We showed that the ad-blocker could achieve commercial-
grade accuracy without requiring any human inputs. The recommendation results
showed that our tree-learning approach outperformed conventional techniques and
features on real world news recommendation data.

Our tree-based algorithms exhibit a well-recognized tradeoff between specificity
and accuracy. The text-based classifiers we compared our work to are very general:

87



I I11%FI I ELI Ih I 1117 1

0 NB on Table-Tree

E SVM (Tree) on Table-Tree

ETree Algorithm on Table

Top3Recs # Recommendations/User Top1ORecs

Tree Algorithms Best on Tree Features
ONB on URL-Tree

OSVM on URL-Tree

MTree Algorithm on URL -

Top3Recs # Recommendations/User Top1ORecs

Figure 6-5: These graphs compare various algorithms on the tree structured features.
Naive Bayes, as expected, does poorly as its independence assumption is wrong. The
SVM does well on the URL feature but not as well on the table feature, while the
tree algorithm seems to take advantage of the tree structure.

88

0.41

0.35 -

a 0.3-

0.25

0.2
o 0.2

V

o 0.15

0.1

0.05-

0-

0

eE

0.45

0.4

0.35

0.3

0.25

0.2

0.15-

0.1

0.05

0-



0.45

0.4

0.35

0.3

Best Features By Algorithm
---...... . .....---------- ONB on AnchorText

O SVM on URL-Tree

ETree Algorithm on URL
0

0

E0.25
0

0.2
0.15

0.1

0.05

0
Top3Recs Top1ORecs

# Recommendations/User

Figure 6-6: These graphs show the best features for each algorithm. Naive Bayes
works best on the anchor text, while the SVM and tree learner performs best on the
URL feature. The differences between the algorithms are statistically significant.

89



150 M- a E
a

U m MI*

10aF * 5

ma ade & a I

00 **PI a Rb ma I

50 150tl
cc an Tree on URL NO

mg .. a if a welp
U #a* ~ U1P in 1P 0a a ~koU

I P so a a

J9 a be I

an PENN.' U. P8 I0
0 U E

0 50 100 150

Rank Tree on URL

Figur 6-7:Satrposso o aiu loihsaecreae iho gis
one another. (Top) he tree on the URLatete nteTbefaue xii

some~~ coreato (onsnathx-ai);BtM)A avNBysonteliktx
shows~ litecreato Mihen tre lernr thuhtewhtMpcEi h oe

right D iniae NB id no rank anyhn hihl tha the tre lere akdlw

90



150

-j

0

C
WU

100

50

0
0 50 100 150

Rank Tree on URL

Figure 6-8: Scatter plots show how various algorithms are correlated with or against
one another. (Top) The tree algorithm on the URL is generally in agreement with
the SVM, but many results are shifted (diagonal element). (Bottom) The tree algo-
rithm with two different parameter settings shows strong agreement with the negative
choices along with some translated rank features (diagonal lines in the lower left quad-
rant).

91

9% l

no L

0~~~ W 0OP 14.011

ro.

P~II

150

100 .

0

U)

C*d 50
C

0 "AE Mil OWN
0 50 100 150

Rank Tree on URL @ .05



the set of words that characterizes documents "interesting" to a given user is not

(very) specific to any particular site. Our URL classifier is site specific-what it
learns about the URLs of ads on one site will not generalize to other sites. And our
table-based classifier is even more specific, as it focuses on the layout of a specific
page.

92



Chapter 7

The Daily You Web Application

One application of this work is to create a real, usable news recommendation service.
In this section, we describe the components of such a system, which is currently in
public use'. This Chapter represents joint work with David Karger.

7.1 Introduction

As indicated in the thesis' introduction, The Daily You is a web application that
clips "interesting" news articles for a user. Like a good assistant, it strives to save the
user's time by anticipating the user's interests, then scanning the Web and finding
new related content.

Two things make this particular domain more difficult than generic recommen-
dation problems; and our system, algorithms, and empirical work revolves around
addressing recommendations within those special difficulties.

To recommend news while it is still new(s), the system must keep itself aware
of what is new and what is changing-and then to process that information and
intelligently select items for the particular user. Classifying news is a time-sensitive
problem, unlike many other popular recommendation systems (Amazon 2 or NetFlix 3,
for example). Thus, an approach of doing recommendations as a nightly or weekly
background process is not practicable for our system.

Most recommendation systems have the advantage of implicit domain knowledge,
while The Daily You does not. The New York Times knows the subject, author,
editor, and date for every story it publishes. The Daily You can not directly access any
of this information, so it must use a combination of speedy heuristics and algorithms
to pull out content oriented towards the user. It is a challenge for a computer to even
do simple human tasks-distinguishing advertisements from menus from content-
and harder yet to recognize elements within the content like authorship, title, date,
and subject. Most news recommendation research has dealt with known content-
which requires hand-written data extraction. Our goal is to build a system in which

lhttp://falcon.ai.mit.edu
2http: //amazon. com
3http : //netf lix. com

93



the user doesn't need to put in any extra effort to enjoy recommendations from an
arbitrary favorite news site.

Data from real-world applications is always noisy. A particular user might not click
on a story because she was simply not present, or had already seen that story through
a different news source, was too busy or was simply not in the mood. This means the
data-stream has a random component and the data looks extremely inconsistent with
itself. For example, one problem that many discriminant classifiers (like the SVM)
have with real news data is that data from opposite classes often lie near one-another.
It is common for two links to go to the exact same destination, but most users will
only click on one.

While some news recommendation applications already exist, we provide a differ-
ent method for understanding user interests that we feel produces better recommen-
dations (i.e. produces more recommendations that matches a user's interests), in a
smaller amount of time, than existing applications.

Section 7.2 gives a summary of The Daily You's architecture. The steps between a
theoretical algorithm and a working application are not always easy, and this section
details some of the trade-offs between response time, content freshness, ease-of-use,
customization and computational resources. The section details some design choices
in building a news application that works in real time for a set of users. The section
also contains several screen-shots of the working application.

One of the major components of The Daily You is to take the large amount of
information present on a web-page and to reduce or eliminate the irrelevant portions
while highlighting the relevant portions. The ad-blocking portion tries to remove
elements that distract your attention (Section 6.2). The page-filter further removes
templated information that the user has probably already seen (Section 7.2.2) and the
recommendation system (Section 7.2.3), which applies the previous chapter's machine
learning contributions. Experimental results for our recommendation system can be
found in Section 6.3, where we show results of a variety of algorithms on a two-hundred
person user study done to compare various learning algorithms on real user-generated
data.

7.2 Architecture

In this section, we detail the architecture of The Daily You. The system needs to
be simultaneously fast, functional, and easy to use; this requires prioritizing certain
operations along with making tradeoffs between different resources like memory and
processor time. Figure 7-1 shows many of the system's components, how they interact,
and their priorities relative to one another. The following components are detailed
below: the web proxy, the page filtering system, the recommendation system, and
finally the output options. Figure 7-2 shows a visual example of how the system
de-clutters an original CNN page and inserts recommendations.

94



Major Components of the Daily You

Trigger Action

User clicks daily you link
(Real time)

Page Requests

By User
(Real time)

Periodic System Cache
for frequently viewed
pages
(- every 30 minutes)

Update ML recommendations
(- every hour for frequent
users)

Update ML Classifiers
(- once a day)

Update Static Links
(- once a week)

Fast redirect to "real" content (P)
Records text, URL, and table location (P)

Scan through each page for frequent
users and use pre-constructed classifiers
(below) to choose top n links (R)

Use recorded text, URL and table for
clicked links to generate text, and tree-
based classifiers. (R)

Snapshot pages to identify static links
and templates on each site (F)

(P)=Proxy Server, §6.3.1; (A)=Ad Blocker, §4.3.3; (F)=Page Filter, §6.3.2
(R)=Recommendation System, §6.3.3; (O)=Output Choices, §6.3.4

Figure 7-1: Different elements of The Daily You receive different priorities according

to the utility they provide a user.

95

1

0



Page Requests of the Daily You
Remove the visual clutter, focus on the recommendations

Banner Ad & Pop-ups Removed
Original Page

COM

MORE TOP STORIES

-Enaine room blast fire kill ai
- New ship headshMomewiAh(

-Teleran reports 12 new SAR|
-McCartney stars in Moscowy,
SL.m Netis s-.QPistns

CNNRADIO VIDECMud 6 ai.ten to hatest Southro
Israel OKs road map updates d

The IS.i CbItbU Sunch" approW he IJ S -
taicadMWeastrdinS4 boUitU.-ThlWll"
House prais ed the Morye s an Importan sp IRAQ OIL

forward' vrllE a ParleInn SUkQSm an Said Atop ol Uial Sy IrS u-
sthestagel ofisraeMUSEhand wInthh nt .Ueeks - Ib

Palestnian Prime Minister liahmoud Abbas Wo neeaded revenue Full Slormeet Mordayto discuss mplemenltan

FIULL STURY BUSINESS1 I 0

:MW'Road MQ; k@Yrt§ so /5i 50s,
-c peslAput Land pf Cocrcr

Left Column Removed
(average 45% less HTMl than orig.)

C . hapne elydour l - Kig(7

Isae l5 e (15a road ap IIUUU. 551 OISE

p TMORE TOP STORIES
-Engine room blast Ire kll at least 2

-Veterans honored amid tenror wermin
-Navy shin heads home wMthou I nssii

- Tarwanrepcirts 12rallw ARS deaths

C.t 
stars in M 0cow I

-A - - wenPstn avn

CNNRADIO VIDEO
sen to laws Surica nsIsrael OKs road map udt , demcmst

The Israel, Cabinet Sunday approve the U, -
backed Mideast rmad map to peace The White IRA OIL

for d,- iyn a P.1 - p.1nkeelman sard R A lop oil official says Iraq could start exI
set Mhe stage for Israe' ArM el Sharon and within the next lwo weeks -- bringing in
Palestinian Prime Minister Mahmond Abbas to needed revenue Full story
most Monday to discuss frmpnementatnor

SMWp- Rusd m a Key Q 0,nt5
-Strom ep r Land of carril,

Strip
Whitespace,
Adverts,
Javascript

Insert User
Recs

"Pick" added to some links
(average 45% less HTMl than orig.)

ON.com.

MORE TOP TRE

Mdr lel n ine r I la t ti es 

pick.k:IVraelnsOhsn roadmid o rror w

-Navy s hada h dm e w oiw
-Taiwan reports 12 new SAR dOt S

- Vote tests Sanans goernmend's Iaq
Mce-rtn-ystars n oso 'ht

Sicarn: Net$ sweep Pistons, advanct

S CNNRADIO VIDEO
SListen to ftest South African wo

backed M ideast mad mania peace TheWhrtg IRAQ OILHruss praised the .rr s 'anr -imprlant step
In r I ". a Passini s eschara said a Aop oil says Ira could strtex

0. .5 staeforIsrael' I Sharon5005. anld 51.hu no nettU~omeks- brinsging in
Palestinan Prime Minister MrinmUi Abbas O needed rvnue Full sto
meet Monday to discuss implementation.

eMilr Rroad map kW pntsn
SpeclI Report . Land f Confill

..... -..

Figure 7-2: The
The Daily You

CNN home-page after being altered by the various components of

96

I



7.2.1 Web Proxy Server

The proxy server takes care of several important, but relatively mundane, tasks. Its
chief goal is to provide necessary infrastructure for the higher-level components while
being as unobtrusive to the user as possible.

When a user views a page through a proxy server, it should appear and function
just like the original page. At the same time, the proxy server is silently collecting
information about the user's clicks.

The Daily You's proxy server is custom-built and differs from the most common
proxies in several ways. First, The Daily You records far more information about
the clicked-on links than a normal proxy, which only records the URL. In addition
to the URL, our proxy records the words in the anchor text of the link, and which
table-location the link was found in. This is done through a step which re-writes each
link to secretly contain this additional table and text information.

Second, The Daily You does not require any browser setting changes to record
the user's actions. Most widely-distributed proxies, like Squid ' require the user to
make some changes to the browser settings. Instead, our proxy manipulates the page
in such a way that it looks like the original page but is actually being hosted on The
Daily You servers. For example, each link actually points back to The Daily You,
which tracks the click and quickly redirects to the original destination. This code is
similar to the way an advertising link-tracker works, and involves some subtle detailed
issues to catch different ways of formatting links. Many of the ideas in this code come

5from CGI Proxy

Third, because the server is custom-made, it can also work efficiently within our
needs. For example, not all information goes through the proxy: images and style
panes are sent directly from the server. This speeds up image downloads and saves
the server processing time.

Forth, the server downloads HTML with lynx (an open-source HTML browser),
modifies the incoming HTML in minor ways to make the HTML smaller. For example,
it removes extraneous white-space and comments from the HTML, which shortens
the length of each file, on average 19%, according to our study of several sites (see
Table 7.1). It also removes javascript commands which cause pop-up advertisements
and flash-based images. This shortening of the HTML has a noticeable effect on
performance. Since all the subsequent steps require a scan through the HTML file
(whether to find links that are ads, or to find links to recommend), a shorter file can
be parsed more quickly. This in turn means the page is delivered to the user more
quickly and requires less memory and processor time of the server.

Like other proxy servers, The Daily You caches frequently requested pages. Ap-
proximately every thirty minutes, popular pages are downloaded, parsed, and saved
to a mysql database for faster access times when a user requests those pages.

4http: //devel. squid-cache . org
5http://www.jmarshall.com/tools/cgiproxy

97



7.2.2 Page Filtering System

This section describes The Daily You's efforts to automatically crop unwanted visual
material from a web site. This automatic, real-time cropping produces a page with
much less visual clutter (Figure 7-3). Like the ad blocker, this component was used to
remove distracting and unwanted content automatically from the web pages. In the
context of the recommendation system, it is used to quickly filter out a large number
of links.

We began with a small user study of six users, who were asked to "crop" their
favorite web pages to show which portions of the pages they would like to keep and
remove. Users cropped the pages so they could see more content and less clutter.
Cropping was through a user interface that allowed the removal of entire tables or
table sub-elements.

The results, which were fairly consistent across both various sites and users, were
that people removed the banners across the top, the navigation bars across either
the sides or the top, and the copyright and corporate information across the bottom.
While users would sometimes remove additional table elements, like specific sections
of the page they were uninterested in, the general trend was to remove the static
elements. In other words, users tended to remove recurring and unchanging content-
HTML templates. These templates allow the web site to have a consistent design and
layout, leaving the web master to focus on the more dynamic and changing portion
of the web site.

Clearly the web site designers put some effort into incorporating templated in-
formation; why would users consistently want to remove it? One answer, partially
articulated in the Montage paper [1], is due to the differing needs of new and repeat
visitors. New users might use the banner and the navigation bars to get a sense of
the overall contents of the site. If they had specific interests, they might scan the
navigation bar to see if such a section existed. If so, they might jump over to that
section. In contrast, repeat visitors would already know the rough organization of
the site; if their entire interest was focused on one section, that section (as opposed
to the front page) would be their favorite site.

Our original intention was to learn, in a method similar to the ad-blocking section,
which table elements in a web site were unwanted. This proved difficult for a few
reasons. First, it is a user interface challenge to figure out what portion of the page
the user has chosen to look at (in contrast, for link recommendation, it is easy to
figure out what the user has clicked on). Second there are issues, though infrequent,
with table structures changing either by site redesign, or by the sudden addition
of advertisements placed in advertisements (this is a problem for the table-based
recommendation system as well). Third, one would want to strip off table elements
conservatively, since removing wanted information is worse than keeping unwanted
information. We decided to use a heuristic to avoid these problems.

The page filter tries to remove the static portions of the page, echoing the results
from our user study. We recursively chop the page up into table elements (roughly,
the horizontal and vertical rectangular areas that make up most web-pages). Each
element is assigned a heuristic score that measures how static it is. Elements above a

98



4-O Ne tf ork (imes Zhe ( qeu Mork imco
UPDATED FRIDAY. NOVEMBER 8.2002 1:22 PM ET I Pea ...iz- Y-W-the, UPDATED FIDAY. NOVEMBER 8 2002 1.22 PM E T s out Ntt.,

o. R- SER -0- 1 SEARCH IN.jo nceiO ehdeoojo

PostR30Ays E -- jV3 a REIS ER NUW ff '

Security Council Approxes Iraq Resolution Security Council Approves Iraq Resolution
Do pp.. toI

NWASHrNGTO W ASHINGTON grat dea;iJ~~ td Housebenber.Toino 31111House Members Toins as n osot

Fi~it to Succeed Geyba-dt Figth to Siseed Geh i odt

LNTRNATIONAL
r ci Pat leetstoPirk SPts toto Pick

Sen Ro~is New~adr eoslr Cod

M The Tim

NY rodP!V Security Cosooinna~obaeoti.goo~ FiBOeWhuCote ladaino
SeS uy S Coscn members votoogtodayto For One'Who Crossed gtodsator For One %',It a assed k Is

inthsoeU.N. inspecosto .sarhIraq foroih,. . rpr$II
-pons of..., dcstrction. From the .lft are the Line, Time for Payback Is weapons ofmass destrction. From the loft e the -- ie u-e for PabarkF

rosoe; deputysnob sor.PysolMkd d o tHond dp Syran mbas rFayssa Mi .kd. ad a Hand classic Fr
Anbssssdan ambassodorO, Miid n d ad Ambassadors Jeremy Creensooofloiion nd

DoloD pop fltU.S oM John D. Negroponte ofthe US.

Figure 7-3: A portion of the New York Times is shown (left) normally and (right) after
ad-blocking and page filtering. The ad-blocking portion removes the images in the
top right and left, and the page filtering removes the entire left-side static navigation
pane. Our user study shows that most users prefer the less cluttered versions of web
pages, like those provided by The Daily You.

threshold are removed. The remaining elements are glued back together to create a
stripped down page. The visual effect is that certain rectangular blocks are "whited
out" from the original page. This preserves the dynamic content on the page, and
retains a similar look-and-feel from the original. Figure 7-3 shows a typical example
of how the page filter de-clutters a page. The end result is that a heuristic does a
fairly good job of "filtering" the unwanted table elements in a page. That process is
good enough for our purposes.

Our heuristic simply looks at the number of static links (defined in the next
paragraph) in each table element. If there are three or more static links, and no
dynamic links, then the table element is removed. The heuristic generally tries to cut
out the worst offenders (generally long lists of static index links) and leave in some
borderline cases (banners, search bars, and so forth).

We find static links by running a weekly process. Once a week, an automatic
process runs that reads all the web pages that The Daily You monitors (currently,
240 pages are monitored, which consist of pages that our 28 registered users have
entered into the system). The links on each page are recorded. If the same URLs are
seen two weeks later, they are deemed static.

At this point, the components have automatically converted arbitrary source pages
into a less cluttered version of the same page. From our user study, most users prefer
the stripped down look. While it is difficult to measure clutter and aesthetic appeal,
we make some quantitative comparisons that illustrate how much the original pages
are being reduced.

Table 7.1 uses some simple metrics to see what is being removed after each com-
ponent is completed. The columns represent, in order, the original HTML, then the
cumulative effect of the various components (the web proxy, which simply removes
whitespace; the ad blocker; and the page filter).

The first row compares the total megabytes of HTML incorporated in the 240

99



Table 7.1: Effects of various components on HTML size, image size, and link count
Orig. Web Proxy Ad Block Page Filter

HTML (size) 8.6M 7.OM 5.7M 4.7M
HTML (% dec.) 0% 19% 34% 45%
Images (size) 800K 800K 617K 539K
Images (% dec.) 0% 0% 23% 33%
# of links 20K 20K 18K 14K
links (% dec.) 0% 0% 10% 30%

pages being monitored by The Daily You. The second row shows the percentage
decrease in the HTML. Besides the purely aesthetic advantages, a reduction in HTML
corresponds to a reduction in download latency. Modem users, for example, would
find pages downloading almost twice as quickly by using The Daily You. The simple
act of removing whitespace, part of the web proxy's functionality, decreases the HTML
size significantly. The ad blocker removes about 1.3M of HTML over the 240 pages,
which implies that a high proportion of HTML on a page is actually devoted to
advertisements (just the href tags). About IM of HTML is removed by the page filter
which implies that a lot of information sits in static templates over the assortment of
web sites.

The third and fourth rows shows the aggregate size of images that are downloaded
through the Internet Explorer browser. Like the HTML, reducing the numbers of
downloaded images will also decrease download times. Roughly, the size of an image
correlates with how large and distracting it is. We only used 20 random web sites
from the original 240 for this calculation. This is simply because it is inconvenient
to total the size of images from 240 web sites. The web proxy, which duplicates the
look of the original site, does not remove any images. The ad blocker removes 23%
of the images-which reflects another decrease in download times. Interestingly, the
page filter also removes images, which turn out to be small navigation pictures, like
arrows or graphical section headings. The bulk of the remaining size comes from
hi-resolution photos of news events.

The final two rows measure the number of links found on the pages. This metric
shows how the first three components can help out the link recommendation system
(the next sub-section), by automatically removing candidate links. Comparing the
ad block numbers, blocking 10% of the links corresponds to reducing the image size
by 23%. In other words, there are a relatively small number of advertisements, but
each one takes a disproportionate amount of attention.

One interesting extension of our finding, that web pages have a large amount of
templated HTML, is in the area of HTML compression. The idea would be to split (as
we have) a document's information into static and dynamic components. The main
page would retain all the static information, except the page would be marked as not
expiring. Tables full of dynamic information would be replaced by iframes (floating,
border-less, positionable frames that are now standard HTML), whose contents would
expire immediately. The iframes would update as needed, but the surrounding static
HTML would only be downloaded once. In this way, the page would have the same

100



content as the original, but refreshes would only need to send the dynamic content.

7.2.3 Recommendation System

The recommendation system takes a list of past click data from the web proxy, and
uses it to predict the user's future clicks. This system implements our idea that if a
user has clicked on a link, they are more likely to click on links with similar URLs
or in nearby table elements. For this paper, our focus is on single-user learning, as
opposed to collaborative filtering [51].

Our recommender starts by equally weighting the URL and table learners, which
produces a ranked list of probabilities that a link will be clicked upon. In practice,
portions of this list may result in ties (for example, when the user prefers college
football stories, which all share a common URL "father" and reside in the same
place in the table tree). Therefore, we use the tree features to compile a top ten list
of candidate links, and use a Naive Bayes classifier [36] on the text of the link to
produce a top three list. This sometimes has the advantage of fine tuning the coarser
results from the tree classifiers; for example, it might choose the link which contained
your alma mater from a list of college-sports related news.

As already discussed, the classifier is fairly fast because it does not need to down-
load all the links on a page. All of the information is contained on the source page,
including the table structure, link URLs and the text inside the link.

There are certainly cases when these human-oriented features are either obfuscated
(the URL is deliberately misleading) or uninformative (the page always displays the
newest stories first, but you only care about the sports articles). Machine learning
already addresses this issue: if there is little or no correlation between a URL and a
user's click stream, our system simply ignores the URL feature. In other words, we
let the learning sort through what is and is not relevant.

Another problem in most recommendation systems is that they do not receive
enough training data to make useful recommendations. A portion of this is due to
user-interfaces that require the user to expend extra effort in comparison to what
they normally would do. For instance, movie recommendation systems expect you to
log on and rate all the movies you have seen. News recommendation systems expect
you to rate each news article after you have viewed it. Newsdude [4] reads articles
verbally to users, who hit a button when they are tired of hearing the story.

In contrast, The Daily You's interface is simply that of a normal browsing session
(with out the advertisements and clutter). If anything, the browsing experience is
more pleasant than normal. The system invisibly tracks clicks, like most proxies6 ,
and stores the information. Thus, because the system is providing utility to the user,
we expect to receive a larger amount of data than in other systems. More data almost
always leads to a higher quality recommendations.

6i.e. http: //devel. squid-cache. org

101



Figure 7-4: The Daily You's emphasis on flexibility allows one to grab any page,
including popular sites like Salon, Slashdot and the Onion. It can even function as a
meta-agent, grabbing information from other portal sites like My Yahoo.

7.2.4 Output Choices

Various combinations of the components can be used with simple front ends in order
to produce a variety of different useful applications. All of these applications can be
used through a normal browser interface.

The first such application is a web-based ad blocker. As the user navigates through
the web, all the pages are retrieved through the web proxy. The web proxy re-writes
all the links so they point to the web proxy version of the original link. Essentially,
every page is now fetched through the web proxy, rather than directly from the source.

7This application was inspired by an excellent web application called CGI proxy .
With a little back-end programming, The Daily You can also associate a user

name with a set of commonly viewed pages. Each chosen page can be fed through the
web proxy, ad-blocker, and page filter. This results in a set of pages looking like the
New York Times example in Figure 7-3. Next, all the pages are concatenated into one
long, vertical page with navigation buttons to move jump between the chosen pages.
This lets users have arbitrary often-viewed content sitting on one handy page, much
like the Montage system [1]. This saves the user time both in terms of download time
(Table 7.1) and in terms of browsing (a user's favorite sites are aggregated on one
page). For the end-user, "installation" of this product simply involves picking a user
name and typing in a list of commonly-viewed URLs.

In effect, by aggregating arbitrary user-selected sources pages together, The Daily
You serves as a true "portal" to the rest of the Internet. In contrast, most common
commercial portals only allow users to choose from a small number of content sites.
Figure 7-4 shows some popular pages aggregated together and used by Daily You
users; these pages are not typically available on commercial portal sites.

The Daily You can also take the user pages above and run the recommendation
component. Figure 7-5 shows a summary page of one of the author's Daily You pages.

7http://www.jmarshall.com/tools/cgiproxy/

102



Steck Tickers Top Stoe
CSPx 895.16 7.19 8v Aah ..55
^tXL( 1,361.49 22 * eornail itpug times, Entertaiment Weeklyi winning

T okyo stocks cdror, after Iall Street rally fades
enter stock symbols A's Zito sins AL Y. X VAstAq'

spx^ixic .901

your weather zip code 6o2139

-21j

Drone Attack An America Was Among 6 Killed by U.S.
* Shares Decline Broadl LcdbyDim Outlook From Cisco

550.420 * Tenet Says It Will Review Price Stratery

o Tyco board plan may iolate settlerent Tyco's proposal to
under indicted former chief executive Dennis K oziowski vmolat

a top New Hampsire securities regulatir said today. (AP) IT
. Sniper suspects connected to Seot shooting death us Atlan
suspects Jolin Allen Muhanimad and John Lee Malvo to the

outside an Atlanta liquor store. (AP)
House members saY tiey wil not opioe spee ; !_Several'

pressure to oppose the continued leadership ofHouse Speak
they would not heed the will of the voters (AP)

Hisioly

. Second-Grade Teacher
Overhypirn Third Grade

. What, Zagat Is Ratire The
Godfather Now?
. Yahoo shares slip ater
downgrade. Softbank sale
. more7.

Figure 7-5: After inputting some favorite pages, the components of The Daily You
interact to provide this summary page of
stocks, weather and a searchable history of

highly recommended stories (right) and
viewed links (left).

Figure 7-6: The Daily You can also stream a news ticker of recommended news stories,
for a low footprint summary of news relevant to you.

103

Weather
Today

Nov 08
Sat >

Nov 09
Sun s
Nov 10
Mos
Nov 11
Tuo
Nov 12

6"0.450

620(510

640,430

530.420



Its layout is similar to the layout in My Yahoo8, though its functionality is somewhat
greater. The left hand side of the page includes standard portal functionality, like
customizable stock quotes and weather. The right hand side, like My Yahoo, contains
a list of top stories from user-selected sites. However, My Yahoo has no learning-the
top headlines from a given site are the same for all its millions of users. The Daily
You's headlines are selected with the recommendation system. More interesting is
that any site can be selected as a source for recommendations. One could add the
Google news summary service, or Amazon.com, or even another Internet portal.

Another output choice of The Daily You is a news ticker (Figure 7-6). The news
ticker simply takes your recommendations and scrolls them horizontally. Clicking on
an item pops up the story in your browser. The news ticker is useful because it takes
a small footprint at the top of the screen, but over time displays the same amount of
information as the other views. The news ticker was built on Java code written by
Gokhan Dagli '.

8http://my.yahoo.com
9http: //j avaboutique. internet. com/HMenus2

104



Chapter 8

Conclusions

In this thesis, we presented several machine learning techniques which were adapted
or created for use with Web applications. Our work might be summarized as "a little
domain knowledge goes a long way." We used domain knowledge in various ways to
speed up one algorithm, increase the accuracy of another algorithm, and to create
new algorithms. All of these efforts yielded scalable algorithms that also had high
accuracy and were practical for Web use.

We first used domain knowledge to improve the "punching bag of classifier's"
accuracy. By carefully analyzing some of the systematic problems naive Bayes has
when dealing with real textual data, we were able to produce a fast, easy-to-implement
classifier with accuracy similar to the slower, but highly accurate SVM.

The SVM has the opposite problem from naive Bayes; it is accurate but does not
scale well for even moderate-sized Web problems. For the SVM, we found that we
could hybridize the SVM with the fast Rocchio algorithm. This produced a range of
classifiers that ranged from fast (the "Rocchio" end) to accurate (the "SVM" end).
Empirically, we found there were good intermediate stages that shared the speed of
Rocchio while approximating the accuracy of the SVM.

In our examples of naive Bayes and the SVM, we were focusing on adjusting
existing (text) algorithms for use with Web applications. However, as we observed in
the Chinese newspaper example, humans can intuit a variety of information simply
by looking at the visual organization of a page. This motivated a set of features, like
the layout of a page, that we call tree-structured features.

These tree-structured features motivated a wide variety of classification and al-
gorithmic challenges. We constructed a probabilistic model of trees that formalized
our intuition that similar items are often near one another in a tree. In keeping with
our goal of building algorithms that worked well with Web applications, we built
algorithms that worked with this model that were scalable and dealt with precision
problems that often occur in probabilistic models.

When we applied our algorithms to the real-world problems of ad-blocking and
news recommendations, we found that they worked better and faster than standard
algorithms (naive Bayes and the SVM) and standard features (anchor text and target
page text). We then used these algorithms to build our news recommendation system,
The Daily You.

105



Looking forward, we would like to further explore making practical, accurate
algorithms for use with th Web. For example, we are interested in combining the
generality of text algorithms with the speed and specificity of the tree algorithms.
Interleaving those two algorithms could potentially lead to an algorithm that has the
advantages of both approaches. This would lead to a better recommendation system,
and a better application. Another interest is in recursive bundling, or the idea that
larger bundles might guide the SVM towards the correct solution for smaller bundles.

106



Appendix A

In Chapters 4 and 3 we list several text experiments that we performed. This section
describes the pre-processing and experimental setup that is common to both of those
chapters.

A.1 Text Data Sets

We discuss four common text data sets that were used, as well as the pre-processing
steps that converted those text data sets into the vector representation that is com-
monly used with the support vector machine.

The 20 Newsgroups data set is a collection of Usenet posts, organized by news-
group category, which was first collected as a text corpus by Lang [34]1. It contains
19,997 documents evenly distributed across 20 classes. We remove all headers and
UU-encoded blocks, and skip stop-list words and words that occur only once2 . Doc-
uments that are empty after pre-processing are removed.

In our experiments, we selected 600 documents randomly from each class to serve
as training examples (times twenty classes yields 12,000 training documents). We
repeated this random test/train split 10 times per result shown. This methodology
is consistent with the pre-processing and testing procedures found in Rennie and
Rifkin [44].

The Industry Sector data is a collection of corporate web pages organized into
categories based on what a company produces or does3 . There are 9649 documents
and 105 categories. The largest category has 102 documents, the smallest has 27. We
remove headers, and skip stop-list words and words that occur only once4 . The vo-
cabulary size is 55,197. Documents that are empty after pre-processing are removed.

In our experiments, we took 50% of the examples from each class as training
examples, and the remaining 50% for test examples (for classes with an odd number
of examples, the extra one went to the test set). This method preserves the ratio
of documents within each class. Like our processing on the 20 Newsgroups data, we

'The 20 Newsgroups data set can be obtained from http://www.ai.mit.edu/-jrennie/20Newsgroups/.
2 Our 20 Newsgroups pre-processing corresponds to rainbow options "-istext-avoid-uuencode -

skip-header -O 2."
3 We obtained the Industry Sector data set from http://www-

2.cs.cmu.edu/~TextLearning/datasets.html.
'Our Industry Sector pre-processing corresponds to rainbow options "-skip-header -O 2."

107



also created 10 test/train splits. This method of pre-processing is consistent with the
steps taken in Rennie and Rifkin [44].

Since 20 Newsgroups and Industry Sector are multi-class, single-label problems,
we constructed a one-vs-all classifier for each category. This means 20 Newsgroups
had 20 classifiers per test/train split and Industry Sector had 105 per test/train split.
To assign a label to a document, we selected the most confident classifier.

The Reuters-21578 is a collection of Reuters newswire stories that is commonly
used in text classification experiments 5 . We use the Mod-Apte split, which splits the
data chronologically so that all the training documents were written before any of the
testing documents. There are 90 categories with at least one document in both the
training and the test set. After eliminating documents not labeled with at least one of
these categories, we are left with 7770 training documents and 3019 test documents.
After eliminating words from a standard stop list and words 6 that only appear
once, we have a vocabulary size of 18,624. Reuters poses a multi-label problem. We
construct a one-vs-all classifier for each category. A document is assigned a label for
each classifier that produces a positive value.

Having a clear test-train split, like with Mod-Apte, has advantages in replicability.
However, having exactly one way to run the experiment also means that we do not
report statistical significance results, since standard deviation does not make sense
with only one point.

Ohsumed is the largest data set that we used, containing approximately 230,000
documents and almost 267,000 features [22]. Ohsumed consists of MEDLINE doc-
uments from 1987 through 1991 which are published and assigned an identifier by
humans. The data sets are available online7 . The documents were downloaded, un-
zipped, but stopwords were not removed. The Ohsumed data was split by date;
the first 179,215 documents were used for training and the last 49,145 were used for
testing. Like the Reuters collection, each document may belong to multiple cate-
gories. For our experiments, we used the ten largest categories, which are "Human",
"Male", "Female", "Adult", "Middle Age", "Support, Non-U.S. Goverment", "Ani-
mal", "Aged", "Case Report", and "Comparative Study." The experiments consisted
of 10 separate binary experiments corresponding to each of those categories. For each
of those experiments, the training data was labeled according to whether it was or
was not in a category (i.e. was or was not labeled as "Human").

For 20 Newsgroups and Industry Sector, we use multi-class classification accuracy
to compare different algorithms. This is simply the number of test documents in
the correct class divided by the total number of test documents. For Reuters, we use
precision-recall breakeven. To compute breakeven, for each class, we trade-off between
precision and recall until we find their scores to be equal. For macro breakeven, we
average these scores. For micro breakeven, we perform a weighted average, where the
weight for a class is the number of testing examples in that class. For Ohsumed, the
reported score was the average accuracy over the ten binary experiments performed.

5http://daviddlewis.com/resources/testcollections/reuters2l578
6This corresponds to pre-processing with Rainbow using its standard stop list
7ftp. ics .uci. edu/pub/machine-learning-databases/ohsumed

108



A.2 SVM parameters

For our SVM-based experiments, we used SvmFu, which is known as a fast implemen-
tation of the SVM [46]. We used 3000 cache rows ("-c 3000") which has an effect on
speed, but not accuracy. We set the kernel and input datatypes to floats ("-K float
-D float"). We use the linear kernel for the SVM since the linear kernel empirically
performs as well as non-linear kernels in text classification [59].

A.3 Statistical Significance

Having 10 test/train splits for each of the Industry Sector and 20 Newsgroups data
sets lets us report statistical significance for each reported result. Each split yields
a different accuracy result, and we report the means of those results along with the
standard deviation. The mean (M) is calculated as follows where ai is the accuracy
from test run i of n test runs (n = 10 in our 20 Newsgroups and Industry Sector
results):

_ 1 ai
n

The standard deviation (-) is calculated as follows, where ai is the accuracy from
test run i of 10 test runs:

K (as )
Vn

We show statistical significance results for Ohsumed and the recommendation data
sets in a different way. In Ohsumed and the recommendation data sets, each "run"
is drawn from a different distribution than the Industry Sector and 20 Newsgroups
sets.

By analogy, if one were comparing two cars on ten different race tracks of varying
lengths, the means for each race would look very different, and the standard deviations
would be large. Instead, you might notice whether one car consistently finished faster
than the other, and built a statistical significance test based on comparing which car
was faster in each race.

Statistics has a standard method for such comparisons [23]. For each test, one
looks at the difference in accuracy between the two classifiers, then orders the differ-
ences in score by rank. Suppose we are trying to show that classifier 1 is better than
classifier 2 over n distinct tests. Let |Zjj be the absolute value of the difference in
accuracy of classifier 1 and classifier 2; so a high jZjj means there is a large difference
between the two classifiers. Order the jZjj such that the smallest differences come
first and the largest differences come last. Then jRI runs from 1... n and represents
the ordering of the differences between the two classifiers. If IR2 = 11 that means the

109



absolute differences between the two classifiers on trial 2 was the least of any of the
trials.

Define a function /i that indicates whether or not Zi is positive (i.e. confirms the
hypothesis that classifier 1 is better than classifier 2):

f1 if Zi > 0;
0 if Zi < 0

Then sum the product of Ri and #i over all the test examples:

n

T+ Ri#.
i=1

To check for statistical significance, we compare T+ with numbers in a table
A.4 in Hollander and Wolfe [23]. When n = 10 (Ohsumed experiments), statistical
significance above the 95% mark is reached when T+ > 44.

For large n, as in our recommendation experiments (which had 176 samples), there
were no table entries. Thus we adopted the methodology of Hollander and Wolfe [23]
for larger n values.

First, define T*:

T+ _ (n - 1)/4
T* (n(n + 1)(2n + 1)/24)1/2

Then, from Hollander and Wolfe table A.1 [23], T* > .165 implies statistical
significance above the 95% mark.

110



Bibliography

[1] Corin R. Anderson and Eric Horvitz. Web montage: a dynamic personalized start
page. In Proceedings of the Eleventh International World Wide Web Conference,
pages 704-712. ACM Press, 2002.

[2] Regina Barzilay, Noemie Elhadad, and Kathleen R. McKeown. Inferring strate-
gies for sentence ordering in multidocument news summarization. Journal of
Artificial Intelligence Research, 17:35-55, 2002.

[3] Adam Berger. Error-correcting output coding for text classification. In Pro-
ceedings of IJCAI-99 Workshop on Machine Learning for Information Filtering,
Stockholm, Sweeden, 1999.

[4] Daniel Billsus and Michael J. Pazzani. A hybrid user model for news story
classification. In Proceedings of the Seventh International Conference on User
Modeling, pages 99-108. Springer-Verlag New York, Inc., 1999.

[5] Christopher. M. Bishop. Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, 1995.

[6] Leo Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statis-
tics Department, University of California, April 1996.

[7] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1-7):107-117, 1998.

[8] Christopher J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.

[9] Kenneth W. Church and William A. Gale. Poisson mixtures. Natural Language
Engineering, 1(2):163-190, 1995.

[10] Michael Collins and Nigel Duffy. Convolution kernels for natural language. In
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Proceedings of Neural
Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.

[11] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector
Machines. Cambridge University Press, 2000.

111



[12 Pedro Domingos. When and how to subsample: Report on the kdd-2001 panel.
Knowledge Discovery and Data Mining Explorations, 3(2), 2002.

[13] Pedro Domingos and Michael Pazzani. Beyond independence: conditions for the
optimality of the simple Bayesian classifier. In Proceedings of the Thirteenth
International Conference on Machine Learning (ICML), 1996.

[14] Richard 0. Duda and Peter E. Hart. Pattern Classification and Scene Analysis.
Wiley and Sons, Inc., 1973.

[15] Richard 0. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
Wiley-Interscience, 2000.

[16] Susan Dumais, John Platt, David Heckerman, and Mehran Sahami. Inductive
learning algorithms and representations for text classification. In Seventh Inter-
national Conference on Information and Knowledge Management, 1998.

[17] William DuMouchel, Chris Volinsky, Theodore Johnson, Corinna Cortes, and
Daryl Pregibon. Squashing flat files flatter. In Knowledge Discovery and Data
Mining, pages 6-15, 1999.

[18] Rayid Ghani. Using error-correcting codes for text classification. In Proceedings
of the Seventeenth International Conference on Machine Learning, 2000.

[19] Shantanu Godbole, Sunita Sarawagi, and Soumen Chakrabarti. Scaling multi-
class support vector machines using inter-class confusion. In Proceedings of
the Eighth International Conference on Knowledge Discovery and Data Mining,
2002.

[20] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's
learning framework. Artificial Intelligence, 36(2):177-221, September 1988.

[21] David Heckerman. A tutorial on learning with Bayesian networks. Technical
Report MSR-TR-95-06, Microsoft Research, March 1995.

[22] W. Hersh, C. Buckley, T. Leone, and D. Hickam. Ohsumed: An interactive
retrieval evaluation and new large test collection for research. In Proceedings of
the 17th Annual International ACM Conference on Research and Development
in Information Retrieval, pages 192-201, 1994.

[23] Myles Hollander and Douglas A. Wolfe. Nonparametric Statistical Methods. John
Wiley and Sons, 1973.

[24] G. Jeh and J. Widom. Scaling personalized web search, 2002.

[25] Thorsten Joachims. A probabilistic analysis of the rocchio algorithm with tfidf
for text categorization. In Proceedings of the Fourteenth International Conference
on Machine Learning, 1997.

112



[26] Thorsten Joachims. Text categorization with support vector machines: Learning
with many relevant features. In Proceedings of the Tenth European Conference
on Machine Learning, 1998.

[27] Thorsten Joachims. Making large-scale SVM learning practical. In B. Schlkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector
Learning. MIT Press, 1999.

[28] Karen Sparck Jones. A statistical interpretation of term specificity and its ap-
plication in retrieval. Journal of Documentation, 28:11-21, 1972.

[29] Slava Katz. Distribution of content words and phrases in text and language
modelling. Natural Language Engineering, 2(1):15-60, 1996.

[30] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46(5):604-632, 1999.

[31] Daphne Koller and Mehran Sahami. Hierarchically classifying documents using
very few words. In Proceedings of the 14th International Conference on Machine
Learning (ICML-97), pages 170-178, 1997.

[32] Nicholas Kushmerick. Learning to remove internet advertisements. In Oren
Etzioni, J6rg P. Miller, and Jeffrey M. Bradshaw, editors, Proceedings of the
Third International Conference on Autonomous Agents (Agents'99), pages 175-
181, Seattle, WA, USA, 1999. ACM Press.

[33] Nickolas Kushmerick, Daniel S. Weld, and Robert B. Doorenbos. Wrapper induc-
tion for information extraction. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 729-737, 1997.

[34] Ken Lang. Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth
International Conference on Machine Learning, pages 331-339, 1995.

[35] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker,
I. Guyon, U. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison of
learning algorithms for handwritten digit recognition. In International Confer-
ence on Artificial Neural Networks, 1995.

[36] David D. Lewis. Naive (Bayes) at forty: the independence assumption in infor-
mation retrieval. In Proceedings of the Tenth European Conference on Machine
Learning, 1998.

[37] Andrew McCallum and Kamal Nigam. A comparison of event models for naive
Bayes text classification. In Proceedings of the AAAI-98 workshop on Learning
for Text Categorization, 1998.

[38] Andrew K. McCallum, Ronald Rosenfeld, Tom M. Mitchell, and Andrew Y.
Ng. Improving text classification by shrinkage in a hierarchy of classes. In
Jude W. Shavlik, editor, Proceedings of ICML-98, 15th International Conference

113



on Machine Learning, pages 359-367, Madison, US, 1998. Morgan Kaufmann
Publishers, San Francisco, US.

[39] Dunja Mladenic. Feature subset selection in text-learning. In 10th European
Conference on Machine Learning (ECML98), 1998.

[40] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers:
A comparison of logistic regression and naive Bayes. In Advances in Neural
Information Processing Systems 14, 2002.

[41] Dmitry Pavlov, Darya Chudova, and Padhraic Smyth. Towards scalable support
vector machines using squashing. In Proceedings of the Sixth International Con-
ference on Knowledge Discovery and Data Mining, pages 295-299. ACM Press,
2000.

[42] Michael J. Pazzani and Daniel Billsus. Learning and revising user profiles: The
identification of interesting web sites. Machine Learning, 27(3):313-331, 1997.

[43] Jason D. M. Rennie. Creating a web page recommendation system for haystack.
Master's thesis, Massachusetts Institute of Technology, 2001.

[44] Jason D. M. Rennie and Ryan Rifkin. Improving multiclass text classifica-
tion with the Support Vector Machine. Technical Report AIM-2001-026, Mas-
sachusetts Insititute of Technology, Artificial Intelligence Laboratory, 2001.

[45] Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, and David R. Karger. Tack-
ling the poor assumptions of the naive Bayes text classifier. In Proceedings of
the Twentieth International Conference on Machine Learning, 2003.

[46] Ryan Rifkin. Svmfu. http://five-percent-nation.mit.edu/SvmFu/, 2000.

[47] J. Rocchio. Relevance feedback in information retrieval. In G. Salton, editor,
The SMART Retrieval System: Experiments in Automatic Document Processing,
pages 313-323. Prentice-Hall, 1971.

[48] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1994.

[49] Gerald Salton and Chris Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing and Management, 24(5):513-523, 1988.

[50] Robert E. Schapire and Yoram Singer. Boostexter: A boosting-based system for
text categorization. Machine Learning, pages 135-168, 2000.

[51] Upendra Shardanand and Patti Maes. Social information filtering: Algorithms
for automating "word of mouth". In Proceedings of ACM CHI'95 Conference on
Human Factors in Computing Systems, volume 1, pages 210-217, 1995.

114



[52] Lawrence Shih, Yu-Han Chang, Jason Rennie, and David Karger. Not too hot,
not too cold: The bundled-svm is just right! In Proceedings of the International
Conference on Machine Learning Workshop on Text Learning, 2002.

[53] Lawrence Shih and David Karger. Learning classes correlated to a hierarchy.
Technical Report 2001-013, MIT Al Lab, May 2003.

[54] Lawrence Shih, Jason D. M. Rennie, Yu-Han Chang, and David R. Karger.
Text bundling: Statistics-based data reduction. In Proceedings of the Twentieth
International Conference on Machine Learning, 2003.

[55] Noam Slonim and Naftali Tishby. Agglomerative information bottleneck. In
Neural Information Processing Systems 12, 1999.

[56] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
1995.

[57] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[58] Geoffrey I. Webb and Michael J. Pazzani. Adjusted probability naive Bayesian
induction. In Australian Joint Conference on Artificial Intelligence, pages 285-
295, 1998.

[59] Yiming Yang and Xin Liu. A re-examination of text categorization methods.
In Proceedings of the ACM SIGIR Conference on Research and Development in
Information Retrieval, 1999.

[60] Yiming Yang and J. 0. Pedersen. A comparitive study on feature selection in
text categorization. In Proceedings of the Fourteenth International Conference
on Machine Learning, 1997.

[61] Tong Zhang and Frank J. Oles. Text categorization based on regularized linear
classification methods. Information Retrieval, 4:5-31, 2001.

115


