
Limit Linear Series in Positive Characteristic and
Frobenius-Unstable Vector Bundles on Curves

by

Brian Osserman

A.B., Harvard University (1999)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2004

© Brian Osserman, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author ....
Department of Mathematics

January 6, 2004

Certified by ...................................... ....
Aise Man O ong

Professor
Thesis Supervisor

Accepted by ....................... .................. 5]' ........................
Pavel I. Etingof

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTtE'
OF TECHNOLOGY

| FEB 18 2004 ARCHIVES , 
I ES

LIBRARIES



2



Limit Linear Series in Positive Characteristic and Frobenius-Unstable

Vector Bundles on Curves

by
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Doctor of Philosophy

Abstract

Using limit linear series and a result controlling degeneration from separable maps to in-
separable maps, we give a formula for the number of self-maps of P1 with ramification to
order ei at general points Pi, in the case that all ei are less than the characteristic. We also
develop a new, more functorial construction for the basic theory of limit linear series, which
works transparently in positive and mixed characteristics, yielding a result on lifting linear
series from characteristic p to characteristic 0, and even showing promise for generalization
to higher-dimensional varieties.

Now, let C be a curve of genus 2 over a field k of positive characteristic, and V2 the Ver-
schiebung rational map induced by pullback under Frobenius on moduli spaces of semistable
vector bundles of rank two and trivial determinant. We show that if the Frobenius-unstable
vector bundles are deformation-free in a suitable sense, then they are precisely the unde-
fined points of PV, and may each be resolved by a single blow-up; in this setting, we are
able to calculate the degree of V2 in terms of the number of Frobenius-unstable bundles,
and describe the image of the exceptional divisors.

We finally examine the Frobenius-unstable bundles on C by studying connections with
vanishing p-curvature on certain unstable bundles on C. Using explicit formulas for p-
curvature, we completely describe the Frobenius-unstable bundles in characteristics 3, 5, 7.
We classify logarithmic connections with vanishing p-curvature on vector bundles of rank
2 on 1P1 in terms of self-maps of 1P1 with prescribed ramification. Using our knowledge of
such maps, we then glue the connections to a nodal curve and deform to a smooth curve to
yield a new proof of a result of Mochizuki giving the number of Frobenius-unstable bundles
for C general, and hence obtaining a self-contained proof of the resulting formula for the
degree of V2.

Thesis Supervisor: Aise Johan de Jong
Title: Professor
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This thesis is composed of a number of chapters dealing with different topics in positive-

characteristic algebraic geometry. The main ideas of most of the chapters stand on their

own as original work, but they also fit together to give a self-contained proof of new results

on the geometry of the "Verschiebung" rational map induced by pullback under Frobenius

on the coarse moduli space of semi-stable vector bundles of rank 2 and trivial determinant

on general smooth curves of genus 2. A key component of this is the description of the

undefined locus of this map, which is to say, of those "Frobenius-unstable" bundles which

are themselves semistable, but pull back to unstable bundles under the Frobenius map.

This last question had in fact already been answered, albeit in a rather different language,

by Mochizuki in [42], via techniques which are substantially similar but differ in certain

notable respects.

In this introduction, we outline the main results of the various chapters, and discuss

their motivation and how they relate to one another. For more detailed overviews of a

given chapter, including theorem statements and comparisons to results already in the

literature, see the introduction to each individual chapter.

Chapter I is for the most part the most elementary chapter, although technical ma-

chinery is required from time to time. We examine the question of how many maps there

are from IP1 to itself of a given degree, and having fully prescribed ramification (counted

modulo automorphism of the image). We answer this question for generally placed ramifi-

cation points, and all ramification indices less than p. We also show that if any ramification

index is allowed to rise above p, there need not be finitely many such maps even given

tame indices, and we in fact make use of this observation in controlling degeneration of

separable maps to inseparable maps, which is a key component of the proof of the main

result. An appendix gives some basic representability results on functor of ramified maps

between curves.

Another key idea of Chapter I is the basic theory of limit linear series; while the necessary

results appear to hold even in positive characteristic using only the original construction

due to Eisenbud and Harris, to be on the safe side we give a new, more transparent con-

struction, which is the content of Chapter II. This chapter is very technical, albeit without

using a tremendous amount of machinery, and gives a completely functorial theory of limit

linear series which recovers the results of Eisenbud and Harris while offering a natural com-

pactification of their scheme of limit linear series on a fixed curve of compact type, and

9



even allowing for generalization to varieties of higher dimension. One immediate corollary

is a rather general result on lifting linear series from characteristic p to characteristic 0.

The dimension count which gives the theory of limit linear series its strength is substan-

tially harder for this generalized construction, and an appendix develops a theory of "linked

Grassmannian" schemes necessary to obtain the desired bounds on dimension.

If one is willing to take for granted the basic background of coarse moduli spaces of

vector bundles on curves, Chapter III is nearly as elementary as Chapter I. In it, we

develop explicit formulas for p-curvature of connections on vector bundles, and apply them

in several ways to the case of curves of genus 2. First, as an application unrelated to

the rest of our results, we derive a completely explicit formula for the strata of curves of

different p-rank in a particular parameter space for curves of genus 2; this follows directly

from the definition of a p-torsion line bundle, and is completely elementary. We also use

our explicit formulas to compute the space of connections of vanishing p-curvature on a

particular unstable bundle in characteristics 3, 5, 7, deducing the number of Frobenius-

unstable bundles in these characteristics via a standard argument. Finally, we show that

the locus of connections on the same unstable bundle with nilpotent p-curvature is finite

flat over our parameter space of genus 2 curves in all odd characteristics. An appendix fills

in technical background on the Verschiebung map.

Chapter IV provides the necessary theory to conclude the degree of the Verschiebung

map for rank 2 vector bundles on genus 2 curves from sufficient information on the Frobenius-

unstable bundles on such curves. This consists of a brief examination of the degree of certain

rational maps between projective spaces, followed by a more technical examination of the de-

formation theory of connections with their vector bundles via hypercohomology and spectral

sequences. Ultimately, we are able to relate "reducedness" of the set of Frobenius-unstable

bundles to reducedness of the undefined locus of the Verschiebung, and hence the degree

of the map; in this situation we are further able to describe the image of the exceptional

divisors. The results of Chapter III then immediately allow us to conclude the degree of

the Verschiebung for general curves in characteristics 3, 5, 7.

The subject of Chapter V is the study of connections with logarithmic poles and van-

ishing p-curvature on vector bundles on curves, and in particular on rank 2 vector bundles

on IP1. Techniques are largely elementary, using nothing more technical than formal local

analysis. The main result is the classification of such connections in terms of self-maps of
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P1 with prescribed ramification.

Finally, Chapter VI is the only chapter without substantial new results, and is included

to pull together the other chapters to yield the desired self-contained presentation of the

degree of the Verschiebung for a general genus 2 curve in any odd characteristic. The

main idea is to take the relevant logarithmic connections on 1P1 of Chapter V, which are

already classified in terms of the self-maps of IP1 counted in Chapter I, glue them to obtain

connections on nodal curves, and then deform those to smooth curves, applying the results

of Chapter III to obtain the desired description of the Frobenius-unstable bundles, and then

Chapter IV to conclude the degree of the Verschiebung.

The appendix is a collection of auxiliary lemmas and "well-known" results which are

hard to find (or not present) in exactly the desired form in the literature. They are included

only for completeness, and are isolated largely in order to avoid distracting from the line of

reasoning in the sections in which they are invoked.

Chronologically, Chapter III (with the exceptional of the determinant computations at

the end) was the earliest, followed by Chapter IV. At this point, the work of Chapter

V followed by much of Chapter I and parts of Chapter VI was completed, without any

knowledge of Mochizuki's work. Mochizuki's work shed new light on the situation, as

discussed in Section V.7, and indirectly allowed the completion of Chapter I. Chapter II

was then developed to solidify the foundations of Chapter I, and finally Chapter VI was

completed with simplifications adapted directly from Mochizuki's work.

Early motivation for understanding Frobenius-unstable vector bundles and the geometry

of the Verschiebung map was driven by several considerations:

* First, if the base field k for our curve C is finite, the Verschiebung map is closely

linked to p-adic representations of the fundamental group of C (see the introduction

to [37]). In particular, A. J. de Jong observed that curves in the moduli space of vector

bundles which are fixed under some iterate of the Verschiebung will correspond to p-

adic representations for which the geometric fundamental group has infinite image,

which he conjectures in [9] cannot happen for -adic representations.

* Next, it is known (see [27, Lem. 3.2.2]) that a semistable vector bundle on a curve

cannot pull back to an unstable bundle under a separable morphism, so a good under-

standing of the phenomenon in the case of Frobenius gives in some sense a universal

11



Construction of
moduli scheme for
ramified maps of curves

\ (I.A.5)

Theory of linked
Grassmannian
moduli schemes

(II.A.14)

Lifting linear
series from char.
p to char. 0

(II.4.5)

I
Infinite family of
tamely ramified
maps on I 1

(I.4.5)

New limit
<- linear seriesJ construction. 1- _·- ·1

\ (11.4.3)

Brill-Noether for
P1 and tame
ramification

(I.2.3)

Classification
of inseparable
limits on P1

/ (I.5.1)

nic connections Counting ramified
;h vanishing maps on P1

ire m 1

(V.5.7) _ - .~~t'u~

Counting certain
connections on P1

(*) (V.0.1)

3 I

Nilpotent connections
finite-flat for
genus-2 curves

(*) (III.7.3)

L

1

Explicit p-curvature
formulas and curves
of genus 2

/ (III.2.6, III.4.4)/

Explicit prank
fomulas for
genus-2 curves

(III.4.8)

Degrees of rational
self-maps of I'

(IV.1.2 1(IV.1.2)

Counting Frobenius-
unstable bundles on
genus-2 curves

Deformations of Frob.-
unstable bundles and
undefined pts of V2

(IV.5.6)

Degree of V2
for genus-2
curves

(VI.0.1 (ii))

Image of
exceptional
divisor of V2

(VI.0.1 (ii))

A rough flow-chart of the various results in this thesis.

Results marked with (*) are originally due to Mochizuki.

12

[

1

I

I

Logarithi
on P1 wit
p-curvatu

$

1

I

, 
. f f

f

.

-

-I -

(*) (VI. 0. 1 (i)



description of bundles which become unstable after pullback under any morphisms.

Gieseker and Raynaud produced some sporadic examples of Frobenius-unstable bun-

dles in [19] and [50, p. 119], and more recently Mochizuki, Laszlo, Pauly, Joshi,

Ramanan, Xia, Yu, and Lange have all contributed to our understanding of the situ-

ation; see the introduction to Chapter III.

* For vector bundles of rank one, which is the case for which our generalized Ver-

schiebung map is named, the map induced by pullback under Frobenius acts as the

dual isogeny to Frobenius on the Jacobian of the curve, and plays an important role in

the study of the Jacobian and hence of the curve. One might expect that if understood

better, the generalized Verschiebung could become equally important.

* Invariants such as the degree of Verschiebung nearly always seem to be given by

polynomials in p, with no apparent explanation for why this should be the case. If

enough examples of this phenomenon are understood, one might hope to find a general

guiding principle behind it.

Motivation for understanding logarithmic connections with vanishing p-curvature on

the projective line is two-fold. Our immediate motivation was of course to use degeneration

arguments to conclude results on higher-genus curves, as is carried out in Chapter VI.

However, such connections are interesting in their own right, as is demonstrated by a still-

unsolved question of Grothendieck asking if a logarithmic connection on P1 in characteristic

0 which has vanishing p-curvature when reduced mod p for almost all primes p, must have

"algebraic solutions", in the sense that there is an algebraic curve over IP1 for which the

pullback connection has a full set of horizontal sections. See [31] for a discussion of the

problem and solution for particular connections.

Finally, our initial motivation for studying self-maps of 1 with prescribed ramification

in characteristic p, and consequently limit linear series in characteristic p, was to understand

logarithmic connections with vanishing p-curvature on P1. However, if one generalizes to

the corresponding questions for higher-dimensional linear series and for higher-genus curves,

there are a range of applications in characteristic 0, including:

* In full generality, potentially yielding an understanding of the cohomology rings of the

Gd spaces of higher genus curves, which would generalize the well-known description of

the Grassmannian cohomology ring in terms of Schubert cycles and their intersections.

13



* In the case of higher-dimensional series on PI1, the study of the solutions of an AN

Bethe equation of XXX type (Mukhin and Varchenko in [43]).

* In the case of two ramification points and one-dimensional linear series, the computa-

tion of the Kodaira dimension of Mg,n (Logan in [38]; the case where one of the two

ramification points is allowed to move is particularly relevant, and solved by Logan).

Moreover, our new construction of limit linear series, giving a proper moduli scheme, offers

the potential for cleaner arguments for bounding results such as the Brill-Noether theorem.

Limit linear series were used to prove results on the Kodaira dimension of moduli spaces

of curves, existence of curves with certain Weierstrass semigroups, monodromy actions on

ordinary Weierstrass points and finite collection of linear series, and families of curves having

certain special linear series. Appropriate generalization to characteristic p has the potential

to yield similar results, and generalization to higher-dimensional varieties could offer tools

previously unavailable even in characteristic 0, although there are new difficulties in this

setting, discussed briefly in Section II.6.

Calculations were carried out using Maple, Mathematica, Macaulay, and, for automat-

ically generating the p-curvature formulas of Section III.2 in low characteristics, simple C

code.
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Chapter I

Self Maps of IP1 with Prescribed

Ramification in Characteristic p

In characteristic 0, there are always finitely many rational functions on ?ID1 with given ram-

ification indices at given points, and when those points are general, the number of points

is given combinatorially in terms of Schubert calculus. In characteristic p, the problem

turns out to be substantially subtler, and we explore the situation in a complete range of

characteristics, showing that the situation is particularly pathological in low characteristics

regardless of whether the ramification is tame or wild, and ultimately solving the problem in

mid range and higher characteristics by solving it in the case of three points and repeatedly

letting ramification points come together to reduce inductively to this case.

The question we wish to address is simply:

Question .0.1. Fix n points Pi on P1 and integers ei > 2, with ,i(ei - 1) = 2d - 2, and

ei < d for all i. Then how many self maps of l 1i of degree d are there which ramify to order

ei at the Pi, counted modulo automorphism of the image 1?

Notation 1.0.2. When the answer to Question 1.0.1 is finite, we denote it by N({(Pi, ei)}i).

We denote by Ngen ({ei}i) the value of N({ (Pi, e )}i) for general choice of Pi.

We further specify that the required ramification be the only ramification of the map, or

equivalently, that the map be separable. The condition that Zi(ei - 1) = 2d - 2 implies by

the standard characteristic-p Riemann-Hurwitz formula that there are no solutions if any

of the ei is not prime to p, so we will assume throughout that all ei are prime to p unless

we specify otherwise.
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Definition 1.0.3. We distinguish three ranges of characteristic. We will refer to the high

characteristic range to mean those characteristics for which p > d, as well as characteristic

0. The mid characteristic range will be characteristics for which p < d, but ei < p for all i.

Finally, the low characteristic range will be characteristics for which p < ei for some i. We

will see that high characteristics are uniformly well-behaved with respect to our question,

while low characteristics can be extremely pathological, and the mid characteristics seem

to be reasonably well-behaved, but are considerably subtler than the high characteristics.

Theorem 1.0.4. In the mid and high characteristics, we have the following complete solu-

tion to our main question:

Ngen((ei}i) = E Ngen({eii<n-2, e), with e = 2d' - 2d + en-1 + en - 1 (I.0.5)

d-en-1 + 1 d< d
d - e + 1 p + d-en-1 - en

1 p>d
Ngen(el, e2, e3) = Ip d (I.0.6)

0 otherwise

Further, for general points Pi all of the relevant maps have no non-trivial deformations.

We make a few observations: first, since the degree d' is always no greater than d, high

characteristic will remain high under recursion. Similarly, adding the two inequalities on the

right, we find e = 2d'- 2d+en +en--1 - d+ (p+d- enl - en) - 2d+en +en- - 1 = p - 1,

so mid characteristic is also preserved (or becomes high) under iteration.

Note that in the high characteristic range, we always have p > d, so the answer becomes

independent of characteristic: this is visibly true for the second formula, and is true for the

first formula because the inequality d' p + d - en- 1 - en is subsumed by the inequality

d' > e = 2d' - 2d + en + en- - 1, or equivalently d' 2d - en-1 - en + 1, which is

necessary for the number of maps Ngen({eii<n-2, e) to be nonzero. Unsurprisingly, this

characteristic-independent formula is also the answer in characteristic 0.

We begin in Section I.1 by translating the problem into a question on intersection of

Schubert cycles in a Grassmannian. In Section 1.2 we obtain some basic finiteness results

including a ramified Brill-Noether type theorem for gl's on 1Pl We then apply this in

Section 1.3 to solve the base case of three ramification points to derive the second equation

16



of Theorem 1.0.4. Section 1.4 appears at first blush to be merely a couple of eccentric

observations, including the observation that when one ei is greater than p, the number of

maps can be infinite, but these observations play key roles in Section 1.5, where we give

a precise analysis of when a family of separable maps can degenerate to an inseparable

map, and in Section 1.6, where we finally prove the first equation of Theorem 1.0.4 via a

degeneration argument using limit linear series. Finally, in Appendix I.A we construct a

scheme representing maps between a pair of fixed curves, with at least a certain specified

ramification, but at points which are allowed to move; this scheme is the key idea in the

proof of the Brill-Noether-type result of Section 1.2.

We remark that chronologically, the direct approach here was not the first proof dis-

covered of our formulas. That was obtained via a correspondence with certain logarithmic

connections on W1 together with a theorem of Mochizuki, as outlined in Section V.7. The

key step of the direct argument presented here, the analysis of separable maps degener-

ating to inseparable ones, was derived via a careful study of the corresponding situation

with connections. There is considerable literature on our main question and its natural

generalizations in characteristic 0, from Eisenbud and Harris' original solution in the case

of P1 in [14, Thm. 9.1], to combinatorial formulas in the same cases by Goldberg [21] and

Scherbak [52], to formulas in the higher genus case of Logan [38, Thm. 3.1] and the author

[49]. However, the present work appears to be the first attempt to approach the problem

for positive characteristics.

1.1 Translation to Schubert cycles

In this section, we translate Question 1.0.1 into a question on intersection of Schubert cycles,

and pin down some related notation. We assume throughout that we are working over an

algebraically closed field k.

Remark I.1.1. Given the results of this chapter for algebraically closed fields, one may

easily argue that the same results, phrased scheme-theoretically, are true when k is not

algebraically closed. However, there will be no way to conclude in this situation that all the

resulting maps are actually defined over k, so there is little point in such an observation.

The main question may be easily translated into a question of the intersection of Schu-

bert cycles on the projective Grassmannian G(1, d) as follows:

17



A rational function on JP1 modulo automorphism of the image is precisely equivalent

to a basepoint-free gd, which is to say, a one-dimensional linear series of degree d, on 1P1;

explicitly, this is a 2-dimensional subspace of the global sections of a line bundle Y of

degree d on Ip1 which generates D everywhere (the discrepency in dimension is the usual

difference between affine and projective dimension). Now, #(d) is the unique line bundle of

degree d on IP1, and its global sections are a (d+ 1)-dimensional vector space, so our g~'s will

be 2-dimensional subspaces in this fixed (d + 1)-dimensional space, which is to say, points

of G(1, d). Of course, a point of G(1, d) will only correspond to a map if it has no base

points, but we will return to this issue shortly. Now, for each i the condition that a map

ramify to order ei at a point Pi is equivalent to requiring that our 2-dimensional subspace

meet non-trivially the (d + 1 - ei)-plane of sections of #(d) which vanish to order at least

ei at Pi; this is, by definition, a Schubert cycle which we will denote by Eei-l(Pi), with

corresponding class 'ei_1. Although the plane has codimension ei, since we are looking at

non-trivial intersections with 2-dimensional subspaces, we get a codimension ei - 1 condition

in the Grassmannian; hence the notation.

Since we assumed Zi(ei - 1) = 2d - 2, and our Grassmannian has dimension 2d- 2, the

total codimension of the Schubert cycles we are intersecting is the same as the dimension

of the Grassmannian, and the expected dimension of the intersection is therefore 0. Pieri's

formula will now give us the intersection product of our cycles, yielding a hypothetical

formula for the answer to our question. However, there are several substantive issues to

address.

The first major issue is whether or not the Schubert cycles will actually intersect trans-

versely, even for general choice of the Pi. In characteristic 0, it follows from Kleiman's

theorem [33] that general Schubert cycles (that is, Schubert cycles corresponding to general

choices of flags) will intersect transversely, and in characteristic p Vakil [55, Cor. 2.7 (a)]

and Belkale [2, Thm. 0.9] have recently independently shown the same to be true, but it is

not the case that a general choice of points on IP1 will correspond to a general choice of Schu-

bert cycles in G(1, d), so we cannot hope to apply such general results. On the other hand,

in characteristic 0 properness of the intersection (that is, having the expected dimension)

for any choice of distinct Pi is straightforward, and we will reproduce the argument below

in order to analyze its implications in characteristic p. Transversality for general choice of

Pi in characteristic 0 is known, but more involved (see [14, Thm. 9.1]), and means that
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Pieri's formula actually yields the correct number for general choice of Pi. Unfortunately,

all of these statements fall apart in characteristic p, as we will see shortly.

The second issue to face is that of base points: points of G(1, d) with base points

correspond to lower degree maps padded out by extra common factors in the defining

polynomials. If these factors are away from Pi, this corresponds simply to lowering the

degree without changing the ramification conditions. If, on the other hand, these factors

are supported at the Pi, they will each subtract 1 from the degree while also subtracting 1

from the ei; in particular, either way, the equality Z(ei - 1) = 2d - 2 will become a strict

inequality, and Riemann-Hurwitz implies there are no such separable maps. In particular,

in characteristic 0, or when p > d, the intersection of our Schubert cycles always actually

corresponds to the desired 9g's. On the other hand, in general inseparable maps can and

will occur, frequently contributing an excess intersection. For instance, in the case d > p,

ei < p, the Frobenius map will always contribute a pd-p to the intersection, with one point

in G(1, d) for every choice of a degree d - p base point divisor.

These are the two issues which must be addressed in order to give an answer to the

question. However, except in the base case of three points, we will not address them

directly, as would be required by an intersection-theoretic approach. We will rather take a

different tack, looking at moduli of gd s with specified ramification for certain degenerating

families.

Notation 1.1.2. From this point on, there is plenty of opportunity for confusion of notation,

since we will be thinking in terms of maps, gd's, and polynomials almost interchangeably.

Now, gd ' on are equivalent to pairs of linearly independent polynomials of degree d,

up to taking invertible linear combinations. However, with gl's we refer to base points,

whereas for pairs polynomials the corresponding idea is common factors. Given a gl with

d - d' basepoints, we get a unique map of degree d' by getting rid of the basepoints, and

similarly, given a map of degree d' d, we get a unique gd for each divisor of degree d' - d,

simply by adding that divisor as a basepoint locus. We will refer to the locus inside G(1, d)
of gl's having base points as the base point locus, and the locus inside G(1, d) of g1'S for

l dd fo

which the induced map in inseparable as the inseparable locus.

Warning I.1.3. The above equivalences tend to become misleading in families; in particular,

if we have a linear series which develops base points in a special fiber, there is no way to

remove them globally to actually produce a morphism. Linear series turn out to be the right
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concept for dealing with families, so whenever we are working over a base other than a field,

we will always be dealing with linear series, even if we think of it as a "family of maps".

For the appropriate definitions (albeit in an overly generalized context), see Chapter II.

Notation 1.1.4. We will, for future reference, also specify our notation for the different

6 of a separable map f between smooth proper curves C and D. We define d to be the

divisor on C associated to the skyscraper sheaf obtained as the cokernel of the natural map

f *Ql Qlf*l 
Remark 1.1.5. Our Schubert cycle description of the problem can also readily be described

dually in terms of (d- 2)-planes in pd with prescribed intersection dimension with osculating

planes at the Pi of the rational normal curve in IPd, where our maps are given by projection

from the d - 2 planes. Thus, we are analyzing intersections of certain Schubert cycles

associated to osculating flags at points of the rational normal curve. However, we will not

make use of this description in our analysis.

1.2 Finiteness Results

We begin with a proposition whose argument is well-known in characteristic 0:

Proposition 1.2.1. In any characteristic, if Zi(ei - 1) = 2d - 2 - c for some c > 0,

then the separable part of niei-,,(Pi) has dimension c if and only if it does not contain

a (c + 1)-dimensional family specializing to the inseparable locus. In particular, in high

characteristics, OiEei-l(Pi) always has the expected dimension c.

Proof. Of course, c is the dimension of G(1, d) minus the sum of the codimensions of the

cycles being intersected, so every component of the intersection must have dimension at

least c, and all we need to show is that any component in the separable locus having

dimension at least c + 1 must meet the inseparable locus. By Riemann-Hurwitz, if we

had Ei(ei - 1) > 2d - 2, then niEei-l(Pi) must consist entirely of inseparable maps. We

will therefore induct on c, with our base case (oddly, but perfectly correctly from a logical

standpoint) as c = -1. Now, suppose we have a component of the separable locus of our

intersection having dimension c + 1. Choose any new point P distinct from the previous

ones, and add the ramification index 2 at that point. Intersecting with El(P) reduces the

dimension of our family by at most 1: El(P) is made up of lines in Pd intersecting a given
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(d - 2)-plane, and hence has codimension 1 in G(1, d), but moreover, meets any positive-

dimensional (closed) subvariety of G(1, d), since any curve in G(1, d) corresponds to a surface

in P d, which must meet every (d - 2)-plane. But the intersection of our component with

El(P) is an (at least) c-dimensional component in the dimension c- case, so either it is

entirely inseparable, or by the induction hypothesis, it must meet the inseparable locus, and

in either case, we conclude our original component must have met the inseparable locus, as

desired. Lastly, since the high characteristic case is precisely where the inseparable locus is

empty, we conclude that no such higher-dimensional component can exist in that case. 

The case c = 0 is simply the full specification of a tame ramification divisor, so we

restate:

Corollary 1.2.2. In high characteristics, there are finitely many self-maps of IP1 with spec-

ified tame ramification divisor.

The finite generation of fundamental groups of curves, together with some generalities

on existence of moduli spaces of maps with certain ramification behavior, gives us a more

substantive finiteness result than our first proposition:

Theorem 1.2.3. Let ei be prime to p, and suppose Ei(ei - 1) = 2d - 2. Then for a general

choice of points Pi, we have that the set of maps from P1 to IP1 ramified to order ei at Pi,

modulo automorphism of the image:

(i) is finite;

(ii) has no elements mapping any two of the Pi to the same point.

Proof. By Theorem I.A.5, we have a moduli scheme MR = MRd(P1l, I', {eii), with ramifi-

cation and branching maps down to (IPl)n, and actions of Aut(IP1) on both the sides, with

the action on the domain being free. It is well-known that given any specified tame branch

locus, up to automorphism of the cover there are only finitely many covers with the given

degree and branching: this follows, for instance, from the fact (see Theorem A.1) that the

tame fundamental group of IP1 minus the branch points is a topologically finitely generated

profinite group, so has only finitely many open subgroups of index d. Since each cover of

degree d with the specified branching corresponds uniquely to an open subgroup of the tame

fundamental group of index d, this gives the desired assertion.
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Thus, each fiber of the branch morphism branch : MR - (l)n has only finitely many

Aut(IPl) orbits, and is therefore of dimension at most dim Aut(IP1 ) = 3. We conclude that

the dimension of MR is at most n + 3. This immediately implies that a general fiber (in

the sense of a fiber above a general point of (l)n, making no hypotheses on dominance) of

the ramification morphism ram : MR -+ (l)n can have dimension at most 3. Since each

fiber of this map is likewise composed of Aut(Pl) orbits, and the action is free on this side,

we find that a general fiber must always be empty or composed of finitely many Aut(P l )

orbits, completing the proof of (i).

The proof of (ii) proceeds similarly: the locus MR' of maps in MR sending any two

ramification points to the same branch point has dimension at most n - 1 + 3 = n + 2,

and since this property is preserved by Aut(lPl) acting on the domain, any fiber of MR'

under the ramification morphism must be of dimension at least 3 if it is non-empty, so we

conclude that a general fiber of the ramification morphism cannot have any points of MR'

in its preimage, completing the proof. [I

Remark 1.2.4. This finiteness theorem may be considered a first case in positive characteris-

tic of a Brill-Noether theorem with prescribed ramification, as in [15, Thm. 4.5]. Significant

generalization ought to be approachable via deformation theory of covers, as in [48]; such

an approach also gives an instrinsically characteristic-p proof of the previous theorem.

1.3 The Case of Three Points

While the general problem we wish to study becomes extremely subtle in characteristic p, the

special case where we only have three ramification points is, pleasantly, more tractable. This

is fortuitous, since this case will form the base case of our general induction argument. We

begin by observing that in this case, all three ramification points must map to distinct points:

we have Zi(ei - 1) = 2d - 2, so i ei = 2d + 1. Now, any ej d, so i:Aj ei > d + > d,

so we cannot have both Pi with i j mapping to the same point. We can also show via

elementary observations that:

Lemma 1.3.1. The intersection ni]ei-l (Pi) for three points is simply a IPm for some m > 0.

Proof. Without loss of generality, we may assume that P1 = 0, P2 = oc, and P3 = 1.

Now, any point in the intersection Zel-i(Pi) n Ze2 -1(P2) is a two-dimensional space of
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polynomials containing one vanishing to order el at Pi, and one vanishing to order e2 at

P2. We already observed that el + e2 > d, so these must be distinct, and they form a

distinguished basis (F, G) of our space, up to scaling of F and G. If we require further that

F(1) = G(1), this is the same as asking that F/G map 1 to itself; since we have already,

in effect, asked that it fix 0 and oo, this determines (F, G) uniquely up to simultaneous

scaling. Moreover, the vanishing conditions at 0 and oc are equivalent to setting a number

of coefficients of F and G equal to 0. Now, with the hypothesis that F/G fix P3 = 1, the

last intersection says simply that F - G vanishes to order e3 at P3. This places e3 linear

conditions on F - G. However, the nonzero coefficients of F and G were still completely

general, and el + e2 > d implies that the non-zero coefficients of F and G don't overlap,

so we still get linear conditions on the coefficients of F and G. We conclude that the set

of acceptable F and G is a linear space modulo simultaneous scaling of F and G, so our

intersection is a Im, as desired. O

The following lemma requires more substantial machinery, and serves as something of

a substitute for Theorem 1.2.3 in the case of three points. Although it is strictly speaking

superfluous, we include it in order to be able to discuss its generalization (or lack thereof)

later.

Lemma 1.3.2. There is a mixed-characteristic DVR A with residue field k and a triple

PI, P2, P3 of points on IPA specializing to Pi, P2, P3 such that if p is prime to all the ei, any

rational function on P' ramified to order ei at the Pi can be lifted to a rational function on

PA ramified to order ei at the Pi.

Proof. Let A be the Witt vectors of k, a complete mixed-characteristic DVR with residue

field k [54, Thm. 11.5.3]. Choose any three Pi lifting Pi to PIA, and let f be any function on

IPk ramified to order ei at the Pi. Write Qi := f(Pi), and choose any (necessarily distinct)

lifts Qi of Qi. It is a theorem that f may be lifted to a tamely ramified f over Spec A,

preserving the branching at Qi (see [4, 11, Proof of Prop. 5.1]). We note that from the

particular definition of tamely ramified, f has a ramification section over each Qi: indeed,

the ramification locus is isomorphic to the singular locus, and it follows from the definition

that etale locally, the reduced induced subscheme on the singular locus is isomorphic to the

union of the Qi; since each Qi is a section, and the base is strictly henselian, it then follows

that the (reduced induced subscheme on the) ramification locus is a union of sections, one
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over each Qi, as desired. Now, these ramification sections may not be Pi, but they are

certainly Pi on the special fiber, and since Aut(IP1) is 3-transitive (in general, but this is

particularly straightforward to see over a local ring), we can modify f by an automorphism

of the cover, restricting to the identity on the special fiber, and sending the ramification

points of f to Pi, giving us our desired lift. O

We use these two lemmas to show:

Theorem 1.3.3. Let P1, P2, P3 be three distinct points of P1, and el, e2, e3 positive integers.

Then we have:

(i) In any characteristic, N({(Pi, e) i) is finite, and is in fact always 0 or 1, being 0 if and

only if there is some inseparable g of degree d with the required ramification. More-

over, when N({(Pi, ei)}) = 1, the intersection is actually given scheme-theoretically

by a single reduced point.

(ii) N({(Pi, ei)}i) = 0 whenever el and e2 are less than p, and d > p. N({(Pi, ei))i) = 1

whenever d < p.

Proof. We first deduce (ii) from (i): the second claim is trivial, since if d < p, there can be

no inseparable map of degree d. For the first claim, because el and e2 are both less than p,

any inseparable map will satisfy the required ramification conditions at P1 and P2, and if

we choose our map to be Frobenius, we need to add (e3 - p)P3 to the ramification divisor

via adding base points to satisfy the ramification condition at P3. On the other hand, since

Frobenius has degree p, we have d - p base points to play with, and since we must have

e3 < d by hypothesis, we will always have enough base points to create an inseparable gd

with the required ramification, forcing N({(Pi, ei)}i) = 0, as desired.

For the proof of (i), we begin by noting that the intersection product in question is always

1: indeed, since all the Schubert cycles in question are special, this follows immediately

from first applying Pieri's formula to the intersection of the first two cycles, and then

the complementary-dimensional cycle intersection formula to the third (see [18, p. 271],

noting that the complementary dimension formula is called the duality theorem). Next,

the separable locus must be finite: we can use Lemma 1.3.2, and have finiteness for the

resulting lifted maps over the characteristic-0 generic point by Corollary 1.2.2; alternatively,

finiteness follows simply from Theorem 1.2.3, using the fact that since there are no moduli
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for triples of points on 1P1, any triple is general. Finally, by Lemma 1.3.1, our intersection

is a pm, and is in particular connected. If it is 0-dimensional, we are done, since we get

a single reduced point which must clearly correspond to either a separable or inseparable

map. On the other hand, if it is positive dimensional, all but finitely many points of it must

correspond to inseparable maps, and hence we cannot have any separable maps, since the

inseparable locus is closed, and the entire intersection is connected. O

To rephrase a slightly special case of the second part of the theorem, we have:

Corollary 1.3.4. Suppose we are in the situation of the preceding theorem, and el, e2 < p.

Then a separable map of the specified ramification exists if and only if d < p.

Remark 1.3.5. This corollary certainly doesn't hold if we drop the hypothesis that at least

two ramification indices be less than p. For instance, xn is separable with exactly two

ramification points of index n as long as n is prime to p, and in particular if n is larger than

and prime to p, we have a separable map of degree larger than p ramified at (fewer than)

three points.

Remark 1.3.6. There are actually three approaches to proving the finiteness part of the above

theorem, each with a different flavor: using Theorem 1.2.3 and its proof via fundamental

group theory, we are implicitly making use not only of lifting to characteristic 0, but of

analytic methods to compare to the topological fundamental group. In contrast, Lemma

1.3.2 is algebraic but still relies on lifting to characteristic 0. However, as noted in the

proof, one could also prove Theorem 1.2.3 instrinstically algebraically in characteristic p,

via deformation theory of covers. So in fact none of what we do relies even on lifting to

characteristic 0.

1.4 Some Theorems and Pathologies

We start with a fairly trivial lemma that we will want to make repeated use of:

Lemma 1.4.1. For any rational function given on the affine line by F/G, with F, G C k[x],

we have:

(i) The different is given by the order of vanishing of the differential form (dF)G-F(dG).

If G is non-vanishing at a point P, this is the same as the order of vanishing of the

derivative of F/G.
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(ii) In particular, if the order of vanishing e- 1 of (dF)G-F(dG) (equivalently, d (F/G),

where G is non-vanishing) is less than p at P, then FIG is tamely ramified at P with

ramification index e.

(iii) The ramification index of P where G does vanish is simply given by G's order of

vanishing. Finally, at the point at infinity, if a linear combination of F and G is

chosen so that degF > deg G, the ramification index may be computed as degF -

deg G.

Proof. The second statement of part (i) is trivial. Moreover, it is clear that the order of

vanishing of the derivative of FIG is the order of the different, where G is regular: the

different is defined by the order of vanishing of the pullback of a regular, non-vanishing

differential form. If G is regular at a point P on the affine line, FIG sends P to a point

other than o, so the form dx is a regular non-vanishing form at both P and its image, and

we find that the different is determined by the order of vanishing of (F/G)*dx = d (F/G)dx,

which is the order of vanishing of F/G, as desired. To conclude the first statement, if G is

regular at P we are done, but since the different is visibly invariant under automorphism

of the image of a map, if G is not regular at P, we can simply interchange F and G, which

will not affect the order of vanishing of (dF)G - F(dG).

Part (ii) is then easily verified. Similarly, for part (iii) if G vanishes at P, by inter-

changing F and G we get that the order of vanishing is the ramification index. The final

statement is separate and equally trivial, since FIG will vanish to order deg G - deg F at

infinity, and if that number is positive, it is by definition the ramification index at infinity.

If it is negative, then by once again interchanging F and G we find that the ramification

index is deg F - deg G, as desired. O

Warning 1.4.2. The second part of (i) above is false if one drops the hypothesis that G is

regular; while the derivative of F/G normally picks up poles of F/G, it can miss order-p

poles. For instance, consider x + x -p at the point 0. It is clearly ramified to order p at

x = 0 since it has an order-p pole, but its derivative on the affine line is simply equal to 1.

We have the following amusing and occasionally useful lemma:

Lemma 1.4.3. Given ei all less than p, let e be any integers obtained from the ei by

repeatedly replacing pairs of indices ei, ej with p - ei,p - ej while holding the others fixed.

Then Ngen({ei}i) = Ngen({ei}i)
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Proof. It clearly suffices to show that the identity holds when we replace el, e2 by p -

el,p - e2, and hold the rest fixed. For convenience, we also assume that F/G is unramified

at infinity. We make use of the fact that by Theorem 1.2.3, for Pi general, none of our

maps for either of the two relevant choices of ramification indices send any two of the Pi

to the same point, and in particular none send P1 and P2 to the same point. That is to

say, for any map with ramification e at the Pi, we may write it (uniquely up to scalar)

as F/G, where F vanishes to order e at P1, and G vanishes to order e2 at P2, so we can

write F/G = (x - Pl)elFI/(x - P2)e2G'. If we multiply through by (x - P2)P/(x - P1)p ,

we get the new function (x- P2)P-e2F'I/(x - P1)P-elG . Since we obtained it from the old

one by multiplying by an inseparable function, it follows that the derivative is multiplied by

the same function, and in particular its order of vanishing is unaffected away from P1 and

P2, as is the order of vanishing of the denominator of the function. Since we assumed all

ei < p, it follows that the new function and old function have the same different and hence

the same ramification away from P1 and P2, and a priori infinity. On the other hand, it is

clear that the ramification at P1 and P2 is now p - el and p - e2, and it is easy to check

that the new degree of the function allows for no new ramification at infinity. This sets up

a visibly invertible, hence bijective, correspondence between our two sets of functions, and

completes the proof of the corollary. O

The main usefulness of this rather eccentric fact is summarized in the following, to be

applied later on:

Corollary 1.4.4. To calculate Ngen({ei}i) completely in the mid and high characteristic

range, it suffices to do it either when all but at most one of the ei are less than p/ 2 , or, in

the case p is odd, when all the ei are odd. Moreover, it suffices to prove Theorem I.O.4 in

only either of these two cases.

Proof. The first statement follows trivially from the previous corollary. The second is simply

a matter of noting that for any given number of points, the parity of the sum of the ei is

determined by the fact that d must be an integer; all the ei being odd always gives the

correct parity, and if any ei are even, an even number of them must be, and we can replace

them in pairs by p - ei to get them all to be odd.

To get the final assertion, we have to show that the formulas proposed in Theorem 1.0.4

are unaffected by replacing a pair ei and ej with p - ei and p - ej. We will show this by
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induction, with n = 3 as the base case. For convenience, we repeat the formulas in question:

Ngen({ei}i) = E Ngen({ei}i<n-2, e), with e = 2d' - 2d + en-I + en - 1

d-en-1 +1 d
<d+ 1 p

d - en -{ I p -{ d - en-1 - en

Ngen(el, e2, e3) =

0

p>d

otherwise

We begin with the three point case. Here is the

to bear in mind the condition that ei < d for all i.

if all ei < d and d < p - 1. We use d = el+e2+e3-

rewritten as

el - e2 + 1

e2 - el + 1

main place where we have to be careful

Indeed, a map exists for ei if and only

and find that these inequalities may be

el + e2 - 1
< e3 <

2p - I - el - e2

Replacing el and e2 by p - el and p - e2 leaves the lefthand inequalities unchanged, and

switches the righthand ones, so the values of e3 for which a map exists are precisely the

same. By the visible symmetry between the ei, this is sufficient for the three point case.

Next, since the proposed recursive equation is not visibly symmetric in the ei, there

are three cases to consider: first, i = n - 1, j = n; second, i,j < n - 1; and finally,

i < n - 1,j n - 1. We first note that when we perform this flip, the degree d changes to

d + p- ei - ej.

Thus, for the first case, when we substitute d+p - en-I -en for d, p- en-_ for en-1, and

p-en for en, we find that the two inequalities on the left simply switch with one another, and

likewise for the inequalities on the right, so the range for d' remains unchanged. Likewise,

e = 2d' - 2d + en + en-i - 1 remains unchanged, so the formula is actually precisely the

same.

For the second and third cases, we will want to write the inequalities for d' as equivalent

inequalities for e. We find:
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en-en-l_ + 1 en + en-l -1

en-1 - en + 2p - I - en-1 -en

In particular, these inequalities depend only on en and en-1, and not on d. So in the

second case, since en and en-_ are fixed, e ranges through the same values, and each term

in the new recursive formula matches precisely a term in the original one, but with ei and

ej replaced by p - ei and p - ej, so we need only use the induction hypothesis to conclude

the desired result.

Finally, in the third case we assume for convenience that i < n - 1 and j = n. In this

case, when we substitute into our inequalities for e, we get

p - en - en-_ + 1 p - en + en - 1<e<
en-1 + en + 1 - p p - -en- + en

which then gives us that p - e satisfies precisely the same inequalities that e did originally.

Thus, each term in the new recursive formula matching a unique one in the old one by

replacing e with p - e; we likewise have ei replaced by p - ei, so once again the induction

hypothesis gives us the desired result. [1

We end with a rather surprising result illustrating that even tame ramification can have

very pathological behavior when the characteristic is in the low range:

Proposition 1.4.5. Suppose el > p but still prime to p, and ei < p for all i > 1. Then if

one map exists with ramification ei at Pi, infinitely many do. In particular, if the Pi are

general, no maps exist with ramification ei at Pi.

Proof. Without loss of generality, we may assume that P1 is the point at infinity, and that

our function maps infinity to infinity, so that if it is given by F/G, deg F - deg G = el. Now

consider the family of functions FIG - txP , where t E k. Because el > p, both deg F and

deg G are unchanged, so the ramification at infinity is unaffected. On the other hand, xP

is regular away from infinity, so it doesn't affect the order of vanishing of the denominator,

and it is inseparable, so it doesn't affect the derivative of the function. Hence, the different

is unchanged on the affine part, and since we assumed that all ei < p for i > 1, we find

that the ramification is unaffected everywhere, giving us an infinite family of maps, clearly

not related by automorphism, all with the same ramification. For Pi general we know that

29



there can be at most finitely many maps with specified tame ramification by Theorem 1.2.3,

so we conclude that there cannot be any such maps at all. ]

Remark 1.4.6. It will not be necessary for any of our applications, but it is trivial to gener-

alize the above argument to show that if el > mp for some m > 1, and the other ei are still

less than p, there is an m-dimensional family of maps with the same ramification divisor.

We can also easily show now the rather random fact that if the Pi are general, and we have

a map f with ei < p for all i > 1, but el = mp wild with m > 1, the different of f at

P1 is greater than 2(m - l)p. Indeed, if we again put P1 at infinity and write f = F/G,

subtracting off some multiple of xmp will force the degree to drop, and leave all ei for i > 1

unchanged. The index el may not drop (this can only happen if the degree of F drops at

least mp below the degree of G), but if it remains wild we can iterate, and since the degree

drops each time, el must eventually become tame. By our proposition, this new tame index,

which we denote by e, would have to be less than p. If we denote the new degree by d',

we have 2d' - 2 = e - 1 + i>l (ei - 1), and we also had 2d- 2 = + Ei>l (ei - 1) where

6 is the different of f at P1; thus, = e - 1 + 2(d - d'). But d - d' must be greater than

(m - l)p; if the degree of F always remained greater than the degree of G, it would have

had to drop by mp - e > (m - l)p, and would have determined d'. On the other hand,

if the degree of F ever dropped below the degree of G, the degree of our map would have

dropped more than mp. So > 2(m - l1)p, as desired.

Example 1.4.7. To demonstrate that the statement of Proposition 1.4.5 is not vacuous,

we note it is not difficult to write down a concrete example. Consider, for instance, the

function xP +2 + x for any odd prime p; it has tame ramification index p + 2 at infinity, and

since its derivative is 2xP+1 + 1, it has p + 1 distinct simply ramified points on the affine

line. Thus, we get from our proposition that xp + 2 + tXp + x is an explicit example of an

infinite family of distinct maps with the same fixed tame ramification divisor.

Remark 1.4.8. We know that given tame ramification indices and fixed branch locus, we can

have only finitely many maps with the specified branch behavior, so we must have that while

the ramification points in the constructed family of maps remain fixed, the branch points

move, which they visibly do, by the amount txP. This behavior is impossible in characteristic

0, and in high characteristics, where we already know the number of maps to be finite with

either ramification or branch behavior fixed. This also holds in mid characteristics, at least
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for odd ramification indices, but as of yet the only proof I am aware of (see Remark V.7.2)

is extremely circuitous and outside the scope of the methods of this chapter.

Remark 1.4.9. Since a result much like the lifting to characteristic 0 assertion of Lemma 1.3.2

holds in greater generality from the perspective of covers and specified branch behavior, one

might be tempted to conjecture that the lemma itself holds at least for arbitrary numbers

of points and tame ramification on JP1. However, the preceding proposition shows that it

cannot hold even in this case, since by virtue of Corollary 1.2.2 only finitely many of the

infinitely many constructed maps would be able to lift to characteristic 0. However, it may

still be true that one can generalize Lemma 1.3.2 to arbitrary numbers of points on 7 1 in

the high and mid characteristic ranges. Indeed, we are able to prove this in more generality

in Corollary II.4.5, subject to an expected-dimension hypothesis; in particular, in our case

of self-maps of IP', we can conclude thanks to Theorem 1.2.3 that lifting to characteristic 0

is always possible for tame ramification indices and general ramification points, or in high

characteristic and any ramification points, and we have reduced the mid-characteristic case

down to the conjectured finiteness of the number of maps for arbitrary distinct ramification

points.

Remark 1.4.10. The behavior exhibited here also appears to be fundamentally different from

the existence of special linear series in characteristic 0. Standard examples of special series

in characteristic 0 are situations where the expected dimension is negative, so non-existence

for general curves and ramification points is mandated by the generalized Brill-Noether

theorem. In such examples, the space of linear series with the prescribed ramification is

supported over a maximal-dimensional subspace of Mg,n, or equivalently, a general config-

uration where such a linear series exists has only finitely many. In particular, in none of the

standard examples is the expected dimension non-negative. It is not at all clear whether

or not this must always be the case in characteristic 0, but here we have an example where

this fails to hold in characteristic p.

1.5 Specialization to Inseparable Maps

The ultimate goal will be to solve the map-counting problem in mid and high characteristics

by repeatedly letting points come together. The main obstacle to this is understanding

when a family of separable maps can have an inseparable map as its limit. We provide
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an answer to this question, which will seem incredibly unmotivated, and indeed arose from

careful examination of the situation in the very different and at first glance totally unrelated

setting of Chapter V, as discussed in Section V.7.

Our main result is:

Theorem 1.5.1. Let A be a DVR containing its residue field k and with uniformizer t, and

ft be a family of maps of degree d from P1 to P1 over Spec A (more precisely, a linear series

on IPA) whose generic fiber is tamely ramified along sections Pi with all ei < p, and whose

special fiber is inseparable. We further assume that the Pi stay away from infinity. Then if

the limit of the Pi in the special fiber is denoted by Pi, we have:

(i) If the Pi are distinct, they are in a special configuration allowing the existence of

separable maps of degree d + mp - 1 + e ramified to order ei at Pi, and 2mp - 1 + 2e

at infinity;

(ii) If Pj = Pj, with ej + ej, < p, and the other Pi distinct, then the Pi are in a special

configuration allowing separable maps of degree d + mp - 1 - b + e, ramified to order

ei at the Pi for i j, j', ej + ej, - 2b - 1 at Pj = Pj,, and 2mp - 1 + 2 at infinity;

in either case, m is some positive integer with mp < d and e is 0 or 1, and in the second

case b is a non-negative integer less than (ej + ej, - 1)/2.

Proof. The main idea of the proof is not dissimilar to the basic operation of applying

fractional linear transformations to be able to factor out a power of the uniformizer if one is

given a family of maps degenerating to a constant map. However, in this case we will apply

a fractional linear transformation with inseparable coefficients; this will behave similarly,

but will not preserve the degree of the map, and also does not appear to work readily in

nearly the generality of the constant case.

We work for the most part explicitly with pairs of polynomials and their differents, only

dealing with common factors at the end to translate to rational functions and ramification

indices. We can write ft as F/G, where F, G A[x], and have no common factors. We

denote by F0 and Go the polynomials obtained from F and G by setting t = 0, and by Fo

and Go the inseparable polynomials obtained by canceling the common factors of F0 and

Go. Then let H1 and H2 be inseparable polynomials of degree strictly less than Po and

Go respectively, such that FoH2 - GoH1 = 1 (this is possible by dividing the exponents
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Fo and Go by p, applying Euclid's algorithm in k[x], and multiplying all exponents by p).

We now construct a new family F/G over SpecA as follows: if we denote by v the map

from A[x] to itself which simply factors out common powers of t, then F := v(FGo - GFo),

and G := FH2 -- GH 1. It is easy to check that applying an inseparable fractional linear

transformation to FIG will change (dF)G-F(dG) by the determinant of the transformation;

in our case, by construction the determinant is 1, and it follows that (dF)G - F(dG) is the

same as (dF)G - F(dG), but with a positive power of t factored out.

At t = 0, we note that since we had FoH2 - GoH1 = 1, G is made up precisely of the

common factors of F0o and Go, of which there can be at most d - deg fo. Since we removed a

positive power of t from (dF)G - F(dG), if we still have an inseparable limit, we can repeat

the process as many times as necessary to remove all the powers of t. Each time we do, the

degree of the denominator at t = 0 is reduced by at least the degree of the limit, and the

degree of the numerator for any t increases by at most the degree of the limit. We denote

the sum of the degrees of the inseparable limits as mp. We thus end up with a family FIG

which over the generic fiber has the same different as FIG away from infinity. If we let K

be the fraction field of A, we also note that since t is a unit in K and we transformed by an

invertible matrix of polynomials, the ideal generated by F, G in K[x] is the same as that

generated by F, G. Since F, G had no common factors over K, it follows that F, G have

no common factors either. Now, since we have no common factors, we find that away from

t = 0 (that is, at the generic fiber), Lemma 1.4.1 implies that FIG has the same ramification

as FIG except possibly at infinity, since all the ei were specified to be less than p. If we

denote the generic degree of FIG by d, the greater of the degrees of F, G at t = 0 by d, and

the degree of G at t = 0 by do, we have d < d + mp, and do < d - mp, and we must have

in particular mp < d.

The main idea of the rest of the proof is to show that our construction creates enough new

ramification at infinity to bound the degree d strongly from below, essentially determining

the situation. We claim that at t = 0, the degree of the different of (F, G) away from

infinity is the same as the generic degree of the different of ft. Indeed, this follows from

our hypothesis that the Pi stay away from infinity, because when the limit is separable,

the limit of the different is the different of the limit, with orders adding when points come
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together. It follows that

2d - 2 = 2d-2 + , 2d -2+e -1,

where 6, and e are the order of the different and the ramification index at infinity of

F/G at t = 0, respectively. Note that we do not need to consider base points at infinity,

since we are working with polynomials on the affine part, and d is the degree obtained after

substituting in t = 0. The above inequality gives in particular that d > d, so since the

degree of G at t = 0 was strictly less than d, d is simply the degree of F at t = 0. Thus,

the ramification index at infinity is simply d - do > d - d + mp, and it is at least mp.

Substituting back into the earlier inequality, we find

2d- 2 > 2d - 2 + (d -d + mp) -1 =d+d- 3+mp,

which immediately gives d > d + mp - 1. We then also have

ec_ > d-d + mp > d + mp - 1 -d + mp = 2mp - 1.

We now translate back into the language of maps, by removing common factors. In

the situation with Pj = Pj,, we let b be the number of common factors of Flt=o, Gt=o at

Pj = Pj,. For notational convenience, we will call the maximal order of vanishing at P of

a (non-zero) linear combination of polynomials F', G' the vanishing index of F', G' at P;

when there are no common factors, this is simply the ramification index of the corresponding

rational function. Considering (Ft=o, Gt=o), we have two cases to address. If d = d+mp- 1,

then substituting back into our first inequality we must have ec~ = 2mp- 1, and we see that

the entire different is accounted for. Similarly, if d = d + mp (we already noted it cannot be

greater), we see that ec~ = 2mp or 2mp + 1, and in either case the entire different is again

accounted for. We now argue that away from infinity we have no common factors except

at Pj = Pj, in the situation that they were equal. Because we assumed that ej + ej < p

in that case, the different in the limit is everywhere less than p, and we need not worry

about wild ramification. It then follows that at any point P, the different is the sum of the

common factors and the vanishing index (minus one) at that point, so to achieve a fixed

different, common factors force the vanishing index down. It is clear that vanishing index
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cannot drop under specialization, so this can only happen at points in the t = 0 fiber where

the limit of the different is greater than the limits of the differents approaching the point,

which can only happen where the ramification sections converge, where their differents add

in the limit. This shows that there are no common factors except possibly where Pj = Pj,.

When we factor out the b common factors, the degree drops by b, and the vanishing index

drops from ej + ej, - b - 1 to ej + ej, - 2b - 1. is exactly ei at all Pi for i $ j,j'.
In the cases that e, is tame, we are done. The only other possibility was that d = d+mp,

and e.. = 2mp. In this case, if we take Flt=o/Glt=o and subtract off an appropriate multiple

of X2 mp, we can reduce the degree of the numerator by at least one, and we claim we end

up in the first case again: as in the construction in the proof of Proposition 1.4.5, we will

not change the ramification away from oo, nor have we changed the denominator at all,

but we have visibly forced the numerator to have degree at most d + mp - 1, so all our

inequalities still hold and we are in fact back to the first case, completing the construction

and the proof of the theorem. O

Putting the theorem together with Proposition 1.4.5, and noting that there are only

finitely many possibilities for m, b, e, we conclude:

Corollary 1.5.2. In the situation of the preceding theorem, if the Pi are general, there

cannot be any ft as described, having an inseparable limit.

Remark 1.5.3. In the iterated operation on F/G described in the argument for the theorem,

it is possible that on some step, the explicitly-presented map on the special fiber would

become not merely inseparable, but constant. This is actually handled implicitly in the

iterated process, simply by a change of basis, with m remaining unchanged and the power

of t decreasing. This change of basis procedure is, of course, exactly why the space of gj's

of a given dimension is proper, so in some sense the procedure of the above argument may

be viewed as a generalization of that fact for our particular situation.

1.6 The Degeneration Argument

We complete the proof of Theorem 1.0.4 in this section via a degeneration argument. The

basic situation we will consider is the family arising as follows:
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P Pn-I Pn

Pn-2

P1

An explicit family of smooth IPl's degenerating to a node, with n sections.

Inside of 1 x P1 , take the family of hyperbolas given in affine coordinates by xy = t,

degenerating at t = 0 to the union of the x-axis and y-axis. For each t $~ 0, we get

a smooth IP, and fix isomorphisms between them by projecting to the y-axis. Choose

an isomorphism between our abstract P1l and the y-axis sending P to the node; we can

now speak of P1,... Pn-2 as well as P as fixed points on the y-axis and simultaneously

on all the Ipl's in our family; they are (constant) sections of our family. Now, choose

any two points P°_ 1 and PO on the x-axis away from 0, and define sections Pt_l and Pt

similarly via projection from our family to the x-axis rather than the y-axis. Under our

fixed trivialization of the smooth fibers of the family, these sections both tend towards the

section defined by P (see figure). We will consider this as a family X over Speck[t], and

write Xt for the associated local family over Spec k[t](t).

We briefly review the main concepts of the theory of limit linear series as it relates to

our situation. See Chapter II for general definitions and, where applicable, proofs. On any

non-singular fiber of our family, we know that a map to I1 (modulo automorphism of the

image) corresponds to a g on that fiber; we see that given a g on the family away from

the special fiber, we can obtain a d on either the x- or y-axis simply by projecting all

fibers to the appropriate choice of axis. This pair gives the associated Eisenbud-Harris limit

series on the nodal fiber; we have vanishing sequences at ax and ay for i = 0, 1 at the node,a i
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and the degree of the induced map on the x-axis (respectively, y-axis) is at most d - a

(respectively, d - aY), with the ramification index of the map at the node given by a1 - ax

(respectively, a - a). We hae have the inequalities a + a y > d, a + ay > d; the data of a

pair of gl's on the components with vanishing sequences satisfying these inequalities is in

fact the definition of an Eisenbud-Harris limit series, and we say that a given limit series is

refined if these are both equalities.

It is easy to see that for arbitrary ax and a satisfying the necessary inequality, the

space of gd s on the x-axis will have total required ramification at least 2(d - ax) - 2, and

similarly for the y-axis, so in particular by Riemann-Hurwitz if the limits are separable, we

immediately conclude that they must form a refined limit series, and they cannot have any

additional base points, so the corresponding maps must have degrees precisely d - ax and

d - a , with ramification index a - a = a - ay at the node.

Given these observations, our general theory, and specifically Theorem 11.4.3, gives us:

Theorem 1.6.1. Associated to our families X and Xt, and any choice of ramification

indices ei such that Ei(ei - 1) = 2d - 2, are schemes G := G (X, {(Pi, ei)}i) and G 1 :=

G (Xt, {(Pi, ei)}i), with the latter obtained from the former by base change, and the fibers

parametrizing (limit) linear series with the required ramification on the fibers of X and

Xt. We also have open subschemes G'1,SeP and G' seP parametrizing limit series which are

separable when restricted to every component of every fiber; over t = O, Gj'ep (equivalently,

G ' se p) parametrizes simply Eisenbud-Harris limit series, and contains only refined limit

series.

Proof. Most of this is immediate from Theorem 11.4.3. The fact that G,'SeP parametrizes

Eisenbud-Harris series on the special fiber follows from Corollary II.5.9 together with the

assertion that the only separable Eisenbud-Harris limit series are refined, which we observed

above. DE

Given this language, we can readily apply Corollary II.5.12 to obtain:

Corollary 1.6.2. With the notation of the above theorem, if P,.. .Pn-2 and P are chosen

generally, and en 1_ + en < p, then Gj ,sep is finite etale over Speck[t](t). In particular, it

has the same number of points, all reduced, in the geometric generic and special fibers, and

the fibers of G'seP have the same number of points for t general as at t = 0.
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Proof. First, the assertion on the fibers of Gl,sep for general d follows immediately from thed

statement on G'SeP, together with the fact that G'Sep is obtained from G,'SeP simply by

localization of the base around t = 0.

Next, to obtain the desired statement on GdseP, we need only verify that the three

conditions of Corollary II.5.12 are satisfied: first, that every separable Eisenbud-Harris

limit series on the special fiber is refined; second, that the scheme of separable Eisenbud-

Harris limit series on the special fiber consists of a finite number of reduced points; and

third, that if A is a DVR, any A-valued point of G mapping flatly to Spec k[t](t) and being

separable at the generic point is also separable on the closed point. Condition (I) is satisfied

even without the generality hypothesis, as stated in the above theorem.

Condition (III) is for the most part simply an application of Corollary 1.5.2; indeed,

given an A-valued point of G1 flat over Speck[t](t), projection to the y-axis would give a

family of gd's on 1P1 with ramification sections specializing to the P1,... Pn-2 , P, which are

general by hypothesis. Then Corollary 1.5.2 says that if the family is generically separable,

it must remain separable on the special fiber. It remains to see that the same holds if we

project to the x-axis. For this, considering the different we note that the vanishing sequence

on the y-axis at the node will satisfy a + ay - 1 = en_1 + en - 2, and in particular al < p.

On the other hand, a + ay > d, so since a is the number of base points acquired on the

x-axis, the degree on the x-axis is less than or equal to d - ax < a < p, and we also cannot

have an inseparable limit along the x-axis, giving condition (III).

Lastly, we prove the validity of condition (II) by induction on n. The basic observation is

because the space of refined Eisenbud-Harris limit series may be viewed simply as a disjoint

union over all vanishing sequences satisfying a + ayi = d of the products of the schemes

parametrizing gd's with appropriate ramification on each component, it suffices to see that

these latter are made up of reduced points. It is easy to see that as the vanishing sequences

vary, if we simply remove the base points a and a , we will have the same ramification

index e at the node on each component, the degrees on each component will be such that

the expected dimension (taking e into account as well as the ei) will be zero, and e will

vary arbitrarily given this constraint, together with the constraint that the degrees on each

component be at most d. In particular, it suffices to see that for points chosen generally,

the scheme of separable gsd in the (n - 1)-point and 3-point cases always consist of a finite

number of reduced points, and by induction on the statement of our corollary, it is enough
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to see this in the 3-point case, which we have conveniently already handled in Theorem

1.3.3. L]

We are now ready for:

Proof of Theorem I.0.4. First, we may assume that en-1 +en < p, thanks to Corollary 1.4.4.

By Corollary 1.6.2, for all our points chosen generally, and a general choice t, Gd'SeP has the

same number of points over that particular t as it does over t = 0. This sets up a simple

recursion formula to calculate Ngen({ei}i): the number will be given by the number over

the special fiber, which is the sum over all choices e of ramification index at the node of

Ngen(e, en-1, en)Ngen (ei i<n-1, e).

We recall that the formula we wanted to prove for Theorem 1.0.4 (the second formula

having already been handled by Theorem 1.3.3) was

Ngen({ei}i) = >, Ngen({ei}i<n-2, e), with e = 2d' - 2d + en_l + en - 1

d-en-l +1 <d< d
<d' K

d - en + p + d - en-1 - en

and that in the proof of Corollary 1.4.4 we showed that the above inequalities for d' were

equivalent to the following inequalities on e:

en - en-_1 < I en + en-l - 1
en-1 -en + 1 2p - 1 - en-1 -en

We begin by showing that the above inequalities for e give precisely the range for which

Ngen(e, en-1, en) = 1. But with Theorem 1.3.3 at our disposal, this is a trivial observation,

since en - en-1 + 1 < e, e_ - en + 1 < e and e < en + en-1 - 1 are precisely the

inequalities insuring that the ramification indices are less than the degree of the map, and

e < 2p - 1 - en-1 - en insures that the degree is less than p. Finally, we need to know that

the degree on the three-point component will be less than d. This degree will be given by

e+enH-+e2 -1, so we find that a priori, we need e < 2d-en_ -en +1. However, we note that

the right hand side is actually 2d'-e, so this inequality is equivalent to e < d', and we needn't

include it with the conditions, as if it is violated we will have Ngen({eii<n-2, e) = 0, and

there will be no contribution to the sum. This completes the proof of our main theorem. ]

As an application, we note that in the case of four points, for a given d' as in Theorem
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1.0.4, Ngen(el,e2,e) = 1 if el,e2, e < d' and p > d', and Ngen(el,e2, e) = 0 otherwise.

Rewriting this condition in terms of d', we get the bounds el < d', e2 < d', d' < 2d - e3 -

e4 + 1, d' < p - 1, and including these bounds for d' along with those of Theorem 1.0.4,

simply by substracting the various bounds for possible values of d' we obtain:

Corollary 1.6.3. The number Ngen({ei}i) of self-maps of P1 of degree d in characteristic p,

ramified to orders el,... e4 at four general points, with each ei < p and 2d - 2 = Ei(ei - 1),

and counted modulo automorphism of the image, is given by the formula

Ngen({ei}i) = min{{ei}i, {d + 1 - ei}i, {p - ei}i, {p - d - 1 + ei}i},

or equivalently,

Ngen({ei}i) = min{{ei}i, {d + 1 - ei}i} - max{0, d + 1 - p}.

Further, all of these maps are without any nontrivial deformations.

Example 1.6.4. We explore an example which demonstrates all the basic behaviors we

have described so far, and may be solved explicitly: maps of degree 3, with four simple

ramification points. We may assume without loss of generality that P1 = 0, P2 = o0, P3 = 1,

and we let P4 be a general parameter A. We see immediately that our four ramification

points must have distinct images, so we may further specify that our maps fix P1 and P2,

from which we deduce that they are of the form f = X(+b) with a, b, c all nonzero. Since

we did not specify that P3 be fixed, we have one remaining degree of freedom, and may set

b = 1. Now, if we consider the zeroes and poles of df, we can calculate directly that our

possible maps satisfy 2c = 2aA and 1 + 3ac = -(1 + A)2a, which in characteristic 2 means

c is determined by a and A, and a satisfies 3Aa2 + 2(1 + A)a + 1 = 0. In characteristic 3, we

get a unique (separable) solution, while in characteristics 0 or p > 3, we get two solutions

for general A. We find that these solutions come together when 1 - A + A2 = 0. Finally,

in characteristic 3, we also see that the unique solution f = X(1I+A)x+ 2 specializes to an

inseparable one when A goes to -1.

We conclude with some further questions. We could reasonably start with remaining

questions about the case of IP1 , including:
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Question 1.6.5. Is it true that for a given d and ei, the number of maps is either always

finite or always infinite as the Pi are allowed to move? Can we prove that it is always finite

in the mid-characteristic case?

Question 1.6.6. What happens in low characteristic when more than one ramification

index is greater than p? Does the number of maps become finite again? If so, can we give

a formula for it?

Question 1.6.7. What can we say about the dimension of spaces of wildly ramified maps?

When do wildly ramified maps exist for general ramification points?

This last question is explored further in [48].

Of course, one could ask the same questions about maps from higher-genus curves to

ID'l. These have been answered in the case of characteristic 0 in [49], and the argument

there would also apply in characteristic p given an appropriate generalization of Theorem

1.5.1 to control the possibility of separable maps specializing to inseparable maps. The

case of higher-dimensional linear series is still open, but may not be any harder than the

one-dimensional case as far as controlling inseparable maps is concerned.

I.A Appendix: Moduli Schemes of Ramified Maps

The goal of this appendix is to construct moduli schemes of maps of curves required to

have at least given ramification, but at unspecified points. Before we begin, we recall the

well-known corollary of Grothendieck's work on the Hilbert scheme:

Theorem I.A.1. Given X and Y two smooth, projective, geometrically connected curves

over a locally Noetherian scheme S and a positive integer d, then then the functor Mor (X, Y)

parametrizing degree d morphisms from X to Y over S is representable by a quasi-projective

scheme. In particular, Auts(X) = Mor (X, X) is representable.

Proof. Without the degree hypothesis, the functor is constructed in [23, p. 221-20] (where

it is called Hom) as an open subscheme of the Hilbert scheme via the graph associated to

a morphism. Now, if Y and X are ample line bundles on X and Y, and f a morphism

of degree d, the degree of the graph under the projective imbedding of X xs Y induced by

rT*Y 0 r42' will be deg( 0 f*) =deg Z + d deg. ; in particular, this is different for
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each d, so gives a different Hilbert polynomial for each d, so the Mor scheme is naturally

a disjoint union over all d of schemes representing Mord, each of which is quasi-projective,

being an open subscheme of a Hilbert scheme for a fixed polynomial.

Note that a corollary of this argument is that degree really is well-defined in this context:

the Hilbert polynomial and the degrees of Y and X will all be preserved under base change,

so the Hilbert polynomial of a map is determined by the degree on any fiber, which in turn

determines the degree on any other fiber.

In order to see that Auts(X) = Morl(X,X), we first note that for any d > 0,

Mord (X, Y) consists entirely of scheme-theoretically surjective morphisms (in the sense

that they do not factor through any proper closed subscheme of Y; since all relevant mor-

phisms are proper, this is equivalent to set-theoretic surjectivity together with injectivity

of the induced map on structure sheaves). Indeed, given f E Mor d, since X is flat over S,

and for any s S, the map f,: X - Ys is a non-constant map between smooth curves and

hence flat; by the criterion on flatness and fibers (see [63, Thm. 11.3.10]), f is also flat. But

f is set-theoretically surjective because every f, is, so we conclude that f is faithfully flat,

and it is scheme-theoretically surjective onto Y. Now, to see that Auts(X) - Mor(X, X),

it suffices to note that in our situation, one can check whether f is a closed immersion on

each fiber f, (see [59, Prop. 4.6.7]), so the desired assertion follows from the well-known

case of smooth curves over S = Speck (see, for instance, [59, Cor. 4.4.9]). Ol

We also have:

Proposition I.A.2. With the notation of the preceding theorem, there exists an open sub-

scheme Mord(se(X, Y) of Mord(X, y) parametrizing morphisms which are separable on

every fiber.

Proof. Let M := Mord(X,Y), XM and YM be the pullbacks of X and Y to M, f 

XM - YM be the universal morphism of degree d, defined over M; we get an induced

map f* M/M 
- X/ of line bundles on XM, with the kernel giving the locus on XM

where f is ramified. The complement is an open set, and its image in M is clearly the locus

of separable maps; since X is flat and of finite type over S, XM is flat and of finite type over

M, and in particular open, so we have constructed an open subscheme of M corresponding

to separable maps, as desired. [O
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We also recall a standard construction involving the jet bundle, or bundle of principal

parts x/s, associated to an S-scheme X. The terminology and notation is not standard,

however.

Definition I.A.3. We define the nth cotangent bundle Tx/s to be the kernel of the

natural map ;/s - Ax; explicitly, consider Ax ®0s ix as an Ax-module via left multi-

plication, and consider the natural map to AJx sending a 0 b to ab. Then if we denote the

kernel of this map by _x/s, with the induced Ox-module structure, Txls '-= x /lslxs.

We recall:

Proposition I.A.4. With notation as in the preceding definition,

(i) T/S is compatible with base change.

(ii) On affine opens, x/s is generated by elements of the form a 1 - 1 0 a, for a E Ox .

(iii) If X is smooth over S, TnX/ is locally free.

Proof. Compatibility with base change for Y/s is [64, Prop. 16.4.5]; because T/s is the

kernel of a map (clearly compatible with base change) to ex, and Ox is free, it follows that

Tnx/s is compatible with base change. (ii) is [61, Lem. 0.20.4.4]. Finally, (iii) follows from

the same statement for Y/s, which is [64, Prop. 17.12.4], since Tn/s is the kernel of a

surjective map from 9X/s to ix (in fact, this is somewhat gratuitous, since the argument

for Yx/s works without modification for Tn s). 

We now specify in full detail the functor we wish to represent: for a pair of smooth,

projective, geometrically connected curves X, Y over a locally Noetherian base S, n integers

ei, and d > 1, we consider the functor AM7lZ(X, , {ei) given by, for any scheme T over

S:

M.S~(X, Y, {e}i) is the set of separable morphisms f from XT to YT over T of degree

d, together with a choice of n disjoint T-valued points Pi of XT, such that the fiber of f(Pi)

contains an eith-order thickening of Pi inside of XT for each i.

Conceptually, this functor is the functor of maps f of degree d between X and Y,

together with points Pi on X which are (at least) eith-order ramification points of f.

Our main result is:
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Theorem I.A.5. The functor MR? = MR7d (X, Y, {e}li) is representable by a scheme MR.

We also have the natural data of morphisms ram: MR -+ X n and branch: MR -+ yn and

actions of the group schemes Aut(X) and Aut(Y) on MR over yn and X n respectively.

Furthermore, Aut(Y) acts freely on MR.

Proof. First we note that all the assertions other than representability can be verified simply

on the functor level: the morphism ram is the forgetful transformation which takes a point

of MR and remembers only the Pi; similarly, the morphism branch remembers the f(Pi),

which are sections of YT. A point g of Aut(Y) act on points of MR by sending f to g o f

and leaving the Pi fixed, and similarly g E Aut(X) acts on MR by sending f to f o g and

the Pi to g-lpi, which fixes f(Pi). The freeness of the Aut(Y) action follows easily from

the statement that any point of MR corresponds to a scheme-theoretically surjective map,

noted in the proof of Theorem I.A.5.

Clearly, we have a forgetful map from MR to M = Mordsep(X, Y); since the latter is

representable, it will enough to show that the map of functors is also representable. In

fact, if we use the convention that X denotes the product of n copies of XM over M, the

sections in the definition of our functor will allow us to describe MR as a closed subscheme

of XM with the pairwise diagonals removed. We claim that it is enough to handle the case

n = 1: suppose we have done this case, and for each i let MRi be the resulting scheme;

then the product of the MRi over M will nearly represent our functor, lacking only the

disjointness hypothesis on the sections. However, we can consider this product as a closed

subscheme of X , and simply removing the pairwise diagonals of this product will clearly

give us the desired disjointness.

Since X and Y are smooth over S by hypothesis, TY/s and Te 1s are locally free, so

the kernel of any morphism f*T-/s - + Tx/$ is representable by a closed subscheme of Y

over S, and the following lemma completes the proof of our theorem: E

Lemma I.A.6. Let f : X -+ Y be a morphism of separated S-schemes. Then there is a

natural map f*Ty/s - re-/s such that for any T over S, and any section ao: T -+ XT we

have:

(f*TY--/s Tx1/s)(T) = 0 if and only if the fiber of fT over fT(a(T)) contains an eth

order thickening of v(T) inside XT.

Proof. The map from f*Te- X/S, - is simply the one induced by f* 0 f* : f-1 'y s
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f-18Y - x ®&'s Yx. Our assertion is local, so we immediately reduce to affines, and

consider the situation that XT = SpecA, YT = SpecB, and T = SpecR. Since X and

Y are separated over S, a section is a closed immersion, so we also denote by I, the ideal

corresponding to or(T) in XT, and I' the ideal of AORA given by I, ORA. In this situation,

¢,e-1 e-1 e-(f* y/S X /S)(T) = 0 if and only if (fTI /T -+ Tr/T)a(T) = 0, by Proposition I.A.4

(i), and this is equivalent to the assertion that for all v E VYT/T, the image of fT in AXT/T

is actually in the ideal generated by I' and XT/T By Proposition I.A.4 (ii), JYT/T is

generated by elements of the form b 1i - 1 b with b E B, so the preceding is equivalent

to the statement that for all b E B, fb 0 1 - 1 f~b is in (I', T/T) Now, this will be

true if and only if it is true for all b with f~b E I,: the only observation is that since I, is

the ideal of a section, we can write any a C A, hence any f~b, as r + i where r is a pullback

of an element of R, and i E I,; then fb 0 1 - 1 ( ffb = i 1 - 1 0 i, and i = f(b - r).

We claim that our previous reduction is in turn is equivalent to the property that for

all b E B with fb I,, 1 f~b is in (I', A 0 I,); clearly, fb 1 E I', so it suffices to

show that (I', A 0 I e ) = (I',J T/T). The main observation is that once again using the

fact that I, is the ideal of a section, JVXT/T is in fact generated by elements of the form

i 0 1 - i, where i I,. Thus, JKT/T is generated by products 1j<e(ij - 1 ij),

which are equivalent modulo I' to elements of the form 1 (nj<e ij) with each ij E I,

proving the previous claim. But now we are nearly done: A OR A modulo (I, A 0 Ie),

recalling that I' := I, 0 A, is isomorphic to A/Ia, R A/I e, and since I, is the ideal of a

section, A/Ia - R, so AII, OR A/I, A/I,. Thus, 1 0 f.b E (I', A 0 Ia) if and only if

f4b E I e, and we conclude that our original condition is equivalent to the statement that

for all b E B with fb C I, we actually have fb E I e . Finally, the fiber of f (a(T)) is given

by Spec A/a, OB A, cut out in XT by the ideal of a E A generated by fb, with fb E I,.

The fiber contains an eth order thickening of aT if and only if this ideal is contained in Ie,

if and only if for all b with fb E I,, we actually have fb E I e . This completely the proof

of the lemma. Ol

Remark I.A.7. The Aut(X) action is not free in general, often having a non-trivial finite

sub-group scheme stabilizing any given morphism. However, it is easy enough to see that

the stabilizer of any k-valued point f E MR is in fact a finite group scheme; indeed, in this

case, we may as well set S = Spec(k). Since Aut(X) is a finite-type group scheme, the
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stabilizer will likewise be a finite-type group scheme over k, and it thus suffices to show

that it consists of only finitely many k-valued points to see that it is in fact a finite group

scheme. Now, an automorphism of Xk is determined on the generic point, and will have to

fix K(Yk) inside K(Xk) in order to fix f; since K(Yk) is a finite subfield of K(Xk), the the

relevant automorphism group is finite, and we conclude that we have finitely many k-valued

automorphisms of X over Y, as desired.

Remark I.A.8. The main arguments of this section immediately generalize to smooth, pro-

jective, geometrically connected schemes of higher relative dimension over the base S, with

the only modification being that not all morphisms will be finite of a given degree. However,

we restricted ourselves primarily to curves because only that case corresponds to a clearly

useful notion of ramification.
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Chapter II

The Limit Gr Moduli Scheme

In this chapter, we give a new construction for limit linear series, very much in the spirit

of Eisenbud and Harris' theory in [15], but more functorial in nature, and involving a

substantially new approach which appears better suited to generalization. This new con-

struction also has the desirable properties that the resulting moduli scheme is always proper,

and appears likely to be connected in at least some cases for reducible curves, which the

Eisenbud-Harris construction never was. We should remark that we do not actually see any

obstructions to their original construction working in characteristic p, but the independence

of characteristic is more transparent to us in our construction. We begin with an overview

of the basic ideas of limit linear series; for those unfamiliar with linear series, the actual

definitions and notation are all recalled below.

While our main theorem is too technical to state in an introduction, we can outline

the main concepts involved. The basic idea of limit linear series is to analyze how lin-

ear series behave as a family of smooth curves X/B degenerates to a nodal curve X; a

key distinguishing feature of the theory is that rather than standard deformation-theoretic

techniques to obtain results from the degeneration, a simple dimension count on the special

fiber produces results immediately.

More specifically, recall that a proper, geometrically reduced and connected nodal curve

with smooth components is said to be of compact type if the dual graph is a tree, or

equivalently if the (connected component of the) Picard scheme is proper. Now, if Xo is not

of compact type, line bundles on the smooth curves may not limit to a line bundle on the

nodal fiber, as the Picard scheme of the family (and specifically of the nodal fiber) will not
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be proper. On the other hand, if the nodal fiber is reducible, limiting line bundles will exist,

but will not be unique, as one can always twist by one of the components of the reducible

fiber to get a new line bundle, isomorphic away from the nodal fiber to the original one.

However, this turns out to be the only ambiguity. To explain the approach to this issue, we

consider for simplicity the case of gd's where the family X/B has smooth general fiber, and

Xo consists of two smooth components Y and Z, meeting at a single node P. Given a line

bundle of degree d on X, we will say it has degree (i, d - i) on Xo if it restricts to a line

bundle of degree i on Y and degree d-i on Z. Eisenbud and Harris approached the problem

by considering the linear series obtained by looking at the two possible limit line bundles

obtained by requiring degrees (d, O) and (0, d) on Xo. Since the degree 0 components cannot

contribute anything to the space of global sections chosen for the g, this is equivalent to

specifying a gd on each of Y and Z; they showed that if such a pair arises as a limit of gs

from the smooth fibers, it will satisfy the ramification condition

a(P) + arZ_i (P) > d. (II.0.1)

They refer to such pairs on a nodal fiber as crude limit series, and when the inequality

is replaced by an equality, as refined limit series.

Eisenbud and Harris' moduli scheme construction requires restriction to refined limit

series, and as such is not generally proper, and is also necessarily disconnected, being con-

structed as a disjoint union over the different possible ramification indices at the nodes.

Moreover, the necessity to specify ramification indices makes it unsuitable for generalizing

from curves to higher-dimensional varieties. The basic idea of our construction is to remem-

ber not just the line bundles of degree (d, 0) and (0, d) on Xo, but also the d - 1 line bundles

of degree (i, d - i) that lie in between. One can then replace the ramification condition with

a simpler compatibility condition on the corresponding spaces of global sections, yielding

a very functorial approach to constructing the moduli scheme. Further, one can show a

high degree of compatibility with Eisenbud and Harris' construction: in particular, for a

curve (of compact type) over a field, our construction contains the Eisenbud-Harris version

as an open subscheme. One interesting difference between the constructions is that when

the Eisenbud-Harris scheme has the expected dimension, it is determinantal, which makes

proving the required lower bound on the dimension very straightforward. Our construction
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does not have any obvious determinantal interpretation, so the dimension count is more

difficult, and it is also possible that the resulting moduli scheme may be somewhat more

pathological in general as a result.

We begin in Section II.1 with a review of the basics of linear series, but in arbitrary

characteristic. In Section II.2 we give the precise conditions on the families of curves we

will consider, and show that such families may be contructed as necessary. In Section II.3

we define the limit linear series functors we will consider, and our main theorem, the rep-

resentability of these functors, is proved in Section II.4; we conclude with corollaries as in

Eisenbud and Harris on smoothing linear series from the special fiber when the dimension

is as expected, including in the cases of positive and mixed characteristic. We compare our

theory to that of Eisenbud and Harris in Section 11.5, and conclude with some further ques-

tions in Section 11.6. Finally, in Appendix II.A we develop a theory of linked Grassmannian

schemes, which parametrize collections of sub-bundles of a sequence of vector bundles linked

together by maps between the bundles; this is used in the construction of the limit linear

series scheme in the main theorem, and in particular to obtain the necessary lower bound

on its dimension.

The work here is of course entirely inspired by Eisenbud and Harris' original construction

in [15]. Attempts to generalize this theory have thus far been sparse, but include for instance

work of Esteves [16] to generalize to certain curves not of compact type.

II.1 Linear Series in Arbitrary Characteristic

Before getting into the technical definitions related to the central construction, we begin

with a few preliminary definitions and lemmas in the case of a smooth proper geometrically

integral curve C of genus g, over a field k of any characteristic.

First, recall:

Definition II.1.1. If £° is a line bundle of degree d on C, and V an (r + 1)-dimensional

subspace of H(C, 2), we call the pair (, V) a or a linear series of degree d and

dimension r on C. Given (, V) a on C, and a point P of C, there is a unique sequence

of r + 1 increasing integers a(' V) (P) called the vanishing sequence of (2, V) at P, given

by the orders of vanishing at P of sections in V. We also define a('V) (P) i,

the ramification sequence of (, V) at P. (, V) is said to be unramified at P if all
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ae ' V ) (P) are zero; otherwise, it is ramified at P.

Warning II.1.2. Since the ramification and vanishing sequences are equivalent data, we

tend to refer to conditions stated in terms of either one simply as "ramification conditions."

We will also drop the (, V) superscript or replace it as appropriate, particularly when we

have a linear series on each component of a reducible curve, when we will tend to simply

use the component to indicate which series we are referring to.

The following definitions, being tailored to characteristic p, may be less standard:

Definition II.1.3. We say a linear series (, V) on C is separable if it is not everywhere

ramified. Otherwise, it is inseparable. At a point P, we say that (, V) is tamely

ramified if the characteristic is 0 or if the vanishing orders ai (P) are maximally distributed

mod p (in particular, this holds at any unramified point). Otherwise, we say that (, V)

is wildly ramified at P.

The following result is a characteristic-p version of a standard Pliicker formula, whose

proof simply adapts standard techniques:

Proposition II.1.4. Let C be a smooth proper geometrically integral curve of genus g over

a field k, and (', V) a g on C. Then either (, V) is inseparable, or we have the inequality

S a (P) < (r + 1)d + (r + 1)(2g - 2)
PEC i

Furthermore, this will be an equality if and only if (, V) is everywhere tamely ramified;

in particular, in this case inseparability is impossible.

Proof. We simply use the argument of [14, Prop. 1.1]. Even though it is intended for

characteristic 0, the proof follows through equally well in characteristic p for our modified

statement, noting that their "Taylor expansion" map is defined independent of character-

istic, and their formulas then hold on a formal level. Indeed, their argument shows that

if (, V) induces a non-zero section s(YZ, V) of y0r+1 ® (Qb )®(r+l), we get th desired

inequality, with equality if and only if the determinant of their Lemma 1.2 is non-zero at all

P (where, as in the proof of the proposition, Xj := cajzV) (P)). In fact, if this determinant

is non-zero anywhere, we see also that s(Y, V) has finite order of vanishing at that point,

and cannot be the zero section. Next, their same lemma shows that their determinant will
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be non-zero at a point P if and only if (, V) is tamely ramified at P. This means that

if we show that inseparability corresponds precisely to having s(Y°, V) = 0, we are done.

But this also follows trivially, since on the one hand any unramified point is in particular

tamely ramified, and will in fact give a non-vanishing point of s('°, V), and on the other

hand, if s(, V) is non-zero, we have seen that we can get only finitely many ramification

points. O

Note that because vanishing sequences are bounded by d, if d < p wild ramification is

not possible, so the previous proposition immediately implies:

Corollary II.1.5. Wildly ramified or inseparable linear series of degree d are only possible

when d > p.

Finally, we have the notation:

Definition II.1.6. Given n points Pi and n ramification sequences ai = {a'}j, we write

p := p(g,r, d; i) := (r + 1)(d - r) - rg - ij . This is the expected dimension of

linear series of degree d and dimension r on a curve of genus g, with at least the specified

ramification at the Pi.

1.2 Smoothing Families

In this section we describe the families of curves whose limit linear series we will study, called

"smoothing families", and then give some basic existence results. While the definition

of a smoothing family is rather technical, we expect that most applications will involve

smoothing a given reducible curve over a one-dimensional base, so we conclude with a

theorem giving the existence of such families satisfying all our technical conditions, given

the desired reducible fiber. However, we work over a fairly arbitrary base, largely because

this simultaneously handles another case that substantially precedes the theory of limit

linear series, but tends to come up nonethless: a universal family of smooth curves, where

we might want to show that a given property will hold for a general curve if it holds for a

single one.

Our central technical definition is:

Definition 11.2.1. A morphism of schemes r : X -+ B, together with sections P1,... Pn 

B - X constitutes a smoothing family if:
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(I) B is regular and connected;

(II) r is flat and proper;

(III) The fibers of wr are genus-g curves of compact type;

(IV) The images of the Pi are disjoint and contained in the smooth locus of 7r;

(V) Each connected component A' of the singular locus of 7r maps isomorphically onto

its scheme-theoretic image A in B, and furthermore XI,-1A breaks into two (not

necessarily irreducible) components intersecting along A';

(VI) Any point in the singular locus of r which is smoothed in the generic fiber is regular

in the total space of X;

(VII) There exist sections Di contained in the smooth locus of 7r such that every irreducible

component of any geometric fiber of 7r meets at least one of the Di.

We begin with a lemma on two methods of obtaining new smoothing families from a

given one:

Lemma II.2.2. Let X/B, Pi be a smoothing family. Then

(i) If B' -+ B is either a k-valued point of B for any field k, a localization of B, or a

smooth morphism with B' connected, then base change to B' gives a new smoothing

family.

(ii) If A' is a node of X/B which is not smoothed in the generic fiber, let Y, Z be the

components of X with Y U Z = X, Y n Z = A'. Then restriction to Y or Z gives a

new smoothing family.

Proof. For (i), the only properties of a smoothing family not preserved under arbitrary

base change are (I) and (VI); these are visibly automatic in the cases B' = Spec k or B' a

localization of B, while the case of B' smooth over B and connected follows from the fact

a scheme smooth over a regular scheme is regular (see [3, Prop. 2.3.9], for instance).

For (ii), the only condition that isn't immediately clear is that flatness is preserved.

However, we have an exact sequence of sheaves (on X) 0 -+ Ax -+ 6Y E z - YnZ -+ 0;

Ax is flat over OB by hypothesis, and ¥Ynz is actually assumed to be isomorphic to B,
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so we conclude that Oy &z and hence Oy and bz are flat over B, and restriction to

either Y or Z does in fact yield a new smoothing family. O

We now proceed to develop some results on construction of smoothing families.

Lemma 1.2.3. Let r : X -+ B be a family satisfying conditions (I)-(III) and (VI) of a

smoothing family, Xo a chosen geometric fiber of 7r mapping to a point P E B, and Pi

smooth closed points on Xo with images in Xp having residue fields separable extensions

of n(P). Suppose further that each component A' of the singular locus of X/B is flat over

its image A in B. Then there is an etale base change of r and sections Pi specializing to

the Pi which yield a smoothing family still containing Xo as a geometric fiber, and with the

same geometric generic fiber as 7r.

Proof. First, localize B so as to avoid any components of the singular locus not occurring

in X0. Then, in addition to the Pi, choose one smooth closed point Di on each component

of X0, each having field of definition a separable extension of in(P) (this is possible because

Xo is geometrically reduced by hypothesis, so smooth on a non-empty open set, and then

the set of points with separable fields of definition is dense, see [3, Prop. 2.2.16 and Cor.

2.2.13]). Next, by [3, Prop. 2.2.14], after possible etale base change we can find the desired

sections Pi and Di of 7r, each going through the corresponding Pi or Di; we can (Zariski)

localize the base once more to obtain the desired disjointness of the Pi and to ensure that

all Pi and Di remain in the smooth locus (the latter is automatically satisfied for nodes

which are smoothed generically, but not for those which are not).

All that remains is to show that we can obtain condition (V) as well. We begin with

the hypothesis that all the nodes map isomorphically to their images. By Theorem A.2

the singular locus of a family of nodal curves is finite and unramified over the base, so our

hypothesis that each connected component A' of the singular locus is also flat over its image

A implies that A' is etale over A, and by [3, Prop. 2.3.8 b)], after an etale base change of

A, A' will map isomorphically to A. In the case that A = B we will be done, while in the

case A 4 B we simply apply [51, Cor. V.1, p. 52] to lift our etale cover of A to an etale

cover of B, at least locally around the image of Xo.

Finally, we need to make sure that X breaks into components around each node. For each

connected component A' of the singular locus of r, if we can produce an etale base change

which causes the generic fiber XA of XIA to break, Xla will break as well. By hypothesis,
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X ~ breaks geometrically, and it will break into components over some given intermediate

field K if and only if the geometric components are Gal(K/K)-invariant. But by [10, Lem.

4.2], there is in fact a finite etale base change of A such that the geometric generic fiber of

the base change is in natural correspondence as a Galois set with the geometric components

of XA. In particular, after this base change, any generic fiber lying over XA will have all

its geometric components Galois-invariant, and hence defined over its field of definition. If

A = B, we are done; if not, we apply the same result as above to obtain an etale base

change of B specializing to our given one on A. ]

For typical applications of limit linear series, we expect that the following theorem,

which follows fairly easily from a theorem of Winters, will render irrelevant the technical

hypotheses of our smoothing families:

Theorem II.2.4. Let Xo be any curve of compact type over an algebraically closed field

k, and P1,... Pn distinct smooth closed points. Then Xo may be placed into a smoothing

family X/B with sections Pi specializing to the Pi, where B is a curve over k, and where

the generic (and hence general) fiber of X over B is smooth.

Proof. Since the compact type hypotheses include that X0 is reduced, has smooth compo-

nents, and only nodes for fibers, we find that X0 is locally planar, and has normal crossings.

Then setting all mi = 1, we can apply [56, Prop. 4.2] to obtain a proper map over Speck

from some regular surface X to some regular curve B, having X as a fiber. This must

automatically be flat, for instance by [13, Thm. 18.16b], and noting that in this case the

fiber dimension must be constant. Now, we localize B if necessary so that all fibers are at

most nodal. We then claim that the generic fiber X1 must be smooth: the locus of nodes

in fibers of X/B must be finite and unramified over B by Theorem A.2, so if they exist in

X1, they correspond to a finite set of points, which, being unramified, must have residue

fields given by separable extensions of K(B). However, since we are looking at the generic

fiber, the local rings in the fiber are the same as in all of X, which is regular by hypothesis,

so [13, Cor. 16.21] implies that any such points would be smooth points, and could not be

nodes by definition, yielding the smoothness of X1. Now note that the algebraically closed

hypothesis renders any issues of separability of residue extension field moot. Further, our

nodes are all isolated points, so we claim the flatness of each connected component of the

singular locus is automatic: in fact the nodes are reduced by the final remark below, but
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even if they weren't, they would each map isomorphically onto their image, since the map

is given by a finite, unramified map of local schemes with algebraically closed residue field.

Therefore, we can apply the preceding lemma to obtain our desired smoothing family. ]

Remark II.2.5. There are a number of differences between our definition of a smoothing

family, and the one used in Eisenbud and Harris' original construction in [15]. None of

these are due to the different construction. Extra conditions such as the reducedness of B

and the regularity of X at smoothed nodes are in fact necessary to ensure that certain closed

subschemes are actually Cartier divisors, and the condition that X break into distinct com-

ponents above the nodes is likewise tacitly assumed, but not automatic. The regularity of B

is necessary to make the sort of dimension-count arguments employed in the construction.

Conversely, the hypotheses on the characteristic (or even existence) of a base field appears

to be unnecessary in their construction, as does the hypothesis that the relatively ample

divisor be disjoint from the ramification sections. The only hypothesis we include here that

may be truly gratuitous is that the relatively ample divisor be composed of global sections,

but it is convenient and, as we have shown, not difficult to achieve. Presumably, we could

also relax the compact type hypothesis and still achieve smoothing results, as long as we

did not require properness for our limit series moduli scheme.

Remark 11.2.6. We do not claim that the moduli scheme could not be constructed under

weaker hypotheses, but merely that our hypotheses are those which are necessary for our

particular argument. It seems quite likely that one could drop many of the hypotheses on

both X and B if, for instance, one were to first make the construction over a universal

deformation space, or even the moduli space of curves itself, and then obtain it for any

family via base change.

Remark 11.2.7. It is not true that condition (VI) of a smoothing family is preserved under

base change by arbitrary closed immersions B' -+ B, even when B' is regular and connected.

For example, consider any smoothing family with B = A, and having a node A' with A

given by the x-axis. Then if B' is the parabola y = x2, base change to B' will create a

singularity in X above the origin.

Remark 11.2.8. In fact, the hypotheses for a smoothing family r imply that every connected

component of the singular locus of r is regular, and in particular irreducible and reduced.

However, we will not need this, so we do not pursue it.

55



11.3 The Relative Gd Functor

Given, in addition to a smoothing family, integers r, d, and ramification sequences ai :

{( c}j for each of our Pi, we will associate a 9g functor to our smoothing family; this functor

will initially appear to include a lot of extraneous data, but we will show that it actually

gives the "right" functor, at least in the sense that it associates a reasonable set to any

geometric point of B.

We will work with a very simple smoothing family, in order to avoid drowning in no-

tation, in essence restricting our families to reducible curves with only two components.

Although this may seem like a severe restriction, in practice any argument which could

be made with more components ought to be approachable by instead inductively using

degenerations to curves with only two components.

Situation 1.3.1. We assume that X/B is a smoothing family with at most one node (in

the sense that the singular locus of r is irreducible). If there is a node, we introduce some

notation: denote by A' the singular locus of r, and A its image in B; by hypothesis, r

maps A' isomorphically to A. We now distinguish three cases: case (1) is that there is no

node; case (2) is that A is all of B; and case (3) is that A is a Cartier divisor on B. In case

(2), we denote by Y and Z the components of X intersecting along A'.

We claim that with the specified hypotheses, these three cases are all the possibilities:

by Theorem A.2, if A is non-empty, it is locally generated principally; if it is 0, A is all of

B, and X is reducible. Otherwise, the integrality of B ensures that A is a Cartier divisor.

Now, let Y and Z be the components of XI,-1, necessarily irreducible and intersecting

along A'. In case (2), we will make use of the morphism (actually an isomorphism onto

a connected component) Picd-i(YT/T) x Pici(ZT/T) -+ Picd(XT/T) for any i and any T

over B, obtained from Lemma A.9, in order to think of a pair of line bundles . 2 2y, .Yz

on YT and ZT as a line bundle on XT, which we will denote (Yy, z). In case (3), by

the nonsingularity hypothesis, Y and Z are Cartier divisors in X, so we have associated

line bundles on X, Ax(Y) and Yx(Z). Moreover, because A is a Cartier divisor on B,

and x (Y + Z) x(q r*A) - r*t B(A), we have that locally on B (that is, when X is

restricted to sufficiently small open sets in B), Ox(Y + Z) v BY.. In order to ensure that

our functor is globally well-defined, we will need the following lemma:
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Lemma 11.3.2. Let 7r : X -- B be a proper morphism with geometrically reduced and

connected fibers, 9 and 2' two isomorphic line bundles on X, and V and V' sub-modules

of r and ard ' respectively. Then the property that "V maps into V"' is independent of

the choice of isomorphism between Y and 2'.

Proof. Hom(Y, 2') _ -'1 ® ' tYx, by hypothesis. Thus, any two choices of isomor-

phism must differ by a unit in H°(X, Ox), or equivalently, H°(B, 7r*, x). By Lemma A.24,

ir, Yx - &B, so any two isomorphisms between 2' and 2' must differ by (the pullback of)

a unit in &B. Since a choice of sub-module V' of r,,' is invariant under multiplication

by a unit in &B, we find that whether or not V is mapped into V' under the isomorphism

r,*2 -+ rid induced by a choice of isomorphism between 2 and 2' is in fact independent

of choice of isomorphism, as asserted. E

Given a morphism f : T -> B, despite the notational headache, for the sake of preciseness

we denote by a subscript T the various pullbacks under f; we now describe the set of objects

our functor Gd (X/B, (P, {(Pi,i)}) associates to T, first giving a conceptual overview of each

case, and then pinning down the technical details. The set associated to T will consist of

all objects of the form:

case (1): a line bundle Y of degree d on XT, and a rank r sub-bundle V of 7rT,*2 , with

the desired ramification along the Pi,T.

case (2): a line bundle 2' of degree d on XT, which has degree d when restricted to YT,

and degree 0 when restriced to ZT, together with rank r sub-bundles Vi of 7rT, 2 i , where

i := (IYy T(-izAT), 2 l[zT(iA')). Each Vi must map to Vi+1 under the natural map given

by inclusion on ZT and 0 on YT, and each Vi must map to Vil under inclusion on YT and 0

on ZT. Finally, we impose the desired ramification along the Pi,T as in the first case, with

the caveat that we impose it only on V0o if Pi is on Y, and only on Vd if Pi is on Z.

case (3): a line bundle 2' of degree d on XT, which has degree d when restricted to YT,

and degree 0 on ZT, and rank r sub-bundles Vi of 7rT* (i), where -Pi := ( Xx (Y)Ti),

for 0 < i < d. Each Vi must map to Vi+1 under the natural map 7rT*,( 2 i ) -+ 7rT,*(i'+l).

Further, locally on T, AT will be principal, so that 9T(AT) - T, and Yx(Y + Z)T-

6'X,T. On any such open of T, we require that Vi map to Vi_1 under the natural map

7rT*(i ) -- lrT*( 'i 0 6X(Z)T), composed with the map to 7rT,*(2'i - l) induced by some

choice of isomorphism jx (Y + Z)T -- X,T. The previous lemma insures that this condition
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is independent of the choice of isomorphism, and therefore makes sense globally on T.

Finally, we impose the desired ramification along the Pi,T as in the first two cases, imposing

it only on Vo if Pi specializes to Y, and only on Vd if Pi specializes to Z.

Remark II.3.3. The definition of gd in cases (2) and (3) depends a priori on the choice of

Y and Z, but it isn't hard to see that in fact it doesn't. This is trivial in case (2), since

the definition is visibly symmetric, while in case (3), we seem to run afoul of the fact that

tAx(Y) need not be globally isomorphic to Yx(-Z). However, they are locally isomorphic

on the base, and by virtue of Lemma II.3.2 and the equivalence on the Picard functor

specified immediately below, this will be enough to establish a correspondence between gd

as defined, and ~9 with the roles of Y and Z switched.

We now specify the technical details:

First of all, there is a necessary equivalence condition on line bundles in order to obtain

representability of the Picard functor. We will consider two relative line bundles to be

equivalent if they become isomorphic Zariski-locally on T. In particular, the Yi in case (2)

are defined only up to isomorphism locally on T. However, this isn't a problem because by

Lemma 11.3.2, we get a well-defined equivalence relation on our functor, since the particular

choice of local isomorphisms doesn't affect anything.

By sub-bundle, since 7rT,T. is not necessarily locally free, we cannot require that the

quotient be locally free. Rather, we require:

Definition 11.3.4. We define V to be a sub-bundle of 7rTY if in addition to V being a

locally free sheaf, for any S -+ T, the map Vs -+ rs,Ys remains injective.

Note that in this definition, we are pushing forward the pullback of sA9, and not the

other way around. The required sheaf map is gotten by composing the induced map Vs -+

(7T,*Y)s with the natural map (rT,*Y)S - 71rs, S-.

Finally, ramification is imposed by considering the sequence of maps

V - rTrT*,l(d+l)Pi,T 7rT*ldPi,T + .. .-rT*YIPiT - 0

We denote by ,m the composition map V -+ 1T*ImPiT. Then /d+l automatically has

rank r + 1, and P0 has rank 0, and to get the desired vanishing sequence at Pi,T, we bound

the ranks of the /,m from above, increasing precisely at the a; that is, rkim < j for all
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m < a As before, a := + j Of course, this condition only has to be imposed once per

ai at m = a', and will then be automatic for all m less than aj but greater than a/.

Intuitively and in applications, gd should be thought of primarily as parametrizing,

for any closed point x of B, the limit series on the fiber of X over x. We also have the

subfunctor of gd, which we denote by 'Sep consisting of those linear series which are

separable in every fiber: it is clear what this means for smooth curves, while for reducible

curves we require both Voly and Vdlz to be separable.

One can verify quite directly that the gS we have defined is in fact a functor. However,

since we defined it differently in three separate cases, we also need to check:

Lemma 11.3.5. gr and grseP are compatible with base change.

Proof. Suppose we pull back from X/B to a new smoothing family X'/B'. The first and

second cases are preserved under pullback, so here it really is trivial to verify that our

construction is compatible with base change. However, the third case can pull back to any

of the three. If X'/B' is still in the third case, it is no subtler than the first two cases. If

B' misses A, X'/B' will be in the first case, and we have to verify that we still get the

right functor. The only real observation here is that Ax(Y) and x(Z) pull back to the

trivial bundle bundle in this case, so in fact on X'/B' all the maps between our Yi will

be isomorphisms, and any Vi (along with its ramification conditions) completely determine

the others, so we do in fact get the right functor. On the other hand, if B' is contained

in A, X'/B' ends up in the second case. Here, the point is that ex (Y) clearly pulls back

to Bz',(A') on Z'. Then since Ox(Z) likewise pulls back to Oy, (A') on Y', and Ox (Z) is

locally on B the inverse of Ox (Y), we find that up to the equivalence in the definition of

the Picard functor, Ox(Y) must pull back to 'y, (-A'), and we once again get the correct

functor, completing the proof of compatibility with base change.

Finally, because gr,,ep was defined as a sub-functor of gr in terms of behavior on fibers,

it immediately follows that it too is compatible with base change. O

Warning II.3.6. While we will later show compatibility with Eisenbud-Harris refined limit

series over a field, note that in fact the compactification we obtain will have many points

for each Eisenbud-Harris crude limit series, as there may be a positive-dimensional space of

ways to fill in V1,... Vd-1 when a given V0o and Vd correspond to a crude limit series.
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11.4 Representability

The main theorem is the representability of our Gd functors. However, to ease the pain of

the proof, we begin with some technical lemmas before proceeding to the statement and

proof of the main theorem.

We begin with some compatibility checks on our notion of sub-bundle:

Lemma II.4.1. Our notion of sub-bundle has the following desireable properties:

(i) Suppose we have cY such that r,oYg is locally free, and the higher derived pushforward

functors vanish. Then our definition of sub-bundle of r,Y is equivalent to the usual

one (that is, a locally free sub-sheaf with locally free quotient).

(ii) If D is an effective Cartier divisor on X, flat over B, and Y any line bundle on X,

then a sub-sheaf V of r,i is a sub-bundle of r,Y if and only if it is a sub-bundle of

7r*,(D) under the natural inclusion.

(iii) Let V1, V2 be sub-bundles of rank r of r, in our sense, and suppose V1 C V2. Then

VI = V2.

Proof. For (i), we make use of the facts that for a locally finitely-presented Ax-module,

flatness is equivalent to being locally free, (see [13, Exer. 6.2]), and that flatness is also

equivalent to the vanishing of Tor'(Os, Qs) for all base changes S (in fact, it suffices to

consider finitely presented closed immersions; see [13, Prop. 6.1]). We will also use that

under the hypotheses on A', for any base change S/B, the natural map (r,*Y)s - rYs

is an isomorphism (see [60, Cor. 6.9.9] and the comments [60, 6.2.1]). Now, if the quotient

Q := 7r,fY/V is locally free, it is flat, and the injectivity of V - r,. is preserved under

base change, so applying (r*,Y)s - r,-Ys, we get Vs "- 7r,52Ys, as desired. Conversely,

once again using (r,*)s - 7r,Yis, Vs '-4 r, s gives us that the injectivity of V - rie

is preserved under base change; this in turn implies that Tor'(0s, Qs) = 0 for all S, since

r,'i, being locally free and hence flat, has vanishing Tor. This implies that Q is flat, and

since Q will be finitely presented, this gives us that Q is locally free, completing the proof

of the assertion.

(ii) will follow immediately if show that r,ts -4 r,*2(D)s is injective for all S. How-

ever, .2Ps - Y(D)s is injective for all S thanks to the flatness of D over B, since the

60



cokernel o$(D)IL) will be flat over B, and hence has vanishing Tor1 for any GB-module.

Then injectivity is trivially preserved under pushforward, so we are done.

(iii) is straightforward: let Q = V2/V1, so that we have

0 -- V -+ V2 -+ Q -- O

on B, and let b C B be any point of B. If we base change to Spec r(b), we get

Vlb -4 V2b -4 Qb 0.

Now, Vlb -+ r,*b factors through V2b, so by the definition of Vlb being a sub-bundle, we

must have Vlb " V2b. But both Vlb and V2b are r-dimensional vector spaces over (b), so

injectivity implies surjectivity, and we find that Qb = 0, and hence the stalk of Q at b must

be zero by Nakayama's lemma. Since b was arbitrary in B, we have Q = 0, and V1 = V2, as

asserted. l

We also have a lemma illustrating how we will use our sections Di:

Lemma 1.4.2. Let X/B be a smoothing family, and Yi any finite collection of line bundles

on X, of degree d. Then locally on B, there exists an effective divisor D on X satisfying:

(i) D is supported in the smooth locus of r, and is disjoint from the Pi.

(ii) irwY(D) is locally free and Rir.Y(D) = 0 for i > 0.

(iii) r,.(D) -+ 7r*,.(D) Ijpi is surjective for all i and all j < d + 1.

Proof. With Di any collection of sections as in the definition of a smoothing family, let D'

Ei Di; then locally on B, for m sufficiently large, mD' will have the following properties:

(i) x(mD') is very ample;

(ii) Hi(X, Yte(mD')) = 0 for all i > O0 and all e on every fiber of 7r;

(iii) H1 (X, Yte(mD' - jPi)) = 0 for all j < d + 1 and all e on every fiber of r.

Indeed, Proposition A.5 implies that D' is r-ample. Then, locally on B we have that

D' is ample, so sufficiently large multiples are very ample by [26, Prop. 111.7.5]. Noting

that (iii) may be replaced by the condition that H(X, e(mD' - jPi)) = 0 on fibers, the
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usual Riemann-Roch/Serre duality arguments (using the nodal version of these versions,

as in Theorem A.4) imply that the lower bound on m for (ii) and (iii) depends only on d

and the genus of the curves in the family, so may be chosen independent of fiber. Next,

again locally on the base, we can choose D to be any divisor linearly equivalent to m'D

which is disjoint from the Pi and singular locus 7r; this is possible because m'D is very

ample. D then satisfies assertion (i) of the lemma, and conditions (ii) and (iii) above are

still satisfied with D in place of mD', as they only depend on the isomorphism class of

the associated line bundle. Finally, it follows from invariance of the Euler characteristic

[60, Thm. 7.9.4] that H°(X, oet(D)) is constant on fibers, and then cohomology and base

change (see Theorem A.32) yields the desired assertions (ii) and (iii) of the lemma, noting

that R17r,(te(D - jPi)) = 0 implies (iii). []

We can now prove our central result:

Theorem II.4.3. If r : X -+ B, P1,.. . Pn: B -+ X is a smoothing family satisfying the

two-component hypothesis of Situation II.3.1, and cei := {()j ramification sequences, then

= 9(X/B; {(Pi, ci))i) is represented by a scheme G, compatible with base change to

any other smoothing family. This scheme is projective, and if it is non-empty, the local ring

at any point x E G closed in its fiber over b E B has dimension at least dim OB,b + p, where

p = p(g, r, d; ai) as in Definition II. 1.6. Furthermore, 9g'Sep is also representable, and is

naturally an open subscheme of Gr.

Proof. Once the gd functor has been defined, the proof of its representability is long but

for the most part extremely straightforward, using nothing more than the well-known rep-

resentability of the various functors in terms of which we have described d. The one trick,

which was also used by Eisenbud and Harris but which apparently goes back to classical

constructions, is to twist a universal line bundle Y by a high power of an ample divisor so

that its pushforward will be locally free, and its sub-bundles will be parametrized simply

by a standard Grassmannian scheme. The dimension count is an altogether different story;

it is harder than in Eisenbud and Harris' construction, and is essentially the subject of the

appendix to this chapter. Finally, the representability of the subscheme of separable limit

series does require a few tricks, which are described below.

We begin by remarking that, given a functor F from schemes over B to sets, if we wish

to construct a scheme over B representing F, it will suffice to make the construction locally
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on B if and only if we can show that when F is restricted to the category of Zariski open

subschemes of B, it gives a sheaf of sets on B. Because line bundles and vanishing conditions

are determined locally on the base (at least, given our equivalence condition on line bundles),

this condition is satisfied by our ~9 functor, and in constructing the representing scheme,

we can restrict to open subsets of B whenever desired.

As in defining the functor, we have three cases to consider. The first is the simplest. We

start in this case with the relative Picard scheme P = Picd(X/B) (see Theorem A.7), and

the universal line bundle Y on X x B P. Working locally on B, let D be the divisor provided

by Lemma II.4.2 for A', viewing X X B P as a smoothing family over P. Now, if d were

large relative to the genus g of the curves in the family, we would have that any line bundle

of degree d would have a (d + 1 - g)-dimensional space of global sections, and we could

construct a G' scheme simply by taking a relative Grassmannian scheme of 7rp,* over P.

Of course, d need not be large, so we simply cheat by artificially raising the degree of A.

Specifically, we let G be the relative Grassmannian scheme of 7rp*,((D)); by construction,

this is locally free, so the relative Grassmannian scheme G/P exists (Theorem A.11). We

define our G' scheme to be the closed subscheme of G cut out by two conditions: first, that

any sub-bundle V of 7rp*,(Yf(D)) vanishes on D, and second, that each of our vanishing

sequence conditions is satisfied at the Pi, in the obvious way from our explicit definition of

the ramification conditions on the functor. The first insures that we actually only get sub-

bundles which actually sit inside of rp,J/ and the second gives us the desired ramification

behavior at the Pi; both can be described as rank restrictions on maps between vector

bundles, so naturally give a closed subscheme cut out locally by minors. This completes

the construction in the first case.

Now, in the second case, we use the Picard schemes pi := Picd-ii(X/B) of Theorem

A.7, the schemes parametrizing line bundles on X with degrees d-i and i when restricted to

Y and Z respectively. These are all naturally isomorphic to one another, making use of the

decomposition of both Picard schemes as products of Picard schemes for Y and Z (Lemma

A.9), and tensoring as many times as necessary by y(A') on Y and z(-A') on Z; in

particular, we can identify all of them with a fixed P over B. On each pi, we have a universal

line bundle di, and just as in the first case, we take a very ample divisor D obtained from

Lemma 11.4.2 for the ~Y, twist Bi by D, and then construct Grassmannian bundles Gi,

this time one for each H5fi . Denoting by G the product of all these Grassmannians over P,
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we take the closed subscheme inside G cut out by, as in the first case, vanishing on D and

the required ramification conditions along the Pi. Here, we actually write D = DY + Dz,

where DY and DZ are supported on Y and Z respectively; we can do this because D is

disjoint from A' = Y n Z. We then impose vanishing along DY only in G°, and along

DZ only in Gd. Also, as in the definition of the ~g functor, ramification conditions will be

imposed only in GO or Gd as appropriate. Finally, we make use of the construction Lemma

II.A.3 in the following appendix to add the requirement that the Vi each map into Vi+1 on

Z and Vil on Y under the natural maps, also as in the definition of the functor. This

completes the construction in the second case.

In the final case, the first step is to work sufficiently locally on B that A is principal, so

that B(A) - 6YB and Ox(Y + Z) 6 tx. We then fix an isomorphism x (Y + Z) -+ x,

although as we saw when defining the S9 functor, the choice of isomorphism will not actually

affect anything. The rest proceeds very similarly to the second case: our Picard schemes pi

are described identically, but now to describe isomorphisms between the pi, we tensor as

necessary by Yx(Y); this clearly has degree 1 when restricted to Z, but since Ox (Y + Z)

is trivial, it must have degree -1 when restricted to Y. Replacing the maps between the

.Z with the appropriate maps for this case, the rest of the construction then proceeds

identically to the previous case, with the exception that we cannot decompose D, so we

impose vanishing along D only on G°.

Because in each case the construction used only Picard schemes, Grassmannians, fiber

products, and closed subschemes obtained by bounding the rank of maps between vector

bundles, it nearly follows from the standard representability theorems for these functors that

the Gd scheme we have constructed represents the gd functor. We do need to note that in the

second and third cases, our conditions for vanishing along D actually imply that all Vi vanish

along D: in the second case, this follows because Y'ilDY - YIDY and YilDz - DDZ for

all i (this is clear conceptually from the disjointness of DY and DZ with A', but it follows

formally from, for instance, [13, Exer. A3.16]); in the third case, we have by the same

argument that the kernel of 2 ilD -+ Y 0 ID is supported on iZ n D, and in particular above

A, so it vanishes under push-forward, and we have rp,*YiID 7rP* 0L°ID. Now, the only

remaining parts that need to be checked are that our definition of sub-bundle is compatible

with the usual definition for the Grassmannian functor, which follows from Lemma 11.4.1,

and that ramification conditions imposed on sub-bundles of (D) are equivalent to the
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desired ramification for sub-bundles of 2 . The latter follows from the disjointness of D

and the Pi, since then we get lj pi - Ž(D)Ijpi, so the pushforwards are isomorphic, and

the rank conditions for ramification are trivially equivalent. It is automatically projective

over P, having been constructed as a closed subscheme of a product of Grassmannians,

which are themselves projective (Theorem A.11). But P is projective over B by Theorem

A.7, so we find that G is projective over B, as asserted. Compatibility with base change

has already been proven in Lemma II.3.5.

We now verify that the moduli scheme we have constructed has the desired lower bound

on its dimension. In all cases, we will be making use of codimension of intersection argu-

ments which require the ambient scheme to be regular: however, since we assumed that B is

regular, and P is smooth over B, it is regular. Our ambient scheme G is a product of Grass-

mannians over P, each of which is smooth over P of fiber dimension (r+l1)(d"- r - 1), where

d" is the rank of 7rp~'i(D) (Theorem A.11). Hence, G is itself regular. We can thus argue

that codimensions of intersections are bounded by the sum of the individual codimensions,

for instance by [41, p. 261], and noting that codimensions are preserved under localization.

We therefore begin by bounding the codimension of any component of G} inside G. Now,

in the first case, vanishing along D imposes (rk V)(rk 7rp,l ID) = (r + 1)(deg D) conditions.

Next, we count the number of conditions imposed by ramification, expressed in terms of

the vanishing sequences a := oj + j. This defines a Schubert cycle; the only observa-

tions to make are that by hypothesis the evaluation maps rp,.Y(D) -- i7rp*(Ž(D)jpi) are

surjective, and that although the 7rp*(Y(D)ljpi) for j < d + 1 do not give a sequence of

quotients of every rank of rp*,(D), we can extend to any sequence containing quotients

of every rank, and since the a are all less than d + 1, we will always get the same Schu-

bert cycle regardless. In particular, by Theorem A.11 the imposition of ramification at Pi

gives an integral subscheme of codimension j(a' - j) = Zj'j(c) inside G. Thus the total

codimension of any component of G' inside G is at most (r + 1)(deg D) + j(ca}).

In the second and third cases, the only real difference is that we replace the Grass-

mannian with the linked Grassmannian of the following section; it is easily verified that

because the maps on rpY i are induced from maps on the Yi , they satisfy the conditions

of a linked Grassmannian (Definition II.A.4): condition (I) follows from Lemma A.24, while

conditions (II) and (III), being expressed in terms of the emptyness of subschemes whose

definitions are compatible with base change, can be checked fiber by fiber, where they are
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clearly satisfied. The only non-tautological part is that in the case of a reducible fiber,

everything in the kernel of fi really is in the image of gi and vice versa, but this will be all

right because all the Y' are sufficiently ample, so in particular given any global section on

Y, we can find a global section on Z that agrees at the node, and vice versa. Then it follows

from Theorem II.A.14 that every component of the linked Grassmannian has codimension

d(r + 1)(d" - r - 1), and the rest of the calculation proceeds the same way, with the minor

exception in the second case that we have to compute vanishing on DY and DZ separately

and use deg DY + deg DZ = deg D.

Now let x be any point of G', closed in its fiber over b E B. The point here is that

since G is regular, it is catenary, and we can compute the dimension of the local ring of an

irreducible closed subscheme containing x (and in particular, of a component of G} at x) as

the dimension of eG,x minus the codimension of the component. That is to say, we can prove

the desired statement via naive substraction of codimension from dimension. Our Picard

scheme is smooth of relative dimension g over B, and rp*odi'(D) is of rank d+ deg D + 1 - g,

so our Grassmannian schemes are (smooth) of relative dimension (r + 1) (d + deg D - r - g)

over P. It follows by [64, Prop. 17.5.8] that dim 6 G,x = dim 6B,b+g+(r+l)(d+deg D-r-g)

in the first case, and dim 6B,b + 9 + (d + 1)(r + 1)(d + degD - r - g) in the second. Our

desired lower bound for dim 6Ga,x now follows from our above codimension bounds.

Finally, we need to show that the sub-functor of separable limit series is representable

by an open subscheme, or equivalently, that its complement is representable by a closed

subscheme. Since we are interested in the open subscheme, we needn't concern ourselves

overly with the particular choice of scheme-theoretic definition of the inseparable locus, and

can in particular define it fiber by fiber, as long as we show that the result is closed. One

approach would be to observe that as we are looking at a sub-functor of a functor already

known to be representable, it would suffice to check the property of being a closed subfunctor

etale locally, and etale locally we could produce sufficiently many sections of 7r specializing

to Y and Z that we could invoke Proposition II.1.4 to cut out the inseparable subscheme

as the union of the two closed subschemes obtained by imposing (the mildest possible)

ramification along all the sections specializing to Y, and all the sections specializing to Z.

However, we will instead give the following more functorial approach:

First, denote by *i the universal sub-bundles of rp*or.0 on our G' scheme. As in the

proof of Proposition 11.1.4, we can construct a map 9i 0 6XXBGd - yr( 2y) where Yor
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denotes the bundle of principal parts of order r; taking (r + 1)st exterior powers gives a

map sni v : det(g i ) - r+ l ( X/B)(r+); we noted that in the smooth case, the

inseparable series are precisely the ones where this map vanishes on X; that is, the kernel

defines a closed subscheme of X xB Gr, and our separable subscheme is the image under

7rp in Gr of its complement; since 7rp is flat and finite type, this will be open in G as

desired. In general, there are two additional points to check, but it does not end up being

any harder. We first claim that we still obtain inseparable subschemes by looking at the

kernel of the pushforward of suniv, with the subschemes of limit series inseparable on Y and

Z respectively coming from o and g d . For this, we need only check that su niv for 0

will always vanish on Z, as the situation is clearly the same for d. But since o0 comes

from a line bundle of degree zero on Z, it can have rank at most one when restricted to

Z, so its (r + 1)st exterior power always vanishes on Z, as desired. Next, since rp is no

longer smooth, fQX/B is not locally free, so the kernel of suniv does not a priori naturally

describe a closed subscheme. However, this is easily solved: it certainly suffices to test

inseparability on the open dense subset of each fiber which is smooth, so we simply restrict

to the smooth locus of X over B before taking the vanishing scheme of sU niv and the image

of its complement. []

Our first application is the same regeneration/smoothing theorem due to Eisenbud-

Harris, except that now it a priori gives results on smoothings of crude limit series as well,

and we are also able to include upper bounds of dimensions of general fibers in certain

cases. We state it first generally, for any desired fixed choice of smoothing of the special

fiber and its sections (that is, for any given smoothing family), and then apply our result

on existence of smoothing families to conclude that appropriately well-behaved limit series

on a special curve of compact type will yield information about the linear series on some

unspecified nearby smooth curve; this last is enough for most results involving a general

curve, where one can show that it suffices to produce a single smooth curve with a given

desired property.

We have:

Corollary 11.4.4. In the situation of Theorem II.4.3, suppose that p > O, that U is any

open subscheme of our G' scheme, and that for some point b C B, the fiber of U over b has

the expected dimension p. Then every point of the fiber may be smoothed to nearby points.
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Specifically:

(i) The map from U to B is open at any point in the fiber over b, and for any component

Z of U whose image contains b, the generic fiber of Z over U has dimension p.

(ii) If further U is closed in G, then there is a neighborhood V of b such that the preimage

of V in U is open over V, and for each component Z of U, every component of every

fiber of Z over V has dimension precisely p.

In particular, if Xo is a curve of compact type (with two components) over an alge-

braically closed field, with P 1 ,... Pn distinct smooth closed points of Xo, ai any collection

of ramification sequences, and Uo any open subset of G(Xo/k; {(Pi, gi)}i) having expected

dimension p, then there exists a smooth curve X1 over a one-dimensional function field k'

over k, specializing to Xo, with points Pi specializing to the Pi, and such that every point

of Uo smooths to X1 ; if further Uo = G (Xo /k; { (Pi, i ) }i), then G (Xi/k'; { (Pi, ai ) i ) also

has dimension p.

Proof. For (i), first note that since U is quasi-projective over a Noetherian base, it is of

finite type over B. Now, let x E Z be any closed point in the fiber of Z over b, and the

generic point of Z. Say maps to ; then the dimension of the fiber of Z over is at most p,

by Chevalley's theorem on semi-continuity of fiber dimension [63, Thm. 13.1.3], and at least

p by Theorem II.4.3, after base change to . We then claim that is the generic point of

B. Certainly, is the generic point of the scheme-theoretic image of Z, a closed irreducible

subscheme B' of B containing b; if B' B, by the regularity of B, dim OB',b < dim fB,b,

and since Z factors through B', we have by the most elementary fiber dimension theorem

[62, Prop. 5.5.2] that dim t,z < dim B',b + P < dim B,b + p, contradicting Theorem

II.4.3. Thus B' = B as desired.

For the openness assertion, it suffices to prove that the image of U contains a neighbor-

hood of b, since if we replace U by any neighborhood of a point of the fiber of U over b, the

hypotheses of our corollary are still satisfied. Let bl be a point of B, specializing to b; let

B1 be the closure of b in B, and consider the base change U - B1. If B1 has codimension

c in B, then every component of U1 would have codimension at most c in U (this follows by

applying [13, Thm. 10.10] to generic points of the relevant components), so since U, being

of finite type over a universally catenary scheme, is catenary, if we restrict to a component

Z of U1 passing through x, we have dim iz, > dim , - c = dim OB,b + dim Ub - c =
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dim 6B,,b + dim Ub, so applying our earlier argument with Z in place of U, we see that Z

maps dominantly to B 1, so that bl is in the image of U. Now, by constructibility of the

image [61, Thm. 1.8.4], since f(U) contains every point of B specializing to b, it must

contain some neighborhood U of b, as desired.

For (ii), if U is closed in G we have that it is proper over B, and every component Z

of U either contains b in its image, or is supported on a closed subset of B away from b.

In the first case, we can apply (i) to conclude that Z maps surjectively to B, and upper

semi-continuity of fiber dimension for closed morphisms of finite type [63, Cor. 13.1.5] to

conclude that the locus on B of fibers of Z having a component of dimension greater than

p is closed, and once again doesn't contain b, giving by its complement a V of the desired

form. Of course, in the second case, we simply choose V to be disjoint from the image of

Z. We have therefore constructed a V for each Z, and since there are only finitely many

components of U, we may simply take their intersection. Openness now follows from (i)

and the fact that all fibers over V have dimension p.

Finally, given an X as described, we can apply Theorem II.2.4 to place Xo into a

smoothing family X/B with generic fiber X1; the desired assertions then follow immediately

from the main assertions of the corollary. O

The finite case is particularly nice, but we put off any discussion of it until after we have

introduced the language of Eisenbud-Harris limit series in the next section.

Even without knowing anything about the separable locus being closed, which in general

seems to be a subtle issue, we can still obtain results on lifting from characteristic p to

characteristic 0. However, note that the expected dimension hypothesis in the following

corollary is not only key to the argument, but at least in some cases both non-vacuous

and necessary for the validity of the conclusion. See in particular Proposition 1.4.5 and the

following discussion. In any case, our machinery now easily yields:

Corollary II.4.5. In the situation of Theorem 11.4.3, suppose that p > O, that B is a mixed-

characteristic DVR, and that the special fiber of some U open inside Gr'sep has the expected

dimension p. Then every point x0o of U in the special fiber may be lifted to characteristic

0, in the sense that there will be a point x1 of the generic fiber of U (and in particular of

Gd SeP) specializing to xo.

In particular, suppose that Xo is a smooth, proper curve over a perfect field k of char-
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acteristic p, with P1 ,... Pn distinct closed points of Xo, cui any collection of ramification

sequences, and Uo any open subset of GSe(Xo/k; {(Pi, ai)}i) having expected dimension p;

then there exists a smooth curve X1 over the fraction field of the Witt vectors of k, special-

izing to Xo, with points Pi specializing to the Pi, and such that every point of Uo may be

lifted to a point of X1.

Proof. The first assertion follows immediately from the openness proven in Corollary 11.4.4.

For the second assertion, let A be the Witt vectors of k [54, Thm. II.5.3], then by [4, 11,

Thm 1.1] we can find an X over Spec A whose special fiber is Xo, and since A is complete

and the Pi smooth points we can lift them to sections Pi of X (for instance, by definition

of formal smoothness [3, Prop. 2.2.6]). Applying the first assertion then gives the desired

result. O

Remark II.4.6. It seems likely that due to the smoothness of the exact locus of the linked

Grassmannian (see Definition II.A.9 and Proposition II.A.11), and the determinantal de-

scription of the Gd space inside it, that at least on the (possibly empty) exact locus, if the

dimension is the expected dimension, the Gr scheme ought to be Cohen-Macaulay. If then

the dimension of a special fiber is correct, the exact locus of the Gr scheme will be flat over

the base at points of this fiber.

Remark II.4.7. In final assertion of Corollary II.4.4, note that we could not replace the

hypothesis that Uo = Gr(Xo/k; {(Pi, ai)}i) by the weaker hypothesis that U is closed in

the Gd scheme over X0. The problem is that there is no obviously meaningful way of

extending such a Uo to an open and closed subscheme of G} over all of X. This comes

up in particular in the case that Uo is the separable series subscheme, when the expected

dimension is 0; one could try to extend Uo to "separable series on X1 which specialize to

separable series on X0 ", but this is not a particularly satisfactory class of objects to study.

Remark 11.4.8. Corollary II.4.4 is more than enough for our purposes, but one might be

tempted to ask whether the assertion of (ii) remains true without the closedness hypothesis

on U, if restricted to components Z of U whose images contain b. In view of (i) and the

standard constructibility theorems [63, Prop. 9.3.2], the only way this could fail would be

if there were a locally closed (and without loss of generality, irreducible) subscheme B' of

B specializing to b on which the fiber dimension was strictly greater than p. Unfortunately,

there is no reason to think that this couldn't happen, as there are certainly quasi-projective
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morphisms even of schemes of finite type over a field, with the base regular, exhibiting this

behavior: consider for instance the blowup of IP3 x A3 along a line lying above a line in A3 ,

considered as a scheme over A, with the four-dimensional component of the fiber over the

origin removed. Indeed, in this case both schemes in question are regular, so the fiber over

the origin having the "correct" dimension implies that the map is flat at every point in the

fiber; yet we see that this does imply that there is a neighborhood of the origin on which

all fibers have the same dimension.

11.5 Comparison to Eisenbud-Harris Theory

This is all well and good, but as of yet there is little apparent connection to Eisenbud and

Harris' limit series. After all, a substantial part of the point of their theory was that on a

reducible curve, it ought to suffice to consider only a single linear series per component, so

that their construction occurs inside the product of only two Grassmannians. Furthermore,

they impose additional ramification conditions at the nodes that are not readily apparent

from our construction. Our next task is therefore to conduct a more thorough comparison

between what our 9d functor yields for a reducible curve over a field, and the Eisenbud-

Harris functor for this case. Throughout this section we therefore assume we are in:

Situation 11.5.1. X/B is a smoothing family with X reducible; specifically, falling into

case (2) of Situation 11.3.1.

Remark II.5.2. For notational convenience, all statements of this section are given in terms

of G' schemes without specified ramification. However, it will follow from the brief discus-

sion in the proof of the lemma which follows that ramification conditions are completely

compatible from our perspective and from the Eisenbud-Harris perspective, so all the results

we give in this section are immediately valid for G' schemes with specified ramification as

well.

The first step is to consider the "forgetful" map we obtain from our 9 (X/B) functor into

the product of Q'(Y/B) and gd(Z/B), simply by forgetting all the intermediate (,i, i),

keeping only (o, Vo) and (yd, Vd), and restricting these to Y and Z respectively. When we

start with a point {(hi, V)}i of G'(X/B), we denote the linear series on each component

obtained this way by (Y, V Y ) and (DZ, Vz).

We have:
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Lemma II.5.3. On a reducible curve X/B (i.e., in case (2) of Situation II.3.1), given any

T-valued point {((i, Vi)}i of G(X/B), the forgetful map composed with restriction to Y

and Z gives a T-valued point of G (Y/B) x G (Z/B). In particular, this defines a morphism

FR : Gr(X/B) - Gr(Y/B) XB Gr(Z/B). A limit series in G(X/B) is separable if and

only if its image under FR is separable in both Gr(Y/B) and Gr(Z/B).

Proof. It is clearly enough to show that given TI/B, and {Vi C rT*i } a T-valued point

of G'(X/B), then VolyT is a sub-bundle of L0° YT and correspondingly for ZT and Vd. This

would immediately give the result for Gr schemes without specified ramification, but since

we specified ramification solely on Vo or Vd depending on whether the relevant section was

on Y or Z, the ramification conditions will certainly be preserved as well. Now, the point

here is simply that because 20 has degree d on YT and 0 on ZT, injectivity is determined

entirely on YT. Indeed, let S be any T-scheme. By the definition of sub-bundle, we have

Vos " r,. and we need only show that V°slys injects into 7rs*Llys. But this is

equivalent to the statement that for any U open in S, and any section s of rS,*Y(U) = ru,

if s vanishes on Yu it must vanish on all of Xu. It suffices to see that it vanishes on Zu, but

this is clear, since the vanishing along Yu means it vanishes along A', and would therefore

have to be a global section of I°zu (-A'), which has negative degree and therefore can't

have any non-zero global sections, for instance by considering each fiber, and then applying

Nakayama's lemma. The case of ~yd and Z is clearly symmetric, so we can conclude the

desired result.

The statement on separability is immediate from the definition of separability of a limit

series on a reducible curve. E

Notation 11.5.4. In the same situation as the previous lemma, we denote by ViY the image

of Vi inside ir,(.Y(-iA'))), and similarly for Z.

Lemma 11.5.5. In the same situation as the previous lemma, we have the following addi-

tional observations (and consequent notation):

(i) ViY injects naturally into VY , and similarly for Z

(ii) Vi will be contained in kerI3fY C VY, where piy : VY -+ rT*YIiA' is the natural ith

order evaluation map at A', and ViZ will similarly be contained in ker/dZ i c V Z

(iii) The induced map Vi -VY V Z in fact exhibits Vi as a sub-bundle of V Y V Z
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Proof. Assertions (i) and (ii) are clear, as the map V -* Vy := VOIYT is by definition

the map induced by the inclusion Y y(-iA') "- Y". For (iii), it suffices to show that

Vi VY VZ is injective after any base change S - T; on the other hand, we have

by hypothesis that Vis 7rs*,, and it is certainly true since restriction commutes with

base change that first$, ~-+ rsfs' E 7rs,* Z '-4 rS ffE 7rs,S, and since the map to

VY V Z factors through this, it must also remain injective. [

Definition 11.5.6. In case (2) of Situation 11.3.1, we define an Eisenbud-Harris (crude)

limit series on X to be a pair (( 2 Y,VY), ( 'Z, VZ)) in G(Y) XB G(Z) satisfying

a/Y(A') + aZ_i(A') > d (see below). The closed subscheme of G}(Y) xB G(Z) obtained by

these ramifications conditions will be denoted GEH(X/B). We also define GsEJ(X/B) C

Gd,EH(X/B) to be the open subscheme of limit series which are separable on each com-

ponent, and G',ef (X) to be the open subscheme of refined Eisenbud-Harris limit series

satisfying aY (A') + aZ_i(A') = d, or more precisely, the complement of the closed subscheme

satisfying ay (') + a_ (') > d.

We remark that these ramification conditions do in fact give a canonical closed sub-

scheme structure: for each sequence of r + 1 non-decreasing integers 0 < ai < d, we get

a closed subscheme defined by the conditions a(A') > ai, a_ i(A') d - ai; there are

only finitely many such sequences, so the union of the closed subschemes obtained over

each of them is again a closed subscheme. However, this definition gives us trouble when

we attempt to show that our GI(X/B) maps into G,EH(X/B), as it is difficult to describe

the T-valued points of a union of schemes in terms of the T-valued points of the individual

schemes. As a result, we settle for the somewhat weaker:

Proposition 11.5.7. We have the following facts about the image of FR : G(X/B) -+

G (Y/B) xB G (ZIB):

(i) FR has set-theoretic image precisely Gd,EH(X/B);

(ii) Scheme-theoretically, G(X/B) maps into the closed subscheme satisfying a slightly

weakened form of Eisenbud and Harris's ramification conditions at the node:

aiY (') + a_i(A') > d - 1.

73



(iii) The open subscheme of G(X/B) mapping set-theoretically into GdrE'(X) actually

maps scheme-theoretically into GdEl(X) C GrdE(X/B).

Proof. In general, for a T-valued pair ((Y, VY), (2Z, VZ)), define aY to be the largest

integer i with rk i Y < j everywhere on T, and similarly for Z. The set-theoretic statement

may be checked point by point, and is equivalent to saying that when T = Spec k for some

k, ((MY, VY), (Z, VZ)) is in the image of FR if and only if a + arj > d for all j. For

(ii), it is enough to check that for arbitrary local T, a + arZ_ > d- 1 for all j, and for (iii),

we want to show in this case that if the point obtained by restriction to the closed point

of T satisfies ay + arZ_j = d for all j, then the entire T-valued point does. In all cases, we

make use of the fact from Lemma 11.5.5 that ViY may be considered as lying inside ker iY,

and ViZ in kerdZ i. Conceptually, the basic idea is that for Vi to maintain rank r + 1 at

each i, the ranks of ker iY and ker d-i must add up to at least r + 1, and looking at i = aY

for different j should yield the desired inequalities. As we will see, this works over a field,

but is not quite so nice for a more general T.

Now, for the set-theoretic statement of part (i), suppose we have a T-valued point

{(i, Vi)}i of Gr(X/B), with T = Spec k; we want to show that it maps into G',EH(X/B).

Since Vi is glued from subspaces of ker PiY and ker PdZi and has dimension r +1, we conclude

that the dimensions of ker PiY and ker add up to at least r1, so k rk < r+1.-jadduptoatleastr~lr lt;~L31, 7 T l 3Vsorl , Tr] d-i

It immediately follows that aY + az > d for all j. On the other hand, for a given j, set

i = a; we know that rk iY+l > j, so one of the sections in ViY is non-vanishing at A' when

considered as a section of i(-iA'), and to use it in Vi, it must be glued to a section of VdZi

similarly non-vanishing at A'. Thus, the dimension of Vi is strictly less than the sum of the

dimensions of ker fY/ and ker idZ-i, so our earlier argument gives rk PiY + rk Zi < r + 1, and

we actually conclude aY + arj > d, as desired. For later use, note that when aY + arj = d

for all j, this argument shows that we have ker fy = ViY and ker fdZ i = ViZ for all i, and

in particular when i a d - az, dim ViY + dim VZi = r + 2, since we will have had

to glue a section from each component non-vanishing at A'.

Conversely, given a ((MY, VY), (ADZ, VZ)) satisfying the Eisenbud-Harris inequalities,

we construct the Pffi by gluing .Yy(-iA') and YZ((i - d)A'), and set Vo = V Y , Vd = VZ.

Note that sections in VY which vanish at A' are extended by 0 along Z. If there is a

non-vanishing section, ay = 0, so aZ > d, and oDZ, being a degree d line bundle with a

non-zero section vanishing to order at least d at A', must be YzT (dA'), so we get the trivial
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bundle on Z for V0, and can (uniquely) extend sections not vanishing at A', also. We also

note that this implies that we have V0o mapping into VZ under iterations of fi; indeed, this

map is uniformly zero unless there was a section of V0o non-vanishing at A', and such a

section had to be constant on Z, hence mapping to the (unique up to scaling) section in

VZ vanishing to order d at A'. By symmetry, we can make the same arguments for VZ to

get our Vd. Now we inductively construct each Vi for i = 1, 2, ... , d - 1 in terms of Vi-l

and Vd; it is not clear how to induct on the weakest possible statement, which is that given

Vi_ and Vd linked to one another under iterates of fj and gj, there is a Vi linked to Vi_l

and to Vd under iterates of fi and gi. The key additional condition to add to our induction

hypothesis, already satisfied by our Vo and Vd, will be to require that each Vi have a basis

of sections each of which is either non-vanishing at A', or vanishes uniformly on either Y or

Z, with at most one basis element in the first category. We denote the number of each of

these by r, r, r and r respectively, where we have ri always 0 or 1, and r + r + r3 = r + 1

for all i. The last condition of our induction hypothesis is that r is always the maximal

possible value, which is dim ker Oi+l. Note that since this is non-decreasing, if we construct

a Vi with r = r_ 1, maximality is automatically satisfied. Of course, we still require that

each Vi be linked to Vi-1, and to Vd under iterated composition of the fj and gj.

Now, for general i, suppose we have constructed the Vj up to Vi_l satisfying our induc-

tion hypothesis. To construct Vi, the basis elements vanishing on Y must contain fi-l(Vi-1),

which is an (ril + rl)-dimensional space, and of course they must map into VZ. Since

fi-l(Vi-l) maps into VZ, we can choose rlI + r2_ such sections, by taking any basis of

fi-l(V-1)- Next, the basis elements vanishing on Z must be contained in g-1 (1Vi), and

we choose them to be a basis of the intersection of g7-1 (i-1) with the sections vanishing on

Z. This is at most an r3_l-dimensional space, with equality if all of the r3_ basis elements

of Vi_ vanish to order greater than one at A'. If there was a one-dimensional subspace of

sections vanishing to order exactly one at A', gi- 1 will instead be (r3_l - 1)-dimensional.

Now, by our induction hypothesis, the iterated image of Vd under the gj is contained in

the span of the basis elements vanishing on Z in Vi-1, and automatically vanishes to order

at least 2 at A' in Vi_l (using that i < d), so it is automatically contained in the span

of the basis elements we have chosen for Vi which vanish on Z. Now, if we had r3_1 such

basis elements, we are done. If not, we had a section of Vi_1 vanishing on Z and vanishing

to first order at A', whose preimage on Y under gi-1 will therefore be non-vanishing at
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A', and it follows that dimkerOY =: dimker/3 1 + 1, and therefore that aY+lr3 = i; in

particular, the required maximality of ri is satisfied. It also follows that a > d -i; if

it is equal, we can find a section of VZ vanishing to order precisely d - i at A', which we

could glue to our final section of g- 1 (Vi_) to obtain our (r + 1)st generator for Vi, which

will be non-vanishing at A'. Otherwise, we have az 1 > d - i, so following through the

definitions, dim ker/Oz > r + 2 - r3_ = 1 + r we chose ri + 1 generators

vanishing on Y already, but this means we can choose another one in kerZi+ to be our

(r + 1)st generator for Vi. This completes the proof of the set-theoretic surjectivity of FR

onto G,EH(X/B).

For the scheme-theoretic statements, let T = Spec A where A is any local ring with

maximal ideal m; our main assertion is that for any i, ViY and ViZ, considered inside

VY Vo and VZ _ Vd respectively, must contain sub-bundles of ranks adding up to at

least r + 1. By Lemma 11.5.5, we have 0 -+ Vi - VY D Vz - Q - 0 for some locally free

Q, and since A is local, this is actually a sequence of free modules. Modulo m, this is just

a sequence of vector spaces, and since Vi has dimension r + 1 and injects into ViY · ViZ,

for some j we can take a basis of Vi whose first r + 1 - j terms are linearly independent in

ViY, and whose remaining j are linearly independent in ViZ. Lifting these to a basis of Vi

over A, we find that by Nakayama's lemma, we have constructed sub-bundles of Vi of rank

r + 1 - j and j whose images in ViY and ViZ are sub-bundles of VY and VZ of rank r + 1- j

and j, as desired. Since these come from Vi, they are contained in ker iY and ker fzi, and

we conclude that rk iY < j rkd i < r + 1 - j on T. This gives us aJ + ar +l- > d. As

in the fields case, if we set i = a, then for i + 1, by hypothesis rk +1 is not less than or

equal to j on all of T, so our constructed sub-bundle of VY could have rank at most r - j,

and the sub-bundle of Vz would have to have rank at least j + 1, giving rkPd l < r - j

on T, and yielding ay + ar > d - 1, and giving statement (ii).

Finally, for statement (iii), we need only combine this argument with our earlier obser-

vation that at the closed point, where by hypothesis we had aY + ar = d for all j, we

necessarily have dim ViY + dim ViZ = r + 2; thus we can in fact choose a basis of Vi (still

modulo m) which has rank r + 1 - j in ViY and rank j + 1 (rather than j) in Vz, and we

then get the desired inequality an + ar+l- > d for the entire T-valued point, as desired.

Note that the subscheme of Gd in question is open simply because Gd is known to map

set-theoretically into Gr , and G'ef(X) is open inside GE Od,EH) d,EH(X ) is open inside G[]
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Luckily, the situation is easier to get a handle on for the open subset of refined series

which Eisenbud and Harris actually used in their construction. We will show that the space

of refined limit series is actually isomorphic to an open subscheme of our Gd scheme. Note

that there is a slight difference in indexing between this section and Appendix II.A, in that

here indices for bundles and subspaces start with 0, whereas in the appendix they start at

1. However, this difference will not be at all relevant to any of our arguments.

Proposition II.5.8. Suppose that (Y,VY) and (Z, Vz) form a T-valued point of

G'rEf(X/B). Then we have that (Y, V Y ) and (z, Vz) are the image of a unique T-

valued point under FR.

Proof. It clearly suffices to handle the case that T is connected, so we make this hypothesis.

In this case, the basic observation is that we get a unique vanishing sequence at A' for VY

and Vz, in the sense that the subscheme of each such connected component satisfying a

stronger ramification condition is empty. Indeed, by hypothesis, the closed subscheme of T

satisfying aY(A') + azr_i(A') > d is empty, and we get a ramification sequence at A' for the

generic points of each component of T; now, because ramification conditions are closed, if

the two sequences differed at different generic points, any point in the intersection of the

corresponding components would have to be strictly stronger than either alone, and would

therefore satisfy aY(A') + aZ_i(A') > d, a contradiction. Now, if /IY is the evaluation map

V - rT*Yjil, and similarly for Z, this immediately implies that each f3Y and Piz has

rank determined exactly by the vanishing sequences, in the strong sense that for some r,

the closed subscheme where the rank is less than or equal to r is all of T, but the closed

subscheme where the rank is strictly less than r is empty. We conclude from [13, Prop. 20.8]

(see also the related comments on p. 407) that tha e images of the 3Y and iZ are locally free,

with locally free quotients. If we denote by aj the vanishing sequence for V, we also note

that kerBY will have rank r + 1 - j if aj-1 < i < aj, and following through the definitions

we see that kerZ z will have rank r + 1 - j if d - ar-j+l < i < d - arj, or equivalently,

kerOz will have rank j if ajI < i < aj, so we find that ker Y = kerOY+l1 if and only if

ker/d- = ker d-i1 and rk ker, y + rk ker d-i 1 = r + 1 for all i.

The main idea is to construct the V as the subspace of ker y ED ker/-di which agree

on the two maps given by evaluation at A'. This would then be unique, as it follows from

Lemma II.5.5 that any possible Vi would have to be contained in the constructed one, and
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by Lemma 11.4.1 any two sub-bundles of a given rank with one contained in the other

must be the same. Now we want to show existence. We work locally on the base, so that

YYa, _ Zla' -- A, = T, and fix a choice of these isomorphisms. As prescribed

for gluing together line bundles defined on components, we define Y i by the short exact

sequence

0-+ Y . i , Y (-iA') ) YZ((i - d)A') -+ OA - 0,

and pushforward gives us

0 - rT,,i -+ rT* (-iA') D 7rT*, Z((i - d)A') -+ gT.

We then define Vi to be the kernel of the induced map, so that:

-+ Vi -+ ker i ®( ker d-i e &T.

We have to show that Vi is a sub-bundle of 7rT, i of the correct rank. We first observe

that the image PYl (ker Y) has locally free quotient in W7T*,Yl (i+l)A,, and similarly for Z:

this image is inside im Y1 by definition, and the quotient is easily seen to be isomorphic

to imfY, via the map 7rT*,Y7(i+l), -X 7rT,* Y iA'. Thus Y1 (ker /Y) is a sub-bundle of

a sub-bundle, and must itself be a sub-bundle of rT*,YYl(i+l)A. Now, we can factor Y+1

restricted to ker liy as

kerpiY - Y(-i\')lA' ) 'YI(i+l)a

and we just showed that the cokernel of the composition is locally free; in particular,

it is torsion-free, and the cokernel of the first map must also be torsion-free. But since

Yy(-iA')la, is a line bundle, this means the first map must be either zero or surjective,

with surjectivity precisely when rkkerf/Y = rkker3Y+ + 1, and the ranks equal other-

wise. We obtain the corresponding result for Z, and immediately conclude that Vi is a

sub-bundle of ker ,/Y E ker /Zi, with equality if and only if both ker 1' = ker Y 1 and

kerO ~Z i = kerd , and corank one otherwise. Thus, our hypotheses imply that Vi has

rank r + 1. The last observation is that Vi being a sub-bundle of VY G VZ implies that it is

a sub-bundle (in our generalized sense) of 7T*,yi, but this follows easily from the fact that

VY and VZ are sub-bundles of 7rT2*Y and 7rT*Y2Z, since we then obtain for any S over T
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an injection Vis - rs*,Ys E 7rS*,Sfi through which the map Vis - 7,Yrs factors.

We immediately conclude:

Corollary 11.5.9. The map FR: G'(X/B) -+ GI(Y/B) x GI(Z/B) induces an isomor-

phism from an open subscheme G'(X/B) onto G'rf(X/B), and on the corresponding sep-

arable subschemes of these.

We may therefore think of the scheme of refined Eisenbud-Harris limit series as forming

an open subscheme of our GI scheme itself:

Definition 11.5.10. We say that a point of Gd is a refined limit series if it maps under

FR to Gr,f and we denote the open subscheme of refined limit series by Grref C GI.

Since in practice it is less cumbersome to work with Eisenbud-Harris series on a given

reducible curve, we state our main corollary for the finite case of Theorem II.4.3 in a

situation where one can (nearly) restrict attention entirely to the Eisenbud-Harris series.

We now drop the hypothesis that we are in case (2), and for notational convenience define:

Definition 1.5.11. In case (1), we simply define GdEH(X/B) to be equal to Gr(X/B)

and similarly for Gre (X/B) and G re(f /dEH adEH (X/B).

Corollary 11.5.12. In the situation of Theorem II4.3, suppose that B = SpecA with A

a DVR having algebraically closed residue field, and p = 0, and denote by Xo and X 1 the

special and generic fibers of X/B. Then consider the following conditions:

(I) G r,sep XV-C G\ r,ref (X7
(I) td,EH, 0 C d,EH(X0)

(II) Grsep (X) consists of m reduced points for some m > O.

(III) For any DVR A', and any A'-valued point of GI(X) such that the induced map

Spec A' - Spec A is flat and the generic point of Spec A' maps into GrdseP(X), then

the special point of Spec A' maps into G rsep(X) as well.

If (I) and (II) hold, we have that the G' sep(XI) geometrically contains at least m points;

if further (III) holds, then GdSe(X) is finite etale over B, and the geometric generic fiber

also consists of exactly m reduced points.
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Proof. First, we have by virtue of (I) that Gsep(XO) Gr ep(Xo) Setting U = G rsep(X/B),d,EH(X0 -' St U - -X ,

if we choose any point x in the special fiber, applying Corollary 11.4.4 we find that any com-

ponent Z of U passing through x maps dominantly to B with O-dimensional generic fiber.

To count the number of points, we can take Z to be reduced, in which case by [26, Prop.

II1.9.7], Z is flat over B, and the number of points in the geometric generic fiber must be

at least the number in the special fiber, giving the desired assertion.

In the case that (III) holds, we claim that U is in fact proper over B. It suffices to show

that U is closed in G(X), so choose y E U, y' E Gr(X) distinct points with y specializing to

y'; by [58, Prop. 7.1.9] we can find a DVR A' and a map Spec A' -+ Gr(X) with the generic

point mapping to y and the special point mapping to y'. The image of Spec A' cannot be

contained in the special fiber by O-dimensionality. If it is not contained in the generic fiber,

it gives a flat map Spec A' -+ Spec A, and the hypothesis of (III) implies y' E U as well. The

only case left is when the image of Spec A' is in the generic fiber; for this, it suffices to show

that the generic fiber of U is likewise O-dimensional, which by the preceding arguments will

follow if we show that every component Z of U meets the special fiber of U. But this is

now clear: let y be the generic point of Z, then by properness of Gr(X/B) there is a y in

the special fiber of Gr(X/B) which is a specialization of y; we are therefore back in the flat

case of our argument, and y' E U, completing the proof of the assertion that U is closed in

G'(X/B), and hence that U is proper over B.

Given properness, since U is unramified in the special fiber, it must be unramified over

B; thus, the fibers are reduced, and by Lemma A.22, U is reduced and flat over B, so we

conclude the desired finite etaleness, and the geometric generic fiber must then consist of

the same number of reduced points as the special fiber, as desired. O

Remark II.5.13. Note that even if G' maps scheme-theoretically into Gr EH the statement

of Proposition 11.5.7 would be false if we replaced d - 1 in the inequality by d: we would

expect it to fail precise at the intersection of the closed subschemes defined by different

choices of aY and a with aY + a_= d; recall that Grd,EH was defined as a union over all

such closed subschemes. This would be asking for any scheme-valued point mapping to the

union of these components to map into one component or the other, and this is essentially

never the case. For instance, consider T = Speck[e]/(e 2 ); the tangent space at a union

of components is always expected to be strictly larger than the union of the individual
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tangent spaces. Of course, we do not a priori know when these components of GdEH might

be separated from one another in G, but it is easy enough to write down examples where

they are not, and thereby where one does not have the desired inequality.

The simplest case is Y - Z P P1, with affine coordinate functions y and z vanishing at

the node, d = 2, r = 0, and a Speck[e]/(e 2)-valued limit series given by

(y2 + Ey, 0), (y + , e), (, z + E).

Here we are identifying sections of (d') with polynomials of degree d', and for each i

specifying pairs of sections of degree 2 - i and i on the components, required to agree at

y = z = 0; the inclusion maps are then given by multiplication by y or z on the appropriate

component, and 0 on the other component. This has aY = 1, a = 0; note that modulo

e, it has aY = 2, a = 1, so it does not correspond to a refined series, as required by the

above proposition.

Remark I1.5.14. Continuing along the same line of reasoning, we see that the scheme-

theoretic statement of Proposition II.5.7 is actually surprisingly strong; indeed, it implies

that if there are two components of the locus of refined series which meet at a point of GI,

then if the components have vanishing sequences at the node given by a, a, and a'Y az

we must have la -a'Y I< 1, la -a zI - 1 for all j, as otherwise the scheme-valued

point induced by the local ring of GI at our point would fail to satisfy the inequality of

our proposition. This is not at all the case for GEH, so we see that in point of fact, G

does separate out many components of refined series which meet in GI'EH. Heuristically,

we then have a picture of the geometry of GI as being that of GEH on the open subscheme

of refined limit series, and separating out certain intersections of components above the

boundary locus of crude limit series. Of course, this is a description only of "expected

behavior", as either scheme could have components supported only in the boundary, or

could even fail to have a non-empty locus of refined limit series.

Remark II.5.15. First, we note that it is not hard to deduce from the proof of Proposition

II.5.7 than any refined point is the image of an exact point of the linked Grassmannian used

in the construction (see Definition II.A.9): over a field, we noted that we had for a refined

point ViY = ker iY, and ViZ = kerp /, and one easily checks that the kernel and image of

the relevant inclusion maps at the index i are therefore both described as ker /dzi+3 in one
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direction, and ker /+~l in the other, so we conclude that the relevant kernels and images are

the same in both directions, as required. Note that the twisting up of the line bundles by

an ample divisor doesn't affect whether the point is exact, which is determined on the level

of the sub-bundles, independent of the ambient vector bundles.

However, the converse is false. Indeed, there exist non-refined points for which there is

an exact point above them, and there exist others for which there isn't. We see both already

in the simplest case of Y r Z 1, and d = 2, r = 0. In this case, if we choose affine

coordinates y, z so that the node corresponds to 0 on each component, we can represent

our C's as three pairs of polynomials in y and in z, of degree (2, ), (1, 1), (0,2), with each

pair having value agreeing at 0, related to one another by multiplication by y and z, and

not uniformly vanishing. For instance, we could consider (y2, 0), (y, Z), (0, Z2). If we look

at the first and last pair, we see this has ay
= = 2, so is certainly not refined, but is in

fact an exact point, as (y, z) maps to (y2, 0) to the left, and (0, z2 ) to the right, so surjects

onto the kernels of the maps going in the other direction. On the other hand, if we start

with the two pairs (y2, 0), (0, Z2 + Z), it is easy to see that essentially the only way to fill in

the middle pair is with (y, 0), and this point is not exact, as the maps between the second

and third pair are zero is both directions.

11.6 Further Questions

This construction brings up a number of natural further questions, and we briefly set out

a few of them. First, as mentioned earlier, the Eisenbud-Harris limit series scheme on a

reducible curve was never connected. However, in our case it seems as though the crude limit

series ought to serve as bridges between components of refined limit series with differing

ramification sequences at the node. In fact, at first blush it may appear based on dimension-

counting that crude limit series should simply be the closure of the refined series in many

cases, and this may well be true in the Eisenbud-Harris scenario of only looking at at a d

on each component, but because our crude series will often map with positive-dimensional

fibers to the Eisenbud-Harris crude series, the geometry is not entirely clear. For similar

reasons, even though our construction a priori gives results on smoothing of crude series, the

expected dimension hypothesis for all limit series will not follow immediately from having

the expected dimension of refined series. We can therefore reasonably ask:
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Question 11.6.1. When is the space of limit series on a reducible curve connected?

Question 1.6.2. When is the space of refined limit series dense in the space of all limit

series?

Question 1.6.3. In characteristic 0, what can we say about the dimension of spaces of

crude limit series, and by extension their smoothability? In particular, can we smooth a

"general" crude series, as we can in the case of refined series (the case of refined series

follows from [15, Thm. 4.5])?

We remark that bounding the dimension of crude series on a reducible curve, given an

understanding of dimensions of linear series on each component, should be a combinatorial

problem, and if the bound is restrictive enough to imply that on a general curve the crude

series have dimension at most as large as the dimension of refined series, it will follow that

for a general reducible curve, we can always apply the strong form (that is, part (ii)) of

Corollary II.4.4 to our entire G' space. In particular, we can actually make use of the

properness of the constructed G' scheme to obtain direct arguments for theorems such as

Brill-Noether, without requiring arguments involving blowing up the family, as used in [25,

p. 261].

Given our inability to adequately describe the T-valued points of Gd,EH(X/B), we can

also ask:

Question .6.4. Does Gr(X/B) actually map scheme-theoretically into GEH(X/B)? Is

it scheme-theoretically surjective?

Finally, thinking in terms of generalizations, replacing curves by higher-dimensional va-

rieties in our main theorem seems at this point merely a formality, and presents an intriguing

array of possibilities and complications. On the one hand, the ability to generalize the the-

ory of limit linear series to higher-dimensional varieties potentially provides a powerful new

tool to approach a range of questions on linear series. On the other hand, the "expected di-

mension" hypothesis of our main theorem is suddenly more of a burden in dimension higher

than one. This is amply demonstrated by the interpolation problem (see [7] and [20]), where

one sees first that expected dimension for general ramification points need not hold, even

for zero-dimensional linear series on p2, and second, that standard degeneration arguments

have thus far failed to succeed in describing when exactly the expected dimension is in fact

correct.
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In applications, another important direction of generalization is specified ramification

along one or more unspecified smooth sections; this may now be accomplished just as with

the case of the Eisenbud-Harris theory, by looking at positive-dimensional "special fibers"

and allowing p to become negative; see [25, p. 270] for an example.

II.A Appendix: The Linked Grassmannian Scheme

In this appendix, we develop of a theory of a moduli scheme parametrizing collections of

sub-bundles of vector bundles on a base scheme, linked together via maps between the vector

bundles. Representability by a proper scheme is easy and true quite generally; however, to

obtain dimension formulas will require more hypotheses and more work. These hypotheses,

while reasonably natural and easy to state, are motivated by the idea that the vector bundle

maps are induced as pushforwards of certain maps of sufficiently ample line bundles on a

scheme proper over the base scheme, as in the situation of Chapter II and its natural

generalization to higher-dimensional varieties.

We first specify the objects we will study in more detail; for the remainder of this section,

we will be in:

Situation II.A.1. S is any base scheme, and G,.... G are vector bundles on S, each of

rank d. We have maps fi : 6i -+ i+l and gi : i+l -+ /, and a positive integer r < d.

The functor we wish to study may now be easily described:

Definition II.A.2. In this situation, we have the functor Lg(r, {Ei), {fi, gi}), associating

to each S-scheme T, the set of sub-bundles V1 ,... V, of G1,T,... 4n,T of rank r and satisfying

fi,T(Vi) C Vi+l, gi,T(Vi+l) C Vi.

Then without any further hypotheses, we have:

Lemma II.A.3. L(r, {Ei), {fi,gi}) is representable by a projective scheme LG over S,

which is naturally a closed subscheme of a product of Grassmannian schemes over S; this

product is smooth and projective over S of relative dimension nr(d - r).

Proof. Let Gi be the schemes of Grassmannians of rank r sub-bundles of /i, as in Theorem

A.11. The fi do not induce morphisms from Gi to Gi+1, because a sub-bundle of i

may very well not map to a sub-bundle of i+1, thanks to the condition in the definition
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of a sub-bundle that the quotient sheaf be locally free. We can, however, construct a

closed subscheme of G := G1 x ... xs G, which represents our functor. To construct this

subscheme cut out by the inclusion conditions, we denote our projection maps from G to

each Gi by 7ri, and the maps from each Gi to S by i. Let i be the universal sub-bundles

on each Gi.

Then each fi induces a map*Oe * * * * ** *71-i i i i i/= 71+li+l i + Z i+ il Xi+ i+ i+il

on G, and the kernel of this map is a closed subscheme which imposes precisely the condition

that fi(Vi) C Vi+l. Similarly, gi induces a map 7r*+1 i+1 -+ 7r*0q5i/7*'i on G whose kernel

imposes the condition gi(Vi+l) C Vi. Taking the intersection of these closed subschemes

for all fi and gi thus gives a scheme representing CG(r, {Ei},fi,gi}), which as a closed

subscheme of G is projective over S. D

However, in order to say anything of substance about the scheme representing our

functor, and in particular to get the necessary lower bound on dimension, we need to make

a number of additional hypotheses. We define:

Definition II.A.4. In Situation II.A.1, we say that LG(r, {Ei}, {fi, gi}) is a linked Grass-

mannian of length n if S is integral and Cohen-Macaulay, and the following additional

conditions on the fi and gi are satisfied:

(I) There exists some s E &s such that figi = gifi is scalar multiplication by s for all i.

(II) Wherever s vanishes, the kernel of fi is precisely equal to the image of gi, and vice

versa. More precisely, for any i and given any two integers rl and r2 such that

r l + r2 < d, then the closed subscheme of S obtained as the locus where fi has rank

less than or equal to rl and gi has rank less than or equal to r2 is empty.

(III) At any point of S, imfi n kerfi+l = 0, and imgi+l n kergi = 0. More precisely,

for any integer rl, and any i, we have locally closed subschemes of S corresponding

to the locus where fi has rank exactly rl, and fi+lfi has rank less than or equal to

rl - 1, and similarly for the gi. Then we require simply that all of these subschemes

be empty.
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Remark II.A.5. The hypothesis that S is integral and Cohen-Macaulay is unnecessary for

most of our analysis. We use it only in the dimension-theory portion of the argument, to

ensure that LG is catenary.

From this point on, we assume that LG is a linked Grassmannian, and we denote its

map to S by r.

The following lemma will be convenient for constructing and manipulating points of LG:

Lemma II.A.6. Let {Vi}i be a k-valued point of LG, and suppose s = 0 in k. Then for

any i, we can decompose Vi as fi-l(Vi-l) D ker filvi ® C for some complementary subspace

C C Vi. Indeed, if we specify any C' C kergi_-ll which intersects fil(Vi-1) trivially, we

may choose C = C' ® C" for some C".

Proof. Clearly, it suffices to show that for any C' as in the statement, we have that

fi-l(Vi-_l)kerfilvi C' injects into Vi. But suppose we have v1 E fi-1(Vi-l), v2 E kerfilvi,

and V3 E C', such that v 1 + v2 + v 3 = 0. If we apply gi-1, by hypothesis gil(v 3 ) = 0,

and gi_l(vl) = 0 because v1 is in the image of fi-I and we assumed s = 0. So we find

that gi-l(v 2 ) = 0, which we claim implies v2 = 0: indeed, v2 E ker fi by hypothesis, so by

the second condition of a linked Grassmannian it is in the image of gi, and by the third

condition, it cannot map to 0 under gi-1 unless it is 0. Hence v2 = 0, so v1 + v 3 = 0, and

since we assumed that C' was disjoint from fi-l(Vi_1), we get v1 = V3 = 0 as well. ]

In order to make inductive arguments convenient, we define:

Definition II.A.7. If LG is a linked Grassmannian of length n, and n' any positive integer

less than n, we have the truncation map from LG to the linked Grassmannian of length

n' obtained by forgetting all ei, fi, and gi for all i > n'.

We will want to know that the truncation map is always surjective, even on certain

classes of families:

Lemma II.A.8. The truncation map is surjective for all n'. Further, in the case that the

base is a point, let x = {Vi}i be any point of LG, and suppose we have a family :xnl = Vili<n

(that is, a scheme-valued point of the restricted LG scheme) specializing to the truncation

of x to length n', and such that Vn, may be written as Cn, l ker fn' Iv, for some family Cn,.

Then Xn' may be lifted a family x of length n, specializing to x, possibly after a Zariski

localization of the base of the family.
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Proof. Surjectivity may be checked on points, and given the description of the L£ functor,

it clearly suffices to handle the case n = 2, n' = 1, since the only issue in lifting a point of a

linked Grassmannian of length n' to one of length n'+ 1 is the vector space Vn corresponding

to that point, and once we have handled n' = n - 1, we can simply project inductively to

get the general case.

Now, over a point we may consider G = 2 = E to be a single d-dimensional vector

space, and fl and gl to be self-maps of E. Let V be a vector space of dimension r inside E;

we just need to show that there exists a V2 of dimension r inside E such that fl(V 1 ) C V2,

and gl(V 2) C V1, or equivalently, such that V2 is contained in gl 1 (V) and contains fl(V 1).

fl(V1) certainly has dimension less than or equal to r, and is contained in g l(V) by

hypothesis, so it suffices to observe that g (V) must have dimension at least r, since its

dimension is obtained as dim ker gl + dim(V1 n imgl), and the codimension of imgl in E

and therefore in V1 is bounded by the dimension of ker gl.

For the second assertion, it clearly suffices to show that we can lift to a Vn'+1 of the form

Cn,,+l ( ker fn'+lI vn,+, and specializing to the truncation of x to length n' + 1, since then

we can iterate until we have lifted all the way to length n. Thanks to Lemma II.A.6, we

can write Vn = C, O ker f,[l Vn ,, and Vn+1 = fn' (Vn) ker fn'/+l vn,+1 l OCn'+ 1 for some C,,

and Cn'+, with Cn' specializing to Cn', and in particular, having full rank under fn/ except

possibly on a closed subset of the base supported away from x, where the rank could drop.

Away from this locus on the base, if we replace Vn/+l by fnn,, E kerfn,+llv,+l Cn'+1

(that is, if we set Cn+1 = fn,'Vn, Cn'+l), noting that fnVn = fnCn, we clearly obtain a

lifting with the desired properties. L]

The key notion for getting a handle on the LG scheme is the following:

Definition II.A.9. We say that a point of a linked Grassmannian scheme is exact if the

corresponding collection of vector spaces Vi satisfy the conditions that kergilvi+ C fi(Vi)

and ker fiIv C gi(Vi+1) for all i.

The last part of assertion (ii) of the following lemma is gratuitous, but it follows im-

mediately from the argument for the rest, and may perhaps shed some little light on the

overall situation.

Lemma II.A.10. We have the following description of exact points:
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(i) The exact points form an open subscheme of LG, and are naturally described as the

complement of the closed subscheme on which rk flvi + rkgilvi+l < r for some i.

(ii) In the case s O, we find that we can describe exact points as those with rk fi(Vi) +

rk gi(Vi+) = r for all i, even for arbitrary scheme-valued points, and we also find that

an exact point has fi(Vi) a sub-bundle of Vi+, and gi(Vi+1) a sub-bundle of Vi for all

i.

Proof. We certainly get a closed subscheme as described, simply by taking the union over

all i and rl,r 2 with r +r2 < r of the loci described by rk filvi < r and rkgilvi+ <I r2. We

immediately see that the points of this set are precisely the complement of the exact points,

since outside the locus where s vanishes, both fi and gi are invertible, and correspondingly

all points are exact; on the other hand, if s vanishes at our point, we have im fi C kergi

and imgi C kerfi for all i, so we already have that dimfi(Vi) + dimgi(Vi+l) < r and we

get strict inequality if and only if these containments are strict.

For the second part, if a T-valued point satisfies rkfilv + rkgilv+j = r for all i on

all of T, by definition it is in the complement of the closed subscheme of non-exact points

defined above, so it is certainly exact. Conversely, for the other direction it suffices to work

over local rings, so suppose we have a T-valued point (Vi) of LG where T is local, and

the point (Vi) of LG at the closed point of T is exact. This then is a T-valued point of

our open subscheme of exact points, and we want to show it has the asserted properties.

Since s is zero on T, then for any given i we have kerfilV = gi(Vi+l) and vice versa; in

particular, if we choose v1,... vrl spanning gi(Vi+1) and 1,. .. v 2 spanning fi(V), we find

that rl + r2 = r, and we obtain a basis ei (respectively, ei) for Vi (respectively, Vi+1) given

by the ;vj and gi() (respectively, and fi(vj)). Choosing any lifts vj and v; of the vj and

vj, we obtain lifts ej and e as well, which by Nakayama's lemma freely generate Vi and

Vi+. But because s = 0, gi(Vi+l) C ker fi and vice versa; the ej are all either vj, or gi(vj,)

for some j', so only the former have non-zero images under fi, and we get that fi(Vi) is

generated by the fi(vj), with quotient generated (again by Nakayama) by the v, so both

must be freely generated. The same holds for gi, so we find that rkfilvi = r, rkgilv[+j =r2,

and fi(Vi) and gi(Vi+l) are both sub-bundles, as desired. []

Our main technical lemma for this section is:

Lemma II.A.11. We have the following statements on exact points:
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(i) The exact points are dense in LG, and indeed dense in every fiber.

(ii) Given any exact point x E LG, let y be its image in S, suppose A is a local ring,

and A' a quotient of A. Let T = Spec A, and T' = Spec A'. Then given any diagram

containing the solid arrows of

T' > LG

T S

with the closed point of T' mapping to x, the dashed arrow may also be filled in. In

particular, x is a smooth point of LG over S.

Proof. For (i), To see that the exact points are dense in every fiber, suppose we have a

non-exact point; we just observed that this corresponds to a set of Vi such that for at least

one i, we have dimfi(V) + dimgi(Vi+) < r. In particular, we are in the situation where

figi = gifi = 0, and not the situation where the fi and gi are invertible. Now, choose the

smallest i such that dimfi(Vi) + dimgi(Vi+1) < r, and truncate our linked Grassmannian

to i + 1; here, we show that there are nearby points in the fiber such that the condition

dim fi(Vi)+dim gi(Vi+) = r is satisfied. We leave V1 through Vi unmodified. By hypothesis,

there are vectors in Vi+1 in the kernel of gi which are not in fi(Vi), and vice versa; indeed,

we see that r' := dim ker gi Iv+l -dim fi(Vi) = dim ker fi -dim gi(Vi+) = r -dim fi(Vi) -

dimgi(Vi+l). Choose Ci and Ci+1 in kerfilvi and kergilvi+, of dimension r', intersecting

gi(Vi+l) and fi(Vi) trivially; we have that together with these spaces, they must complete

the span of kerfilv and kergilvi+1 respectively. Since Ci C kerfilvi, it is in imgi, and we

can find el,... er, e Ei+, whose span is necessarily disjoint from Vi+i, and which map to a

basis of Ci under gi. By Lemma II.A.6, we can write V/i+ = fi(Vi) Eker fi+l l,+1 EDCi+l EDC"

for some C". If we take any basis el,. . . e', for Ci+l, we can make a family Vi+1 over Al by

replacing Ci+l with the span of ei + tei for all i, as t varies.

Now, V+1 specializes to Vi+1 at t = 0, and we see that it always remains linked to

V1,.. .Vi, left unmodified: it certainly maps into Vi under gi, since we are modifying basis

elements by the ei, which were chosen to map into Vi; on the other hand, our construction

leaves the summand fi(Vi) unmodified, so fi certainly maps Vi into any member of Vi+,. On

the other hand, we also observe that we now have dimfi(Vi) + dimgi(Vi+l) = r whenever

t 0: indeed, Ci+l was in the kernel of gi for t = 0, so we still have gi(Vi+l) D gi(Vi+l); for

89



any t Z 0, Ci+l maps isomorphically to Ci under gi; finally, since we chose Ci to, together

with gi(Vi+l), span kerfilv,, we find that for any t 0, gi(Vi+l) = kerfilvi, giving the

desired exactness at i. Finally, by Lemma II.A.8, we can lift this family to a family Vj for

all j, specializing to our given point, but now satisfying dimfi(Vi) + dimgi(Vi+l) = r for

a general point in the family; we conclude that the points which are non-exact at the ith

step (but exact for j < i) are in the closure of those which are exact through the ith step,

and by induction are actually in the closure of the points which are exact at all steps.

For assertion (ii), f(T') corresponds to a collection {Vi}i over A'; Our i are now all free

modules of rank d over A, and we simply want to produce free A-submodules Vi linked by

the fi and gi and restricting to the given Vi in the quotient ring A'. To do this, denote by Vi

the collection of subspaces over (f- 1 (x)) corresponding to x, and let ri be the dimension

of fi(Vi) for each i. Begin by choosing a set of rl elements e E V1 whose images under

fl modulo the maximal ideal form a basis of fl(Vl). Then choose e6 any lifts of these

elements to gl, and define ej = fl(}) for all j < rl. Now, by condition (III) for a linked

Grassmannian, the images of e2 under f2 remain linearly independent modulo the maximal

ideal, but they may not span f2(V2); if not, choose r2 - rl additional elements ej2 E V2 for

rl < <j < r2 so that {f2(e))jir 2 span f2(V2), and choose any lifts of these. Now define

j3 = f2() for all j < r2, and proceed similarly until we have defined ej for all j and all

j < ri, where we set r, not defined a priori, to be equal to r-. Now, if our fi and gi

are invertible at the special point, which is to say, if the s from condition (I) of a linked

Grassmannian is non-zero in ti(y), we will have ri = r for all i, and we will have already

defined e' for all i and j.

However, if s is zero in K(y), there is more work to be done. In this case, let r be the

dimension of gi(Vi+l); then replacing j by r + 1 - j in the indices for the basis vectors,

and moving back from V, to VI, we may use the gi to similarly define .j for all i and all

j > r + 1- ri+l, where we use the convention rj = r'. We claim that for any i, we will have

defined e' for all j, and that we have not created conflicting definitions in this manner. For

the first assertion, we need to know that r_ 1 + ri > r, but by the third condition of a linked

Grassmannian, it suffices to check that ri + ri = r, and we observe that this is precisely the

condition for a point to be exact, since then we have ri = dimker gi = r - r'. To see that

we don't get conflicting definitions, we first note that if ej was defined as the image of e}-l

under fi-1, this implies that j < ri_1 , whereas for 6j to have been defined in the gi process,
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we would have had j > r + 1 - r = ri + 1, and ri > ri-1. Therefore, it suffices to show

that alle not defined as either fil(e -1 ) or gi(}'+l) could be chosen compatibly for both

the fi and gi definition process. But this is clear: we chose such intermediate e to fill out

bases under fi and gi-1 for fi(Vi) and gi_l(Vi), but otherwise arbitrarily, and then the E

were just arbitrary lifts of there were ri - ri_1 = r_ - r such elements in both

the fi and gi definition process, so as long as we specify that these intermediate e should

always be chosen to be linearly independent modulo the maximal ideal from the span of

fi-l(Vi) and gi(V+li) together, we get r -ri- -r = ri-ri-1 elements which (again, using

that exactness means that fi-l(Vi) = kergili+l and gi(Vi+l) = kerfilVi) are easily seen to

simultaneously satisfy the requirements for both the fi and gi definition process.

Finally, we claim that the constructed in this manner define sub-bundles Vi of 6 of

rank r, restricting in A' to the Vi, and linked by the fi and gi, as desired. To see that

the Vi are sub-bundles of rank r which restrict to the Vi in A', it suffices to show that the

ej are bases of Vi modulo the maximal ideal: given this, Nakayama's lemma immediately

implies that they generate the Vi, so the restriction to A' is correct; it also shows that any

submodule of a free module over a local ring generated by the lifts of linearly independent

elements at the special fiber is necessarily free, with free quotient, giving the sub-bundle

assertion as well. On the other hand, it is clear from the construction that the reduction

of the e must be linearly independent in Vi, and since there are exactly r of them, and

Vi has dimension r, they form a basis. In the case that s was non-zero in (y), the Vi are

linked under the fi by construction, and must likewise be linked under the gi, since gi is a

unit times the inverse of fi. In the case where s was zero in r,(y), take any ej for i < n;

we show that its image under fi is a scalar multiple of ej+l. Indeed, in the case that fi(ej)

was non-zero, we defined +1 = fi(e). But if fi(e) was zero, then in our construction

ej was necessarily chosen as gi(e'+l), and we defined e = gi(e 1), so fi(e) = s(ej+l),

as desired. Thus we have constructed a map from T to &L lifting f, which by [64, Prop.

17.14.2] completes the proof of part (ii). []

The following proposition provides a strong converse to part (ii) of the above lemma:

Proposition II.A.12. The non-exact points of a fiber are precisely the intersections of the

components of that fiber.

Proof. Since the exact points are smooth, they are certainly not in any intersection of
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components. For the other direction, we first observe that if we have two exact points given

by Vi and Vi', and denote by ri and ri the dimensions of fi(Vi) and fi(Vi'), if some ri r,

the two points must lie on distinct components of LG. For this, it suffices to show that any

exact point must have the same ri as the generic point of its component. But the dim fi(Vi)

could only drop under specialization, and by exactness we also have ri = r - dimgi(Vi+l),

which can only increase under specialization. Thus, to show that any non-exact point is in

the intersection of components, it suffices to exhibit it as the specialization of two different

exact points with distinct ri.

Looking at the proof of Lemma II.A.11 part (i), we see that any point which is non-

exact at i0, with io minimal, can expressed as the specialization of an exact point with ri

unchanged for all i < io; however, upon closer examination, we see that in fact the process

leaves all the ri unchanged, simply increasing the dimensions of the gi (Vi+1) as necessary to

make the points exact. On the other hand, we note that the linked Grassmannian situation

is completely symmetric in the fi and gi, so now that we have shown that any point can

be written as the specialization of an exact point with the dim fi(Vi) unchanged, it follows

by symmetry that there is another exact point specializing to our given point, leaving the

dimensions of the gi(Vi+1) intact, and therefore necessarily increasing at least some of the

ri. This then expresses our non-exact point as lying in the intersection of two components,

as desired. [

We can also use the smoothness at exact points to compute the dimension of fibers of

LG:

Lemma II.A.13. The fibers of LG over S have every component of dimension precisely

r(d-r).

Proof. In view of Lemma II.A.11, the exact points are dense in every fiber, and smooth,

and in particular dense and smooth in any fiber. We can therefore compute the dimension

of any component of the fiber by showing that its tangent space at any exact point has the

desired dimension. Since we are only looking at a fiber, we set S = Spec k. If s f: 0 in k,

LG _ G(r, d), and is smooth of dimension r(d - r), so there is nothing to show. Otherwise,

suppose we have a collection of Vi corresponding to an exact point. Then ker filvi = gi(Vi+ 1)

for all i, so we use Lemma II.A.6 to write each Vi as fi-l(Vi-1) ED gi(Vi+l) E Ci for some

complementary space Ci. Our first assertion is that the dimensions di of the Ci add up to r.

92



Indeed, if we let ri = dim fi(V), and r' = dimgi(V+l 1), we have ri r - r' from exactness,

and for 1 < i < n, di = r-ri_l- - = ri-ri 1_, with dl =r - r r1 and d = r - r, so

we see we indeed have Ei di = r.

The next claim is that first-order deformations of the Vi inside of LG correspond precisely

to first-order deformations of each Ci individually inside Ei, taken modulo deformation of

Ci which remain inside Vi. Any deformation of the Ci together will yield a deformation of

the Vi: we use our direct sum decomposition to inductively define the induced deformation,

obtaining deformations of fi(Vi) as the image of the deformation of Ci-1 together with the

(inductively obtained) deformation of fi-l(Vi-l), and similarly for the gi(Vi+l). Moreover,

since each fi(Vi) is spanned by fil(Vi_1) together with Ci-1, this is the only possible way

to obtain a deformation of the Vi given deformations of the Ci. Clearly, two deformations of

the Ci will yield equivalent deformations of Vi if and only if their difference is a deformation

of the Ci inside of its Vi. Finally, any deformation of the Vi may be expressed (non-

uniquely) as a deformation of its summands, and in particular gives a deformation of the

Ci, at least up to the same equivalence relation. Since the deformation of the Vi induced by

the deformations of the Ci was unique, this must invert our first construction, completing

the proof of the claim.

Now we are done: first-order deformations of any given Ci are given by the tangent space

to G(di, d), which is a variety smooth of dimension di (d - di), so has di (d - di)-dimensional

tangent space at any point. Similarly, the space of deformations of Ci inside of Vi has

dimension di(r - di); the difference is di(d - r). Thus, the total dimension of our tangent

space is Ei di(d - r) = r(d - r), as asserted. O

We now have all the tools to prove our main result:

Theorem II.A.14. A linked Grassmannian scheme is a closed subscheme of the obvious

product of Grassmannian schemes over S; it is projective over S, and each component has

codimension (n - 1)r(d - r) inside the product, and maps surjectively to S. If s is non-zero,

then LG is also irreducible.

Proof. We already have that the linked Grassmannian is projective over S, and lies inside

the obvious product of Grassmannians, which we denote by G. It is easy to see each

component maps dominantly onto S, since the exact points are both smooth and dense by

Lemma II.A.11.

93

�



For the dimension statement, given any component of LG, let x be an exact point of

LG on the specified component, and not on any other component, and s the image of x in

S. Since &s,s is Cohen-Macaulay, it is Noetherian, and of finite dimension (it follows from

[41, Thm. 13.5] that the height of the maximal ideal of a Noetherian local ring, and hence

the dimension of the ring, is finite). By Lemma II.A.13, we have that 6LG,x is smooth over

Os,s of relative dimension r(d - r), and in particular reduced, by [3, Prop. 2.3.9]. But by

the choice of x, LG,x is also irreducible, hence integral. Similarly, by Theorem A.11, we

have that G,x is locally affine over s,s, hence integral and smooth of relative dimension

nr(d-r). Denote by P the prime ideal of OG,x corresponding to our component; since LG,x

is integral, we have LG,x = &G,x/P. We simply want to show that the maximal chain of

prime ideals between P and (0) has length (n - 1)d(d - r). Since S is Cohen-Macaulay,

it is universally catenary by [41, Thm. 17.9], so G is catenary, and it suffices to find the

maximal length of a chain from mx to (0), and subtract the maximal length of a chain from

mx to P, which is to say, to subtract the dimension of 6LG,x from 9G,x. But by [64, Prop.

17.5.8 (i)], we have that this difference is precisely the difference of the fiber dimensions,

which is (n - 1)r(d - r), as desired.

Finally, when s is non-zero, over the open subset of S where s is invertible, the fibers

are all simply Grassmannians of dimension r(d - r); since the map is proper, we conclude

that LG is irreducible over this locus, of dimension r(d - r). On the other hand, since every

component maps dominantly to S, there cannot be any component of LG contained in the

locus where s vanishes, yielding the desired irreducibility. O

Remark II.A.15. We have stated our results in terms of codimension rather than dimension

because for a catenary scheme, the notion of codimension is global, while the notion of

dimension only makes sense locally, unless we add hypotheses along the lines of being of

finite type over a base field.

Warning II.A.16. Lemma II.A.10 sounds quite innocuous, but there are some real pitfalls to

be aware of. Consider the simple example of n = d = 2, r = 1, S = Speck, E1 = E2 = k2,

fl = [ ], and f 2 = [ . In this case, if V1 is generated by vl = [ and V2 by
[ 0 [0° X1

V2 = [], we find the condition for them to be linked is simply that XoYi = 0, and it is

easy enough to check that we actually get that LG is scheme-theoretically cut out by this
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equation inside P1 x 1, giving a pair of IPl's attached at X0 = Y1 = 0, which is the only

non-exact point. Our lemma has shown that deformations have to behave well at the exact

points, but if we consider the T-valued point for T = Speck[e]/(e2 ) with V1 generated by

VI [ ] and V2 generated by v2 = [], we note two pathologies:

First, this point actually satisfies our initial set-theoretic description of an exact point,

that ker gl Iv2 C f (V1) and vice versa, as both images and kernels will be given precisely by

evi. So this description, while clean for dealing with both s = 0 and s invertible simultane-

ously, is only valid from a set-theoretic point of view.

Second, while we have shown that at any (scheme-valued) exact point, there will be an

rl and r2 with 7r1 + r2 = r and rkfllv < r, rkgllv 2 < r2, we see that by allowing the

ranks to drop at the closed point, we actually allow them to increase on the local ring level.

Specifically, in our case r 1, so either r1 or r2 would have to be 0, but neither f nor gl is

the zero map. Of course, this makes perfect sense geometrically, as the node will necessarily

have tangent vectors which don't point along either branch, but it underscores the fact that

the T-valued points of a union of schemes is not simply the union of the T-valued points of

the individual schemes.

We conclude with an example and some further questions which we have not pursued

here because they are not necessary for our applications.

Example II.A.17. We consider the situation of S = Speck, n = 2. In this case, it is easy

to describe the components explicitly, as well as to see their dimensions without invoking

any deformation theory. We already know that if s 0, we just get a Grassmannian, so

we assume that s = 0. If we write d = rk fl, d2 = rkgl (on the entire vector space), we

have d + d2 = d by condition (II) of a linked Grassmannian. We will see that there are

min{r + 1, d - r + 1, d1 + 1, d2 + 1} components, each of dimension r(d - r), and indexed

by the dimension of f (V1) on general points.

Indeed, we saw in the proof of Lemma II.A.8 that the fiber of any point V1 of G1

under truncation is simply the Grassmannian of vector spaces V2 containing fl(V 1) and

contained in g 1 (V), which had dimension dimkergl + dim(V1 n imgl). We need to see

that this dimension depends only on the dimension of fl(V1), which we will denote by rl.

By condition (II) of a linked Grassmannian, ker gl = im fl, and imgl = ker fl, so we may

write this as dimimfl + dim(V1 n kerfl). Now, since we are over a point, dimimf is
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invariant, and on the other hand, dim(Vi n ker fl) = r - rl, so we can write everything in

terms of rl, as desired. Specifically, we have a Grassmannian of r-dimensional subspaces of a

(dl + r - rl)-dimensional space, containing an rl-dimensional space, and this has dimension

(r- ri) (di l-rl).

We now obtain our assertions without too much trouble: fix an rl < min{r, dl} also

satisfying rl > max{O,r - d2}, and consider the locally closed subset G"x in G1 with

dim fl(V1) = rl. Note that the specified range is precisely the range for which this will be

non-empty. Now, G"' is irreducible of codimension (r- rl) (dl - rl), since it is an open subset

of the locus in G1 with dim fl (V1 ) < rl, which corresponds simply to a Schubert cycle, which

is irreducible of codimension (r - rl)(dl - rl) (Theorem A.11). If we base change LG to

Gr', we get a proper map with irreducible equidimensional fibers, mapping surjectively to

an irreducible base, so in fact LG becomes irreducible, and has dimension precisely r(d- r).

Since this dimension remains constant as rl decreases, and the codimension of G"' increases

as rl decreases, we find we must have exactly one irreducible component of LG for each

choice of rl.

Question II.A.18. Can we show that LG is flat over S? That it is reduced?

Question II.A.19. Can we describe the components of LG for n > 2?
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Chapter III

Explicit Formulas and

Frobenius-Unstable Bundles

The primary goal of this chapter is to develop very explicit formulas for p-curvature poten-

tially applicable to a wide range of situations, and to apply them to the study of semi-stable

vector bundles of rank-2 vector bundles on genus-2 curves which pull back to unstable bun-

dles under the relative Frobenius morphism. Using a combination of characteristic-specific

and characteristic-independent techniques, we apply our explicit p-curvature formulas to

connections on certain unstable vector bundles to classify such "Frobenius-unstable" bun-

dles in characteristics 3, 5, and 7. Unlike the degeneration approaches to the same results,

used first by Mochizuki in [42], and subsequently in Chapter VI of this work, which have

the advantage of being characteristic-independent and more suitable to generalization, the

p-curvature formulas obtained here may be used to study arbitrary smooth curves, and do

not give results only for general curves. This distinction is underscored by an algorithm

derived via the same techniques to explicitly describe the loci of curves of genus 2 and

p-ranks 0 or 1 in any specified characteristic.

Our main theorem is:

Theorem III.0.1. Let C be a smooth, proper curve of genus 2 over an algebraically closed

field k of characteristic p; it may be described on an affine part by y 2 = g(x) for some quintic

g. Then the number of semistable vector bundles on C with trivial determinant which pull

back to unstable vector bundles under the relative Frobenius morphism is:

p = 3: 16 1;
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p = 5: 16 · e5, where e5 = 5 for a general C, and is given for an arbitrary C as the number

of distinct roots of a quintic polynomial with coefficients in terms of the coefficients

of g;

p = 7: 16 ·e7, where e7 = 14 for a general C, and is given for an arbitrary C as the number

of points in the intersection of four curves in A2 whose coefficients are in terms of

the coefficients of g.

Together with prior results (see, for instance, [37]) in characteristic 2, we see that al-

though the answer is the same for all curves in characteristics 2 and 3, already by char-

acteristic 5 there is variation, albeit easily analyzed, and by characteristic 7 it has arrived

at what is essentially the worst case scenario: an (apparently) incomplete intersection of

hypersurfaces in affine space, with no obvious means even of showing, for instance, that it

is always non-empty. It becomes apparent that the good behavior of lower characteristics

is simply due to the p-curvature formulas yielding polynomials of sufficiently low degree to

allow isolating variables as much as needed, but that this does not occur in higher degree,

and for characteristics 7 and up it seems unlikely that this sort of explicit computation will

have much luck in analyzing arbitary curves.

Section III.1 recalls the necessary background and notation. Section 111.2 is devoted

to developing explicit and completely general combinatorial formulas for p-curvature, and

applying them to derive a much simpler formula in the rank case. Section III.3 uses

some more abstract observations to reduce finding the Frobenius-unstable bundles in our

case (indeed, in any odd characteristic) to analysis of a single vector bundle &. Section

III.4 applies the rank 1 p-curvature formulas of Section III.2 to the case of genus 2, giving

explicit formulas for a function we will need, and also applying them to give an explicit

algorithm for generating p-rank formulas in any specific odd characteristic. Section III.5

carries out the characteristic-independent part of the desired computation for a single g,

namely computing the space of transport-equivalence classes of connections on , and

Section III.6 concludes the computation, giving definitive answers in characteristics 3 and

5, as well as a look at what happens in characteristic 7. Section III.7 explicitly recovers in

the genus 2 case a finite-flatness result of Mochizuki, which provides for statements about

general curves and completes the proof of Theorem III.0.1. Section III.8 then discusses

some further calculations and questions arising from the chapter.
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The answer has already been obtained in characteristic 2 by Laszlo and Pauly: there is

always a single Frobenius-unstable bundle (see [37], argument for Prop. 6.1 2.; the equations

for an ordinary curve are not used). Joshi, Ramanan, Xia and Yu obtain results on the

Frobenius-unstable locus in characteristic 2 for higher-genus curves in [28]. Mochizuki [42]

has obtained the answer in the language of projective line bundles for a general curve of

genus 2 in any odd characteristic, via techniques quite similar to the degeneration techniques

which we pursue in Chapter VI. However, such degeneration techniques are typically only

suited for obtaining results on a general curve, with the caveat that a certain finite flatness

result [42, II, Thm. 2.8, p. 153] for arbitrary curves does show that the number of Frobenius-

unstable bundles on an arbitrary smooth curve is at most the number on a general curve. See

the introduction to Chapter VI for a more detailed discussion. Finally, Lange and Pauly

[34] have, concurrently with the preparation of the present work, recovered Mochizuki's

formula in the case of ordinary curves via a completely different approach, although they

obtain only an inequality, rather than an equality.

III.1 Background: Definitions and Notation

We begin by reviewing the relevant background definitions and terminology. We work over

an arbitrary base scheme S for the sake of a few technical points which arise, but for

conceptual purposes it will suffice to take S = Spec(k) for some field k. Throughout this

section, X will be a smooth, proper scheme over S. However, properness is only necessary

for statements involving connections with trivial determinant or degrees of line bundles.

We start by recalling the language of connections on vector bundles and associated

operations, which are independent of characteristic. We have the rank-n vector bundle

Qx/s of 1-forms on X over S; given any other vector bundle g on X, a connection on g

is an AS-linear map V: - 80 e satisfying V(fs) = fV(s) + df 0 s. Now, given an

automorphism 0 of &, we can transport any connection V along 0 to get a new connection,

given as 0 1 o V o - 1. We also recall that given an affine open U C X, 0 is called a

derivation on x (U) if it is an s-linear map from Ax(U) to itself satisfying the Leibniz

rule 0(fg) = 0(f)g+ fO(g); associated to 0 is a unique x(U)-linear homomorphism 0 from

QXIS(U) to Ax(U), which gives 0 upon precomposition with d: Ax(U) - Qx/s(U) (see
[13, p. 386]).
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We now recall some standard vector bundle constructions, and note that they extend to

connections. If G is a vector bundle of rank n on X, there is the associated determinant

line bundle, obtained simply as An 8. We remark that the operations of tensor product,

wedge product, and dualization (and in particular, of taking the determinant bundle or a

homomorphism bundle) extend naturally to vector bundles with connection: indeed, given

connections Vi on Gi for i = 1, . .., m, one can define a connection on g1 0... 0 8m by the

formula VT 1 · · 1 + 1 V2 · 1 + - · Vm; moreover, in the case that

all the i = g and Vi = V are equal, this descends to the quotient bundle defining the mth

wedge product of g. Now suppose V is a connection on some ; we construct a canonical

connection VV on 6V by associating to every functional v CE V (U) the element VV(v) of

Gv X Q1>(U) described by s -+ -v(V(s)); we then see that VV(fv)(s) = -fv(V(s)) =

v(-fV(s)) = v(s ( df - V(fs)) = v(s) 0 df - v(V(fs)) = v(s) 0 df + VV(v)(fs), so

VV is indeed a connection. Using these associated connections, we immediately find that

for vector bundles g, 9 with connections V, V', we get canonical induced connections on

W7om(8, 9) and det g. The former is given explicitly by cp - V' o - ( 0 1) o V, and

therefore its horizontal sections are precisely homomorphisms from G to 9 which commute

with V, V'. We call the latter the determinant connection. We can therefore say that a

vector bundle G has trivial determinant if its determinant bundle is isomorphic to ex;

given a connection V on such an g, we say that V has trivial determinant if the induced

connection on det g corresponds simply to d under a chosen isomorphism det G - tYx. It is

easy to check that scalar automorphisms won't affect connections, so when X is proper the

notion of trivial determinant for a connection is independent of the choice of automorphism.

Finally, we note that given a connection V on &, we get an induced connection not only

on £nd(G), but also on the sub-bundle End°(6) of traceless endomorphisms; indeed, this

is checked easily from the definition of the induced connection on End(G), if one thinks of

End(g) as GV 0 G and the trace as being given by evaluation.

Now suppose that S has characteristic p. We review the associated Frobenius mor-

phisms, and then discuss the notion of p-curvature which is associated to an integrable

connection. There is a canonical variety X(P), the p-twist of X over S, and the relative

Frobenius morphism FX/ S : X - X(P) over S; if we denote by Fx and Fs the absolute

Frobenius morphisms of X and S, X(P) := X xs S under the map Fs : S - S, and Fx/s is

characterized by Fx = rX/ o Fx/s, where rx/s is the change of base of Fs to X. Since we
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work almost entirely with the relative Frobenius morphism, we will also denote it simply by

F when there is no possibility of confusion on what X and S are. If A, g are ax-modules,

we also define a map p: - 5 to be p-linear if it is additive, and satisfies so(fs) = f Pp(s)

for s E S(U), f E Ax(U), and all open U C X. Now, for any Ax-module 9, it is easy to

see that the natural map 7r: 9 -+ Fg gives a "universal p-linear map", which is to say,

any p-linear map - 5 factors through 7rs to give a unique Ax-linear map F~:g - G.

If V is an integrable connection on G, which is to say a connection such that the usual

curvature V2 vanishes, then there is a notion of p-curvature associated to V defined as

follows: for any affine open U of X, and any derivation 0 on U, we define V : G -+ by

composing V with 1 0. Now, since we are in characteristic p, OP is another derivation, and

we define the p-curvature on U to be the map from Der(&x(U)) to End (G) given by

,bv(0) = (Vo)P - V(op). We extend this to a sheaf morphism Pv : Der(&x) -+ £ndes(g),

and it turns out that it actually takes values in Endax (), and moreover is p-linear on

Der(ex) (that is, Ov(fO) = fPbv(O)) (see [30, 5.0.5, 5.2.0]). Finally, v(0) commutes

with Vo, for any 0' [30, 5.2.3]. Finally, if we pull back a vector bundle G on X(P) under F,

the sections of F*a on U C X will be described as f 0 s, where f E Ox (U), s E &(U), and

we have (F*f) 0 s = 1 fs. We then see that we can have a canonical connection Vcan

on F*a defined by f s -+ s 0 df. The main important of p-curvature for us is Theorem

111.1.4 below, but we will first explore the formal properties of the p-curvature map.

Since, Der() (/s)v, the p-linearity means we can consider Xkv as an x-linear

map F(Ql /s)V - End(g); compatibility of Q1/s with base change yields 7rx/sx/s -
so 1 a 1

QX(P)/ so Fx -F*fx(p)/s, and we finally find we can consider p-curvature as giving

a global section

kv E r(X,6 nd(G) 0 F*Q(

We claim that in fact, V/v lies in the kernel of the connection Vind induced on £nd(&) 0

F*Q >() by V on ~ (inducing Vend on £nd(&)) and Vcan on F*Qx(p). This follows formally

from the fact that ,6v(0) commutes with Vo, for all 0,6'; if one thinks of Okv as a linear

map F* Derx(p) - £nd(G), one may use this commutativity to explicitly write down the

actions of Van and Vnd, and see that they commute with O1Iv. We therefore obtain the

strengthened statement:

' Ev r(X, End(g) <E) F*Q(p 1 vind
OPv E (X, nd(,) F (,)/$) (III.1.1)
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where Vind is the connection induced by V and Vcan. Last, we also note that because

q0 1 commutes with 1 0, transport by 0 simply conjugates the p-curvature map by 0; in

particular, vanishing p-curvature is transport-invariant.

If g has trivial determinant, we may restrict to connections with trivial determinant, and

then obtain a map to endomorphisms with 0 trace, by Proposition A.30 (ii). Because we have

worked over an arbitrary base scheme S of characteristic p, in particular our construction

works after arbitrary base change; we can therefore think of Oi as giving algebraic maps

between affine spaces, determined on their T-valued points for all T over S:

: r(X, Conn(G)) - r(X, nd(G) 0 F*Q p))

b° : r(X, Conn ()) -+ r(X, End () 0 F* QX(p) 

We can then take the determinant of the resulting endomorphisms to get maps

det : rF(X, Conn(6)) - rF(X, (F*·(p ,)®n)

det 'p 0 F(X, Conn ()) -+ F(X, (F*Q1 (p))n)

where g has rank n. In the case of Conn°(G) on an g of trivial determinant, it is not

hard to check that Vcan is the induced connection on (F*Ql())0n , and that (III.1.1) then

implies that the image of det i is in the kernel of Vcan, and may therefore be considered an

element of r(C(P), (Q()n).c( We conclude that we have in this case:

det0 : (X, Conn°(e)) (X(p), (Q1 )(.1.3)

We now begin to explore the importance of p-curvature, leading up to Theorem 111.1.4.

The main point is that p-curvature is extremely useful for studying pullbacks of vector

bundles under Frobenius: given d on X, with a connection V, V is by definition linear on

functions f with df = 0, so the kernel of V is naturally a Ox(p)-module. Moreover, if we

have # on X(P), it is easy to see from the definition that the kernel of Vcan on F*9 recovers

S. We also see that given a derivation 0, Xvan is given by f 0 s -* (Of) 0 s, so that the p-

curvature associated to Vcan is visibly always 0. This may seem suggestive, and indeed the

Cartier theorem states that given a vector bundle G with a connection V whose p-curvature

vanishes, then G is the pullback of a vector bundle on X(P) under Frobenius, with V being
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the corresponding canonical connection. One can even construct an appropriate categorical

equivalence in this manner, known as the Cartier isomorphism:

Theorem I11.1.4. (Essentially [30, 5.1]) Let X be a smooth S-scheme, with S having

characteristic p, and let F: X - X(P) be the relative Frobenius morphism. Then pullback

under Frobenius (together with the associated canonical connection) and taking kernels of

connections are mutually inverse functors, giving an equivalence of categories between the

category of vector bundles of rank n on X(P) and the full subcategory of the category of vector

bundles of rank n with integrable connection on X consisting of objects whose connection

has p-curvature zero.

Furthermore, the same statement holds when restricted to the full subcategories of vector

bundles with trivial determinant on X(P), and vector bundles with connection both having

trivial determinant on X.

Proof. The main ingredient is the Cartier isomorphism theorem, giving the same statement

in the case of coherent sheaves; see [30, 5.1]. It only remains to check that vector bundles

are mapped to vector bundles of the same rank, in either direction. This is of course trivial

for the functor given by F*; for the other direction, let & be a vector bundle with integrable

connection V, and suppose the p-curvature of V is zero. Now, 6v is a sub-module of F,G;

since F is finite, F,g is coherent, and X(P) being Noetherian, Gv is also coherent. Now,

we already know that F*8v = e, so 6gV is locally free of rank n if and only if it is locally

free, if and only if it is flat over X(P). But since X is smooth over S, by Proposition A.25

F is (faithfully) flat, and we know that F*G&v is flat on X, so we conclude that GV6 is flat

on X(P), as desired.

Lastly, the correspondence in the case of trivial determinant follows immediately from

Proposition A.30 (i). OE

Using this functoriality, two bundles pulling back to G are isomorphic if and only if

their corresponding canonical connections on are related by transport under some au-

tomorphism, so classifying isomorphism classes of vector bundles pulling back to g under

Frobenius is equivalent to classifying transport equivalence classes of connections on g with

vanishing p-curvature.

We see from the Cartier isomorphism that p-curvature is an important tool for study-

ing, among other things, the action of pullback by Frobenius on moduli spaces of vector
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bundles on X. The moduli perspective will be deferred until Chapter IV, but we review

the appropriate vector bundle terminology for this chapter in the case where X = C is a

proper smooth curve, noting that in this case, all connections are automatically integrable,

so have well-defined p-curvature. The degree of G is the degree of the determinant, as

a line bundle. The slope of G is defined to be times the degree of &, and & is said

to be stable if every proper, non-zero sub-bundle has slope less than the slope of A, and

semistable if every sub-bundle has slope less than or equal to the slope of A. If k has

positive characteristic, and F denotes the relative Frobenius morphism from C(P) to C, we

say that a semistable G on C is Frobenius unstable if F*& is unstable on C(P).

Finally, we recall the tools of trivializations and matrix expressions that will form the

underpinnings of our explicit calculations.

If we have any vector bundle G on C which is trivialized on open sets U1 and U2, we

shall say E is the transition matrix for G for the given trivialization if sections si on Ui,

written in terms of the trivialization, are related by

si = Es2. (111.1.5)

Then, a map between two such bundles with transition matrices E1 and E2 is given by

matrices Si regular on their respective Ui, which send si to Sisi and must therefore satisfy

the relationship

S1E 1 = E2S2. (III.1.6)

Similarly, a connection on G is equivalent to one-form-valued matrices Ti regular on their

respective Ui satisfying

V(si) = Tisi + dsi. (III.1.7)

As result, we find that the Ti must satisfy

T = ET2E- 1 + E(dE-1). (111.1.8)

For the convenience of dealing with functions rather than forms, if we have wi trivializing

the canonical bundle on the Ui, and we take the naturally induced trivialization of g 0 Qc
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on the Ui, we can write connection matrixes of functions Ti -= i, so that

V(si) = Tisiwi + dsi, (III.1.9)

and obtain in this case the formula

T1 = --ET2 E-1+E . (III..10)
W1 w1

Lastly, transport of a connection given by Ti along an automorphism given by Si is deter-

mined by the formula:

Ti X S-TiSi + S-l'(dSi), (III.1.11)

or equivalently,

-Ti ÷ Sz TiiS + dS (III.1.12)

Finally, we remark that it is not hard to check that given a trivialization of 8 on U1

and U2 with transition matrix E, the line bundle det G will be trivialized on U1 and U2,

with transition function given by det E. If further we have a connection matrix Ti on Ui,

the determinant connection on det G is given simply by the function TrTi on Ui.

11.2 Explicit p-curvature Formulas

The formulas developed in this section should be of use in any dimension, but for the sake

of simplicity of notation, we will restrict ourselves to the case where X = C is an arbitrary

smooth curve. We pin down our notation further:

Situation I11.2.1. U denotes an affine open on a smooth curve C. We are given a vector

bundle trivialized on U, and Q is trivialized by a one-form w on U. Under these

trivializations and the corresponding tensor trivialization of 0 Q , we get as in 11.1.9 a

connection matrix T on U associated to any connection V on 8. Finally, for a derivation 0

we denote (w) by fo, and set o0 as the derivation on U with fo, = 1.

We first claim:

Lemma I11.2.2. Given a connection V described on an affine open U by a connection

matrix T, a derivation 0 on U, and a section s of G on U, we have Vo(s) = foTs + Os,
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where fo is defined as 0(w), and 0 acts on s by application to each coefficient.

Proof. Under our choice of trivializations for & and 0 , we had V given by

ds
s -Ts + -

w

and the trivialization for g 0 QC was gotten on U by tensoring with w, so we find that Vo

sends

s - fTs + fds
w

Lastly, we recall that by the construction of how to get between 0 and , fd- is precisely

Os, giving the desired result. ]

We thus obtain:

Corollary III.2.3. )v(O) = (f0T + O)p - fopT - p

We next observe that because p-curvature is p-linear on derivations, and because every

derivation on U can be written as some function on U times the derivation 00, we conclude:

Lemma 111.2.4. The p-curvature of a connection V is identically 0 if and only if v(Oo) =

O for the particular derivation 0o, which is to say for the derivation given by fo = 1.

In this situation, we have 4'v(O0) = (T + 0o)P - fET - o. However, from this formula it

is not at all clear that the result is an endomorphism, nor how to compute the corresponding

matrix for the p-curvature on U. In order to be able to work this out explicitly, we develop

explicit formulas for (T + O0)n, using the commutation relation 00T = (oT) + TO0, where

(0oT) denotes the application of 0o to the coordinates of T (it might perhaps be preferable

to denote this by o0 (T), but I find the former notation will make formulas easier to parse).

Proposition II1.2.5. Given i = (il,...,it) E t - 1 x (NU {0}) with Et=, ij = n, denote by

ni the coefficient of Ti = (01-1T) ... (0Ot-1- )00t in the full expansion of (T + o)n. Also

denote by io the vector (il,..., i_-i,O). Then we have:

ni = i io
it/n·
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Proof. This proof and the following may be carried out by induction purely numerically as

follows: by definition, we have

(T + o) = (T+ o)(Z E 'iST),
eL li'l=n-1

where i' = (i,...,i,), and i' := . Multiplying out and commuting the 00 from

left to right until we obtain another such expression (using the relation that 0o0(0T) =

(0'+1T)+(OT)o)0, we find two cases: i = 1 and ii > 1; we will illustrate the case ii > 1, the

other being essentially the same. In this case, we obtain the inductive formula hi = Ej hi-lj,

where lj denotes the vector which is 1 in the jth position and 0 elsewhere, and where j is

allowed to range only over values where ij > 1. We then have also that hio = Ej<e nio-ij,

so that if we induct on n, we have nii = = j < +(ni-l)-(i- + (i-i -1(i-l)o =

((n l) + (T-)))io, where the last identity makes use of the observation that io = (i- 1e)o.

Then the identity (nr1) + (-1) (n) completes the proof.

However, such inductive arguments to verify pre-supplied formulas are frequently not

enlightening, so we attempt to give arguments for this and the next result to explain directly

how the formulas in question arise. Considering as above what happens when one takes an

expression in T and 0o, multiplies on the left by (T + 0o), and commutes the 00 to the right,

one sees that the coefficient of Ti = (0-1T) ... (t--l 1 T)0 in the expansion of (T + 0o)n

is obtained by counting the number of ways of starting with the empty expression 0 °, and

getting to the given expression Ti, with a valid step being to either add a T = (T) on the

left, or to increment any existing power of 00. Since each step increases the sum of the ij by

one, the number of steps is in fact always determined, but I will include it nonetheless to

make calculations more transparent. We immediately see that since we start with 00, and

need to end up with 0"e on the right, each way of getting to Ti in n steps yields a unique

path to Tio in n - i steps, simply by skipping the steps which increment the final power of

00o, and conversely, for each way of getting to Tio (taking n - i steps), we obtain a way of

getting to Ti by inserting i steps incrementing the trailing power of 00, which may occur

at any time; thus, there are () ways of doing this, yielding the desired result. ]

It follows that if n = p, i is nonzero mod n only if i = 0 or i = n, and in the latter

case, we have e = 1, i = p, and i = 1, which precisely cancels the 0p subtracted off in

the formula for Obv(00 ). We immediately see that 6v(0o) is in fact given entirely by linear
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terms, explicitly recovering the statement we already knew to be true that p-curvature takes

values in the space of Bc-linear endomorphisms of A. We may now restrict our attention

to the linear terms in the expansion, and will shift our notation accordingly:

Proposition III.2.6. Given i = (il,... ,ie) E N with -E=,ij = n, denote by ni the

coefficient of Ti = (0o-i'T) ... (0- 1T) in the full expansion of (T + 0o)n. Also denote by 

the truncated vector (il,... ,ie_l). Then we have:

n -
ni =

We thus get

n (- i -= j+ im) = ( ( (n 1)!
j 1 -1 j

j=1 (H~=l (ij 1)!) ( Emtl im))

Proof. We make the same analysis as in the proof of the previous lemma; given a path to

the given expression Ti in n steps, we get a unique path to the truncated expression T in

n - ie steps by skipping the creation of the final term as well as all steps incrementing its

power of 00. Conversely, given a path to Tj in n - i steps, to obtain a path to Ti we must

add in the creation of the final term, and the incrementation of the powers of Oo for that

term. However, the former is entirely fixed: since new terms can be added only on the left,

and the extra term must end up on the right, its creation must occur on the very first step,

and there is therefore no choice involved. The only choices that arise are where to add in

the i - 1 incrementations of the power of 00 in that final term, which must fall somewhere

in the remaining n - 1 steps, giving the desired result. [l

We note that this actually implies that every such term in the expansion of (T + 0o)n is

nonzero mod n when n = p, since the numerator in the resulting formula is simply (n - 1)!.

Thus, the p-curvature formula is actually always 'maximally' complex in some sense, having

2p- 1 + 1 terms (a choice of i is equivalent to choosing the resulting partial sums, which can

be any subset of {1,... ,p - 1; but there is also the fpT term). However, when some

of the terms commute, the formulas tend to simplify considerably. In this chapter we will

only apply the following proposition to the particular case of rank one, where everything

commutes, but we prove a more general form for later use.
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Proposition III.2.7. Given i = (il,... , -i) C N with j= = , and given a subset

A c {1,... , , , denote by S the subset of St which preserves the order of the elements of

A. We also denote by niA the sum over all oa E SAe of n,(i), where a(i) denotes the vector

obtained from i by permuting the indices under a. Then we have:

J n!ji _fejl=l(i j + _m'CAj i)
Note that the last sum in the denominator is non-empty only for j E A.

Proof. Applying our previous formula, we really just want to show that

1 n Ej=l i

GSA j=l E im=l a(m) '-Ij=l(i j + m<j im) rI (ij + ZmnjA im)

and dividing through by n = j=l ij reduces the identity to

1 1

aESA j=l Em=l 'a(m) 1j=l (i ± Zm<j

We show this by induction on e (noting that it is rather trivial in the case e = 1, whether or

not A is empty), breaking up the first sum over Si into e- AI+ 1 pieces, depending on which

ir ends up in the final place. There are two cases to consider: r A, or r = Amax. In either

case, the relevant part of the sum on the left hand side becomes ESA,r I1j=lE 1
im=l a(m)

where Ser denotes the subset of S sending r to . Now, the point is that this may be

considered as a subset of the symmetric group acting on a set of e - 1 elements, allowing

us to apply induction; in the case that r 0 A, A is in essence unaffected, and we find that

1 i _ 1Acr j=1 OM _m) r

aES_r j -m am) aEtSrjfr rn<j (rn) n jr(i Zrn<j ima)

m,rEA-
F- m' mJEA im irir +' -m<r __ _ _

[j=r(ij ± Zmj<} im) n Ij=r(ij + . mFjE i n)

since r A. In the case that r = Amax, we effectively reduce the size of A by one, but

because r is maximal in A, for j $ r the term Am<jAim is unaffected by omitting r from A.
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We thus find

e i ZJmAjEA1 i± +M<jA im E j
sAr j=l E im=l ta(m) n Hlj=r(ij + Zm'3j im) n Hj=r(ij + Z j ir)

Adding these up as r ranges over Amax and all values not in A, and using n = Ej ij, we get

the desired identity. O

From this proposition, we see that when n = p and A is empty, so that all the involved

matrices commute, we have
0 n!

n i =

-,=l(ij)!

but the actual coefficient will be ni/Pi, where Pi is the number of permutations fixing the

vector i, since summing up over all permutations will count each term Pi times. We see

that this expression can be non-zero mod n only if either Pi is a multiple of n, or some ij

is. Since Pi is the order of a subgroup of Se, it can be a multiple of n if and only if e = n

and each ij = 1. On the other hand, an ij can be a multiple of n if and only if e = 1 and

il = n; these two terms simply reiterate that the coefficients of Tn and (n-1T) are both

1, and we see that every other coefficient vanishes mod n, from which we obtain the vastly

friendlier formula:

Corollary III.2.8. In rank 1, p-curvature is given by:

OV(0o) = T + (- 1T) - fT.

We also record the general p-curvature formulas in characteristics 3, 5, and 7, for later

use.

Characteristic 3:

4'v(00) = T3 + (oT)T + 2T(O0T) + (02 T) - fT (111.2.9)
T T + 2T~~~~~~~~~~~~(.) T)-f3
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Characteristic 5:

bv(0o) = T5 + 4T3 (OT) + 3T2 (OT)T + T2(2T) + 2T(0oT)T2

+3T(OT)2 3T(02T)T + 4T(0o3T) + (01T)T3 4(01T)T(0o1T) (.2.10)OT 0 OTT OT) ~~~~(III.2.10)
+3(0oT) 2 T ( ) + ()(0o2 ) + (02)T 2 + 4(0o2T)(0oT) + (3T)T

+(o4)- f05T
00

Characteristic 7:

'bv(0o) = T7 + 6T5(0OT) + 5T4( T)T + T4(O2T) + 4T3 ( 1OT)T2

±3T3(0oT)2 -3T3(02T)T +- 623(03T) 32(012)23

+4T2(011)(0oT2) + 12(011)21 + 322(0oT2)(0o22) + 622(0o2T)T2

+T2(o2)(oT1) + 3T2(o3T)1T - 12(o42) ± 2T(01)24

2+5(o 2(01)2(o1) + 3(0oT)2(0oT)T + 22(0~2)(0o2)

+(01)2T2 + 6T(011)3 + 6(0o)(0O1T)T + 5(01T)(01)

32(02 o2)(0 + 2 (042)(01T)T + 32(02) 2

±4T(031)T12 32(032)(012) ± 5T(0o4)T + 62(0~2) + (022)T5

±6(001)23(01) 5(01T)T2(01T)T + (011)T2(02T) (III.2.11)

+4(0o1)(01)22 + 3(0OT)T(0OT)2 +- 3(o2T)T(0o2T)T
+6(012)T(032) + 3(01)2T3 + 4(0T)2T(0) + (0o1)32

+3(0T)2(0o2T) + 6(9oT)(02T)T2 ± (0oT)(0o2T)(01oT)

+3(0T)(O3T)T + (0S1)(0o42) + (0o22)24 + 6(0~T)T2(0~T)

+5(0o22)2(O~T)T + (0o2T)(o22) + 4(0o22) (0~2)2

+3(0~2)(02 )2 + 3(0o22)22 + 6(0~2)(032) + (0032)3 2

+6(3T)2(0oT) + 5(03)(0OT)T + (03T)(0o2T) + (042)T 2

+6(0'4T)(T01) + (0oT)T (061) - 71T

III.3 Preparations in Genus 2

Having derived these entirely general p-curvature formulas, we now make use of some less

explicit observations in preparation for applying this to the specific case we examine for the

rest of the chapter. This case is:

Situation III.3.1. C is a smooth, proper curve of genus 2, over an algebraically closed

field k of characteristic p.
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In this situation, A. J. de Jong observed that there are only finitely many Frobenius-

unstable vector bundles of rank 2 and trivial determinant on C (see Lemma IV.A.10 for

finiteness, although we will also obtain a more direct proof from Corollary III.7.4), and we

have the following description of them (given previously in [29, Prop. 3.5]):

Proposition I11.3.2. Let 9 be a semistable rank 2 vector bundle on C with trivial deter-

minant, and suppose g = F*9 is unstable. Then there is a non-split exact sequence

where Y is a theta characteristic, that is, 0y 2 C

Proof. Suppose g is unstable, and the Frobenius pullback of some S which is (semi)stable

of trivial determinant. Then g also has trivial determinant, and in particular degree 0, so

for it to be unstable is equivalent to having a subsheaf locally free of rank 1, and of positive

degree, say Y. If we choose Yf of maximal degree, it will automatically be saturated inside

A, and since C is a smooth curve, it will have locally free quotient, and we will have an

exact sequence

0 -+ Y g -+ o°-1 - 0

(where we know the quotient bundle is -1 because the determinant of g will be the tensor

product of Yf with the quotient bundle, and has to be trivial by hypothesis).

But since g = F*#, we have Vcan on A, a connection with vanishing p-curvature, and

if we tensor our exact sequence by QC, we get the following diagram:

O - I - - - 0

Vcan

O -, Q1 e Y (D e - Q, ( - 0

If we start with Y, and follow it into A, down along Vcan, and then over to Q ® Y- 1, we

will get a map from Y to fQ 0 -1 which one can verify directly is in fact linear (even

though can was not). Now, we note that this map is non-zero: if it were 0, we would find

that the image of Yf under Vcan was actually contained in b 0 fY, meaning we would have

a connection with vanishing p-curvature on £°, compatible with Vcan. But this would mean

that Y was the Frobenius pullback of some A', necessarily of positive degree, and mapping
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into A, contradicting the hypothesis that 9 was semistable. But now we have a nonzero

map from Y to Q 0 Y -l, meaning that the latter has to have higher degree. This gives

us 2 - deg(Y) > deg(Y), so deg(Y) < 1. Since we assumed initially that deg(Y) > 0, we

find deg(Y) = 1, and since any nonzero map between line bundles of the same degree must

be an isomorphism, Y - RQ 0 -1, and 22 Q . Ol

In fact, the converse of this proposition is almost true. Namely, given a rank 2 vector

bundle G fitting into such an exact sequence, with a connection whose p-curvature vanishes,

then the corresponding vector bundle # which pulls back to G under Frobenius is stable,

and has determinant which may not be trivial, but whose pth tensor power is trivial: the

determinant statement follows simply because taking determinants commutes with pulling

back under Frobenius, and p-torsion line bundles are visibly the kernel of F* on the space

of line bundles (note that this is true as a set-theoretic statement for either the relative

or absolute Frobenius morphism). We see that 9 is stable because if /Y is a nonnegative

line bundle mapping into A, then F*,1 is a line bundle of degree either 0 or at least p,

mapping into X, and the following lemma completes the proof:

Lemma III.3.3. Let G be a rank 2 vector bundle of degree 0, and suppose 2 is a positive

line bundle giving an exact sequence

0 - - -+ det Y ~- - 0

Then 2 is unique, and is the maximal degree line bundle inside G, and g is not an extension

of any two degree 0 line bundles.

Proof. Suppose we have X another positive line bundle mapping into . Then since

det g 0 ®-1 is negative, the composition with that quotient map must be 0, meaning that

the image of X is contained in the image of 2', and therefore X maps into 2. Thus, X&

has degree less than or equal to 2, with equality if and only if they are isomorphic, which

also gives uniqueness of 2'. Similarly, if g were an extension of ' and det G 0 /-1 for

some X of degree 0, the composition of the inclusion of Y into g with the quotient to

det g 0 -l would have to be 0, so Y would include into A, which isn't possible. LO

Moreover, there are only finitely many g to examine:

113



Proposition I11.3.4. There are only 16 choices for G as described in Proposition III.3.2,

one for each choice of 2.

Proof. Any two choices of Y2 differ by a line bundle of order 2, which is to say a 2-torsion

element of the Jacobian of C. Since C has genus 2, the Jacobian is 2-dimensional, and there

are 222 = 16 such line bundles (using the fact that p is odd). With Y' chosen, we see:

Since the choices for g are parametrized by Extl('-, ) [26, Ex III.6.1]. We have:

Extl(2'-l,) Extl (6c, y® 2) = Extl (0c, Q1 ) [26, Prop III.6.7]

H1 (C, Q) [26, Prop II.6.3]

- H°(C, 0c) - k [26, Cor III.7.7 (Serre duality)]

It should be noted that although the space of extensions is one dimensional, there will be

a unique isomorphism class for g among non-trivial extensions, since scaling an extension

by an element of k* only changes the isomorphism class of the extension, and not of the

vector bundle. Thus, we have one G for each 2, and a total of 16 choices. [1

Lastly, the bijectivity of F* on 2-torsion line bundles of Pic shows that starting with one

choice of &, and an S pulling back to G under Frobenius, tensoring by line bundles of order

2 will give A' pulling back to each A' in a way that induces bijections between the sets of

bundles pulling back to any given pair of & and b'. Thus, it actually suffices to handle the

problem for a single choice of , at least set-theoretically. But the same argument holds

over an arbitrary base, so we actually find that from a functorial perspective as well, the

different 9 pulling back to given choices of G are (canonically) identified between the 16

choices of A. We thus have:

Corollary 111.3.5. There are canonical isomorphisms of functors Fg for the different g

of Proposition III.3.4, where Fg(T) for T/k is defined as the set of isomorphism classes of

9 on C(P) Xk T such that F* - T. The same statement also holds for the sub-functors

F., defined by requiring the 9 of Fg to have trivial determinant.

By our earlier comments on p-curvature, it will suffice to classify transport equivalence

classes of connections on & for which the p-curvature vanishes, a condition which may

be checked on any Zariski open of C. Lastly, we want to only find connections on g

corresponding to pullbacks of vector bundles with trivial determinant. This is almost, but
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not quite automatic: as remarked earlier, any 9 pulling back to will have to have a

determinant which is p-torsion in J(C), but tensoring any given 9 with such lines bundles

will achieve any p-torsion line bundle as the determinant, so we will have to explicitly

restrict our consideration to connections having trivial associated determinant connections;

by Proposition III.1.4, this will achieve the desired result. Because the determinant of

a connection is found by taking the trace of the corresponding matrix, this will actually

simplify the resulting formulas considerably.

111.4 On fop and p-rank in Genus 2

In this section, we give an explicit formula for fop on a genus 2 curve C, and note that we can

use these ideas to derive explicit formulas for the p-rank of the Jacobian of C. Throughout,

we work under the hypotheses and notation of Situations III.3.1 and III.2.1.

We first note that (irrespective of the genus of C), recalling that 00o is the derivation

given by fo = 1, although f will be 0 only if w is df for some f on U, we will always have:

Lemma III.4.1. Oofop = 0.

Proof. Given any f, Of =fo ff foOo(f), so o+lf = Oo(fopOo(f)) = o (fo(f) +

fopo2(f) = Oo(fo,) df + O 1+l(f). Since this is true for all f, we must have Oo(fo) = O, as

desired. EO

We now specify some normalizations and notational conventions special to genus 2 which

we will follow throughout the remainder of the chapter.

First, we choose one of the six Weierstrass points of C, which we will denote by w.

We set U2 = C w. Let x be a function with a pole of order 2 at w and regular else-

where, and y a function with a pole of order 5 at w and regular elsewhere. Note that

1, x, x 2 ,y, x 3 , xy, x 4 , 2y, 5 form a basis of r9(c(10[w])), in which y2 is an element. Thus,

we can write y2 in terms of this basis, and assuming that the characteristic of k is not 2,

then translating y by appropriate multiples of 1, x, x 2 will eliminate the y, y, x 2y terms,

leaving only a quintic in x. We note that the X5 coefficient is necessarily non-zero, as this

is the only other term with a pole of order 10 at w, which means that we can scale x and y

(without even any field extension) to make our quintic monic. Having thus normalized, we

get y2 = X5 + alx 4 + a2x3 + a3 x2 + a4 x + a5 , and we will write this quintic, which gives an
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explicit equation for (an affine part of) C, as g(x). We now set w2 = y-ldx, noting that y

has simple zeroes at the roots of g (which correspond to the Weierstrass points other than

w), and a pole of order 5 at w, while dx has simple zeroes at the same points, and a pole

of order 3 at w, so that w2 is everywhere regular with a double zero at w, and in particular

trivializes Q1 on U2. To summarize, we have put ourselves in the following situation:

Situation III.4.2. C is a smooth, proper genus 2 curve over an algebraically closed field

k. It is presented explicitly on an affine open set U2 by

y2 = g(x) = X5 + alx4 + a2x3 + a3x2 + a4x + a5,

with the complement of U2 being a single, smooth, Weierstrass point w at infinity. We

also have the form w2 = y-ldx a form trivializing QC on U2 , and the derivation 00 on U2

determined by 0o(w2 ) = 1, which is to say, Oof = yd.

For this section only, we set U = U2 and w = w2. We set gk(x) = Ok-lx, and we will see

that this is indeed a polynomial in x for k odd. Noting that 0o(x) = y and Oo(y) = g'(x), we

have that for k odd, gk(x) = o(gk-2(x)) = yo(ygk_2(x), and we get the recursive formula:

gk(x) = gk 2 (x)g(x) + k- 2(Z)g'() (III.4.3)

for k odd.

But fop = QP(y-ldx) by definition, which is just y-lOP(x) by the definition of 00, so we

also find

fop = y-loogp(x) = gp(z) (III.4.4)

In particular, fop is a polynomial in x, and can therefore only have nonzero terms mod p in

degrees which are multiples of p. However, the degree of gp(x) goes up by 3 every time p

goes up 2, and g3(x) has degree 4, so we see that the degree of gp(x) is always less than 2p.

Hence the only nonzero terms of fop are the constant term and the pth power term (from

which it follows that the only nonzero terms of gp(x) are the constant, linear, pth power,

and (p + 1)st power terms).

For later use, we note the formulas for characteristics 3, 5, and 7 obtained by combining

equations III.4.3 and III.4.4:
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Characteristic 3:

f0 = 3 + a3 (111.4.5)

Characteristic 5:

f0 = 2alx 5 + a2 + 2a2a4 + 2ala 5 (111.4.6)

Characteristic 7:

fo= (3a2 3a2)x + a3 + 6a2a3a4 + 3ala4 + 3a22a5 + 6ala3a5 + 6a4a5 (111.4.7)

As a final note, we can use this to derive explicit formulas for the p-rank of the Jacobian

of C in terms of the coefficients of g(x). Indeed, the p-torsion of the Jacobian is simply the

number of (transport equivalence classes of, but endomorphisms of a line bundle are only

scalars, and hold connections fixed) connections with p-curvature 0 on the trivial bundle. We

note that the space of connections on tYc can be written explicitly as f -+ df + f(cl + c 2 x)w,

meaning the connection matrix on U is given simply by the scalar T = cl + c2x. Using the

rank-1 p-curvature formula of Equation III.2.8, ?Pv(0o) = (cl + c2x)P + O0-1(cl + c2x) -

f0oP(cl + c2x) = cdp + cPxP + C2gp(x) - g(x)(c1 + c2x). If we denote by h, h2,h3, h4 the

polynomials in the coefficients of g(x) giving the constant, linear, pth power, and (p + 1)st

power terms of gp(X), we get: I'v(00) = (cpl + c2 hl - Clh2 ) + (c2 h2 - C2 h2 )x + (P2 + C2h3 -

(p-+ 1)clh4)xp + (C2h4 - (p+ 1)c 2h4 )xp+1 = (c +C2hi - clh 2 ) + (cP2 + C2h 3 -clh 4 )x p. Setting

the p-curvature to zero, we obtain:

0 = ( + C2hl - Clh2) + (2 + C2h3 - Clh4)xp.

We first consider this equation in the case that h4 0. In this case, we find that we
c,+C2h 3 __________p c2+C2h3can write c1 = c+h4 3and see that we need (C+c2h 3)p + -2 hl h2 = 0; multi-

plying through by hp and collecting terms, this becomes c2 + (h - h2hp )c2 + (hlhp

h2h3hP-1 )c2 = 0. This is separable if and only if the linear term is nonzero, that is, if

h ih p - h2 h3hp- 1 O. Otherwise, it has p solutions if hp - h2h4p-1 0, and 1 solution in

the final case.

On the other hand, in the case that h4 = 0, c2 becomes independent of cl, and has

p solutions if h3 0, and 1 solution otherwise; similarly, the number of solutions for cl

becomes independent of c2, being p if h2 0, and 1 otherwise. In this case, we see we get
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p2 solutions if and only if both h2 and h3 are nonzero; p solutions if either but not both are

nonzero, and solution if they are both 0.

We conclude:

Proposition III.4.8. With notation as above, the p-rank of the Jacobian of C is:

2 if: hh 4 - h2h3 $ 0;

1 if: hlh 4 - h2h3 = 0 but either h - h2hp- 1 0 or hh 4 - hp+ : 0;

0 if: hlh4 - h2h3 = - h 2 h- = hPh4 -h hp + = O.

Proof. We need only check that the polynomial conditions given are equivalent to those

derived above. The case that h4 = 0 is the easy case, since then hlh 4 - h2h3 = 0 is clearly

equivalent to either h2 = 0 or h3 = 0, and hp - h2h p+ I = hPh4 -hP+ 0 is clearly

equivalent to h2 = h3 = 0. If h4 $k 0, we certainly have that hlh 4 - h2h3 = 0 is equivalent

to hlhP-h 2 h3 h- 1 = 0, and if h- _ h2h- 1 = hPh4 -h p+ then in particular hP-h 2 h 1-' = 0.

So we just need to check that given hlh4 - h2h3 = 0 and h4 -7 0, then h - h2hp - = 0

implies that hph4 -hp 1+ = 0. But this is easy enough; just multiply through hp-h 2 hp-1 = 

by h, substitute hh 4p for h2h3P, and cancel h- 1 . E

For p = 3, gp(x) = 1x4 - alx3 + a3x - a4, so h4 is always nonzero, and we find that the

p-rank of C is 2 when a4 - aa 3 :A 0, 1 when a4 - a 1a3 = 0 but al3 - a3 $ 0, and 0 when

a4 - ala3 = a1 - a3 -O.

For p = 5, gp(X) -- 2alx6 (4a2 + 3a2)x 5 + (a23 + 2a2a4 + 2ala 5 )x + (3a 3a4 + 3a2a5 ),

so the p-rank of C is 2 when al(a3a4 + a2a5 ) - (4a21 + 3a2)(a 2 + 2a2a4 + 2ala 5) : 0.

The p-rank is when a(a 3a4 + a2a5) - (4a2 + 3a2)(a2 + 2a2a4 + 2ala5 ) = 0 but either

4a10 + 3a - (a2 + 2a2a4 + 2ala5)a 4 = 0 or (3aia + 3a~a)2al -(a2 + 2a2a4 + 2alas5) 6 0.

Lastly, the p-rank is 0 when al(a3 a4 + a2a 5 ) - (4al2 + 3a2)(a + 2a2a4 + 2a1a5 ) = 4a1° +

3a2 - (a2 + 2a2a4 + 2a1a5)a4 = (3a5a + 3a~a)2al - (a2 + 2a2a4 + 2ala5s)6 = 0.

While explicit computations of the p-rank of the Jacobian of a curve are not hard in

general, it is perhaps worth mentioning that this method, aside from providing a complete

and explicit solution for genus 2 curves, does so in a sufficiently elementary way that it can

be presented as a calculation of the p-torsion of Pic(C) without knowing any properties of

the Jacobian, or even that it exists.
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111.5 The Space of Connections

In this section we carry out the first portion of the necessary computations for Theorem

III.0.1, by expliciting calculating the space of transport-equivalence classes of connections

on a particular vector bundle g. We suppose:

Situation III.5.1. With the notation and hypotheses of Situation III.4.2, we further de-

clare that g is the bundle determined by Propositions III.3.2 and 111.3.4 for the choice

= c([w1)

Of course, since w was chosen arbitrarily among the Weierstrass points of C, this will

handle the calculation simultaneously for 6 different choices of &, but since the answer will

be in terms of the ai, which depended on w, even for these six it is still helpful to know a

priori that the answer is independent of the choice of g.

In this situation, if U1, U2 are a trivializing cover for , with transition function p12,

then -l,1y292 = fQ, and g are all trivialized by this cover as well, and g can be repre-

sented with a transition matrix of the form

E (P12 61

121

for some Pg regular on U1 n U2.

We see immediately that we can choose 12 to be regular on U1 with a simple zero at

w, and non-vanishing elsewhere, just by choosing any function with a simple zero at w, and

setting U1 to be the complement of any other zeroes or poles it has. For compatibility of

trivializations of Y and QC, we must then set al = (12 W2 . Beyond these properties, our

specific choice of p12 will be completely irrelevant, but we note that it is possible to choose

(P12 to vary algebraically (in fact, to be invariant) as our ai and the corresponding curves
2

vary: we can simply set P12 -

Proposition I11.5.2. The unique non-trivial isomorphism class for eg may be realized by

setting (ps = (1-2.

Proof. We need only show that there cannot be a splitting map from & back to . Under

our trivializations, such a map would have to be given by vectors of the form [1 f] on U2
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and [1 g] on U1, with

(P12 [1 If [1 9] [o -1] [W12 912 +912

Dividing through by W912, we find that f = W{3 + (f12 g, and solving for g we see that

9 = (P12f - (p12 would have to be regular on U1. Thus, f would have to have a triple pole

at w, and would have to be regular everywhere else (it is regular on U2 by hypothesis, and

away from w on U1 because P12 is invertible everywhere else on U1). There is no such f,

since w is a Weierstrass point on a hyperelliptic curve. [

We now note that since S012 has a simple zero at w, and is invertible elsewhere on U1, and

wl is invertible everywhere on U1, 2-"S is likewise everywhere invertible on U1. In addition,
W1

(Pg = 122, so dpg = -2f 3 do 1 2, and is regular and nonvanishing on U1 except for a

pole of order 3 at w.

Now, if w1 and w and 2 trivialize Q on U1 and U2 and satisfy l = (p22, we can trivialize

®g 0 LC by tensoring with wi on Ui, which will give it transition matrix o1:2E. We can then

represent a connection V: · X X QC by 2 x 2 transition matrices T1 and T2 of functions

regular on U1 and U2 respectively.

These act by sending si Tisi + d on Ui, where the si are given as vectors under the

trivialization, and by Equation III.1.10 we have that T1 and T2 are related by:

dE-1
T1 = (p2ET2E- + E

W1

We now explicitly compute T2 in terms of T1 in preparation for computing the space of

connections. If T2 = [ f12 then:
f21 f22J

f21 (P12f22 - fT

where fT = (P12Whf21 - (P12 wl

Note that this implies f21 is everywhere regular and hence constant.

We now show:
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Proposition 111.5.4. The space of connections on g is given by f2l - C1, fll = c 1 + c2 x,

f22 = 3 + c4 x, and f12 = 5 + c6 x + C7 X2 + csy + C2x3 , where the ci are arbitrary constants

subject to the single linear relation C8 = C2 (c 2 - 4), and C1 and C2 are predetermined

nonzero constants satisfying C1 C2 = 1

Proof. We begin by looking at the lower right entry of the matrix for T1 in Equation III.5.3,

and note the 121 dx has a simple pole at w which must be cancelled by one of the other12~~~~~~~~~~~~~~~~~-
terms. We also note that since g = 22 and f21 must be constant, the 912gf2i = 1 2 f21

is regular on U1 outside of w, where it can have at most a simple pole. Thus the W12f22

term must likewise be regular on U1 away from w, with at most a simple pole at w. Since

f22 must be regular on U2 by hypothesis, we conclude it is regular on C except possibly

for a pole of order at most 3 at w. Now, as we just observed in the proof of Proposition

III.5.2, a pole of order 3 isn't possible, so f22 G F(ec(2[w])). This means that the simple

poles of the other two terms must cancel, and f21 is determined as a (nonzero) constant

C1i: explicitly, C = (w). Precisely the same argument applies to the upper right entry,

placing f C r((2[w])) and determining f21 (luckily, as the same constant!), so it only

remains to analyze the upper right entry of the matrix.

We immediately observe that on U1, each term (excluding the 9o42f12 term) is regular

except possibly for a pole of order at most 2 at w, which of course implies that c042f12 is also,

and we can conclude that f12 is regular on C except for a pole of order at most 6 at w. Then

we have f21 = C1 C k*, fl = cI +c 2x, f 2 2 = 3 +c 4x, and f2 = c5 +c 6x+c 7x 2 +c8sy+C2x3 ,

and we claim that C2 is also determined: the only other terms which can have double poles

are -9129g f21 + gd12- (12 - 2 f2l + 3,12 d-P 2 which are now predetermined, so

C2 is also determined, explicitly as -2( 6 x-3d1 )(w) = -2(026 x-3)(w)C1. Lastly, we

note that there is a linear relation on 2, c4 , and c8 to insure that the simple poles cancel.

To conclude the proof, we give a more explicit description of this linear relation, and use

formal local analysis at w to obtain the desired statements on it and C1 and C2. Explicitly,

our linear relation is given as cs = ((013y-lx)(w))(c2 - 4) + ((y-1l7-5)(w))((0-1l(c -

3 d 2 ) - C2x3S512)(w)). Now, choose a local coordinate z at w; we will denote by £z(f)W1

the leading term of the Laurent series expansion for f in terms of z, and by abuse of

notation, £z(w) for ez(w/dz) when is a 1-form. Recalling that w = 12 Y-1 dx, we

see that since Tl2 has a simple zero at w, and x has a double pole, C = z( d12)

£z(W12) -- --z(q°12)3ez(Y) We then get that C2 -= -2 -z(qo 2)3 £z(Y) =
fz((P12)-2e~(y)-l(-2fz(x)) - z 2(x) . Weethen get that C2 = )z2(~ 2)f () 3 2e ()
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(12)z)4= ez( 12 )3 (y), since from our normalization we see ez(x)5 = ez(y)2 . It follows

that C1C2 = -, and we also see immediately that C2 is indeed the coefficient of (c2 - c4 )

in our linear relation.

It only remains to show that the constant term in that relation is in fact 0. We may

write it as ((y- 1 )(w))((1(C - 3412 - C2x362))(w), so it suffices to show that

C-3d2 - C2x3 62 (which we know vanishes at w from how we chose C2) vanishes

to order at least 2 at w. In characteristic 3 this is immediate, because the middle term

drops out, while neither of the other terms can have a non-zero linear term in their z

expansion. To work out the general case, we note that since Wc12 has a simple zero at

w, we may as well choose our local coordinate z -= 12. We denote by ' the second

term in a z-expansion. Then we have 12 = Z, X = eZ(X)Z-2 + 4()Z- 1 + ... , and y =

ez(y)z- 5 + e (y)z -4 + .... From our quintic relation on x, y, we know that ez(x) 5 = ez(y) 2 ,

but looking at the next term we see that we also have 2ez(y)e (y) = 5ez(x)4 e (x). We also

have the relation ez(y) = C21 e()e(l 2 )-3 = C2lez(x). Together, we get that we can

write ez(y) in terms of ez(x), and then we find z(x)5 = C-2ez(X) 2, so ez() 3 = C- 2, and

then 5ez(X)4e (x) = 2fz(y)f' (y) = 2C21ez(x)4' (y), so we can also write ' (y) = 5c-l ()

We can now compute all the desired terms solely in terms of f, (x), e' (x) and C2 (substituting

C1 = ~lC2) and we see that they do indeed cancel to order 2, as desired. O

We also consider the endomorphisms of , so that we can normalize our connections via

transport to simplify calculations. An endomorphism is given by matrices Si regular on Ui,

satisfying the relationship (Equation 111.1.6) Si = ES 2 E 1. If we write S2 [gl 912
921 9221

we find that

S1 911 + g12 Og921 'P12912 + P12WPg22 -- P12P9gll11 - c°921 S, il 1 2 2 (111.5.5)
21

W12 921 922 - 12 Wg921

We now compute the space of endomorphisms of , and consequently the space of

transport-equivalence classes of connections:

Proposition III.5.6. The space of endomorphisms of g is given by 921 = 0, gll = 922 k,

and 912 = 2 + g12x E F(6c(2[w])). Every connection on has a unique transport-

equivalent connection with fli = 0.
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Proof. Noting that the lower left entry for S1 in equation 111.5.5 is (p12921, we see that 921

has to be regular everywhere on C, and vanishes to order at least 2 at w; hence, it is 0.

We then see that the upper left and lower right entries are just g1l and 922 respectively,

meaning that these are both everywhere regular and hence constant. Finally, the upper

right term is then o22912 + (f121(g22 - 911); the second term will have a simple pole at w

if and only if 922 911, and since 912 cannot have a triple pole at w, we conclude that

922 = 911, and finally that 912 CE (c(2[w])). However, we are primarily interested in

transporting connections along automorphisms, and this determines an automorphism if

and only if gll Z 0; noting that transport along an automorphism is invariant under scaling

the automorphism, we can set 911 = 922 = 1 without loss of generality. Now, since S2

is upper triangular, with constant diagonal coefficients, S-1 dS2 has only its upper right
W2

coefficient non-zero. Moreover, conjugating T2 by S2 will simply substract f21912 from the

upper left coefficient of T2. Since we know f21 is a determined nonzero constant, and 912

and f11 can both be arbitrary in Fr(c(2[w])), this means that each connection has a unique

transport class with fil = 0, as desired. O

Thus, from now on we will normalize our calculations as follows: fli = 0 by transport;

f22 = 0 as we want the determinant connection (given as the trace) to be 0; f21 = 1, which

we accomplish by scaling (12 appropriately: we saw that f2l = 2 (w), and recalling that

w = ( 2y -ldx, scaling 012 by a cube root of f21 will do the trick. We also note that this

does not pose any problems for our prior choice of p12 = X-; one can check that for this

choice, d 12 may be written as a rational function in x, of the form -x 10 +lower-order termsWl 2x +lower-order terms 

since w is the "point at infinity", it follows that f2l = , and the scaling factor for p12 is

independent of the ai. Lastly, since c8 = 0 now that c2 = C4 = 0, we conclude that we are

reduced to considering the case:

Situation I.5.7. Our connection matrix T2 on U2 is of the form T 2 = [ f2], with

f 12 = c5 + 6x + C7x2 -lx3

Remark III.5.8. We make some remarks on the validity of Propositions III.5.4 and III.5.6

in more general settings, which will be of use in later chapters. First, for use in Chapter

IV, we note that both statements hold after base change to an arbitrary k-algebra A if one

simply replaces the k-valued constants by A-valued constants. Indeed, if we denote by f the
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map Spec A - Spec k, and r the structure map C -+ Spec k, this replacement corresponds

to the natural map f*7r* -+ 7r*f;,* for the sheaves End(g) X Qt and £nd(6). But since

the base is a point, every base change is fiat, and it immediately follows [26, Prop. III.9.3]

that this natural map is always an isomorphism, giving the desired statement.

Next, for use in Chapter VI we also note that both propositions hold when our defining

polynomial is allowed to degenerate to introduce nodes in the affine part of C away from

w (see Section VI.1 for appropriate definitions in this context). We need only replace QC

by wc, which is still isomorphic to 0(2[w]): indeed, since the nodal fibers are irreducible,

limits of line bundles are unique, and the existence of (and compatibility with base change

of) a relative dualizing sheaf in this situation (see [8, p. 157, Thm. 3.6.1] implies that

the dualizing bundle on any nodal fiber is the limit of the dualizing bundles on the nearby

smooth fibers, which is 6(2[w]). It then suffices to note that it is still true that there can

be no function in Fr((3[w])) r(6'(2[w])), by the same Riemann-Roch argument as in the

smooth case (using Riemann-Roch for nodal curves; see Theorem A.4).

Finally, we will also want to see that in fact our propositions hold if we look at families

of curves obtained from maps k[al,... a5] - A taking values in the open subset Unod C A5 .

For this, we make use of the fact that, as remarked immediately above, we can choose (~12

to be a specific function for the whole family. Once again, if we denote by 9 the sheaf

End(g) 0 wc or £nd(g) as appropriate, but this time in the universal setting over Unod,

the theory of cohomology and base change (see Theorem A.32) gives that since h°(C, ')

is constant on fibers, r,9 is locally free of the same rank, and pushforward commutes

with base change. Now, if we let our constants describing sections of S lie in k[al,... , a5],

we clearly obtain a subsheaf of # of the correct rank; further, the inclusion map is an

isomorphism when restricted to every fiber, so it must in fact be an isomorphism. We then

obtain the desired statement for all A because we had that pushforward commutes with

base change.

It follows formally that the closed subschemes we describe explicitly corresponding to

vanishing p-curvature in Section II1.6 and nilpotent p-curvature in Section III.7 are also

functorial descriptions which hold for nodal curves.
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III.6 Calculations of p-curvature

Continuing with the situation and notations of the previous section, and in particular that

of Situation III.4.2, we conclude with the p-curvature calculations to complete the proof of

Theorem III.0.1, except for the statement on the general curve in characteristic 7, which

depends on the results of the subsequent section.

We write:

VP(0) = Eh11 h12
Lh21 h 22

The first case we handle is p = 3. Equation III.4.5 gave us f = 3 + a 3. We show:

Proposition III.6.1. In characteristic 3, G has a unique transport equivalence class of

connections with p-curvature zero and trivial determinant.

Proof. With all of our normalizations from Situation III.5.7, the p-curvature matrix given

by Equation III.2.9 becomes rather tame:

V(0) = [f 10!fl2 fI2 f + 02f12 - fo3f12]
f12- f -0ofl2

Even better, we note that we have

hi2 = Oo(hll) + f12 h21,

so h12 vanishes if hll and h2l do. Similarly, recalling that by Lemma 111.4.1, Oof = 0, we

see that

h = o0(h2l),

and

h22 =-hll.

Hence, to check if the p-curvature vanishes, it suffices to check that h21 vanishes.

But this is a triviality, as we simply get that h21 = 0 if and only if f12 = a3 + x3, which,

recalling that after normalization f12 was given by cs5 + c6 + c7
2 - 2-X3, and noting that

in characteristic 3, - = 1, means we get the unique solution C5 = a3 , 6 = C7 = 0. []

We now handle the case p = 5. We had from Equation III.4.6 that fo5 = 2al3 5 + a] +
0
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2a 2 a4 + 2ala 5s.

Proposition 111.6.2. In characteristic 5, the number of transport equivalence classes of

connections with p-curvature zero and trivial determinant is given as the number of roots

of the quintic polynomial:

(3aia2 + 3a2a3 + a5) +

(3a3 + 4ala2 + a3)c2 +

Proof. With our normalizations as above,

obtained from Equation III.2.10 is

4f12o(f12) + o3(f12) f 3
2 +

Lf22 + 3021(f12) + 4fog

(a2a2 + a2 + 3ala3 + 4a4)c5 +

(3a 2 + 4a2)c3 + alc54 + 4c51 5 5 5ZJ~

(III.6.3)

in terms of f12 and f5, the p-curvature matrix

4(Oo(f12))2 + 2f12O(f12) + 004(f12) + 4fl2f 5j

fl200(fl2) + 403 (f12)

Conveniently, we note that as before it actually suffices to check that h21 is 0: recalling

again that by Lemma III.4.1, Oo(fo5) = 0, we see that

h22 = 30o(h21);

hll = -h22;

and

h12 = f12h 21 + 202(h21 ).

Substituting in for fl2 and f0o, we get that the remaining (lower left) term is given by

(4a2 + 3a2a4 + 3ala5 + c2 + a5c5) + (a5 + 3a3c4 + 2c3c4 + 4a4c5)x+

(2a2c4 + c2 + 2a3c5 + 2C3C5)x 2 + (4a3 + 4c3 + alc4 + 2c4c5)x3 +

(3a2 + 4c4 + 3alc5 + c)x 4

The x3 term gives us c3 = 4a3 + alc4 + 2c4 c5 , while the x4 term gives us c4 = 3a2 +

3alc5 + C5 . Making these substitutions into the other terms, we find that the x2 term drops

out, while the coefficient of x is:
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(3ala2 + 3a2a3 + a5) + (a2a2 + a2 + 3ala3 + 4a4)c5+

(3a3 + 4ala 2 + a3)c2 + (3a2 + 4a2)c3 + alc 4 + 4C5

The constant coefficient is c5 + 3al times the x coefficient, so we get that the connections

with p-curvature 0 correspond precisely to the roots of the above polynomial, as desired. 

In particular, there are always between 1 and 5 connections with vanishing p-curvature

on our g, and the number clearly does actually depend on the curve. This is the first case

in which this quantity can actually vary with the curve, and it appears to provide a new

non-trivial invariant for curves of genus 2. It might be interesting to explicitly work out the

strata, and determine, for instance, if all possible values between I and 5 actually occur,

despite the fact that the moduli space of curves is only 3-dimensional. It is also worth

noting that scheme-theoretically, the number of solutions still remains constant in this case.

We will see that in higher characteristics, it will be far from obvious whether or not even

this much remains true.

Lastly, we take a look at the case p = 7. Equation III.4.7 gave us:

f 7 = a + 6a2a3a4 + 3ala + 3aa5 + 6ala3a5 + 6a4a5 + (3a + 3a2)x7 .

We will show:

Proposition III.6.4. In characteristic 7, the number of transport equivalence classes of

connections on g with p-curvature 0 and trivial determinant is given as the intersection of

four plane curves in A2. For a general curve, it is positive. The locus F2, 7 of transport

equivalence classes of connections on G with p-curvature 0 and trivial determinant consid-

ered over the A5 with which we parametrize genus 2 curves is cut out by 4 hypersurfaces in

A5 X A2 .

Proof. Here, even with our normalizations the p-curvature matrix obtained from Equation

III.2.11 is rather messy, but we find its coefficients are given by:

hll = 2f2200(f12) + o(f12)0O2(f12) - 3f1203(f12) + 05(f12)

h21 = -f + + 3(Oo(f12))2 - f1202(f12) - 204(f12)
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hl2 = -fo f12 + f 42 + (f1 2 0(f12)2 - 20o(f12)0o3(f12) + 2f12 4(f12) + 0(fl2)0 2tJIV\l/T\1!O\11 J2OJ~ OJ2

h22 = -2f1 2200(f12) - 0O(f2)0o2(f12) + 3f1203(f12) - 5 f12

Once again, it is enough to consider a single one of these coefficients, as:

hll = 30o(h21 )

h12 = fl 2h21 + 302(h21)

h22 = -hll

Looking then at the formula for h21, substituting in for f12 and fo7 gives a polynomial

of degree 6 in x. The x6 term lets us solve for C3 :

C3 = 5ala2 + a3 + 4alc4 + 4a2c5 + C4C5 + 2alc5 + 5c3

The x5 term is then

h7,1 = 2a2a2 + ala3 + 5a4 + 4a c4 + 5a2c4 + 6c4 + 3al3c5 + 6ala2c5 + 3a3c5 + 5alc 4 c5 +

3alc53 + 6c4

while the x4 term is -c 5 times the x5 term, and the x3 term is -(c5 + alc5 + 3a2 + C4)

times the x5 term. Taking the x2 term minus -(5c5 + 5alc5 + 2c4c5 + 5aa 2 + 4a3 + 2alc4)

times the x5 term leaves:

h7,2 = 3aa2 + 6a12a2a3 ± 4ala] + 4a3a4 ± 2a2a5 ± 3aa 2c 4ac4 + 4aa3c 4 2 ala4 c44a5c4
3C2 2 3l + 2 3 2 4al34 + a3c4 + 3alc4 + a4a2c5 + 5a3a3c5 + aa4c 5 + 3ala5c5 + 6a4c4c5 + a1 a2c4c5 + aja3c4c5 +

3a4 425 + 5 + c4c5 + 4ala2c5 + 6ala3c5 + ala4c5 + 3a5c + 3alc4c5 + ala2c4c5 +

a3c4c5 + 3a2a2C3 + + aa 3
C3 + 4a 2c4c3 + 6c2c 3

Similarly, taking the x term minus -(5c 4c5 + 5alc4c5 + 6a4 + 2c4) times the x5 term

leaves:

h7,3 = 5a2a2a4 + 6ala3a4 + a la2a5 + 5a2a2c4 + 4ala2 a3 c4 + 3al2a4c4 + 2ala5c4 + 5a 2a2c4 +

ala3c42 +3a4c4 +3a2c4 + 5c4 +4aL3a4c5+6a3a4c5+5a 2asc5+3a2a5c5+4aL3a2c4c5 + 4a2a3c4c5 +

ala4c4c5 + 6a5c4c 5 + 3a3c2c5 +4ala2 c4c5 +4a3c2c 5 +a1 c3c5 +2a2a4
c 2 +6ala 5c 2 +2a2a2c4c2 +
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2al a3c4c 2 +a4c4C 2 5al2c 4c 5 +4a2c4c5 2 5c3c52 + 5ala4c5 + a5c5 +5ala24 c + 5a3c4c +2alc2c53

Lastly, taking the constant term minus - (6c 5 + 5c4c3 + 3a2 C5 + 2a3c52 + 5ala 2c2 + 2a3c2 +

6a1c4 c5 + 5a2a2c5 + 2ala3 c5 + 2a4c5 + a12c4 c5 + 2a2c4c5 + 2c42c5 + 6ala4 + 4a5 + 4ala 2c4 +

3a3c4 + 3alc 2 ) times the x5 term leaves:

h7,4 = 6a3a3 + 5ala2a3 + ala2 a + 5a3a2a4 + 6a2a3a4+ a2a3a4 + 6ala4 + a2a2a+ 4a2a5 +

5ala3a5 + 4a4a5 + 4a2a2a3c 4+ aaC4 + 3ala3c 4 ++ 3a 13a 4c 4 + 2a2a5 c4 + 3a3a2c42 +

6ala2c + a2a3c42 + 6a5c 2 + 6a3c 3 + c +4ala2c4 + a 3 c4 +4alc4 + 2a4a2c5 + 3a3a2a 3 c5 + 4a4a 4 c5 +

2a12a2a4c5 +2ala3a4c5 +5a13a5c5 + 2a l a 2c 4c 5 +2al3a3c4c5 + 2aa2a3c4c5 +

5a2c4c5 + 6a12a4c4c5 + 6a2a4c4c5 + 5ala5c4c5 + 2a 4c4c5 + 2a2a2c4c5 + 3a2c4c5 + 6ala3c42c5 +

2 4a4c354 3 2 a a 3c52 a2a2 4a4 c4 c ± aa2c 5 + 2 + a2c3c5 + a5 c4c5 + 5

1 5 2 5 1 5 5 5 + 5a5CJ~4 c4C5c +aj45 6l5
2ala2c4c + 2 a2 c3 c2aa2 + al2a 4c + 2a a5c 3 2a2a 2c4 c 3 6al + a 3ac4c + a3 c42 c3 + 6aa12c2c +

2Lc14 5 6al a2c5+ 5 1 5C ala4C5+alac5 L 4 4ala3C4C 445+Lc4 5

4a2c c5 + 3c4c5

These four polynomials are then the defining equations in characteristic 7, describing

the locus as an intersection of 4 affine plane curves, as desired. Without developing the

theory further, we will not be able to say a tremendous amount, but we can make certain

statements. First, by direct computation in Macaulay 2, the coordinate ring of the affine

algebraic set cut out by these equations has dimension 5. Since we know that it can only

have dimension 0 over any given choice for the ai, this implies that it has a non-empty fiber

for a general choice of ai. That is to say, a general curve of genus 2 does in fact have at

least one connection with p-curvature O on . O

Finally, we compute an example which will be of theoretical interest later.

Lemma III.6.5. For the curve given by a = a2 = a3 = 0, a4 = 1, and a5 = 3, there are

14 solutions to our equations, all reduced. Further, the local rings of F2,7 at each of these

points are all isomorphic.

Proof. First, we set a = a2 = a3 = 0, a4 = 1 and a5 = 3, and our defining equations

become considerably simpler:

h7,1 = 5 + 6 + 62

h = 5c4 + 3c4c5 + cc 5 + 2 6c2c3h7,2 -- 5C4 q 3C4C5 + C4C5 -2C2 6c4c 5
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h c,2 7c,4 + +c c,2 ±3 =2 3c3h7,3 = 3c4 -5c 4 4C4C5 q 4C 5 -5C4C5 q-3c5

h 7,4 =-- 5 + 4c + 4c2C5q 5 + 54 C45 4C 5C4 C5 + 34C5c

If we use h7,1 to substitute for c in h7,2 , we get:

C4(5 + C5 + 65) + C (2 + 2C5 + C5)

We show that we cannot have 5 + 5 + 6c5 = 0: if so, the second half of the above

equation would also have to be 0, so either c 5 = 0 or 5 + c5 + 6c5 = 0; the former case

immediately contradicts the assumed quintic expression for c 5, while the latter case would

give, upon adding the two quintics for c 5, 3c5 = 0, also a contradiction. Thus, we can
c2 (2+2cs+C)

localize away from 5 + 5 + 6, setting 4 = 5+C +6C. Making this substitution and

taking numerators, the h7,i give four polynomials in c5. However, they are multiples of the

polynomial given by h7,l, which is:

6 + C5 + 5c5 + 645 + 2C5 + 6C5 + 6C5 + 3 0+ 5 4

This then gives the 14 reduced solutions, and the fact that the local rings of F2,7 at

each of these points are isomorphic follows from the fact that this degree 14 polynomial is

irreducible over F7: the local ring is given explicitly by inverting everything away from the

maximal ideals, these ideals being determined by values of the ai and ci. The ai are the

same at all the points by hypothesis, we saw above that C4 is given as a rational function in

c 5, and the possible values of c 5 are given as roots of an irreducible polynomial over F7 , so

the Galois group of F7 over F7 permutes these values for c 5 transitively, and gives explicit

isomorphisms between the different local rings. []

While we could do further calculations to try to say something about the behavior of a

general curve in characteristic 7, once we have developed the theory of the following section

we will be able to make a number of statements with nothing more than what we already

have, so we will not bother with any further computations.
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111.7 On The Determinant of the p-Curvature Map

In this section we explicitly calculate the highest degree terms of det 4, the determinant of

the p-curvature map in the case of a genus 2 curve and the specific unstable vector bundle

of Situation 11.5.1. We use the calculation to prove that det V$ is finite flat, of degree p3 ,

and therefore conclude that in families of curves, the kernel of det 4b is finite flat. This has

immediate implications for the p-curvature zero connections on as well.

We wish to compute in our specific situation the morphism det 4b° (111.1.3), which is to

say, the morphism obtained from 40 (III.1.2) by taking the determinant. In fact, we take

'0 to be the induced map on transport-equivalence classes of connections; since p-curvature

is conjugated by an automorphism under transport, the determinant is not affected, so

the map of (III.1.3) descends to the quotient. We remark that in the situation of rank 2

vector bundles with trivial determinant, and after restricting to connections with trivial

determinant, because the image of 4b° is contained among the traceless endomorphisms,

the vanishing of the determinant of the p-curvature is then equivalent to nilpotence of

the endomorphisms given by the p-curvature map. Such connections are frequently called

nilpotent in the literature (see, for instance, [30] or [42]).

We now take our curve C of genus 2 from before, with g the particular unstable bundle

of rank 2 we had been studying, as in Situations III.4.2, III.5.1, and III.5.7. We also take

the particular 00 from before, sending w2 to 1. Since w2 has a double zero at w, we see

that 00o has a double pole there, so that our explicit identification of RQ is as g~(2[w]). We

know that our space of connections with trivial determinant on & is (modulo transport)

3-dimensional, and of course h(C(P), ((p))02) = deg(Q() )02 + 1 - g = 4g -4 + 1 - g

3g - 3 = 3, so we have a map from A3 to A3. We choose coordinates on the first space to

be given by the c 5, c6, C7 determining f12, while the function we will get will be of the form

fl(c 5, c6 ,c7) + f2 (C5,c 6 , C7)XP + f3 (c5 , c 6,c 7) 2 p, and we obtain coordinates on the image

space as the monomials in x (that is to say, we take the map from A3 to itself given by the

polynomials fl, f2, f3).

We will use our earlier calculations to show:

Lemma III.7.1. The leading term of fi is -c+4, with all other terms of strictly lesser

total degree in the ci.
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Proof. If T = [ f12 1 is the connection matrix for V, we claim that the leading term will

come from the TP term in the pcurvature formula. Now, T2 f12 so we find
0 fl2

TP= [ 0 (f12) 2

(f12) 1

Now, f12 is linear in the ci, as are O6f12 for all i. Considering the p-curvature formula

coefficients as polynomials in Ofl12, we will show that the degree of the remaining terms

are all less than or equal to P-1, with the degree of the terms in the lower left strictly less.

This will imply that the leading term of the determinant is given by

-(fl2 ) = -(C5 + C6x + C7x2 2P + ppX X 
2 5 62P

giving the desired formula for the leading terms of the constant, xp, and x2 terms.

We observe that since 6oT =] for all i > 0, (O'T)(OjT) = O for any i,j > 0.

We use this and the fact that T 2 is diagonal to write any term in the p-curvature as one of

the following:

(1) T2i° (OT)T... (OaikT)

(2) T2i°T(OlT)T .. (OikT)

(3) T2i ( T)T... (0kT)T

(4) T2iOT(O T)T... (OikT)T

where 2io + Ej>o(ij + 2) = p + l,p, p,p - 1 respectively.

We observe that these correspond to non-negative upper right, lower right, upper left,

and lower left coefficients, respectively (in particular, at most one is non-zero). We know

0° 0that the first term is a scalar matrix of degree i in f12. We see that T(OjT)= K 9f1J
so a product of k- 1 such terms has total degree k- 1 in the Ofl12. Lastly, multiplying on the

left by (O'lT) raises the degree by one and moves the nonzero coefficient back to the upper01 ~DO~I ~jr~V I~UI IV~ I~IVI~V~~s~vl rvrv lv ulu
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right. Thus, in the first case, we get total degree io + k. But we see that this is actually

the same in the other cases, as multiplying on the left or right by T just moves the nonzero

coefficient, without changing it. Finally, with k > 0, we have io + k < (2io + j>o(ij + 2)),

which is times p + 1,p,p or p - I depending on the case. But this is precisely what we

wanted to show, since it forces the degree to be less than or equal to p21 in the first three2

cases, and strictly less in the fourth.

Lastly, -fopT is linear in the ci in the upper right term, and constant in the rest, so

doesn't cause any problems for p > 3. E

Remark III.7.2. Note that it is important in the proof of the preceding lemma that we are

looking for the leading terms in the degrees of the ci, and not of x. In particular, our general

theory tells us that the x3P term showing up in the proof must be cancelled elsewhere, and

with some effort, one can see that this is true. Strangely, it is cancelled by the -f 9 p term

in characteristic 3, but by the OP-1T term in higher characteristics.

This lemma allows us to recover, in a completely explicit and elementary fashion, the

genus 2 case of a theorem of Mochizuki:

Theorem III.7.3. On the unstable vector bundle G described by Situation III.5.1 for a

smooth proper genus 2 curve C as in Situation 1I.4.2, the map det 4 is a finite flat mor-

phism from A3 to A3, of degree p3. Further, det V) remains finite flat when considered as a

family of maps over the open subset Uns C A5 corresponding to nonsingular curves. Lastly,

the induced map from ker det 4 to Uns is finite flat.

Proof. It suffices to prove the asserted finite flatness for the family of maps A3 x Uns -

A3 x Uns over Uns, since the statements on individual curves and on the kernel of det 4 both

follow from restriction to fibers. However, we have functions which are regular not only on

Uns, but on all of A5, so we will simply work over the polynomial ring to prove the assertion.

However, Lemma III.7.1 makes the assertion clear: indeed, if we denote the coordinates on

the image A3 by x1, x2, x 3, we merely need to see that the algebra

k [al,... a5, , X 3,C, C6, C7](Xi- fi(c5, C6, C7))i

is a finite flat module of degree p3 over k[al,..., a5, , 1, x2, x 3]. But we know that the highest

degree terms of fi in the ci are -cP4, so we see that it is in fact free of rank p3, since it is
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clearly freely generated by the monomials c1' ce2ce3 where the ei are all less than p.6 7

Corollary III.7.4. The subscheme of Un x A3 giving connections with p-curvature 0 is

finite over Uns.

Proof. This is a closed subscheme of ker det 4, so the result follows immediately from the

preceding theorem; although flatness need not be preserved under restriction to a closed

subset, finiteness is, directly from the definition. [

Remark 111.7.5. This is, in effect, saying that even though the p-curvature 0 connections are

given as a variety in affine space, no component can go off to infinity. From the perspective

of Chapter IV, we would expect this heuristically based on the fact that by Theorem IV.0.1,

the number of p-curvature connections dropping at a curve ought to force the degree of the

Verschiebung map up, which we know cannot happen (see Corollary A.27). However, since

it is possible to have new isolated components of the p-curvature 0 variety at these curves

to balance the degree, such an approach appears incapable of giving an actual proof.

In particular, any subscheme which must be closed in the scheme of p-curvature 0

connections has closed image in U,,ns. We conclude, for instance:

Corollary III.7.6. The locus Uunr C Un,, consisting of curves for which the p-curvature 0

connections on g is a reduced scheme, is open in Un,. In particular, if a single curve has a

reduced scheme of p-curvature 0 connections on &, a general curve does as well.

Proof. Since we are over an algebraically closed field, and the scheme of connections with

vanishing p-curvature is finite from the preceding corollary, its reducedness is equivalent to

unramifiedness, which is an open condition. [I

We are now ready to put together previous results to finish the proof of our main

theorem:

Proof of Theorem III. O.1. Our explicit example of a single curve in characteristic 7 having

a scheme of transport equivalence classes of connections on g6 with vanishing p-curvature

which consisted of 14 reduced points, each of whose local rings on F2,7 were isomorphic,

will now turn out to be more powerful. By Corollary III.7.6, we immediately have that a

general curve has its scheme of connections with vanishing p-curvature consisting only of

reduced points. We next note that by the properness provided by Corollary III.7.4, any
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component of F2, 7 of dimension 5 must actually occur on every curve; we calculated that

F2,7 had dimension 5, so there is some such component, which must go through one of the

14 points on our example curve. This means that the local ring of F2,7 at that point has

dimension 5, which implies that the local rings at all 14 do, meaning that all 14 lie on

5-dimensional components of F2,7. On a curve above which F2, 7 is reduced (which will be

satisfied, as we've noted, for a general curve), we will find each of these 14 points occurs.

All that remain to show is that a general curve cannot have more than 14 reduced points

over it on F2,7. But if this occurred, there would be an additional 5-dimensional component

of F2,7 which would not occur above our example curve, contradicting properness. []

111.8 Further Remarks and Questions

We conclude with some final remarks on questions arising from the computations of this

chapter.

We first observe that the scheme structures of spaces of connections in this section have

arisen a posteriori, with no general reason to think that the obvious functor of transport-

equivalence classes of connections on a vector bundle will be representable. We thus ask:

Question III.8.1. When is the functor of transport-equivalence classes of connections of

vector bundles representable by a scheme?

We remark that we had hoped to approach statements beyond finiteness for the locus

of connections with vanishing p-curvature via consideration of the locus of connections with

nilpotent p-curvature. However, although we saw in Section 111.7 that it is easy to show

explicitly that the latter is finite flat, it turns out that the described approach is untenable,

and indeed that the locus of vanishing p-curvature has strictly better behavior than the

locus of connections with nilpotent p-curvature. In fact, a direct calculation via computer

algebra software in characteristic 3 shows that although we have seen that the locus of

connections with vanishing p-curvature is not merely finite flat but also reduced over all

smooth curves, hence etale, there are non-reduced components of the locus of connections

with nilpotent p-curvature, and in fact the locus of connections with vanishing p-curvature

is imbedded inside such a non-reduced component. In contrast, Mochizuki has shown [42,

II, Thm. 2.8, p. 153] that the locus of connections with vanishing p-curvature allowing the
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base curve to vary is finite flat as a stack over the stack of genus-2 curves, and is in addition

smooth over the base field.

Finally, as remarked in the introduction, one advantage of the explicit approach of this

chapter over the more general degeneration arguments of Mochizuki and of Chapter VI is

that it allows study of arbitrary curves rather than solely general curves. In particular,

we saw that in characteristic 3, all curves had reduced (equivalently, unramified) spaces of

Frobenius-unstable bundles, and in characteristic 5, the locus of curves with ramified spaces

of Frobenius-unstable bundles was cut out by a discriminant divisor in the space of genus

2 curves. One could ask what happens in characteristic 7, or more generally:

Question III.8.2. Is there a good description of the space of genus 2 curves in any given

characteristic for which the space of Frobenius-unstable bundles is non-reduced?
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Chapter IV

On the Degree of the Verschiebung

In this chapter we address the degree of the Verschiebung rational map V2 induced by

pullback under Frobenius on the moduli space M2 of rank 2 vector bundles with trivial

determinant on a smooth proper curve, in the case of genus 2. We bgein with some fairly

straightforward and general results on degrees of rational maps of projective spaces and

on V2 itself, followed by a more involved use of deformation theory and hypercohomology

spectral sequences to make some theoretical, characteristic-independent examinations of

the relationship between the locus of p-curvature 0 connections on the unstable bundles

g of Proposition III.3.4, the exceptional locus of the Verschiebung, and the image of the

exceptional divisor if one blows up the exceptional locus.

Our main result is:

Theorem IV.0.1. Let C be a smooth, proper genus 2 curve over an algebraically closed field

k of characteristic p > 2, and suppose that the Frobenius-unstable locus for vector bundles

of rank 2 and trivial determinant is composed of 6 reduced points, where for our purposes

"reduced" means that the corresponding bundle F satisfies Def°(g) "- DefO(F*9), with

Def° denoting first-order infinitesmal deformations preserving triviality of the determinant.

Then:

(i) Each Frobenius-unstable bundle corresponds to an undefined point of V2, and V2 has

degree p 3 - 6;

(ii) Each undefined point may be resolved by a single blowup;

(iii) The image of the exceptional divisor associated to such an undefined point is precisely
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IPExt(Y,-2 -1 ) C M2 (C), where Y is a theta characteristic on C, and specifically

is the destabilizing line bundle for F*9, where 9 is the Frobenius-unstable vector

bundle associated to the undefined point.

We may apply this theorem to the results of Chapter III to draw conclusions in charac-

teristics 3, 5, 7, as in Corollary IV.6.1. Later, we will apply this theorem in more generality

to conclude part (ii) of Theorem VI.O.1 from part (i); part (i) of that theorem already fol-

lows from Mochizuki's work (see the introduction to Chapter VI), but we will in Chapter VI

give a self-contained argument for the same result, via a degeneration argument involving

also the ideas of Chapters I, V, and III.

Section IV.1 consists of an analysis of degrees of rational maps from a projective space

to itself which are defined at all but a finite set of points, in terms of the polynomial de-

gree of the map, and the length of the undefined locus. Section IV.2 then computes the

polynomial degree in the case of V2. The remaining sections are devoted to exploring the

relationship between abstract knowledge of the locus of Frobenius-unstable vector bundles,

and more concrete (but harder to approach directly) questions such as the scheme structure

on the undefined locus of the Verschiebung, and the image of exceptional divisors after

blowing up to obtain a morphism. In Section IV.3, we describe deformations of connections

together with their underlying bundles in terms of hypercohomology, and in Section IV.4

we make use of certain spectral sequences to obtain more information for the specific vector

bundle we wish to study. Section IV.5 explores the geometric significance of the preceding

calculations, and finally Section IV.6 concludes with the proof of Theorem IV.0.1, con-

clusions in low characteristics, and further questions. Appendix IV.A is a compilation of

necessary technical background results on V,, given in more generality and drawn primarily

from unpublished work of A. J. de Jong. Finally, Appendix IV.B develops some slightly

non-standard commutative algebra which arises in our vector bundle manipulations.

The existing literature on such geometric questions on the Verschiebung is considerably

scarcer than on Frobenius-unstable vector bundles. The only other such results in this area

were developed recently by Laszlo and Pauly, who gave explicit polynomials defining the

Verschiebung in the particular cases of genus 2, rank 2, and characteristics 2 and 3, in [37]

and [36]. Lange and Pauly also obtain our formula for the degree of V2 via a quite different

approach in [34], although their techniques thus far gives only that it is an upper bound in

the case of ordinary curves, and not that it is an equality.
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IV.1 On Degrees of Rational Self-Maps of IP

In this section we make some basic observations about degrees of rational maps from pro-

jective space to itself. We remark that unless otherwise specified, in this section the term

'point' shall always refer to a closed point. We suppose we have the following:

Situation IV.1.1. We are given a rational map f : Pn - In which is dominant and defined

at all but a finite set of points. We suppose that we are given coordinate 'functions' Xi on

IPn, and f is represented by n + 1 homogeneous polynomials Fi of degree d in the Xi.

Then we show:

Proposition IV.1.2. In the above situation, we have the inequality:

deg f < dn - 6,

where 6 is the total length of the 'undefined locus' subscheme Ef of pn cut out by the Fi.

Moreover, the following are equivalent:

a) The above inequality is an equality;

b) Ef is a locally complete intersection;

c) Ef is Gorenstein.

In particular, we get equality when the length of the points of Ef are all 1 or 2.

Proof. Choose P in pn, and write H,... H, for n hyperplanes cutting out P. Denote by Ep

the (scheme-theoretic) intersection of the f*(Hi). Now, for a given Xio on the image space,

we observe that on P. Fio = p , we actually have f- 1 (P) - Ep (scheme-theoretically):

Indeed, IPi is affine, say SpecR, and following through the tensor product definition of

f-lP, we find it is given by Spec R/({f*Hi)), which is precisely the scheme intersection of

the f*Hi on pi . On the other hand, as io varies, the pIF will cover everything except the

undefined locus Ef of f, since Ef is given precisely as the locus where all Fi vanish. But the

f*(Hi) are given by polynomials homogeneous and linear in the Fi; this means that there is

a closed immersion of Ef into Ep. Hence, we can write Ep as a set as Ef U f- 1 (p), with a

closed immersion of the latter into the former, so assuming that everything is 0-dimensional,

which we now do, the total length of the latter is less than or equal to the total length of
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the former. For P general, the total length of f-l(P) is degf by Lemma A.26, and we

are writing 6 for the total length of Ef. But Ep is cut out by n hypersurfaces of degree d

with no excess intersection, so by Bezout's theorem [26, Thm 1.7.7] it has total length dn ,

yielding the desired inequality.

Now, Ef being a locally complete intersection implies that it is Gorenstein (see [13, Cor

21.19]). For the converse, we invoke the theorem that if R is a regular local ring and I an

ideal of codimension n, then if R/I is Gorenstein, either I is a complete intersection, or it is

generated by at least n + 2 generators (see [13, p. 542]). Since we know Ef is codimension

n and cut out by n + 1 hypersurfaces (namely, the Fi), it follows that if it is Gorenstein it

must be a local complete intersection, and we have the equivalence of b) and c). Next, to

see that a) implies b), we note that if Ef is not a locally complete intersection, we cannot

have equality, as Ep is cut out by n hypersurfaces, the f*(Hi).

Finally, we need to show that b) implies a), which requires that if Ef is a locally complete

intersection, the ideal generated by the f*(Hi) corresponding to a general point P on the

image I n is locally equal to the ideal of the Fi (that is, the ideal cutting out Ef), at every

point Q of Ef. Since we only care about a general choice of P, it will be enough to check

each of the finitely many points of Ef separately. We therefore fix a Q in Ef, and assume

we have fixed a choice of dehomogenization, so that the Fi are actually functions on a

neighborhood of Q. We also note that it will be enough to prove the statement for any

particular choice of Hi cutting out the given P. We first note that the defining ideal IEf

of Ef, generated by all the Fi, may actually be generated by all but one on the local ring:

indeed, IEf/mQIEf must be at most n-dimensional, since we assumed that Ef is a local

complete intersection, and hence cut out by some n elements. But since the Fi generate

IEf, they must span IEf /mQIEf, and in particular some n of the n + 1 of them must span;

then Nakayama's lemma implies that those n actually generate IEf locally at Q, as desired.

Hence, we have Fj = Eiij aiFi for some integer j and ai E pn,Q, and (allowing slight

sloppiness with the indexing of the Hi) a general point P in the image IPn may be cut out

by Hi of the form Xi - AiXj. Since we will have f*(Hi) = Fi - AiFj, it is clear that it

suffices to show that Fj is in the ideal generated by the f* (Hi) for a general choice of the

Ai, since then we can solve for the other Fi in terms of the f*(Hi) as well, and we will

have Ef - Ep at Q, as desired. Using our formula for Fj in terms of the Fi, we have

then >i4j aif*(Hi) = ifjai(Fi - AiFj) = (1 - >:ij ai~i)Fj; the coefficient in front of
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Fj is always a regular function in RQ by hypothesis, and for a general choice of Ai, it

will be nonvanishing at Q, so we can invert to solve for Fj, completing the proof of the

proposition. O

For posterity, we observe that the inequality of the proceeding proposition really isn't,

in general, an equality (that is, Ef need not be a locally complete intersection):

Example IV.1.3. Consider the map from IP2 to itself given by (X, Y, Z) -± (X 3, Y3 , XYZ).

This is undefined only at (0, 0, 1), where the subscheme Ef has length 5 (it is given on the

affine open Z = 1 by k[x,y]/(x 3,y 3 ,xy), which is a 5-dimensional k-vector space with

basis (1, x, x2, y, y2)). We see however that it is dominant of degree 3: if we take a point

(Xo, YO, Z) with all coordinates nonzero, we have 3 choices for X and 3 for Y, which then

determine Z; but we can scale to fix a particular choice of X, which leaves us with 3 points

in the preimage. Since 32 - 5 = 4 > 3, we see that in this example the inequality is in fact

strict.

IV.2 The Case of V2

We now apply the results of the preceding section to examine what we can about the degree

of the Verschiebung map induced by pullback under Frobenius on the moduli space of vector

bundles of rank 2 with trivial determinant on a curve C of genus 2. We also address the

related question of when the map can be made into a morphism by blowing up the undefined

points only a single time. We begin by reviewing the basic facts about the moduli space

and Verschiebung, without any hypotheses on the genus.

We restrict to rank 2 for ease of notation: given any fixed line bundle A, there is a proper

coarse moduli variety parametrizing vector bundles on C with rank 2 and determinant 2;

however, away from the dense open subset of stable bundles, the moduli variety cannot

distinguish between different isomorphism classes of semistable bundles which are extensions

of the same pair of line bundles (two such vector bundles are said to be S-equivalent).

We will denote by M2 the moduli space of semistable vector bundles of rank 2 and trivial

determinant on C, which will be the only space we will consider here. We will refer to

the map induced by pullback under Frobenius on moduli spaces of vector bundles as the

Verschiebung, since in the case of line bundles this is precisely what it gives (that is to say,

on the Jacobian, the map induced by pulling back line bundles under Frobenius is actually
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the dual isogeny to Frobenius itself). We denote by V2 the particular Verschiebung map on

M2. V2 is a dominant rational map, with its undefined points contained among Frobenius-

unstable vector bundles (in fact, the undefined points are precisely the Frobenius-unstable

bundles, but we will only prove this for a general curve here). See Section IV.A for the

precise technical definitions and proofs of these statements.

Now, in our situation of rank 2 bundles on a curve of genus 2, it is a theorem of

Narasimhan and Ramanan (see Theorem IV.A.9) that M2 - p I 3 . A. J. de Jong provided

the following argument to show that for this case, we have:

Proposition IV.2.1. The Verschiebung map is given by polynomials of degree p.

Proof. We have a diagram:

M2(C(P)) - 3 - - - M2(C) 1-P3

l l
J(C(P)) v J 3(C)

where the Jacobians map into their respective M2's as the Kummer surfaces given as

( G -1 : £_~ E J, which is precisely the semistable boundary locus inside M2 (see

[46, Prop. 6.3]), and V is the Verschiebung on the Jacobians. Showing that our original

rational map is given by polynomials of degree p is equivalent to showing that V2H = pH

on the open set U2 C M 2(C(P)) on which V2 is defined. Since H generates Pic(1P3), we have

V2* = mH for some m, and it suffices to invoke the following two facts: first, the pullbacks

of H to the Jacobians are 20(p) and 20 respectively, where E denotes the theta divisor on

J(C); and second, V2*O = p(p).

For the first assertion, it is not difficult to check on functors that the map J(C) -

M2 (C) _ IPH°(Picl(C),20) is unramified away from the two-torsion points, simply by

looking at the associated Cartier divisors j - j + j-1 e under first-order deformations.

Hence, if we take a general hyperplane in M 2(C), its pullback will be reduced in J(C), and we

can compute it set-theoretically. Now, choose any Y E Picl (C) not a theta characteristic;

by Lemma IV.A.11, PExt(', Y-1) defines a hyperplane in M 2(C), and by much the same

argument, it is easy to check that the restriction to the image of J(C) is precisely the set

®y U [-1]*E)O ; these two are distinct precisely when Y is not a theta characteristic, but

they always define the same line bundle, so we get (20), as desired.
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The second assertion follows from the formula [m]*2 y m2-C ® [2-1]* m 2 for

pullback under the multiplication by m map of a line bundle on an abelian variety, and

deg[m] = m29 (see [45, p. 59, p. 61]). For any line bundle Y' with [-1]*Y2° Y, we get

[m]* YO .m2 . We then have the factorization Fj o V = [p] on J(C(P)), and it easy to see

that FJoY ~ (F 1Y)P, whereupon it follows that if [-1]*.2f A Y, V*F- 1 • - YP modulo

p-torsion. Now, it is easy to check that F-1 0() = , and that [-1]*(E(0(P)) - (E(P))

(indeed, if one chooses the particular theta divisor via a theta characteristic, this symmetry

will hold on the divisor level). We can finally conclude that we get actual equality without

p-torsion, because we already had that the hyperplane classes pull back to twice the theta

divisors on the Jacobians, and that one hyperplane class pulls back to a multiple of the

other under V2. E

The above result was also proved independently by Laszlo and Pauly, [36, Prop. 7.2].

Corollary IV.2.2. The degree of V2 is bounded above by p3; or more sharply, p3 - 6, where

6 is the number of points at which V2 it is undefined. If the undefined points are reduced,

this upper bound is an equality.

Proof. Immediate from the preceding proposition and Proposition IV.1.2. O

On the other hand, we also have:

Lemma IV.2.3. The degree of V2 is bounded below by p2.

Proof. Consider any point on the Kummer surface inside M2; that is, a bundle of the form

EO Y- 1 for Y a line bundle of degree 0. There are p2 line bundles of degree 0 mapping to

Y under V on the Jacobian, differing from each other by a p-torsion line bundle, and these

will give p2 different bundles in the Kummer surface as long as none of them is related to its

inverse by a p-torsion bundle, which can only happen if Y was originally a 2-torsion bundle.

Thus, on an open part of the Kummer surface, each point has at least p2 preimages, and

because the Kummer surface has codimension 1 in the entire space, we can conclude that

on a (non-empty) open subset of it, V has finite preimage, so this gives the desired lower

bound on the degree by part (ii) of Proposition A.26. LI
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IV.3 Some Cohomology and Hypercohomology Groups

We begin by reviewing some fundamental facts about representing groups of deformations

with cohomology and hypercohomology. Throughout the remainder of this chapter, we fix

the notation:

Notation IV.3.1. A 'deformation' refers to a first order infinitesmal deformation, and e is a

square-zero element.

Let C be any curve, U1, U2 an open cover, and wi one-forms trivializing fQ on the Ui.

We set the convention now that all our 1-cocycles will be written with coordinates on U2.

We will follow the trivialization notation of Section III.1, except that we will write all our

connection matrices in terms of the trivializations provided by the wi, and will therefore

write them as Ti rather than Ti.

Let G be a vector bundle on C, given by a transition matrix E on U1 n U2; the only

restriction on E is that its determinant be invertible. Next, suppose V is a connection on A,

given by Ti on Ui . Here, the Ti must satisfy the relationship T1 = w2ET2E - 1 +EdE , where

wi are a trivialization of Q1 on the Ui. Then, it is a standard fact that a deformation of g

is given by some invertible matrix E(I + eE'); indeed, this follows from the assertion that

any deformation of a free module is free, since then the same Ui trivialize the deformation,

and the freeness of the deformation follows from the argument for Proposition A.16, the

injectivity of the map r of that proof being part of the definition of a deformation. We

then see that invertibility of the transition matrix actually follows from E' being regular on

U1 n U2, since E(I - E') will then provide an inverse. We also see that if we wish to take a

deformation preserving the determinant of E, we simply restrict to E' having trace 0, since

the determinant of I + eE' is 1 + e Tr E'. Indeed, by considering E' as a 1-cocyle, we get:

Proposition IV.3.2. The space of deformations of ~ is isomorphic to H1 (C,£nd(g)),

and the space of deformations of G preserving the determinant of g is isomorphic to

H1 (C, Endo (&)).

Proof. We have seen the equivalences of deformations and cocycles, so we need only show

that both objects have the same equivalence relation on them. A cocycle E', given with

coordinates on U2, is equivalent precisely to cocycles of the form E' + S2 - E- 1S 1E for

some 0-cochain Si. On the other hand, two deformations of G are equivalent if there is
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an isomorphism between them, fixing . If we write the isomorphism as I + Si on Ui,

and the second deformation as E(I + E"), we have the condition that E(I + eE") =

(I - eSI)E(I + cE')(I + eS2) = E + e(EE' - S1E + ES2) = E(I + (E' - E-1 S 1E + S2)),

giving precisely the desired formula for E". []

Remark IV.3.3. The more naive identification of 1-cocycles with deformations might be to

take E + eE' rather than E(I + cE'), but this would have made the determinant-preserving

choices for E' harder to classify, and more importantly, would have given the wrong equiv-

alence under coboundaries.

Next, deformations of V over a given deformation g' of are given by Ti + eFTi' regular

on Ui, satisfying

(T2 + eT2) = W (I - eE')E-1(T + eT,)E(I + eE')- E(I + E').
t 2 032

Note that rather than our usual writing of T1 in terms of T2, we have done the opposite,

as this will be more convenient when we work with 1-cocycles having coordinate on U2.

Taking the e term, expanding the differential, and then substituting back in with T1 =

2ET2 E-1 + E dE 1 we get that the Ti' satisfyWI Wq

T2= 1 (E-TE) - E'T2 + T2E' + (IV.3.4)
W2 tU2

If we set E' = 0, we find the T' are subject to T2 = - E-1T'E, which is to say, they are
IwW2

a 0-cocyle of End(g) (® Qc . Since the determinant of a connection is given by its trace, we

once again find that fixing the determinant is equivalent to choosing trace 0 matrices. As

before, we get:

Proposition IV.3.5. The space of deformations of V over G (respectively, fixing the de-

terminant of V) is isomorphic to H°(C, nd() 0 Q) (respectively, H°(C, End () 0 Q)).

However, we will actually be interested in transport equivalence classes of connections.

Specifically, for a deformation of V over a deformation of &, we will mod out by transport

under automorphisms of the form I + eSi, which sends a connection given by Ti + eTi' to

T, + E(T,' + TS - STi + ds ). We therefore introduce the sheaf map which is simply the

connection induced on £nd(&) by V; we denote it dv : End(g) -+ £nd(g) 0 Qc, and it is~VILI~UVI 1I~~l~U I1CIOL~\I Y IWC CIV~ 1 W · C/ILL\CI ~bL\~ \1 DC
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given by 0 -+ V o 0 - ¢ o V. We note that for an open U with a trivializing one-form w, if

V is given on an open U (with respect to w) by T, and a section of £nd(G) is given on U

by S, then d(S) = TS - ST + ds. Comparing this to our infinitesmal transport formula,

we immediately see:

Proposition IV.3.6. The space of transport equivalence classes of deformations of V over

g is isomorphic to H°(C, nd(g) 0 QC)/dv(H0 (C,£nd())).

We also have:

Proposition IV.3.7. dvSnd 0 (&) takes values in £nd°(G). Further, if chark is prime to

the rank of g, the space of transport equivalence classes of deformations of V over g with

fixed determinant is isomorphic to H (C,£nd°(6) 0 Q)/dv(H 0 (C,£ndo(g))).

Proof. The first part is given for the induced connection on £nd°(G) in Section III.1. The

only potentially tricky part of the second assertion is to show that dv(H°(C, £nd°(g))) -

dv(H°(C, nd(g))), since there is no reason to assume a priori that our transport endo-

morphisms have trivial determinant. However, because char k doesn't divide the rank of 6,

we can write any endomorphism of g as as scalar map plus a map of trace 0, and we see

that the transport will be additive on these infinitesmal endomorphisms, and will not be

affected by the scalar term, yielding the desired result. []

However, parametrizing pairs of deformations of & together with deformations of V

over g cannot be described naturally with sheaf cohomology, but rather requires sheaf

hypercohomology. Given a complex H' of sheaves, the hypercohomology IH* (C, °*) can be

described as the comology of the double-complex whose p, q term is given by Cech p-chains

with coefficients in gq. For notational convenience, we specify:

Notation IV.3.8. The complex £nd°(g) - £nd0°() 0 Q4 will also be denoted by f'.

We have:

Proposition IV.3.9. The space of transport equivalence classes of deformations of the

pair g together with V (respectively, deformations fixing both determinants) is isomorphic

to H1 (C, £nd(6) - £nd(g) 0 QC) (respectively, H1 (C, £nd(6) £EndO (g) Q1 )).

Proof. An element ofH 1(C, End(g) - £nd(g)0Ql) is a Cech 1-cocycle E' with coefficients

in £nd(g) together with a Cech 0-cochain T' with coefficients in £nd() 0 Qc which agree
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in their image in the group of Cech 1-cocyles with coefficients in £nd(g) 0X QC. Since one

has to change coordinates of one of the T' in order to substract it from the other, we find

that, working on U2, the image of the T' is T2 - E- 1TE. This accounts for the term

on the left and the first term on the right in Equation IV.3.4, so we need to check that

the image of E' under the complex map accounts for the rest. Now, V is given on Ui by

si - Tisi + i; we are working on U2, and E' was given in terms of coordinates on U2,

so V o a - a o V will be given by T2E' + dE _- E'T2, and this precisely accounts for the
W2

remaining terms in Equation IV.3.4.

Lastly, equivalence of connections is given by transport under automorphisms, and equiv-

alence of hypercohomology classes is given by changing our 1-cocyle and O-cochain by the

image of a O-cochain of End(g). We had already shown that this gives exactly the right

equivalence relations on the deformations of , and that for a fixed deformation of g and a

O-cocycle of End(g), it gives the right equivalence relation for deformations of V. But the

latter really checked that 0-cochains give the right formula transport along an isomorphism

of a connection from one deformation of g to an isomorphic one; we only used the cocycle

hypothesis at the end to keep the (trivial) deformation of g fixed. Thus, we get the right

equivalence relation in general, as desired.

This proves the proposition for End(g), but the End°(go) case is precisely the same, as

everything above was purely formal. [

IV.4 Spectral Sequences

We can use the standard spectral sequence for the cohomology of a double complex to place

Hl (C,£nd°(g) -+ nd°(g) 0 Q C) into a short exact sequence. Starting with the Cech

double complex associated to our complex, and taking differentials in the vertical direction,

we see that the E1 term is:
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0

H1 (C, EndO(G)) 2 H1(C, ndO(G) 0 Q1) 0

H°(C, £nd°(G)) --- H°(C,£nd°()0) 0 ) O

where d are the maps induced on Cech i-cocycles by d. We see immediately that the

spectral sequence stabilizes at E 2, and yields a short exact sequence:

0 - coker d - HI1(C, £nd°() - £nd°() ®Q) - ker d1 - 0.

We will show:

Proposition IV.4.1. Suppose V has p-curvature 0, and the corresponding 9 which pulls

back under Frobenius to G is stable. Then do is injective, so we can consider H°(C, End°(G))

to be a subgroup of H°(C,£ nd°(e) 0 Qc), and we left get a left exact sequence

0 - H°(C, £nd°(og) x Q1 )/H°(C, £nd°()) 1 (C - H1(C, £nd())

where the image on the right is the image under Frobenius pullback of H1 (C(P), nd 0()).

Proof. An element in the kernel of do is a trace zero endomorphism of G which commutes

with V. But this is precisely the condition for it to come from a trace zero endomorpism

of 9 (see, for instance, [30, Thm 5.1]), which must be 0, since 9 is stable (this follows

almost immediately from the definition of stability and the fact that there are no non-trivial

division algebras over an algebraically closed field; see [27, Cor. 1.2.8]).

Similarly, an element in the kernel of d} comes from H1 (C(P), nd° (s)), as asserted. 

Reinterpreted in terms of deformations, we are saying that, as should be the case, every

deformation V' of V on g corresponds to a unique pair of deformations of (, V): namely,

(6, V'). Of course, a pair (', V') also gives rise to a deformation &' of . What is

interesting here is that not every deformation &' of & arises in this way; indeed, ' admits
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a V' if and only if it came from some deformation 9' of S.

We also get some information by computing the spectral sequence for the double complex

in the other direction. Specifically, we have:

Proposition IV.4.2. With the same notation and hypotheses as in Proposition IV.4.1, we

have

H1 (C(P), nd° (9)) H1 (C, X*)

The image is described by 1-cocycles of Snd0°() in the kernel of dv (together with the zero

O-cochain of nd (9) X 0 )V-VLBUI CVJC~b \3 \4~JD/

Proof. Taking differentials in the opposite direction as before,

like

we find our E2 term looks

H2 (C, ker dv)

H1 (C, ker dv)

H°(C, ker dv)

Now, H1(C, ker dv) cannot have an

of it, so it injects into H1(C, J').

that kerdv is precisely F-l'nd 0 (f).

is a homeomorphism (and because we

H2 (C, coker dv)

H1 (C, coker dv)

H ° (C, coker dv)

0

0

0O
O

.y further nonzero differentials mapping into or out

We saw in the proof of the previous proposition

Although it isn't even an c module, because F

are dealing with F - 1, and not F*), we can com-

pute its cohomology as being the same as the cohomology on C(P) of End°(S). Thus,

H1(C, ker dv) = H'(C(P), nd()), and we get the desired injection, and description of

its image. O

All this is saying is that any nontrivial deformation of S gives a nontrivial deformation

of (, V) when pulled back to C, which shouldn't be too surprising given the categorical

equivalence between 9 on C(P) and pairs (, V) on C, but still needed to be proved.

Note that it does not imply that every non-trivial deformation of # maps to a non-trivial

deformation of 8.
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We now suppose that G is an extension of -1 by , with Y any line bundle on C.

The short exact sequence

induces maps

dl: Hom(Y-,Y) - £nd°(6)

and

d2: £nd°() -+ Hom(-, - 1 ) (IV.4.3)

by composition. Specifically, di(0) = i o o j, and d2(0) = j o Z o i. Explicitly in terms of

transition matrices, we see that:

d ([f])= [0] If] [0 1] = [0 0](IV.4.4)

J[fll2 f2] [ 1] [fl f122 [] f2 ] (IV.4.5)
f21 f22 Lf2: f22/ 0]

We then see that the image of d: does indeed lie inside £nd °(&), and we also see that it

is in the kernel of d2. Thus, we get a filtration of £nd°() as 0 C imdl C ker d2 C £nd°(9).

We claim this induces the following filtration of our original complex:

£ndO(g) d--> £nd(g&) 0 Q (IV.4.6)

I d k
ker d2 dv > ndo(') Q1

im di d- (ker d2 ) QC

81 V >(im di) Q1

The only part which requires any verification is that dv(im di) C (ker d2) ) Qc.

Something in the image of d1 is of the form i o o j for some 0 E Hom(Y-,.2), by

definition. We can evaluate dv on this as V o i o oj - i o o j o V. Tensoring with 1C
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doesn't change i or j at all (it simply allows coefficients to have certain poles they couldn't

otherwise have), so d2 makes sense equally well on £nd°(g) 0 f as on g, and as sheaves,

(ker d2) X bC is the same as the kernel of d2 acting on End(g) Q . We now see that we get

what we want, since d2(Voioq5oj-io qojoV) = joVoioqOojoi-joioq ojoVoi = 0 because

each term has a j o i in it. Of course, this is a long-winded way of saying something that

could easily be checked explicitly on the matrix level as well. Regardless, we get the desired

filtration, and we can apply a resulting spectral sequence to get a different calculation of

our hypercohomology group. We will see:

Proposition IV.4.7. In our specific situation, where C has genus 2 and Y is a theta

characteristic, there is a short exact sequence

0 --+ F(Rom(..- 1, A) 0 Qk) - H11(C, By) Ext(Y, -1) -- 0

Proof. When we have a filtration of our complex, we get (see [12, 1.4.5]) a spectral sequence

converging to its hypercohomology, whose E2 term is given in terms of the hypercohomology

of the quotient complexes. Specifically, if X' is our complex, and i' the filtration, we

get Ep'q = IiP+q(C, Gr.,(X)) Il+q (C, ). We must therefore start by calculating the

associated graded complexes of the filtration. The associated graded sheaves on the lefthand

side are 0, im dl, ker d2/ im dl, and End°(G)/ ker d2. Now, dl being a non-zero map from a

line bundle is injective, so im dl _ 7-tom(Y-l, ). We see from our explicit descriptions of

dl and d2 that ker d2 / im d1 is isomorphic to the diagonal elements of £nd°(g), which is just

(Yc. Lastly, since d2 is surjective onto om(, -l), End°(E)/ker d2 - 7lom(Y, -l).

Of course, the associated graded sheaves on the right are gotten by taking these, shifted

them down by one, and tensoring with Q1 . Noting that -om(-',) 2 

we actually get isomorphic line bundles for the middle two associated graded complexes,

and we have to check that the maps between them are isomorphisms. At first blush, they

may look like they should actually be zero, but recall that dv is not the obvious inclusion,

and indeed not even linear (so we will have to check that the induced map on quotients is

linear). We simply verify this directly:

We first verify that im dl maps isomorphically to (ker d2)Q /(im dl ) Q . Recall that

dv(S) = TS - ST - ds If S is 0 except in the upper right coordinate, then the deviation

from linearity is also confined to the upper right coordinate, and therefore vanishes mod
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(im dl) 0 QC. In order to check that the map is nonzero, we will look on U2. Here, we can

make use of the fact that T can be written with O's on the diagonal to see that TS has a

nonzero entry only in the lower right, while ST has a nonzero entry only in the upper left,

and conclude that d(S) is not concentrated in the upper right coordinate, and therefore

has nonzero image mod (im d1 ) 0 Q. Since we have a nonzero, linear map of isomorphic

line bundles, it must be an isomorphism.

The next map is also linear by precisely the same argument. We show it is nonzero by

showing that for some S, the lower left coordinate of TS - ST is nonzero, again on U2.

We know that we can normalize T so that its diagonal is 0, and its lower left entry is 1.

An S E ker d2 is simply upper triangular, and since it has trace zero, must have diagonal

coefficients of the form f, -f. But then the lower left coordinate of dv(S) will be 2f, which

for any odd characteristic (where here 0 would receive honorary designation as odd, if we

cared) is nonzero exactly when f is nonzero. So we see that dv(ker d2) is not contained in

(ker d2) 0 QC, giving us that this induced map also is nonzero, and hence an isomorphism.

We see immediately from the spectral sequence for a double complex (or from the

definition in terms of an injective resolution, if one takes that approach), that the hyper-

cohomology of a 2-term complex for which the complex map is an isomorphism is simply

0. Additionally, the hypercohomology of a 1-term complex concentrated in the ith place

is the cohomology of the nonzero term, shifted by i. This then gives us the E2 term of

our spectral sequence, since the middle two quotient complexes are isomorphisms, and the

other two have only one nonzero term. We get as the E2 term:

H°(C, Y) H 1 (C, h3) 0

0 0 0(C, 

0 0 0

0 HO(C, J-® 0Q-) H1(C, -e ® 0Q)

where 3 := Wom(, -l1).

Now, there are potentially non-zero differentials between the remaining terms, but be-

cause H(C, -lom(Y',..-l)) = 0, the H°(C,, f 0 Q ) cannot have any further nonzero--V Il~11\~/C 0 iLjCILIIVII~C(Ily111~1~ IIIII
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differentials, and we get the desired short exact sequence for I1 (C, X'), making use of the

fact that H1(C,7 lom(Y,-')) = Ext(, -1). O

We also note from the construction of the spectral sequence that the map from 11 (C, X-)

to Ext(2, Y-1) is in fact precisely the map induced by first mapping to H(C, nd°(G)),

and then taking the map induced by d2 on H 1. Because this factors through our prior

map to H'(C, nd°(6)), we get a diagram:

H°(C ,nd°(6) 0 Q1 )/H°(C, nd°(G))

H°(C, ()2) c H1 (C, X ) >> Ext(Y, - 1)

H1 (C, £nd (6))

where the inclusion on the upper left follows formally from exactness in the middle. But

now we compare the dimensions to conclude:

Proposition IV.4.8. The kernel of (C,X~) -+ H'(C,, nd°(G)) is equal to the kernel

of H1 (C, X) - Ext(Y, -1). Equivalently, a deformation of the pair (, V) induces the

trivial extension in Ext(Y, -1) if and only if it was the trivial deformation of G (together

with any deformation of V).

Proof. We need only show that the dimensions of the two kernels are equal. Since (I)® 2

has degree 4, Riemann-Roch for line bundles gives us that H(C, ()0 2) has dimension

3. On the other hand, the dimension of H°(C, End°(G) Q )/H°(C, £nd 0°()), invoking

Serre duality and the fact that £nd°(G) is self-dual (easily verified from the definition if

one considers Snd(G) - &V 0 &), is exactly the Euler characteristic of £nd°() . By

Riemann-Roch for vector bundles (see Theorem A.4, this is d + r(1 - g). £nd°(G) has rank

3 and degree 0, and ~Q has rank 1 and degree 2, so £nd°(&) Q1 has rank 3 and degree

6, giving 6 + 3(1 - 2) = 3, as desired. O]
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IV.5 Geometric Significance

What we have done so far has been very formal, so we will now lend it some geometric

substance, largely by characterizing the map H1 (C, £nd ° (G)) -+ Ext(Yq•, -1) in geometric

terms. Suppose we have a family of vector bundles on C with base T, and trivial

determinant, such that for some k-valued point 0 C T, 0lo - . Since we have a map

g - 1, by adjointness we get a map g -~ io,Y -1 , and we can take the kernel to get

a new family &' over T which is isomorphic to away from 0 (this will be another vector

bundle if T is a curve, but not quite, for instance, if T is Spec k[e]; see Theorem IV.B.11 of

the appendix).

We can then restrict back to the fiber at 0, where we will get a new ' on C which will

also be a vector bundle (even if T = Spec k[e]), of rank 2 and trivial determinant. Everything

but the trivial determinant assertion actually follows immediately from Theorem IV.B.11,

with T either a curve or Spec k[e]. For the triviality of the determinant, and consequent

remarks, we will for the moment assume that T is a curve. In this case, we get the desired

result from [45, Cor 5.6], since we have triviality of the determinant away from 0 on T.

Moreover, we see that g' is an extension of ° by Y-1: Since i is a closed immersion,

(io*-l)o = y-l, so we have an exact sequence

go _+ ~ _-1 _-+ 0 (IV.5.1)

but since the kernel of g - S-1 is Y, g' - & factors through Y -+ A, and we see that

we get a map from A' to A', which is surjective, by exactness of equation IV.5.1. Since A'

has trivial determinant, it follows that A' is an extension of Y by S-l. Thus, in the case

that T is a curve, we get a map

qg: {( over T}) Ext(, -1 )

This will have the following significance for us in trying to understand the Verschiebung:

Lemma IV.5.2. Suppose T is a curve, 0 a point of T, and 9 a nontrivial family of

semistable vector bundles over T with trivial determinant, such that F*S = a, where

S := lo. That is to say, -S gives a nonconstant map of T into the moduli space M2,

passing through a point where V2 is undefined. Then writing g = F*?, if ' = qeg(&) # 0,
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the limit point of the image of the curve under V2 at 9 is given by &'.

Proof. This is largely a formality. The limit point of the curve under V2 is gotten, by

definition, by looking at the limit of the family . But ' is isomorphic to G away from the

limit point, so we can look at e' instead, and if &' is semistable, we see it must give the

limit point of the curve in M 2, just by continuity of the corresponding map of T into M2.

So we just need to know that g' is semistable as long as it is nonzero in Ext( ', Y-1). But

suppose X of positive degree maps into A'. It cannot be a subbundle of `- 1 by degree

considerations, so it must compose to give a nonzero map to YS. But then it must have

degree 1, and the map must be an isomorphism, meaning there is a map from Y back to

&', and &' is the trivial element of Ext(-, -1), as desired. [O

The implication is that if we are lucky, we will be able to describe the image of the

exceptional divisor of V2 in terms of IP Ext(2, -'1), which defines a hyperplane inside of

M2 (see Lemma IV.A.11). To show that this is actually what happens, we first note that

if T = Speck[e], we actually still get a map gs : Def°(G) -+ Ext(", - 1 ). In fact, more

specifically, we have:

Lemma IV.5.3. g still exists in the case T = Speck[e], inducing a map from Def°(e)

to Ext(Y, - l 1) which arises as the negative of the map on 1-cocycles induced by d2

End (g&) -+ Hom(Y, Y- 1 ) (IV.4.3), from the previous section.

Proof. To prove this, we have to start by pinning down the identification of Ext(, - 1)

with H1 (C, Hom(., -'1)). We will think of Ext(22, -1) as being described by transition

matrices of the form F = [P _1, where f is any regular section on U1 n U 2 . We first
f trm2 0 

show that rather than taking f itself as our 1-cocyle of Hom(22, -'1), we will have to take

-P12 f. The 1-cocycle of Hom(Y,2 - ') starting with an extension 9 C Ext(,2 - 1 ) is

gotten by starting with the exact sequence

0 - -1 -+ - O0

taking the induced sequence

0 -- Hom(, 2-') -+ Hom(, ~) - Hom(Y, Y) -+ 0
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and finally, looking at the image in Hi(C, Hom(Y, '-l)) of the identity in Hom(°, Y),

under the boundary map (see [26, Exer. III.6.1]). Let si, ti be the trivializing sections on Ui

for 9 in terms of which our transition matrix is written, and ui and u* the corresponding

trivializing sections of i and '-1, so that the exact sequence is given as the map [1

followed by [1 0] on both Ui. Tensoring all these by uI to get induced trivializations for the

Hom(C, ) sheaves, the maps of the induced exact sequence are given by the same matrices.

So, we start with the identity O-cocycle in Hom(Y, 2'), given on both Ui simply by [1].

We choose any choice of lift to Hom(2', o); the vector [1 on both Ui will do fine. We

take the induced 1-cochain (as always, with coefficients on U2), getting [1] -i 12F [:] =

Lastly, we lift this back to the 1-cocycle of Hom(,-1) given by -912f,

which is exactly what we wanted to get.

Next, recalling that d2, by definition, took the lower left coordinate of a matrix, we just

need to show that if EE' = ell e121 gives a deformation of g, then 05g(E') is described
e21 e 2 2J

by the transition matrix 0 ] · This suffices because the lower left coordinate of E'
e21 ~12

will be p1,2e2l, and we will have to multiply by -21 to get our 1-cocycle of Hom(, Y-1).

But we can calculate g(E') directly, in this case.

E(I + eE') = [(P12 + eel l 122 + el2]

ee2l P12 + e22

Denote by si, ti our trivializing basis on Ui, in terms of which E, and E + E', are

written. Also write ui for the trivialization of -1 on Ui. This means we have s2 =

(012 + eell )S1 + ee2 1t l , t2 = ( 12+ e22)tl, and u 2 = P12 Now, the

induced map to - 1 sends asi + bsi + cti + deti simply to cui. This means that its kernel

is generated by si, eti on Ui. Using the above formulas for 2, t2 in terms of s, tl, we find

that this kernel has transition matrix
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I012 + el1 C6912

L e21 12 J

When restricted to Speck (that is, upon modding out by e), this gives precisely the

desired form for gS(E'). The theory developed in the appendix, and particulary Corollary

IV.B.3 and the subsequent discussion, justifies this calculation, even though the transition

matrix is not unique, and the kernel itself (prior to restriction) is not characterized by it. 

We next prove some statements which will ultimately relate the limit points of images

of curves under the Verschiebung to g acting on Def°(6).

Lemma IV.5.4. In the same situation as Lemma IV.5.2, if we write for the induced

first-order deformation of S gotten via some closed immersion t: Spec k[e] -+ T deforming

the point 0 E T, and := F*9, we have G t6. Further, qg& = qg6.

Proof. The first statement follows immediately from the fact that ~ is a sheaf on C(P) x T,

and all we are saying is that pullback under t commutes with pullback under F. Since te

only acts on T, and F only acts on C(P), they commute.

The second half of the lemma is just an application of Theorem IV.B.13 in the appendix

to our specific situation. []

Putting together this lemma with Lemma IV.5.2, we see:

Theorem IV.5.5. In the same situation as the previous lemma, if we suppose qg o F*

is injective on first-order deformations of , then the limit point at 0 of the image of

T --> M2 under the Verschiebung is given as g o F* (s). In particular, all such limit points

are contained in IPExt(Y.C,Y - 1) C M2. Further, the Verschiebung only needs to be blown

up once at S.

Proof. Everything but the last assertion follows directly from the two lemmas. To show

that the Verschiebung only needs to be blown up once at , we need to know that every

curve through S has the limit point of its image under V2 determined by its tangent at

o. If M2 were a fine moduli space, we'd be done, as every curve in it would correspond

to a family of vector bundles, and we could then apply our result that it suffices to look at

the first order deformation induced by the family, which is exactly the same as the tangent

vector to the curve. However, because all of our 's are in the stable locus of our moduli
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space, where it isn't too far from being fine, it turns out, thanks to Proposition A.12, that

this property in fact still holds, completing the proof. ]

Finally, we can draw some conclusions which have immediate consequences for our

understanding of the Verschiebung:

Theorem IV.5.6. Given 9 such that F*# A 6, let Es be the exceptional divisor above

- after blowing up M2 to make the Verschiebung a morphism. Then of the following, a)

and b) are equivalent, and either implies c) and d):

a) The scheme of connections with vanishing p-curvature on G is reduced at the point

corresponding to S.

b) The map Def(S) - Def(G) induced by F* is injective.

c) The image of Es under V2 in M2 is precisely PIExt(, ,-l).

d) V2 only needs to be blown up once at 9

Proof. a) is equivalent to there not being any non-trivial deformations of V which hold

g fixed, and have p-curvature 0. We claim that this is the same as there not being any

nontrivial deformations of 9 which pull back to the trivial deformation of g; that is, that

a) is equivalent to b). Noting that C x k[e] is smooth over k[e], [30, Thm 5.1] gives us that

k[e]-vector bundles on C(P) x k[e] are equivalent as a category to k[e]-vector bundles together

with connections of p-curvature 0 on C x k[e], with the functor given by pulling back under

F and taking the canonical connection. It is clear that this commutes with pulling back

under closed immersions of the base, so in particular with restricting to Spec k, and since

F* is a categorical equivalence, its inverse also commutes with restriction to Spec k. This

means that our categorical equivalence restricts to another categorical equivalence when

the restriction to Speck is specified (compatibly) for both categories, and lastly, noting

that every vector bundle is flat over its base, so the flatness condition in the definition

of a deformation is vacuous, we see that the deformations of 9 really are equivalent to

deformations of G together with V, and this completes the proof of the claim.

On the other hand, b) is equivalent to the map Def(9) -+ Ext(Y, - l ) being injective,

by Proposition IV.4.8, which implies it is an isomorphism, since both spaces have dimension

3 over k. Noting that Lemma IV.5.3 tells us our geometric and cocycles versions of this

map are really the same up to sign, by the preceding theorem this implies c), as desired.
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Lastly, the fact that d) follows from these conditions also follows from the preceding

theorem, since as we just noted, b) gives us that Def(Y) - Ext(2, £Y-1). l

IV.6 Conclusions and Further Questions

We may now easily put everything together to prove our main theorem:

Proof of Theorem IV.O.1. The assertion of (i) that each Frobenius-unstable bundle corre-

sponds to an undefined point will follow from (iii), since the image of the exceptional divisor

of a blow-up centered at such a point is not just a single point. The degree statement then

follows from (ii) by Corollary IV.2.2. But now (ii) and (iii) follow from the implications b)

implies c) and d) of Theorem IV.5.6. El

If we apply the low-characteristic results of Chapter III, we can conclude:

Corollary IV.6.1. Let C be a general smooth, proper genus 2 curve over an algebraically

closed field k of characteristic p > 2, and suppose that p < 7. Then:

(i) Each Frobenius-unstable bundle corresponds to an undefined point of V2, and V2 has

degree (p3 + 2p);

(ii) Each undefined point may be resolved by a single blowup;

(iii) The image of the exceptional divisor associated to such an undefined point is given by

PExt(Y, £ - 1 ) C M2(C), where Y is a theta characteristic on C, and specifically

is the destabilizing line bundle for F*9, where 9 is the Frobenius-unstable vector

bundle associated to the undefined point.

Proof. Thanks to Theorem IV.0.1, all we need know is that the Frobenius-unstable locus

consists of (p3
- p) reduced points. That this is the correct number for p < 7 is simply

Theorem III.0.1. That none of the Frobenius-unstable bundles have non-trivial deformations

follows, in light of Remark 11.5.8 and the equivalence of a) and b) in Theorem IV.5.6,

directly from the calculations for the p = 3 and p = 5 cases in Section III.6, and for p = 7

from the conclusion of the argument for Theorem III.0.1 presented in Section III.7. ]

We conclude with some further questions:
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Question IV.6.2. Are statements c) and d) of Theorem IV.5.6 in fact equivalent to a) and

b)?

Question IV.6.3. Is the scheme of Frobenius-unstable bundles of rank two and trivial

determinant (equivalently, the scheme of transport-equivalence classes of connections with

trivial determinant and vanishing p-curvature on the appropriate unstable bundles) isomor-

phic to the scheme-theoretic undefined locus of V2?

Question IV.6.4. Is the degree of V2 constant over all smooth curves of genus 2?

We remark that an affirmative answer to the second question would give an affirmative

answer to the third, thanks to a result of Mochizuki [42, II, Thm. 2.8, p. 153]: this gives

that our scheme of Frobenius-unstable bundles is finite flat over our space of curves, and

that it is smooth over the base field, from which it follows that its fiber over any fixed curve

is a local complete intersection.

More generally, one could ask:

Question IV.6.5. How might one attempt to compute the degree of the Verschiebung for

curves of higher genus, or vector bundles of higher rank?

We remark finally that to attempt to address this last question via similar techniques

to those of this chapter, it would be necessary not only to generalize our understanding

of the undefined locus of the Verschiebung, but also to appropriately generalize the degree

formula of Proposition IV.1.2 to a substantially more general class of projective varieties;

indeed, for higher genus and rank, the moduli spaces in question become singular along the

strictly semi-stable locus.

IV.A Appendix: Some General Results on the Verschiebung

This appendix consists of the formal construction of, and some general results on, the

generalized Verschiebung map on coarse moduli spaces of vector bundles. Most of the

key arguments were developed by A. J. de Jong prior to the initial conceptualization of the

present work; they are reproduced here because they are a necessary background component,

and were never published elsewhere. We will work in the situation:

Situation IV.A.1. C is a smooth, proper curve over a field k of characteristic p. C(P) is

the p-twist of C over k, and F is the relative Frobenius morphism from C to C(P).
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Remark IV.A.2. The algebraically closed hypothesis is not actually necessary; the moduli

space construction can be made to work over a non-algebraically closed field, and the

arguments here will go through in this setting. However, it is harder to find references

for the general case, and we will only apply the results here in the case of an algebraically

closed base field.

Remark IV.A.3. There are a few points to be careful of with respect to characteristic and

the general theory of moduli of vector bundles. The main obstruction is boundedness, which

is not a problem in our situation of the base being a curve (see [27, Cor. 1.7.7]), and is now

known in any dimension via the more involved argument of [35]. However, in characteristic

p the statement that the moduli space universally corepresents the relevant functor is in

fact no longer true. It is however true that it uniformly corepresents the functor, which

is to say that it is universal for flat base change, and this is all we will need; see [44, Thm.

1.10, p. 38].

We recall the following definition and theorem:

Definition IV.A.4. Two vector bundles g, by of degree 0 are S-equivalent if and only

if there are filtrations Fg and Fg, with GrF, - GrF., (this isomorphism is not required to

preserve the grading), and the quotients of Fg and Fg, all stable sheaves of degree 0.

Theorem IV.A.5. There is a coarse moduli scheme Mn(C) which uniformly corepresents

the functor of semistable vector bundles on C of rank n and trivial determinant. The closed

points of Mn(C) correspond to S-equivalence classes of vector bundles; in particular, there

is an open subscheme Ms,(C) whose closed points parametrize stable vector bundles.

Proof. See [27, Thm. 4.3.4]. [

We will want to know:

Lemma IV.A.6. Let U be an open subfunctor of Mn(C) whose points are well-defined

modulo S-equivalence. Then there is an open subscheme U C Mn(C) which corepresents U.

Proof. One need only check that under the hypotheses on U, in the construction of Mn(C)

used in [27, Thm. 4.3.3 and Thm. 4.3.4], we will have that the pullback of U to the R of

that theorem, which will be representable as an open subscheme UR of R, has the property

that it is the preimage of its image U in Mn(C), with U an open subscheme. Given this
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assertion, we can simply apply change of base to U and uniform corepresentability to get the

desired result. But the desired property of UR follows from the hypothesis that U is well-

defined modulo S-equivalence, together with the description of the closed points of Mn(C)

of the previous theorem. Indeed, the set-theoretic image of UR must be open because UR

is open in R, and R - Mn(C) is surjective, so we let U be the induced open subscheme,

with a surjection UR -- U. Since everything is of finite type over a field, constructible sets

are determined on their closed points, and it is easily verified that every closed point of the

preimage of U is in fact in UR, as desired. O

It will follow that:

Theorem IV.A.7. In the above situation, and given n > 0, the operation of pulling

back vector bundles under F induces a generalized Verschiebung rational map Vn :

Mn(C(P)) --+ Mn(C). If we denote by Un the open subset of Mn(C(P)) corresponding to

bundles g such that F*(g&) is semi-stable, we have further:

(i) Vn is dominant

(ii) The domain of definition of Vn contains Un.

Proof. The first task is to prove the existence of Vn; we show at the same time that Un can

be defined formally and makes good sense, and it will follow from the construction that Un is

in the domain of definition of Vn. The key statement is that in any family of vector bundles,

the locus on the base over which the fibers are semistable is open; see [27, Prop. 2.3.1].

We thus get an open subfunctor Un of the moduli space functor M,,(C(P)) corresponding to

semi-stable vector bundles on C(P) which pull back under F to semi-stable vector bundles

on C. We claim that it is enough to show that this subfunctor is stable under S-equivalence.

Indeed, given this, by the preceding lemma, LUn corresponds naturally to an open subscheme

Un of M,n(C(P)) which corepresents Un and whose closed points are precisely S-equivalence

classes of vector bundles on C(P) whose pullbacks under F are semi-stable. Now, Frobenius

pullback induces a map from Un to Mn(C); if we compose with the map Mn(C) -+ Mn(C),

since Un corepresents U,, we obtain the desired morphism Vn : Un - Mn(C).

We therefore show that our subfunctor is in fact stable under S-equivalence. Let A, g'

be as in Definition IV.A.4. Since F is flat (Proposition A.25), F* behaves well with respect

to the operation of Gr on filtrations, and we claim this implies that F*& is semi-stable if
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and only if F* GrF, is semi-stable: certainly, if 9 C F*o is a destabilizing subsheaf, then

by considering the smallest subsheaf in the filtration F*Fg into which # maps, there will

be a nonzero map of 9 into the corresponding quotient in F* GrF. Conversely, suppose

that 9 is a destabilizing subsheaf of some quotient in F* GrF.; that is, ~ has positive

degree and there is an injection F*F(i)/F*F(i+l) for some i, from which it follows that the

cokernel has negative degree. If A' is the subsheaf of F*F(i) generated by 9 and F *F( i+ l)

the cokernel of the inclusion is the same, hence has negative degree, and it follows that A'

has positive degree and maps into F*6, giving the desired instability. We conclude that

F*& is semi-stable if and only if F*&" is semi-stable, as desired.

We now prove part (ii). We simply exhibit a point of Mn(C(P)) at which V, induces a

finite flat map on versal deformation spaces. This point will correspond to a vector bundle

Go of the form 1 ® ®2 .. ® n, where the i are distinct line bundles of degree 0, with

&(i i c(p), so that Go has trivial determinant. By the asserted vanishing of h° (B 0 L1 )

for general L1 and sequence (3) of [50, p. 119], we may also require that the natural maps

H1(C(P), Zi 7-1) H1(CF*i FYj)

are isomorphisms for all i j.

We will consider deformations of Go preserving the triviality of the determinant. One

can check that this satisfies the criteria (H 1), (H2), (H3) of [53], so we let R() be a hull

for the deformation problem and g on C(p) x Spec R(P) be the corresponding versal defor-

mation of &0. The first-order deformations are parametrized by H1(C(P), nd °0(o )), and

deformations are visibly unobstructed: we can trivialize Go on a pair of open sets U1, U2,

and represent it and its deformations by a single transition matrix with coefficients in the

desired Artin ring. We conclude that R(P) - k[[tl,...tN]], with N = h(C(P),£nd(o) ) .

Since

End0 (o) , i(n- 1 / i Y -1c(P) WdJ
i#j

Riemann-Roch for vector bundles (see Theorem A.4) gives

hl(C(P), End°(o)) = ho(C(P), nd°(o)) - deg Endo°(o) + (rkEnd° (o)(g - 1)

= (n - 1) -0 + (n2 - 1)(g -1) = gn2 + n - g
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Now, let I(P) C R(P) be the ideal defining the maximal closed subscheme of SpecR(P)

over which g remains isomorphic to a direct sum of n distinct line bundles. If J(P) denotes

the Jacobian of C(P), and (J(P))n j(p) is the addition morphism, let T(P) be the fiber

of this morphism over 0. Since the kernel of the addition map corresponds precisely to

n-tuples of line bundles whose direct sum has trivial determinant, then by Lemma A.13

(ii) we may then describe R(P)/I(P) as the completion of the local ring of T(P) at the point

corresponding to 1, ... , n

Now, if we set

o90 := Fo F*/i,

we can as before let R be a hull for the deformations of 0o, and I the ideal cutting out

the locus preserving the direct sum decomposition. We then obtain the corresponding

description of R/I as above. Now, by Lemma A.13 (i), the pullback under Frobenius

induces a morphism v : R -+ R(P). Next, since direct sum decompositions are preserved

under pullback, v(I) C I(P), so we get an induced homomorphism R/I - R(P)/I(P). This

clearly corresponds to the morphism T() -- T induced by the Verschiebung morphism

V: J(P) -+ J; this last is finite flat, so we find that R/I - R(P)/I(P) is also finite flat.

Now, we also assert that we have

Homk (I(p) /mR(p) I(), k) H1 (C(p),i j-)
isj

and similarly for Homk(I/mRI, k). Indeed, by the definition of a hull, mR/m2R, the cotan-

gent space to SpecR, is dual to the space of first-order infinitesmal deformations of 0o,

with the subspace obtained by modding out by I and then dualizing corresponding to defor-

mations preserving the direct sum decomposition. It is also easy to see that this subspace

in turn corresponds to the summand of Hl(C,£nd°(So)) given by Hi(C, Bcn-l), so we

find that the quotient of the deformation space by this subspace, corresponding to defor-

mations transverse to those preserving the direct sum decomposition, and obtained as the

dual of the subspace I/mRI C mR/m2, is then given by H1 (C, ifj F*i 0 F*Y - 1) =

ioj H'(C, F*'Yi 0 j-l), which is the desired statement for R. The argument for R(P)

proceeds identically.

As a result, we find by our additional hypotheses on the choice of the i that v induces an
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isomorphism I/mRI 2- I(P)/mR(p)I(P); we claim that this together with the finite-flatness

of R/I -+ R(P)/I(P) is enough to imply that v : R -- R() is itself finite flat. Indeed,

the isomorphism I/mRI 4 I(P)/mR(p)I(P) implies that a set of generators of I/mRI over

R will map to a set of generators of (P)/mR(p)I(P) over R and in particular over R(P),

which by Nakayama's lemma implies that any lifts generate (P) over R(P); we conclude

that I(P) = v(I)R(P). Now, we note that because Ir C mR, we may write R(P)/v(mR)R(P) =

(R(P) /v (I)R(P)) /v (mR) (R(P) /v(I)R(P)) = (R(P) /I()) /v(mR) (R(P) /I(P)), which must be finite

over R/I and hence over R because R(P)/I(P) is. We thus have that the closed fiber of

SpecR(P) - SpecR is finite, and since both rings are regular of the same dimension, by

[13, Thm 18.16 b] the map is flat, hence dominant. It remains to check that the map on

hulls being dominant implies that the map on coarse moduli spaces is dominant. Because

the coarse moduli spaces are irreducible (see [47, Rem. 5.5]), it suffices to show that the

map from the hull to the coarse moduli space is dominant, which is Lemma A.13 (iii). 

Remark IV.A.8. In fact, U, is the precise domain of definition of Vn, but the proof of this

fact would take us too far afield. It will however follow in our case of primary interest,

when the Frobenius-unstable locus is reduced (in the functorial sense of consisting of points

which have no non-trivial deformations) from the main results of Chapter IV.

We recall the following theorem of Narasimhan and Ramanan:

Theorem IV.A.9. If C has genus 2, M2 (C) - I3.

Proof. See [46, Thm. 2, §7]; they use the language of Riemann surfaces, but the argument

goes through unmodified in arbitrary odd characteristic. El

Lemma IV.A.10. If C has genus 2, there are only finitely many semistable vector bundles

of rank 2 and trivial determinant pulling back to unstable bundles under Frobenius; in

particular, there are only finitely many undefined points of V2.

Proof. The argument for part (i) of Theorem IV.A.7 showed in particular that the locus of

Frobenius-unstable bundles is closed in M2, which in this case by the previous theorem is

P3. In particular, if it were positive dimensional, it would have to intersect every surface

inside the moduli space. But the Kummer surface made up of non-stable bundles (which is

expressible as the bundles of the form Y ® -1 for Y a line bundle of degree 0) cannot
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contain any Frobenius-unstable bundles, as F* (2 · Y-1) = F*Y E F* - cannot be un-

stable by Lemma 111.3.3. Thus, the locus of Frobenius-unstable bundles is zero-dimensional,

as desired. O

We conclude with a well-known observation not directly related to the Verschiebung.

Lemma IV.A.11. If C has genus 2, then for any Y E Picl(C), the subspace I Ext(., - 1 )

defines a hyperplane in M2 - [P3 .

Proof. In brief, the isomorphism between M2 and P3 is more specifically obtained as an iso-

morphism M2 IPH° (Picl(C), 8(20)), under the map sending & to the divisor Os defined

as the set of 2' E Picl(C) such that e ® A' has a section; G C IP Ext(Y, °- 1) if and only

if g ® Y has a section if and only if Y E Osg, so IPExt(Y, - 1 ) C IPDH(Picl(C), (26))

is defined by requiring vanishing of the section at 2 E Pic1 (C), which is a linear condition

on sections of 8(20). This proves that P Ext(.', -1) maps into a hyperplane in M2, with

surjectivity on the stable locus of the hyperplane. This argument breaks down a priori

along the non-stable locus, where one could have a non-zero map -l + g which is not

saturated; however, this is not in fact a problem, thanks to [46, Lem. 5.8]. Cl

IV.B Appendix: A Commutative Algebra Digression

We digress momentarily from the main thrust of our argument to develop some simple but

non-standard commutative algebra over non-reduced rings which will be helpful in studying

deformations of vector bundles. Throughout this section, R will denote a (typically non-

reduced) Noetherian ring, n the ideal of nilpotents of R, and M a finitely generated R-

module. Note that everything we define in this section will be equivalent to their standard

versions whenever R is integral.

Definition IV.B.1. M is NR-free of rank r if M is generated by some ml,... mr, such

that given any relation Ei aimi = 0, all the ai must be nilpotent.

Lemma IV.B.2. If M is NR-free of rank r, then Mred is free of rank r. In particular,

rank is well-defined for NR-free modules. Further, the converse holds if R is local, or if

nm = 0 for some m.
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Proof. Suppose M is NR-free of rank r. Clearly, the mi still generate Mred, but mod

the nilpotents of R, all relations between them are 0, so they freely generate. Conversely,

suppose Mred is free of rank r, with generators mi. It is enough to show that some lifts of

the mi generate M, since they will clearly satisfy the desired relations restrictions. If R is

local with maximal ideal m, this follows immediately from Nakayama's lemma, since n C m.

If, on the other hand, nm = 0, we will get the desired result by showing via induction that

M' := M/({mi}i) is contained in (the image of) nM for all j. The base case is j = 0,

which is a triviality. Now suppose it holds for j - 1, and we want to show it for j. Take

m E M; by the induction hypothesis, we can write m = m' + Ei aimi for some m' E nJ-lM.

Writing m' = e .ejlm, because the mi generate Mred, we can find some ai such that

r - Ei aimi is in the kernel of M - Mred. But this kernel is precisely nM, so substituting

back in, we find that m - Ei(ai + el ... ejlaii)mi C niM, as desired. [O

This argument also immediately gives us:

Corollary IV.B.3. Given two generating sets, mi and m' for an NR-free R-module M,

there is a (non-unique) invertible matrix T relating the mi to the m', such that if mi, rm',

and T are the images of mi, m' and T in Mred, T is the matrix relating the mi to the m'.

We can extend the standard definitions:

Definition IV.B.4. M is locally NR-free of rank r if M becomes NR-free of rank r over

every local ring of R. Given a separated Noetherian scheme X, a coherent sheaf of

6x-modules is locally NR-free of rank r if 9(U) is locally NR-free of rank r over ix(U)

for every U. Because our modules are finitely generated, this is equivalent to there being

an open cover of X on which o¢ becomes NR-free of rank r.

We see that while we can attach transition matrices to locally NR-free sheaves, they

are not unique, nor do they uniquely determine o. However, they do determine red over

Xred, which is all we will need for our purposes.

To develop the results we want, we will make the hypothesis for the rest of this section

that Spec R is irreducible. With this, we can prove the following proposition, which properly

reformulated will kill several birds (pigeons, or perhaps vultures; nothing anyone would want

to keep alive) with one stone:
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Proposition IV.B.5. Suppose that Rred is integral, and let M be a free R-module of rank

r, and N an R-module generated by nl, . . . n, with 1 non-zero relations of the form fni = 0

for some f E R. Then if 0 is a surjective map from M to N, ker 0 is an NR-free R-module

of rank r - s + 1. If further I = O, then ker 0 is actually free.

Proof. First, we can suppose that f is not a unit, as if it were N would just be a free module

of rank s - , and we could simply use nl+l,... ns as generators. Our first claim is that

if we lift 0 from N to N := R[nl,... n,], the map will remain surjective. Let be some

such lift, we show that N/ im C fiN/ im for all j, once again by induction on j, and

once again with the j = 0 case being trivial. Suppose it is true for j - 1; given n E N,

by hypothesis, there is some m E M such that n - m = f-ln' for some n' E N. But

since 0 is surjective onto N, and the kernel of N - N is contained in (f), there is some

m' C M with n' - Om' E (f)N. Substituting back in, we find n - (m + fJ-lm') E fN,

as desired. Next, the Krull Intersection Theorem (see [13, Cor. 5.4]) implies that for some

f' E (f), (1 - f')(nj(fi)) = O. Now, by the hypothesis that Rred is integral, either 1 - f'

is nilpotent, or nj(fJ) = 0. However, if 1 - f' were nilpotent, f' would have to be a unit,

which is not possible, since f was assumed not to be a unit. It follows that nj(fi) = 0, and

0 is surjective.

Next, since it is a surjective map between free modules, the kernel of q must be free,

of rank r - s (for instance, because free modules are projective, and hence always admit a

splitting map back, expressing the kernel as a summand of a free module; see, for instance,

[13, pp. 621-622]). Note that this observation immediately proves the last assertion of the

theorem. Now, let ker be generated by Fnl,... irs. Next, let i,.. . ni be any elements

mapping to fyl E N under . We assert that {fiii, fij} is a generating set making ker 0 into

an NR-free module. First, we show that it generates ker q: clearly, ker k is precisely the

subset of M mapping under to elements of the form s=1l faiyi E N. But subtracting off

Ei aiFin from such an element will place it in the kernel of N, and the latter is generated by

the fii, by construction. Finally, we need to show that any relation Ei aihfi + Ei aiii = 0

must have all ai, ai nilpotent. But looking at the image of this identity under , we see

that Z, iafyi = 0, which, since N is free, implies aif = 0 for all i, giving in particular

(again, using that Rred is integral), that all the ai are nilpotent. But multiplying through

the original identity by f now gives E fafaii = 0, which, since the fmi were free, gives

fai = 0 for all i, and all ai nilpotent, as desired. Thus, ker 0 is NR-free of rank r - s + I,
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as desired.

Remark IV.B.6. This is where we see the importance of working with the R-modules them-

selves, rather than the induced Rred-modules. If f is a nonzero nilpotent, we will actually

obtain different rank modules by first taking the kernel and then restricting to Rred as we

would by restricting to Rred and then taking the kernel. Even though (under very weak

hypotheses) an R module is NR-free of a given rank if and only if its reduced version is

free of the same rank over Rred, the R-module can carry a lot more information than its

reduction does.

To apply this proposition, we define:

Definition IV.B.7. An effective NR-Cartier divisor on a Noetherian, separated, irre-

ducible scheme X is a global section of the monoid sheaf (x {0)/8 .

Remark IV.B.8. This terminology is slightly misleading, in that it suggests that there should

be a notion of a non-effective NR-Cartier divisor, which I have no intention of introducing.

However, NR-effective Cartier divisor sound like it is in particular a Cartier divisor, which is

more misleading. In any case, as with the rest of the section, if R is integral, this definition

corresponds precisely to the usual notion, even though in the integral case one can avoid

talking about monoids via use of X*.

Lemma IV.B.9. Associated to any non-trivial effective NR-Cartier divisor f on X is a

canonical closed immersion Xf '- X. Given any closed subscheme of X, there is at most

one effective NR-Cartier divisor which induces it.

Proof. It is clear that f is precisely equivalent to a nonzero, (and by the nontriviality

hypothesis) non-unit principal ideal sheaf on X, so by the definition of a closed subscheme,

it is exactly equivalent to a closed subscheme cut out locally by a single element of Ax. 

Remark IV.B.10. Unlike the case with standard effective Cartier divisors, Xf need not

have codimension 1 in X for an effective NR-Cartier divisor. However, even when it has

codimension 0, it behaves in certain ways as if it had codimension 1, as the following theorem

demonstrates:

Theorem IV.B.11. Let Xf -4 X be the closed immersion associated to a nontrivial ef-

fective NR-Cartier divisor f on X, a locally free Ox-module of rank r on X, and a

coherent Ax-module on X. Let f : -4 C be surjective. Then:
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(i) if ' is locally free of rank s on X, ker f is locally free of rank r - s, and

(ii) if W is the pushforward of a locally free sheaf of rank s on Xf, ker f is locally NR-free

on X of rank r.

Proof. (i) follows immediately from Proposition IV.B.5, by restricting to a cover on which

9 and C are free, and noting that we are in the case 1 = 0. (ii) also follows from the same

proposition, as if our cover is also fine enough give trivializing elements for f, we find that f

matches up with the f of the theorem, and because W is a pushforward from Xf, it satisfies

the hypotheses of the proposition with 1 = s, giving us the desired conclusion. [O

We will immediately apply this to prove a theorem to the effect that in certain cases,

when one wants to replace an unstable vector bundle in a family with a semistable one, it

suffices to look simply at the first order deformation induced by the family. We begin with:

Lemma IV.B.12. Let f : S - T be a closed immersion of schemes, 9 a locally free sheaf

on T, and C a locally free sheaf on S. Given 4 : 9 - f0, then 4' arises via adjointness

from f* : f* -+ f*f* = C, and if f*4, is surjective, then so is '. In this case, there is

a natural surjection f* ker --+ ker f*,O.

Proof. First, f*f,* is 9 because f is a closed immersion. Next, the facts that 4' is surjective,

and arises from f *0 via adjointness are easily seen from the adjointness construction, using

the canonical map - f*f*s. We thus get a short exact sequence

0 -+ ker '+ - f -+ O

which, since pullbacks are right exact, gives us the diagram

f* ker f* f 0o

ker f *4

Here, the dotted arrow exists because, by exactness, f* ker 4 maps into ker f *. In fact,

exactness implies that this is surjective, yielding the desired result. []
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Theorem IV.B.13. Let f: S - T be a closed immersion, with T reduced, and such that

if i: Sred " S is the standard inclusion, then both i and f o i are effective NR-Cartier

divisors (for instance, let T be C times some other curve, and S = C x Spec k[e]/(e2 )). Let

J be a locally free sheaf of rank r on T, and C a locally free sheaf of rank s on Sred, and

: - f,i, arising via adjointness from a surjective map f*9 - i, which must then

be f*,. Then i*f* ker b = i* ker f*4, and both are locally free of rank r on Sred.

Proof. The previous lemma gives us that / is surjective, and a surjection f* ker - ker f*/.

Since pullback is right exact, this gives us i* f * ker -* i* ker f* , and by Theorem IV.B.11

(i), it suffices to show these are both locally free of rank r, since then we would have the

kernel of this surjection also being locally free, of rank 0, and hence just the 0 sheaf. On

the other hand, by (ii) of the same theorem, ker 4 is is locally NR-free on T of rank r,

hence locally free of rank r, because T is reduced. Thus, i*f* ker 4 must also be locally

free of rank r. But likewise, since f *# must also be locally free of rank r, using the same

theorem, ker f*,O is locally NR-free of rank r on S, which as we saw initially is equivalent

to i* ker f *4 being locally free of rank r on Sred, as desired. L
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Chapter V

Logarithmic Connections With

Vanishing p-Curvature

We develop in this chapter a basic theory of connections with simple poles and vanishing

p-curvature on smooth curves, and apply it to the case of rank 2 vector bundles on 1
f to

classify such connections completely in terms of rational functions on JIl with prescribed

ramification. We state as our main theorem the case which will be of most use to us, and

which is simplest to state. For the most general versions, see Proposition V.4.5 together

with Theorem V.5.7. We also obtain a similar classification for projective connections in

Section V.6.

Theorem V.0.1. Fix an integer n > 0, let = 0 or 1 according to the parity of n, d =

2+ep _ 1, choose P1,... P general points on IPk with k an algebraically closed field of2 '

characteristic p > 2. Also fix g to be the vector bundle &(ep - d) ® B(d). Then transport-

equivalence classes of connections on g with trivial determinant, vanishing p-curvature,

simple poles at the Pi, and not inducing a connection on #(d) C g are in natural one to

one correspondence with objects ({ci}i, f), where the aci are integers between 1 and -1, and

f is a separable rational function on IP1 of degree nP-1 + 1-E ai, ramified to order at least

p - 2i at each Pi, and considered modulo automorphism of the image space. Furthermore,

this classification holds even for first-order infinitesmal deformations.

We conclude that the classes of such connections have no non-trivial deformations, and

are counted by the recursive formula of Theorem I.0.4.

We use throughout the terminological conventions for vector bundles and connections
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given in Section III.1. Our methodology will be to work primarily over an algebraically

closed field, with periodic examinations of the generalization to first-order infinitesmal de-

formations. As such, throughout the chapter we will follow the conventions of Notation

IV.3.1. We also say that V is a rational connection on a smooth scheme if it is a con-

nection on a dense open subset Uv, but may have poles away from Uv; we say that V is

logarithmic if all such poles are simple.

Warning V.0.2. We will refer to connections with trivial determinant on vector bundles

g on IP1 in the case that pi deg g, even if deg g 0 0, since in this case we have a unique

canonical connection on det g, and can require that the determinant connection agree with

it.

We begin in Section V.1 with some calculations holding on any smooth curve, the pri-

mary purpose of which is to show that a connection is logarithmic with vanishing p-curvature

if and only if everywhere formally locally it decomposes as a direct sum of connections on

line bundles. The purpose of Section V.2 is to re-establish the results of the previous section

for certain first-order infinetesmal deformations. Section V.3 develops simpler criteria in

the special case of vector bundles of rank 2, Section V.4 specializes further to the case of

vector bundles on ]P1, and Section V.5 completes the classification in this situation in terms

of self-maps of IP1 with prescribed ramification. Section V.6 demonstrates how the same

theory may be applied to classify projective connections, and finally, Section V.7 discusses

the convoluted chronology intertwining the results of this chapter, of Chapter I, and of

Mochizuki's closely-related work.

The only similar work in the literature appears, unsurprisingly, to be that of Mochizuki,

who proves a special case of the main results of this chapter, in the situation of three poles

on PI1; in fact, he proves this result in the more general context of n-connections over an

arbitrary base, so our result (in the case of three points) is simply the n = 0 case of [42,

Thm. IV.2.3, p. 211].

V.1 Formal Local Calculations

In this section, we make some basic observations about kernels of connections with vanishing

p-curvature and simple poles on smooth curves, and apply formal local analysis to show

that, formally locally, they may be split as a direct sum of connections on line bundles;
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equivalently, they may be diagonalized under transport.

We begin with:

Proposition V.1.1. Let C be a smooth curve over an algebraically closed field k, and g

a vector bundle of rank r on C. Then if we consider the operations of taking kernels of

connections and of extending canonical connections of Frobenius pullbacks, we deduce:

(i) There is a one-to-one correspondence between rational connections on g with vanish-

ing p-curvature on one side, and pairs (, 99) of vector bundles 9 of rank r on C(P)

together with injective maps p : F*9 " G, subject to the restriction that 9(9) must

generate the full kernel of the connection on g obtained by extending Vcan from F*S

to g via p, and taken modulo automorphisms of S.

(ii) Under this equivalence, the poles of a connection are precisely the points where 99 fails

to be surjective.

(iii) Under this equivalence, transport of connections on & corresponds to changing by

the corresponding automorphism of 6.

Proof. Let V be a rational connection on C. Then we find that gV is naturally a tYc(p)-sub-

module of Fg, and hence must be coherent and torsion-free, and therefore a vector bundle,

from which we conclude that F*gv is also a vector bundle. Indeed, F*gv is naturally a

subsheaf of A, and can be understood concretely as the subsheaf spanned by the kernel of

V inside . We thus have a sequence 0 - F* v - 6 -G -+ 0 for some on C, and

the inclusion map giving us the 99 from statement (i). We observe that F*gv has rank r

if and only if C9 is torsion if and only if V has vanishing p-curvature, and that in this case

C is actually supported at the poles of V: if V has vanishing p-curvature, the inclusion

F*" v7- g is an isomorphism wherever V is regular (Theorem III.1.4), so Cg is supported

at the poles of V, and conversely, if we restrict to the open set away from the support

of C, we find that the inclusion F*gv c- G is an isomorphism and that V is therefore

the canonical connection associated to a pullback under Frobenius, and thus has vanishing

p-curvature on this open set, which gives vanishing p-curvature everywhere. This yields one

direction of (i), as well as (ii).

On the other hand, given G on C and a vector bundle 9 of rank r on C(P), together

with an inclusion cp: F*? L- g, the quotient is torsion, so VCan on F*9 uniquely extends
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to a rational connection V on X, such that GV D S. Then by the above, V has vanishing

p-curvature, and if we add the hypothesis that G = A, we find that V is determined

uniquely by 9 (as an abstract bundle on C(P), not as a subsheaf of A) and Ap. Furthermore,

it is clear from above that such a V determines 9 uniquely, and o up to automorphisms

of # (note: not up to automorphisms of F*Y, which will change V), completing the proof

of (i). Statement (iii) is now clear, completing the proof. [1

We fix, for the remainder of the chapter, the following notation:

Notation V.1.2. denotes a vector bundle of rank r on C, and 9 a vector bundle of the

same rank on C(P). p is an injection F*9 -+ , and V is a connection on A.

Definition V.1.3. We define a pre-kernel map to be a pair (, Ap) with o locally free

of rank r on C(P), and : F*9 -* G an injection. If (S, Ap) satisfies the further condition

of Proposition V.1.1 (i) to correspond to a connection, we call it a kernel map. By abuse

of terminology, we will refer to modification of y' by F* Aut(g) and Aut(&) as transport.

The previous proposition sets up a correspondence between kernel map classes and

certain connections; the aim of the rest of the chapter will be to explore this correspondence

more thoroughly, and ultimately use it to classify the relevant connections V in the special

case of C = IPl, and V having only simple poles.

We now carry out a straightforward calculation:

Proposition V.1.4. Given # on C(P), and g on C, with an inclusion T of F*9 into G,

let si and ti be bases for 9 and g on some open set U of C, and suppose the inclusion

Wp is given on U by a matrix S = (aij). Let (bij) be the matrix (regular on U) det(S)S - 1.

Then if V is the corresponding rational connection with vanishing p-curvature on g, it has

matrix T = (cij), with

cij = det(S) ( aik(dbk) - ijddet(S))

where 5ij is the Kronecker delta function. Equivalently, T = S(dS-1). Further, Tr(T) =

d det(S)
det(S)

Proof. We have, by definition of S, that sj = Ei aijti, and similarly that tj = -i si

Now, the si are in the kernel of V by construction, and to find the connection matrix T
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we simply write V(tj) in terms of the t for all j. We have: V(tj) = k d (b Sk=

k d det(S)) i = ki akd j t, giving us that T = S(dS'). Continu, giving
by expanding the differential, we get V(tjS)= k, i i (d det(S))aikbkj 

a kai ) t det de(S)tj, giving the desired formula for the cij.

For the trace formula, recall that the bij are constructed as the determinant of the matrix

obtained from (aij) by removing the ith column and jth row, with sign alternating on i and

j, from which one can obtain the identities Ek aikbki = det(S) and Ei,k(daik)bki = ddet(S).

Now, we have from our formula for the cij that TrT = detl(S) (i Zk aik(dbki)) - rddet(S),

where r is the rank of G. But if for each i we write ddet(S) = d(Ek aikbki) = Zk aik(dbki)+

Ek(daik)bki and substitute in, we get TrT = - ( k(daik)bki) = -et(S)dei·~TS(C z Ck~daik~b'"i) = det(S) , as

desired. E]

We next move on to formal local analysis of the situation at points where the determinant

is not invertible (equivalently, points where the connection has poles).

Proposition V.1.5. Formally locally (that is, over k[[t]]), any r x r matrix of nonzero

determinant:

(i) may be put via left change of basis into the following form, which is unique, and we

will call canonical row-reduced form:

tel f12 ... flr

0 te2 f23

f(r-1)r

0 '.. ter

where each fij is a polynomial in t of degree less than ej;

(ii) may, if one further allows right pth power change of basis, be put into canonical row-

reduced form, with the further requirement that the fij do not have any terms with

exponent congruent to ei modulo p.

Proof. For (i), left multiplication by invertible matrices allows us to perform standard row

reduction, applied over k[[t]]. Namely, we go from left to right, choosing the element with

the smallest order in the first column, putting it in the first row if necessary by adding its
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row to the first, and subtracting off multiples of the first row from the rest to set the rest

of the entries in the first column to 0, and finally multiplying by a diagonal matrix of all

's except the first row to make the first entry some power of t. The same process is then

repeated in the next column, except leaving the first row in place, and so forth, leaving an

upper triangular matrix with powers of t along the diagonal, and arbitrary entries above

the diagonal. We then go back once more from left to right, subtracting off appropriate

multiples of each diagonal entry from each coefficient above it, making those coefficients

into polynomials in t of degree strictly less than the power of t on the diagonal in that

column.

We now show that this form is unique. That is, given M and M' in canonical row-

reduced form, and an invertible N with M' = NM, we will show that N = (nij) is the

identity matrix. This is probably standard, but the proof is easy enough, so we include

it. Since M and M' are generically invertible (this hypothesis is probably unnecessary, but

will always hold for us, and simplifies the argument), looking at M' = NM over k((t))

immediately implies that N is upper triangular, since N = M'M - 1. Then, the fact that N

is invertible implies that all its diagonal elements are units in k[[t]], and the fact that both

M and M' have powers of t on the diagonal implies that N in fact has 's on the diagonal.

We get immediately that all ei = e'. Now, fixing i, we show that the i, jth coefficient of N

for j > i is O by induction on j. We start with j = i+ 1, and consider the i, jth coefficient of

M', which is fj, a polynomial in t of degree less than e' = ej. It is given as f j = fi +nijtej,

since nii = 1, and all other terms are 0 because both N and M are upper triangular. But

f!j cannot have any te j term, so we get nij. The induction step now proceeds via exactly

the same argument, since we will have ni(i+1),. ni(j_l) all 0 by hypothesis. Thus, N is the

identity, and M and M' were in fact the same, as desired.

For (ii), we remove the terms congruent to ei mod p from each fij by going back from

right to left, using pth-power column reduction via righthand multiplication by pth power

matrices. A priori, it may seem that the degrees of the fij might be raised under this

process, but note that any fij in the jth column will only require powers of ei less than its

degree, which is in turn bounded by ej, to be removed. Further, the fki above the tei all

have degree less than ei, so they will only be modifying the fkj in degrees less than fij is

being modified. L]
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Remark V.1.6. Note that the hypothesis that the determinant be nonzero was not actually

necessary to carry out this process, but merely insures that the powers of t actually end up

on the diagonal, and not somewhere above them.

Remark V.1.7. Note the form of (ii) of the preceding proposition, tempting though it might

be to assume otherwise, is not in fact unique. In particular, conjugation by permutation

matrices is always allowed, and could be used to, for instance, rearrange the coefficients of

a diagonal matrix (something which could not be accomplished using row reduction alone).

Proposition V.1.8. For a pre-kernel map p given on some open subset by S = (aij), the

following are equivalent:

a) co corresponds to a logarithmic connection with vanishing p-curvature;

b) formally locally everywhere (equivalently, everywhere where the map fails to be in-

vertible), S is transport-diagonalizable, with all diagonal coefficients having order of

vanishing strictly less than p;

c) formally locally everywhere (equivalently, everywhere where the map fails to be invert-

ible), when S is placed in the form of the preceding proposition, all fij = 0 and all ei

are strictly less than p.

Proof. First note that the condition that To correspond to a V with vanishing p-curvature

and at most simple poles is clearly transport-invariant. We do the difficult direction first;

namely, showing that a) implies c). For notational convenience, we prove this inductively

on the rank r. The base case is r = 1, where the connection corresponding to all is simply

all-all, which always has at most simple poles. The condition that el < p comes from the
fact that if el p, and we have S = [tel] ,T = [-et-ldt], then tel-p will also be a

horizontal section formally locally, but is not in the image of o (here we are using that

in characteristic p, formation of the kernel of a connection commutes with completion, see

Proposition A.29).

For the induction step, we first transport S formally locally into the form described in

part (ii) of the previous proposition; this is in particular upper triangular, and noting that

once S is upper triangular T is also upper triangular, we can (formally locally) restrict to

the first r - 1 rows and columns of T to get a connection with vanishing p-curvature and
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simple poles in rank one less, which is clearly already in the form of the previous proposition.

Thus, by the induction hypothesis our entire r x r matrix will look like:

tel 0 ... 0 fl

* *. 0 te 2 -2
o " ' tter-1 fr
O ...... O t e r

We wish to show that the fi are all 0, and er < p. Now, the associated connection

matrix will be:

-elt-ldt 0 ... 0 (elfi - f{t)t-er-ldt

.-er_2t-ldt 0 (er-2fr-2 - f_2t)t-er-ldt

-er-lt-ldt (er-fr-l - f_lt)t-er-ldt
O ... ... 0 -ert-ldt

This will have simple poles only if eifi - fi't vanishes to order at least e; since fi has

degree less than er by hypothesis, this difference must be 0. But it is clear that terms will

cancel in a given degree if and only if the degree is congruent to ei mod p, and also by

hypothesis each fi has no terms in degree congruent to ei mod p. We conclude that each

fi = 0, as desired. Lastly, the condition that er < p follows from the necessity of the image

of cp to contain the kernel of V just as it did in the rank 1 base case.

Now, c) implies b) is trivial, so we just need to show that b) implies a). If S is formally

locally diagonalizable, as long as the ei are less than p the diagonalized map corresponds

to a connection with simple poles and vanishing p-curvature, and since this is a transport-

invariant property, S must have as well. O

Because under these equivalent conditions, all ei < p, we note that it is actually only

necessary to use constant column operations in our formal local transport-diagonalization

procedure, so we conclude:

Corollary V.1.9. A pre-kernel map So given on some open subset by S = (aij) corresponds

to a logarithmic connection with vanishing p-curvature if and only if at each point where po
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fails to be surjective, for t a local coordinate at that point, there exist constants cij for all

0 < i < j < r and a formal local invertible M such that MSU(cij) is diagonal with tei as

its diagonal coefficients, and all ei < p, where U(cij) is the upper triangular matrix having

1 's on the diagonal and given by the cij above the diagonal.

We may also phrase this last result purely in terms of connections:

Corollary V.1.10. A rational connection (having at least one pole) is logarithmic with

vanishing p-curvature if and only if, formally locally at every pole, the connection may be

transported so as to have diagonal matrix with each diagonal entry of the form eit-ldt, with

ei E Fp.

Proof. The only if direction follows immediately from our prior work: by Corollary V.1.9,

the kernel map is formally locally diagonalizable with diagonal entries tei, and by Proposi-

tion V.1.4 we see that this gives a connection of the desired form. Conversely, one computes

directly that given a diagonal connection as described, the kernel mapping may be given

explicitly by a diagonal matrix with tei on the diagonals (where 0 < ei < p), and is in

particular of full rank, implying that the p-curvature of the connection vanishes. E]

From here on we assume that we are in:

Situation V.1.11. Our connection V is logarithmic, with vanishing p-curvature. At every

pole of V, we suppose that the ei of Corollary V.1.10 are all non-zero.

The non-vanishing conditions on the ei will come into play only when we attempt to

study deformations of connections.

As another corollary, we can put together the preceding propositions to get the following

relationship between det(S), Tr(T), the ei, and the eigenvalues of the residue matrix rest T:

Corollary V.1.12. With the notation of Proposition V.1.4, and in Situation V.1.11, rest T

is diagonalizable (in the usual sense), with eigenvalues given as the ei mod p. The deter-

minant satisfies ordt det(S) = Ei ei - Tr(rest T) (mod p), but moreover, if we have the

ei only in terms of their reductions ei mod p, we also have the formula ei =< ei >, and

hence ordt det(S) = Ei < ei >, where < a > for any a C Z/pZ denotes the unique integer

representative for a between 0 and p - 1. Finally, transport of T along an automorphism

conjugates rest T by the same automorphism.
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Remark V.1.13. The determinant of a connection (equivalently, the trace of the correspond-

ing connection matrix), is well-determined under transport equivalence only globally on a

proper curve, because transporting the connection under an automorphism corresponds

to transporting the determinant connection on the determinant line bundle under the in-

duced automorphism; globally, the only automorphisms of a line bundle are the scalars,

which leave the determinant connection fixed, but locally this need not be the case. How-

ever, an automorphism given locally by a matrix S will act on a connection matrix T by

T -- S-'TS + S-ldS; the trace of T therefore changed by the trace of S-ldS. In particu-

lar, while the trace of T may change, the trace of the residue of T is preserved, since S is

presumed to be invertible, and hence S- 1dS is regular and has no residue.

Remark V.1.14. We cannot expect such nice behavior when we weaken the hypothesis that

V have only simple poles. First of all, there really are cases where this fails to hold, as soon

as the rank is higher than one. In this situation, the relationship between the order of the

determinant and the order of the poles is much less clear-cut. Moreover, it is easy to check

that for rank higher than one, at a point with poles of order greater than one, the residue

itself is no longer well-defined under transport.

V.2 Generalization to k[E]

The aim of this section is to generalize the results of the previous section to the case where

we have changed base to Speck[c]. It turns out that the most difficult part of this is to

show that the kernel of an appropriate deformation of a connection as in Situation V.1.11

will give a deformation of the kernel of the original connection. We proceed in several steps.

We first pin down our situation and notation:

Situation V.2.1. We suppose that C is obtained from a smooth proper curve Co over k

via change of base to Spec k[e], and similarly for a vector bundle g on C from Go on Co. V

is a connection on g, and V0 is the induced connection on 0.

Notation V.2.2. If D is the divisor of poles of Vo, so that Vo takes values in G0 0 Qo(D),

then we denote by J 9v0 the c0 -submodule of Go 0 Qo (D) generated by the image of Vo.

Our first goal will be to show that in our situation, with very minor additional hypothe-

ses, 8 v is in fact a deformation of G0Vo. Specifically:
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Proposition V.2.3. Suppose V is a logarithmic connection with vanishing p-curvature,

with V0o having poles wherever V does, and such that all the ei of Corollary V.1.10 applied

to Vo are non-zero. Then:

(i) Gv is locally free on C(P) of rank equal to rk g;

(ii) the natural map GV/e6gv - (o)VO is an isomorphism.

Proof. We first note that to prove (i), it will suffice to show that gV/egv is torsion-free

over Co: by Proposition A.16, it is enough see that GV/eGv and ev are both locally free

over Co, of rank equal to the rank of . Now, on the open subset of C on which V is

regular, by Theorem 111.1.4 we have that gv is in fact locally free of the correct rank, and

so then are GV/eGv and eGV . The required rank condition will thus follow automatically

if we can show that both these sheaves are locally free on all of Co, which is a smooth curve;

this reduces the problem to showing that both these sheaves are torsion-free. Finally, eG"v

is a subsheaf of the locally free sheaf e and hence torsion-free, so we obtain the desired

reduction of (i) to showing that G'v/eGv is torsion-free over Co.

We now reduce both (i) and (ii) down to a certain divisibility lemma. Both statements

are local on C, so we make our analysis entirely on stalks, letting P be an arbitrary point

of C. Locally, g is free, so we can pick a splitting map /eG -* , and we can then write

V = Vo + eV1, and it makes sense to view both Vo and V1 as taking values in /e&G (since

this is naturally isomorphic to es). The basic observation is that V1 must take values in

vO: indeed, it may have simple poles only where Vo does, so it takes values in Go 0 Qc (D),

and by Corollary V.1.10, we see by the hypothesis that all the ei are non-zero that in fact

o is all of Go 0 QC (D)lv.

We first consider (i): since we are checking that gv/egv has no torsion as a module over

'c(p), we need only consider multiplication by f E Yc,p such that df = O. We must show

that given s C gpv with fs E eGv , s must itself be in Gv. If we write fs = es', with s' E GpV,

and s' = s + es', then we see that f sl E g,p, and it will suffice to show we can choose s'

so that f Is as well, since then we can divide through by f to write s as e times an element

of GpV. Since the value of s' is only relevant modulo e, we may replace s by any element

which keeps s' in the kernel of V. Now, we have 0 = V(s') = Vo(s') + e(V1 (s') + Vo(s2)),

and since df = 0, f IV(sl), so since both V1 and V0 take values in VO, f must likewise

divide Vo(s2) in ro®, and the divisibility lemma which follows completes the proof, taking
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s2 as our s in the lemma, and obtaining our new s as the lemma's fs'.

Next, we wish to reduce (ii) down to the same lemma. Having already completed (i),

we may assume that GV is locally free, with rank equal to rk 6. It follows that GV/eGv is

locally free of the same rank on Co, as is o0v ° by Proposition V.1.1. It therefore suffices to

show that the natural map is a surjection in order to conclude that it is an isomorphism.

Let so be a section of 0vp; we need only lift it to a section s E Gp. Moreover, we know

that we can do so generically, since we have the Cartier isomorphism away from the poles

of V by Theorem III.1.4. Therefore, there exists some f such that fso lifts to a section s

of Gpv; as before, we are working over Oc(p), so as an element of fc,P, df = 0. But now we

find ourselves in the same situation as before: if s = s + es2, we have that flsl, we want

f to divide s2, and we may modify s2 arbitrarily as long as s remains in the kernel of V.

Thus by the same argument as for (i), we reduce to our divisibility lemma. El

Lemma V.2.4. Given f E c, for some P E C, with df = 0, and s in the stalk 0o,p with

flVo(s) in the stalk Vo,P, then there exists s' E G,P with Vo(fs') = Vo(s).

Proof. Under our hypotheses on V0o, which allow us to invoke Corollary V.1.10, the state-

ment is essentially trivial. We first prove the result formally locally. In this setting, we

claim it is enough to handle the case f = tP: in general, write f = (tP)iu for some i > 0

and some u; certainly, if we have handled the case of tP, we can inductively "divide out"

by tP i times, and then since u is a unit, we can simply set s' = u-is. But for f = tp, we

simply carry out a direct computation; the diagonalizability obtained from Corollary V.1.10

expresses the connection formally locally as a direct sum of connections on line bundles, so

it suffices to work with rank one, and a connection of the form Vo(s) = ds + et-ldt, for

some e E Fp; our vO0 in this context is simply everything of the form i>-1 aiti dt. If we

write s = Ei>O aiti , we get Vo(s) = Ei>0 (i + e)aiti-ldt; this is divisible by t in JV if

and only if (i + e)ai = 0 for all i < p. Now, for any i < p with i + e = 0, we can replace

ai with 0 without changing Vo(s), and for all other i, we must have ai = 0 to start with.

Hence, we see that we can modify s in degree p - e, if necessary, so that all ai = 0 for i < p,

and we can then obtain our s' as t-P times our modified s.

This gives the formal local result, but it is now easy enough to conclude the desired

Zariski-local statement. We have s - fs' in the kernel of V, and because in characteristic p

formation of the kernel of a connection commutes with completion (see Proposition A.29),
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we can write s - fs' = Ei fisi where si E G7Vp and fi E k[[t]]. But by definition, we can

approximate the fi to arbitrary powers of t by elements of A9,p; if we let f' approximate

the fi to order at least ordt f, we find that f must divide s - Ei fisi, so we can set our

desired Zariski-local section to be (s - Ei fsi). L

We now know the correct conditions for connections over k[e]. Specifically, after this

section, whenever we are over k[e], we assume we have:

Situation V.2.5. Our connection V is logarithmic, with vanishing p-curvature. If Vo is

the connection obtained modulo e, then every pole of V must also be a pole of V0, and we

suppose that the ei of Corollary V.1.10 as applied to Vo are all non-zero.

Finally, we are ready to conclude:

Corollary V.2.6. Corollary V.1.9 holds even over k[e]; more precisely, a pre-kernel map

p as in Proposition V.1.1, given by S = (aij) on some open subset which contains every

point where 9 fails to be surjective, corresponds to a connection satisfying the conditions

of Situation V.2.5 if and only if at each point where 9o fails to be surjective, for t a local

coordinate at that point, there exist constants cij for all 0 < i < j < r and a formal local

invertible M such that MSU(cij) is diagonal with tei as its diagonal coefficients, and all

ei < p, where U(cij) is the upper triangular matrix having 's on the diagonal and given by

the cij above the diagonal.

Proof. We first note that given an S, the calculation of Proposition V.1.4 is still valid

because S and hence det S is still generically invertible. Hence, as before it is clear that

if the desired M, U(cij) exist, then S corresponds to a connection of the desired type.

Conversely, given such a connection, since S describes the kernel of our connection, by the

previous proposition, we find that we have an S which agrees modulo e with the So obtained

from taking the connection modulo e; we can then apply Corollary V.1.9 to conclude that

formally locally on C there is an invertible Mo and a Uo(cij), both over k, such that

S' = MoSU(cij) is of the desired form modulo e. Thus, we can write

tel + efll . . Eflr

efrl ... ter + frr
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The following calculations are then easy:

det(S') = ti e + tE i e E t-eifii
i

t -e l _ et-2elfl1 ..f
S- - 1 = ...

-et--el-e frl ...

dS'-l = (D(-eit- ei-l) + (t-ej-ei-l((ej + ei)fij - tfj))ij)dt

(with D(ai) denoting the diagonal matrix with coefficients ai, and (aij)ij denoting the

matrix with i, jth coefficient given by aij) and finally, T' = S'(dS'-') is given by

tffi) ... Et-e,-l(elfl, - tf'r)
dt

... -ert - 1 + t-er-l (erfrr - tfrr)

Thus, in order to have simple poles, it is necessary and sufficient that ordt(eifij - tf !j) >

ej for all i, j. But this is precisely the condition required to be able to remove all the fij

via row and (constant) column operations, since the inequality above implies that all terms

of fij in degree e must vanish for e < ej, unless e = ei. Constant column operation can

remove the terms of degree ei from each fij, and then we have that ordt fij > ej, so row

operations can remove the fij, as desired. O

V.3 Applications to Rank 2

As our case of primary interest, we will develop the theory further in the case of vector

bundles of rank 2 and connections V whose residue at all poles has trace zero. Note that

in this case, at any pole the ei of Corollary V.1.10 satisfy el = -e2, and in particular are

automatically both non-zero as required in Situation V.1.11. We will work simultaneously

over k[E], assuming in this case the conditions of Situation V.2.5. In this scenario, we define:

Definition V.3.1. Given f E A[[t]], we say that ordt f = e if and only if the first non-zero

coefficient of f is te. If further this first non-zero coefficient is a unit in A, we say that f

vanishes uniformly to order e at t = 0.
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Now, the kernel map o associated to any connection V is given locally by the matrix

S= [11 12 The corresponding connection V is then given locally by the matrix T,
921 922

which Proposition V.1.4 allows us to write explicitly as

1 (dg1)2)g9222 (dg)g - (dg(dg2)911
det S (dg22) 9 21 - (dg921 )92 2 (d2 1 )912 - (dg22) 1 1

In this case, Corollary V.1.12 tells us that the simple poles of the connection will occur at

precisely the places where det S vanishes, and that this will always occur to order precisely

p. Over k[e], Corollary V.2.6 implies that the determinant will vanish uniformly to order

p. As before, choose a point where this is the case, and let t be a local coordinate at that

point. Denote by eij the order at t of 9ij. We will develop more precisely the criterion for

S to correspond to T (that is, for the image of S to contain the kernel of T), and for T to

have simple poles. We find:

Proposition V.3.3. Over k (respectively, k[e]), assuming that det S vanishes (uniformly)

to order p at t = 0, for S to correspond to a connection T with a simple pole at t = 0 and

vanishing p-curvature, it is necessary and sufficient that there exists a ct such that after S

is replaced by S' = S t], we have:

min{ordt g , ordt 921} + min{ordt 912, ordt 922} > p.

Over k, this may be stated equivalently as (after S is replaced by S'), the order of vanishing

at t = 0 is greater than or equal to p for all of 911922, 921912, 911912, 921922-

Proof. First, if S corresponds to a connection with a simple pole at t = 0, by Corollary

V.1.9 (respectively, Corollary V.2.6) we have a c12 such that MS [ C12 is diagonal with

powers of t on the diagonal, and M is a formal local invertible matrix. Letting ct = -c1 2, we

replace S by S', and are simply saying that MS is diagonal with powers of t on the diagonal,

say te and tp- e. Then if M -1 = (mij), we have that S is given by 1 t e 2t- e , which
[m2 1te m 2 2 tP-e

trivially gives the desired conditions on the gij.

Conversely, suppose that the required ct exists, and we have replaced S by S'. Let

e = min{ordt 9gii, ordt g21}. By hypothesis, min{ordt 912,ordt 922} p - e. Thus, we can
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write S as (mij)D(te,tP- e ) for some mij regular at t = 0, and once again the condition

that S has determinant vanishing uniformly to order p at t = 0 implies that det(mij) is

a unit, and hence that (mij) is invertible and may be moved to the other side, letting us

apply Corollary V.1.9 (respectively, Corollary V.2.6) to conclude that S corresponds to a

connection with a simple pole at t = 0 and vanishing p-curvature, as desired. O

Remark V.3.4. This criterion looks rather asymmetric on the face of it, but note that

locally one may always conjugate by [ 1 to switch the rows and columns, after which

application of the above criterion gives equivalent conditions in terms of subtracting the

right column from the left rather than vice versa. We will refer to this as the mirror

criterion.

Remark V.3.5. Our initial description of ct was that there exist an invertible M such that

MS [ Ct is diagonal, from which it immediately follows that ct is independent of

transport of S via left multiplication. However, if we multiply by some invertible column-

operation matrix N on the right, we will need to determine how to "move" this action over

to the left, which is in general not a simple matter, and can result in substantial changes to

the behavior of the ct. This is a rather ironic situation, since it is the right multiplication

which leaves the corresponding connection unchanged, and the left multiplication which

applies automorphism transport to it. In any case, we will at least be able to characterize

exactly how the ct can change under global right multiplication in most cases on P1.

V.4 Global Computations on IP1

Throughout this section, let g be &Y(ep - d) E #(d) on P1, where e = 0 or 1, and ep < 2d.

We set up the basic situation to be used in this section and the next, and then classify in

Proposition V.4.5 an "easy case" for the connections we wish to study, which will not be

used in the degeneration arguments of Chapter VI, but we include nonetheless for the sake

of completeness. Let t,. . . t be local coordinates at n distinct points on P1; without loss

of generality, write ti = x - Ai, if x is a coordinate for some Al C IP1 containing the relevant

points, and let ci be the ct of Proposition V.3.3 for each ti. If V is a connection on g with

vanishing p-curvature and simple poles at the Ai, F*GV must have degree -p(n - e), so it

must be of the form 8(-mp)O & ((m-n+e)p) for some integer m (without loss of generality,
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say m < n - e - m), and because it must map with full rank to O(ep - d) #(d), we find

that we also must have (m - n + )p < ep - d, -mp < d, which gives us -d < mp < np - d.

We now fix some choice of m, and consider possibilities for (together with the induced

V, which should have simple poles at the Ai, and corresponding matrices S and T on a

particular choice of open subset of IP1 which we identify with A1 ).

We may write Hom(F*GV, G) as

8((m + )p - d) &((n - m)p - d)

L((mp + d) 6((n - - m)p + d)]

The matrix S can therefore be written with coefficients gij being polynomials in x of the

appropriate degrees, with products along both the diagonal and antidiagonal having degree

bounded by np. Moreover, there are n points where the determinant must vanish to order

p, so up to scalar multiplication, the determinant must be ri(x - Ai)P. Global transport

of our kernel map corresponds to left multiplication by matrices of the form

O()(0 ) 8(2d)

tY(-2d) &(0) J

and right multiplication by

F* K( 8(+) &(n -m e - 2m)
L8(2m - n + ) 8(0)

Then we have:

Proposition V.4.1. Although the ci are not invariants of a connection, for the most part

they change predictably under transport of their kernel maps. It is always possible to scale

them simultaneously. It is also possible to translate them simultaneously by (any constant

times) APj for any j between 0 and n - e - 2m. If m < n - - m, the i for which the ci are

uniquely defined do not change under transport, and the above modifications are the only

possible ones for these ci.

Proof. We make use only of the criterion of Corollary V.1.9 (recalling that the ci were by

definition the negatives of the constants arising there). We first show that the asserted

modifications are possible. If we begin with S, and at each Ai an Mi and upper triangular
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U(-ci) with MiSU(-ci) diagonal, we can transport S to simultaneously scale the ci by any

p simply by replacing S by SD(1,p) S [ ], U(-ci) by D(1,l-l)U(-ci)D(1,qt)

U(-pci), and Mi by D(1, -l), whereupon our original diagonal matrix is conjugated by

D(1, iu), and remains unchanged (and in particular, diagonal).

Next, translation of all ci by pAp i is accomplished simply by right multiplication of S

by U(pxPJ): at each Ai, we can write xPi = APJ + (xi - )P, and then if MiSU(-ci)

D(dl, d2) was diagonal, it follows that Mi(SU(ixP))U(-ci - Ap ) = MiSU(-ci)U(li(xi -

)p[dl (xi-)- p
X)P) = . Now, since ord)x d2 < p, we can multiply M on the left by

o d2

U(_-dP( c2 )P) to recover the initial diagonal matrix, so we see that ci + Ap has taken

the role of ci, as desired.

Lastly, when m < n - e - m, we simply need to verify that the above cases are the only

possible forms of transport that can affect the ci: we have seen that only right multiplication

can affect the ci, and when m < n - E - m, the only matrices we can right multiply by

are upper triangular with scalars on the diagonal and inseparable polynomials of degree

< (n - e - 2m)p in the upper right. These are generated by the two cases above together

with D(u, 1), but D(p, 1) = D(,/)D(1,- 1), and the D(1 ,,u) can be commuted to the

left and absorbed into M, so we see that D(u,1) acts the same as D(1, -l1 ) via right

multiplication on S, so we have already dealt with it as well. In particular, all methods of

acting on the ci change them invertibly, so whether or not they are uniquely determined is

tranport-invariant as long as m < n - - m. O

Example V.4.2. When m = n - - m, it is not true that the ci behave well under

transport, and they may even go from uniquely determined to arbitrary and back. For

instance, consider a diagonal matrix vanishing to order e < p/ 2 , p - e along the diagonal

at a chosen point Ai. In this case, ci is well-determined as 0, since if we multiplied by any

U(ci) with ci 4 0, we would have that the product of the entries on the top row of our

matrix only vanished to order 2e < p. But because m = n - e- m, we can right-multiply by

[1 1 to switch the columns of our matrix, at which point ci may be chosen arbitrarily,

because 2p - 2e > p.

Before moving on to the next results, we fix some combinatorial notation which will
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come up as soon as we actually start trying to count classes of connections.

Notation V.4.3. For a given p, n, and s, denote by Np(n, s) the number of mononomials

of degree s in n variables subject to the restriction that each variable occur with positive

exponent strictly less than p. Also denote by NpD(n, s) the number of such monomials in

which exactly D variables appear with degree less than p/2.

We give explicit formulas for these numbers:

Lemma V.4.4. We have:

i=n 1 7 2 \ s - i (p - 1 ) - 1Np(n, s) = Z(_)i'n) (nsi(P-1) 1)
i=O

For any fixed n, this is expressed by the jth of n + 1 polynomials of combined degree n - 1

in s and p, with j being the largest integer ( n + 1) such that j(p - 1) < s - n. We also

have

NPD(n, s) = ( N(p+1)/2(D,j)N(p+1)/2(n-D, -j - (n-D)P 2 )
j=O

Proof. The number of monomials of degree s in n variables, with each variable appearing

with positive exponent, is the same as the number of monomials of degree s-n in n variables

with no restriction, which is given by (n-)' We then use the inclusion-exclusion principle,

subtracting off for each individual variable the number of monomials where that variable

occurs with exponent at least p, adding back for each pair of variables the monomials

where both variables occur with exponent at least p, and so on. Each time we change

the restriction on a given variable from occurring with positive exponent to occurring with

exponent at least p, this corresponds to dropping the degree by p - 1, and the (n) comes

from the number of choices of which variables to bound in this manner. This gives the

desired formula, and the statement that it can be expressed (within the appropriate range)

as a polynomial of combined degree n - 1 in s and p follows trivially, since (S-i(P-1)-l)

T rn-02(s - i(p-1) 1 - j) if s - i(p - 1) - I n - 1, and otherwise.

The asserted formula for NpD(n, s) also follows easily from the definitions, since the

count may be split up over the choice of which D variables have degree less than p/2, and

then one has a product of a monomial with those variables, each with degree less than p/2,

with a monomial of the remaining variables, each with degree greater than p/2. This last

191



condition is equivalent to dropping the degree by - for each variable, giving the desired

formula. D

Proposition V.4.5. We can classify completely all kernel map classes with kernel isomor-

phic to (-m) Y(m - n + e) which can be made via transport to have either g91l or 912

equal to 0. We may describe them as (note that despite the geometry in the description, we

make no claim of any a priori scheme or variety structure):

(1) there are Np(n, mp + d) transport-antidiagonalizable classes.

(2) For each D, there are NpD(n, mp+d) IPD-2-n+2m 's of classes of kernel maps for which

911 may be transported to 0 but which are not transport-antidiagonalizable.

(3) If m n - - m, there are an additional (distinct) Np(n, (n -E - m)p + d) transport-

diagonalizable classes.

(4) Again if m n - e - m, for each D there are an additional (distinct) NpD(n, (n - e -

m)p + d) I D - 1 's of classes of non-transport-diagonalizable kernel maps for which 912

may be transported to 0.

In particular, in the case mp < d, all possible kernel maps are classified by (1) and (2).

Proof. We begin with the case that 91l = 0. We have g21912 = Hl(x - Ai)P, SO fix the

orders at each Ai of 921 (equivalently, 912). There are Np(n, mp + d) choices, by definition.

Clearly, we get only one antidiagonalizable one given the choices of orders. The interesting

part is to classify the non-antidiagonalizable ones. Let D be the number of i such that 921

has order less than p/2 at Ai; this will be the number of ci which are uniquely determined

under our criterion of Proposition V.3.3. Indeed, for such ci, this criterion tells us precisely

that for each Ai, there is a ci such that (x- Ai)P-°ordi 92 1(922 - Cig21). Note that this is

equivalent to saying that 922 - cig92 (mod (x - Ai)rdxi 912). From this perspective, in the

cases that ci can be arbitrary, we may as well always consider them to be 0, since that is

what the righthand side will be. We then observe that if we choose values for the ci, there is

at most one transport-class with those values, since any choice of 922 is determined modulo

(x - i)ordxi 912 for all i, and hence modulo 912. On the other hand, the Chinese Remainder

Theorem says that for any choice of the ci, we can find an appropriate 922. Now, there are

D of the ci which must be specified, and they cannot all be the same, since in that case
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one could arrange by a single column operation for 912 to divide 922, which then means we

are in the transport-antidiagonalizable case. Moreover, by Proposition V.4.1 we can do a

global column operation to set the first n - e - 2m + 1 of the c to 0 (since powers of distinct

numbers are always linearly independent), reducing us to D - n + e + 2m - 1 choices, and we

can also scale all the remaining ci. So, we have a pID-2-n++2m of distinct choices for the ci,

each corresponding to a unique class of kernel maps. When m < n- - m, from Proposition

V.4.1 we know these are the only possibilities, so we are done. On the other hand, when

m = n- - m, we note that the only possibilities for right transport which preserve gll = 0

are the upper triangular ones, which correspond precisely to the translation and scaling we

have already used, so this case works out exactly the same way. This finishes cases (1) and

(2).

The proofs of cases (3) and (4) proceed in exactly the same way, except that for conve-

nience we classify kernel map classes by the ci for the mirror criterion, and we also have to

note that globally in this case we cannot translate the ci at all, since any non-trivial column

operation would make 912 0, so we get a pD-1 rather than a pD-2-n+e+2m. Finally, when

m = n - - m, the kernel map classes in (3) and (4) are the same as the ones in (1) and

(2), since one can globally switch columns, but whenever m < n - e - m, they are distinct,

since if either of the glj is 0, it is clear no transport-equivalent matrix could have the other

0 instead. D

Remark V.4.6. With this proposition, we already see polynomials in p arising in counting

connections with a fixed set of poles on a fixed vector bundle. Ultimately, the numbers

of this proposition will not come into the calculation of the number of connections we are

interested in for Chapter VI, but that number will also be a polynomial in p, strongly

suggesting the existence of a more general underlying phenomenon.

V.5 Maps from IP1 to 1P1

We have fully analyzed classes of kernel maps in which one of gll or 912 may be transported

to 0. To analyze the remaining kernel maps, we shift focus considerably. For motivation,

we initially restrict our attention to the case m = n - - m. We then note that the pair

911,912 can be viewed as defining a map c5 from IP1 to itself, of degree equal to mp - d -

deggcd(gli,g12). For later convenience, we will reverse the standard order and consider
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this as corresponding to the rational function 91. We see that this map is invariant under

left transport, since that only affects the bottom row of S, and because of the hypothesis

that m = n - E - m, right multiplication occurs only by invertible matrices of scalars, which

act precisely as post-composition by fractional linear transformations of IP1 (although note

that this action is by the transpose of the usual matrix represention of Aut(IP1)). Thus,

we get a well-defined map from transport-equivalence classes of our kernel maps to maps

from IP1 to IP1 modulo post-composition by Aut(IP1). We also note that if we consider the

mirror criterion of Proposition V.3.3, the resulting ci will actually be determined as the

inverses of the values of this map at the Ai, and the diagonal terms in the criterion describe

ramification conditions for the map at the Ai. With this as a guiding example, we drop the

hypothesis that m = n - e - m, reinterpret this 'map' (which will no longer be well-defined

on kernel map classes), and proceed to give a precise description of its image in the space of

rational functions, to show that each rational function in this image corresponds to exactly

one class of kernel maps, and to give a precise description of the space of rational functions

arising from each kernel map class.

Warning V.5.1. In order to streamline the proofs in this section, whenever we refer to the

ci or criterion of Proposition V.3.3, we will mean the mirror criterion under which scalar

multiples of the right column are added to the left. Of course, all proofs could be carried

through via the same approach under the non-mirror criterion, but this will simply let us

make certain simplifications to the argument, which would otherwise be more cumbersome.

We begin with some notation and observations: first, since det(S) is supported at the

Ai, the GCD of the coefficients of S must likewise be.

Notation V.5.2. Set ai so that the GCD of the coefficients of S is I(x- Ai)i . Factoring this

out from S, write S = (ij) for the resulting matrix, whose coefficients have no nontrivial

common divisor. Now, let gl be the GCD of 11 and g12, write pi = ordi gl, and finally

write fg := ~2, considered as an endomorphism of IP1.

We make the following observation: formally locally at each Ai, we can transport-

diagonalize S with powers of ti on the diagonal, obtaining two positive integers summing

to p as the exponents. Momentarily writing Oi for the lesser of the two, we note that tc is

the GCD of the coefficients of the diagonalized matrix, and since GCDs are unchanged by

multiplication by invertible matrices, it must also have been the GCD of the coefficients of

194

__.__



S (over k[[ti]]); hence, ai = ac. We also see easily that one of gll, 912 may be transported

to 0 if and only if S is transport-equivalent to a kernel map with fg having degree 0, hence

constant. Thus:

Corollary V.5.3. The kernel map classes classified in Proposition V.4.5 are precisely those

for which the associated endomorphism fg : 1 - P1 can be made constant under transport.

We note that in general we can use (constant) row operations to insure that at each

Ai, ordxi g2j < ordAi glj for both j, and without further comment we assume we have done

this. Because m < n - e - m, we can similarly add constant multiples of the left column

to the right, allowing us to set ordxi gj2 < ordAx gjl, and in particular, ordxi 922 = Cai for all

i. For later convenience, we can and will also use choose a (possibly nonconstant) column

operation to make sure that 912 has maximal degree (n - m)p - d. To summarize, to analyze

transport-classes of kernel maps, it is sufficient to consider the following situation, which

we will assume we are in for the remainder of the section:

Situation V.5.4. We have normalized so that ordxi 922 = ci for all i, ordAi 912 = ai + Pi,

and deg g1 2 = (n - m)p - d.

We now analyze the situation with fg:

Proposition V.5.5. fg has degree (n - m)p - d - Hi cei - Ei pi, and is ramified to order

at least p - 2ai - pi at each i, and (n - - 2m)p (when this is non-zero) at infinity.

Proof. By definition, fg has degree (n - m)p - d - ai - deg gl. Noting that g9 will divide

the determinant of S, it must be supported at the Ai, so we also have deggl = E i. Next,

examining the (mirror) criterion of Proposition V.3.3, we see that the requirement that

(911 - cig12)(g2 2 ) vanish to order at least p at Ai, since we had arranged for ordAx 922 = 0,

gives the desired ramification condition at Ai. The ramification at infinity follows because

we had set degg12 = (n - e - m)p - d, so it has degree at least (n - - 2m)p greater than

912- El

In particular, we see that when fg is nonconstant, the ci are actually all uniquely deter-

mined as f . It follows that we need not worry about running into trouble with mapstaking on values at ramification points d wo force the ci to be infinite, since this
taking on values at ramification points which would force the ci to be infinite, since this
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would mean fg(Ai) = 0 for some i, which would imply ordxi 912 > ordxi 911, and this is pre-

cisely what we had arranged to avoid. In determining necessary and sufficient conditions

to fill in the `2j from the `lj in such a way as to satisfy our criterion, we find:

Proposition V.5.6. For any given choice of ai and lj as prescribed by the previous

proposition, there is a unique corresponding kernel map class if and only if for all i such

that i > 0, fg has precisely the minimum required ramification, i.e. fg ramifies to order

precisely p - 2ai - Pi at Ai. Otherwise, there will be no corresponding kernel map.

Proof. We first show that if the conditions on glj are satisfied, we do in fact get a unique

corresponding kernel map class: that is, given 11l and 912, there is a unique way (up

to transport) to fill in 921 and 922 which satisfies the (mirror) criterion of Proposition

V.3.3. This will follow from standard results on generators of ideals over PIDs: we need

to choose the bottom row so that the determinant is A = I(x - Ai)P- 2ai; the solutions to

.0lhl -` 12 h2 = A are expressible for some particular choice of hi, h2 as hi +q9-, h2+ql as

q varies freely. In particular, two ways of filling in the bottom row are transport equivalent

if and only if their corresponding q's differ by a multiple of gl, so we will need to check that

the criterion determines q precisely modulo gl. We also observe that given q modulo gl, we

can always choose a representative polynomial for it so that the resulting 921, 922 have the

correct degrees: changing q by a multiple of 921 corresponds to subtracting a multiple of

the first row from the second, which can always, for instance, force the degree of 922 to be

strictly smaller than (n - m)p - d < (n - - m)p + d, without changing the determinant,

and this forces 921 to have degree exactly mp + d. Note also that some as above h1, h2 must

exist because our hypotheses immediately imply that i < p - 2ai.

Now, note that any q yields a solution satisfying the order conditions along the diagonal,

antidiagonal, and the top row: indeed, our ramification condition gives order at least p along

the top row and diagonal (after column operation by ci), and the determinant then forces the

antidiagonal to also have order at least p at all Ai. In particular, ordx, h -cih 2 > p- 2 i-hfi,

since we arranged for ordxi 912 < ordxi 911 at all i, so we have ordAxi 12 = Oi. Next, we

know that if we can fill in the bottom row so to satisfy our criterion, we can do it with

922 invertible at all Ai, and conversely, if 922 is invertible at all Ai, our criterion requires

precisely (in addition to the determinant being correct) that ordXi(921 - cig 22)g22 > p, or

equivalently, ordA (21 - Cio22) > p - 2ai . Plugging in our expressions for possibilities for
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921 and g22, we get

ordxi(hl - cih2 + q(912 - ci 9 )) > p - 2i.

Now, we observed earlier that hi - cih2 has order at least p - 2ai - i; by hypothesis,

either i = 0, in which case we are done, or /i Z 0 and the latter term above has order

precisely p - 2ai - i, in which case q will be determined uniquely modulo (x - Ai)Oi by

our order condition. Of course, by the Chinese remainder theorem, combining these for all

i determines a unique q modulo gl, giving us our unique kernel map class corresponding to

fg, as desired.

Conversely, if 91 has support at Ai, then fg has to ramify to precisely the required order

at Ai, and no higher: If gl is supported at Ai, we have ordxA 912 > ordAi 922, so under our

criterion, after column translation, since ordxA 921922 > p, we obtain ordxi 912921 > p, and

the determinant condition then implies that ordAx 911922 = p, meaning that we cannot have

any extra ramification at Ai, as desired. [

Now, we have already observed that in the case m =n - e - m, we get each kernel

map class corresponding to a unique function, modulo automorphism of 1P1. In the case

m < n - - m, it is clear from the definition of fg that transport of a kernel map can

change fg precisely by an inseparable polynomial of degree at most (n - e - 2m)p. Putting

this together with the previous propositions, we conclude:

Theorem V.5.7. If we fix ai and pi, the set of classes of kernel maps with vanishing p-

curvature, the chosen ai and fi, and such that fg cannot be made constant under transport

is in one to one correspondence with the set of rational functions on IP1 of degree (n - m)p -

d - c ai - i, ramified to order at least p - 2i - i at each Ai (with equality whenever

3i > 0), and further mapping infinity to infinity to order at least (n - e - 2m)p, modulo

automorphism of the image space, and modulo the relation that two such rational functions

which differ by an inseparable polynomial of degree < (n - e - 2m)p are equivalent.

In particular, when m = n - - m, we have no ramification condition at infinity, and

no extra relation on our rational functions, so we recover our original assertion that our

kernel map classes are in one to one correspondence simply with rational functions with the

appropriate ramification at the Ai, up to automorphism.
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Additionally, in the case fg is inseparable, the ramification away from infinity is au-

tomatic, and indeed strictly greater than required, which implies that all the pi must be

0.

We further show:

Proposition V.5.8. In the case that m = n - e - m and i = 0 for all i, the classification

of Theorem V.5.7 holds also over k[e].

Proof. Suppose we have a connection over k[e] whose kernel map is described by a matrix

(gij + ehij), where we continue with the notation of Notation V.5.2 for the kernel map over

k given by (gij), and assume the gij have been normalized as in Situation V.5.4. We know

from Corollary V.2.6 that our kernel matrix must still be formally locally diagonalizable

with the same eigenvalues over k[e], so our observation that ai was alternatively described

as the smaller eigenvalue of the formally locally diagonalized kernel map gives us that each

of the hij must also vanish to order at least ai at Ai, and we set hij := lhij Because

we have assumed pi = O, it follows that 12+Eh12 is a deformation of fg maintaining the same
gll+Ehll

degree. It is easy to check that the fact that Proposition V.3.3 holds over k[e] allows the

same analysis as before to show that our deformation preserves the required ramification,

and it is clear that transport still corresponds to postcomposition by an automorphism of

I1.

It therefore remains only to show that given an appropriate deformation of fg, we can

still uniquely produce a corresponding kernel map over k[e]. We therefore suppose we are

given ai for each i, ll + eh11, and 912 + Eh12. We may further suppose that we have

g21 and 922 satisfying the required determinant, degree, and vanishing conditions modulo

e, so we are simply trying to uniquely produce h21, h22 to do likewise over k[e]. We first

consider the determinant condition: with h21 = h22 = 0, the determinant will be off by

e(g22 hll - g21h12 ) from the desired H-i(x - Ai)P - 2 a i. We see that we want to choose h2l, h22

so that we have g11 h22 - 12h21 = 22 h 1 - 21 h12 , and this will be possible if and only

if gl := gcd(O11,1 2)1(P22hll - 021 h12). However, since we have assumed that all i = 0,

we have gl = 1, and may choose h21 , h22 to give the desired determinant. Moreover,

given any fixed way of filling in the bottom row to give the right determinant, all possible

choices (with the same 921, 22) are given precisely as those obtained by adding E-multiples

of the top row to the bottom, which gives the desired uniqueness. We can then use the
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same argument as in the proof of Proposition V.5.6 to force the degrees of h21, h22 to be

bounded by mp + d - Ei ai, (n - - m)p + d - i Cai as required. Lastly, we must verify

the vanishing condition imposed by Proposition V.3.3; since everything will be multiplied

through by rli(x - Ai)i, it is enough to verify that at each Ai, after column operation

by ci, we will have min{ordAi(1ll + h11),ordAi(g21 + eh2 1)} > p - 2ai. By hypothesis,

since ordxi 922 = 0, this will already be satisfied modulo , and the ramification condition

gives precisely ordxi (hll) p - 2i, so it remains only to check that ordAi (h2) > p - ai.

However, we now see that ordAi ll1h22 - g12h21 = ordxi 922hll - 21h112 > p - 2i, so since

ordAi 11 > p - 2i and ordxA 912 = 0, we get the desired inequality. O

Remark V.5.9. The condition that i = 0 in the above proposition is unnecessary if one

is willing to look at g 's rather than maps, and do slightly more analysis of vanishing

conditions. However, we will only need the case i = 0.

We are now in a position to give:

Proof of Theorem V.O.1. We begin by noting that the hypothesis that the connections in

question do not induce a connection on (d) C & is equivalent to fg being nonconstant and

separable, since this is precisely when the upper right coefficient in Equation V.3.2 will be

non-zero. To see that this is equivalent to restricting to separable fg in the "non-constant"

case described by Theorem V.5.7, it suffices to observe that if a kernel map is transport

equivalent to one with fg constant, then its fg is necessarily inseparable. We next note that

the degree and ramification conditions imposed in Theorem V.5.7, by the separability of

fg and the Riemann-Hurwitz formula, mean that no additional ramification can occur and

the i must all be zero. It therefore suffices to show that the only case which can actually

occur when the Pi are general is the case n - - m = m.

Now, suppose that n - - m > m; since n = 2d + 2 is even, we must have n - e - 2m >

2, and we see from Riemann-Hurwitz that there are two cases to consider: either the

ramification at infinity is exactly (n - E - 2m)p, or it is (n - - 2m)p + 1. The latter case

is impossible for general Pi by Proposition 1.4.5, while the former is handled by the remark

following that proposition. We conclude that for Pi general, n - - m = m is the only

case that occurs, as desired. Finally, given this, the previous proposition shows that the

classification still holds for first-order infinitesmal deformations. OE
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V.6 Projective Connections

We review and develop the theory of projective connections, showing that at least on I',

they may be understood in terms of the theory of standard connections already developed.

We assume throughout that the characteristic of our base field does not divide the rank

of our vector bundles. We begin with a smooth proper curve C and an etale ?r-1 bundle

Y; this must always be the projectivization of some rank r (Zariski) vector bundle on

C (see Proposition A.31), which we refer to as a deprojectivization of , and a vector

bundle &' has the same projectivization if and only if g' = & Y for some line bundle Y'.

It follows that we can define a degree class of Y, well-defined modulo r. We recall the

following definitions:

Definition V.6.1. A projective connection on Y is a global section of the sheafification

of the presheaf associating to an open subset U of C the set of connections on 6lu, modulo

the equivalence relation that two connections on U are equivalent if they differ by a scalar

multiple of the identity in £nd(g) ® . A rational projective connection on Y is a

section of the same sheaf over some open subset U of C. A pole of a rational projective

connection is a point P of C over which U cannot be extended, and its order is defined to

be the minimum order of poles at P as the non-projective connections in U are allowed to

vary within the chosen equivalence class.

It is easily checked that given g' A m®p'( for some Y, there is a natural induced bijection

of projective connections as defined above, so that the definition is in fact independent of

g: indeed, given connections on on U1 and U2 (chosen small enough to trivialize ~ and

Y) which differ (after application of the appropriate transition formula; see (III.1.8)) by a

scalar, the transition matrix of G Y is simply multiplied by the transition function of Y,

so the same connections on U1 and U2 will differ simply by a different scalar.

Lemma V.6.2. Let g be a deprojectivization of A, U any open subset of C trivializing A',

and V a rational projective connection on Y. Then on U, V can be represented uniquely as

a standard rational connection V ° on g with vanishing trace, and V ° connection will have

the correct pole orders everywhere.

Proof. Choose any representative V for V on U, without regard for extraneous poles. Since

we have assumed that the characteristic does not divide the rank, we may define V° =
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- Tr V. This visibly has vanishing trace, and we note that this must have the correctr

pole orders everywhere: otherwise there would be some equivalent V' = V° + w which has

a smaller order pole at some point P of C, but then w would have to have the same order

pole at P as V°, and since Tr V' = rw, V' would have to have the same order pole at P

as well, a contradiction. Finally, uniqueness of V° is obvious, since modifying it by some w

will change the trace by rw. [L

We can also define transport along automorphisms of g in the obvious way; since

.Aut(g) = Aut( 0 A) for any line bundle Y', this will make sense on the level of projec-

tive connections, independent of choice of g. We will also want to make an independent

definition of vanishing p-curvature, for which it will be necessary to know:

Lemma V.6.3. Let V be any connection on any open set U, and suppose V' is a connection

on U with V - V' = w I a scalar endomorphism. Then if 0 is any derivation on U, we have

() - v'(0O) = ((0(w))P + P-1(0(w)) - foA (w)) I.

Proof. We make use of the explicit formulas of Propositions 111.2.6 and III.2.7. Indeed, we

can compare the p-curvatures of V and V' term by term; if T is a matrix for V' on U with

respect to a derivation 0, we have T + 0(w) I as the matrix for V, and we see that if we

expand each term of Obv(0), we get v, (0) from expanding out only terms involving T, and

((0(w))P + Op-l((w))- fop0(w)) I from expanding out only terms involving 0(w), since these

last all commute with one another, and we therefore see that the argument of Corollary

111.2.8 still works, since the rank was used only to insure that the terms all commuted. We

thus want to show that all of the coefficients of the cross terms are always zero mod p.

If we consider a particular term (-l (T + 0(w) I)) ... (0/- (T + 0(w) I)) corresponding

to a vector i, a cross term will arise by choosing a subset A C {1,..., e} from which the

T term will be chosen, with the (w) I term being chosen for all indices outside A. Since

these last are scalar matrices and commute with all other matrices, to compute the relevant

coefficient we can essentially sum over all permutations in Se as in Proposition III.2.7. The

only caveat is that we will end up counting some terms more than once this way. Specifically,

if a Se fixes A and, when applied to the vector i, leaves the vector unchanged, then it

will give the same term in the expansion as the identity. Such a form a subgroup of St,

and we see that precomposition by this subgroup described precisely which elements of SA-- ------- ----- I`-~~--r'""'" "J "'V UUVIV~r UVUIV, t~~~lU~IJ VII1,1 ~1~11~1111~ VI f
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give the same terms in the expansion, so if we denote the order of this subgroup by PiA, we

find that the coefficient we want to compute is given by, still in the notation of Proposition

1II.2.7, the expression nA/pA . Now, since there is an n! in the numerator of nA, and since

in our case n = p, the only way that our coefficient could be nonzero would be if either

PA or the denominator of nA were also divisible by p. Now, the denominator of n A cannot

be divisible by p, since the ij add up to p, and the only way that p could appear in the

denominator would therefore be when A is all of {1, ... , )}, which corresponds to the terms

which only involve T, or when e = 1, which gives the P- 1(0(w)) term, and both of these

have already been dealt with. Now, pA is the order of a subgroup of St which fixes A, so

may be considered as a subgroup of Se-lAI, and can be a multiple of p only if e = p and

IAI = 0, which corresponds to the term ((0(w))P and has likewise already been taken into

account. We can conclude finally that all the cross terms vanish, as desired. [l

We now see:

Lemma V.6.4. Continuing with the notation of Lemma V.6.2, if any representative of V

on U has vanishing p-curvature, then so must V °.

Proof. We know by Proposition A.30 that for any connection V', Tr V' = 0 implies that

Trov, = 0. So, suppose V' = V° + w for some w, and has vanishing p-curvature. Let 0 be

the derivation (possibly on a smaller open subset of U); by the previous lemma, we have

'Ovo () = bvo(0 () - bv () is a scalar matrix, with vanishing trace, and since r is prime to

p, it must be zero, as desired. l

With this lemma, we can now make the following definition:

Definition V.6.5. We say that a projective connection has vanishing p-curvature if its

induced connection with vanishing trace on some open subset U does, or equivalently, if the

induced connection with vanishing trace on every open subset U does.

We now specialize to the case of C = P1, and r = 2. In this case, we will refer to P

being even or odd as dictated by its degree class. We immediately see that by appropriate

choice of deprojectivization, we get:

Lemma V.6.6. In the case that C = IF1 and r = 2, we have a uniquely determined d such

that _ ? I P(g&) for g := ff(d + ep) E 6'(-d)), with e equal to the degree class of 6.
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We can classify projective connections in terms of standard connections:

Proposition V.6.7. Let C = 1 and r = 2. Then projective connections on Y with

vanishing p-curvature and simple poles at points P1 ,..., P, are in one-to-one correspon-

dence with logarithmic connections on the cG of the preceding lemma, with poles at the Pi,

trivial determinant, and vanishing p-curvature. This correspondence descends naturally to

transport-equivalence classes.

Proof. It is clear that the described connections on 62 give connections on Y. Conversely,

given a connection V on Y, choose U open, but small enough so that V may be represented

by a V° on U with vanishing trace, simple poles at the Pi inside U, and no other poles

on U. Given any other sufficiently small open set U', since the determinant of 6g7 is a

Frobenius pullback, we can write the transition matrix from U to U' to have determinant

with vanishing differential, so the same connection after transition to U' still has vanishing

trace (this is in essence the trace formula of Proposition V.1.4), and by Lemma V.6.2 and

the hypothesis that Pi are the only poles of V as a projective connection, must be regular

away from the Pi, with simple poles at the Pi; since U' was arbitrary, we conclude that V°

is in fact a connection as required on ejo.

Finally, it is clear from the definition of transport of a projective connection that the

constructed correspondence is compatible with transport, and hence descends to transport

equivalence classes. O

V.7 Mochizuki's Work and Backwards Solutions

Upon discovering the classification of logarithmic connections on IP1 with vanishing p-

curvature in terms of self-maps of P1 with prescribed ramification developed in this chapter,

the original intent was to study such maps directly, and then apply the results to obtain

conclusions on connections on IP1, and ultimately on curves of higher genus. Ultimately, the

results of this thesis did in fact fall into this form, but the actual path of research, and in

particular the motivation for a key, otherwise extremely obscure, result along the way, was

not nearly so straightforward. Indeed, after some study of the problem of self-maps of PI1,

addressed in Chapter I, the author determined that the problem was subtler than initially

expected, and after some work, reduced it down to being able to control the degeneration of
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separable maps to inseparable maps, ultimately addressed in Section 1.5. The author was,

however, completely unable to approach this problem via any of the standard techniques.

Some time later, the author was informed of Mochizuki's work on connections on curves

in [42]. In particular, upon translating from his language for projective line bundles to our

situation with vector bundles of rank 2, the theorem [42, II, Thm. 2.8, p. 153], applied

to logarithmic connections with vanishing p-curvature on 1 with marked points, asserts

that the stack of those connections classified by Theorem V.5.7 is finite flat over Mo,n, and

in particular, that the number of such connections (counted with multiplicity) shouldn't

depend on the choice of marked points. The same theorem of Mochizuki includes etaleness

results implying that the stack of such connections is reduced at a totally degenerate curve,

and hence for a general choice of marked points for any fixed genus-0 configuration defining

a stratum of the boundary of Mo,n. This suggested a roundabout way of studying self-maps

of 1l with prescribed ramification: rather than degenerating the maps themselves as was

ultimately carried out in Chapter I, one could translate to connections, use Mochizuki's

generic etaleness results to degenerate to connections on reducible rational curves, and then

translate back to maps to obtain the same result.

This approach avoided the issue of separable maps degenerating to inseparable maps,

but it was rather unsatisfying in its roundabout nature. The breakthrough was ultimately

provided by a simple observation: by Mochizuki's work, the stack of connections in ques-

tion is finite fiat; however, on the maps side, separable maps can certainly degenerate to

inseparable maps, whereupon they no longer correspond to connections. On the other hand,

there were also the "asymmetric" connections that only existed for special configurations of

marked points, corresponding to infinite families of maps with additional ramification at in-

finity, as described in Theorem V.5.7. In this context, the answer became clear: a family of

connections degenerating in such a way that it corresponds generically to a separable family

of maps which become inseparable in the limit must, in the limit, give an "asymmetric"

connection, which we had already seen can only exist for special configurations of marked

points, precisely because it corresponds to a certain infinite family of maps which can only

exist for special configurations. With this realization, it was not overly difficult to write

out some explicit examples of connections degenerating in such a way, to write down the

corresponding families of maps, and to ultimately determine the explicit translation process

from a family of separable maps degenerating to an inseparable map, to the appropriate
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infinite family of maps in the limit, yielding finally the direct arguments of Section 1.5.

Remark V.7.1. We see in particular that the relationship between connections and maps

really is more complicated in the case of more than three poles/ramification points, and one

cannot hope to treat it as generally as Mochizuki treated the three-point case; specifically,

we see that connections with m n - e - m, which is to say those corresponding to maps

with additional ramification at infinity will deform, as the poles move, to connections with

m = n - e - m, which are lower-degree maps. This is essentially tied to the fact that the

classification of locally free sheaves on 1 used in an essential way in our argument only

holds over a field.

Remark V.7.2. In fact, there is still one significant result on self-maps of IP1 which as of

yet is only accessible via translation to connections. Specifically, for any specified degree

and ramification indices such that the expected number of maps is finite, if all ramifica-

tion indices are odd and less than p, one can use Theorem V.5.7 and Proposition V.6.7

(although some additional translation of conditions is still necessary) to classify such maps

in terms of connections which in Mochizuki's language are "dormant indigenous bundles",

and application of his finiteness result then implies that there are finitely many such maps,

without requiring the ramification points to be general.
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Chapter VI

Gluing to Nodal Curves and

Deforming to Smooth Curves

The purpose of this chapter is to use largely standard gluing and deformation techniques

in order to apply Chapters I, III, and V to obtain a new proof of a result of Mochizuki

describing the locus of Frobenius-unstable vector bundles of rank 2 and trivial determinant

on a general curve of genus 2. We then invoke the main theorem of Chapter IV to com-

pute the degree of the associated Verschiebung rational map, as well as certain additional

properties. Specifically, we show:

Theorem VI.O.1. Let C be a general smooth, proper curve of genus 2, and M2(C) the

coarse moduli space of semistable vector bundles of rank 2 and trivial determinant on C,

and V2 : M2 (C(P)) -- + M 2(C) the rational Verschiebung map induced via pullback under the

relative Frobenius morphism F: C -+ C(p). Then:

(i) There are 2p(p 2 - 1) Frobenius-unstable bundles of rank 2 and trivial determinant

on C, all without non-trivial deformations (in the sense of "reducedness" in Theorem

IV.O.1);

(ii) The undefined points of V2 are precisely the Frobenius-unstable bundles, and each may

be resolved by a single blowup at the reduced point. The degree of V2 is given by

lp(p 2 + 2), and the image of the exceptional divisor above a Frobenius-unstable bundle

- is given by Ext(Y, - 1 ) where Y is the theta characteristic destabilizing F*9.

The basic approach is to first glue the results of Chapter V to obtain results on a
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general rational nodal curve of genus 2, and then use deformation theory to obtain the

corresponding results for a general smooth curve of genus 2. More precisely, we begin

in Section VI.1 with a brief discussion of connections on nodal curves, and examine the

gluing in Section VI.2; we carry out an auxiliary computation for the deformation theory in

Section VI.3, and the deformation theory itself in Section VI.4, finally putting all the results

together in Section VI.5 to conclude our main theorem. Both the gluing and deformation

steps are special cases of results of Mochizuki [42]; the gluing is a special case of the

statement on "torally indigenous bundles" on [42, p. 118], while the deformation result

follows, for instance, from the finite flatness statement for "dormant torally indigenous

bundles" in the n = 0 case of [42, Thm. 11.2.8, p. 153]. While the results of this chapter

are thus technically superfluous, the proofs are not long, and it seems desireable to have a

less abstract, completely self-contained proof of Theorem VI.0.1, particularly given that our

overall approach is somewhat different in that it involves degeneration to irreducible nodal

curves rather than totally degenerate curves. Furthermore, there are a few distinctions

worth pointing out: for the gluing statement, we provide some additional details, and in

fact have superficially different behavior because we are working with vector bundles rather

than Mochizuki's projective bundles; for the deformation theory, Mochizuki makes use of De

Rham cohomology, whereas our perspective is substantially more naive, making use rather

of the perspective and results of Chapter V.

It is perhaps also worth a brief comparison of Mochizuki's overall strategy with that

carried out here. In Mochizuki, the proof of Theorem VI.0.1 (i) follows from three facts:

first, that on each "atom" (that is, P1 with three marked points) certain choices of "radii" at

the three marked points give a unique "dormant torally indigeneous bundle", which yields

that the number of "dormant atoms" is p(p2 - 1) [42, §V.1, p. 232, and Cor. V.3.7,

p. 267]; second, that gluing torally indigenous bundles simply requires that the radii agree

at marked points [42, p. 118], so that if one takes the totally degenerate curve of genus

2 obtained by gluing together two atoms along the three marked points, the number of

dormant torally indigenous bundles on this curve is equal to the number on either atom

alone, which is simply the number of dormant atoms by definition; finally, the stack of

dormant indigenous bundles is finite flat over the stack of curves, and etale at a totally

degenerate curve [42, Thm. 11.2.8, p. 153], so that the p(p 2 _ 1) dormant torally indigenous

bundles we obtain for the degenerate curve deform to a general smooth curve, and have no
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non-trivial deformations (over the fixed base curve) in either case. Here, the fundamental

idea is similar, with the main difference being that we degenerate to an irreducible rational

nodal curve rather than a reducible one. This has the disadvantage that the relevant

connections are harder to analyze in this case, requiring the full results of Chapter I rather

than the easier three-point case. However, if one were to generalize to higher genus, there

is a natural notion of "level" which measures how unstable a bundle is; indigenous bundles

are those of maximal level, and on totally degenerate curves, all bundles with positive level

are necessarily indigenous. However, on irreducible nodal curves, one can have bundles of

intermediate level, possibly providing a more direct tool for studying bundles of intermediate

level than the indigenization construction of Mochizuki's theory [42, §II.1.4].

We should perhaps also remark that the approach to the gluing theory of Section VI.2

follows Mochizuki's ideas in order to give a cleaner presentation than the approach originally

envisioned. Aside from the role of Mochizuki's results discussed in Section V.7, this is the

only part of the present work not developed fully independently of Mochizuki.

VI.1 Connections on Nodal Curves

Let C be a proper nodal curve, and G a vector bundle on C. We define:

Definition VI.1.1. A logarithmic connection on g is a k-linear map V : g - G 0 we,

where wc is the dualizing sheaf on C, and V satisfies the Liebnitz rule induced by the

canonical map Qt -+ wc.

Remark VI.1.2. The above terminology conflicts slightly with that of Chapter V, where a

logarithmic connection was defined to be a connection allowed to have simple poles. They

are indeed both special cases of a more general theory, and one should more properly specify

that the former is logarithmic with respect to the log structure induced by the nodes, while

the latter is logarithmic with respect to the log structure given by the divisor along which

the connection has poles. In our specific context, this would be undesirably unwieldy, but

to avoid confusion in this chapter, we will refer to the latter as a D-logarithmic connection,

where D is a reduced divisor supported on the smooth locus of a curve, and the connection

is allowed to have simple poles along D.

We note that all the background material on connections in Section III.1 up to (but not
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including) the Cartier isomorphism still holds if one replaces 2C4 by WC (and in particular,

the sheaf of derivations by wC) throughout. We summarize:

Proposition VI.1.3. All statements on induced connections for operations of vector bun-

dles, and statements (III.1.1) and (II1.1.2) on the p-curvature map, hold in the case of

logarithmic connections on nodal curves, with wc in place of Q. One still has a canonical

connection on a Frobenius pullback with vanishing p-curvature whose kernel recovers the

original sheaf.

Although it is true that taking the kernel of the canonical connection of a Frobenius

pullback still recovers the original sheaf on C(P) when C is singular, the Cartier isomorphism

fails because given a logarithmic connection with vanishing p-curvature on C, the Frobenius

pullback of the kernel will not in general map surjectively onto the original sheaf at the

singularities of C.

VI.2 Gluing Connections and Underlying Bundles

Let C be the normalization of C, and g the pullback of g to C. Given a logarithmic

connection V on &, we get a Dc-logarithmic connection on g, where Dc is the divisor of

points lying above the nodes of C. We want a complete description of connections on g

arising this way, and a correspondence between these and connections on . We claim:

Proposition VI.2.1. Logarithmic connections V on are equivalent to connections on 0g

having simple poles at the points P1, Q1,..., Pa, Qj lying above the nodes of C, and such that

under the gluing maps Gi : lPi - - - lQi giving &, for each i we have Respi(V) = -Gi- 1 o

ResQi (V) o Gi. The properties of having trivial determinant and vanishing p-curvature are

preserved under this correspondence.

Proof. The main assertion follows easily from [8, Thm. 5.2.3] together with the remark [8,

p. 226] for nodal curves, which together state that sections of we correspond to sections of

Q c(Dc) with residues at the pair of points above any given node adding to zero.

Since vanishing p-curvature can be verified on open sets, and the normalization map

is an isomorphism, it is clear that logarithmic connections with vanishing p-curvature on

C will correspond to logarithmic connections with vanishing p-curvature on C. The same

may be said of trivial determinant, with the additional trivial observation that on the open
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subset on which the normalization is an isomorphism, the differential map d is the same on

C and C. [

We can in particular conclude:

Corollary VI.2.2. Let Y be a line bundle on C. Then Y can have a logarithmic connec-

tion V with vanishing p-curvature only if pi deg 2.

Proof. Applying the previous proposition, if we pull back to V on 9° we find that the

residues of V come in additive inverse pairs mod p. We obviously have pl,*((2V), and

then by Corollary V.1.12 we have that the determinant of the inclusion map i* (b) £°

has total order equal to the sum of the residues mod p, which is zero, so we conclude that

deg Y must also vanish mod p, as asserted. []

We now restrict to the situation:

Situation VI.2.3. Suppose that & has rank 2 and trivial determinant, and we have fixed

an exact sequence

0 - - 1 -+ 0.

The same statements then hold for .

We introduce some terminology in this situation:

Definition VI.2.4. Given a logarithmic connection V on G (respectively, a D-logarithmic

connection V on A), the Kodaira-Spencer map associated to V and a sub-line-bundle Y9

(respectively, A) is the natural map Y -+ Y-1 wc (respectively, Y -°-1 X (D))

obtained by composing the inclusion map, V, and the quotient map (tensored with the

identity). One verifies directly that this is a linear map.

Note that with this terminology, our initial observation giving Proposition III.3.2 boils

down to the statement that the Frobenius-pullback of a Frobenius-unstable bundle neces-

sarily has a connection such that the Kodaira-Spencer map of the destabilizing line bundle

is an isomorphism. It should perhaps therefore not be surprising that we will consider

connections for which the Kodaira-Spencer is an isomorphism. We note:

Lemma VI.2.5. Suppose that the arithmic genus of C (respectively, the genus of C plus

degD) is greater than or equal to 3/2; that is to say, we are in the "hyperbolic" case. Then
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if the Kodaira-Spencer map associated to V, Y is an isomorphism for any V, then Y is

a destabilizing line bundle for g (respectively, a), and is thus uniquely determined even

independent of V.

Proof. In the case of C, we have Y - 2-1 0 w, so 22 ~ w, which by the hypothesis

on the arithmetic genus has positive degree (see for instance Theorem A.4). Thus, is

a destabilizing line bundle for g, and we see that the proof of Lemma III.3.3 proceeds

unmodified in this case, making use of the fact that we can define a degree on line bundles

on a nodal curve simply by pulling back to the normalization, and noting that the properties

necessary from the argument will follow formally.

In the case of C, we similarly have 222 - Qc (D), which is positive by the hypothesis

on the genus of C and degree of D. Again, Y is a destabilizing line bundle, and we can

apply Lemma III.3.3 directly in this case to obtain the desired result. LO

We will see in the following arguments that it sometimes appears that we should be

allowing the line bundle 2 to vary with the connection; however, as a result of the above

lemma, since we will be restricting our attention in the subsequent results to connections

whose Kodaira-Spencer maps are isomorphisms for A, the fact that we have fixed in

our situation will not pose any problems, and the Kodaira-Spencer maps in question will

depend only on the connections.

One can approach the issue of gluing connections from two perspectives: either fixing the

glued bundle g on C, and exploring which connections on 6? will glue to yield connections on

A, or allowing the gluing of g itself to vary as well. The first approach may appear better-

suited to our goals, since we ultimately wish to classify the connections on a particular

unstable bundle on a nodal curve, and indeed one may carry through the calculation directly

via this method in our situation. However, the second approach offers a more transparent

view of the more general setting, particularly as far as issues of transport equivalence are

concerned, and ultimately yields a cleaner argument even for our specific application, so

following Mochizuki [42, p. 118], we will take the approach of allowing our gluings to vary

as well. As such, we now fix & on C, but do not assume a fixed gluing g on C. That is to

say:
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Situation VI.2.6. Fix G of rank 2 and trivial determinant, together with an exact sequence

The main statement on gluing is:

Proposition VI.2.7. In Situation VI.2.6, let V be a Dc-logarithmic connection on C with

trivial determinant and vanishing p-curvature, such that the Kodaira-Spencer map associated

to Y is an isomorphism. Further suppose that the e,e 2 of Corollary V.1.10 match one

another (up to permutation) for pairs of points lying above given nodes of C. Then if one

fixes a gluing 2 of 2', there is a unique gluing of (, V) to a pair (, V) on C, such that

one obtains a sequence

and the resulting (, V) will also have Kodaira-Spencer map an isomorphism. If C has

arithmetic genus at least 2, transport equivalence is preserved under this correspondence.

Proof. We first claim that the condition that the Kodaira-Spencer map for Y be an isomor-

phism implies that for any P E {Pi, Qi}, YI is not contained in an eigenspace of Resp V,

and that the eigenvalues are both non-zero. But because of the triviality of the determi-

nant, the sum of the eigenvalues is zero, so because the residue matrices are diagonalizable

(see Corollary V.1.12, noting that it does not use the ei non-zero hypothesis of Situation

V.1.11), the latter assertion is actually a consequence of the former. Now, considering the

definition of the Kodaira-Spencer map - - 0-l Q (Dc), if we restrict to P we get a

map which is clearly equal to zero if and only if V( ) p C 0 &lp, which is the case

precisely when lP is contained in an eigenspace of Resp V, as desired.

Given this, for each pair Pi, Qi, Proposition VI.2.1 and our hypothesis on the matching

eigenvalues of the residue matrices at Pi, Qi imply that in order to glue the connection, it is

necessary and sufficient to map eigenspaces of opposing sign to each other. To glue A', we

also map its image at Pi to its image at Qi. We thus see that the two eigenspaces of Respi V

and ResQ, V and the images of _2 form a set of three one-dimensional subspaces which must

be matched under Gi, and it is easy to see that this determines Gi up to scaling. But finally,

scaling of Gi is equivalent to scaling the induced gluing map on 2', which is precisely what

determines the isomorphism class of the glued 2; thus, Y may be specified arbitrarily, and
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given a choice of A, the Gi and hence the pair (, V) are uniquely determined, as desired.

Finally, it is trivial that if two connections on are transport-equivalent, then their

pullbacks to are, and for the converse, the uniqueness of the gluing makes it clear that if

two connections V and V' on are transport-equivalent under an automorphism TO of g,

then W naturally gives an isomorphism of the two gluings g and &' which takes V to V'.

Finally, the hypothesis that the arithmetic genus of C is at least 2 implies, as discussed in the

previous lemma, that Y' and .Y are uniquely determined as the destabilizing sub-bundles

of g and g, so there is no concern that they might change under transport. [O

Putting together the previous propositions, we finally conclude:

Corollary VI.2.8. Let g be a vector bundle on C of rank 2, with the arithmetic genus of

C being at least 2, and suppose there exists an exact sequence

Fix a gluing of Y to a line bundle Y on C; then there exists a bijective equivalence between

transport-equivalence classes of Dc-logarithmic connections V on G with trivial determinant

and vanishing p-curvature, the ei of Corollary V. 1.10 matching at the pairs of points above

each node, and having the Kodaira-Spencer map an isomorphism on one side, and on the

other side, pairs (, V) of gluings of g preserving an exact sequence

together with logarithmic connections V on g with vanishing p-curvature and trivial deter-

minant and having the Kodaira-Spencer map an isomorphism, up to isomorphism/transport

equivalence.

Further, this correspondence holds for first-order infinitesmal deformations.

Proof. We can immediately conclude the statement over a field from our previous proposi-

tions. For first-order deformations, the same arguments will go through, with the aid of the

following facts: first and most substantively, it follows from Corollary V.2.6 that the residue

matrices on C will still be diagonalizable, albeit over k[e]/i 2, with the eigenvalues ei the

same as for the connection being deformed. Next, since we are simply taking a base change

of our original situation over k, the general gluing description given by Proposition VI.2.1
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still holds for formal reasons. Finally, one can easily verify that even over an arbitrary

ring, we still have the assertion we used that an automorphism of a rank two free module

is determined uniquely by sending any three pairwise independent lines to any other three.

We therefore conclude the desired statement for first-order deformations as well. O

Remark VI.2.9. The statement of Proposition VI.2.7 is slightly cleaner in Mochizuki's set-

ting [42, p. 118], because in the context of projective bundles, the choice of Y made in

the statement is unnecessary, since the isomorphism class of IP(G) will not depend on which

Y was chosen. He therefore obtains a simpler uniqueness of gluing statement, while we

will have to rigidify our situation by specifying Y. Since our ultimate goal is to classify

connections on a particular specified , however, this will not pose any obstacle.

VI.3 An Auxiliary Computation

In this section, we perform an auxiliary computation using the techniques of Chapter V

and the previous section, which will be necessary to our final goal of deforming connections

from a nodal curve to a smooth curve, carried out in the following section.

Situation VI.3.1. We suppose that C is a general irreducible, rational proper curve with

two nodes, C -_ 1 its normalization, with P1, Q1, P2, Q2 being the points lying above the

two nodes. We let & be the vector bundle described by Situation III.5.1, and V a logarithmic

connection on with trivial determinant and vanishing p-curvature.

Remark VI.3.2. We do not expect that generality of C should be necessary for the result

of this section to hold. However, we will only apply our result in the case that C is general,

and the hypothesis simplifies our argument considerably.

We observe that in this situation the normalization G of G is isomorphic to 8(1)®e(-1):

we certainly have a -_ e(1), so by Lemma III.3.3, 8(1) is the maximal line bundle in A,

and then the desired splitting follows from [27, Proof of Thm. 1.3.1]. Also, by Proposition

VI.2.1 is a Dc-logarithmic connection on with trivial determinant and vanishing p-

curvature. We wish to show:

Proposition VI.3.3. The space of sections of End°(g) 0 F*wc(p) horizontal with respect

to the connection Vind induced by V on and Vcan on F*wc(p) has dimension equal to

three.
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Proof. Our method will be to first carry out the computation on C, and then impose the

necessary gluing conditions to obtain the desired result. Noting that F*wc(p) - 6(2p), and

also that the proof of Theorem V.0.1 in Section V.5 gives by the generality of C that the

kernel of V is isomorphic to 8(-2) 8(-2), we claim that an endomorphism as in the

statement is equivalent to a diagram:

8(1) (-1) , (2p + 1) (2p - 1)

8(-2p)Ee(-2p) ( -2p) 8

where A is the Frobenius pullback of a map 6(-2) 8(-2) -* 6G 6, B has vanishing trace,

and S is the kernel inclusion map as in Chapter V. Indeed, it is easy to see that the induced

kernel map 6 E - 8(2p + 1) E 8( 2 p - 1) will still be S, and that for the map given by B

to be in the kernel of the induced connection on )-/om(6(1) 6 (-1), 6( 2 p+ 1) ® 6(2p- 1))

is equivalent to mapping the kernel of V on 8(1) 6(-1) into the kernel of the induced

connection on 8(2 p + 1) 6(2p - 1).

We will therefore work within the space of possibilities for A; this lies a priori in

F* (2) (2)

L8 (2) (2)J

and we note that since B = SAS - 1, the trace of B vanishes if and only if the trace of A

vanishes. We are therefore simply looking for matrices A with vanishing trace such that

SAS - 1 is regular, at least prior to considering the gluing conditions to get from IP1 to the

nodal curve. The determinant of S vanishes only at the four points of Dc, vanishing to order

p at those points, so it suffices to analyze the situation formally locally at those points. More

precisely, for P any point of {Pi, Qi}, if we argue as for the mirror criterion of Proposition

V.3.3, which is to say by conjugating formally locally by [ ] , we can apply Corollary

V.1.9 to obtain a constant c and an invertible matrix M such that MSU(c) = D(ta, tP-a),

where M is invertible at P, D(al,a 2 ) :- 1, and U(c) := . Further, c is
a2 1

the image of the ramification point P of the non-constant map associated to S in Theorem

V.0.1, so in particular c is well-defined, and see as a result that a > p/2. Further, by the
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generality of C, we have from part (ii) of Theorem 1.2.3 that the c obtained for the different

P are distinct. Now, since U(c)U(-c) = I, we have

D(ta, tP-)U(-c)AU(c)D(t-, ta-p) = MSAS-1M- 1

and since M is invertible at P, this is regular at P if and only if SAS -1 is. Let A' =

U(-c)AU(c), with coefficients (a'j). Then we have

D(ta', tP-a)A'D(t- , ta-p)= al t 2at

so since a > p/ 2 , it is necessary and sufficient that a'l vanish to order at least 2a-p, which

is less than p. Since A and hence A' is a Frobenius-pullback, vanishing of al1 is equivalent

to vanishing to order at least p, and we find that we need simply impose the condition that

al1 vanish at P. Now, we see that

2a21 = a21 - call + ca22 - c2a12 = a2l - 2call - c2a12

since the trace of A is required to be zero. We have a nine-dimensional space of choices for

all, a21l, a12, and we will need to show that these vanishing conditions at the four P impose

four independent conditions on this space. However, we will be able to approach the gluing

condition similarly, so we postpone the calculation and do both at once.

We now examine the gluing, wishing to show that gluing P1 to Q1 and P2 to Q2 impose

two independent conditions on our space of global sections, so that we end up with desired

final dimension of three. We observe from our formula for D(t', tP-')A'D(t-', tP-a) that

we have vanishing at P away from the diagonal, so that evaluated at P, we actually get

a diagonal matrix of vanishing trace. Since we know from Section VI.2 that our gluing

maps are required to glue eigenspaces for V, it is easy to check that the relevant diagonals

will be identified under gluing, so we impose at most one condition for each gluing. One

could attempt to examine the gluing maps in more detail, but we will take a simpler

approach: we will show that imposing vanishing of B at each of the four P imposes four

further independent conditions, which implies that gluing conditions would be independent

regardless of the chosen gluing maps. Vanishing of B at P is of course equivalent to vanishing
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of D(t a, tP--)A'D(t - -, tP- a ) which is in turn equivalent to vanishing of the diagonal terms,

which is simply vanishing of all at P. We calculate

all al l + cal2,

so this condition together with our earlier vanishing condition is equivalent to the two

conditions

all(P) + cal2(P) = a21l(P) - call(P) = 0.

We will finish the proof by showing that these impose eight independent conditions.

For convenience of calculation, we will assume (visibly without any loss of generality)

that P1 = 0, P2 = 00, Q1 = 1, Q2 = A, and we denote the corresponding c's by cl,..., C4,

which we recall could be assumed to be distinct by the generality of C. Our conditions can

then be encoded in the 8 x 9 matrix imposing conditions on the coefficients of all, a12, a2 l:

1

0

1

1

-C 1

0

-C 3

-C4

0

0

1

0

0

-C 3

-C4X

0

1

1

A2

0

-C 2

-C 3

-C4A2

C1

0

C3

C4

0

0

0

0

0

0

C3

C4 A

0

0

0

0TO

TO

TO

TO

0

C2

C3

C4A 2

0

0

0

0

000

1 0 0
0 0 1

1 1 1

1 A A 2

If we drop the fourth

we find that we get:

column and take the determinant of the resulting 8 x 8 matrix,

(C4 - C3)(C - )(C2 - C4 )A2 (A - 1).

A is distinct from 0 or 1 and the ci are distinct from one another by hypothesis, so this is

non-zero, as desired. Ol

Remark VI.3.4. One could also approach the problem by considering the induced connection

on £nd ° () abstractly and applying the ideas of Chapter V to it; via this approach, it is easy

to see that if the eigenvalues of Res V were el, p - el at a point, the eigenvalues of Res Vind

are 12e -pl,p - 12el -pl, 0 at the same point, and it is fairly straightforward to show that
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there must be a five-dimensional space of global sections prior to gluing. Unfortunately,

imposing the gluing conditions seems substantially harder in this setting.

VI.4 Deforming to a Smooth Curve

Suppose we have a proper, nodal curve Co, a vector bundle Go on Co of trivial deter-

minant, and a logarithmic connection Vo of trivial determinant on . By Proposition

VI.1.3, p-curvature gives an algebraic morphism bp : H°(End°(go)0WCo) -+ H°(Cnd°(go) 

F*wc(p)) such that for p E H°(£nd°(6o) 0 we), op(Vo + o) in fact lies in H°(End°(o) 0

F*w (P))(V )in . Now, we first claim:

Lemma VI.4.1. If Vo has vanishing p-curvature, the differential of op at 0 gives a linear

map

dp : H°(£nd°(o) 0 wco) - H(Endo(o) 0 F*wc(p))vb

Proof. We simply consider the induced map on first-order deformations of Vo; that is, we

denote for the moment by C, g the base change of Co, Go to k[e]/(e2), and we suppose

that p c eH°(End°(G) 0 wc) _ H°(£nd°(`o) 0 wc), and consider Vo + cp; since Vo has

vanishing p-curvature, the image under Up is in eH°(End°() F*wc(p))(vo +eP)i , which

is naturally isomorphic to H°(£nd°(o) F*'w(p))o , giving the desired result. O

Our main assertion is:

Proposition VI.4.2. If the map dp of the previous lemma is surjective, then given a

deformation C of Co and g of Go on C, such that the functor of connections with trivial de-

terminant is formally smooth at V0, then the functor of connections with trivial determinant

and vanishing p-curvature on go is formally smooth at Vo.

Proof. By hypothesis, there is no obstruction to deforming Vo as a connection with trivial

determinant. Following [53, Def. 1.2, Rem. 2.3], we say that a map B --* A of local Artin

rings over the base ring of our deformation and having residue field k is a small extension

if the kernel is a principal ideal (e) with (e)mB = 0; it follows then that eB C B is isomorphic

to k. To verify (formal) smoothness, by virtue of [64, Prop. 17.14.2] it is easily checked

inductively that it is enough to check on small extensions. We show therefore that for such

a small extension, when dp is surjective there is no obstruction to lifting a deformation
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of Vo over A to a deformation over B, even with the addition of the vanishing p-curvature

hypothesis. Let CB, B be the given deformations over B of Co, Go respectively, with CA, GA

the induced deformations over A, and suppose that VB is a connection on &B such that

VA has vanishing p-curvature. The main point is that it is straightforward to check that

the hypothesis that eB k implies that H° (£nd°(B) 0 wCB) ' H°(£nd°(o) 0 wC),

and for any G eH(Snd°(&B) 0 WCB), we have eH°(End°(B) 0 F*wC(p))(V B + °)ind 
CB

H ° (Snd°(o) 0F*CC(P))Vd. We want to show that for some choice of W E eH°(£nd °(B) 

WCB), VB + T has vanishing p-curvature. But as before, since VA has vanishing p-curvature,

the image under Vp of VB +T is in eH°(£nd°(B) F*wC(p))(vB +)ind , and under the above

isomorphisms, the induced map is equal to dOpp + I- 7p(VB), where is simply shorthand

for the isomorphism eH °(Sndo°(B) 0 F*wc(p))(VB+)ind X H°(£nd°(o) 0 F*WC )Vo d

Hence if dp is surjective, we can choose T so that VB + T has vanishing p-curvature, as

desired. O

Finally, we apply this result in our specific situation:

Theorem VI.4.3. Let Co be a nodal rational curve of genus 2, and Go as in Situation

11.5.1. Let V0o have vanishing p-curvature and trivial determinant, and suppose that Vo

has no deformations preserving the p-curvature and not arising from transport. Then the

map d4pp of Lemma VI.4.1 is surjective; in particular, given any deformation C of Co, if is

the corresponding deformation of Go, then the space of connections with trivial determinant

and vanishing p-curvature on G is formally smooth at Vo.

Proof. The main point is that by Remark 111.5.8, the space of transport-equivalence classes

of connections with trivial determinant on 0 or g is explicitly parametrized by A3 over

the appropriate base. In particular, deformations of Vo as a connection with trivial de-

terminant are unobstructed, and it also follows that the space of first-order deformations

of V0o with trivial determinant, modulo those arising from transport, is three-dimensional.

By Proposition VI.3.3, the image space of d4p is three-dimensional. We therefore get sur-

jectivity precisely when transport accounts for the entire kernel, which is to say, when

there are no deformations of Vo having vanishing p-curvature and trivial determinant other

than those obtained by transport. We can thus apply the previous proposition to conclude

smoothness. El
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VI.5 Implications for the Verschiebung

In this section we put together the results of the preceding sections and chapters to prove

Theorem VI.0.1:

Proof of Theorem VI.O.1. We note that (ii) follows immediately from (i) by virtue of Chap-

ter IV, and specifically Theorem IV.0.1. It thus suffices to prove (i), which by the results of

Section 111.3 is equivalent to showing that, for the particular G of Situation III.5.1, there are

precisely p(p2 - 1) transport-equivalence classes of connections with trivial determinant

and vanishing p-curvature on &, and that none of these have any non-trivial deformations.

We will show that this statement holds in the situation that C is a general rational nodal

curve, and then conclude the same result must hold for a general smooth curve.

We observe that even in the situation of a nodal curve, there is a unique extension & of

-1 by AcY; indeed, the proof of Proposition II1.3.4 goes through with wc in place of Q1 and

using more general forms of Riemann-Roch and Serre duality as given in Theorem A.4. We

also note that by Corollary VI.2.2, the argument of Proposition III.3.2 still shows that any

connection must have its Kodaira-Spencer map be an isomorphism. It then follows from

Corollary VI.2.8 that it suffices to prove the same result for D-logarithmic connections on

8(1) G 8(-1) on IP1 satisfying the hypotheses of Situation V.1.11 and having the Kodaira-

Spencer map an isomorphism, where D is made up of four general points on ?1, and the

eigenvalues of the residues at the points match in the appropriate pairs. We note that

by degree considerations, the Kodaira-Spencer map in this case is always either zero or

an isomorphism, so if we fix czi for each pair (Pi, Qi), by Theorem V.0.1 we find that we

are looking for separable rational functions on IP1 of degree 2p - 1 - 2 E cai, and ramified

to order at least p - 2i at Pi and Qi (note that the coefficient doubling for the degree

is due to our use of a single, matching ai for both Pi and Qi). We could use the second

formula of Corollary 1.6.3 to compute the answer directly, but the first formula yields a more

elegant solution. In either case, we are already given the lack of non-trivial deformations,

so it suffices to show that the number of maps is correct. The formula gives that for each

(al, 2 ) there are

min{{p - 2i}i, {p - 23_ii, {2ai}i, {2o3_i)i
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such maps, which reduces to

min{{p - 2ai}i, {2ai}i}.

Rather than summing up over all ai, as we would with the second formula, we note that

the number of maps will also be given by:

#{(al,a2) : j 2ai,j p - 2i}
1<j<(p-l)/2

which then reduces to

+ 2 j = E jp = E (2 + j)
1<j<(p-l)/2 l<j±(p-1)/2 <j<(p-X)/

2 (p + 2 P 4 - 1 = - (P + I) (( p -1 ) (p - 3) + 3(p - 1)) (P + )= ( )
3 2 4 24 24

giving the desired result for a general nodal curve.

We can now apply Theorem VI.4.3 to conclude that since none of our connections

on the general nodal curve have non-trivial deformations, the space of connections with

trivial determinant and vanishing p-curvature on our chosen bundle over our parameter

space of genus 2 curves is formally smooth at each connection on the general nodal curve.

Furthermore, by Corollary III.7.4 (in light of Remark III.5.8), this space of connections is

finite, so we conclude that it is finite etale at the general nodal curve, and finite everywhere,

which then implies (i) for a general smooth curve, as desired. O
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Appendix A

Auxiliary Lemmas and

Well-Known Results

This appendix is a compendium of individual results, containing a few auxiliary lemmas

of a general nature, and a variety of results which are well-known to experts. Some of the

latter are difficult to impossible to locate in the literature, while others are rephrased from

the references given to make them more appropriate for their use here. Certain results of

this type were left in the main text when they fit well into the flow of the argument; those

which have instead been included below were deemed to be likely to distract from the main

ideas of the sections in which they arose. The goal of this appendix is solely completeness;

references were used over including arguments as much as was possible.

Finite generation of fundamental groups of curves

Used in Theorem 1.2.3:

Theorem A.1. Let C be a smooth proper curve over an algebraically closed field k, P1,... , Pn

points on C, and C' = C {P1,..., Pn. Then the tame fundamental group r~ (C') is topo-

logically finitely generated as a profinite group.

Proof. If k = C, we have the explicit description given in [4, 9, Cor. 3.2]. Now suppose

k has characteristic 0. Then C and the Pi may be defined over some K C k, a finitely

generated extension of Q, and we can imbed K (and thereby K) inside of C. Then the

(automatically tame) fundamental groups of C' over K, k, and C are all isomorphic, thanks

to [4, 11, Thm. 6.1]. Finally, suppose k has characteristic p. Let A be the Witt vectors of
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k [54, Thm. II.5.3], then by [4, 11, Thm. 1.1] we can find a C over SpecA whose special

fiber is C, and since A is complete and the Pi smooth points we can lift them to sections Pi

of C (for instance, by definition of formal smoothness [3, Prop. 2.2.6]). Now, the geometric

generic fiber has characteristic 0, so we know its tame fundamental group is topologically

finitely generated, and we can conclude the same for C itself in light of [4, 11, Thm. 4.4]. 

Families of nodal curves

Used in Lemma II.2.3, Theorem 11.2.4, and Situation II.3.1:

Theorem A.2. Let X/B be a family of proper nodal curves. Then:

(i) The singular locus of X over B is finite and unramified over B

(ii) Suppose that either B is regular, or each connected component of the singular locus of

X over B maps isomorphically to its scheme-theoretic image. Then each connected

component of the singular locus of X over B has scheme-theoretic image which is

locally principally generated inside B

Proof. The singular locus of X/B is naturally defined by the first Fitting ideal of the sheaf

QX/B of relative differentials. This is a closed subscheme, compatible with base change by

[13, Cor. 20.5], and by hypothesis contains no fibers, so it is immediately finite. It is enough

to check that it is unramified on fibers, and indeed for a curve over a field to have unramified

singular locus may be taken as the definition of it being nodal, or may be checked easily

from the formal local definition of a node. This gives (i).

For (ii), we primarily make use of the deformation theory of nodal curves described in

[11]. Specifically, the space of deformations of a nodal curve is prorepresentable (see [11,

Lem. 1.4]), and the universal family has smooth base, with each node mapping isomorphi-

cally to the vanishing locus of a coordinate on the base (see [11, p. 82]). Now, the singular

locus commutes with base change, and taking scheme-theoretic image commutes with flat

base change in our case by Proposition A.14, so if we choose a point b C B and pass to the

complete local ring, the image of the singular locus of the completed family will be the base

change of the image of the original singular locus, and the image of the base change of a

connected component A will be the base change of the image. It thus suffices to check that

the image of the base change to the completion is principal; indeed, since completion is fiat,
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the ideal of each A in the completion is obtained by tensoring the ideal of A in the local

ring by the completion of the local ring, and since the completion map is surjective (and in

particular has non-empty closed fiber), it follows from Nakayama's lemma that if the tensor

product is principally generated over the completion, A was principally generated to start

with.

After passing to the completion, by the definition of prorepresentation, our family is

obtained by pullback from a map from the complete local scheme at b to the scheme prorep-

resenting the deformation functor. Since each connected component of the singular locus

of the universal deformation maps as a closed immersion with principally generated image

into the base, its pullback will likewise be a closed immersion with locally principal ideal

sheaf. It follows that the image of each of the connected components of the completion of

A are locally principally generated, so the only potential issue is that their union might not

be. Our additional hypotheses give us two cases to consider. If B is regular, a principally

generated ideal sheaf is either a Cartier divisor or all of B, and the union of Cartier divisors

is again Cartier, so there is no problem. Similarly, if A mapped isomorphically onto its

image, then it remains connected after completion, and there is no union to be concerned

about. Thus, in either case the scheme-theoretic image is locally principal, as desired. O

Remark A.3. One might note that in the universal deformation of the above proof, the

image of the union of any collection of connected components of the singular locus is still

principally generated. From this perspective, the problem is that the map from the base to

the deformation space need not be flat, so scheme-theoretic image need not commute with

base change. This may seem like a technicality, but in fact (ii) is false in general; one can,

for instance, construct a family over a quadric cone in 1P3 having a node whose image is

three lines through the cone point.

Serre duality and Riemann-Roch for LCI curves

Used in Proposition A.5, Lemma II.4.2, Remark III.5.8, Proposition IV.4.8, Theorem IV.A.7,

Lemma VI.2.5, and Theorem VI.0.1:

Theorem A.4. Let X be a reduced, proper, geometrically connected, local complete inter-

section curve over a perfect field k. Then there exists a coherent sheaf wx on X satisfying:
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(i) wx is invertible, and there is a natural sheaf map QX -+ wX which is an isomorphism

away from the singularities of X.

(ii) For all coherent b&x-modules A, there is a canonical isomorphism H 1(X,g) 4
Homax (9, wx)V; in particular, if 9 is locally free, we have HI (X, ') - H°(X, 9V ®

wx).

(iii) For any divisor D on X, h(X, #(D)) - h(X, i(-D) 0 wx) = degD + 1 - pa(X).

(iv) For any F locally free of rank r and degree d, h(X, 9) - h(X, v ® wx) = d +

r(1 -pa(X))

Here pa(X) := h(X,wx), but may be explicitly computed using, for instance, [8, Thm.

5.2.3].

Proof. For (i), wx is invertible by [1, Rem VIII.1.17, (ii), p. 170]. Since k is perfect, the

normalization v : X' - X is smooth over k, so wx, = RQ, by [1, Thm. 1.4.6, p. 14]; we

have the natural map QX - v, lQ,, and we have an injective map v*wx, - wx by [1,

Prop. VIII.1.16, (i)], with cokernel supported at the singularities of X. Since the first map

is visibly an isomorphism away from the singularities of X, we get the desired result.

(ii) is Roch's half of Riemann-Roch, and the original version of Serre/Grothendieck

duality, see [1, Thm VIII.1.15, p. 167].

(iii) is Riemann's half of Riemann-Roch (see [1, Thm. VIII.1.4, p. 164]) together with

(ii) and the fact that h°(X, Ox) = 1 for X proper and geometrically reduced and connected

(see Lemma A.24).

Finally, to derive (iv) from (ii), all one needs is to check that deg # (which we define to

be the degree of the determinant line bundle of 9), is also given by X(S) - rX(6x). This

may be checked inductively on the rank, with Riemann's formula used for (iii) as the base

case, and using the formula that for a short exact sequence 0 -* A' -+ X -* " -+ 0, X is

additive, and det o ~ det A' 0 det 5". O

Ampleness of sections of relative curves

Used in Lemma II.4.2:

Proposition A.5. Let r : X -+ Y be a flat proper morphism, all of whose geometric

fibers are connected, reduced, local complete intersection curves, and let Di be a collection
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of sections into the smooth locus of r, such that every component of every geometric fiber

of r meets some Di. Then the divisor D = Ei Di is iT-ample.

Proof. By [59, Prop. 4.7.1] one can check that D is Tr-ample fiber by fiber. Let Xy be

a fiber, then if v is any line bundle on Xy, we can check ampleness after passing to the

algebraic closure of n(y); this is clear from, for instance, [59, Prop. 2.6.1], which says that

ampleness is equivalent to the vanishing of H 1(Xy, # 0 been), for all coherent sheaves

9 and n sufficiently large (and allowed to depend on 9). Denote our geometric fiber by

Xy; we check this criterion directly, using Theorem A.4; we have H1 (Xy, 9 0 O(D) n )

Hom(9 0 69(nD), wy) r F(7tom(9,wgy) 0 (-nD)). Now, since wxy is invertible and

in particular torsion-free, 7-om(S, wky) is torsion-free, and no section not vanishing on a

component of Xy can be in every power of the maximal ideal at any point of that component,

no non-zero sections persists after twisting by arbitrarily high powers of 8(-D). Moreover,

by coherence the global sections are finitely generated, so for sufficiently high powers of

8(-D), none of the global sections persist, giving the desired vanishing of H1 . D1

Remark A.6. The previous proposition is true for considerably more general schemes of

relative dimension one, but the argument becomes more difficult in full generality, and we

will only apply it to the nodal case.

The relative Picard scheme of curves of compact type

Used in Theorem 11.4.3:

Theorem A.7. Let i : X - B be a flat, proper family of genus-g curves of compact type

over a Noetherian scheme B, and suppose that the singular locus of X/B has at most a

single component A', which maps isomorphically onto its image A, with XIA = Y U Z

breaking into distinct components with Y n Z = A'. Assume further that there are sections

Di of the smooth locus of X/B such that every components of every geometric fiber meets

at least one Di. Then if we consider the functor Pic(X/B) associating to each T/B the

group Pic(XT)/ Pic(T), we have the following subfunctors, and each is representable by a

smooth, projective scheme over B:

(1) If A' is empty, the subfunctor Picd(X/B) for any d, corresponding to line bundles of

degree d on each fiber.
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(2) If A' is non-empty, the subfunctor Picd i(X/B) for any d and i, corresponding to line

bundles of degree d on each fiber, with degree i on each fiber of Y and d - i on each

fiber of Z.

Proof. By [3, Thm. 9.4.1], in either case Pic°(X/B) is representable by a smooth, separated

B-scheme with B-ample line bundle, and parametrizes line bundles with degree 0 on each

component of each fiber. Note that the functor is of the claimed form by [3, Prop. 8.1.4],

also using A.24. We claim that this is the scheme we want. In the first case, if D1 is a

section of r, we can simply twist by ex(dD 1) to construct a correspondence between line

bundles of degree 0 and of degree d. In the second case, if D1 is on Y and D2 is on Z

when restricted to XIl, we can twist by x(iDi + (d - i)D2) to construct the desired

correspondence.

Because we have a B-ample line bundle, projectivity will follow from properness. Since

our base is Noetherian, by the strong form of the valuative criterion for properness we can

check properness after base change to Spec A for A an arbitrary DVR, in which case we have

B regular, and by the smoothness of the Picard scheme, it is also regular and in particular

integral. We can then check properness in this particular case on fibers: the hypotheses of

Proposition A.23 are satisfied (see, for instance, [25, p. 250], and/or Lemma A.9 (ii) below).

Alternatively, we could apply [63, Cor. 15.7.11] with Y' = Y and the identity section of the

Picard scheme as the required section. C

The behavior of the relative Picard scheme for X/B when X breaks into

components

Used in Section II.3, Theorem II.4.3, and Theorem A.7:

Definition A.8. For the purpose of the next lemma, we say that a scheme X is a union

of two closed subschemes Y and Z if there is an exact sequence

0 - Ax -+ t y z -+ 6tynz - 0;

if X is reduced, this is equivalent to the topological notion, otherwise it is stronger in its

requirements on the choice of Y and Z.

Lemma A.9. Suppose we have 7r : X B, and X is a union of two closed subschemes Y

and Z, with Y n Z flat over B. Then:
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(i) For any B' - B, if we denote by X', Y', Z' the schemes obtained by base change,

there is an exact sequence:

1 - t, g atY0,--> tY'nz,- 1.

(ii) Suppose further that 7r is quasi-compact and separated, that Y n Z has a section over

B, and that Y n Z has geometrically reduced and connected fibers. Then Pic(X/B) 

Pic(Y/B) Xpic((ynZ)/B) Pic(Z/B), where Pic(T/B) denotes the functor associating

to each B-scheme B' the group Pic(T XB B')/l Pic(B').

(iii) In particular, if 7rlYnz is an isomorphism onto B, then we have the product decompo-

sition Pic(X/B) ' Pic(Y/B) XB Pic(Z/B)

Proof. By hypothesis, we have an exact sequence

O -+ x -+ e z - vynz - 0.

Because we have supposed that Y n Z is flat over B (and because intersection always

commutes with base change), exactness of this sequence is preserved under base change,

and passing to units (and correspondingly changing the second map from subtraction to

division) clearly preserves injectivity, which reduces (i) down to the observation that on

sheaves, restriction of units to a closed subscheme is surjective.

To prove (ii), we obtain from (i) an exact sequence

HO(Y', 69 ,) H°(Z', &Z7,) - HO(Y' n Z, ,nzt) - H (XI' )

-- H1 (Y ', A,) Et) H1 (Z', A&,) -+ H1 (Y n Z t, by*,nz,).

By Lemma A.24, 7r*, &Ynz = B', in particular every global unit on Y' n Z' is the pullback

of a global unit on B', which gives surjectivity of the first map in the above sequence, and

consequently implies that we have

1 - H1(X', er,) -- H1(Y', q,/) Ef) H1(Z', A,) - H1(Y' n Z, &Y'nz,)

Now, the existence of a section from B' to T for T = X', Y', Z', Y' n Z' (with the first three
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following from the last) implies that the natural map 7r* : Pic(B') -+ Pic(T) is injective, and

it is easily verified that modding out the exact sequence above by H 1 (B', 6b1,) = Pic(B')

preserves exactness: for instance, injectivity is preserved because any i7 = (7r*71,7r*772) E

Pic(B') Pic(B') C Pic(Y') G Pic(Z') which comes from Pic(X') must map to the trivial

element of Pic(B') c Pic(Y' n Z'), and hence must have l71 = r72, so that q7 is the image of

7rT*71 E Pic(X'). This completes the proof of (ii), and (iii) then follows trivially. El

Example A.10. If we weaken the flatness hypotheses of the lemma, we no longer have

that exactness of our initial short exact sequence of sheaves is preserved under base change.

For instance, if we start with A = k[x,y]/(xy) and ideals I = (x) and J = (y), and set

X = Spec(A), Y = Spec A/I, Z = SpecA/J, we have A "- A/I x A/J, but if we tensor with

B = k[x, y, u, v, w]/(xy, w-xu, w-yv), we find that w is in the kernel of B -+ B/IBxB/JB.

Grassmannians and Schubert cycles

Used in Theorem II.4.3, Lemma II.A.3, and Theorem II.A.14:

Theorem A.11. Let S be a scheme, g a vector bundle of rank d on S, and r < d a positive

integer. Then:

(i) The Grassmannian functor associating to any T/S the sub-bundles 9 of eT of rank

r is representable by a projective, smooth scheme G = G(e,r) over S, of relative

dimension r(d - r). Indeed, G is locally isomorphic to A(dr).

(ii) If we are also given a sequence of locally free quotients

= 9d - d-1 - '"- - Q1 - - = 0

with rk Qi = i, and integers 0 < ao < al < ... < ar-1 < d then we have the associated

Schubert cycle Z = E(e, r, ai, ai) representing the functor of sub-bundles 9 of gT of

rank r and such that rk(9 -+ ai) < i for all i. It is integral when S is integral, and

when S is also Cohen-Macaulay the Schubert cycle has pure codimension Ei(ai - i)

inside the Grassmannian scheme.

Proof. For (i), see [32]: Proposition 1.2 gives representability, with smoothness and the

dimension following from the argument by virtue of the local cover by copies of Ar(d-r);

projectivity is a consequence of Proposition 1.5.
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For (ii), we work on the local rings of S so that everything becomes free, and refer to [5].

Note that there they write G(X; y) for (the associated graded ring) of a Schubert cycle, with

a switch in their own index notation in the statement of Theorem 5.4 (a) (note especially

the final sentence on p. 52). Due to slight indexing differences, the ai of their y are equal

to our ai-1 + 1. For the statement that the Schubert cycle is integral when S is, see their

Theorem 6.3. For the codimension statement, we only use that S is Cohen-Macaulay to

conclude that the ambient Grassmannian scheme is catenary; it then suffices to choose any

point x E E E G and show that dim 6G,x - dim ',,x = Ei(ai - i). One approach would be

to produce an open subset of E which is in fact locally isomorphic to affine space of the right

dimension (see [18, Proof of Prop. 14.6.5]); for our choice of reference, it is more convenient

to apply Corollary 5.12 (b), which says that dimG - dim = (ai - i), since G = E for

the ai set to i. We note that the argument for dimension (in Proposition 5.10) was simply a

fiat fibers argument, and because the fibers are integral of finite type over a field, they have

the same dimension at every closed point x of G inside , so we have dim G = dim 'G,x

and dim E = dim E,x and conclude the desired codimension statement. ]

Curves in the moduli space of vector bundles

Used in Theorem IV.5.5 and Proposition A.31:

Proposition A.12. Let C be a smooth, proper curve over an algebraically closed field k,

and M a coarse moduli space of stable vector bundles on C of fixed rank and determinant.

Then if S is a smooth curve over k, any map S -+ M is induced by a family of vector

bundles on S x C.

Proof. The key point is that the obstruction to the existence of g is in the Brauer group of

S. Given this, the fact that S is a smooth curve over an algebraically closed field implies

that the obstruction vanishes, giving the desired result; see [17, Lem. 5.2], or for a non-

cohomological formulation, apply Tsen's theorem [17, Rem. 1.14] and [22, Cor. 1.10]. The

statement on the obstruction being an element of the Brauer group is proven in the analytic

setting in [6, Prop. 3.3.2]; the argument requires some slight modifications in characteristic

p, but the crux of the matter is the argument that the GIT quotient is an etale principal

PGLn-bundle: [27, Cor. 4.3.5] does not go through because of the use of Luna's etale slice

theorem, but the argument does still show that the stabilizer in PGLn of any stable point
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is trivial, and [44, Cor. 2.5, p. 55] then asserts that the action is proper; putting these

together we conclude that the action is free, and then [44, Prop. 0.9, p. 16] gives that it

is a flat principal PGLn-bundle. Finally, since PGLn is smooth, one gets from [24, Thm.

11.7] that it is an etale principal PGLn-bundle, as desired. []

Properties of Hulls (following the terminology of [53])

Used in Theorem IV.A.7:

Lemma A.13. Let F1, F2 be moduli functors over an algebraically closed field k, and F1

and F2 the induced deformation functors at chosen k-valued points of F1 and F2. Assume

that F1 and F2 have hulls R1 and R2. Then:

(i) If f: F1 -+ F2 is a morphism of functors, there is an induced morphism (not neces-

sarily unique) of hulls SpecR 1 - Spec R 2.

(ii) If F1 is a closed subfunctor of F2, and is in fact prorepresentable by SpecR 1, then

Spec R1 is naturally a closed subscheme of Spec R 2.

(iii) If F1 has a coarse moduli scheme M1 constructed via geometric invariant theory as

a quotient of a rigidified moduli scheme (as in [44, Thm. 1.10, p. 38]), and M1 is

irreducible, then the natural map SpecR1 - SpecM1 is dominant, in the sense that

the generic point of M1 is in the image.

Proof. The assertions follow from the definition of a hull [53, Def. 2.7]. For (i), because R2

is formally smooth over F2, we may lift a map (not necessarily uniquely) inductively from

R/mn to R /mn +1 for each n, agreeing with the given map on the underlying functors at

each stage, and finally since R 2 is complete we obtain the desired map.

For (ii), we must also use that a hull induces an isomorphism on tangent spaces with

the underlying functor; since F1 is a closed subfunctor of F2, we certainly obtain a natural

closed subscheme of Spec R 2, which is smooth over Spec R1 and induces an isomorphism on

tangent spaces. This implies that it is in fact isomorphic to Spec R1; see [53, Prop. 2.5 (i)].

Finally, for (iii), we show that the image of Spec R1 is not contained in any proper

closed subset of M1; given any such subset, we get a corresponding closed subset of the

GIT rigidification M, which is strictly contained in Mf because the rigidification maps

surjectively to M1. We can then find a curve in Ml through our k-valued point and not
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contained in the closed subset; if we normalize, take the local ring, and complete, we obtain

a map from Spec A to Ml for A a complete DVR with residue field k, with the closed

point mapping to our chosen k-valued point, and image not contained in the chosen closed

subset of M1. Since the rigidification is representable, this gives a point of F1(A). Now,

the quotients A/m are all Artin k-algebras with residue field k, so we have induced points

F1 (A/m ) for all n, and by the smoothness of R1 over F1 , these may be lifted to a collection

of compatible points R 1 (A/m). Since A is complete, this induces a map Spec A -+ Spec RI

factoring our original map Spec A -+ M 1, which implies that Spec R 1 - Ml is not contained

in the chosen closed subset of M 1. Since this subset was arbitrary, we obtain the desired

dominance. D

Scheme-theoretic image and base change

Used in Theorem A.2:

Proposition A.14. Let f : X -+ Y be a quasi-separated, quasi-compact morphism of

schemes. Then taking the scheme-theoretic image under f commutes with flat base change.

Proof. With the hypotheses on f, the scheme-theoretic image is defined by the kernel of

the induced map y - f*6 x (see [57, Cor. 9.5.2], together with [65, Prop. 6.7.1]).

Pushforward commutes with flat base change (see [26, Prop. III.9.3]), and it is easy to

check directly from the definition that taking the kernel of a map of dy-modules commutes

with fiat base change, giving the desired result. O

Remark A.15. The above statement is false if either the hypotheses on f or the base change

is dropped. For instance, without the quasi-compactness hypothesis, one could take the

natural inclusion JIn Spec k[t]/tn -+ Spec k[[t]], which is scheme-theoretically surjective,

but becomes the empty inclusion after base change to the generic fiber. Without flatness,

one could take an open immersion into an integral scheme, and base change to any point

not in the set-theoretic image.

Deformations of locally free modules

Used in Section IV.3 and Proposition V.2.3:
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Proposition A.16. Let S be a scheme, and denote by S' the fiber product S x Spec 2[e]/(E 2).

Suppose S is a coherent sheaf on S'. Then 9/eg and e9 may both naturally be considered

coherent sheaves on S, and 9 is locally free of rank r on S' if and only if 9/eg and e9

are locally free of rank r on S.

Proof. The statement being local, we may restrict to an affine open of S, so that S = Spec R,

S' = Spec R[e], and 9 = M for some finitely-generated R[e]-module M. One direction being

obvious, we assume that S/eg and e9 are locally free, and further localize so that M/eM

and M are free. We note that there is a natural surjective map 7r : M/eM -** eM. It is

easy to check that if M/eM is free, and 7r is an isomorphism, then any lift of any basis of

M/eM forms a basis of M. On the other hand, if eM is free, since r is surjective, ker r is

also free, and if the ranks of M/eM are equal, ker 7r must be zero, r is an isomorphism, and

we find that M is free of the same rank, as desired. O

Reducedness from fibers

Used in Corollary II.5.12:

Proposition A.17. Let f: X -+ Y be a morphism, with all fibers of f reduced. Then if

either

(1) f is flat of finite type and Y is reduced and Noetherian, or

(2) f : Xred -+ Y is flat

then X is reduced.

Proof. For (1), reducedness is equivalent to having t6 y -+ ip Y lp for all points P E

Y, or equivalently, for P all generic points of components of Y; since Y is Noetherian,

this is a finite product, so tensoring with Yx commutes, and by flatness we have x "-

lip xlIf-l(P) · Since we have supposed that the fibers are reduced, we have exlf-(P) "

fIQp OxIQp where Qp are the generic points of f-1 (P), and composition gives ex 

Hp,Qp tXIQp, which implies that X is reduced.

For (2), let 9 be the sheaf of nilpotents inside Ax; we have

0 -+ -- XX ' &Xred - 0)
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and the hypothesis that &Xred is flat over y means that for all y E Y, S y, (y) 

Ox ®ax (y), so by the reducedness of fibers, , ®v, rI(y) = 0 for all y. Because X is

Noetherian, # is finitely generated, so we can apply Nakayama's lemma to conclude that

o¢=0. 0

Remark A.18. In case (1), we only used that the generic fibers were reduced. However, in

case (2), this is not enough, as one could consider a line with an imbedded point mapping

to the line.

Question A.19. Given that either (1) or (2) is a sufficient hypothesis, it appears that there

could be an underlying topological phenomenon. We ask: if f is open with reduced fibers,

and Y reduced, is X reduced?

Example A.20. Note that f dominant (on every component of X) is not enough: the

standard example of a morphism with constructible image is easily modified to provide the

explicit counterexample: Speck[x,y,z]/(xz, yz, z 2) -- Speck[s,t] by s - x, t - xy + z.

Remark A.21. The locus of reduced fibers is not very well-behaved. For instance, it need

not be constructible, as demonstrated by Spec k[t,x]/(xP - t) over Spec k[t], which has all

its closed fibers non-reduced, but reduced generic fiber. On the other hand, [63, Lem. 9.7.2]

implies that the opposite cannot occur.

Corollary A.22. Let f : X -+ Y be a dominant morphism, with X irreducible and Y =

Spec A, with A a DVR. Then if either X is reduced, or if the fibers of f are reduced, one

has that X is reduced and f is fat.

Proof. The case that X is reduced is simply [26, Prop. III.9.7]. On the other hand, it

follows that Xred is flat over Y, at which point case (2) of the preceding Proposition implies

that if f has reduced fibers, X is reduced, so X = Xred is flat over Y, as desired. O

Properness from fibers

Used in Theorem A.7:

Proposition A.23. Let f : X -+ Y be a separated morphism of finite type, with X, Y

integral and Y Noetherian and normal, and suppose that all geometric fibers of f are proper,

and consist of exactly one connected component. Then f is proper.
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Proof. First, because Y is Noetherian, and the hypotheses are all preserved under base

change, it suffices by the valuative criterion of properness to consider that case that Y =

Spec A for some DVR A, and in particular Y may be assumed to be integral and normal. By

Nagata's compactification theorem [39], we can realize X as an open (scheme-theoretically)

dense subscheme of some X which is proper over Y (note that we can argue instead using

the considerably easier Chow's lemma, but Nagata's theorem simplifies the argument). We

wish to show simply that under the hypotheses, X = X. The crux of the argument is that

X must also have connected fibers over Y: given this, and given P E X, the hypotheses

imply that the fiber Xf(p) of X inside the fiber Xf(p) of X containing P must be non-empty,

open, and closed, so if Xf(p) is connected, it is equal to Xf(p), and P is contained in X.

However, because X is open dense in X, its geometric generic fiber must be dense in

the geometric generic fiber of X, which must then be connected. This implies that K(Y)

is separably closed in K(X), and then by [59, Cor. 4.3.7], all the fibers of X must be

connected, and we are done. O

Fibers and cohomological flatness

Used in Lemma II.3.2, Theorem II.4.3, Theorem A.4, Theorem A.7, and Lemma A.9:

Lemma A.24. Any flat proper morphism r : X -+ B with geometrically reduced and

connected fibers universally satisfies r. 6x = B .

Proof. Since 7r is proper with geometrically reduced and connected fibers, the global sections

of Ax restricted to any geometric fiber, and hence any fiber, is simply the field itself:

indeed, considering any global section as a morphism to Al, the image is affine, proper, and

connected, and hence a single point; since the geometric fiber and A1 are both reduced and

of finite type over an algebraically closed field, morphisms are determined on points, giving

the desired isomorphism between global sections and the base field. Hence, by cohomology

and base change (see Theorem A.32), r. tx is a line bundle on B. Finally, the identity

section on Ox pushes forward to give a nowhere vanishing section of 7r8 x, so we find that

7rx - OB. Moreover, this property is preserved under base change, as we only used

properness, flatness, and geometric properties of the fibers. [O
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Flatness of the relative Frobenius morphism

Used in Theorem 111.1.4 and Theorem IV.A.7:

Proposition A.25. Let X be a smooth S-scheme, with S of characteristic p. Then the

relative Frobenius morphism F : X - X(P) is flat.

Proof. Since the relative Frobenius map commutes with base change, the criterion on flat-

ness and fibers (see [63, Thm. 11.3.10]) reduces the question to the case that S = Spec(k).

It is also clear that it suffices to prove flatness after faithfully flat base change, so we may

further assume that k is algebraically closed. Now, X is regular, so its absolute Frobenius

morphism Fx is flat [40, Thm. 107, p. 300]; on the other hand, since k is algebraically

closed, FSpec(k) is an isomorphism. If we denote by 7rx/ Spec(k) the base change of FSpec(k)

to X(P), the relative Frobenius morphism Fx/ Spec(k) for X may therefore be composed with

the isomorphism TX/ Spec(k) to obtain the flat map Fx, and is hence flat, as desired. l

Degrees of rational maps

Used in Proposition IV.1.2, Lemma IV.2.3, and Remark III.7.5:

Proposition A.26. Let X and Y be integral schemes of finite type and the same dimension

over a field k, and f: X -+ Y a dominant morphism (equivalently, since we do not assume

properness, a dominant rational map). Then:

(i) f induces a finite extension K(X)/K(Y), and there exists a non-empty open subset

U C Y such that for each y E U, the length of Xy is equal to [K(X): K(Y)].

(ii) If X and Y are regular, then for all y C Y, either Xy has positive dimension, or the

length of Xy is less than or equal to [K(X) : K(Y)].

Proof. For (i), the dominance and dimension hypotheses immediately imply that the generic

fiber is precisely the generic point of X, which is then of finite type over the generic point

of Y, giving the first assertion of (i). Next, by Nagata's compactification theorem (see [39]),

we may assume that X is proper over Y; indeed, the "boundary" of the compactification

has strictly smaller dimension, so its image is contained in a closed subset of Y, and it

follows that after restriction to an open subset of Y contained in the complement, f will

be proper. Now, the loci of flatness and quasifiniteness are both open on X (see [63, Thm.
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11.1.1] and [63, Thm. 13.1.3]), and dimensional considerations imply that if we restrict to

an appropriate open set U of Y, we get a morphism which is finite fiat. We thus have that

restricted to U, the morphism is finite flat, and must have length of all fibers equal to the

length of the generic fiber, as desired.

For (ii), we can first remove the closed subset of X on which f is not quasi-finite; if we

then prove that for all y E Y, the length of Xy is less than or equal to [K(X): K(Y)], this

will give the desired result. Neither the lengths of fibers, nor the regularity hypotheses, will

be affected by etale base change, so for any y E Y, make an etale base change to decompose

f into a disjoint union of a finite morphism with a morphism missing y (this is possible by

repeatedly applying [3, Prop. 2.3.8 (a)] for the finitely many points of Xy). Now f is finite

flat at all the points of X,, so the generic fiber has length at least as large as the length of

Xy, as desired. ]

Corollary A.27. Let X and Y be integral schemes of finite type and of the same dimension,

and C a curve, all smooth over a field k, and f : X x C --+ Y x C a family of dominant

rational maps from X to Y. Then the degree of f over any given point of C is less than or

equal to the degree at a general fiber.

Proof. We apply the previous proposition. It immediately follows from the hypotheses that

f itself is a dominant rational map, and hence has some finite degree d. Then on some

Zariski open of Y x C, each fiber of f has length exactly d. In particular, over a general

point P of C, there is a Zariski open on which each point has fiber under f of length d, and

since f is a family of maps, which is to say a morphism over C, the entire fiber is over the

same point P of C, so the degree of fixc is still d. Now, over the remaining (finitely many)

points of C, the degree may only be lower than d, since given a degree d rational map, no

point with a fiber of finite length can have length greater than d. ]

Even in the simplest cases, the degree need not be constant over families, and can drop

at particular fibers:

Example A.28. Consider the family of maps from IP2 to itself given by (X, Y, Z) -+

(X2 , y 2, YZ + tZ2 ). We immediately see that if t :$ 0, the map is actually a morphism.

But for t = 0, while the map remains dominant, it is undefined at (0, 0, 1). By Proposition

IV.1.2, this means that the degree is 4 for a general fiber, but strictly less than that at t = 0
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(in fact, it is easy to check that the undefined point has length 2, so the degree at t = 0 is

2).

Kernels of connections and completion in characteristic p

Used in Proposition V.1.8 and Lemma V.2.4:

Proposition A.29. Let X be a scheme of finite type over a base scheme S of characteristic

p. Suppose g is a vector bundle on X, and V a connection on g. Then the kernel of V

may be computed formally locally. More precisely, given any point x of X, if we denote

the relative Frobenius morphism by F, the kernel of V on the stalk of G at x is natu-

rally an tx(p),F(x)-module, and its completion maps naturally to the kernel of the formal

local connection obtained from V by completion at x; the assertion is that this map is an

isomorphism.

Proof. The main observation is that V may actually be considered as an x(p)-linear map

F,g - F,( 0® Q1x/); since F is a homeomorphism, no information is lost by pushing

forward. Because G and G ® 1/s are coherent, and F, is finite, the completion is obtained

simply by tensoring with the completion of the local ring [13, Thm. 7.2 a.]; this is an

exact process, since the completion is flat [13, Thm. 7.2 b.], so the kernel of this map of

Ox(p)-modules may be computed formally locally. To complete the proof, it then suffices

to observe that completion commutes with translation from the connection setting to the

6x(p)-linear map setting, which is clear from the definitions. O

Vector bundles and connections with trivial determinants

Used in Section III.1, Theorem III.1.4, and Lemma V.6.4:

Proposition A.30. Let G be a vector bundle with trivialized determinant on a smooth

variety X over a field k of characteristic p, and V an integrable connection on &. Then:

(i) Suppose V has vanishing p-curvature. Then V has trivial determinant if and only if

the vector bundle GV has trivial determinant on X(P).

(ii) Suppose V has trivial determinant. Then the p-curvature of V has image in the

traceless endomorphisms of .
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Proof. For (i), we apply Proposition V.1.4, while (ii) will require Proposition III.2.7. The

former made no use of the hypothesis that the base was a curve. The latter did use this

hypothesis in order be able to locally trivialize QX with a single one-form, but this was in

fact entirely superficial, and used only so that it would suffice to consider a single connection

matrix of functions in our calculations. Indeed, if T is a connection matrix of one-forms

on U, and 0 a derivation on U and 0 the corresponding linear map from Q to ex, we

have Vo(s) = 0(T)s + Os, and if we write T = 0(T), it is easy to see that the calculations

of Proposition 111.2.6 and hence Proposition 111.2.7 give the formula for the endomorphism

VPv(0) for our particular 0.

Now, for (i), if GV has trivial determinant, it is easy to check that there is some col-

lection of open sets Ui C X(P) on which gV is trivialized, with trivializations such that

all transition matrices Ev have trivial determinant. Then g = F*gv will be trivialized

on F- 1 (Ui), and will have transition matrices F*E v , which will again have trivial deter-

minant. Moreover, under this trivialization, V will simply be given by the zero matrix on

each F-l(Ui), so it certainly has trivial determinant. Conversely, suppose that V and g

have trivial determinant; we write g as trivialized on Ui C X, with transition matrices Eij

having trivial determinant, and V given by matrices Ti, which then have vanishing trace.

By the formula of Proposition V.1.4, Tr Ti = 0 implies d det Si = 0 where Si is any inclusion

of 6v into g on Ui; such an inclusion is F-linear, so we obtain a trivialization of E on

the F(Ui), with transition matrices E7v satisfying Sj-lEijSi = F*E v . Change of basis of

EV1ui by an invertible matrix Mi will change Si to SiF*Mi; we want to show that we can

modify each Si in this manner to make F*Ei7 have trivial determinant for all i, j. In fact,

we note that since each ddet Si is zero, we can modify each Si by some F*Mi (specifically,

a diagonal matrix with the desired scaling factor in the first coordinate) to make each Si

itself have trivial determinant, giving the desired result.

For (ii), we need only note that since the operation of taking traces is zero on matrix

commutators, the same argument used to derive Corollary III.2.8 from Proposition III.2.7

still works, so we find we that for any derivation 0 on some open U,

Ov(0) = TP + (Op-1T) - fopT.

The second and third terms visibly have vanishing trace because T does, while it is easy

240



to see (for instance, by passing to the algebraic closure of k and taking the Jordan normal

form) that the trace of the pth power of a matrix is the pth power of the trace. Since 0 was

arbitrary, this gives the desired result. OI

Projective bundles on curves

Used in Section V.6:

Proposition A.31. Let be an etale projective bundle on a smooth curve C over an

algebraically closed field k. Then Y is the projectivization of a (Zariski) vector bundle g

on C.

Proof. Y is an element of Hel (C, PGLn), and will be the projectivization of an etale vector

bundle if and only if it is in the image Hlt(C, GLn), which is to say, if and only if its image

in the Brauer group H2t(C, Gm) vanishes. But the Brauer group is zero in this case by

Tsen's theorem (see proof of Proposition A.12), so Y is the projectivization of an etale

vector bundle . However, by faithfully flat descent for coherent sheaves [3, Thm. 6.4],

the etale vector bundle comes from a quasicoherent Zariski sheaf, which must then also be

locally free of the correct rank, so we get the desired result. [O

Cohomology and base change

Used in Lemma II.4.2, Remark 11.5.8, and Lemma A.24:

Theorem A.32. Let f: X - S be a proper morphism to a locally Noetherian scheme, and

9 a coherent Aix-module which is flat over S. Then given an integer i, the following are

equivalent:

a) Base change commutes with Rif,* for .

b) Base change to any point s E S commutes with Rif, for S.

c) For all s E S, the canonical map Rif,() - Hi(Xs,,s) is surjective.

Additionally, of the following conditions, a) implies b) and c), and when S is reduced,

we also have that b) implies a) (and hence c)).

a) Base change commutes with Rif, and Ri+lf, for S.
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b) The function s dimHi+l(X, 9) is constant with value r.

c) Ri+lf,() is locally free of rank r.

Proof. This simply translates and pieces together several results from [60, §7], with S re-

placing Y, and Y. the single-term complex consisting of . in degree zero. The main point

of the translation is the notation for §7.7 defined in 7.7.1.1. For the equivalence of the first

three conditions, Rif. commuting with base change is simply condition d) of Theorem 7.7.5;

it is clear that our a) implies our b), and our b) implies our c), and the last statement of

Proposition 7.7.10, combined with Theorem 7.7.5, implies that our c) is equivalent to our

a).

For the next three conditions, we combine the exactness conditions of Theorem 7.7.5,

with the local-to-global statement of Proposition 7.7.10, at which point the desired asser-

tions are obtained directly from parts b), d), and e) of Proposition 7.8.4. ]
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