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Abstract

Damage to DNA can occur by means of endogenous biochemical processes or exogenous chemicals
such as alkylating agents. If left unrepaired, alkylated bases, most notably, 06 Methylguanine (O6MeG) can be
mutagenic and cytotoxic to the cell. Luckily, DNA methyltransferase (encoded by the gene MGT1 in yeast),
repairs this damage. By using transcriptional profiling as a tool, an attempt to elucidate the role of MGTI has
been made. First, the basal expression profile of the mgtl was established. Then, the response of wild-type
(WI) yeast and yeast lacking MGT1 (mgti) to the alkylating agent, MNNG was studied using exponentially
growing WT and mgti cultures which were exposed to 30btg/ml of MNNG for 10 to 60 minutes.

Basal expression profile of yeast lacking MGTi showed up-regulation of RETV7, a gene implicated in
spontaneous mutagenesis. Response to MNNG was invoked immediately and was dramatic and widespread
involving 30% of the genome in both WT and mgt/. Cell-cycle checkpoints, damage signal amplifiers, DNA
repair genes (nucleotide excision repair, photoreactive repair, mismatch repair) and chromatin remodeling
genes were induced. Genes involved in maintaining mitochondrial structure and mitochondrial genome were
also induced. Intriguingly, RPN4, a key regulator of proteasomal system was found to be repressed.
Environmental stress response genes were culled out to examine the effects of MNNG on WT and mgtl,
more carefully.

Temporal gene expression profiles in WT and mgtl were informative in delineating differences in the
distinct responses mounted by WT and mg/tl. The magnitude of response in mgt/ is more profound than in
WT. The differences in the dynamic trends between the two suggest that mgt/ initiates a coordinated response
involving repression of transcription factors and subsequently, induction of RNA processing (35% of genes
incrementally induced) and kinases involved in protein phosphorylation. In the W\T, the response was
restricted to a transient repression of fundamental biochemical processes. Interestingly, a gene whose
repression is known to mimic apoptosis was found to be repressed in the ~WT. The overwhelming induction
of ribosomal protein synthesis genes in both WT and mgtl in response to MNNG is an unexpected result that
could signify a successful recovery following wide-spread cellular damage.

Thesis supervisor: Leona D Samson
Title: Professor
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Chapter 1: Introduction

BACKGROUND

Genetic information in any cell is chemically stored in the form of deoxyribonucleic

acid (DNA) and it essentially comprises a sequence of repeating nucleotides. Nucleotides in

turn consist of a pentose sugar, a nitrogenous base and a variable number of phosphate

groups stacked and aligned in an orderly fashion. Maintaining the physical and chemical

integrity of the DNA structure is vital for its function. Unfortunately, however, errors can be

introduced during replication, recombination and even repair. They can also be introduced via

damage due to physical and chemical agents. Eventually, if errors remain uncorrected, it may

lead to instability of the chemical structure and modification of the molecular structure. Such

an alteration classifies as DNA damage and this may sometimes preclude the semi-

conservative replication of DNA, lead to cell cycle arrest and often, cell death. Another

ominous outcome of unchecked DNA damage is the accumulation of mutations that can lead

to cancer. (Figure 1)

APOPTOSIS

/1 I
DNA damage Mutations CANCER

! '. T
Cell cycle DNA repair

arrest

Figure 1: Unchecked DNA damage may lead to cancer.
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The mechanism of damage to DNA

Spontaneous alterations

The nitrogenous bases, purines and pyrimidines, occasionally undergo a spontaneous

alteration in their chemistry. The bases can lose their exocyclic amino group and undergo

deamination. This modification increases the propensity for anomalous pairing of bases and

an inappropriately incorporated base can introduce a transition or transversion mutation. In

addition, instability of base pairing may also lead to replication arrest. Purines and pyrimidines

can also be spontaneously hydrolyzed and lost. (Lindahl, 1993). Abasic sites that are produced

can also lead to mutations during replication. (Loeb, 1986)

Unlike the fleeting deamination and hydrolysis reactions, oxidative damage to DNA is more

elaborate and once initiated, results in a chain reaction. The cause of damage can be

exogenous or endogenous. Exogenous sources of oxidative DNA damage include radiation,

near UV light at 320 to 380nm and several drugs (Friedberg, 1995). Endogenously, redox

reactions which ubiquitously occur in cells, are the major source of reactive oxygen species.

Notable among them are the by-products of aerobic mitochondrial respiration. Singlet oxygen

and hydrogen peroxide inflict damage via formation of hydroxyl radicals through metal

catalyzed reactions. The intermediates and by-products of such reaction are independently

capable of inflicting more damage on intracellular macromolecules. Fortunately, there are

several cellular defense mechanisms help to mitigate the effect of these reactive oxygen

species (ROS). These include antioxidant enzymes such as superoxide dismutase, glutathione

peroxidase and other scavengers, Vitamin C and a tocopherol. Potentially unfavorable cellular

responses triggered by the presence of ROS may include the inhibition of cell cycle

progression, the initiation of apoptosis and the activation of a degradative process to replace

macromolecules. Oxygen radicals are also known to induce chromosome breaks. In general,

irrespective of the source and mechanism of alteration or damage, the most ominous outcome

is typically a mismatch of base pairs during DNA synthesis. The most important oxidative

base adduct, 8-oxoguanine can mispair and be mutagenic (Lindahl., 1993, Friedberg, 2002).
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Figure 2: The nitrogenous bases; Purines (A,G) and Pyrimidines (C,T,U)

Environmental damage

Physical agents - onizing Radiation: Apart from spontaneous alterations and damage to

DNA, physical and chemical agents in the environment inflict a substantial amount of

damage. Exposure to ionizing radiation as a therapeutic, diagnostic or occupational hazard

induces a variety of lesions by direct damage. Radiolysis of water generates reactive oxygen

species that damage cellular macromolecules. Glutathione, a radioprotector, can counteract

the damage at several tiers of radical production. Damage to bases, sugar moieties and direct

induction of strand breaks can occur. Strand breaks are a special problem since mere DNA

ligation may not be sufficient to repair the lesion. (Burrows, 1998). Ultraviolet (UV) radiation

induces covalent linkage of adjacent pyrimidines producing cyclobutane pyrimidine dimers

(CPD). These lesions distort the helix and lead to extensive bending of DNA, albeit variably.

A less frequent lesion is the pyrimidine-pyrimidone (6-4) photoproduct that, like CPD's,

distorts the helix (Ravanat, 2001). These physical distortions may result in an obligatory arrest

of replication.

Chemical agents: Environmental exposure to chemicals included as food agents

(Sugimura., 2002), inhalation of polluted air and ingestion of contaminated water are by far
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the most common modes of encountering DNA damaging agents. Occupational hazards and

therapeutic intervention, most notably by anti-cancer agents are responsible for most of the

DNA damage in humans. The diverse class of chemicals known to cause DNA damage

includes psoralens, benzo[a]pyrene, aflatoxins and nitroquinolones and alkylating agents.

Historically, there has been an interest in examining the potential for food additives to be

potent carcinogens. Most of the evidence has relied on demonstrating that electrophilic

metabolites of the parent compound can forms DNA or protein adducts. Their metabolism is

dependent on an inducible system of membrane proteins called the cytochrome P-450 system.

Apart from this P-450 system, there are other enzymes that conjugate compounds to make

them more water soluble and permit easy elimination from the system. They include

acetyltransferases, glucoronyl transferases, adenosylating enzymes and methylating enzymes.

In principle, the cell has several mechanisms of dealing with DNA damage but it is

unfortunate, however, that metabolites can themselves be more harmful than the parent

compounds.

Means of response to DNA damage

In essence, physical and chemical damage to DNA is a universal phenomenon across

living systems. Damage by physical and chemical agents can lead to arrest of replication and

transcription. Fortunately, there are sub-cellular systems that operate in a coordinated way to

sense and respond to damage. Broadly, they can be classified as DNA repair mechanisms

(specific set of events to eliminate the primary lesion) and DNA damage checkpoint

mechanisms - accessory events that stall the cell cycle and permit the specific DNA repair

mechanisms to act.
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DNA damage Replication stress

Signals

Sensors

Transducers

Figure 3: Causes and consequences of DNA damage.

An elaborate, overlapping set of enzymes, proteins and mechanisms deal with these

deleterious lesions. Cells respond to DNA damage by delaying cell cycle progression and by

increasing the expression of a few genes involved in the repair and tolerance of DNA damage

(Friedberg et al,1995). Surveillance mechanisms in eukaryotic cells monitor and regulate the

cell cycle and its progress. The cell-cycle checkpoints are activated by one or more signals and

ultimately results in the inhibition of cell cycle progression. The checkpoint mechanism first

detects damaged DNA and then generates a signal that arrests cells in the GI/S or G 2/M

phase of the cell cycle. It also slows down S phase (DNA synthesis). This mechanism is

thought to prevent the replication of damaged templates and the segregation of broken

chromosomes.

Consequences of unrepaired lesions

Despite the orchestrated response, however, the damage may not be mitigated. If

lesions are not repaired, they would pose a problem by being mutagenic or lethal. In response

to DNA damage the cell has four major routes of responses. Cell-cycle arrest provides the

crucial time for repairing the damage. If the damage load is too profound for the cell to

handle, it may undergo apoptosis (programmed cell death) to avoid the propagation of highly

defective cells. The lesions may be fixed by DNA repair pathways or alternatively, the

11
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unrepaired lesions may generate sequence changes in the genome to be passed on as a

mutation.

Figure 4: Outcomes of DNA damage

Overview of repair mechanisms

Photoreactivation byphotolyases

UV light exposure generates 2 major classes of stable DNA lesions - cyclobutane

pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4 PD). Unless repaired, these lesions

may lead to blockage of transcription, mutations, cell death and cancer. CPD's and 6-4 PD's

are removed by two pathways: (i) nucleotide excision repair (NER); and (ii) photoreactivation.

Some plants, bacteria, and yeast possess a photolyase that preferentially reverses the CPD's in

the non-transcribed strand of active genes. DNA photolyases catalyze the light-dependent

repair of pyrimidine dimers in DNA. (Carell, 2001). Photolyases bind tightly to CPDs and, on

excitation by 340-400-nm light, catalyse the cleavage of the cyclobutane linkage between the

adjacent pyrimidines and restore the monomeric bases without cutting the phosphodiester

backbone of DNA.

In yeast, the Phrl gene that codes for photolyase has been shown to be upregulated by several

DNA-damaging agents such as UV radiation, 4NQO, IMMNS and MNNG (Sebastian et al,

1990). If Phrl is unable to resolve cyclobutane linkages then it will also try to enhance the

NER of CPDs. The photolyase enzyme functions as a model fr proteins that interact with

sites of DNA damage and have the potential to facilitate DNA-damage recognition by repair

pathways. (Sebastian and Sancar, 1991)

Methylguanine methyltransferase

The methylguanine methyltransferase reverts O6-methylguanine to guanine by

transferring the methyl group from DNA to a reactive cysteine group of the protein in an

irreversible reaction. This covalent attachment of the alkyl group to the cysteine residue

12
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inactivates the enzyme. Alkylguanine methyl transferase is a suicide enzyme. The mechanism

for this reaction is indicated in Figure 7.

Figure 5: Alkylating agent, MNNG

N)

H 2N N N

Cys-SH Cys--

active inac

\ . methyltransferase /

R
06 -Methylguanine nucleotide

R
Guanine nucleotide

Figure 6: 0 6Mehyltguanine methyltransferase accepts the methyl group at its cysteine

residue

Figure 7: Overview of DNA I

Figure 7: Overview of DNA repair mechanisms

Excision Repair

In contrast to direct repair there is cleavage of the sugar phosphate backbone in excision

repair.
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Base Excision Repair

Damage to DNA from deamination, oxidation and alkylation is mainly repaired by

BER. In base excision repair, the DNA bases that are altered by small chemical modifications

are replaced through the excision of only the damaged nucleotide (short patch BER) or

through the removal of 2-13 nucleotides containing the damaged nucleotide (long-patch

BER). DNA glycosylases initiate BER by excising damaged bases from DNA and generating

abasic sites.

Nucleotide Excision Repair (NER)

In cases where the alteration involves the addition of large chemical additions or

cross-links, the DNA bases are excised using the nucleotide excision repair where a short,

single-stranded segment containing the damage is removed. NER helps in repair of bulky base

adducts formed by UV radiation, various environmental mutagens, and certain

chemotherapeutic agents. In NER. (Wood, 1997)

Mismatch Repair (MMR).

An important replication-associated correction function is provided by the post-

replicative mismatch repair system. Base-base mismatches or loops of extra bases if left

unrepaired, will generate point or frameshift mutations respectively. NMisincorporation of non-

complementary bases by DNA polymerases is a major source of the occurrence of

promutagenic base-pairing errors during DNA replication or repair. MMR is conserved from

bacteria to humans. It identifies and corrects mispaired bases and 1-3-nucleotide loops that

result from DNA polymerase errors during replication.

Double strand break (DSB) repair

Double strand breaks are rare and two independent pathways handle them;

homologous recombination (HR) and non-homologous end joining (NHEJ). Homologous

recombination uses extensive homology to code DNA and maintain accuracy. Non-

homologous end joining involves a coordinated rejoining of the broken ends and uses no or

extremely limited regions of homology as a template for repair. Consequently, this process is

inaccurate and the deletions of a few nucleotides are introduced at the site of the DSB. HR

14



and NHEJ are important in all eukaryotes and HR is more important in rapidly dividing cells

and NHEJ is more important in quiescent or terminally differentiated cells. HR is important

for meiosis or the repair of inter-strand cross-links, while NHEJ is required for joining of

DNA fragments while generating the diversity of the immune system.

Mechanism of damage by alkylation

Alkylating agents are electrophilic compounds with affinity for nucleophilic centers in

organic macromolecules. They are probably the broadest class of chemicals that have the

potential to cause profound damage to DNA. Alkylating agents are classified as

monofunctional or bifunctional depending on the number of reactive groups, and therefore,

the ability to react with multiple sites within DNA. Alkylating agents attack nitrogen and

oxygen at various sites within nitrogenous bases with different reactivity's. Apart from these

veritable hot spots within nitrogenous bases, alkylating agents can react with oxygen in the

phosphodiester linkage to form a phosphotriester.

15
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tO H N

cytosine guanine
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3N-H ------
N--99 2 dR

dR ,

thymine adenine

Figure 8: Sites within the nitrogenous bases susceptible to alkylation

damage.

By virtue of its ability to reach several nucleophilic sites within the nitrogenous bases, inter

and intra-strand cross links can occur as a consequence of exposure to bifunctional alkylating

agents. The covalent link sustains this anomaly and prevents strand separation (if there is an

inter-strand crosslink) leading to a complete block of replication and transcription.

Damage to DNA bases

Alkylating agents are structurally diverse group of chemicals that cause a wide range of

biological effects including cell death, mutation and cancer. DNA damaged by these agents

contains widely different amounts of 12 alkylated purines/pyrimidines and two

16
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phosphotriester isomers. They are used in anticancer therapy and are also found in cigarette

smoke.

Lesions caused by a/lkylation

Attack in 0 6 position of guanine leads to the formation of the adduct, O6

Methylguanine (06 MeG). This is a relatively minor lesion compared to 04Methylthymine

(0 4MeT), but potentially the most deleterious lesion if left unrepaired in the system. Other

potentially harmful lesions include 3 Methyl Adenine (3MeA). If the 06 MeG lesion remains

unrepaired, then it permits G-A transition mutation following 2 rounds of replication. This

happens in both eukaryotes and prokaryotes. Recombination and cell death that may ensue

but both need a functional MMR system.

In E.coli, it has been shown that the miscoding alkylation adducts on the template

strand would lead to anomalous base pairs upon replication. Provocation of mismatch repair

by such lesions would result in a futile turnover of the newly synthesized strand because the

offending adduct is not removed from the template DNA, a process that could lead to cell

death. Luckily, the 06 methylguanine MTase protein is able to counter this effect by

irreversibly and covalently binding to the methyl group and plucking it off the base. Since the

cysteine which is methylated is not regenerated at all, the capacity for repair of O6 -

methylguanine is limited by the number of molecules of the MTase available within the cell.

Alkyltransferases across systems

Methyltransferase belongs to a class of proteins, the alkyltransferases. There are close

to a 100 alkyltransferases but the structure of only 3 three family members: the Ada-C protein

from Escherichia coli (Moore et al 1994), the human alkyltransferase (hAGT) (Daniels, 2000),

and Pyrococcus kodakaraensis (Hashimoto 1999) are known. The protein is non-enzymatic in

nature and therefore the protection by alkyltransferase depends on the regulation of its

synthesis and degradation.

Structure andfunction of Yeast methyltranserase (IGT1)

Repair of 0 6-MeG in yeast extracts was shown to be performed by a 25-kilodalton

protein Methyl transfer was accompanied by the formation of S-methylcysteine. The S.

cerevisiae MGTI codes for a 188 amino acid protein. About half of the MGT1 protein has

17
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homology with four bacterial MTases and also the human DNA MTase. (Xiaoand Samson

1992)

Exponentially growing yeast cultures have about 150 molecules of MITase in each cell. The

yeast MTase has a half-life of about 4 min at 37°C. Synthesis of the yeast DNA MTase is not

inducible by sublethal exposures to alkylating agent. The substrates for yeast MTase include

O6 MeG and O4MeT. Unlike this, the human MITase is very specific for O6MeG.

Spontaneous mutations

Mutations are defined as spontaneous when they arise in cells that are not actively exposed to

exogenous, xenobiotic mutagens. Spontaneous mutations occur due to either uncorrected DNA

replication errors, or endogenous metabolites that cause lesions on DNA. Oxidative damage and

alkylation damage are the 2 major sources of endogenous DNA damage. It results as a consequence of

cellular metabolism and failure to correct this damage due to genetic defects results in significantly

increased spontaneous mutation rates. Spontaneous mutations have been studied earlier using several

systems including MGTI deletions in yeast. MGTI deleted mutants were shown to have an increased

spontaneous mutation rate suggesting an endogenous source of DNA methylation damage. (Xiao and

Samson, 1993).

Alkylation due to endogenousprocesses

S-adenosyl methionine (SAM) a cellular methylase co-factor has a reactive methyl group and is

responsible for enzymatic methylation of DNA, RNA and proteins. Under physiological conditions,

SAM has been shown to non-enzymatically methylate DNA to form 3-Methyl adenine and 0O6MeG

(Rydberg and Lindahl 1982). Endogenous processes might include the 'aberrant' methylation of

guanine by S-adenosylmethionine and the endogenous nitrosation of compounds containing primary

amino groups and their subsequent breakdown to methylating species (Sedgwick, 1997). n-

nitrosoglycocholic acid has been shown to be able to methylate DNA in vitro and in ivo (Shuker and

Margison, 1997).

18
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Saccharomyces cerevisiae as a model system to study genome-wide expression.

The baker's yeast S. cerezvisiae is an informative model organism in traditional genetic

studies. It also presents an ideal model genome for large-scale functional analysis. Relative to

other eukaryotes, S. cerevisiae has a compact genome. Approximately, 70% of its total (non-

ribosomal DNA) genetic complement is protein-coding sequence. Encompassing 16

chromosomes, the 12-megabase (b) yeast genome is predicted to encode about 6,200 genes,

with 1 gene per 2 kb of genomic sequence. (Goffeau, 1996).S. cerevisiae is an informative

predictor of human gene function; nearly 50% of human genes implicated in heritable diseases

have yeast homologues. (Bassett, 1996, 1997. Venter. 2001).

Since its development in the mid-1990s (Schena, 1995, Chee,. et al 1996), the DNA

microarray has emerged as the pre-eminent tool for functional genomics. The ability to

analyse thousands of DNA samples simultaneously by hybridization-based assay has provided

a popular method for analysing the relative levels of mRNA transcripts on a genome-wide

scale. Typically, DNA microarrays have been used to identify genes, the expression of which

is either induced or repressed during specific cellular responses. For example, DeRisi (DeRisi

et al. 1997) used DNA microarrays to monitor relative changes in mRNA levels during the

shift from anaerobic fermentation to aerobic respiration in yeast. ficroarrays have also been

used to identify genes differentially expressed during sporulation (Chu et al 1998), as well as

genes periodically expressed during the cell cycle (Cho. et al 1998, Spellman, 1998). Jelinsky

and Samson (1999) used oligonucleotide arrays to identify over 400 genes that are either

induced or repressed in response to the DNA-damaging, alkylating agent methyl

methanesulphonate (MMS). These and other microarray-based studies have identified genes

that putatively function in common regulatory pathways; such pathways are also being

delineated by transcriptional profiling of strains mutated for key regulatory components.

Affymetrix has used the genomic sequence of the budding yeast Saccharomyces cerevisiae to

design and synthesize high-density oligonucleotide arrays for monitoring the expression levels

of nearly all yeast genes. This direct and highly parallel approach involves the hybridization of

total mRNA populations to a set of four arrays that contain a total of more than 260,000

specifically chosen oligonucleotides synthesized in situ using light-directed combinatorial

chemistry.

19
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Chapter 2: Expression Profiling

Transcriptional response of Saccharomyces cerevisiae wild type and DNA

methyltransferase mutants.

Materials and Methods

Yeast strains andgrowth conditions

To study the genome-wide transcriptional response of Saccharomyces cerevisiae upon

exposure to MNNG two strains were obtained from Research Genetics, Carlsbad, CA. The

wild-type (WT) BY4741 (MAT a his3A1 leu2AO metl5AO ura3A0O) and the methylguanine

methyltransferase lacking strain, BY4741 mgtl A (mgtl). The mgtl A strain was originally

created using a PCR based gene deletion strategy (Baudin et al., 1993 and Wach et al., 1994).

This gene deletion is viable since MGT is a non-essential gene. The cells were grown and

maintained on YPD (10 g yeast extract, 20 g peptone, 20 g dextrose, 20 g agar/liter)

containing 200g/ml of G418 (Geneticin, Sigma Chemicals).

N-Methyl-N'-Nitro-N-Nitrosoguanidine

A 1% stock solution of DNA damaging agent, N-Methyl-N'-Nitro-N-Nitrosoguanidine

(MNNG) was prepared and stored in amber tubes away from light. This stock was used for all

the experiments. First, the phenotypes of the strains were established using a gradient plate

assay. Briefly, equal number of BY4741 and BY4741 mtl A cells were plated in YPD+G418

plates which had MNNG in concentrations of 0 g/ml, 5 ig/ml, 10 jig/ml, 15 jtg/ml, 20

jg/ml and 25 jtg/ml. The agar was allowed to settle at an angle in the plates. This permitted

variable exposure of the cells to a fixed concentration of MNNG. Experiments were

performed in duplicate. Colony formation was observed after 3 days of growth at 30°C.
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Growth Curve

Single colonies of yeast were picked from YPD+G418 plates to inoculate 5 ml of YPD

culture in a test-tube that was rotated overnight at 250 rpm at 300C. 100v1 of each strain was

inoculated in 150 ml of YPD+G418 rotating at 300 rpm, at 300C. OD and cell counts were

taken over time to follow growth in cell number. Growth curves were plotted for BY4741 and

BY4741 mgt/ A.

MNNGC-induced cell killing

The difference in the MNNG-induced cell killing between BY4741 and BY4741 mgt!

was studied. One colony of wild-type (WT) and MTase lacking mutant (mgtl), was picked and

grown in 2 separate test-tubes with 5ml YPD (with G418), overnight. Then, 100v1 was

transferred into 150 ml of media (with G418) in a 250 ml flask. This was grown for 12 hours

at 30 C after which 10 ml of culture was transferred into four 15ml tubes. To this 150v1 of

1% MNNG stock was added to establish the final concentration of NINNG at 30tg/ml. After

incubating them for 0, 20, 40 and 60 minutes, the test-tubes were centrifuged. The

supernatant was discarded and the cells were re-suspended in 10 ml of distilled water. Over a

series of dilutions, the re-suspended cells were plated onto YPD agar plates with G418.

Colonies were counted after 3 days of incubation at 30 C.

Cell preparation for Microarray Analysis

Single colonies of WT and mgtl were picked from YPD plates to inoculate 5 ml of

YPD culture. They were incubated at 250 rpm at 300C, overnight. 100Vd of each strain was

inoculated in 150 ml of YPD+G418 media in a flask rotating at 300 rpm maintained at 300C.

The cells were grown to mid-log phase (OD = 0.8). The cultures were split into 3 volumes of
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50 ml before being exposed to MNNG (30 itg/ml) for a variable length of time as shown in

Table 1. The control samples were mock-treated with same amount of double distilled water.

(DDW). After exposure for the appropriate length of time, the cells were spun down in 50 ml

tubes centrifuged at 8000 rpm. The cells were snap-frozen and stored at -80°C.

Table 1: Experimental design of oligonucleotide expression study.

The number of BY4741 and BY4741 mgt1 A samples that were treated with double distilled
water (DDW) or MNNG.

Control Treated with 30 ig/ml MNNG

(DDW)

10 min 20 min 30 mrain 4min 50 min 60 min

WT -3 3 : 3 3 3 3 . 3

mgtl 3 . 3 3 3 3 3

Total RNA preparation

Total RNA was extracted from the frozen cells using the enzymatic lysis protocol

(Qiagen RNEasy Mini Protocol - Standard Version) as detailed in the Appendix of Protocols.

Briefly, the cells were incubated for 20-30 minutes (with gentle shaking, every 5 minutes) with

2 ml of buffer made from Sorbitol (1M), EDTA (0.1M) mercaptoethanol (0.1%) and 50 U

of lyticase (Sigma) per 1x107 cells. The cells were then centrifuged to pellet the spheroplasts.

In a series of steps the cell wall was lysed and the lysate was made to pass across a silica-gel

membrane to trap the RNA. Finally, RNAse free water was used to elute the RNA out before

estimating the concentration using a spectrophotometer. 260/280 absorbance readings were

measured for total RNA. A ratio of 260/280 ratios between 1.8 to 2.1 was considered

acceptable. If the ratio was below 1.8 (indicates possible contamination) or above 2.1
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(indicates presence of degraded RNA truncated cRNA transcripts, and/or excess free

nucleotides), the total-RNA process was repeated.

Pre-tybrizdiation qualit control

Forty-two samples of total RNA from the different experimental groups (Table 1) was

isolated and stored at -20°C. The samples were also tested using the Agilent 2100 Bioanalyser

system. This permits rapid visualization of RNA sample quality and quantity. A rRNA ratio of

28S/18S close to 2 implies minimal degradation of RNA, a prerequisite for efficient reverse

transcription, cDNA synthesis and in-vitro transcription and to ensure the highest quality

RNA hybridization to the gene expression microarrays. The steps for cRNA synthesis from

total RNA is illustrated in Figure 9 and details are included in the Appendix.

RNA Isolation

First strand cDNA synthesis

Second strand cDNA synthesis

Biotin labeled cRNA synthesis via IVT

Fragmenting the cRNA for target preparation

Hvbridization of cRNA to target arrav

Probe array wash and SAPE staining

Probe Array analysis

Figure 9: Steps in cRNA preparation and hybridization to GeneChip.
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GeneChip® hybridizations and Image analysis.

Fragmented cRNA samples were hybridized to GeneChip® arrays containing the

complete yeast genome for a total of 42 arrays (YG-S98 arrays, Affymetrix, CA). The

GeneChip® Yeast Genome S98 Array contains probe sets for approximately 6,400 S. cerevisiae

(S288C strain) genes identified in the Saccharomyces Genome Database (December 1998).

This array also contains approximately 600 additional probe sets representing putative open

reading frames (ORFs) identified by SAGE analysis, mitochondrial proteins, TY proteins,

plasmids, and a small number of ORFs for strains other than S288C.

Scanning was carried out at the MIT Biopolymers Laboratory after hybridizing fragmented

cRNA at a concentration of 0.05 ug/xl to GeneChip(s in 2001d of Affy buffer (100 mM

MES, 1 M NaCl, 20 mM EDTA, 0.01% Tween 20) with GeneChip eukaryotic hybridization

controls (GeneChip® Eukaryotic Hybridization Controls Kit, Affymetrix, CA) in the

presence of 0.1 mg/ml herring sperm DNA and 0.5 mg/ml acetylated BSA at 40 °C for 16 h

with constant rotation. Arrays were rinsed after hybridization with 200 p1 of stringent wash

buffer (100 mM MES, 0.1 M NaCl, 0.01% Tween 20) followed by a non-stringent wash

(6XSSPE, 0.01% Tween 20). 20XSSPE had the following composition (3 M NaCl, 0.2 M

NaH2PO4, 0.02 M EDTA). Staining was done with 2 ug/ml streptavidin-phycoerytherin and

1 mg/ml acetylated BSA in 6xSSPE-T. Arrays were scanned by a HP G2500A GeneArray

scanner.
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Data analysis

A total of 42 hybridizations were performed and the scanned images from Micorarray

Suite 5.0 were stored for computational analysis that was performed using Spotfire, MS Excel

and S-plus Array analyzer.

Data Normaligation

The .cel files generated after scanning using the Affymetrix suite were used for this

analysis. All the 42 .cel files from the control and the experimental groups were analyzed

simultaneously.

The variation between high-density oligonucleotide arrays was reduced by normalizing the

data. The Robust Multichip Average (RNLN) algorithm was used to adjust the background and

perform quantile normalization. The expression results for each ORF/gene were represented

as logarithm (to base 2) of the expression value. The software package RMRLExpress 0.2 alpha

1 version for Windows was used for this purpose. RNLAExpress combines the 16-20 probe

pair intensities for a given gene to define a measure of expression that represents the amount

of the corresponding mRNA species. The normalization takes only perfect matches into

account and the mismatch probe cells are not used for calculation the signal

intensity/measure of expression.

Analysis of RMA otputfiles

The output of the RLNExpress, in the form of log2values of expression, was exported to MS

Excel. For further analysis, average expression value from 3 biological replicates (Table 1), for

each time point was computed. Average expression values derived from all the arrays were

compared with the average expression of untreated WT to get an expression ratio (ER). This
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blanket comparison to compute ER ensures that all the data are compared to an unambiguous

baseline. The comparisons were represented as log2 of expression ratio's (log2ER).

Post-normalization cut-off

A log2 ER for a gene/ORF > 1 indicates average fold change induction factor of 2 for that

particular gene/ORF. Analogously, a log2 ER < -1 indicates an average fold change repression

factor of 2. If log2 ER's were between 1 and -1, they were classified as not significant (NS).

For the purpose of visualization, the log2 ER's across all treatment time-points for both WT

and mgtl were exported and visualized in Spotfire's functional genomics module.
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RESULTS

MNNG gradient plate

The phenotype of the WT and gtl strains, in response to MNNG, was ascertained

using gradient plates (Figure 10). Upon exposure to increasing concentrations of MNNG,

fewer colonies of mgtl survived when compared to WT.

O gg/ml MNNG

5 gtg/ml MNNG

10 gg/ml MNNG

WT BY4741

BY4741 mgtl A

WT BY4741

BY4741 mgtl A

WT BY4741

BY4741 mgtl A

15 gg/ml MNNG
WT BY4741

BY4741 mgtl A

20 gg/ml MNNG
WT BY4741

BY4741 mgtl A

25 g/ml MNNG
WT BY4741

BY4741 mgtl A

MNNG Exposure

Figure 10: MNNG gradient plate assay for Wild-type BY4741 (WT) and
BY4741 mgtl A.

The agar was allowed to settle at an angle in the plates. This permitted variable exposure
of the cells to a fixed concentration of MNNG. The same numbers of cells were
inoculated on the surface of agar plates with increasing concentrations of MNNG (5-
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25gg/ml). The cells were grown at 30°C for 3 days before being observed and
photographed. The increased sensitivity of mgtl to killing by MNNG can be attributed to
the lack of MTase.

MNNG-induced cell killing

MNNG-induced cell killing in cultures was compared between WT and mgt/.

Exposure to MNNG at 30 gg/ml cause significantly more killing in mgtl than in the WT. The

lack of MTase and the inability to repair alkylation induced repair in the mgtl imparts this

difference.

100

10

-o- BY4741
--- BY4741mgtl

0 20 40 60

Length of Exposure (in minutes) to 30 gg/ml MNNG

Figure 11: MNNG-induced killing in wild-type (WT) and MTase

deficient yeast (mgtl).

WT and mgtl cells were picked and grown separately in 5ml YPD (wvith G418), overnight.

Then, 100 dl was transferred into 150 ml of media (with G418) in a 250 ml flask. After growth
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for 12 hours at 30 C, 10 ml of culture was transferred to four 15ml tubes. To each, 1501 of

1% MNNG stock was added to establish the final concentration of MNNG at 301g/ml. After

incubating them for 0, 20, 40 and 60 minutes, the test-tubes were centrifuged. The

supernatant was discarded and the cells were re-suspended in 10 ml of distilled water. Over a

series of dilutions, the re-suspended cells were plated onto YPD agar plates with G418.

Colonies were counted after 3 days of incubation at 30 C. The colony count, for each

duration of exposure (0, 20, 40 or 60 minutes), was compared to the colony count at time

point 0. This was expressed as the percent survival (% survival) for that duration. The %

survival plot for increasing length of exposure to MINNG, for WT and mgtl, is shown in

Figure 11. mgtl was more sensitive to MNNG than WT. In addition, increasing the length of

exposure to MNNG killed more mgtl cells than WT.

Total RNA extraction from exponentially growing cells.

WT or mgtl cells were grown to mid-log phase (OD = 0.8) as described earlier. The

cultures were split into 3 volumes of 50 ml before being exposed to MNNG (30 tg/ml) for a

variable length of time as shown in Table 1. The control samples were mock-treated with

same amount of double distilled water. After exposure for the appropriate length of time, the

cells were spun down in 50 ml tubes centrifuged at 8000 rpm. The cells were snap-frozen and

stored at -80°C before total RNA extraction using the Qiagen RNEasy protocol.

Pre hybridization quality control of total RNA samples

A few of the total RNA samples were tested for their quality using the Agilent

Bioanalyzer system. Lane 1 in figure 12 shows the ladder. Lane 2 in Figure 12 depicts a sample

that had a good 28s:18s ratio (1.84).
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Figure 12: Pre-hybridization quality control gel of total RNA
sample. This sample was from exponentially growing wild-type

.. a,_ 28s (WT) cells treated with 30jtg/ml of NMNNG for 40 minutes.

:'~' 18s

Ladder Sample RNA

The total RNA samples from the different experimental groups were tested using the Agilent

2100 Bioanalyzer system. This system permits rapid visualization and quality control of the

RNA sample. The rRNA ratio (28S/18S) was between 1.61-1.87 in the tested samples. Quality

of RNA is a prerequisite for efficient in vitro-transcription reaction.

Post-hybridization quality control.

After hybridization to the target Affymetrix YGS98 array, the quality of the arrays was

judged by the following factors; percent present calls, presence of spiked control cRNA,

background values and noise. All these quality control standards were met satisfactorily

(summarized in Table 2). The hybridization efficiency was judged by the percentage of absent

and present calls. On an average, the present calls were > 74% before normalization.

Hybridization controls, BioB, bioC, and bioD represent genes in the biotin synthesis pathway of

E. coli. Cre is the recombinase gene from P1 bacteriophage. The GeneChip Eukaryotic

Hybridization Control Kit contains 20x Eukaryotic Hybridization controls composed of a

mixture of biotin-labeled cRNA transcripts of bioB, boC, bioD, and cre, prepared in staggered

concentrations (1.5 pM, 5 pM, 25 pM, and 100 pM for bioB, bioC, bioD, and cre, respectively).
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The 20x Eukaryotic hybridization controls are spiked into the hybridization cocktail,

independent of RNA sample preparation, and are thus used to evaluate sample hybridization

efficiency to gene expression arrays. BioB is at the level of assay sensitivity and should be

called "Present" at least 50% of the time. BioC, bioD, and cre should always be called "Present"

with increasing Signal values, reflecting their relative concentrations. The 20x Eukaryotic

Hybridization Controls can be used to indirectly assess RNA sample quality among replicates.

The overall intensity for a degraded RNA sample, or a sample that has not been properly

amplified and labeled, will be lower when compared to a normal replicate sample.

Controls that were spiked-in were detected as expected (BioB-90%, BioC, D, Cre -100%).

Their relative intensities were also in accordance with expectations (BioB < BioC < BioD <

Cre). Ideally, the BioB control cRNA is spiked in at the detection threshold (1.5 pM) and

should receive 'present' detection call in approximately 50 percent of all samples. BioB was

present in 90% of the samples. Average background values ideally range from 20 to 100 for

arrays scanned with GeneArray® Arrays. In our data, the average background value was

about 60. Noise is a measure of the pixel-to-pixel variation of probe cells on a GeneChip

array. The two main factors that contribute to noise - electrical noise of the GeneArray

Scanner and sample quality. The datasets had an average noise of 1.4.

Parameters Outcome

Percent present calls > 74%

Spiked controls As expected, BioB < BioC < BioD` <''Cre''

Background value 60 (Normal range 20-100)

Noise (Q) 1.4

Table 2: Parameters of post-hybridization quality control.

Four parameters; percent present calls, presence of spike-in controls in the appropriate
order, low background value and the presence of noise were assessed and found to be
favorable.
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RMA normalization

The data from 42 arrays were normalized using RLA method of normalization

(Bolstad, 2003). The benefit of RMA normalization is depicted in Figure 13. Probe-set

intensities from six arrays (three replicates each, from 2 experimental groups) are shown

before (Figure 13A) and after (Figure 13B) normalization. After normalization, the variation

between the arrays was minimized dramatically. S-plus's Array analyzer module was used to

create and compare these plots directly from the Affymetrix .cel files obtained upon scanning.

Expression Summaries

it Lye:< I r i

I -- · t- -II

'"'- I t I

I I I

,Nt10.1 CEL mgt10.2.CEL mti10 3.CEL WT10 1 CEL WT10.2 CEL WT10.3 CEL tlO CEL ItO.2.CEL mgI10 3 CEL WT1 1.CEL WT10.2.CEL WT10.3.CEL

A B

Figure 13: Box plots of intensities before (A) and after (B) RMA quantile

normalization.

The intensities for six sample Affymetrix .cel files (3 WT and 3 mgtl) are plotted on log2 scale
before (A) and after RLMA quantile normalization. The Affymetrix .cel file intensities were
imported to S-plus Arrayanalyzer module and RNLN quantile normalization was performed.
The normalization of the intensities reduces the variation between the samples and thus helps
in making comparisons between disparate sets of oligonucleotide arrays.
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Variability between the replicates

The variability between the replicates was assessed by computing the R2 value between

the log2of RNMA-normalized intensities (Table 3).

Table 3A Table 3B

Table 3: R2 values of WT (3A) and mgtl (3B) replicates

R2 value for the intensity plots for comparing the
and the methylguanine methyltransferase mutant
triplicate untreated WT and untreated mgtl arrays.

replicate arrays from the wild-type (WT) (3A)
(mgtl) (3B). The samples used here included
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WT1 WT2 WT3

WT1 1 0.94 0.96 

WTZ2' 0.94 1 0.95

WT3 0.96 0.95 1
I ... ,

mgt mgt2 mgt3

mgtl 1 0.97 0.94

mngt2 0.97 1 0.93 -

mgt3 0.94 0.93 1



Computation of log2 Expression Ratio

Mean gene expression profiles from all experimental groups were compared to mean

expression from untreated WT. This uniform denominator allows comparisons to be made between

the experimental groups. The numerator was either mean expression from triplicate arrays at a given

time point or mean expression across all the arrays in WT or mgtl (18 each, representing 3 for each

of the 6 time-points). To delineate genes of importance, the log 2 expression ratio (log2ER) was used

to classify genes. A log2 ER > 1 indicates average fold change induction factor of 2 for that

particular gene. Analogously, a log2 ER < -1 indicates an average fold change repression factor of 2.

If log2 ER's were between 1 and -1, they were classified as not significant (NS). The log2 ER's across

all treatment time-points for both WT and mgtl were exported and visualized in Spotfire's functional

genomics module. The expression ratios were the basis of making comparisons between the

experimental groups in this study.

Comparison with the phenotypic database

We also studied the expression profile in the context of the phenotypic database

(htp: /genomicphe not-yping.mit.edu) which includes information on sensitivity of 4800 yeast gene

deletion strains to MMS. These deletions strains are of those genes that are nonessential. It was

shown earlier that several of these genes are important for cellular recovery after mutagen exposure.

In addition, it was observed that transcriptional responsiveness to these mutagens was not predictive

of contribution of a gene to the recovery from the damage.

Basal gene expression profile in methylguanine methyltransferase deficient mutant (mgt).

The basal gene expression profile of a gene in the O6 MeG methylguanine methyltransferase

deficient mutant (mgtl) was assessed by computing a ratio of mean expression in mgtl (for that gene
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from triplicate arrays) to mean expression in WT for the same gene (from triplicate arrays). If the

expression ratio (ER) for any gene/ORF was > 2, then that gene was classified as being up-regulated

and if the ratio was < 0.5, then it was classified as down-regulated. A plot of the gene expression

ratio's for mgtl versus WT for the entire gene population is shown in Fig 14. In the examination of

mgti expression profile, 148/9275 (1.6%) genes were found to be up-regulated (maximum fold

change was 14.8x) and 92 genes (<10) were found to be down-regulated (maximum fold change

was 95x).

Genes up-regulated in basal mgtl

A subset of these genes that were up-regulated in basal mgtl expression, listed by function, is

shown in Table 4A (Appendix of Tables). Genes that were up-regulated but can otherwise be a part

of the environmental stress response are indicated in table 4B. Notable among the genes up-

regulated in the basal mgtl are those involved in detoxification and drug transport (YER185W,

YOR378W, YHL047C, YELO65W), amino-acid biosynthesis (BATi, LEU) and transport (BAP3,

ALP). Other important genes included metabolism (CHAl) genes, genes involved in cell cycle

control (BATi, BUBi, CKA1), and transcription (CKA, TFG1, GAI80, GCN5, CBP2, RNA15).

Cell cytoskeleton and mitochondrial biogenesis (SMP2, DCGi, GICI, Q0183) and RET/7, a subunit

of DNA polymerase-zeta (Pol-zeta) were also induced.

Genes down-regulated in basal mgtl

A subset of these genes that were down-regulated in basal mgt/i has been ordered by function

and is shown in Table 5A. Sixty-five of them had no known function and have not been shown.

Genes that were down-regulated but is otherwise a part of the environmental stress response are

indicated in table 5B. Among the genes that are repressed were those involved in amino acid
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(MET14, CYS3, and BASi) and carbohydrate metabolism (SUC2, MIG2, HXTI, HXT3 and HXT4)

and transcription (TFSl, CPR6 and MIG2).
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Figure 14: Expression ratio plot for yeast methylguanine methyltransferase

mutant (mgtl).

Expression values (triplicate) of mgtl were compared to wild-type (WT) yeast

expression and log 2 transformed. Points above the y-axis grid line 1 indicate genes

that are up-regulated in mgtl. Points below the y-axis grid line of -1 indicate genes

that are down-regulated in mgtl.
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Principal Component Analysis of experimental groups

The data from different experimental groups were also analyzed using Principal component

analysis (PCA) in Matlab v6.0. Three untreated WT arrays 3 untreated mgtl datasets were compared

with 6 datasets each from WT and mgtI treated with MINNG. Each WT and mgtI dataset included

the mean expression from triplicate arrays. The PCA plot (Figure 15) shows 4 distinct clusters of

data representing the untreated WT, untreated mgtl, treated WT and treated mgtl.

Figure 15: Principal component analysis of the experimental groups.

Three wild-type (WT) arrays (a) and 3 methylguanine methyltransferase mutants (mgt/) (b) were

compared with 6 datasets (each representing the mean from triplicate arrays) from WT treated with

alkylating agent, MNNG (c) and 6 datasets (each representing the mean from triplicate arrays) from

mg/l treated with alkylating agent, MNNG.
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Effect of MNNG on transcriptional profile - Cluster Analysis

The log2 expression ratio's (ER's) were calculated for different experimental groups and exported to

Spotfire. Hierarchical clustering (using Wards Method) of log2ER's was used to generate a qualitative

picture of the effect of MNNG on yeast. This heat map was generated using the data from 39 arrays

(3 arrays were used as baseline for comparison).

WT mgtl
A A

t - A I t 1 I 
0 10 20 30 40 50 60 10 20 30 40 50 60

Duration of exposure (in minutes) to MNNG
Duration of exposure (in minutes) to MNNG

_i > 2x Repression 1 -~ > 2x Induction

Figure 16: Heat map of the expression ratio from wild-type (WT) and Mtase mutant
(mgtl). Log2 expression ratio (log 2ER) was calculated for 9335 probe-sets by dividing
the mean expression (from triplicates) for each probe-set by the mean expression for
the same probe-set in the untreated WT (WTO). The first column of data represents
the basal expression in mgt/. The other columns of data represent the mean
expression value of triplicate arrays where yeast strains, either WT or mgtl, that was
exposed to MNNG for variable length of time (10-60 minutes). This indicates that
the genome is very responsive to the treatment with MNNG.
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Temporal effects of gene categories

The temporal effects of INNG on the yeast strains on a genome-wide scale were examined

using the average expression profile for the treated WT (Figure 17A) and mgt! (Figure 17B). About

1200-1400 genes are induced or repressed upon treatment with MNNG in both WT and mgtl.

Figure 17A Figure 17B

Represnduced
E[ Repressed
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o)
D 1000
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0
mgtO WT10 WT20 WT30 WT40 WT50 WT60

Experimental groups
mgtO mgt1O mgt20 mgt30 mgt40 mgt50 mgt60

Experimental groups

Figure 17A: Genes responsive to treatment with MNNG in the wild-type (WT) yeast.

The number of genes that are either induced or repressed in the WT yeast upon exposure to
MNNG for varying lengths of time (10-60 minutes, WT10 through WT60) is shown. The untreated
mgtl (mgt/O) serves as a comparison.

Figure 17B: Genes responsive to treatment with MNNG in the methylguanine
methyltransferase (mgtl) yeast.

The number of genes that are either induced or repressed in the methylguanine methyltransferase
mutant (mgti) yeast, upon exposure to MNNG for varying lengths of time (10-60 minutes, mgtl0
through mgt60) is shown. The untreated mgtl (mg/O) category serves as a comparison.
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Figure 18: Gene expression responsiveness for some functional categories.

Average gene expression ratios for each gene within a particular functional category were compared
across the experimental groups. The percentages of genes within a particular category, that are
induced or repressed upon treatment with MNNG are indicated.

The expression profiles from entire categories of genes were examined to study the effect of

MNNG on them and in particular if the gene expression was different between WT and mgtl. Mean

fold induction and fold repression for each ORF/gene, across all the WT and mgtl arrays was

calculated. In each category, the percentage of genes that were responsive upon MNNG treatment is

shown in Figure 18. To calculate this, data from 18 WT and 18 mgtl arrays was used.
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Figure 19: Venn-diagram of gene expression responsiveness in wild-type (WT) and

methylguanine methyltransferase deficient yeast (mgtl) upon treatment with MNNG.

Genes that had a fold change (FC) > 2 that were either induced or repressed in WT and/or mgtl are
represented using the Venn-diagram. This representation allows examination of effects that are
unique to WT or mgtl or common both, upon exposure to NINNG. Gene expression response,
induction or repression, that is specific to WT and mgtl can therefore be distinguished from a
response that is found in both WT and mngtl. The upper-middle panel in the Venn diagram
represents genes that are induced in both WT and mgtl (977 genes) as a common response to
MNNG exposure. Alternatively, genes that are induced only in MNNG treated WT (225), or only in
MNNG treated mgtl (274) are represented by the non-overlapping segments of the 2 circles. The
lower-middle panel in the Venn diagram represents genes that are repressed in both WT and mgtl
(1039 genes) as a common response to MNNG exposure. Alternatively, genes that are repressed
only in MNNG treated WT (145), or only in MNNG treated magtl (191) are represented by the non-
overlapping segments of the 2 circles in the lower panel.

Genes induced specifically in WT upon treatment with MNNG

The upper-left panel in the Venn diagram (Figure 19) illustrates the response that can be

attributed to WT strain upon exposure to MNNG. Upon MNNG-treatment, a total of 225 ORF's

were specifically induced only in the WT. Since the only difference between WT and mgtl is the lack

of MTase because of the deletion, it could be postulated that these genes are induced in the WT

because of MNNG's effect in the presence of NTase. A total of 127 genes had a known function

(listed in Tables 6A and 6B). Table 6B includes genes that are a part of the ESR. Table 6A includes
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17 (17%) genes that are essential (highlighted in red). Interestingly 12 (12%) of the induced genes

were involved in protein biosynthesis. Three DNA repair genes UNG/, SIR2 and RAD52 were also

induced. Two mitochondrial genes, RIM and ERT17 , were found to be induced. Table 7B includes

30 genes that are a part of the ESR. This included 12 genes (40%) that are otherwise essential in

yeast (highlighted in red).

Genes that are induced specifically in mgtl upon treatment with MNNG

There were 274 genes in this category. 103 of them had a known function and are listed in

Table 7A and 7B. Table 7A includes 87 known genes that are induced in the mgtl upon MNNG

treatment. Of them, 20 (22%) were essential genes. Notable among them were DNA repair genes

PRI2 and CCE1 and several mitochondrial associated genes (MRSI1 TIM8, CCE1, COQ3, DH2

and DICI). In contrast to WT, only 3 protein synthesis genes were found to be specifically induced

in mgtl. Interestingly, SWI6, a substrate of Rad53 in the G(1)/S DNA damage checkpoint was

activated. The homothallic switching (HO) endonuclease, which creates a site-specific double-strand

break (DSB) in the genome at the mating-type (LAT) locus, was also induced. Table 7B includes 16

genes with known function that are induced in mgtl and are a part of the ESR. Nine (56%) were

found to be essential.

Genes repressed in WT upon MNNG treatment

A total of 145 genes were repressed exclusively in WT. Table 8A lists 70 genes with known

function that are repressed exclusively in WT upon MINNG treatment. This included 7 essential

genes (10%). Six genes (SUM1, DOT6, ESCI, SW2, NGG and SET3) involved in chromatin

silencing and histone modification were repressed. Two DNA repair genes (RAD16 and RAD28)
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were repressed. Table 8B lists 10 ESR genes that are repressed in WT. Only 1 gene was found to be

essential.

Genes repressed in mgtl upon MNNG treatment

A total of 191 genes were repressed exclusively in mgt/. Table 9A lists 70 genes with known

function that are repressed exclusively in mgtl upon MNNG treatment. This includes 14 essential

genes (20%). Three genes (STNF 1, SPT10, TBFI) involved in chromatin remodeling were repressed.

CKSi, a cyclin-dependent kinase regulatory subunit, was also repressed. Table 9B lists 3 ESR genes

that are repressed in mgtl.

Genes induced upon treatment with MNNG in both WT and mgtl

In contrast to a damage induced response exclusive to WT or mngt, there were several genes

that were induced upon treatment with MNNG in both WT and mgtl. This overlapping response

indicated in the upper-middle panel of Figure 19 included 977 genes that were induced in both WT

and mgtl. Of them, 127 genes were included as ESR genes. The function of 282 genes was not

known. The remaining 568 genes, whose function was known and those that were not a part of the

ESR are listed by function in Table 10A. 121 (21%) of these are essential genes. Briefly, the genes

that were induced upon treatment with MNNG, and were not a part of ESR, included those

involved in maintaining cellular structure and function. Primarily, these included genes involved in

cell wall organization, ergosterol biosynthesis, amino acid metabolism, mitochondrial organization

and biogenesis. A few other genes of interest included chromatin silencing genes (APC5, ISWVI,

ORC3, MRC1, ORC5, NNTi, SWD1, SWD3) genes involved in DNA damage response (HUG1,

DUN, PCL2), DNA recombination (CDC9), DNA repair (HAI/i, MSHI, RAD18, RHCo8,

POLl), DNA replication (POL5, RNR3, RR4, RNR/), DNA topological change (TOF1) and
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DNA unwinding (CDC46, HFM1, MCM2). Specific DNA repair genes included those involved in

nucleotide excision repair (RFA , RFA2, RFA3, CDC2, POL30 and DPB2). Interestingly, 68 genes

(11%) of the genes induced in both WT and mgtl were involved in protein synthesis. Table 10B lists

127 ESR genes that are induced upon treatment with MNNG in both WT and mtH. Interestingly, 57

(44%) of these are essential genes. Eleven genes are involved in ubiquitin-dependent protein

catabolism.

Genes repressed upon treatment with MNNG in both WT and mgtl

A total of 1039 genes were repressed in both WT and mngtl. Of them, 545 had a known

function and are shown in Tables 11A and 11B. Table 11A includes genes that were repressed in

both WT and mgtl and are not a part of the ESR. These included 75 genes (13%) that were essential.

Notable among them were genes involved in cell wall organization, fatty acid metabolism, G1 /S cell

cycle transition genes, mRNA splicing, methionine biosynthesis and mitochondrial organization. The

largest category of genes that were affected was involved in transcription and its regulation. About

43 genes (7%) of the genes belonged to this category. Interestingly several DNA repair genes were

repressed. These included genes involved in DNA recombination and repair (HEX3, SLX8, IXR3 1,

NSE) DNA replication (RRM3, TAHI 1,RTM4) DSB repair (YKU80, SIR4, LRP1, FYV6) nucleotide

excision repair (TFB3, DPBI 1, RAD4). Table 11 B includes 60 ESR genes with known function that

are repressed in both WT and mgtl upon treatment with MINNG.

DNA damage response and repair genes

The DNA damage response and repair genes were of additional interest and were therefore

examined as a separate class. The mean expression profile of the DNA damage response and repair

genes is indicative of DNA repair pathways are likely to be activated in WT and mgtl in response to
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MNNG. A total of 133 genes were pooled into this category based on Affymetrix annotations that

are derived from the SGD annotations. Twenty five genes were induced (Table 12A) and 20 genes

were repressed (Table 12B). More than half the induced genes are essential or are sensitive upon

deletion (Table 12A). 80 genes did not have an appreciable fold change to be classified as induction

or repression. A total of 8 of the DNA repair and replication genes were classified as ESR genes

(Table 12C).

Temporal effects of individual genes

To further elucidate the differences between WT and mgt, 1 the temporal profiles of

individual genes were examined. Mean expression profiles at 6 time points for WT (3 arrays per time

point) and 6 time points for mgtI (3 arrays per time point) were used. The temporal profile of a gene

indicates a change in its mean expression upon increasing length of exposure to MNNG. The

change was judged by 2 methods; a) the slope of the expression and b) the net fold change. The net

fold-change can be defined as the ratio of expression at the 60 th minute (Exp60) to expression at the

1 0 th minute (Expl0) after exposure to MNNG. All genes that had an Exp 60/Exp 0l ratio >2 were

classified as induced and Exp 60/Exp 0O ratio < 0.5 were classified as repressed. The Venn diagram in

Figure 20 summarizes the differences and similarities in the responses between WT and mgt/. The

upper panel represents genes that are incrementally induced starting at the first time of exposure

(10th minute). The lower panel represents genes that are repressed over time, starting at the first time

point. There are unique and shared responses by the WT and mgtl to MNNG.
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Figure 20: Venn-diagram of genes that are incrementally induced or repressed

upon increasing length of exposure to MNNG.

The net fold-change (FC) over time, was calculated from ratio of mean expression at

the 60t' minute to mean expression at the 10th minute. A cut-off of FC>2 (for

induction) and FC<0.5 (for repression) was used to select genes that have been

included in this representation.

Genes induced over time

When all such profiles were examined, the expression of 60 genes was found to have an

incremental induction over time in the WT. Similarly, 210 genes in mgtl were found to increase upon

increasing the length of exposure to MNNG. The incremental response of 39 genes was common to

WT and mngtl. Induced genes that were known to have a function are represented in Table 13. In the

WT, only 2 (out of 24 genes with known function, 8o) were essential. In contrast, 34 (out of 79

genes with known function, 43/'0) were found to be essential genes.In the WT, DNA damage

effectors HUGI and RNIR3 were incrementally induced with increasing length of exposure to

MNNG. In contrast to WT (61), there were more genes in mgtl (210) that were responsive. These
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genes are involved in ribosomal RNA processing, mRNA processing and transcription were found

to be incrementally induced. Several other ESR genes were also found to be a part of pre-rRNA

processing and ribosomal protein synthesis. Overall, there were about 28 genes (35%) involved in

mRNA, rRNA, tRNA and ribosomal function, that were incrementally induced in mgt/ upon

exposure to MNNG over time. 20 (out of 52 genes) fitted a profile of a dramatic initial repression

(after 10 minutes of exposure to MNNG) followed by a steady increment towards the basal levels.

In contrast, 7 genes were consistently induced. The reflex response by 20 genes is likely to represent

a response that follows the perturbation. The 7 genes that are incrementally induced over and above

basal levels are likely to represent processes that are integrated with damage response and recovery.

Genes repressed over time

Ninety genes were repressed exclusively in WT. In contrast 118 genes were repressed in

mgtl. Only 35 genes were seemed to be repressed in both WT and mgt1/. Repressed genes that were

known to have a function are represented in Table 14. The corresponding sets of genes that belong

to ESR are also listed.

In the WT, only 1 gene (out of 18) was found to be essential. Notable among them was the

homothallic switching (HO) endonuclease, which creates a site-specific double-strand break (DSB)

in the genome at the mating-type (LAT) locus. This gene was listed earlier as a gene that was

induced in mgt/ but not in WT. Closer examination of the profile revealed that there is an

instantaneous induction of HO after the first exposure to MNNG in both WT and mg/tl. While this

induction is sustained in the mgti (hence the mean log, ER>2), there is a decline in the induction

over time in the WT (therefore, explaining its classification as "repression").

Genes that were repressed in mgt/ includes 6 genes (out of 47) that are essential. Notable among

them are genes involved in protein folding, methionine metabolism and translation. 18 (out of 47
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genes) fitted a profile of a dramatic initial induction (after 10 minutes of exposure to MNNG)

followed by a decline. In contrast, 13 genes were consistently repressed beyond the basal levels. The

reflex response by 18 genes is likely to represent a response that follows the perturbation. The 13

genes that are incrementally repressed below basal levels are likely to represent processes that are

integrated with damage response and recovery. The differential response between WT and mgtl can

provide valuable insight into the differences in the mechanism of response to MNNG in the

presence and absence of MTase.
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DISCUSSION

Several authors have studied the genome-wide transcriptional effects of chemical and

physical agents on yeast using microarrays. The yeast transcriptome response to MMS Jelinsky and

Samson 1999) and MNNG (Jelinsky et al 2000) have yielded valuable data on how the yeast adapts

to these alkylating agents. Specifically, these studies explored the transcriptional response of S.

cerevisiae to a wide range of chemical and physical damaging agents in an attempt to delineate the

response of each ORF to these agents. Agarwal et al 2003, studied the genome-wide effects of

antifungal agents on yeast in an attempt to characterize their mechanism of action. Several other

microarray-based studies have examined the effect of single gene deletions on yeast transcriptome.

For example, Ohkuni et al 2003, studied the genome-wide expression in the Deltanapl cells in order

to study the transcriptional control of NAPI, a nucleosomal assembly protein. Fry et al 2003,

studied the effect of SGS/ deletion on transcriptional profile in yeast because of its homology with

human genes involved in Werner and Blooms syndrome. Gasch et al 2001, studied basal expression

profile in MECI, DUNI and CRTI deficient yeast and their transcriptional changes in response to

MMS. The study uncovered the role of MECI, the human ATR homolog in yeast. It was also

concluded that MEC1 was an integral part of controlling the environmental stress response. A

literature survey yielded no genome-wide expression profile studies where deletion strains of DNA

repair genes were used. The current study is the first report of the transcriptional responsiveness

where a known DNA repair deficient (06 methylguanine methyltransferase deficient strain, mgtl) has

been studied. While undertaking this study, the goals were two-fold. The first was to study the

effects of deletion of mgtl on the yeast transcriptome. The second was to study the effect of

alkylation induced transcriptional changes over time in the WT and mgtl and to examine the

differences between them.
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MNNG specific response genes enriched by culling out genes involved in environmental

stress response (ESR).

In response to environmental perturbations, S. cerezisiae cells elicit rapid transcriptional

reprogramming involving both activation and repression of gene expression. Some of these

transcriptional changes represent responses that are common to chemical and physical stresses.

Removing these ESR genes from the observed response, will help to enrich the set of genes that are

specific to MNNG treatment and/or presence or absence of MTase. This was achieved by

comparing the expression profile in the current study with ESR dataset from Gasch et al 2000 to

identify ESR genes that might confound interpretation of the data. In the second tier of comparison,

phenotypic sensitivity information of yeast deletion strains from

(http/ noenomicphenotyping.mit.edu) was incorporated along with expression.

Deletion of MGT1 induces dramatic basal transcription changes, activates cell cycle

checkpoints, transcription factors and a gene involved in spontaneous mutagenesis.

MGT is involved in direct repair of 06 Methylguanine and O4MIethylthymine lesions. Genes

that are induced upon deletion of MGT1 are likely to be involved in a) a direct interaction with

MGT1 or b) a downstream effect of a lack of AIGT1. A direct interaction can follow from the

argument that MGT1 normally, represses these genes and removing MGTI induces them.

Alternatively, lack of MGT/ can lead to increased spontaneous mutations and DNA damage and

genes induced might be a part of the downstream cellular processes that are involved in handling

this damage. It was interesting to note the up-regulation of 148 genes upon the deletion of one

single gene (MGT1). The deletion appears to up-regulate a gene involved in spontaneous

mutagenesis and several genes that are transcription factors and 2 others that are involved in cell

cycle control. The 7-fold up-regulation of REIT'7, a subunit of DNA polymerase-zeta (Pol-zeta, Pol
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) is important in the context of spontaneous mutations. The other subunit of pol-zeta, is REV3

(which was not up-regulated). RE1/7 is the processivity factor for REV3 and complex together, to

get involved in translesion (TLS) synthesis, a mechanism that probably helps cells cope with DNA

lesions that have escaped the efficient DNA repair systems. TLS is invoked when there is a

replication blocking lesion that the normal polymerases are not able to copy past. O6Methylguanine

(O 6MeG) is a mutagenic lesion and is not considered as a replication blocking lesion. It is likely,

therefore, that the endogenous lesion leading to the up-regulation of RETV7, is probably not because

of 06 MeG. At the same time that TLS helps to copy past the lesion, it has potentially mutagenic

consequences making it responsible for the majority of spontaneous mutations (Friedberg 1995).

Increase in spontaneous mutations in mgtl has been observed earlier (Xiao and Samson 1992). The

same study found that wild-type mutation rate was restored when the mg/t mutant was transformed

with a functional MGTI. The seven-fold induction of RET'7 in this context may suggest a

downstream effect of the deletion of MGT1 rather than via 06 MeG. Cell cycle control genes, BUB/

and CKA1 were up-regulated. BUBi is a protein kinase and serves as a mitotic spindle checkpoint.

CKA is the alpha unit of protein kinase CIK2 and is known to be involved in DNA damage

response and cell-cycle control. Among the transcription factors that were up-regulated GCN5 has

two tiers of significance. First, Gcn5p plays a role in controlling the expression of 5 % of the yeast

genome (Holstege et al, 1998). Secondly, GCNS, a histone acetyl transferase allows efficient access

of the repair machinery to chromosomal DNA damage either indirectly via influencing transcription

or directly via modifying chromatin structure. Gcn5 functions before or during the DNA repair

process. An earlier report suggested that Gcn5 is recruited upstream of the damaged area by a

hitherto unknown DNA damage sensor (Teng et al, 2002). Overall, it appears as though the deletion

of MGT1 is leads to increased DNA damage good reason why cell cycle checkpoints are up-

regulated. Simultaneous up-regulation of a key component of the translesion synthesis suggests the
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role of error-prone damage tolerance mechanisms in response to possible replication blocking

lesions. Up-regulation of GCNS, a gene that aids DNA repair and controls expression of 5% of the

yeast genome is indeed remarkable.

Cellular response to MNNG in WT and mgtl

About 30% of the yeast genome (as represented on the Affymetrix GeneChip MArray YGS98)

was responsive to treatment with MNNG (Figure 16). As the heat map in Figure 16 indicates,

response to most of the damage that was inflicted by MNNG was initiated in the first 10 minutes of

exposure. Thereafter, the total number of responsive genes did not change dramatically. Evaluation

of the genome-wide response across the length of time might lead us to miss changes in a subset of

genes that might be instrumental in understanding the response to MNNG. Therefore, in order to

dissect the transcriptional response further, genes belonging to several functional sub-categories

were examined. This, however, did not yield any substantial change in the responsiveness in gene

expression over time, to MNNG (Figure 17A and 17B).

MNNG induced damage activates cell-cycle checkpoint cascade, DNA damage signal

amplifiers and downstream effectors

As the cells respond to an adverse condition such as exposure to MNNG, several cellular

responses are mounted by WT and mgtl. The Venn diagram (Figure 19) indicates that a majority

(977 genes, 66%) of this response was common to both WT and mgtl. The response that is shared

by WT and the gtl is indicative of cellular processes that are common to both strains in response

to MNNG. Among the shared response are genes that serve as a part of S-phase checkpoint. The

checkpoint regulatory mechanism has an important role in maintaining the integrity of the genome

and results in a temporary cessation of DNA replication. Eukaryotic cells activate checkpoint
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pathways that arrest cell cycle progression and induce the expression of genes that are required for

DNA repair. This checkpoint machinery consists of proteins that recognize DNA damage and

initiate the signaling response. The identification of the damage also needs to be amplified in order

to recruit other mediators of DNA damage response. MRC! and TOF! are DNA damage signal

amplifiers. TOFI and MRC1 were induced in both WT and mgtl. Upon damage to DNA, TOF1 gets

activated and forms a part of a replication-pausing complex. TOFI, located at the arrested forks

activates checkpoint cascades, leading to repair of the damaged DNA. Recently, it was demonstrated

that Tofl and Mrcl interact directly with the damaged DNA (atou et al 2003). It has also been

postulated that Toflp links Meclp with Rad53p (Foss, 2001). This is an interesting finding in the

context that MEC! and RAD53 is an indispensable component of DNA damage response. Rad53

and Mecl are protein kinases required for DNA replication and recovery from DNA damage in S.

cerevisiae. DNA damage during S phase slows down the rates of replication fork elongation (Tercero

and Diffley, 2001) and triggers a Rad53/Mecl-dependent block. As a result, DNA damage leads to

an abrupt decrease in DNA synthesis (Paulovich and Hartwell, 1995). In addition, Mecl and Rad53

are required to prevent DNA damage-induced collapse of replication forks (Tercero and Diffley

2001), via their ability to phosphorylate replication and repair proteins at stalled replication forks.

The essential function of Mecl and Rad53 in S. cererisiae is to promote deoxyribonucleotide

triphosphate (dNTP) production during S phase to coincide with DNA replication. This is achieved

via phosphorylation and subsequent degradation of Smll (Zhao et al., 2001), an inhibitor of

ribonucleotide reductase (RN\R). Ribonucleotide reductase (RNR) catalyzes the rate limiting step in

the production of deoxyribonucleotides needed for DNA synthesis. Its synthesis is tightly regulated

at the level of transcription. It is cell-cycle regulated and provides a metabolic state that facilitates

DNA replicational repair processes. Dunl, a protein kinase, controls inducibility of RNR, 2 and 3
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in response to DNA damage and replication blocks. RNR genes in yeast form a regulon that is

coordinately regulated by protein phosphorylation in response to DNA damage.

In our dataset, the log2ER for MEC! and RAD53 was not induced more than 2 fold. It is

likely that this is because they are kinases and hence present transiently. DUN and HUG I are DNA

damage response genes down-stream of MECI and RAD53 and were induced. HUG (hydroxyurea

and UV and gamma radiation induced) is a component of the MVEC/-mediated checkpoint response

to DNA damage and leads to replication arrest. The HUGI gene was identified as a component of

the DNA-damage checkpoint response using deletion and overexpression mutants of S. cerevisiae

(KIaplun 2000). DNA damage-specific induction of HUG/ is independent of the cell cycle stage.

HUG! induction also increased with increasing exposure to MNNG in both WT and mgtl. Its

induction response to MNNG is therefore consistent with its role in DNA damage response.

MNNG induced damage activates chromatin silencing.

Mecl is the central transducer of these stress-response signals (Zhou and Elledge 2000).

Both Rad53 and Mecl are key proteins involved in the response to replication blocks and they act

together with a novel regulator of Rad53, Mrcl. The DNA damage response pathway has been

linked to the control of chromatin organization. In response to DNA damage, certain proteins that

are normally relocalize to silence telomeric chromatin (Martin et al. 1999, Mills et al. 1999). This

relocation is dependent on Mecl (Craven and Petes 2000). In the current data, 6 genes involved in

chromatin silencing are induced and 3 of them are also known to be essential. This chromatin-

mediated maintenance of transcriptional inactivation is in accordance with expectations.
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MNNG induced damage activates genes involved in DNA replication and repair.

DNA repair mechanisms are by far the most important components of the cellular response

that gets induced upon damage to DNA by MNNG. DNA polymerase alpha (POLl) is an essential

gene required for initiation of replication and lagging-strand synthesis. It was also found to be a part

of the ESR. The MCM2 is a part of the Mcm2-NIcm7 protein complex that forms a DNA helicase

that unwinds the DNA ahead of the replication fork (Labib and Diffley, 2001). Additionally, all the

essential subunits of replication protein A (RPA) were induced. RPA is a single-stranded DNA

binding protein (SSB) involved in DNA replication, recombination and repair (Kim C et al 1992). It

has been recently shown that RPA facilitates telomerase action (Schramke, 2004). Proliferating cell

nuclear antigen (PCNA), encoded by the POL30 gene, is essential for DNA replication (in

association with RFC) and DNA repair. PCNA is a ring-shaped DNA polymerase accessory protein

that can encircle duplex DNA. PCNA interacts with Pol eta to permit efficient lesion bypass.

Another notable gene that was induced in response to MNNG was H,4MI. It is known that

overexpression of the yeast HAM1 gene prevents 6-N-hydroxylaminopurine mutagenesis in E. coli

(Kozmin et al 1998) suggesting that it might play a protective role in MNNG induced damage.

HAM/ controls 6-N-hydroxylaminopurine (HAP) sensitivity and mutagenesis in S. cerevisiae. The

HAMVl protein protects the cell from HAP, either on the level of deoxynucleoside triphosphate or

the DNA level by a yet unidentified set of reactions (Noskov, 1996). It was intriguing to note that

H1AMl deletion phenotype was not sensitive to MNIMS

Repair of MNNG induced mitochondrial DNA damage

CDC9 gene encodes a DNA ligase protein that is targeted to both the nucleus and the

mitochondria and this yeast rely upon a single DNA ligase, Cdc9p, to carry out mitochondrial DNA

replication and recovery from both spontaneous and induced mitochondrial DNA damage
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(Donahue 2001). MSH1 is a DNA-binding protein in yeast mitochondria that recognizes nucleotide

mismatches in DNA and plays a role in mitochondrial mutation avoidance. MSH1 protein is targeted

to the mitochondria where its mitochondrial-targeting sequence is removed (Chi and Kolodner,

1994). Taken together, the induction of CDC9 and MSH1 appears to be a part of a program to

repair damage to mitochondrial DNA.

MNNG induced damage activates ubiquitin mediated protein catabolism

Twenty genes involved in protein ubiquitination and ubiquitin mediated protein catabolism

were induced (RPTI, DOA41, RPN2, RPNI, PRE9, SCL1, RPN9, UFD2, RPN7, RPT5, PRE8).

Among them, DOA1 is thought to encode a regulatory component of the proteasome pathway,

which involves ubiquitin (Ub)-dependent protein degradation (Ghislain, 1996).

MNNG induced damage activates protein synthesis genes

The yeast ribosomal proteins (RPs) of are encoded by more than 100 genes. These are

among the most transcriptionally active genes in the yeast genome. It consumes a prodigious amount

of the cell's resources and, consequently, is tightly regulated. Interestingly, 68 genes (11%) of the

genes induced in both WT and mgtl were involved in ribosomal protein synthesis. This is in contrast

to earlier observations where protein synthesis genes were found to be repressed upon exposure to

MMS Jelinsky et al 1999) and osmotic stress (Rep, 2000). Notable among these include RAP1, a

multifunctional transcription factor that has a BRCT domain. The BRCT domain is found

predominantly in proteins involved in cell cycle checkpoint functions responsive to DNA damage.

RAP! is essential for cell viability and can function as either an activator or a repressor of

transcription, depending upon the context of its binding site. RAP! was incidentally found to be
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repressed and it is likely that repression of RAPI is responsible for induction of the 68 ribosomal

protein synthesis genes.

In an earlier study MAG, 3-methyladenine DNA glycosylase, an integral component of the base

excision repair pathway, was shown to be induced upon damage to DNA by MMS. It was also

shown that MAGi and MGTI have a common upstream regulatory sequence. In this dataset,

MAG was not found to be induced more than 2-fold.

Ubiquitin-proteasome regulator, RPN4, is repressed upon MNNG treatment.

Intracellular proteolysis in yeast occurs mainly via the ubiquitin-proteasome system.

Expression of this system is under the control of the transcription factor, Rpn4p (Mannhaupt G et

al, 1999). It has been shown earlier that alkylating agent IMMS resulted in activation of genes that are

involved in ubiquitin and 26S proteasome-dependent protein degradation. Rpn4p is a major

transcription regulator that acts by binding to proteasome-associated control element (PACE) with a

unique upstream activating sequence (5'-GGTGGCAAVt-3'). This binding either stimulated or

inhibited transcription. In this dataset, however, RPN4 was found to be repressed 4.5 times.

Genes involved in non-homologous end joining (NHEJ), recombination and some elements

of nucleotide excision repair are repressed in MNNG exposed yeast cells.

Among the genes repressed in both WT and agtil are those involved in DSB repair via

NHEJ. (YKU80, SIR4, LRP/, FYT6). The components of the non-homologous end joining

(NHEJ) repair pathway were repressed 2-3.5 fold. Additionally, few other genes involved in

recombination and replication were also repressed. HEX3 and SLX8 have DNA binding activity

and are implicated in recombination repair. SLX8 is required to resolve recombination intermediates

that arise in response to DNA damage. The RAD4 gene of yeast is required DNA binding and for
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the incision of damaged DNA during nucleotide excision repair (NER) (Owsianik 2002). TFB2 is a

transcription/repair factor (TFIIH) subunit that is a transcription initiation factor required for NER.

Finally, two discrete set of genes, the "WT-specific MNNG-damage signature" and "mgtl-

specific MNNG-damage signature" was created. These include uniquely up-regulated in the WT or

mgtl upon exposure to MNNG. This signature may help define new candidates for involvement in

cellular responses to MNNG in a wild-type and upon O6 methylguanine methyltransferase deletion.

MNNG induces genes involved in mRNA turnover and protein synthesis in WT

Since the only difference between WT and mgtl is the lack of MTase, it could be postulated

that the set of transcripts are specifically induced in WT are because of MNNG's effect in the WT

MTase background. Expression of 7 genes involved in mRNA splicing (MSL1), cleavage (PTIl) and

catabolism (NMD4, PUB1), specifically in the WT is indicative of more mRNA turnover. There

were 3 others that were classified as a part of ESR. Accordingly, there were 18 protein synthesis

genes (6 were ESR genes) that were induced. It is likely that the overwhelming induction of protein

synthesis genes is representative of a recovery response after the initial insult. More protein synthesis

genes are induced in the WT as opposed to mgt, probably because it is able to recover faster (than

the mngtl). Mitochondrial DNA damage response was exemplified by induction of RIM1. This has

single stranded binding (SSB) activity and is involved in mitochondrial genome maintenance. RIMI

forms an essential component of the yeast mtDNA replication apparatus (Van Dyck, 1992). ERVl

gene is essential for cell viability and for the biogenesis of functional mitochondria.

Repression of chromatin remodeling genes following MNNG induced damage

While the genes that are specifically induced in the WT upon NINNG damage are involved

in fundamental metabolic processes, the genes that are repressed include 5 chromatin remodeling
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and histone modification genes (of 18). In addition, RPI1, a repressor of the ras-cAMIP pathway and

UBP10, a deubiquitinating enzyme are repressed. Loss of UBPIO function is known to lead to partial

impairment of silencing at telomeres. A study of ubpl0 deletion revealed that it mimicked oxidative

damage by intracellular accumulation of reactive oxygen species and eventually leading to DNA

fragmentation and phosphatidylserine externalization, which happen to be the 2 markers of

apoptosis (Orlandi, 2003).

MNNG induces mitochondrial damage in mgtl

It appears as though the lack of NITase in magt1 results in increased damage to mitochondria.

This was reflected in the responsiveness of several mitochondrial proteins that were induced

specifically in azgt1. These genes are involved in fundamental biochemical processes in the

mitochondria. MRS1 1 and 71718 are protein transporters in the mitochondria. CCEI is involved in

DNA recombination and is also present in the inner-mitochondrial membrane. C0Q3 is involved in

ubiquinone biosynthesis, and is a component of the inner mitochondrial membrane. IDH2 is

involved in the TCA cycle and also localizes to the inner mitochondrial membrane. DICI is involved

in dicarboxylic transport across the mitochondrial membrane. There were only 3 protein synthesis

genes

MNNG induced damage activates multifunctional transcription factor SWI6, in mgtl

SWIF6 is a transcription factor involved in controlling genes involved in cell wall biogenesis

and architecture. It is also a key component of G1/S checkpoint. When a cell detects damaged

DNA, Rad53 checkpoint kinase activity is dramatically increased, which ultimately leads to changes

in DNA replication, repair, and cell division. S7IFq6, a substrate of Rad53 in the G(1)/S DNA

damage checkpoint was activated in mgt indicating that there is more DNA damage in mgt/. SIF716
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enhances the expression level of the recombination genes in meiosis in a dosage-dependent manner,

which results in an effect on the frequency of meiotic recombination (Leem 1998). Another gene

involved in recombination is CCE 1.

Ho endonuclease introduces a site-specific double strand break (DSB) in the mating type (MA4I)

gene of yeast and its expression is tightly regulated. This endonuclease is known to be induced for a

short duration and quickly degraded via the ubiquitin-26 S proteasome system (Kaplun, L et al

2000). Taken together, it appears as though mgtl has a propensity to undergo more mitochondrial

damage and DNA recombination repair.

An exaggerated response of mgtl-specific MNNG-damage was limited to genes that seem to be

involved in remodeling of the cell cytoskeleton, translation and signal transduction activity.

Role of environmental stress response genes

The environmental stress response, ESR is a stereotypical pattern of changes in the

expression of approximately 900 genes evoked by a large variety of environmental stresses, including

heat shock, osmotic shock, DTI, nitrogen starvation, and peroxide. Many of the genes in this

program are induced in response to stressful environments and therefore may play a critical role of

maintaining internal homeostasis. As expected, the ESR was rapidly initiated in wild-type and mgtl

cells responding to MNNG, and it was sustained through the entire course of the experiment. From

Gasch et al 2000, a total of 95 microarray hybridization experiments were used to deduce the

environmental stress response genes that were found to be responsive in this study. Approximately

48% of the genes found in the ESR were also induced/repressed upon treatment with MNNG.

Approximately 78% of these ESR genes were common to the response by WT and mgtl. This

overlap is very suggestive of cellular responses that are common to processes that help the cell

survive and achieve internal homeostasis.
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In an earlier study Gasch et al 2000 reported the presence of a DNA damage signature

cluster comprising nine genes including the ribonucleotide reductase subunits RNR2 and RNR4, the

DNA-damage repair genes RADS1 and RAD54, the DNA-damage activated kinase DUN, the

DNA-damage-inducible mitochondrial nuclease DIN7, PLM2, which has homology to the fork-

head associated-domain found in several transcription factors and kinases, and two uncharacterized

ORFs (YER004W and YBR070C). A total of 4 genes from the 9 from their cluster (DUNI, PLM2

RNR4, and the ORF YBRO70C) were found to be induced in the current study.

Temporal response to MNNG.

A comparison of temporal expression profiles of genes incrementally induced or repressed

in WT and mgtl revealed interesting trends. Overall, there were more genes that showed induction

or repression in the mgtl (210 induced, 118 repressed) than WT (61 induced, 90 repressed). There

were a few genes that showed trends (39 induced, 35 repressed) that were shared between WT and

mgtl. This result indicates that the perturbation in the mgtl is more profound than in the WT.

In the WT there is a reflex repression of several fundamental biochemical processes when

the cells are first exposed to MNNG. These processes include glucose metabolism, lipid signaling

pathways, fatty acid metabolism, electron transport system and the glyoxylate cycle. The repression

is transient and is eased as the cell tries to recover from the perturbation. Almost simultaneously,

there is a reflex induction of processes involved in maintaining the cell wall structure and function.

Their induction wanes over time. Other genes that follow this pattern are involved in

phosphatidylethanolamine and serine biosynthesis and threonine catabolism. Other interesting genes

in this category included, TLC1 which encodes the RNA subunit of telomerase (Singer, 1994) and

HO endonuclease. The components of the DNA damage response pathway are known to degrade

HO endonuclease via the ubiquitin 26s proteasome system (Kaplun L). This could explain the
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waning of "induction" over time. These responses are likely to be related to processes that are

involved in damage recovery. A few genes were consistently induced after the initial exposure to

MNNG. These responses need to be distinguished from the ones that are observed above. These

responses are sustained as long as the cells are exposed to MNNG. Therefore, these are likely to be

critical and related to processes that are directly related to the damage caused by MNNG or its

downstream processes. To exemplify, GTT2 codes for a glutathione transferase and its deletion

strain is also found to be very sensitive to MMS. In addition to its role as an antioxidant, glutathione

has several physiological functions, such as detoxification of various cytotoxic compounds, acting as

a co-factor for enzymes, protection of proteins' SH groups. Upon invasion by xenobiotics,

glutathione-S-conjugates are formed by glutathione S-transferase and the conjugates or their

degraded compounds are exported from the cytoplasm by some transporters. In S. cerevisiae, two

glutathione S-transferase genes (GYTI and GTT2) have been identified (Choi 1998). and

glutathione-S-conjugates are transported into the vacuole by the YCF1 gene product, which is an

ATP-binding-cassette transporter on the vacuolar membrane (Li, 1996). Induction of GSH synthesis

in yeast has been shown to protect the mitochondrial DNA (mtDNA) from oxidative damage (IKei-

ichi, 2001).

The damage by MNNG is more profound in mgtl than WT. Unlike the WT, the initial

exposure to MNNG represses genes that are more likely to be transcriptional factors. After the

initial repression these genes were incrementally induced and tended to approach WT levels. By

virtue of affecting transcription factors, their influence on the expression profile is more

pronounced than what is apparent. Other genes in this category included ones involved in RNA

processing and kinases involved in protein phosphorylation. It was very intriguing to find RAD28 in

this category of genes. It is a homolog of the Cockayne syndrome A (CSA) gene. CSA patients

exhibit severe developmental and neurological abnormalities. In contrast genes that were induced as
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a reflex response and waned over time included those involved in copper and lipid transport, glucan,

sulfur and methionine metabolism. An interesting class of genes here were 5 genes involved in

translation initiation, elongation and regulation. The temporal responsiveness in mgt/ was striking on

several other counts. About 35% of the induced genes were involved in ribosomal function and 43%

of all the genes induced were found to be essential.

Overall, the propensity for damage to macromolecules and cellular processes is much more

in the mgt/ than the WT. Given that mgt is not able to repair O6 Methylguanine and

04Methylthymine, it can be postulated that the profound damage in mgti could be because of these

lesions itself or due to downstream processes. The repression of transcription factors followed by

the induction of ribosomal and RNA components is an interesting finding that suggests that the

recovery after damage is coordinated at the transcriptional level. This is unlike the WT that can

repair the O6MeG lesion to a greater extent than the mgtl. In the WT, the reprogramming involves a

transient repression of genes restricted to fundamental metabolic processes indicating that the

damage is limited compared to mgtl.
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Summary

In conclusion, the transcriptional changes precipitated by deleting MTase in yeast are indicative of

DNA damage induction, cell cycle checkpoint activation and eventually, damage tolerance via

REV7. This finding of error-prone translesion bypass polymerase activity correlates well with an

earlier result where increased spontaneous mutagenesis was demonstrated in MTase deficient yeast.

The effect of alkylating agent MNNG on yeast is dramatic and about 30%o of the genome is instantly

responsive. The initial insult with MNNG is rapidly followed by a repression of major metabolic

processes but an induction of genes involved in maintaining cell wall structure and function. Other

processes that try to maintain homeostasis after the initial insult with MNNG set in early and are

sustained. A reflex response orchestrated by cell-cycle checkpoints serve to stall the cell-cycle and

provide sufficient time to repair the DNA. This was evidenced by induction of DNA damage

sensors, signal amplifiers and effectors. Nucleotide excision repair genes were the predominant class

of repair proteins induced.

While most of the response to DNA damage is shared by the wild-type and mgt1, a fraction of the

genes respond differentially and they include individual components of DNA repair systems. It

appears as though the lack of MTase in mgt/ leads to increased damage in mitochondria and a

program that increases the transcription of genes pre-mRNA processing, mRNA splicing and

ribosomal biogenesis. Damage due to alkylation does not limit itself to genetic material in the

nucleus. It affects organelles such as mitochondria which appear to be very sensitive.

In the WT treated with MNNG, double-strand break repair was induced along with uracil DNA

glycosylase (UNG1). There was more protein synthesis and transport across the subcellular

organelles. In contrast, in mg/tl, there was more mismatch repair (ISH2), and mitochondrial repair

genes. The induction, over increasing length of exposure to MINNG, of 30 genes involved in pre-
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RNA processing, mRNA splicing and ribosome maintenance could be attributed to the induction of

SWI16, a transcriptional co-activator.

Culling out environmental stress responsive genes (ESR genes) from the current study permitted a

study of gene expression attributes specific to WT or magtl. Five out of the 9 genes identified as the

DNA damage cluster by Gasch et al 2000 were found to be induced upon MNNG exposure. These

genes included DUN, PLM2, RNR4 and the ORF of yet unknown function, YBR070C.

It appears that the MNNG induced damage is not limited to the DNA alone. Other macromolecular

processes are affected considerably. An equal dose of MNNG imparts more damage in mgtl than the

WT. While the O6 Methylguanine lesion is successfully repaired by the MTase in WT, lack of MTase

in mgtl is not able to do so. With more O6 Methylguanine in the genome, the mgtl cells are killed

faster than WT. The transcriptional changes that accompany imply that the cellular processes in mgtI

sustain more damage. Hence the transcriptional responsiveness is more elaborate than in the WT.

As a rule, the fundamental metabolic processes (glucose metabolism, amino acid metabolism and

fatty acid metabolism) are transiently repressed in order to cope up with this stress and cell wall

synthesis genes are induced in both WT and mgtl.
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Appendix: Gene Expression Analysis Protocols

Total RNA synthesis
i- , . , . ., , i .I

RNeasy Mini Protocol for Isolation of Total RNA from Yeast
Enzymatic Lysis Protocol - standard version

Use an appropriate number of yeast cells

Important notes before starting
* For RNA isolation from yeast, cells should be harvested in log-phase growth. Use only
freshly harvested cells for the enzymatic lysis protocol.

* Prepare Buffer Y1
Buffer Y1 1 M sorbitol

0.1 M EDTA, pHl 7.4
Just before use, add:

0.1% -mercaptoethanol
50 U lyticase/zymolase per 1 x 107 cells

Depending on the yeast strain and enzyme used, the incubation time, enzyme concentration,
and composition of Buffer Y1 may vary. Please adhere to the guidelines of the enzyme
supplier.

Important
*· -Mercaptoethanol (-ME) must be added to Buffer RLT before use. -ME is toxic;
dispense in a fume hood and wear appropriate protective clothing. Add 10 ,l I -ME per
1 ml Buffer RLT. Buffer RLT is stable for 1 month after addition of -ME.
* Buffer RPE is supplied as a concentrate. Before using for the first time, add 4
volumes of ethanol (96-100%), as indicated on the bottle, to obtain a working solution.

* Buffer RLT may form a precipitate upon storage. If necessary, redissolve by warming, and
then place at room temperature. Buffer RLT and Buffer RW'1 contain a guanidine salt and are
therefore not compatible with disinfecting reagents containing bleach. Guanidine is an irritant.
Take appropriate safety measures and wear gloves when handling.
* After enzymatic lysis, all steps of the RNeasy protocol should be performed at room
temperature. During the procedure, work quickly.
* After harvesting the cells, all centrifugation steps should be performed at 20-250 C in a
standard microcentrifuge. Ensure that the centrifuge does not cool below 20C.

1. Harvest yeast cells in a 12 ml or 15 ml centrifuge tube by centrifuging at 1000 x gfor 5
min at 4°C. (Do not use more than 5 x 107 yeast cells.) Decant supernatant, and
carefully remove remaining media by aspiration. After centrifuging, heat the centrifuge
to 20-250 C if the same centrifuge is to be used in the following centrifugation steps of
the protocol.
Incomplete removal of the supernatant will affect digestion of the cell wall in step 2.
Note: Freshly harvested cells must be used.

2. Resuspend cells in 2 ml freshly prepared Buffer Y1 containing lyticase or zymolase.
Incubate for 10-30 min at 300 C with gentle shaking to generate spheroplasts.
Spheroplasts must be handled gently.
Depending on the yeast strain used, the incubation time, amount of enzyme and composition
of Buffer Y1 may vary. For best results, follow the guidelines of lyticase/zymolase supplier.

---*r*eCIP--i�-·�----�---�·--i� --�II--·-�----·II 11"- ------------------------
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Appendix: Gene Expression Analysis Protocols

Complete spheroplasting is essential for efficient lysis. Note: Freshly harvested cells must be
used for preparation of spheroplasts.

3. Centrifuge for 5 min at 300 x g to pellet spheroplasts. Carefully remove and discard
the supernatant.
Note: Incomplete removal of the supernatant will inhibit lysis and dilute the lysate,
affecting the conditions for binding of RNA to the RNeasy silica-gel membrane. Both
effects may reduce RNA yield.

4. Add 350 jil Buffer RLT to lyse spheroplasts, and vortex vigorously. If insoluble
material is visible, centrifuge for 2 min in a microcentrifuge at maximum speed, and
use only the supernatant in subsequent steps.
Note: Ensure that 3-ME is added to Buffer RLT before use (see "Important notes before
starting").

5. Add 1 volume (usually 350 Al) of 70% ethanol to the homogenized lysate, and mix
thoroughly by pipetting. Do not centrifuge. Continue immediately with step 6.
A precipitate may form after the addition of ethanol, but this will not affect the RNeasy
procedure.

6. Apply the sample (usually 700 At any precipitate that may have formed, to an RNeasy
mini column placed in a 2 ml collection tube (supplied). Close the tube gently, and
centrifuge for 15 s at 8000 x g (10,000 rpm). Discard the flowthrough.
Reuse the collection tube in step 7.
If the volume exceeds 700 , load aliquots successively onto the RNeasy column, and
centrifuge as above. Discard the flow-through after each centrifugation step.*

7. Add 700 jl Buffer RW1 to the RNeasy column. Close the tube gently, and centrifuge
for 15 s at 1- 8000 x g ( 10,000 rpm) to wash the column. Discard the flow-through and
collection tube.*

8. Transfer the RNeasy column into a new 2 ml collection tube (supplied). Pipet 500 Al
Buffer RPE onto the RNeasy column. Close the tube gently, and centrifuge for 15 s at
L_ 8000 x g (Ci 10,000 rpm) to wash the column. Discard the flow-through.
Reuse the collection tube in step 9.
Note: Buffer RPE is supplied as a concentrate. Ensure that ethanol is added to Buffer RPE
before use

9. Add another 500 pl Buffer RPE to the RNeasy column. Close the tube gently, and
centrifuge for 2 min at 1 8000 x g ( 10,000 rpm) to dry the RNeasy silica-gel
membrane. Continue directly with step 10, or, to eliminate any chance of possible
Buffer RPE carryover, continue first with step 9a.
It is important to dry the RNeasy silica-gel membrane since residual ethanol may interfere with
downstream reactions. This centrifugation ensures that no ethanol is carried over during
elution.
Note: Following the centrifugation, remove the RNeasy mini column from the collection tube
carefully so the column does not contact the flow-through as this will result in carryover of
ethanol.

9a. Optional: Place the RNeasy column in a new 2 ml collection tube (not supplied),
and discard the old collection tube with the flow-through. Centrifuge in a
microcentrifuge at full speed for 1 min.

2



Appendix: Gene Expression Analysis Protocols

* Flow-throu gh contains Buzfer RLT or Buzr RWV and is therefore not compatible with bleach.

10. To elute, transfer the RNeasy column to a new 1.5 ml collection tube (supplied).
Pipet 30-50 pl RNase-free water directly onto the RNeasy silica-gel membrane. Close
the tube gently, and centrifuge for 1 min at - 8000 x g ( 10,000 rpm) to elute.

11. If the expected RNA yield is >30 jig, repeat the elution step (step 10) as described
with a second volume of RNase-free water. Elute into the same collection tube.
To obtain a higher total RNA concentration, this second elution step may be performed by
using the first eluate (from step 10). The yield vwill be 15-30%/o less than the yield obtained
using a second volume of RNase-free water, but the final concentration will be higher.

1st Strand Synthesis
Ill ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

Amount of RNA

* Using a 1.5 ml centrifuge tube, mix reagents according to the following Table.

STEP 1
Reagent Volume (l)
DEPC-water x
RNA (1.0 tg/pl) Y
T7 Primer (100 pmol/bl) I I

TOTAL 12

* Incubate @ 70'C in a water bath for 10 minutes
* Spin briefly and place on ice till ready to proceed.
* When incubation is done, to the same tube, add reagents according to the Table below.

STEP 2

Reagent Volume (l)
Tube from step 1 12
5X 1 strand cDNA buffer 4
0.1 DTT 2
10 mMN dNTP mix 1

TOTAL 19

* Mix well with a pipette (carefully, in and out) and incubate at 42 C, 2 minutes.
* Add variable amount of SS Reverse Transcriptase (final reaction volume =20 pl)
* Mix well with a pipette and incubate at 42 'C, 1 hour.

2 nd Strand Synthesis

Add the following components to the 1 t strand tube from above:

2nd STRAND IIXTURE

Reagent Volume (l)
1t Strand Reaction 20
DEPC-Water 91
5X 2 ; strand cDNA buffer 30
10 mmM dATP, dCTP, dGTP, dTP 3
DNA Ligase (10 U/,u) 1
DNA Polymerase (10 /,ul) 4
RNase H (2 U/d 1) 1

TOTAL 150

_ ~ ~ .--__ ... ~ -- ~ 1~~_

3



Appendix: Gene Expression Analysis Protocols

* Transfer this total amount to a PCR tube and place in the thermocycler at 16°C for 2 hours.
* Add 2 ud of T4 DNA Polymerase (10 U/[dl) and incubate at 16°C for 5 minutes.
* Add 10 [tl of 0.5 I EDTA. (The total added volume is -162 tu).

* Proceed to cDNA cleanup or store the reaction at -20o'C.

i-



Appendix: Gene Expression Analysis Protocols

cDNA Clean-up

* Pellet the PLG light in the green tube and set aside.
· Transfer the 2nd strand cDNA solution from previous step back to a 1.5 ml tube.
· Add to the 2nd strand cDNA tube (equal volume, assuming 150 dl recovery):

The total volume is now approximately 300 l

· Vortex the 2d strand cDNA tube and transfer the entire amount to the pelleted PLG-light
tube.

* Centrifuge at 14,000 rpm for 2 minutes. Transfer the aqueous (top) layer to a new tube.
* Add the following to the aqueous layer (assuming recovery of 150 d):

Glycogen (5 mg/ml) 1 1
NH4OAc (7.5 M) 75 d1
EtOH (100 %) 562 l

* Vortex and immediately centrifuge for 20 minutes at 14,000 rpm, RT.

* Remove supernatant and wash pellet twice with 500 tl of 80 % EtOH.
* After the last wash, centrifuge and eliminate EtOlH using a micropipettor. Centrifuge again

and eliminate EtOH remnants with micropipettor.
* Air dry the pellet (5 min at 370C and 5 min RT) and resuspend in 12 dul DEPC water

ote: Comlete drying is rve imor/ant. Te resence of ethanol willinhibit the IT/T reacio4

Biotin Labeling by In Vitro Transcription Reaction (IVT)
I I IIl I , ;I ,I .Ill

Since we started with 5-8 4tg of total RNA, the Affymetrix manual recommends using 10 l out of the
12 tl cDNA solution to setup a 40 pl IVT reaction (see chart in the manual). Using reagents from the
ENZO kit, add the following components to a 1.5 ml centrifuge tube.

IVT Reaction Setup
Reagent Volume (i)
cDNA template 10
DEPC-Water 12
10X HY reaction buffer 4
10 biotin labeled NTP 4
10X DTT' 4
10X RNase inhibitor 4
20X T7 RNA polymerase 2

TOTAL 40

9�- I-------�
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Appendix. Gene Expression Analysis Protocols 6

* Mix the reagents and centrifuge briefly
* Incubate @ 37oC for 5 hours in an oven to avoid evaporation.
* Make sure to mix with a pipette every 30-45 minutes.
* Store @ -20oC or go to the clean up step

- I



Appendix: Gene Expression Analysis Protocols

IVT Clean-up

RNeasy RNA Cleanup Procedure

Notes:

-B&ffr RLT ma),form a prediitate cpon storage. If this happens, varm to to redissobe.

-Add 1O/l oJf -IME to 1 ml of Bffer RIT beJire se (stabklfor I month).

-Baffer RPE is protided as a concentrate. Before usingfor the first time, add 4 aolumes of ethanol (96-100%) as indicated on the bottle to obtain a

working solution.

-All e ntrifiugations are done at room temperature.

Work in groups of two: each group will process half of the sample for RNA cleanup

1. Measure the volume that you now have in your IVT tube (should be -40 jtl).

2. Split the sample in half and continue with the cleanup procedure on half of the sample. Adjust the
volume of your portion (-20 41) to 100 tli using RNase-free water.

3. Add 350 dtl Buffer RIT to the sample, and mix thoroughly.

Note: Ensure that _ -IE is added to B/ffer RLT before ase.

4. Add 250[d ethanol (96-100%) to the sample, and mix well by pipetting. Do not centrifuge.

5. Apply sample (now 700 Ld) to an RNeasy mini spin column sitting in a collection tube. Centrifuge for
15 seconds at 12,000 rpm.

6. Discard flow-through and collection tube.

7. Transfer RNeasy column into a new 2-ml collection tube. Pipet 5 00 p1 of wash Buffer RPE onto the
RNeasy column, and centrifuge for 15 sec at 12,000 rpm to wash.

Ensare that ethanol is added to Baffer RPE before zese.

8. Discard flow-through and reuse the collection tube in the following step.

9. Pipet 500 ll of wash Buffer RPE onto the RNeasy column. Centrifuge for 2 min at 14,000 rpm to dry
the RNeasy membrane.

10. Following the spin, remove the RNeasy column from the collection tube carefully so that the column
does not contact the flow-through as this will result in carryover of ethanol.

It is important to d') the RNea' membrane since residel ethanol maj intefere ith stbeqeent reacrions. Thefolloig spin ensures that no ethanol is

carried over daurig elation.

11. Place the RNeasy spin column in a new 1.5-ml collection tube, and discard the old collection tube with
the filtrate. Centrifuge at 14,000 rpm for 1 min.

12. Transfer the RNeasy column into a new 1.5-ml collection tube, and pipet 30 d of RNase-free water
directly onto the RNeasy membrane. Centrifuge for 1 min at 12,000 rpm to elute.

A second elution step can be performed using another 30-0 ,ul Rt ase-fiee mater. This might improe yield.

13. Dilute 1 Ill of the reaction into 99 1d of water and use this for a spec reading using the Biophotometer
(Eppendorf).

14. Store the rest at -20°C or proceed with the next step.
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Appendix: Gene Expression Analysis Protocols

Fragmentation

* Use the spec reading to determine what volume will give you 20 ,ug for fragmentation.

Apply the convention that 1 OD at 260 nm equals 40gg/ mL R.NA.

1. Check the OD at 260 nm and 280 nm to determine the sample concentration and purity.
2. Maintain the A26,/A2s) ratio close to 2.0 for pure RNA (ratios between 1.9 and 2.1 are acceptable).
3. In our test run, we obtained a post- IT cleanup concentration of 1.356 ag/Fl (32 l), for a total of 43.4 pg. This

means that we need 14.7 1 of IYT cleaned up product for the Fragmentation reaction.

* Set up the reaction. The volumes shown in the Table below are from our example run done before the
workshop. Your volumes might vary...

STEP 1
Reagent Volume (l)
RNA (20 ug) 14.7
DEPC-Water 17.3
5X Fragmentation Buffer 8

TOTAL 40

* Mix well, and incubate at 94)C in a water bath for 35 minutes.
* Place on ice or at -20oC.

Adjusted cRNA calculation

* Calculate the adjusted reaction yield from the Cleanup step of the JYT reaction. This is done using the
following formula:

Adjusted cRNA yield= RNA,,- (total RNA,)(y)
RNA = amount of cRtNA measured after IVT (gg)
Total RNA, = starting amount of total RINA (g)
Y = fraction of cDNA reaction used in ITT

In our example: RNAm = 43.4[tg
Total RNA = 7 .0 g
Y = 10/12 (fraction of cleaned up cDNA used in the IVT reaction)

Therefore, our adjusted cRNA yield: 37.6 lag [i.e., 43.4 - 7(10/12)]
The volume was 30 sal (see under Fragmentation)
Hence the adjusted concentration previous Fragmentation is 1.25 plg/al
Since we used 14.7 ±1 of the prefragmented cR NA in the Fragmentation step, the adjusted amount was

18.4 ig [i.e., 14.7 l X (1.25 g/ld)].
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Appendix: Gene Expression Analysis Protocols

Prepare the Target Hybridization Reaction

The Affymetrix manual recommends using 15 tg of sample in the target hybridization. Use the adjusted
concentration to calculate the volume of sample needed for 15 4g.

Amount of adjusted cRNA used in the Fragmentation reaction = 18.4 Itg
The volume of the Fragmentation reaction was 40 I
In order to get 15 atg from the Fragmentation reaction we need: 15 jag X (40 .l/18.4 jag)=32.6 1al

Note: One group of two willperform the Test3 Array Hybridizaton, the correspondingpartnergroup will
perform the Species Array Hybridization.

Step 1: Test3Array Hybridization
* Set the Test3 chip at RT before setting up the reaction.

* Prepare 85 il of 1X HIybridization buffer. Add 80 1tl of this solution to the Test3 Array Chip (Mini
format) to wet it.

* Put it in the oven at 450C for at least 10 minutes at 40-50 rpm.

* Ieat the Eukaryotic H[-ybridization Controls to 65oC for 5 minutes prior to adding it to the reaction
below.

* Set up the Target hybridization reaction according to the following Table:

H-YBRIDIZATION COCKTAIL
Reagent Volume (l)
Fragmented cRNA (15 jtg) 32.6
Control oligonucleotide B2 5
20X Eukaryotic Hybridization Controls 15
Herring Sperm DNA (10 mg/ml ) 3
Acetylated BSA (50 mg/ml) 3
2X Hyb. Buffer 150
Water 81.4

TOTAL 300

* After setting up the reaction, remove 100 d1 from the Hybridization cocktail solution (save the rest of
the solution at -20"C) and process it as follows:

HIeat at 99C for 5 minutes
Heat at 45"C for 5 minutes
Centrifuge at 14,000 rpm for 5 minute to clarify the cocktail

* Remove the 1X Flyb solution from the 'Test3 Chip' and then add 80 d1 of the Hyb. Cocktail.
* Incubate at 45'"C at 60 RPM for 16 hours.

Step 2: Species Array Hybridization
* Set the Species Array chip at RT before setting up the reaction.
* Prepare 210 ld of 1X Hybridization buffer. Add 200 J.d of this solution to the Species Array Chip

(Standard format) to wet it.

* Put it in the oven at 45°C for at least 10 minutes at 40-50 rpm.

* Feat the Eukaryotic Flybridization Controls to 650C for 5 min prior to adding it to the reaction below.

* Set up the Target hybridization reaction according to the following Table:

- �I_.._.�.
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-nYBRIDIZATION COCKTAIL
Reagent Volume (l)
Fragmented cRNA (15 g) 32.6
Control oligonucleotide B2 5
20X Eukaryotic Hybridization Controls 15
Herring Sperm DNA (10 mg/ml) 3
Acetylated BSA (50 mg/ml) 3
2X Hyb. Buffer 150
Water 81.4

TOTAL 300

* After setting up the reaction, remove 250 dtl from the 1-ylbridization cocktail solution (save the rest of
the solution at -200C) and process it as follows:

Heat at 99oC for 5 minutes
Heat at 45C for 5 minutes
Centrifuge at 14,000 rpm for 5 minute to clarify the cocktail

* Remove the 1X I-lyb solution from the 'Species Array Chip' and then add 200 tdl of the E-yb Cocktail.
* Incubate at 450C at 60 RPMI for 16 hours.

Washing, Staining and Scanning Probe Arrays

* Shortly before the 16 hour incubation is done, follow the fluidics station setup according to
Chapter 4, Section 3.

* For the Test3 Array, prepare the SAPE stain solution under 'Vashing and Staining Procedure
1: Single Stain' (Chapter 4, Section 4). Streptavidin Phycoerythrin (SAPE) stocks should be
stored in amber tubes at 40C. Remove SAPE stocks from refrigerator and mix well before
preparing stain solution. Do not freeze concentrated SAPE or diluted SAPE stain solution.
Always prepare the SAPE stain solution immediately before use.

For 600 jpL of SAPE Stain solution:
300 ,tL 2X Stain Buffer
270 uL water
24 4uL of 50 mg/mL acetylated BSA (final concentration of 2
mg/mL)
6 btL of 1 mg/mL streptavidin phycoerythrin (SAPE) (final
concentration of 10 [g/mL)

· For the Species Array (Human U95A), prepare the SAPE stain solution and Antibody solution
under 'Washing and Staining Procedure 2: Antibody Amplification' (Chapter 4, Section 4).

For 1200 jgL SAPEStain solution:
600 ,uL of 2X Stain Buffer
540 L of water
48 uL of 50 mg/mL acetylated BSA (final concentration of 2
[tg/4tL)
12 gtL of 1 mg/mL SAPE (final concentration of 10 ptg/mL)

Mix well and divide into two aliquots of 600 L each to be used for stains 1 and 3
respectively.

For 660 jpl of Antibody Solution:
300 uL of 2X Stain Buffer
266.4 i~L of water

___�
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24 tL of 50 mg/mL acetylated BSA (final concentration of 2
mg/mL)
6.0 4L of 10 mg/mL normal goat IgG (final concentration of 0.1
mg/ml,)
3.6 [tL of 0.5 mg/mL biotinylated antibody (final concentration of
3 ptg/mL)

* After 16 hours, remove the cocktail and save it (-20°C). Do not let the chip dry out.
Immediately add 100 tl of the non-stringent wash buffer to the chip.

Plastic cartri¢

Probe array 
glass substra

GeneChip ® Probe Array

-�clC*es"··Y"-·------c---r�a�·-r^-------
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RNEasy Cleanup Procedure

Affymetrix recommends an additional cleanup step for the RNA sample before using in a microarray
experiment. This is done using the RNeasy reagents as follows (procedure was adapted from user's
instructions in the kit):

Notes: Do not exceed the RNTA binding capaciy (100 lg) of the RNeasy mini spin columns.

Buffer RLT mayform aprecipitate upon storage. If this happens, warm tup to redissolve.

Add 10 ul ofJ -ME to ml of Blffer RLT before use (stablefor month).

Buffer RPE is provided as a concentrate. Before using for the first time, add 4 volumes of ethanol (9 6-100o%) as
indicated on the bottle to obtain a working solution.

All centrifugations are done at room temperature.

1. Adjust sample to a volume of 100 tl with RNase-free water, add 350 u1d Buffer RLT to the sample,
and mix thoroughly.

2. Note: Ensure that 3 -ME is added to Buffer RLT before use.

3. Add 350 pd Buffer RLT to the sample, and mix thoroughly.

4. Note: Ensure that O -ME is added to Buffer RLT before use.

5. Add 250~d ethanol (96-100%) to the lysate, and mix well by pipetting. Do not centrifuge.

6. Apply sample (now 700 i) to an RNeasy mini spin column sitting in a collection tube. Centrifuge
for 15 seconds at 12,000 rpm.

7. Discard flow-through and collection tube.

8. Transfer RNeasy column into a new 2-mi collection tube. Pipet 5001 of wash Buffer RPE onto the
RNeasy column, and centrifuge for 15 sec at 12,000 rpm to wash.

9. Ensure that ethanol is added to Buffer RPE before use.

10. Discard flow-through and reuse the collection tube in the following step.

11. Pipet 500 l of wash Buffer RPE onto the RNeasy column. Centrifuge for 2 min at 14,000 rpm to
dry the RNeasy membrane.

12. Following the spin, remove the RNeasy column from the collection tube carefully so that the column
does not contact the flow-through as this will result in carryover of ethanol.

13. It is important to dry the RNeasy membrane since residual ethanol ma inteere with subsequent reactions. The
following spin ensures that no ethanol is carried over during elution.

14. Place the RNeasy spin column in a new 2-ml collection tube, and discard the old collection tube with
the filtrate. Centrifuge at 14,000 rpm for 1 min.

15. Transfer the RNeasy column into a new 1.5-ml collection tube, and pipet 30 1l of RNase-free water
directly onto the RNeasy membrane. Centrifuge for 1 min at 12,000 rpm to elute.

16. A second elution step can be performed using another 30-50 l RNase-free rwater. This might improve yield.

17. Dilute 1 dtl of the reaction into 99 ,ul of water and use this for a spec reading using the
Biophotometer (Eppendorf).
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18. Store the rest at -80C or proceed with the next step.

2g. Spectrophotometric analysis

1. To determine the concentration and purity of the RNA solution, transfer 2 tl of your RNA solution
into an RNase-free tube containing 98 ,ul of DEPC-water. The lab instructors will measure the
A260/A28 0. Pure RNA will give a ratio of approximately 2.0.

1.0 A260= 40 ptg/ml RNA

Dilution factor in spectrophotometric cuvette= 50

RNA solution conc. (g/ml)= (A2 60 )( 100)(40ug/ml)
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