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Abstract
In this thesis, I studied the stability of local complex'singularity exponents (lcse) for
holomorphic functions whose zero sets have only isolated singularities. For a given
holomorphic function f defined on a neighborhood of the origin in Cn, the lcse co(f) is
defined as the supremum of all positive real number A for which 1/flf[2 is integrable
on some neighborhood of the origin. It has been conjectured that co(f) should not
decrease if f is deformed small enough. Using J. Mather and S.S.T. Yau's result on the
classification of isolated hypersurface singularities, together with a well known result
on the stability of co(f) when f is deformed in a finite dimension base space, I proved
that if the zero set of f has only isolated singularity at the origin, then co(g) > co(f)
for g close enough to f with respect to the CO norm over a neighborhood of the
origin, thus gave a partial solution to the conjecture. Using the stability results, I
also computed the holomorphic invariant a(M) for some special Fano manifold M.

Thesis Supervisor: Gang Tian
Title: Simons Professor of Mathematics
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Chapter 1

Introduction

We work over the complex number field C. Given a complex manifold X and a

compact subset K C X, let f, ... , f, be holomorphic functions defined over an open

neighborhood of K. We define the local complex singularity exponent (lcse) of fi's

over K as:

cK(fl, , fn) := sup{ E R+ I ( fi)2A E Llc()}

When the complex space Z(f) defined by fi's is not smooth around K, CK(fl,. . . , fn)

can be a measurement on how singular Z(f) is around K.

1.1 Complex singular indexes and Bernstein-Sato

polynomials

Early research on local complex singularity exponent was focused on its connec-

tions with the asymptotic expansion of oscillatory integrations over Milnor fibers

and Bernstein-Sato polynomials for convergent power series.

Suppose f : (Xn+l, X) -+ (C, 0) is a germ of holomorphic function on a complex

manifold X of dimension n + 1. For t E C, denote Xt = f-l(t). Arnold considered

the oscillatory integration of the form

I

where o(t) C H, (Xt, Q) is a continuous section, and w is a section of Kx/c. He proved
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that when t - O, there is an asymptotic expansion

J(t)
w = E b(o,w, , k)t(logt)k

0,EQ,kEN

Then the complex singular index P(f) is defined as:

f3(f) := + inf{ a I b(a, w, , k) 0}

Connection between lcse c(f) and complex singular index /(f) is established by an

observation due to Varchenko [24] which states that

cX(f) = min (1, (f))

For more information on oscillatory integration and complex singular index, see [2].

Bernstein-Sato polynomial was introduced by Bernstein [3] for polynomials and

later generalized by Bj6rk [4] for convergent power series and formal power series.

Let f be a formal power series, then there is a nonzero ideal If c C[t] with the

property that b(t) E If, iff there exists a formal linear differential operator

(1.1)Pb,f = fs, ij t I
I,j

where f, j are also formal power series, such that

(1.2)

We call the unique monic generator of If as the Bernstein-Sato polynomial of f, and

denote it as bf(t).

Remark. The Equation 1.2 is just a formal equality, ft and ft+l are not real functions.

When f is polynomial or convergent power series, the fj,j's in Equation 1.1 are also

polynomials or convergent power series respectively.

Kashiwara [8] proved one of the most important results on Bernstein-Sato poly-

nomials.

12
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Theorem 1.1. Let 7 : X - U c C' be a proper map, and f' = f o . Let bf(t)

and bf/(t) be the Bernstein-Sato polynomials of f and f' respectively. Then bf(t) is a

divisor of bfr (t)bf, (t + 1) ... bf,(t + N) for N large enough.

If we choose a special 7r, such as the log resolution of the log pair (U, Z(f)) where

Z(f) is the divisor defined by f, then we can reduce the computation of bf(t) for

general f to the case when f is just monomial. Especially, we can show that all the

roots of bf (t) are negative rational numbers. Along this way, Lichtin [10] showed that

the largest root of bf(t) is exactly the negative of the lcse of f.

Based on these two interpretations of lcse, Varchenko [25] proved a stability result

for c(f) when f is deformed in a finite dimensional base space.

Theorem 1.2. Let X be a complex manifold and S be a reduced complex space. Let

f (x, s) be a holomorphic function on X x S. Then V (x0, so) G X x S, there exists a

Zariski neighborhood U of so in S, such that V s c U,

cx0(f xxs) > cx0(flxxso)

Later, this important results was reproved independently by Demailly and Kollar

in [6] and Phong and Sturm in [15] using L2 extension theorem. Musta~t [12] also

reproved this theorem using the method of jet scheme and motivic integration. We

will sketch their proof in Section 4.1

1.2 Kiihler-Einstein metrics and multiplier ideal

sheaves

One of the most important applications of lcse is Tian's work on the existence of

Kdihler-Einstein metric on complex manifolds with positive first Chern classes.

Let (M, g) be a compact Khler manifold with c(M) > 0, and G be a compact

13



subgroup of Aut(M, g) we define

PG(M, g) = { c C°°(M) is G-invariant, w9 + -/r1O > 0, sup = 0 }
M

In [20] Tian introduced following global holomorphic invariant

cG(M) = sup a c 3 Cc, > 0, s.t.
IM

e-00,n < C E , g) }

and proved a sufficient condition for the existence of Kihler-Einstein metric.

Theorem 1.3. If acG(M) > n/n + 1, then M admits a G-invariant Kdhler-Einstein

metric.

Tian [20] also computed aoG(M) when M is the Fermat hypersurface in CPGn+ of

degree n or n + 1. In these two cases, aG(M) > n/n + 1, therefore by Theorem 1.3

there exists Kdahler-Einstein metric on M.

Remark. If we compare the definition of a(M) and the definition of lcse in Section 2.1,

we can regard a(M) as the global complex singularity exponent of M.

In some applications, PG(M) is just too large. So Tian [21] considered following

approximations for P(M) and c(M).

1 k

= log(y [Isill) E PG(M)
1

am,k,G(M) := sup{a 3C, s.t.

I si E H0 (M, KMm ) and < si, Si >9= 6ij }

IM
e 2 'w s < C, V(p E Pm,k,G}

where II I is the metric for -mKx = Kx m induced by g and <, >g is the inner

product on H°(M, -mKM) also induced by g. He also proved a variation of Theo-

rem 1.3.

Proposition 1.4. Let M be a smooth Fano surface. If for some m

1
+ - < 3

am~l(M) O7,2(M)

14
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then there exists a Kdhler-Einstein metric on M.

In [22, 21], Tian computed the a invariants for smooth Fano surface which is

the blownup of CIP2 at k points in general position, with 3 k < 8. They either

satisfies the requirement in Theorem 1.3 or Proposition 1.4, hence there exists a

Kiihler-Einstein metric on such surface.

Nadel [13, 14] generalized the constructions above and introduced the concept of

multiplier ideal sheaf.

For a pluri-subharmonic (psh) function o defined on a complex manifold X, the

multiplier ideal sheaf 1Z(po) is the ideal sheaf of Ox whose stalk at point x is generated

by germs of functions f for which f 12 exp(-2o) is locally integrable around x. Nadel

proved that I(p) is a coherent ideal sheaf, and there is a Kodair type vanishing

theorem for multiplier ideal sheaves.

Theorem 1.5 (Nadel Vanishing Theorem). Let (X, w) be a compact Kdhler man-

ifold, and let F be a holomorphic line bundle with a singular hermitian metric e2'.

Assume that 2
100_ > Ew for some positive continuous function E on X. Then

Hq(X, O(Kx + F) X I(p)) = 0 for all q > 0

Nadel Vanishing Theorem has lots of important applications in higher dimension

complex geometry. For an introduction to multiplier ideal sheaf and its applications

based on an analytic approach, see [5].

1.3 Log canonical thresholds and Shokurov's con-

jectures

Local complex singularity exponent also appears as log canonical threshold in log

Minimal Model Program.

Let X be a normal algebraic variety with log canonical singularity. K C X is

a compact subset and D is an effective Q-Cartier divisor on X. The log canonical

threshold of D over K is defined as the supremum of all positive real number c for

which (X, cD) is log canonical in an open neighborhood of K, and it is denoted

15



as CK(X, D). In Chapter 3 we will show that when D is the divisor defined by a

holomorphic function f, CK(X, D) is exactly cK(f).

In log Minimal Model Program, we are often required to show that certain oper-

ation must stop after finitely many steps, such as flop or flip. A common strategy is

to assign those objects certain numerical invariants which will increase after we per-

form the operation. If we can show that the set of all possible value of the numerical

invariant satisfies the ACC condition, i.e. any non decreasing chain terminates, then

the operation must stop after finitely many steps. This is the case how we proved the

termination of flips for three folds using difficulty.

Based on this general philosophical principle, Shokurov[17] proposed many con-

jectures concerning the ACC property of certain invariants. The simplest one is

following:

Conjecture 1.6. Let S, be the set of all possible co(Cn, D), where D is an effective

divisor passing through the origin. Then Sn satisfies the ACC condition.

Remark. This conjecture has only been proved for n = 2 by Alexeev [1] using an

algebraic method. Phong and Sturm [16] also gave an analytic proof later.

1.4 Stability of local complex singularity exponent

By stability, we expect that for any given holomorphic function f, if g is close enough

to f in some suitable sense, then

cx(g) > cX(f) (1.3)

Though the simplicity of Equation 1.3, we do not know much about the stability of

lcse. Basically, there are four different methods to approach this problem.

The first approach is oscillatory integration and Bernstein-Sato polynomial. We've

already cited Theorem 1.2 by Varchenko on the stability of cx(f) if f is deformed in

a finite dimension base space. Noticed we can also define the local real singularity

exponent for real analytic function by the same way we define local complex singu-

larity exponent. And similar relation hold between local real singularity exponent

16



and oscillatory integration. However, there is no stability for local real singularity

exponents. Varchenko [23], gave an example of real analytic functions f(x, t) defined

on R3 x IR such that co(flR3x{o) while CO(f I3x{t}) -- when t < 0 and t - 0O.

The second method is using Newton Polyhedron associated with f. Using this

method, Tian [21] proved that for surface f 1/lf26 is continuous at f if 6 < cx(f).

Theorem 1.7. Let f be a holomorphic function defined on the unit ball B1 C C2 and

6 > 0 such that B 1/fl 26 is finite. Then for any r < 1 and fi E O9c2(B1), such that
limi,, fi = f uniformly on B1, we have

r ]B If| JBr - f I

The third approach is the L2 extension theorem due to Ohsawa-Takegoshi. Many

deep results was obtained as applications of L2 extension theorem. For example,

Demailly and Kollr [6] proved following sub-additive formula.

Theorem 1.8. Let f and g be holomorphic functions defined on a neighborhood of

the origin in Cn, then

co(f + g) < co(f) + co(g)

Theorem 1.2 was also reproved by L2 extension method in [6]. In fact, what

Demailly and Kollir proved is more than just the stability, they also got an effective

bound for the integrals.

Theorem 1.9. Let f (x, s) be a holomorphic function defined on X x S where X is

a complex manifold and S is a reduced complex space. Let K be a compact subset of

X. Then for any so c S and c < cK(fIlx{S(}), there is an open neighborhood U(c) of
K and a constant M(c) depends on c, such that

Iu() f(x ,) 2 dV(x) < M(c)

for s in a neighborhood of so in S.

Combining Theorem 1.8 and Theorem 1.9, Demailly and Kollar proved a weaker

stability result.

17



Theorem 1.10. Let f be a holomorphic function defined on a complex manifold X.

K is a compact subset of X. Then for every open set L containing K in its interior
and every £ > 0, there is > O, such that for holomorphic function g defined on L,

sup 19g- fl < 6 CK() > CK(f) - .
L

Following stability conjecture was also proposed by Demailly and Kolldr.

Conjecture 1.11 (Stability Conjecture). Notation as in Theorem 1.10. For every
nonzero holomorphic function f, there exists 6 = (f, K, L) > O, such that

sup g- fl < CK() CK(f)
L

It is easy to see that Stability Conjecture is implied by Conjecture 1.6 and Theo-

rem 1.10. By the remark after Conjecture 1.6, since Conjecture 1.6 is true for surfaces,

so the Stability Conjecture is also true for surfaces.

Phong and Sturm [15] proved Theorem 1.2 by L 2 extension method too. In the

same paper, using local cluster-scale, they also developed a sharp algebraic estimate

for the integral of the form fB g(z)E/If(z)I6, where both f(z) and g(z) are polyno-

mials of one variable with fixed degree. Let A be the affine space of all polynomials

g and f with fixed degree, they showed that their is a stratification of A by algebraic

subvarieties depends only on and 6, i.e.

A= Uo D U D ... D UN = N

where all UA's are algebraic subvarieties in A, and if (f, g) E UA \ UA+1, then there is

an estimate

I AA (b, ') l I g IgI(z)lA, (b, b')l
CA IB D(b, b)I <, < D IBA(b, b') '

A(bb)l'J Br if(z) 16 (

where (b, b') is the coefficients of f and g, and polynomials Ax, BA and the real positive

numbers CA, DA, ' and ' depend only on E and 6. Using this algebraic estimate,

Phong and Sturm reproved and generalized some known results. In [15] they reproved

Theorem 1.7, and generalized it to the case n = 3 with some extra conditions by

induction on dimension; in [16], they reproved Conjecture 1.6 and Conjecture 1.11

for surfaces simultaneously.

18
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The fourth approach is jet scheme and motivic integration.

For every scheme Y of finite type over C and every m C N, the m-th jet scheme

for Y is a scheme Ym characterized by

Hom(Spec(A), Y,) = Hom(Spec(A[t]/(tm+l)), Y)

for every C-algebra A. Let Pm,Y be the canonical projection from Y, to Y.

Musta~t [12] proved a formula which compute log canonical threshold by dimen-

sions of certain jet schemes.

Theorem 1.12. Let (X, Y) be a (log) pair, with Z C X an nonempty closed subset.

Let dimz Ym be the dimension of Ym along Ym n p9 (Z). If X is smooth, then

dimz Ym
cz(X, Y) = dim X - sup

m>O m+ 1

Using Theorem 1.12, Mustata reproved Theorem 1.2. (a theorem which has been

reproved over and over again by so many different ways.)

1.5 Main Results

In this thesis, We will prove following two stability results.

Main Theorem 1. Given holomorphic functions fl,..., fN defined on a neighbor-

hood U of the origin in Cn such that fi(O) = O. If dimc O(Cn,o/(fl, ., fN) is finite,

then there exists E > 0, such that for any holomorphic functions g,..., gN defined on

U,

sup E lgi- fil < Co(g1,...,N) _> CO(f .*, fN)
U i

where £ depends only on fi 's and U.

Main Theorem 2. Let f be a holomorphic function defined on a neighborhood U of

the origin in Cn. If the complex space Z(f) defined by f has only isolated singularity

at the origin, then there exists > 0, such that for any holomorphic function g defined

on U, we have

sup 1 g- f < cK() > CK(f)
U

19



where depends only on U and f.

We will also use the stability result to recompute a(M) when M is the blownup

of CI n. Especially, we will show that when M is the blownup of C n at one points,

then am,k(M) > min(1/2, 2/n + 1), and when M is the blownup of CIpn at n points,

then am,k(M) > 1/(n + 1), and when M is the blownup of CIP' at n + 1 points, then

Cm,k(M) > 3/(n + 1). Though Tian already computed ca(M) for Fano surface M in
more general cases, our computation here is in the hope to try to simplify some of

his works.

The rest of this thesis is organized as follows. In Chapter 2, we will introduce the

analytic side of the theory of local complex singularity exponents and multiplier ideal

sheaves. In Chapter 3, log canonical singularities and log canonical thresholds will be

introduced. The equivalence of local complex singularity exponent and log canonical

threshold will also be established in Chapter 3. In Chapter 4, we will sketch the proof

of stability over finite dimension base space and then prove the two main theorems.

In Chapter 5, we will compute a,,k(M) for some special smooth Fano manifolds.

20
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Chapter 2

Local Complex Singularity
Exponents

This chapter presents the basic theory of local complex singularity exponents and

multiplier ideal sheaves by analytic approach.

2.1 Basic definitions and properties

Let X be a complex manifold with a fixed volume form dVx so that we can integrate

functions on X; let K be a compact subset of X and W be a pluri-subharmonic (psh)

function on a neighborhood of K.

Definition 2.1. Notations as above, we define the local complex singularity exponent

(Icse) of W over K as:

CK() := sup { A > 0 exp(-2A) Loc(K, dVx)}

Remark. Even though we fixes a voluming form dVx on X in the definition above,

the value of CK(W) is actually independent of the volume form we choose. Since for

any two different continuous volume forms dV1 and dV2, there exist two positive real

numbers M and N, such that

MdV 1< dV2 < NdV1

holds on a neighborhood U of K, hence

exp(-2A)dV < o j- exp(-2A)dV < 
'U

21



So CK(g) is independent of the choice of volume form.

Since K is compact, we have following simple observation:

CK(g) = inf { cx(p) I x E K} (2.1)

In fact, we will show that the infimum in Equation 2.1 is actually a minimal. This

observation reduces our computation for general K to the case when K is just a single

point.

There are some variations of Definition 2.1.

1. Let fl, f2,. . ., fN be holomorphic functions defined on a neighborhood of K.

For real number q > 0, we define

CK((l, ... , fN) q ) = CK(q log(Ifi + - + fNI) )

2. Let I be a coherent ideal sheaf. If fi, f2,. . ., fN generate I around x E X, then

we define

Cx(2q) := Cx(q log(Ifl + + fN)) (2.2)

For general compact set K, we use equation 2.1 to define

CK(I q ) = inf {cx(2q) lx E K}

Suppose that {fA} and {gj} are two different sets of generators around x. Since

{fi} generate I, so

9j = E hj,i fi
i

for some hj,i E Ox, hence C > 0, such that

E gjl3 < C f

in a neighborhood of x. Therefore

I (7 1l

(E gjl)2qA
1

- C2qA

22
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So

cx(qlog( lgjl)) c(qlog( Ifil))j i
Repeat the argument for {gj), we have

c( q log(E Ifil)) = Cx( log( Igl) )
i j

So c(I q) is well defined by Equation 2.2.

3. Let (L, h) be a Hermitian line bundle with positive (in the current sense) cur-

vature form. Choosing a local trivialization, we can write h = exp(-2) with

p being a psh function. Then we define

CK(h) := CK()

Noticed that if we change the trivialization, p will be changed to p - q with q

being a locally bounded function, hence CK(O) = CK(P + 0). So cK(h) is well

defined.

4. Let L be a line bundle, and sl,..., SN be sections of L. After choosing a local

trivialization, si's correspond to holomorphic functions fi,..., fN, so we define

CK( (Si, * , SN)q ) := CK( (fl, .. , fN) q)

Easy to check that this is well defined. Another way to define cK( (Sl,..., SN) q )

is to introduce a Hermitian metric h for the line bundle L first, and then define

N

CK( (S1,..., SN) q ) = CK( q log(- Silh))
1

Easy to check that these two definitions are equivalent.

Remark. In all these definitions, we assume that X is a smooth manifold. In fact,

X can be a reduced complex space with singularity. Because the singularity set of

X is is a measure zero set which will not affect the integration behavior, we can go

through all the definitions above without any problem.

We can reduce the computation of Cx(fl,. .. , fN) to c(f) for just one function f.

23



Proposition 2.2. Let fl, . . , fN be holomorphic functions defined around x such that

fi(x) = O. Then for any nonzero a = (,... , aN) E CN, we have

N

cx(Z- aifi) < min {cx(fl,..., fN), 1}

and equality hold for almost all a except a measure zero set.

Proof. Following the argument of [6]. The inequality is trivial, because

N

oifil ( Ii)( Ifil)
i=1

so

I 1

(Z1 f I) 2 1
< E lai)26

2| i 1 ei fi 

So cx( E aifi) c(fl,. .., fN). Also since E aifi(x) = 0, so c( o aifi) 
the other hand, for any c < 1, there is Ac > 0 depends only on c such that

I= dV(a)

1=1= I Ei CifiI 2c ( E Ifi)2

Hence if c < min {Cx(fi,..., fN), 1},

dV(c) 1 dV(z) = Ac
L( 1 f dV(z) < o(E Ifil )2c

So for a outside of measure zero set M, fU 1/I E aifi 2 is finite. Let c, be a sequence

approach to cx(fl,.. ., fN), then M = U,M,, is the union of countable many measure

zero sets, which is also measure zero. And for a E CN \ M, we have

cx( Zacifi) = min {cx(fl,..., fN), 1}

Proposition 2.3. Let cp, 'I be psh functions on X, and I, J be coherent ideals on X,

K C X be a compact set.

1. The function x -* cx(o) is lower semi-continuous with respect to the holomor-

phic Zariski topology;

2. If y? < , then cK () < cK(12/);

24
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3. CK(q- 9) = 1CK() and
CK(q) = 1CK);

4. Let Z(ZEI) be the germ of the subscheme defined by I. If Z(IZ) contains a

p-codimensional irreducible component, then cx() < p;

5. If I is the ideal sheaf of a p-codimensional subvariety Y C X, then c(ZI) = p

for every smooth point x of Y;

6. Define the multiplicity multx(I) of I at x to be the maximal of all integers k

such that I C m , where mx is the maximal ideal corresponding to x. Then

1 rT

-t () < c ( < ut ()

where n is the dimension of X.

Proof. See Demailly and Kollhr [6]

(1) Fix a relatively compact subset B CC X. For c > 0, considering the Hilbert

Space 7tco of the holomorphic functions with finite norm:

l flkc := j If 2 e-2 cp dVx

By H6rmander's L2 estimates, whenever e-2 cp

exists f C 7-t,,, such that f(x) = 1 . So

{ x E B I c(o) < co} n B =

and this completes the proof of (1).

(2) and (3) are trivial.

(4) and (5) are the consequences of the fact

(6) is essentially a result due to Skoda [18].

in more detail in Proposition 4.4.

is locally integrable around x there

n
fEUc>co'HrtcP

f-l(0)

that f 1/(Zi,<p ziz)2 c < oc iff c < p.

We will discuss 1/mult(ZI) < cx(I)

D

Remark. By property (1), it is easy to see that in equation (2.1), the infimum can be

attained, so it is in fact a minimal.

Example. Some examples on the computation of cx(f)
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1. If X is a smooth curve, then Ox,x is a DVR, hence all the ideal of Ox,x must be
of the form mN for some N E N. By Property (6) in Proposition (2.3) above,
we know that

1cx(mN)= 

2. Let X be C', with f = z z2. z . Direct computation gives

co(f) = min { -i-=1, ,.n}

Let's concentrate on the computation of co(f) for f E Ocn,o. The computation
becomes really involved as n increases. When n = 1, we know that co(f) = 1/multof.
When n = 2, the computation is closely related to the Newton Polyhedron of f.

Definition 2.4. Given a local coordinate z = (z1,.. ., Z n ) of Cn. Let f be a holomor-
phic function defined on a neighborhood of the origin, we define N(f, z) the Newton
Polyhedron of f with respect to z, to be the convex hull of the set {a C n O}
in R, where f, is the coefficient of z term in the Taylor expansion of f with respect
to z. Let the line {z1 = . = Zn) intersects N(f, z) at point (r,..., r), we call r the
remotedness of N(f, z), and denoted it as r(N(f, z)).

Easy to prove that co(f) < 1/r(N(f, z)) and strict inequality does happen some-
times. However Tian [21] proved that if n = 2 equality holds after taking a limit.

Proposition 2.5. Let f be a holomorphic function defined on a neighborhood of the
origin in C2, then there exist a sequence of coordinate systems z = (z, z2), such
that

r(N(f,z")) < r(N(f, z)) if P/< y

and

co(f) = lim r(N(f, z) - 1.
3-0oo

Proof. see Tian [21]. 0

In higher dimensions, the most efficient way to compute c(f) is using resolution
of singularity whose existence is due to Hironaka when the base field is C.
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Theorem 2.6 (Hironaka [7]). Let (X, x) be a germ of reduced complex space such

that Kx is Q-Cartier. Let I C OX,x be an ideal sheaf. Then there exists a proper

birational map 7r : Y - X, such that

1. : Y \ 7r-(supp() U Sing(X)) -- X \ (supp(I) U Sing(X)) is isomorphism,

where Sing(X) is the singular set of X;

2. Y is smooth and Ky/x = Ky - 7*KX = >i biFi where Fi 's are distinct irre-

ducible divisors on Y;

3. 7r*(I) = Iy = (Oy(-E) with E aiFi, where ai > 0;

4. i F, is a simple normal crossing (snc) divisor whose support is contained in

Ex(7r) U 7r (supp(I)).

Any proper birational map satisfying the condition above is called as log resolution of

(X, I) or (X, Z(Z)).

Proposition 2.7. Notation as in Theorem 2.6, then we have

cx(Zq ) = min { 1 x E CTr(Fi)} (2.3)
qaj

Especially, we have cx(I) E Q.

Proof. Let { fl,... , fN} be a set of generators of I, and U be an open neighborhood

of x on which all fj's are defined. Since 7r is proper, -l(x) is a compact subset.

Cover 7r-1 (x) with finitely many open set U0 such that over each Us, Oy(-Fi) is

generated by h,, i C Oy(U,). Shrink both U and Us if necessary, we may assume that

U = U,7(U 0). By the formula of change of variables, we have

j If -2AdVx f f l If o v]-2AlJ 2dVy

where J, is the Jacobian of 7r. So

jIf -2AdVx < = f j 01-r-2 J 12dV < oc Va
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For two functions F and G, we denote F G, if both F/G and G/F are bounded

by positive constants. Since Kylx = E biFi, we have

IJ 11 Ih ,l bi'

Also by ZO = Oy (- E aiFi), we have

If o rI Ih, i Iai

Therefore

If o 7l- l2 AJ l2 dVy L/ I h,, l-2(aiA-bi)dVWy

Now that E F is snc divisor, i.e. 3 I, such that { h, I i E I, } can be extended to

be a coordinated system on U,, and Ih,,jl > 0 for j I,. Hence

/ IhI hi- 2(aiA-b)dVy < o C I }

Noticed that U, I = { i I x r(Fi) } hence

If l-2XdVx < 00 ---- A < min bi + 1
ai

I x C (Fi) }

Therefore bi + 
qai I x G 7(Fi)}

D

Remark. By the proof above, we can see that the set

{ A I(fll +. + IfNI)-2A c Loc}

is in fact an open set. So whenever

L IfdV < oo

we can always find E > O, such that after shrink U if necessary, we have

f12(A+E) d
< 00oo

28

on U

on U,

Luc

_�iil�_ ··�__

o X~~min( bi + 4==> /\ <min ~i 

Cxl,) = CIf IqI = in(



Example. Let (X, x) = (C2 , 0) and f(x, y) = x2 + y3 C O c2,, successive blowup over

smooth point 3 times, we can get a proper birational map 7r: Y -- X which resolve

the singularity of I = (f), and

Ky/x = E1 + 2E2 + 4E3 and 7r-1(f) = Oy(-(E + 2E1 + 3E2 + 6E3))

where Ei's are the divisors correspond to the blowup, and E is the strict transform
of Z(f). Hence

Co(X2 + y3) = 5/6.

Similarly, one can get following result which is known for a long time.

co(xM + y) = min { 1,
1 1I

m7 no

Another way to compute cx(f) is using weighted blowup.

Proposition 2.8. Let f C On,o0. Assign integral weights w(zi) to variable zi, and

let w(f) be the weighted multiplicity of f, that is, the lowest weight of the monomials

occurring in f's Taylor expansion. Then s

co(f) < (zi)
w(f)

Let f, be the weighted homogeneous leading term of f. Assume that

Z(f (Z 1 ,. .. ZWZn)) C CP n- 1 is smooth

Then

c (f min { 1 c (zi) }

Proof. For proof, see [9] O

Remark. In fact, the remotedness of the Newton Polyhedron is given by:

r(N(f, z)) rin W(f)
w E (zi)
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Corollary 2.9. For a = (al,... , Con) E N n, we have

co(xC + ...+ n) = min { 1, E-}
i

2.2 Multiplier ideal sheaves

Let 9o be a psh function defined on a complex manifold X.

Definition 2.10. The multiplier ideal sheaf associated with cp is defined as the ideal

sheaf IZ() C Ox, such that for any x E X, the germ Z(p)x consists of germs of

holomorphic functions f E Ox,x for which If 12 exp(-2o) is locally integrable around

x.

Similarly we can define Z(f q) and I(Jq) for holomorphic function f, coherent

ideal sheaf J and real positive number q.

Multiplier ideal sheaf is a very convenient notation by which

rems in complex analysis can be expressed in a quite nice way.

Skoda's important results in [18] can be expressed as:

Theorem 2.11. Let J be a coherent ideal sheaf on X and dim

s > n, we have

many classical theo-

For example, one of

X = n, then for any

I(jS) c A(S-1)

Multiplier ideal sheaf is indeed a coherent sheaf, an algebraic object in some sense,

even though p can be pure transcendental.

Theorem 2.12. For any psh function qp, I(WP) is a coherent ideal sheaf.

Proof. See Nadel [13, 14] [O

The power of multiplier ideal sheaf comes from two results about it: one is Nadel

Vanishing Theorem which is cited in Chapter 1 as Theorem 1.5; the other is L2

extension theorem due to Ohsawa and Takegoshi.
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Theorem 2.13 (Ohsawa-Takegoshi). Let Q C C be a bounded pseudo-convex
domain, and H be a linear subspace defined by z =... = zp = O. Then there exists

a constant C,Q depending only on n and the diameter of Q, such that for every psh
function cp on Q and f E O(H n Q) with fHn f 12 exp(-2)dVH < oo, there exists
an extension F E 0(Q) of f with

|IF2exp(-2p)dVcn < C,Q j If 2 exp(-2p )dVH
nQ

where dVL and dVcn are the Lebesgue volume in L and Cn respectively.

A simple but important application of this L2 extension theorem is following

corollary.

Corollary 2.14. Let Y be a submanifold of X, then for any psh function p, we have

Z(plY) C ZI()ly

Especially, we have

cx(i < Cx(~)

Proof. Let x E Y, and f E (ply), let Q be a pseudo-convex domain in X which

contains x, shrink Q if necessary, we have

/If 12 exp(-2p)dVy < 00
nY

By the L2 extension theorem, there exists F E (Q), such that

IF l 2 exp(-2W)dVx < C fl 2 exp(-2)dV < 00

i.e. F GE ()x and Fly = f, so f E T(cp)x. O

Using this fact, it is easy to prove the stability of lcse at some special functions.
For example, let f(z) = z, then take L to be line Z2 = ... = Z, = 0, then co(f) =
co(f L) = 1/d. Then fix an open neighborhood U of the origin, there is > 0, such
that for any holomorphic function g defined on U,

sup Ig- f < sup g- f < C(g) _ co(g L) > CO(fL) = co(f)
U LnU

31



Using the notation of multiplier ideal sheaf, Theorem 1.10 can be interpreted as

a stability result for multiplier ideal sheaves.

Proposition 2.15. Let f E O,x with X smooth and x E X.

there exists an open neighborhood U of x and E > O, such that

function defined over U,

If 1 E (fC)x, then
for any holomorphic

sup g- f < I E 1 (gC)x
U

Inspired by this results, we propose following conjecture.

Conjecture 2.16. Let fl,... fN be holomorphic functions defined around x E X. If

h E Z((fl,..., fN)c)z, then there exists an open neighborhood U of x and E > O, such

that for any holomorphic functions 1g,..., gN defined over U,

sup E gi-fil < h E ((91,,gN)C)x
U i
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Chapter 3

Log canonical thresholds

When 9p has only algebraic singularity, we can also define cx(9) by algebraic method.
By algebraic singularity, we mean that o can be written locally as

1
(P = -log (fll + + fNI)

q

where q is a real number and fi's are holomorphic functions. In this chapter, we
will present the theory of log canonical thresholds, the algebraic counterpart of local

complex singularity exponents.

3.1 Log canonical singularities

Definition 3.1. A log pair (X, D) is a pair consisting of a normal variety X and a

Q-divisor D = Z diDi, where Di are distinct irreducible components. In this thesis,

we also require that Kx is Q-Cartier, so that it can be pulled back by morphism to

X.

Let (X, D) be a log pair and v be an algebraic valuation on the function field K(X).

By algebraic, we mean that the transcendental degree of R,/m, over C is dim X - 1,

where (Rd, m,) is the DVR of k(X) corresponding to v. Zariski showed that every

algebraic valuation can be realized geometrically as the valuation of certain divisor
on a variety Y birational to X. After performing some blownup on Y if necessary,
we may assume that Y is smooth and there is a proper birational map 7r: Y --+ X.
Let E be the divisor corresponds to v, then

Ky = 7r*(Kx + D) + E a(Ei, X, D)Ei (3.1)
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where Ei's are distinct divisors on Y and their support is contained in the exceptional

divisor and 7r-(D).

Definition 3.2. Notation as above, if E = Ei for some i, then we define the discrep-

ancy of E or v with respect to (X, D) as a(E, X, D) in Equation 3.1, otherwise, we

define the discrepancy of E as 0.

Definition 3.3. A log pair (X, D) has only log canonical singularities if for any

algebraic valuation v, the corresponding discrepancy a(v, X, D) > -1.

Remark. The importance of log canonical singularity is that it is the largest category

in which log Minimal Model Program is possible.

Proposition 3.4. (X, D) has only log canonical singularity iff for any log resolution 1

7r :Y -- (X, D), we have

Ky = r*(Kx + D) + biEi

with bi -1, and Ei's are distinct irreducible reduced divisors whose support is

contained in Ex(r) U r-l(D).

Proof. = part is obviously. For 4= part, let v be an algebraic valuation of k(X) which

can be realized as E C Z. After blownup if necessary, we may also assume that there

exists a map 7 : Z -- Y, such that r o 7 is also a log resolution of (X, D). On Z, we

have

Kz = *Ky + ajF

= r77**(Kx + D) + r7*(Z biEi) + E ajF

= (r 7)*(KX- +D) + E bi-jEi+ cjFj

where E Fj are the exceptional divisor of T7. Since Y is smooth and Z Ei is snc, we

know that aj + 1 > #{ i r(Fj) 0n Ei 0}. Therefore

j = aj + E bi
{ill(Fj )nEi•0}

> -1

lsee Theorem 2.6 for the definition of log resolution
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So we have that

min{bi} >-1 min{bi, cj } -1

Therefore, the discrepancy of E must be greater or equal to -1, hence (X, D) has

only local canonical singularity. O

3.2 Log canonical thresholds

Definition 3.5. Let (X, D) be a log pair, such that (X, 0) has only log canonical

singularity. Let Z C X be a closed subset. The log canonical threshold of (X, D)

along Z is defined as

cz(X, D) := sup {c > 0 (X, cD) is log canonical in a neighborhood of Z}

Proposition 3.6. Let (X, D) be a log pair and Z is a closed subset of X.
7: Y -, X be a log resolution of (X, D) such that

ir*(D) = EaiF

and

Kyx Ky - 7*Kx = Z biFi

where Fi's are distinct irreducible reduced divisors whose support is contained in
Ex(fr) U -1(D). We have

cz(X, qD)= min { i + 
I qai

Proof. From the condition in the proposition, we get

So by Proposition 3.4, (X, cqD) is log canonical iff

bi - cqai > -1

that is
bi + c<

qai

Vi

Vi
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So

cz(X, qD) = min bi + 1 I r(Fi)n Z 0 }

Remark. In general, if T is a subscheme of X, using log resolution of (X, T), we can

define the discrepancy of algebraic valuation with respect to (X, T) by the same way

as what we did in Definition 3.2. And Proposition 3.6 go through word by word.

Proposition 3.7. Let X be a smooth manifold and Y be the complex space defined

by holomorphic functions fl,..., fN. Then

Cx( (fop th, fN)f) = Cx(X, qY)

Proof. Compare the formulas in Proposition 2.7 and Proposition 3.6. ]
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Chapter 4

Stabilities

In this chapter, we will first sketch a proof of Theorem 1.2 using both L2 extension

theorem and jet scheme, then we present the proof of the two Main Theorems stated

in Chapter 1.

4.1 Stability over finite dimension base space

4.1.1 Analytic approach

The proof in this subsection is due to Demailly and Kollhr [6].

Proposition 4.1. Let Q C Cn and S C Cp be bounded open sets. Let (p(z, s) be a
psh function on Q x S which is Holder continuous, i.e. there exists a > 0 such that

I(p(Z1, 1) - p(Z2 , 2)1 < (Z1 - Z2 1 + IS1 - 521)

Let (zo, so) E Q2 x S be a fixed point, then there exists an open neighborhood U of zo

in Q2, such that for any c < CzO(qcQX{so}), there is constant M(c) with

exp(-2c~o(z, s))dV(z) < M(c)

for s in a neighborhood of so.

Proof. Shrink Q if necessary, we may assume that

4 exp (- 2cp(z, so))dV(z) < oo
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Let k be a positive integer, and set

k,s(z, t) = 20(z, s + (kt)k(so - s)) on Q x B

where B E C is the unit disk. Clearly, when s is close enough to so, the function Ok,s

is well defined. Noticed that Ok,s(z, l/k) = (p(z, so), so by the L2 extension theorem,

there exists Fk,s on Q x B such that Fk,s(z, l/k) = 1 and

|/x [Fk,s(z, t)12exp (-Ok,(z, t)) dV(z)dV(t) < C1 (4.1)
QxB

Noticed by Equation 4.1, we can also bound the derivative of Fk,s, and hence by

Fk,s(x, l/k) = 1, it follows that when k is large enough, there exists a neighborhood

U of z0 in Q and B(O, ) of the origin in C, such that Fk,, > 1/2 on U x B(O, ).

Change of variable, we get

JIU(,(k exp( zdV(z)dV(r) 2

xB(O,(ke)k) exp (2cp(z, s + r(so - s))) rl 2 (1-l/k)

By the Holder continuity, we have

exp (2c9(z, s + r(s - so))) < C3 ( exp (2co(z, s)) + rl12ca )

Therefore

ify dV~z~dVrdV(z)dV(r) < C 4

xB(O,(kE)k) ( exp(2cp(z, s)) + rl2ca) r12 (1-l/k)

Now integral over the disk of IrlI < C5 exp(o(z, s)), we get

Jx dV(z)

J exp (2(c - l/ka)W(z, s)) -

Since c- can be arbitrarily close to c, so we might take a larger c at the beginning,

and then take k large enough, and this completes the proof. O

By Proposition 4.1, the function s - czo(p(-, s)) is lower semi-continuous for

a Holder continuous psh function p. However, in order to get stability, we must

assume that p has only algebraic singularity. For simplicity, let's assume that p =

log(lfl). Using resolution of singularity over families, and Proposition 2.7, we can

show that there is a stratification of S by finite many Sx, where Sx is an open subset
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of closed subspace of S, and Cx(f xxs) depends on the stratum containing s. Then

Proposition 4.1 implies the stability of lcse over finite dimension base space.

4.1.2 Jet scheme approach

The proof in the subsection is due to Musta~t [12].

Proposition 4.2. Let r : W -- S be a family of schemes and a : S -- W be a section

of 7r. For every m > 1, the function

f(s) = dim(ps) ( (s))

is upper semi-continuous on the set of closed points of S.

Proof. The basic ideal is to show that the family s (pW)-l(a(s)) is the affine cone

of some projective family over S, hence by the semi-continuity theorem for projective

family, we get the results. El

Suppose (X, Y) is a pair with Y being a subscheme of X. Using Motivic integra-

tion, Mustata proved following theorem.

Theorem 4.3. If X is smooth and Y is a closed subscheme, then we have

dim Ymc(X, Y) = dim X - sup
m>O m + 1

If 7r: X (X, Y) is a log resolution with ir-1(Y) = Hi aiEi where Ei 's are distinct

irreducible divisors on X, then

c(X, Y) = dim X- dimYM

where M is any positive integer such that ai (M + 1) for all i.

Now let X be a smooth variety, Y C X x S be a family of subschemes in X. By

induction on the dimension of S, we can show that for any s S, there exists a log

resolution of (X, Ys) for which the corresponding ai's are bounded. Hence there exists

M divisible enough, such that Vs E S

c(X, Y) = dim X- diMM+I
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Therefore by the Proposition 4.2, c(X, Ys) is lower semi-continuous. This gives an-

other proof of Theorem 1.2.

4.2 Limit Method

In this section, we will give an example showing how the stability can be utilized to

get some useful information about lcse. This method will be used over and over again

in Chapter 5.

Proposition 4.4. Let f be a holomorphic function defined on an open neighborhood

of the origin in Cn. Suppose that multo(f) = d, then

co(f)> --d

Proof. Change the coordinate system from (zl,..., Zn) to ( 1, Z2 + Zl, ... , Zn + ZI) if

necessary, we may assume that the Taylor expansion of f is of the form zd + . Now

consider the the family of germs of holomorphic function defined by

F(z, t) := 1f(tzl, t22, , t2Zn)

When t # 0, the germ of F(., t) at the origin is equivalent to the germ of f, so

co(F(.,t)) = co(f). On the other hand, F(z, 0) = zd, so co(F(, 0)) = 1/id. Therefore

by stability over finite dimension base space, we have co(f) > co(F(., 0)) = 1/id. l

Remark. This proposition is just the first half of property (6) in Proposition 2.3

4.3 A Lemma

In this section, we will prove following lemma.

Lemma 4.5. Fix a coordinate system (Z1 ,..., Zn) for Cn. Let fl,... ,fN E Ocn,o

such that dime Ocn,o/(fl,..., fN) < oc. Then there exists M E N, such that for any

open neighborhood U of the origin on which fi 's are defined, there is E(U) > O, such

that for any holomorphic functions g = {g1,..., gN} defined on U, we have

N

sup Igi -fi < (U) ZG (91, ,N) j=1, *,n
U i=l

where (gl,..., gN) is the ideal generated by gl,..., gN in OCn o.
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Proof. Let R = Ocn,0. Since dime R/(f l ,..., fN) < o, for j = 1,..., n there exists
Mj C N, such that zMj E (fi, ... , fN). Take

n

M= JM
j=1

Set I = (zf+l M+l M+l ) and R = R/I. Denote f = {fl,..., fN} the image

of f = {fil,..., fN} under the map R - R/I. Then

Z E (fl'--, fN) C R

Therefore

dimc R/(fl,..., fN) < M

For any g = {gj, -N., gNE R , there is a canonical R-linear map

N copies

with
N

99(g): (hl, ., hN) ~ hiyi
i=l

For an algebraic family of C-linear map between two fixed vector spaces, the dimension

of the cokernel is an upper semi-continuous function. Hence, there exists a Zariski

neighborhood V of f in R ,such that V9 E V,

dime R/(gY,.. ., gN) < dimc R/(fl,... , fNv) < M

Claim. For any g E V, and any j = 1,..., n

Proof of the Claim For g E V, since

dime R/(g ,..., N) < M

Fix j E {1,... , n}, consider 1, zj, z,. .. , zjM. They can not be C-linear independent

in R/(g, ... , gN), i.e. there are bj k C C, k = 0,... , M, such that not all of bj, k are
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zeros and
M

k=O

Take ko to be the minimum of k for which bj, k 0, then

M

S bj, k z = z°o(bj k + zj(...)) E (, .. N) (4.2)
k=O

Since ZjM+k = 0 in R, so the bj,ko + zj( -) term in Equation 4.2 is an invertible
element in R. Hence z ° E (1,. . ., N) and therefore ZjM E (,..., -).

Take U to by any open neighborhood of the origin on which fi's are defined, then

by Cauchy Integral Formula, there exists £(U) > 0, such that for any holomorphic

functions g = {gl,..9, gvN} defined on U, we have

sup E gfi -fA < E = {91, N E 
U

Hence, by the claim above, zjM E (91 .. , N), i.e. there exists hj,i in R, such that

zM = hji
i

Lifting hj,i to hj,i G R, we can find bj,k E R, such that

N n

ZM - hj, +i + E bj,k ZM +1

i=l k=l

i.e.

1 - Zl bl , -z 2b1, 2 -znbl n z \ hl,l h, 2 ... , h,N 91

-zlb 2 ,1 1 - 2b2,2 -n b 2,n Z M h2,1 h2,2 .·., h2 ,N 92

-Zbn,l -z2bn,2 -... b, znM hj, hj, nN 9N
(4.3)

Noticed that the determinant of the most left matrix in Equation 4.3 is an invertible

element in R, therefor we can multiple the inverse of it to both side of the equation

above, hence get an expression which express z ~ as R-linear combination of gi's, and

this completes the proof. O
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4.4 Proof of Main Theorems

Main Theorem 1 is just a direct application of Lemma 4.5 and Theorem 1.2.

Main Theorem 1. Given holomorphic functions fl, . . , fN defined on an open neigh-
borhood U of the origin in C such that fi(O) = O. If dimc Ocn,o/(fl,... , fN) is finite,
then there exists E > 0, such that for any holomorphic functions gl, .., gN defined on

U,

supE g - fil <
U -i

where depends only on fi 's and U.

Proof. By the proof of Lemma 4.5, we know that there exists an integer M E N, and

a positive real number 6, such that for any holomorphic functions g = (g,... , gN)

defined on U,
N

sup E gi - fi < 
i=l

Therefore

(91g, , 9N) = (Z, .. , Zn', (91)<nM, .*, (9N)<nM)'' ~ ~~ '' ''' 1'' '

where for holomorphic function F, F<d is the degree < d part in the Taylor expansion

of F with respect to the coordinate system {z1,... . , Zn. So

cO(91, . , gN) = CO(Zi, . I * ,* (1)_nM, (gN)<nM )

Thus we reduce the general g to g<nM which is in a finite dimension space.

Theorem 1.2, there exists a positive real number , such that

So by

n

supE Ii - fi < 
U ,

O

Before we proceed to the proof of Main Theorem 2, let's review the classifica-

tion theorem on hypersurface in C' with only isolated singularities, a result due to

J. Mather and S.S.T. Yau.

Definition 4.6. Two germs of holomorphic functions f and g on (Cn, 0) such that

f (0) = g(0) = 0 are equivalent iff there exist germs of holomorphic automorphisms
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H and h for (Cn, 0) and (C, 0) respectively, such that following diagram commute,

(( n , o) f ~ (I o)

I H J h

(c n, 0) 9 ( 0)

Proposition 4.7. If f and g are equivalent, then co(f) = co(g).

Let f C R = Ocn,o with f(0) = 0. Choose a coordinate system z = {zl,... , n}

for C" , define

of
A(f)= R/(f, f i 1,..,n),9zi

afB(f) = R/(f,z-- [ ij = I1,..., n)
azi

It is easy to see that for different choice of coordinate systems, the corresponding

A(f) and B(f) are isomorphic as rings. If the hypersurface defined by f has only

isolated singularity at the origin, then both dimc A(f) and dimc B(f) are finite.

J. Mather and S.S.T. Yau [11] classified of the germs of hypersurface Z(f) with

isolated singularities using A(f) and B(f).

Theorem 4.8. Let f, g C OCn,O such that f(O) = g(O) = O. If the hypersurfaces Z(f)

and Z(g) defined by f and g respectively have only isolated singularities at the origin,

then the following are equivalent.

1. f and g are equivalent as germs of holomorphic functions on (Cn, 0);

2. A(f) is isomorphic to A(g);

3. B(f) is isomorphic to B(g).

Now, let's start the proof of Main Theorem 2.

Main Theorem 2. Let f be a holomorphic function defined on a neighborhood U of

the origin of C'. If the complex space Z(f) defined by f has only isolated singularity
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at the origin, then there exists > O, such that for any holomorphic function g defined
on U, we have

sup g- fl < 
U

= co(g) > co(f)

where 6 depends only on U and f.

Proof. Since Z(f) has only isolated singularity at the origin, so

dime R/(f,Of I j= ,..., n)< oo

By Lemma 4.5, there exists M C N, such that for any open neighborhood V of the

origin contained in U, there is (V) > 0, such that for any h, hi,..., h, defined on V,

E [hi-sup (Ih-f + = C (h, hi,..., h n) C R

Let V be small enough so that its closure is contained in U, then by Cauchy Integral

Formula, there exists 6 > 0, such that for any holomorphic function g defined on U,

n_"'Og

- fl + l zj=lj=1
sup If - 91 < 

U
=- sup (19

therefore z Ec (g, ag/Ozj Ij = 1, . . ., n), for j = 1,..., n.

Claim. For any g and h such that z E (g, g09/az,..., g09/Ozn) we have

A(g) = A(g - M+lh)

Proof of the claim Let J(g) be the ideal in On,o generated by g/azl,.
and g. Set G = g - kM+lh. Since g C J(g) and z' C J(g), so G C J(g). For j 4 k,

aG g
azj az3

a(z zjh) ag9 zM+ ah
aZj k Zj

+ z O dz

Since ag/Ozj c J(g) and z M E J(g), so aG/azj C J(g). Also we have

aG a9 ah
zGk g- k q - z ((M + 1)h + k )So we also have / C (), Therefore () c (Zk). Repeat the argument above

So we also have G/aZk J(g), Therefore J(G) C J(g). Repeat the argument above
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for g = G - z+l h , we have J(g) c J(G). So

J(g) = J(G)

Hence

A(g) = A(G)

And this completes the proof of the claim.

Since ' E J(g) for 1, ... , n, by the claim above we have

A(g) = A(g<nM)

Hence by Theorem 4.8 and Proposition 4.7

co(g) = CO(g<nM)

Therefore we reduce the the problem to the case when the base space is the space of

polynomials whose degree is less or equal to nM which is of finite dimension, so by

Theorem 1.2, after shrink if necessary, we have

co(9) = CO(9<nM) > CO(f<nM) = co(f)

[OAnd this completes the proof of Main Theorem 2
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Chapter 5

a invariants for Fano manifolds

In this chapter, we will use the limit method in Section 4.2 to compute the a invariants

for Fano manifolds obtained by blownup at point in CPI. In Section 5.1, we will show

that 1/(n + 1) is a lower bound of cam,k(M) without considering the G action. In

Section 5.2, with the consideration of the G action, we give a better lower bound for

cfm,k(M) when M is the blownup of CPn at one, n and n + 1 points.

5.1 A lower bound

Let M be a n-dimension smooth Fano manifold which is obtained by blownup CInP

over some points pl,., ... rPk. Let 7r: M --n CIP be the blownup and Ei = 7-l(pi). Set

E = Ei, for any m E N, considering following exact sequence on M

O 7i*(-mKCpn)- m(n - 1)E - 7r*(-mKcpnn ) *(-mT Cpn)l Im(n-l)E 0> 

Noticed that

KM = 7r*KPn + (n - 1)E

so we have

0 >-mKM 7r*(-mKcn) ) 7r*(-mKcpn)lm(n-l)E > 0

thus we get the long exact sequence

O ->H°(M, -mKM) , H°((CIP, -mKcpn,) 

H° (CpI, -TnlcvCn) 0 Om1p,/m(n 1 ) - ( .. / mm(n-1) H1(M, -mK)

(5.1)
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Since -KM is ample, so by Kodair Vanishing Theorem, the last term in Equa-

tion 5.1 should be zero. Therefore, H°(M,-mKM) can be identified as the sub-

space of H°(CP, -mKcpn) whose elements vanish at least to order m(n - 1) at each

points pi, for i = 1,..., k. Noticed that induced a well defined holomorphic map

7r* :7r*Kcpn - KM, hence we get a well defined meromorphic map from -mKcE n to

-mKM which we also denote as 7r*. Then 7r* identify the element s C H°(CI n , Kcepn)

which vanishes at least to order m(n - 1) at all Pi with r*(s) E H°(M, -mKM).

Let's recall the definition of am,k(M) in Section 1.2. Suppose (M, g) is a Fano

manifold with a Riemannian metric g. Then g induces metric II 119 for -mKx, and

an inner product <, >9 on H(M, -mKx). Let G C Aut(M) be a compact subgroup,

a function g is called G-admissible if

* + o9 2 90> 0

*· 9 is G-invariant.

Similarly, s = {Sl,...,SN} C H°(-mKM) is called G-admissible if E sill1 is G

admissible. We define am,k(M) as the supremum of all a > 0 for which there exists

C, such that for any G-admissible orthonormal set s = {Sl,. , sk} in H0 (M, -mKM)

1n

M (11sll + + | IIsk2)(a/m <
CO

Observation. am, k(M) > Ao iff for any x E M and any nonzero G-admissible section

S = (S1, ... Sk} C H°(M, -mKM),

Cx(S) = Cx(Sl, ... ,Sk) (5.2)m

Proof. Fix an arbitrary 0 < A < A0. For any G-admissible nonzero sections s C

H°(M, -mKM) and any x c M, since A/m < Ao0/m < cx(s) and dim H°(M, -mKM) <

oo, by Theorem 4.1 there exists a neighborhood Ux of x in M, and a neighborhood

Vx,, of s in H°(M, -mKm)ek, such that

JI i wiz dV < C,< VC E V,s

Since M is compact, we can cover it by finitely many U, therefore we find a open
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neighborhood V, of s, such that

I K m jdVg < C,, Vs E V<

Since the set of all G-admissible orthonormal set in H°(M, -mKM)ek is compact, so

it can be covered by finitely many V, and take Cx to be maximal of the corresponding

Cs,, then CA satisfies the Equation 5.2. Hence ak,l(M) > Ao. D

On CIPn, Kcn = -(n + 1)H where H is the hyperplane section of CIPn, so after

choosing a homogeneous coordinate for CIPn, any section of H°(CIP, -mK(cpn) can

be represented by a polynomial whose degree is less or equal to m(n + 1).

If we take G = {IdM}, then am,k+l(M) > m,k(M) So in this case, it suffices to

estimate Oak,l(M) only.

If x ; E, then 7r is an isomorphism between an open neighborhood U of x and

7(U). So after choosing suitable local coordinates and local frames for -mKx and

-mKcpn, s C H°(CIPn, -mKcn) and 7r*(s) G H°(M, -mKM) can be represented by

the same polynomial whose degree is less or equal to m(n + 1). Obviously

multx(7*s) < degx(r*s) < m(n + 1)

So by Proposition 4.4, we have

1
Cx(7r*S) > (5.3)

- m(n + 1)

As for CE (x*s), after choosing suitable local coordinate system around points on

Ei and suitable local frame for -mKM, locally 7* (s) can be represented by polynomial

S(WlWi ·. . , Wi-lWi, Wi, Wi+lWi ·. . WnWi)
Wm(n-1)wi

Therefore

CE ( S)> : / (>|Z1| + Zn1)2(n-1)6 dV(z) < x
1 Ij >JS(Z1, ..Zn)

26 (Z1 ...+ Znl) 2 (n-1 )

(5.4)
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where Upi is a neighborhood of Pi in CIP. When < 1/m, we have

(I 1+.. + IZfl) 2m(n-1) 6

Is(z, ..., )1

dV(z)

(Izl + .-. + Zn1)2 (n-1 )
(5.5)

= i , S(Z, ... , Zn)1*( . . . + znl)2(n- 1)(1- m) d V (z)

Since the right hand side of Equation 5.5 is of the form f exp(-2qo) with o being a psh

function, so the L2 extension theorem can be applied. Using the limit method and by

the same trick as in the proof of Proposition 4.4, we may assume that s(zl,. . ., Zn) =

zi , where d = multo s < m(n + 1). Noticed that

I 11q l ... Iz nl < C(lzl + + n Iz)

for any positive real numbers q = {qi} satisfying Ei qi = 1, where

real number depends on q, so in order to show that the integration

is finite, it suffices to show that

Cq is a positive

in Equation 5.5

dV(z)
IZ ll2db+2ql (n-l)(1-m6) Z22q2(n-1)(1-m6) ... [Zn12q(nl)(-m6) < 

When < 1/(n + 1)m, we can always choose q small enough, so that

d6 + ql(n-1)(1-m6) < 1 and qi(n-1)(1-m6) < 1 for i = 2,...,n

So Equation 5.6 always holds for 6 < 1/(n + 1)m, hence

1
CE ( *S) > 

m(n + 1)
(5.7)

Combining Equation 5.7 and Equation 5.3, we get

Proposition 5.1. If M is a smooth Fano manifold obtained by blownup points on

CWP, then

xm,k(M)> n + n+l
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5.2 G action

In general, when Aut(M) is nontrivial, we should expect a better lower bound for

czm,k(M). For a G-admissible function Ap, we define

V(p) := {x E M I c(p) = CM((O) 

By Proposition 2.3, V(Wo) is a closed G-invariant subvariety of M. Especially we

have G x c V(co) for any x E V(cp), where the closure is taken in the holomorphic

Zariski topology sense.

Some notations:

* Z = (Z,..., Z) : a fixed homogeneous coordinate for CIPn;

* pi: the unique point whose only nonzero coordinate appears on the i-th slot;

* M _ CIP : a blownup of CIPn over a subset of {Po,..., P};

* G: a maximal compact subgroup of Aut(M);

* Go: the discrete subgroup of G whose action on CIPn fix the set {po, ..,Pn};

L: the hyperplane of CIPn defined by Zi = 0 for i E A C {O,..., n};

* Fi: the strict transform of the divisor {Z = 0} by 7r;

* Ei: 7r-l(pi).

5.2.1 Blownup at one point

Let M be the blownup of CIP at Po. Then G consists of element

A E U(n, C). Because the action of U(n, C) on Cp n -1 is transitive,

C( :O where

so both Eo and
Fo are n-l dimensional G orbits. For x ¢ EoUFo, G.x is the sphere in Cn containing x
whose dimension over R is 2n - 1. Therefore for any nonzero G-admissible o, because
of dimc V(p) < n - 1, we have

V(o) C E U Fo
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For any s H°(CIPn, -mKcpn), if 7rs H°(M, -mKM), by the argument in

Section 5.1, we have

S = S (5.8)
io+ +i,,=m(n+l)
il+..+in>_m(n--1)

Noticed that by the condition i + ' " * + in > m(n - 1), we have io < 2m. So for a

general point x E Fo, multx7r*(s) < 2m, hence by Proposition 4.4,

1
CI(S) > -

T- 2m

Therefore for any G-admissible s = {sl,..., sk,

1

2m

Since Fo is a G-orbit, so;
1

CFo(S1,' ..$Sk) > I- 2mi

Around E0, since for any G-admissible s = {s,. .. , Sk}, we have

erGo

k

IIo(Sl)lIg < Gol E ]lS ilIg

therefore

CEo(S) > CE ( I (S1) g)
so it suffices to estimate 

so it suffices to estimate CE(Z 11u(si)llg).

Let s be as in Equation 5.8. We say that an index I = (io, il ,..., in) appears in s

if s 0 in Equation 5.8. Let Ind(s) be the set of all indexes which appears in (s)

for some a E Go. Let J = (jo, . . ,j) be the unique index in Ind(s) define by

j + ... +jn = mini {i -+ +in I I E Ind(s) }
j < J2 < " ' < Jn

Assume that (jo,. ., jn) appears in s. Let p be the point on Eo corresponding to the
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line L{1,n_1}, then around p, 7*(s) can be represented as

7r*(S)(W,...,W) W = S(Wl1 n, · .. , Wn-1 Wn, Wn)
m(n-1)

Wn

IW 1i iin-l il++i-m(n-1)

io+ +in=m(n+l)
il+..+inm(n-1)

Now using limit method, consider the family s(w, t, u)

(t, u) -> s(w, t, u) tdir*(tUWi, tu2w2 w .. , tUnW n)td e multu,...,tw), the by

where d = mUltt7*S(tUW,..., tUn Wn) and e = multulr*s(tutw .... tunw7 ), then by
the same argument of Proposition 4.4, cp(s(, t, u)) = cp(s) for tu # O. And by the
choice of (j, . . ., in), when t = 0 and u = 0,

s(w 0, 0) = SjW ii ... Wjn-jil+-.. '+jn-m(n-1)
S(W, 0, 0) -J~1 .un-1 U/n

By the fact that jo + + jn = m(n + 1) and j-l < j,, we have jn-_ < m(n + 1)/2
and jl + + i.jn- m(n- 1) < 2m, so

cp(s(., 0,0)) > min ( 2

Hence for G-admissible s = {Sl,., s k},

1
cp(s) _ min m

2,m

2

' m(n 1)

2

m(n + 1)

Therefor by the fact that Eo is a G orbit,

CEo(S) > min ( 2
2m

2

m(n + 1)

So we get

Proposition 5.2. Let M be the blownup of CIPn at one point, then

am, k(M) > min
1 2

2 n+1
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When M is the blownup of CIP2 , consider the function

( = (IZl12 + Z212 )3 /2

(IZO12 + Z 2 + Z212 )(IZ1 12 + IZ2 12 )1/2

then easy to see that 99 is G-admissible, and

1
CM (P) = 2

so we get

a(M) < -- 2

Corollary 5.3. If M is the blownup of C?2 at one point, then

1

2

5.2.2 Blownup at n points

Let M be the blownup of CIPn at pl,...,p,. We have already showed in Proposi-

tion 5.1 that am,k(M) > 1/(n + 1). If we take s = Zo (n + l) E HO(CIp2 ,-mKCp2)

Then it is easy to check that 7r*(s) is G-admissible, and

cM( S *) = .,\min -t 1)

so we get

Proposition 5.4. Let M be the blownup of CIPn at n points, then

Omn,i(M) n+

Remark. The surface case of Proposition 5.4 has also been proved by Song [19].
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5.2.3 Blownup at n + 1 points

Let M be the blownup of CIP? at po, . . , Pn. Then G is generated by Go and G1 where

G1 is the continuous group consisting of element of the form

diag(eo,..., en) C PSL(n), leol= ... =len= 1

For any A C {0,..., n, we define

FA := 7r-(LA)

FX := FA \ UoCAFo

Let Q = (UjiA=n-2FA)n(UinoEi) then easy to check that Q is the unique zero dimension
G-orbit.

Claim. For any G-admissible function y' and any p C Q, we have

CM((P) = Cp(P)

Proof. It suffices to show that for any x E M, Q C G x, and the closure is taken in

holomorphic Zariski topology sense.

Over {Z0 $ 0}, a local coordinate is given by zi = Zi/Zo, i = 1,.. ., n for point
x $ po, and the action of G1 is given by

diag(1, el,. .. , e)(z,..., n) = (elzI,., ezn)

So suppose the coordinate of x is (xl,.. ., x, 0, ... , 0), with xi $ 0, for i = 1,.. . ,1,

then G x is a torus in C1.

More general, since F \ (Ui0%Ei) and FI n Ej for j ¢ A form a disjoint cover of
M. So V x M, either x C F \ (UnE) or x C F n Ej for some A. In either cases,
there is local coordinate system z1, 2 , .. ., zn for M, such that

* FA n Ej or F \ (ULnEi) is defined by

Zk+Il 1 = Zn = 0
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· the G1 action is given by

diag(1, el,..., en)z = (elzl,..., enzn)

· the coordinate of x is (x1,.. ., xn) with

xzi74 fori= 1,...,k

Then by Cauchy Integral Formula, we know that any holomorphic function vanishing

on G x must also vanish on either F n Ej or FA \ (UnEi). So the closure of G- x

must contains either FA or FA n Ej. Therefore Q C G x. E1

Let p be the unique point on E0 corresponding to the line L{2,...,n}. By the same

argument as in Section 5.2.1, we only need to estimate

c(Z I:(r*s)I)
aEGo

for s E H°(Cn, -mKcpn) with 7r*s HO(M, -mKM). By the argument in Sec-

tion 5.1, we have

io+ f.+in=m(n+l)
ik <2m for k=O,...,n

(5.11)

Then around p, 7r*s can be written as

S(W1, W1W2 , -- W1wn)
m(n-1)

W 1

io++in=m(n+l)
ik<2m for k=O,...,n

(5.12)IWi+"+in-m(n-l) i2 .. in
SIW 1 W2 ... W

Define (jo,. . . jn) by the same condition as in Equation 5.9 except that in this case

we require that jo > jl > Ž > ji, and also assume that (j, jl,. ., . jn) appears in s,
then by the same argument as in Section 5.2.1, it reduces to the case when

*S = Wl ijn-m(n-1)2 . .Wn

Now that jo > jl > ... > jn, we have

jl + + jn < -- m(n + 1) < nmn+l
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hence jl + .+ jn-m(n- 1) < m, and also we have

jo + jl + j2 m(n + 1)
3 - 3

So

Hence we get

cp(7r*s) >
- m(r + 1)

&k,1 (M) + n+l
If s = {sl, s2} is G-admissible, then since sl and s2 are linear independent, so we may

assume that the term

m(n + 1)
3

m(n + 1) m(n + 1)
3 ' 3

will not appear in either sl or 2. Let's assume that it will not appear in sl. Then,

when we compute c(Zl] la(sl)l), the (jo,. . . ,jn) must satisfy that 2 < r(n + 1)/3.
So

max cp ( E (S1)
o'

1) > 3m(n + 1)

But we also have

cp(sl, 2) > Cp ( E 10'(s) 1)
01

Thus
3

ak,2 > n+l
So we get

Proposition 5.5. Let M be the blownup of CIPn at n + 1 points in general position.
Then we have

Cem,k(M) >
3

n+1
and when k > 2

3
Ofm,k(M) > n

Let M be the blownup of CIp2 at 3 points, consider the section s(Zo, Z 1, Z 2) =

ZomZZ2 E H0 (CP 2 , -mKcp2). then easy to check that 7r*s C HO(M, -mK^AI) and

7*s is G-admissible, and also cM(T*s) = 1, so we get
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Corollary 5.6 ([22]). Let M be the blownup of CP2 at 3 points, then

Om, l(M) = 1
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