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ABSTRACT
Recent technological developments allow all the genes of a species to be monitored
simultaneously at the transcriptional level. This necessitates a more global approach to biology
that includes consideration of complex interactions between many genes and other intracellular
species. The metaphor of a cell as a miniature chemical plant with inputs, outputs, and controls
gives chemical engineers a foothold in this type of analysis. Networks of interacting genes are
fertile ground for the application of the methods developed by engineers for the analysis and
monitoring of industrial chemical processes.

The DNA microarray has been established as a tool for efficient collection of mRNA expression
data for a large number of genes simultaneously. Although great strides have been made in the
methodology and instrumentation of this technique, the development of computational tools
needed to interpret the results have received relatively inadequate attention. Existing analyses,
such a clustering techniques applied to static data from cells at many different states, provide
ins;ght into co-expression of genes and are an important basis for exploration of the cell's
genetic programming. We propose that an even greater level of regulatory detail may be gained
by dynamically changing experimental conditions (the input signal) and measuring the time-
delayed response of the genes (the output signal). The addition of temporal information to DNA
microarray experiments should suggest potential cause/effect relationships among genes with
significant regulatory responses to the conditions of interest.

This thesis aims to develop computational techniques to maximize the information gained from
such dynamic experiments. As a modei system, we have chosen the unicellular,
photoautotrophic cyanobacteria Synechocystis sp. PCC6803 for study, as it is ) fully sequenced,
2) has an easily manipulated input signal (light for photosynthesis), and 3) fixes carbon dioxide
into the commercially interesting, biodegradable polymer polyhydroxyalkanoate (PHA). We
have created DNA microarrays with -97% of the Synechocystis genome represented in duplicate
to monitor the cellular transcriptional profile. These arrays are used in time-series experiments
of differing light levels to measure dynamic transcriptional response to changing environmental
conditions.

We have developed networks of potential genetic regulatory interactions through time-series
analysis based on the data from our studies. An algorithm for combining gene position
information, clustering, and time-lagged correlations has been created to generate networks of
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hypothetical biological links. Analysis of these networks indicates that good correlation exists
between the input signal and certain groups of photosynthesis- and metabolism-related genes.
Furthermore, this analysis technique placed these in a temporal context, showing the sequence of
potential effects from changes in the experimental conditions.

This data and hypothetical interaction networks have been used to construct AutoRegressive with
eXogenous input (ARX) models. These provide dynamic, state-space models for prediction of
transcriptional profiles given a dynamically changing set of environmental perturbations. We
have shown that these models provide information for the design of additional experiments, and
their accuracy has been validated with independent data. The derived networks and the models
based on them have therefore been shown to hold not only predictive capabilities for
transcriptional-level phenomena but also to provide hypotheses for the nature of the underlying
biochemical relationships.

Thesis Supervisor: Greg Stephanopoulos
Title: Bayer Professor of Chemical Engineering
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CHAPTER 1 INTRODUCTION

The DNA microarray has been established as a tool for efficient collection of mRNA expression

data for a large number of genes simultaneously. To date, experimental design and analysis of

the resulting data from microarrays have received less attention than the experimental methods

themselves. Typical experimental design strategies for DNA microarrays, however, have been

aimed at observing static binary differences between conditions, such as disease vs. non-disease

case comparisons. This approach identifies genes with similar expression patterns, and therefore

is a valuable tool for grouping annotated genes with potentially related genes and discovering

transcription factor binding motifs. Furthermore, such experiments provide information for

diagnostics and drug development targets, but are not well suited to uncover the roles of these

genes in the larger context of cellular regulation. It is therefore desirable to expand the range of

experimental strategies and tools for use with DNA microarrays to improve the information

provided by this technique.

DNA microarray data is specifically suited to measure changes in cellular phenotype at the

transcriptional level. Monitoring the expression levels of a large number of genes

simultaneously yields insight into transcriptional regulation for a given set of experimental

conditions. A relatively complete picture of transcriptional regulatory behavior should be

possible by combining carefully designed experiments covering a wide range of conditions with

DNA microarray assays. Because current experimental approaches usually monitor a pseudo-

steady-state level of transcription, there is little retained information that might distinguish

regulatory elements from the genes they affect. Dynamic experiments, on the other hand, with

data taken over a series of time points, may offer insights into the way cellular phenotype is a

function of changing environmental conditions. In this way the regulatory implications of

changes in the system can be observed as they untold and causal relationships can be

hypothesized.

To realize this goal of increased knowledge of gene regulation from high-throughput

experimental techniques, a framework is needed for both conducting maximally informative

experiments and interpreting the output DNA microarray data. The genes with the most relevant

transcriptional information must be culled from the total data set, and these genes must then be
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placed into a framework of hypotheses about their interactions. Environmental variables, must

also be considered for their impact on cellular regulation. Competing hypothesis must then be

evaluated using new data or unrelated analysis techniques to rule out inconsistent hypotheses.

This thesis aims to:

• Explore the use of statistical methods for DNA microarray data to identify a subset of

maximally informative genes for a given experiment,

* Develop methodologies for identifying genes that have significant changes in expression

pattern which appear to be related to changes in environmental conditions,

• Construct hypothetical regulatory networks from the relationships suggested by correlational

analyses,

* Apply these methods to elucidate the transcriptional programming of Synechocystis sp.

PCC6803,

* Identify what information or experimental conditions are required to distinguish between

hypothesized networks or establish their existence,

* Address all of these issues in a manner that is compatible with future high-throughput

experimental data, from both DNA microarrays and other sources.

1.1 Modeling biological systems

Regulation of gene expression in prokaryotic and eukaryotic systems involves the complex

interaction of a host of genes, their expressed proteins, other metabolites, and other species

present in the cell. For a gene's mRNA to be expressed, an active RNA polymerase (RNAP)

must bind to DNA upstream of the gene in question and transcribe uninterrupted the gene's

nucleic acid sequence. Promoters, or short sequences of DNA upstream of a gene which

enhance RNAP binding, are vital to this process because they dictate the affinity of RNAP for

the gene in question. If other proteins bind competitively to this region, or to the RNAP itself,

the transcription rate will be detrimentally changed. On the other hand, metabolites or other
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species may enhance the transcription of a gene by assisting the binding of RNAP to promoters

or by deactivating a competing protein (see the lactose/arabinose regulation example below).

From a modeling perspective, "perfect" understanding of transcription regulation would be the

completion of a detailed set of equations which describe the transcription rates of each gene as a

function of the concentrations of other chemical species present. For example, to describe

change in concentration of the mRNA of some chemical species A, one may need to consider the

concentration of species A, plus the concentrations of its protein product(s), plus other

metabolites which might have an affect upon A's expression, etc.

T a[ ]= wfr( Ax,c t[A utin [B prot e n [Cmetabollte ]..) 1-1

To write explicitly such an equation for all of the species within a cell, three steps must be

undertaken:

1) The structure of the network of interactions must be determined. That is, which

chemical species affect which other species?

2) The form of each interaction must be discovered. These interactions, in general, may

be non-linear and furthermore may have a significant degree of dependence on

stochastic processes within the cell such as protein binding' 2 .

3) The appropriate kinetic parameters should be determined, noting that parameters may

only approximate processes with significant stochastic features.

To appreciate the complexity of such an undertaking, consider as an example the regulatory

networks for lactose and arabinose metabolism in E. Coli. Neither sugar is preferred relative to

glucose, so it is valuable for the cell to shut down the use of these less efficient metabolites when

not needed. However, it is also important for the cell to be able to detect the presence of lactose

or arabinose in conditions of low concentrations of glucose to make the determination of how

strongly to upregulate the genes in these pathways. A simplified representation of the genetic

network is given in Figure 1-13-4. The genes that affect metabolism directly are the operons (a

series of genes with a single set of regulatory controls) lacZYA and araBAD. Metabolites
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glucose, lactose, and arabinose are marked in bold and mRNA species are displayed within

boxes. Protein species and complexes (marked with *) are given the capitalized names of the

gene from which they are translated.

lactose * * LACR lacZYA CAP* 4* cAMP

m tnInryR -It T
glucoseLac_.~ LACI I .

ARAC*

arabinose f

ARAC

Figure 1-1: Simplified diagram of lacZYA and araBAD regulation

Figure 1-1 provides a summary representation of 30 years of careful study and countless

biochemical experiments probing these interactions. For example, Figure 1-1 shows what has

been discovered about the impact of glucose concentration on the regulation of both lacZYA and

araBAD. As glucose concentrations decrease, cAMP levels increase, forming a complex with

CAP protein. This complex then assists the transcription of both lacZYA and araBAD. In turn,

both lactose and arabinose metabolism have their own set of regulatory interactions through

intermediate complexes to convey information about the concentration of metabolites present.

Inspection of Figure 1-1 illustrates some of the difficulties in creating ideal models for

transcriptional regulation as described above. None of the three metabolites shown affect the

genes in question through the same interaction model. The wide variety of potential interaction

models makes it impossible to distinguish between possibilities without tremendous amounts of

data about the concentrations of each species present. DNA microarrays can provide such data;

however, only concentrations of some of the members of the network can be sampled with this

tool. If only the species that are boxed in Figure 1-1 can be measured, then only 5 measurements

are available to characterize 16 chemical interactions. Even if the metabolite concentrations are

measured, there is still not nearly enough information to uniquely determine the structure of the

system.
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This problem of chemical species that cannot be easily measured limits the extent to which

reconstruction of the system structure is possible. The existence of co-factors, active and

inactive proteins, and other complexes cannot be effectively measured in vivo at this time. Thus,

the functional form of the deterministic equations outlined above and the parameters associated

with them cannot be determined from data unless major assumptions are made about the type

and form of interactions that occur. Due to this limitation, the reconstruction effort is limited to

the identification of interactions (either direct or indirect) between genes with other genes, and

between genes with their environment. Thus, the primary goal of this thesis is to tackle the first

of the three modeling stages outlined earlier: the elucidation of the network structure by

determining which genes affect which others.

Current DNA microarray analyses, including clustering studies, are often conducted near steady

state and help to determine which genes are transcribed in a correlated fashion with other genes.

These types of clustering studies are useful in suggesting which genes may have some sort of

impact on others. On the other hand, in such studies the action of the regulatory network

structure is observed only through the net results, so it is difficult to separate genes responsible

for regulation from those that are affected. For example, consider araC and araBAD in Figure

1-1. If it observed that the transcription of araC and araBAD are upregulated under the same

experimental conditions, clustering analysis suggests correctly that the expression of these genes

is related. However, the fact that araC regulates araBAD and not the opposite cannot be

determined from these types of experiments.

A more complete analysis should therefore include the regulation of dynamically evolving

species. Including time-series data provides additional information and challenges as regulatory

effects may be observed after some time-lag from the original event which triggered the

observed event. For the arabinose example, we could theoretically determine that araC is up- or

down-regulated before araBAD, suggesting the cause/effect nature of the interaction and

therefore providing more detail about the structure of the network.

In some cases, transcriptional regulation studies are not only enhanced by dynamic data, but in

fact cannot be reasonably conducted in any other fashion. Consider the case of T7 viral

expression as shown in Figure 1-25. The virus invades a host Escherichia coli cell when one tip
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of the viral DNA penetrates the cell membrane. E. coli RNA polymerase (EcRNAP) recognizes

a promoter on this tip and begins to pull the rest of the genome into the cell, transcribing genes as

it moves along. In this way, genes are expressed sequentially as they enter the intracellular

region: at the first moments of infection, none of the genes located in the rear of the genome are

transcribed, but they are eventually transcribed when the infection process is complete.

T7

1 tip

DNA strand
EP EP ET TP TP TP TP TP

; 0.7 H' 1.0 I * 1.7 2.0 - 3.0 3.5 50+I~~~~3- A.F t I!0[7 il 0I II'0tlt + I

Figure 1-2: T7 genome and regulatory connections

In this figure, genes are named by sequential nufmbering related to their order in the genome

(only a sub-set of both regulatory and structural genes have been shown here). "EP" refers to an

EcRNAP promoter, while "ET" refers to an EcRNAP terminator. Gene 1.0 produces the protein

for T7's own RNA polymerase (T7RNAP). EcRNAP expresses the first few genes in T7 and the

remaining genes are under the influence of T7RNAP promoters marked "'TP". Both RNAPs are

eventually inhibited by the action of proteins that form complexes with the RNAPs and prevent

further transcription. Thus, by the time infection has been completed and a large number of the

inhibitory proteins have been produced, no further transcription will be observed. The sequential

nature of these events, iicluding the transcription of each gene and the eventual inhibition of

these genes, means that static experiments taken out of temporal context will have no relevant

information about the underlying regulation.

Here, an analysis of the features of time series data is required to deduce which events in the

expression profiles mark the onset of other changes. One technique, discussed at length in this

thesis, is time-series correlations. This technique can be applied to measurements of each of the

mRNAs generated to answer whether or not the expression of one gene may affect the
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downstream (later in time) expression of another gene. Some archetypical expression patterns

may be obvious through direct observation of the expression profiles: one class of genes may

behave in one way while another clearly responds in a different fashion. Additionally, genes (or

classes of genes) may be consistently correlated: if the increase in the transcription rate of one

gene corresponds to the down-regulation of another gene, then we may hypothesize there may be

an inhibitory relationship between the two, even if it occurs through unmeasured intermediates.

The case of T7 regulation shows how this may occur, as the transcription of Gene 3.5 ultimately

leads to the down-regulation of all other genes due to the inhibition of the T7RNAP. This down-

regulation is observable even without knowledge of the specific protein intermediate.

Ultimately, the knowledge gained from gene-expression data alone cannot complete regulatory

network reconstruction, as shown by both of the examples. Unmeasured intermediate species

will hamper this effort until such a time as a wider spectrum of measurements can be taken.

However, development of methodologies to maximize the useful information that can be gained

from DNA microarray data can help to frame the network of interactions, and such outlines can

be used to probe the system further.

1.2 Thesis outline

This thesis focuses broadly on computational tools relevant to the effect use of DNA

microarrays. Methods for effectively handling not only data from current experimental strategies

as well as data from the dynamic studies proposed in this work are examined in detail. However,

to maintain a single, cohesive line of discussion, other computational tools developed during this

work are saved for the final chapter as a related but self-contained body of work. The bulk of the

thesis focuses on the tools required to elucidate the light-dependent transcriptional network

structure of a model organism (Synechocystis PCC6803) through dynamic DNA microarray

experiments.

Chapter 2 reviews prior modeling efforts of DNA microarray data. The two illustrative

examples introduced in this chapter are then discussed in greater detail in Chapter 3 to

demonstrate the possibilities and limitations for understanding transcriptional regulation under a

variety of different experimental situations. These examples are used as the basis for an analysis

framework based on time-lagged correlations and AutoRegressive with eogenous input (ARX)
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models, explained in detail in Chapter 4. The biology and features of the model system of

Synechocystis is discussed in Chapter 5, along with protocols for culture maintenance and DNA

microarray experiments. Chapter 6 shows the specific application of the proposed computational

techniques experiments on the model system in order to elucidate transcriptional regulatory

features. This chapter also includes a discussion of the derived network features, robustness, and

likelihood of making false conclusions from the experimental data. Finally, Chapter 7 discusses

computational tools applicable to a wider range of DNA microarray data, including

discriminatory gene selection, sample classification, and sample size required for statistically

significant conclusions from microarray data. Chapter 8 summaries the findings of this work as

a whole.
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CHAPTER 2 PRIOR DNA MICROARRAY DATA MODELING
EFFORTS

It has been pointed out that both protein and mRNA expression data is required for the

mechanistic analysis of gene expression networks' . Even without such protein data, several

research groups have attempted to lay out frameworks for the consideration of DNA microarray

data as a partial solution of the gene regulation problem. For the most part, prior modeling

efforts have been hamstrung by a lack of properly designed experimental data with which to

derive parameters for the proposed models or test their conclusions. Nevertheless, these attempts

explicitly connect transcriptional data to underlying biological phenomenon, and therefore all

offer to add insight into cellular regulation at the transcriptional level. Some major schools of

thought are presented below.

2.1 Assumption of deterministic model form

Some authors have suggested "reasonable" models of genetic interaction, to which DNA

microarray data should be fit. Simple linear relationships and more complicated functions have

been proposed to uncover relationships from both static and time-series data. For genes whose

transcription can be accurately expressed by such functions, these strategies allow for explicit

parameter estimation, at the cost poor data fit for other genes.

The most far-reaching of these attempts was made by Chen et al. , who suggested a linear

transcription model where each mRNA and protein species present is linearly dependent on the

concentration of the other mRNA and protein species in the cell:

dr dp
-= Cp-Vr - = Lr -Up 2-1
dt dt

where r is the vector of mRNA concentrations and p is the vector of protein concentrations. C

and L are the rates constants for transcription and translation, respectively. Likewise, V and U

specify degradation rate constants. Given enough quality, dynamic measurements of both r and

p and the assumption that both degradation terms U and L are diagonal matrices (i.e. degradation

of a chemical species is only a function of the concentration of that species), the authors show

that Equation 2-1 can be rearranged to determine completely the rate matrices C, V, L, and R.
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Furthermore, they present an extension of this model to the case where p is not measured

dynamically. In this way they seek to address the reconstruction problem from microarray data

alone, if functional form is known. Specifically, p in Equation 2-1 can be eliminated by

substituting p = e-upl they calculate

Lr -Up = dP = -Uep, + e d -Up-Up+ e- u' dp, 2-2
dt di dt

and therefore

dpL = eULr => p = e -U' eU"'Lrdt 2-3
dt

Plugging this solution for p back into Equation 2-1 gives, after some manipulation, a dynamic

expression for transcript concentration r independent of other measurements

d2r (_CUC -V)dr +(- CUC'V+CLr 2-4
dt2 dt

where C' indicates the inverse of C. Inspection of this relationship, however, shows that the

transcription matrix C is degenerate, and thus any solution depends on the initial value of p. All

of this analysis assumes that the relationships between the transcription/translation rates and the

RNA/protein concentrations are indeed linear.

Models similar to this one in concept, if not the specific model, have also been presented by

Weaver et al.3 and D'Haeseleer et al.4. From the standpoint of modeling, the choice of

"reasonable" assumptions for the form of interactions may yield models which are satisfactorily

similar to the actual system. However, attempting to simplify the systems present or fit them to a

modeling scheme, real biological interactions may be obscured. As an example, Chen et al.

assumes that both mRNA and protein degradation rates (V and U) are diagonal and therefore the

degradation of each chemical species is dependent only on its own concentration. Although this

assumption simplifies the calculations, these degradations may be a function of the concentration

of proteins that digest these species or other proteins that stabilize them, which would cause

matrices V and U to be non-diagonal. Because there is no room for such interactions in the

current solution, the regression of parameters in the simplified case will give unsatisfactory
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results. Even with such limitations, these methodologies offer computationally tractable

problems with explicit inclusion of known biological information when available.

2.2 Stochastic modeling

Another problem with a purely deterministic approach is that it ignores the stochastic nature of

some biological processes5'7. Because some species within the cell exist in very small

concentrations, all of the biochemical processes involving these species are dependent on

Brownian motion and therefore have some characteristics of random processes. Such

distinctions may play a very important role in some systems where the state of the system is

defined by a stochastic first step. One particularly well-studied example is that of X-phage

infected Escherichia coli cells6'8 . Whether an infected cell enters the lysogenic or lytic mode is

dependent on the binding of a few key species (such as Cro protein and cl repressor) to the phage

genome immediately after infection. The exact sequence of events (i.e. which proteins bind to

the DNA first) determines whether the lytic mode is initiated or if a self-sustaining lysogenic

cycle is started.

The difficulty with attempting a rigorous formulation in such cases is that new parameters are

necessary to describe the stochastic nature of the system. Arkin et al.6 present a framework for

modeling such systems using stochastic kinetic models as an extension of differential equations

similar to those shown in section 2.1. As a test case, -phage infected E. coli systems were

simulated and compared to experimental results from other sources. The authors were able to

predict the percentages of lysogenic and lytic cells for populations of cells at a range of

conditions. On the other hand, deterministic models are only capable of predicting whether the

average cell in a population would enter the lytic or lysogenic cycle, and thus fail to model the

overall behavior of, for example, a cell culture. Although results showed that this stochastic

formulation best represented the actual situation, the simulation was effective only because a

large body of knowledge on the individual probabilities of each event was known. Such an

approach is therefore unrealistic for exploring poorly-understood systems.

Another way to capture the state of the molecular species governed by stochastic processes is

that of Stochastic Petri Nets (SPNs). SPNs are a collection of places (chemical species), tokens
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(number of molecules in a place), and transitions (chemical reactions). Transitions become

"active" only when certain criteria are met and then move tokens from one place to another with

an exponentially distributed time delay. When the number of tokens becomes small, the

stochastic nature of a transition is important: as the number of tokens approaches infinity, this

simplifies to a deterministic system7. This formulation can be expanded to include continuous

factors if appropriate, in the form of hybrid Petri Nets (HPNs) 9.

Consider the model shown in Figure 2-1 (adapted from Goss and Peccound7) for a simplified

model of gene expression. If the gene is not active, i.e. no promoters are bound upstream of it,

then a token exists in position 1. This token may transit to the active place (position 2) through

the rate decay parameter k. From position 2 it may either return to the inactive state through

inactivation (g) or it may generate a mRNA token (v) and return itself to the active state. In this

way, the active gene may transcribe many mRNA tokens at position 3, which themselves may be

degraded via transition 8. Thus only species that have many molecules (tokens) may be

simplified in the limit of infinite copies to purely deterministic representations. Deterministic

representations therefore fall short of perfect modeling of any system where there are only a few

copies of relevant species present.

Inactive
(with toi

Active

Figure 2-1: Stochastic petri net representation of gene activation

Petri nets have been used successfully to represent the X-phage infected E. coli lysogeny/lysis

switch9 as well as ColEI plasmid replication7. Although techniques exist for evaluating the

steady-state or transient behavior of the Markov chains generated by such systems, Petri net

methodologies are still based on modeling rather than discovery. As such, they are very useful

for hypothesis testing and representation, but they still do not directly examine the genetic

relationships that are not hypothesized a priori.
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2.3 Bayesian networks

If details about needed for mechanistic modeling of microarray expression is not available, then

statistical tools must be applied to hypothesize the existence of connections between chemical

species within the regulatory networks. For example, the well-studied statistical tools associated

with Bayesian networks can be used to test the dependence and conditional independence in

data' °. Given multiple measurements, these tests can be used to evaluate the likelihood that a

measurement is conditionally dependent on another. If the expression levels of two genes show

strong interdependence, we hypothesize the existence of underlying biochemical relationships

connecting the two.

Consider the case of three genes labeled gl-g3 (adapted from Jaakkola' l). These genes might be

unrelated (independent), or there may be some inter-dependence. If we hypothesize that g3 is

conditionally dependent on g, then this case should be compared to the null hypothesis to

determine if this additional relation better describes collected data in a statistically significant

way. These two hypotheses can be drawn as graphs, with the null hypothesis (no relation)

labeled as Ho and the alternative as H1, as shown in Figure 2-2.

(E )(i) 
Ho H 1

Figure 2-2: Alternative relationship hypotheses

For some data set X, the likelihood ratio statistic comparing the two models' ability to describe

the data is given as

P(XIH,) 2T(X)= 21og2 P(XHo ) X 2-5

where v is the difference in degrees of freedom between model HI and Ho and X,2 is the chi-

square distribution with v degrees of freedom. If DNA microarray data were to be taken for all
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three genes, then we could evaluate the likelihood ratio by using the expression intensities to

determine the relative probabilities of the two hypotheses.

Specifically, microarray data can first be quantized into discrete levels of expression to provide

finite degrees of freedom. If all data is reduced to O's and 's (corresponding to inactive or

activated genes, for example, or "high" expression and "low" expression, as determined by the

experiment), then in the null case there are 3 degrees of freedom (P(g,=0), P(g2=0), P(g3=0) - all

P(g, =1) probabilities are the complements of these), while in the hypothesized case, there are 4

degrees of freedom (P(gl=0), P(g2=0), P(g3=--Olg=O), P(g3=O0g2=l)). These graphs and their

underlying probability distributions are called a Bayesian network. If, for instance, 100

experiments were conducted, then the probability of finding g3 = 0 can be calculated in addition

to the probability that g3 = 0 when g2 = 1. Consider the hypothetical data presented in Table 2-1,

corresponding to the example in Figure 2-2.

Table 2-1: Theoretical data, three-gene network case

counts, gi = -I u Du 
counts, g3 = 11g2=1 45
counts, g3 = 1192=0 10

The expected counts for each of the eight experimental profiles ([gl,g2,g3] as [0,0,0], [0,0,1], etc.)

give the probabilities for each gene's expression: P(gl = 1) = 0.5, P(g3 = 1) = 0.55, etc. For the

Ho network, the three genes are assumed to be independent, so the expected probability of

measuring [0,0,0] = P(g = 0) x P(g2 = 0) x P(g3 = 0) = (0.5) x (0.5) x (.45) = 0.1125,

corresponding to 11.25 expected observations. On the other hand, for HI. g2 and g3 are not

independent, so the probability of measuring [0,0,0] = P(,g = 0) x P(g2 = 0) x P(g3 = 0]g2 = 0) =

(0.5) x (0.5) x (40/50) = 0.20, or 20 expected observations. Simple inspection of Figure 2-1 the
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second model fits the observations much better, but the likelihood ratio test allows us to quantify

how much better the hypothesized network fits the data - in this case, confidence in the H1

hypothesis relative to the null is much greater than 99%, allowing us to reject the null hypothesis.

This framework gives a rigorous methodology for comparing hypothesized networks

statistically. This methodology is particularly attractive because it prevents overfitting of the

data by demanding statistical significance to every relationship added to the system (ie. each

increase in the degrees of freedom). Recall from section 2.1 that in the differential modeling

case presented by Chen et al. all parameters would be fit if enough data existed, with no explicit

means of determining whether those parameters had any intrinsic value or merely modeled

experimental noise.

This technique has been used to compare possible networks of transcriptional regulation of

galactose metabolism genes in Saccharomyces cerevisiae12. Two hypothetical diagrams of the

regulatory structure affecting Gal2, Gal5, and Gal7 transcription are shown in Figure 2-3. Both

suggest that the gal4 gene is transcribed into mRNA (Gal4m) that is then translated into the

corresponding protein (Gal4p), which in turn regulations the transcription of gal2, galS5, and gal7.

The two models differ, however, by the action of Gal80 protein (Gal80p). M1 assumes that

Gal80 protein affects the transcription of Gal4, while M2 assumes that Gal80 protein interacts

directly with the Gal4 protein. Therefore, if the probability of observing a given level of

transcription for Gal4 is calculated to be dependent on the transcriptional level of Gal80 in a

statistically significant way, Ml should be accepted over M2.
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Figure 2-3: Hypothetical networks for galactose example (from Hartemink et aL)

The authors discretized 52 experiments worth of Affymetrix DNA microarray data from

experiments on S. cerevisiae into O's and l's. Specifically, the distribution of data for each gene

individually was used to create a cutoff above which all values were simplified to l's, and below

which all values were set to O's. The conditional probabilities were then calculated for the

expression level of each gene, assuming the interactions suggested by Ml and M2. The

likelihood ratio test was then used to compare the two models, and it was discovered that that the

M2 model is approximately 13,000 times more likely than Ml. This model currently enjoys

more widespread acceptance than the model originally proposed by biologists (M 1)12.

Note that in this example, potential networks were enumerated beforehand, but in many cases

this may not be reasonable if prior knowledge does not exist. If used for discovery, a major

difficulty with this method is that there are many possible networks to consider. For example, in

the case of three genes shown in Figure 2-2 above, there are 12 different equivalence classes, or

models that are indistinguishable because they make the same independence assumptions. For

example, the case where "gl affects g2" is in an equivalence class with the case where "g2 affects

gl" because they both make the same set of interdependence assumptions and therefore have

both equal degrees of freedom and related parameters. This equivalence class is distinct from the

classes "gl affects g3", "gl and g3 affect g2", etc. Testing each of these classes against the others

to find the best-fit class becomes comatationally challenging as the number of measured

variables becomes large. Therefore heuristics are commonly employed: the number of possible
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inputs to a node may be limited, for example, or a local maximum based on searching a sub-set

of candidates may be found 3 .

Another challenge is that of distinguishing causal relationships from co-dependence. In a

Bayesian network, X - Y is in an equivalence class with Y - X: based on the measurements

alone we may not always be able to tell which event is the cause and which is the effect'.

Because the dynamic nature of the system is not taken into account in this modeling framework

as discussed here, genes that cause an effect in other genes dynamically are not identified. Thus

determining all members of an equivalence class is the most information that can be gained from

this methodology, in the absence of other experiments (such as knockouts) that can distinguish

between the two possibilities. Adjustments may be made for dynamic data, but the number of

potential hypotheses to compare increases proportionally to the number of time-offsets to be

considered (i.e. comparison of gene I with gene 2 at the same time point, at one point later, at

two points later, etc.). Given the already large number of potential networks to consider, the

addition of time to each interaction may create an unrealistically complex problem.

Finally, attempts to use this framework to date have involved the discretization of data into 2 or

more levels. Extensions of the methodology to include nearly continuous representation (i.e.

many levels) would require extremely large amounts of data to accurately determine the

conditional probabilities. Alternatively, a distribution could be assumed to describe each gene's

expression. However, DNA microarray data to date has not suggested simple distributions for

most genes 4 ' 9 , so conclusions drawn from assumed distributions will be suspect.

Even with these limitations, Bayesian networks provide a statistically sound method of

comparing hypilhetical networks with experimental data and rigorously determining which

networks match the data more clearly than others.

2.4 Information theory approach

Another way of looking at the dependence of two genes is to calculate the amount of unique

information gained by observing both. If knowing only one of the gene expression profiles gives

equivalent information to knowing both, then the transcription of these genes may be connected,

and we can hypothesize that some biochemical relationship or series of interactions exist.
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Information theory makes use of Shannon entropy (H) as a quantitative measure of mutual

information content. It is defined in terms of the probability (p) of observing a particular state (i)

from a set of total states (n) for a collection of (k) variables (in this case, genes) as20

n

H(g,, g2,...gk) = -Pi log 2 Pi 2-6

This function is maximized when all (n) states are equiprobable, HMAX = log2(n). For example, if

there are two unrelated genes (k = 2) which can each take the expression values "0" or "1" then n

= 4 for this set of genes: [0,0],[0,1],[1,],[I,]. Since each state is equiprobable, H(g,g 2) =

log2(4) = 2 = HmAX. However, if the genes have some co-dependency, then all states are not

equiprobable. For example, if one gene is only expressed under the same conditions as the other

is expressed (i.e., g expression = g expression) then only two of the four possible states are

expressed: [0,0],[1,1], giving H(gl,g2) = log2(2) = 1 < HMAX.

To establish relationships between genes, the mutual information (M) can be calculated as

M(g,g 2)= H(g)+ H(g2 )-H(g, g2 ) 2-7

In other words, mutual information is an expression of the information contained in each gene

individually minus the information contained in their intersection. For the unrelated gene-

example, M = 0. On the other hand, when g expression = g2 expression then M = 1, so mutual

information exists. In fact, since M = H(gl) = H(g2) then the mutual information is maximal:

knowledge of one is sufficient to know the value of the other20.

Butte and Kohane21 used this methodology to examine all pair-wise relationships in S. cerevisiae

data from Stanford2 2. The S. cerevisiae study included 79 separate DNA microarrays were

performed covering cells in a variety of conditions, such as different points in the cell cycle. In

order to discretize the gene expression data, a histogram was drawn for each gene individually

and divided into 10 evenly-spaced bins, with p(gj, binn) = # of measurements in bin,/total number

of measurements for g. It was then hypothesized that genes with higher mutual information

values are more likely to be biologically correlated. The authors then selected cutoff value (by

comparison of randomized data to the original data set) of M > 1.3 to distinguish only "highly

correlated" genes. Note that in this example M > 1 is possible due to the 10 bins chosen, in
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contrast to the example above where only 2 bins were selected. These highly correlated genes

were then clustered into 22 "Relevance Networks" of genes with no inter-network connections.

The relationships between genes within each network were then examined.

Liang et al.23 extended this formulation to a methodology that includes connections beyond

pairwise interactions. Using Boolean characterizations of all genes in a test set, the mutual

information between each input (I) and output (O) is compared to the information content of that

output (O). If the mutual information of the pair M(O, I) is equal to the output information

H(O), then the input completely determines the output. After describing as many outputs as

possible with single inputs, their algorithm, called REVEAL23, attempts a pairwise analysis for

the remaining outputs. If all pairs of inputs also fail to describe an output, the algorithm moves

to triplets, etc. In this way, the program avoids calculating all possible combinations of inputs

and outputs at each iteration while still attempting to explore all possible input explanations of

each output.

Although information theory outlines a rigorous framework for generating gene interactions, it

has some of the many of the same difficulties as the Bayesian approach. Both systems require

,discretized data tbor reasonable determination of the probabilities required in their calculations.

Furthermore, neither considers the impact of time in their current formulations, and time-based

adjustments will involve further increases in computational complexity. Nonetheless, both

Bayesian networks and information theory provide some insight into the genetic regulatory

problem.
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CHAPTER 3 EXAMPLES OF TRANSCRIPTIONAL
REGULATION NETWORKS

To appreciate the level of complexity inherent to dynamic regulatory reconstruction problems,

the two examples presented in the Introduction (Chapter ) are presented in greater detail. In

both case, models of transcription were created to approximate the response of each system to

certain environmental situations. This data was then analyzed independently of the underlying

modelsto determine how much of each underlying model's structure could be uncovered from

data alone. Each example highlights some of the opportunities and challenges with

reconstructing gene regulatory networks.

In the first example, we consider the regulatory networks of lactose and arabinose studied under

different extracellular conditions. This study shows how incomplete understanding or

consideration of relevant environmental variables hamstrings the reconstruction effort, and

demonstrates that transcriptional data in a vacuum of other information is insufficient to gain

more than cursory insight into cellular function. For this example, time is mostly ignored, and its

only role is to distinguish experimental conditions.

For the second case, a model of the expression pattern for T7 infected E. Coli cells was studied.

Because all of the transcriptional events are specifically sequential for r7 infection, static

experiments hold almost no information about the regulation of the infection process. This study

shows how very fine time-series data with many points lends itself to a host of time-series

analysis methods, but still requires that some external knowledge be applied for more complete

reconstruction.

3.1 Lactose/arabinose example

Attempts to infer information from a variety of experimental conditions are at the heart of many

types of gene expression analysis, especially information theory approaches '.2 (as discussed in

section 2.4). The implicit assumption is that if enough unique combinations of environmental

conditions are studied, then correlated (or anti-correlated) genes can be identified from among

other genes. As a model for this type of analysis, the regulation of metabolism genes for both

lactose and arabinose were used to create a simplified, deterministic model of transcriptional
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expression. The gene expression levels predicted by the system were adopted to show the merits

and limitations of an essentially time-independent rule-based model for uncovering regulatory

information.

The preferred energy source for E. Coli is glucose. However, other sugars such as lactose and L-

arabinose are utilized when present during conditions of low glucose concentration. In this

example, the concentrations of glucose, L-arabinose, and lactose were manipulated as inputs to

the model, representing in the external environment of a hypothetical E. Coli cell. The model

was built to take into account only the acZYA operon as described in Lodish et al.3 and the

araBAD operon as described in Voet and Voet4. It shows how the genes of these operons would

be expressed if changes in the concentrations of glucose, arabinose, and lactose were altered

assuming no other part of cell physiology was altered. The model was based on Figure 3-1 (a

copy of Figure I- I from Chapter I), with a few key assumptions made for modeling purposes:

* The time scale considered was assumed to be large compared to transcription and translation

processes. Thus, cellular information is transferred instantly: time lag is assumed to be

negligible for. transcription and translation to occur. During an "experiment" the

extracellular conditions were changed to cause changes in the expression patterns.

* The level of cap mRNA and lac repressor mRNA (lacr) were assumed not to be regulated:

that is, these genes were assumed to be always transcribed at some basal level.

* Complex formation for both lac repressor and CAP/cAMP was assumed to be very favorable

and dependent only on which of the two species in question was limiting.

* The concentration of AraC was assumed to be constant but partitioned between the free and

complexed states, dependent only on the level of arbinose present. In reality, the

concentration of AraC is self-repressing and should lead to an oscillatory expression profile.

For the time scale considered, it was assumed that these oscillations would be minor, so that

only the amount of arabinose present would determine how much araC is transcribed.
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Figur-e 3-1: Simplified diagram of lacZYA and araBAD regulation

The equations used are listed below - note that the equations are not written to exactly match

interactions listed in Figure 3-1, but rather are written to best approximate the relationships in as

simple a form as possible. Note also that a square-relationship has been proposed for the

concentrations of lacZYA to add more a complicated relationships to the proportionalities

otherwise proposed below.

Table 3-1: Simplified model equations for lactose/arabinose regulation

(all concentration scales and rate constants arbitrary)

Lactose, arabinose, and glucose: manually varied in the range (0, 10)

cap, CAP, lacr, and LACR fixed at (5)

cAMP = 10 * /glucose

CAP* = min(CAP, cAMP)

LACR* = min(LACR, lactose)

lacZ = lacY = lacA = 10 (CAP*/5) (LACR*/5)2

ARAC* = 0*arabinose

ARAC = 10 - ARAC*

araC= I/ARAC*

araB = araA = araD = 10 (CAP*/5) (ARAC*/10)
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3.1.1 Transcription-only analysis

The model was used to predict the transcriptional profile of E. Coli for a variety of experimental

conditions that represent combinations of the three input sugars. These specific combinations of

sugars were ignored for the transcription-only analysis, in order to determine how much of the

regulatory network can be reconstructed without knowledge of the relevant environmental

variables. This is analogous to the approach used by prior authors where a compendium of

transcriptional data is analyzed without consideration of the specific experimental conditions, as

discussed in section 2.3 and section 2.4. For the specific sugar concentrations used to create

these profiles, see section 3.1.2.

The first step in the analysis of data generated from this computational experiment of varying

sugar concentrations was to determine which outputs' effects were indistinguishable from others.

This was achieved by clustering the gene expression data. In this experiment lacZ, lacY and

lacA have exactly the same profile and were therefore indistinguishable, since they occur in an

operon. Likewise araB, araA, and araD have the same expression profile. In a real system,

these profiles might not be exact matches but presumably would be too similar to distinguish

given the noise expected in DNA microarray experiments. Note that cap and lacr can also be

clustered according to this method in our model expression data as neither is regulated by outside

factors.

Using any of a host of well-studied clustering methodss5 6 , the genes lacZ, lacY, and IacA can be

easily collected into a single group (IacZYA from here on) as well as some of the ara genes (i.e.

araBAD). This grouping simplifies the picture to a smaller sub-set of genes to be considered.

Next, these mRNA profiles were compared to see if the gene expression patterns revealed any

potential cause/effect relationships. Figure 3-2 shows these profiles, with the profile for araC

shown on the right axis because it differed significantly in scale from the other genes.
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Figure 3-2: Hypothetical mRNA expression profiles for lac and ara regulation

Simple inspection revealed some key features of Figure 3-2. First, since their expression profiles

were completely flat, it is apparent that neither cap nor lac repressor were affected at the

experimental time-scale by any of the other genes present under these experimental conditions.

Second, if cap or lac repressor had any affect on the other genes present, there is no event in the

expression profiles that would uncover this relationship. These two genes were therefore put

into a group with questionable impact on the rest of the system, as depicted in Figure 3-3. The

remaining genes were then considered separately.

Because the time scale in this example was only used to distinguish experimental conditions (that

is, rates of changes are without true physiological meaning), analysis of each event that occurred

for a given gene can be limited to comparison with events that occurred at the same time for

other genes. For example, analysis of the lacZYA expression profile change beginning at "time"

t = 10, where no other genes showed a correlated change, revealed that lacZYA seems to have no
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effect on the other species present. Thus the correlation of lacZYA with other genes in this

experimental window would be very low, using any of the techniques described in Chapter 2.

The next event started at about t = 55, where araBAD was upregulated and araC was

downregulated. Here either a) araBAD might repress araC or b) araC might repress araBAD or

c) some third factor might affect both. Flow can these cases distinguished? A clue exists at point

t = 100, when araBAD expression was upregulated while araC remained unchanged. Therefore

the flow of information appears to be one way: that is, araBAD expression does not impact araC

expression, which ruled out option "b" (see Figure 3-3). This shows the importance of looking at

a variety of experimental conditions to distinguish relationships.

The final gene to consider was cAMP. This gene was upregulated at t = 100 with both araBAD

and lacZYA. Similarly, all three were downregulated at t = 280. Since it has already been

established that cAMP expression does not necessarily change when araBAD and IacZYA

expression levels do, it seems that cAfMP may have participated in the upregulation of both. This

information, as well as all other conclusions reached up to this point, is summarized in the graph

shown in Figure 3-3.

I I
lacZYA ?

cap {
araBAD

lacr

? I araC

Figure 3-3: Regulatory reconstruction based only on mRNA data

The graph in Figure 3-3 has some features in common with Figure 3-1, but is missing some of

the relationships. On the other hand, Figure 3-3 also includes some spurious relationships that

need to be eliminated from the graph. Therefore other information will be required to refine the

network.
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3.1.2 The role of experimental conditions
The preceding example shows the limitations of the use of transcription data as the sole source of

information in the regulatory reconstruction effort. In the model experiment, the relative levels

of the sugars glucose, arabinose, and lactose were manipulated to drive the change in cellular

physiology and gene expression. By keeping these experimental conditions in mind, a greater

level of clarity can be achieved. Figure 3-4 shows the expression data (minus cap and iacr)

overlaid with information on the transitions between different experimental conditions (presence

or absence of each of the three sugars under consideration marked by + or -). Since "time" in

this experiment has been arbitrarily assigned without physiological meaning, the shape of the

curves during these transitions is unimportant, only the resulting conditions that are evidenced

upon achieving steady-state.

When sugar data was compared to the mRNA expression levels, it became clear that the

upregulation of the lacZYA genes near time t = 10 was correlated to the increase in lactose

concentration (see Figure 3-4). This was verified by the removal of lactose near time t = 170,

which again affected only lacZYA. On the other hand, glucose concentration levels affected

lacZYA, araBAD, and cAMP levels as is seen by comparison of the glucose+ (t < 100) and

glucose- (t > 140) systems. Finally, the concentration of arabinose explains changes in both

araC and araBAD expression levels while affecting none of the other genes.
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Figure 3-4: Expression and condition information

The updated regulatory network is shown in Figure 3-5. Note that although more details have

been filled in, alternative hypotheses have been onned as well. For example. since cAAI-l is

exactly inversely correlated to glucose concentration, it is impossible to tell which of the two

chemical species directly alticted lacZY4 and araBAD.
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Figure 3-5: Reconstructed regulatory network

3.1.3 Conclusions

Compare the reconstruction show in Figure 3-5 to that of the original biological network shown

in Figure 3-1. Note that in some ways the simple representation given in Figure 3-5 is a function

of the simplified model system. For example, the relationship between ARAC protein and araC

mRNA has been ignored in the model, and thus is not evidenced in the reconstruction process.

Other differences, however, are due to issues of observability. In this system, lactose actually

represses the LacR protein, which represses lacZYA. While the overall effect can be seen

(lactose activates lacZYA) the effect of the intermediate species lacr is missed due to the

difficulties of observability.

Note, however, that Figure 3-5 overlaps the network in Figure 1-1. Some of the relationships are

in a more compact representation, while others are tentative in nature. These two differences are

key to the understanding of regulatory reconstruction centered on microarray data: a)

intermediate species such as protein complexes are ignored and their effects summed to simple

relationships between genes and b) more candidate potential interactions than are actually

required are hypothesized, and the reconciliation of these relationships may not be possible

without additional information.

This example has also shown the importance of having a variety of experimental conditions to

best attempt network reconstruction. If one set of experimental conditions fails to distinguish

between possible relationships, another may reveal the structure. However, analysis of the

transcriptional data without clear understanding of the environmental conditions limits the

usefulness of such experiments. Furthermore, some greater level of experimental detail will be

required to capture a greater level of detail about the network structure. Dynamic studies offer

39



one source of additional experimental information, and an example of such a study is shown in

section 3.2.

3.2 T7 regulatory reconstruction

The T7 bacteriophage infection process is another well-studied system, but in this case the

dynamic rates of the biochemical reactions involved a better understood, allowing for a more

detailed and physiologically relevant model. The phage injects its DNA into an E. coli host,

setting off a sequential series of steps that ultimately leads to cell lysis. This injection does not

occur instantaneously, but rather requires about 9-12 minutes7. Because of this, genes are

expressed sequentially as their DNA appears in the host. This type of system provides a model

for the interpretation of sequential gene expression events for the discovery of genetic networks.

3.2.1 The model
A model of the lytic cycle, beginning with infection of a single cell with a single virus, has been

proposed by other researchers8. This simulation draws from a body of literature available on E.

coli and T7 biology to estimate parameters such as T7 DNA injection rate, T7 and E. coli

transcription rates, T7 packaging rates, and equilibrium constants between chemically active

species. This simulation allows the user to track the concentration of all T7-related species

including mRNAs and proteins, as well as the concentration of a few E. coli species key to the

replication of T7 such as E. coli mRNA polymerase (EcRNAP).

A diagram of the T7 genome is shown in Figure 3-68. The genome enters the cell at the left tip

and is transcribed from left to right. Vertical bars with circles at the top represent EcRNAP

binding sites, while lighter vertical bars represent T7 RNA polymerase (T7RNAP) binding

positions. Also labeled above the geneome are both EcRNAP and T7RNAP terminators (TE and

TO). The heights of these bars represent relative efficiency of that site: for prorr.ters, this is the

affinity of the polymerase complexes to bind to these sites, while for terminators the height

indicates the how frequently the polymerases are forced from the genome when the terminator

site is reached. Each gene product is labeled with respect to its ordering in the genome and

therefore order of 'expressions. Some genes are labeled with non-integer values for historical

reasons: these are genes that were discovered after the integer-valued genes were already named.
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Figure 3-6: T7 genome

Not all of the genes in Figure 3-6 were used for this examle: many only have structural roles

important for the creation of new T7 viruses, and therefore do not have regulatory roles. The

genes considered here and their functions (if known), have been shown earlier in Figure 1-2

(from Chapter 1). This figure is reproduced here as Figure 3-7 for the reader's convenience.

T7 DNA strand
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_tip° 0.7 . 10 I 1.7 t 20 ° 3.0 li 3 5 iH 5.0 +
transcription transcription

EcRNAP /

F r -7 T7 r y s u r '
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Figure 3-7: T7 regulatory structure

Both genes known to be important for regulation and some purely structural genes which have

no effect on regulation have been included. This was done to evaluate if the reconstruction of

gene regulation could be undertaken from mRNA data (as in a gene-chip experiment) with

excess information that might confound the analysis.
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3.2.2 Model mRNA results
As an example of the output from this model, consider the expression profiles for the subset of

genes shown in Figure 3-8. Note that genes 1.7 and 2.0, as well as genes 3.0 and 3.5, are

expressed in such rapid succession and with such similar expression profiles so as to be nearly

indistinguishable. The only obvious difference between these species is the time at which each is

first expressed. Thus these genes should be clustered to simplify the analysis, with knowledge of

the small time lag between them retained.

Although this graph shows the sequential nature of the genes expressed, it does not give insight

into the events that cause changes in the rates of expression. For these regulatory effects, a more

directly apparent metric is the rate of transcription, or the derivative of the mRNA expression

profile. Even more instructive are the points where the transcription rate changes, i.e. the points

where the second derivative changes sharply from near zero. An event that suddenly slows the

rate of transcription of a gene indicates an inhibitory effect, while an event that speeds the rate of

transcription indicates a stimulatory response.

The plots of the 2nd derivative for each of the gene products are given in Figure 3-9 and Figure

3-10. Note genes 1.7 - 3.5 (and debatably 5.0) all have roughly the same 2 d derivative profile.
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Figure 3-9: Changes in mRNA transcription, genes 0.7 and 1.0
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Figure 3-10: Changes in mRNA transcription, genes 1.7 - 3.5

When interpreting these plots, it is important to bear in mind that since this is a numerical

simulation, there are some artifacts that are exaggerated by the 2 d derivative calculations. Peaks

in the 2 d derivative that do not change the overall trend of the plot but are merely spikes are

ignored for this reason (i.e. the peak near 380 in Figure 3-9 and the peaks at 290 and beyond in

Figure 3-10). In practice, the noise of actual data will obscure interpretation, so the direct

application of derivatives to raw data is unlikely to be informative. Use of frequency domain

information or smoothed signals could provide a more direct method of analysis. However, for

the purposes of the current model example, derivatives demonstrate data features clearly.

3.2.3 Analysis of mRNA data
As in the lactose/arabinose example, clustering of the gene expression levels can be used to

combine genes with high correlation into a single cohesive group. Clustering of this data places

gens 1.7 and 2.0 into one group and genes 3.0 and 3.5 into another. Effects of these genes on

other genes, as well as effects of other genes upon the group, cannot be distinguished in the

current experiment.
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The behavior of the second derivative can also be used to perform clustering, but with a different

interpretation. Genes clustered by this measure would indicate that they may have been subject

to the same transcription mechanism and that the same regulatory forces may have been applied

to them. Analysis of Figure 3-10 reinforces the clustering implied by the raw expression levels,

as well as suggesting grouping genes 1.7 through 3.5 together. Even gene 5.0 seems to follow

the same pattern as these, although the case is somewhat weaker because of its late transcription

start. On the other hand, there is no obvious transcriptional relationship between genes 0.7 and

1.0 (Figure 3-9). These observations provide significantly more information than could be

gained by solely static data as discussed in the lactose/arabinose gene regulation example of

section 3. 1, but a finer degree of transcriptional data (that is, with very small time intervals) is

required than might generally be possible for real-world application at this time. Nevertheless,

such detailed data adds significant information, indicating some of the future potential promised

by enhanced DNA microarray technologies.

Examination of the mRNA data also leads to the identification of events, which will be defined

either as a point where a gene is first expressed or when its second derivative reveals a change in

the transcription rate. The points discovered are summarized in Table 3-2. Note that the

inhibition events for genes 1.7 through 5.0 at 270 and 275 seconds are marked with "?" because

it seems likely that only one inhibitory event occurred to produce a broad, unclear peak which

includes both time points.

Table 3-2: T7 mRNA events

Approximate time (sec) Gene Event
130 0.7 Expression begins
160 1.0 Expression begins
210 0.7 Inhibited
235 1.7 Expression begins
240 2.0 Expression begins
248 3.0 Expression begins
252 3.5 Expression begins
270 1.7,2.0,3.0,3.5 Inhibited (?)
270 5.0 Expression begins
275 1.7,2.0,3.0,3.5,5.0 Inhibited (?)
280 0.7 Inhibited
310 1.0 Inhibited
325 0.7 Inhibited
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3.2.4 Regulatory reconstruction
The interpretation of the events uncovered in section 3.2.3 is dependent upon how much

biological knowledge is assumed beforehand. The present analysis begins with only the

knowledge of the clusters and the events shown in Table 3-2.

The first regulatory event, the inhibition of gene 0.7, is seen is at t - 210 sec. At this time only

two genes (0.7 and 1.0) are expressed, which limits the possible causes to: a) inhibition at the

promoter site for gene 0.7; or b) inhibition of the factor responsible for gene 0.7 transcription.

However, tere is no reasonable way to distinguish between which gene actually causes the

effect and tht; niechanism involved. The reason is because the mRNA microarray scientist may

not have access to the number of active EcRNAP molecules present. If such information were

available, it would be obvious that the reduced number of active molecules must be due to

interaction with gene 0.7 or its protein product. Here again the major difficulty in reconstruction

of regulatory networks, observability, limits the useful knowledge that can be extracted.

However, genome information from sequence data could be used to help solve this problems.

Knowledge of Figure 3-6, which identifies EcRNAP promoters upstream of genes 0.7 and 1.0,

shows that one of the two gene products must code for a gene which inhibits the action of

EcRNAP to transcribe the T7 genome. Finally, if it is known that gene 1.0 produces T7RNAP

(which would only increase transcription of the genome and is unlikely to simultaneously inhibit

EcRNAP) then all ambiguities are removed from the system and gene 0.7 must be responsible

for inhibition of EcRNAP activity.

This progression of understanding by applying outside biological knowledge is shown in Figure

3-1 1. Note again only a partial picture of the network is developed by gene chip data alone, but

that protein data or functionality knowledge from other sources combined with gene-chip data

can eliminate ambiguities in the regulatory network.
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The next regulatory item of interest is the inhibition of the gene group 1.7 through 5.0 (270-275

sec), all of which have T7 promoters instead of E. coli promoters upstream' of their start

sequences. If the function of genes 0.7 and 1.0 have been satisfactorily explained as drawn in

Figure 3-11, then some member of this new group inhibits the transcription of the whole group.

(Note: the assumption that genes 0.7 and 1.0 can be removed from further consideration is not a

trivial matter, as these genes could presumably be inhibiting the latter genes. However, if gene

1.0 is identified as the factor that transcribes T7RNAP, and therefore gene 0.7 as the inhibitor of

EcRNAP, then the following analysis applies.) Again, some biological insight is required to

narrow the field of possible interactions. Gene 5.0 can be eliminated from consideration as the

inhibitor as its transcription begins only a few seconds before inhibition is observed: sufficient

time has not passed for accumulation of gene 0.5's mRNA to have an impact on the system (i.e.

translation is unlikely to have occurred, etc.). This leaves two groups of undistinguishable genes

to consider: the group of genes 1.7 and 2.0 as well as the group of genes 3.0 and 3.5.

Figure 3-8 shows that both of these groups have similar transcriptional profiles and only a small

time lag between them. Without further information about the affinity of these genes for

T7RNAP or for its promoters, the most concrete conclusion that can be drawn is that either of the

two groups could be responsible. This analysis can be repeated for the inhibitory events at times

280 sec (gene 0.7) and 310 sec (gene 1.0), where the impact of genes 1.7 through 3.5 cannot be
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distinguished uniquely from the other genes in the set. Note that the time lag of 30 seconds

between inhibition of gene 0.7 and gene 1.0 in this case is roughly equal to the time lag in their

expression start, which may lead to the conclusion that the same mechanism is being affected (in

this case, EcRNAP transcription).

The regulatory network thus uncovered is presented in Figure 3-12, with "EP" marking EcRNAP

promoters, "TP" marking T7RNAP promoters, and "ET" marking the EcRNAP termination site

as discovered in the genome sequence. Some feedback loops are marked with "?" because one

mechanism cannot be distinguished from another without further experiments into the activity of

the proteins. Note, however, that by narrowing each feedback loop to four possibilities (2 groups

of 2 genes) the number of potential interactions has been greatly reduced, providing direction for

future experiments.

Figure 3-12: Reconstruction of T7 expression regulation

Compare Figure 3-5 to Figure 1-2 in Chapter 1. Even with information from a variety of

sources, the reconstructed network could still be only narrowed to a superset of the original

system. However, this example has shown that greater information content may be present in

time series data if enough time points exist and if a reasonable method of dealing with the lag

between events can be generated. Time-lagged correlations seem to best fit this requirement, and

are discussed below in section 4. 1.

48



3.3 References

1. Butte, A. J. & Kohane, I. S. "Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements." Pacific Symposium on
Biocomputing Hawaii, (2000).

2. Somogyi, R. & Fuhrman, S. "Distributivity, a general information theoretic network
measurement, or why the whole is more than the sum of its parts." The International
Workshop on Information Processing in Cells and Tissues 1997 Sheffield, (1 997).

3. Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P. & Darnell, J.
Molecular Cell Biology (Scientific American Books, New York, 1995).

4. Voet, D. & Voet, J. G. Biochemistry (John Wiley & Sons, Inc., New York, 1995).

5. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. "Cluster analysis and display
of genome-wide expression patterns." Proceedings Of the National Academy OfSciences
Of the United States OfAmerica 95, 14863-14868 (1998).

6. Dillon, W. R. & Goldstein, M. Multivariate Analysis (Wiley, New York, 1984).

7. Garcia, L. R. & Molineux, I. J. "Rate of Translocation of Bacteriophage-T7 DNA across
the Membranes of Escherichia-Coli." Journal of Bacteriology 177, 4066-4076 (1995).

8. Endy, D., Kong, D. & Yin, J. "Intracellular kinetics of a growing virus: A genetically
structured simulation for bacteriophage T7." Biotechnology and Bioengineering 55, 375-
389 (1997).

9. Dunn, J. J. & Studier, F. W. "Complete Nucleotide-Sequence of Bacteriophage-T7 DNA
and the Locations of T7 Genetic Elements." Journal of Molecular Biology 166, 477-535
(1983).

49



CHAPTER 4 COMPUTATIONAL TOOLS FOR DYNAMIC
DATA

In this chapter, we introduce tools specifically designed to capture and model systems with

dynamic features given time-course experimental data. For the purposes recreating the basic

interaction structure, the method of time-lagged correlations is discussed in section 4.1 with

typical applications of this method in related fields. As an example, the lactose/arabinose gene

regulatory network discussed in section 3.1 is revisited with this tool to determine how much of

the network structure could be recaptured with the appropriate dynamic experiments.

Given a set of hypothetical dynamic relationships, it is also desirable to create predictive models

of their behavior that can be used to forecast transcriptional profiles for future experiments. For

this purpose, we discuss tools associated with AutoRegressive with eXogeneous input (ARX)

models (section 4.2), including Akaike's Information Criterion (AIC) for model complexity

determination.

Other computational tools for static DNA microarray data analysis have also been studied in this

work, but for clarity are not discussed in this chapter. Problems such as clinical diagnosis,

discriminatory gene selection, and microarray power analysis are discussed in Chapter 7.

4.1 Time-lagged correlations

Both Bayesian networks and information theory based approaches to network discovery, as

presented in Chapter 2, do not make use of the sequential nature of time-series data in their

current applications. If enough time points are available to observe gene correlation with some

time-lag, a discovery method for uncovering causal relationships between genes may be

attempted, as presented in the T7 case study of section 3.2. This goal is further distinguished

from the modeling approaches discussed in Chapter 2, such as stochastic petri nets or

deterministic models, because relationships with few a priori assumptions are desired.

4. 1.1 Formulation and prior work

Linear Pearson correlations have been used to identify genes which are co-expressed or anti-

expressed for clustering purposes'. As an extension of this technique, Arkin and Ross2 make use
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of time lagged correlations to best correlate species that follow the pattern of others with some

time delay. For a series of n time points, for all t < n the time lagged correlation R(T) = (rij(T)) is

defined by

S0 (r) ((x, (t)- )(x, (t + r)- i)) 4-8

S ( )= 4-9

where xi(t) denotes the expression of variable i at time t and the angled brackets denote the time

average of the product inside. The matrix of lagged correlations R(r) can be used to find the

maximum correlation between each species at some lag through conversion to a Euclidean

distance metric:

d, =(c,-2c, +c,) _/ 2 ='(1.0-C,)/ 2 4-10

c, =maxr,, (r)I 4-11

Thus, cj is a measure of the maximum correlation between two species and the time-lag yielding

the maximum correlation: if the value of T which gives maximum correlation is 0, then the two

species are best correlated with no translation in time. D = (dij) describes the correlation between

two species in terms of "distance" by making those species that are least correlated (for any r)

the "farthest" apart2 . By finding species that are highly correlated and the value of t that led to

this correlation the underlying network of cause and effect relationships may be uncovered.

However, note that data points at the extremes of a time-series (i.e. the first and last points) are

lost when correlation is calculated at values of > 0, and more points are lost as T is increased.

Therefore, calculation c must be limited to values of X small enough to ensure enough data

points have been included to give statistical significance.

Arkin, Shen, and Ross3 use this technique to "reconstruct" central carbon metabolism by

measuring dynamic concentration profiles of 14 metabolites interconverted by 8 enzymes in a

continuous flow reactor system. See Figure 4-1. Boxed chemical species were measured
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dynamically, while citrate and adenesine monophosphate (AMP) input concentrations (marked

by ovals) were adjusted dynamically to keep the system away from steady-state. Using time-

lagged correlations on the output data, these authors were able to recreate most of the features of

the original pathway, as shown in Figure 4-2. Note that not all known reactions are present in

the reconstructed diagram. For example the inhibitory impact of citrate on the conversion of

fructose-6-phosphate (F6P) to fructose 1,6-bisphosphate (FI6BP) is not included in Figure 4-2.

Furthermore, species that are not measured or adjusted, such as glucose or glyceraldehyde-3-

phosphate (GAP), obviously cannot be placed in the network at all.

Glucose

GAP

witt*,w A,M Pr

Figure 4-1: Glucose metabolism system (from Arkin, Shen, & Ross)
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Figure 4-2: Glucose metabolism reconstruction (from Arkin, Shen, & Ross)

These drawbacks aside, this example showed that even when the specific method of interaction

is unknown or unmeasured (in this case the enzymes themselves) useful information could be

gathered about the overall structure of a given network of interacting chemical species.

An alternative but related method for uncovering activators and inhibitors from time-series data

is discussed by Chen et al.4 . Here all peaks, or consecutive time points of greater than average

expression, are first identified in data. The "leading" and "trailing" edges of each of these peaks

are then compared to other genes' peaks. The temporal relationships between edges of each peak

are then scored via an exponentially decaying function of the time lag between the features. In

other words, if a peak's leading or trailing edge occurs soon after such a feature in a different

gene, then the relationship is scored depending on how close in time the two events are. For the

studies shown in Chapter 3, both standard lagged correlations and these peak correlations give

largely the same results, and only slight adaptations would be required to use this alternative

strategy instead.

4.1.2 Lactose/arabinose Example
Consider an extension to the glucose/arabinose/lactose model shown in section 3.1. The model

can be expanded to include time lags for some of the interactions which are assumed to be

kinetically controlled (i.e. reactions which are not assumed to be at equilibrium). Specifically,

53

1�8ii�l
_.A

W M.



the equations in Table 3-1 were adjusted as shown in Table 4-1, and the simulation of changing

sugar concentrations was rerun.

Table 4-1: Simplified dynamic model equations for lactose/arabinose regulation

(all concentration scales and rate constants arbitrary)

cap, CAP, lacr, and LACR fixed at (5)

cAMP(t)= 10 * /glucose(t-15)

CAP*(t)- min(CAP(t), cAMP(t))

LACR*(t) = min(LACR(t), lactose(t))

lacZ(t) = lacY(t) = lacA(t) = 10 (CAP*(t-3)/5) (LACR(t-10)*/5)2

ARAC*(t) = 10*arabinose(t)

ARAC(t)= 10 - ARAC*(t)

araC(t)= I/ARAC*(t-5)

araB(t) = araA(t) = araD(t) = 10 (CAP*(t-5)/5) (ARAC*(t-10)/10)

Time-lagged correlations were then calculated for all of the chemical species present. The time

lagged correlations give three pieces of information: a) a best time-lag , b) a correlation value

Iryl, and c) whether the correlation is positive or negative. For this experiment, we assume that 0

time lag refers to systems that represent "reactions" (ie. interconversion of species that must be

conserved) and that non-zero time lags show inhibitory (negative correlation) or activating

(positive correlation) effects. This allows a rule table to be drawn, as shown in Table 4-2. The

corresponding graphical mapping is shown in Figure 4-3.
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Table 4-2: Connections derived from time-lagged correlation

Rule Calculated Time Lag
Glucose Inhibits cAMP exprs. 15
cAMP Determines cAMP* 0

Sum of the last two rules
Glucose cAMP* 15

above

cAMP* Activates lacZYA expr. 3
cAMP* Activates araBAD expr. 5

Lactose Determines Iacr* 0
lacr* Activates lacZYA 10

Lactose Sum of the last two rulesacZYA 12
above

Arabinose Determines ARAC* 0
ARAC* Determines ARAC 0

Arabinose Sum of the last two rules ARAC 
above

ARAC* Inhibits araC expr. 5
ARAC* Activates araBAD expr. 10

lactose O 0o 1 lacZYA cAMP* cAMP
* lacr*

araBA glucose
glucose

I 

~ARAC* 5

arabinose araC

ARAC

Figure 4-3: Graphical network derived from time lagged correlation

The time lags calculated reflect nearly exactly the underlying model. Note one exception where

the effects of lactose on lacr* ( = 0) and lacr* on lacZYA ( = 10) do not exactly sum to the

correct time lag for the entire cascade (O + 10 ; 12). These types of differences may be difficult

to interpret, because it may be impossible to determine whether the discrepancy is due to an

unmeasured species or due to small numerical artifacts (as is the case here).
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4.1.3 Graphviz for correlation network visualization
For larger systems, drawing interactions by hand is generally impractical, especially if a multiple

networks are to be generated with different significance cutoff values. The Graphviz program

from ATT Research Labs5 has been adapted for this purpose. This program has been optimized

using heuristics to minimize such events as cross-over between edges in order to create easily

interpreted output figures. For practical purposes, the output of analysis software (such as

functions written in MatLab) can be written into simple text code that is re-interpreted by

Graphviz to create jpeg images. For example, for the rules written in Table 4-2, the simple input

file shown in Figure 4-4 was converted into Figure 4-5. Matlab functions for automating the

creation of such files from time-lagged correlation analysis have been written for this purpose

and are available from the author.

d1grh arabalic 91ucose Glbu -Cl i
c.an (plablab 'e' .']cnr,.star [label -'crt-]lac2-rA [label - lacZA']
lacr-atar (label - lacr"1
lactose label - lactose"J
armbirnse [label - "arab1nme"I
ar3ac labe - 'AP'"]
aracq.gere ntlabel "ara'C]
arc,star abel - "AJW:'"}
arab.d [label - "araEAD]

glucose - camnp [arrowfieaU - "tee' label- '15']:
camp -> coastar laJbel - ' X-
Crsnp. tar - ' aaraH abel - 3
campstar arabsd abel "Ilactose - lacrstar flabel . ' 
cr_.-tar -1 aSZ-A [label - 'L4) J

arabimrse - arac_tar label " '];
arac._star - arac label7 -'";
daraeatar -> a-a.Qene arr.-ad - 'tee". lab -el ;
sar Cst4r - a d r label - ""3];

Figure 4-4: Graphviz sample input
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Figure 4-5: Graphviz representation of lactose/arbinose example reconstruction

4.2 ARX models

While time-lagged correlations help to discover potential relationships between chemical species

in a dynamic system, they do not offer quantitative predictive value for the uncovered

relationships. To take full advantage of diagrams such as Figure 4-5, it is desirable to create

numerical models that forecast the degree of transcription expected for a gene in a given

situation. For example, if the amount of glucose is changed from high concentration to low

concentration, Figure 4-5 suggests that the araBAD operon will be upregulated some 20 time

"units" later. On the other hand, time-lagged correlation diagrams do not address whether this

upregulation will also be affected by the current arabinose concentration, or even whether the

degree of upregulation is expected to be large or small. To answer these types of questions, a

numerical modeling approach is required, where the expression level of a gene is written as a

function of environmental variables such as extracellular chemical concentrations, other gene

expression values, and even a gene's own expression values at some earlier time points.

AutoRegressive (AR) nmodels are time-series models that assume that variable y is dependent on

earlier values of that variable6
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4-12y(t) + ay(t -1) +.. + ay(t - na) = E(t)
where na is the order of the model - that is, the number of earlier time points that y(t) is

dependent on. Thus, y(t- 1 ) refers to y one time-interval before y(t), where the time-interval At is

dictated by the experimental conditions. is a white-noise process, and the coefficients a,

indicate the dependence ofy(t) on its own history. This equation can be expanded for vectors of

y variables

Y(t) + Y(t - 1) + .. AY(t - na) = E(t) 4-13

were each Ai now represents a matrix of cross-interaction terms, and E is a vector of white noise

processes. Note that if a first-order process is assumed and the white-noise term is ignored, this

becomes

Y(t) = -A,(t -1) 4-14

which is functionally the same as the model used by Holter et al. in earlier yeast studies7 when At

=1.

If the variable of interest y(t) is also a function of a known external signal u(t), then

AutoRegressive with eXogeneous (ARX) models can be used. In this case, the expression

becomes

y(t) + a,y(t - 1)+ ... + ay(t - na) = b,u(t - nk) +... b,hu(t - nb - nk + 1)+ e(t) 4-15

where nk is the time-lag between u and y, and nb is the order of the model with respect to the

input. Note that only na and nb change the complexity of the model: nk only shifts the time

points in u to be used for calculation.

For this study, this relationship is usually re-cast for vectors of outputs (genes) but only a single

input signal

Y(t) + AY(t - ) +... + A,,Y(t - na) = Bu( - nk) +... Bblu(t - nb - nk + ) + (t) 4-16

In the studies presented for Synechocvstis in Chapter 6, we have focused on modeling pairs of

gene groups: thus, the Yt) values are 2x I vectors, the A, parameters are 2x2 matricics, the B.
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parameters are 2x I vectors, and the u(t) are scalar values. For naming purposes, we shall call

these models ARX[na nb nk] models, so that an ARX441 model uses the last 4 values before Y(t)

and the 4 values before u(t- I) to predict Y(t).

The ARX modeling framework has been applied extensively to a variety of dynamic systems,

from industrial controls and fault detection9, to prediction of greenhouse temperatures' °, and

even to modeling of voice patterns" 1,12. These models are particularly attractive because of the

relatively straightforward interpretation of their results, as regressed parameters are directly

indicative of the relative importance of the model variables. ARX models are also easily adapted

as the basis for more complex methodologies, and are often combined in neural network

strategies to improve prediction performance'3 '4 .

A typical adaptation of ARX processes are AutoRegressive Moving Average with eXogeneous

input (ARMAX)6 processes, which assume moving averages over some time window instead of

assuming stationary processes. The moving average assumption de-emphasizes the absolute

value of a variable in favor of the change of variable relative to its recent expression level.

Because an appropriate time-window for calculation of each variable's moving average must be

selected, these models represent an increase in complexity over ARX models. For our study, we

decided to simplify model calculations by using as few user-defined parameters as possible, so

ARMAX models were not explored. Nevertheless, such an extension merits further

consideration as it may be more directly applicable to relationships in transcriptional data.

4.2.1 Model building
Fitting of ARX models was done in Matlab's system identification toolbox. Average autoscaled

profiles for groups of genes were fit to models of varying complexity. Parameters were fit to

minimize sum of square error (SSE)7 between the model and the training data.

In many DNA microarray experiments, missing data points (due to flaws on the particular chip

used or poor RNA extraction efficiency) create "holes" in the sample profiles of some genes.

For the time-lagged correlations discussed in section 4.1, these points are easily handled by

eliminating all calculations involving a missing value, thus calculating correlation only for the

remaining points. Provided that care is taken not to lose the placeholder status of the missing
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data points, the calculation does not require that these points be replaced, and such points can be

ignored. For dynamic modeling, however, some sort of estimation of the transcriptional profile

at that point must be made. For this study, simple interpolations were performed to fill in the

missing data points, and if two or more time points in a row were missing, that gene/gene group

was eliminated from the modeling effort. More complex methods (e.g. splines'5 ) could be used

for this purpose, but for simplicity are not explored in this work.

4.2.2 Choosing between models
Goodness of fit is a metric often used to compare models of different type or complexity.

However, calculating the least-squared error (or % of data variance explained) can be misleading

for the data used to train the model, as the number of parameters used generally improves the

goodness of fit. To rank models in terms of both the number of parameters used and the

goodness of fit, Akaike's information criterion (AIC)' 5 1'6 can be considered:

AIC = - loglikelihood + 2 4-17
N'4-17

where d is the number of fit parameters and N is the number of observations in the estimation

data used. "Log likelihood" is a measure of the likelihood that the regressed parameters are the

"true" parameters (assuming the model form is correct), given the data at hand. The covariance

of the error vector E(t), which is assumed to be white noise, gives a measure of this unexplained

data, and its determinant can be used as an inverse indicator of likelihood. Thus, for ARX

models, the AIC criteria is calculated as:

________I d d
AIC + = logg[det(cov(E(t))]+ 2 4-18

N 4-18

Models can therefbre be compared by their ability to minimize this function, as a balance

between model fit (the first term) offset by model complexity (the second term). For perfect fit

(E(t) is a matrix of zeros) AIC is equal to negative infinity.

Models with more than two outputs can also be used, but the number of parameters fit increases

rapidly as the number of cross-terms in the parameter matrices A, increases. However. small

order models for three output variables can still be fit to the data generated for Synechocystis

(Chapter 6) with some success (data not shown).
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4.3 Conclusions

We have shown tools for both the analysis and modeling of time-series data. Time-lagged

correlations have been applied successfully to recreate the basic interaction structure of networks

of introverting chemical species, and we hypothesize that they will prove similarly useful for

reconstruction of gene regulatory networks. With the basic network features suggested by this

analysis, we then propose to use AutoRegressive with eXogeneous input (ARX) models to affix

quantitative, predictive capabilities to the models of gene regulation. Application of these tools

in tandem introduce to a model system, Synechocystis PCC6803 (Chapter 5) is discussed in

Chapter 6.
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CHAPTER 5 BIOLOGICAL SYSTEM AND EXPERIMENTAL
PROTOCOLS

The cyanobacteria Synechocystis PCC6803 was chosen as a model organism to test the methods

discussed in Chapter 4. In this chapter, the attributes of Synechocystis and cyanobacteria in

general are discussed, followed by procedures adapted by our lab for the growth and

maintenance of these cultures. Finally, protocols are also presented for the creation and use of

full-length cDNA microarrays to measure full-genome transcription levels in Synechocystis.

5.1 Cyanobacteria

Cyanobacteria are a group of gram-negative photosynthetic prokaryotes. They are

distinguishable from other photosynthetic bacteria (purple or green) because of the nature of

their photosynthethic pigment system, which consists of chlorophyll and phycobiliproteins.

Furthermore, they are capable of oxygenic biosynthesis, which gives them a major role in the

ecosystems of marine and freshwater systems. Their photosystem apparatus bears remarkable

similarity to eukaryotic chloroplasts', which make them a model organism for the study of plant

photosynthesis2, especially due to their fast growth rate relative to most plants.

Studies of the physiology and molecular biology of these organisms have resulted in the

elucidation of many of their biochemical processes2 . Of particular interest is their ability of

actively transport both CO2 and HCO3-, allowing for autotrophic growth (e.g. without organic

matter) through carbon fixation3. The major pathway of photosynthetic carbon fixation in

cyanobacteria is via the Calvin cycle where the Rubisco (ribulose-1,5-bisphosphate carboxylase-

oxygenase) enzyme adds CO2 to ribulose-1,5-bisphosphate to create other metabolic species.

with the net result of an additional carbon atom in the metabolic cycle and the generation of 02

(see Figure 5-1).

63



Adapted from R. Gill
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Figure 5-1: Simplified structure of Synechocystis PCC6803 central metabolism

5.1.1 Synechocystis PCC6803
Synechocystis PCC6803 is a unicellular, spherical, polyploid (having many copies of its genome

in each cell) cyanobacterium that reproduces through binary fission. It is particularly useful

among cyanobacteria because of its extremely efficient natural genetic transformation capability.

Furthermore, it has the ability to grow photoheterotrophically on glucose, a characteristic that is

necessary in order to study strains or mutants deficient in photosynthesis related functions4.

Very few other cyanobacteria possess these characteristics. Finally, the recent sequencing of the

entire genome of Synechocystis5 , has opened the door to genomic manipulation and measurement

techniques such as DNA microarrays.

Synechocystis is also interesting for its production of biopolymers. A two-component

polyhydroxyalkanoate (PHA) synthase has been identified and characterized in Synechocystis6 ,

as shown in Figure 5-1. Gas-chromatographic analysis has revealed that the PHA granules in
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Synechocystis are composed of a poly(3-hydroxybutyrate) (PHB) homopolyester6. This

biodegradable straight-chain polymer is a stiff and rather brittle polymer of high crystallinity,

whose mechanical properties are not unlike those of polystyrene, though it is less brittle and

more temperature resistant7 . Coupled with the cyanobacerium's CO2 fixation ability,

Synechocystis is ideally suited to the bio-remediation of CO2 gases from industrial applications

into useful material. However, the PHB content in the cells under the most "optimal" conditions

currently known (i.e., nitrogen starved) amounts to only 5- 10% (w/w) of the cell's dry weight. It

is therefore advantageous to better understand Synechocystis regulation under a variety of

conditions, in order to determine not only optimum conditions for fixation to polymers, but also

to discover targets for genetic manipulation resulting in up regulation of biopolymer production.

5.1.1.1 Synechocystis photosystem operation

As shown in Figure 5-1, the photosynthesis apparatus is key to Synechocystis metabolism, and

therefore a reasonable starting point for regulatory study. Here light energy is converted into

chemical energy in the form of ATP and into reducing power in the form of the electron carrier

NADPH. An expanded diagram (from James Barbers) of this system is shown below in Figure

5-2. Energy from light is transferred to Photosystems I and II through the phycobilisomes, a

structural model (from Wendy Schluchter9) of which is shown in Figure 5-3. Photosystem 11

(PSII) essentially uses this energy to break down H20 and reduce plastoquinone (PQ). The

cytochrome bfcomplex (Cyt bJ) utilizes this energy pool to pump H+ from the stroma into the

lumen, against the energy potential gradient maintained by the thylakoid membrane.

Photosystem , on the other hand, transfers electrons to ferrodoxin (Fd), which either reduces

NADP+ to NADPH for other metabolism requirements, or cycles them back to Cyt bf to reduce

quinone (Q) and drive the H+ pump. Finally, ATP synthase utilizes the energy of the H+ ions

trapped against the potential gradient to add a phosphate group to ADP, generating ATP for

cellular energy needs.
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Figure 5-2: Overview of Synechocstis photosynthesis machinery (from J. Barber)
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Figure 5-3: Model ofivynechoc3stis phycobilisomes (from W. Schluchter)
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5.2 Experimental protocols for Synechocystis

All of the protocols discussed here describe procedures used by our research lab and/or

developed by the author. A list of other protocols for Synechocystis and cyanobacteria in general

can be found at http://www-cvanosite.bio.purdue.edu/protocols/protocols.html.

5.2.1 Growth and maintenance

Since Synechocystis is a heterotrophic organism, it can be grown with glucose or an analogous

carbon source, or grown autotrophically if CO2 or HCO3- is present. For all of the studies

conducted here, cells are grown solely on dissolved CO2 as HCO3-. Of course, there are other

cellular requirements, such as a source of nitrogen for amino acid synthesis and salts required for

a variety of cellular functions. BG- I1 medium (Sigma) is designed specifically to meet these

minimal requirements for freshwater cyanobacteria, and was used in all cultures. Its composition

is listed below in Table 4-2'0.

Table 5-1: BG-11 medium composition

Component 11 

INaNO3 l Z.5 11 7.65 1

[K2 HPO 4.3H 20 I10.04 10.8 1

jMgSO 4.7H20 !0.075 10.30 o
CaC1 2.2H20 i0.036 10.25

Citric acid 110.006 0.03

Ferric ammonium citrate 110.006 10.03

EDTA (disodium magnesium) 0.001 0.003

jNa 2CO3 i10.02 I0o.19

Trace metal mix A5+Co I1 ml II
Deionized water ito 1 1 11 I
Ip after autoclaving and cooling: 7.4 11 

All cultures were grown in an incubator at 300 C under florescent light. Light intensity in the

incubator was determined to be approximately 6900 LUX, or a photosynthetic photon flux (PPF)

of about 90 ,umol /m2 s at the surface of a culture. This flux is expected to drop significantly
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inside of the cultures due to shielding by the outermost cells; therefore all cultures were

continuously shaken or stirred to ensure homogeneity of light exposure.

For basis cultures used to maintain the cell line and inoculate new cultures, cells were grown in

250ml flasks with 100ml of H20 that had been autoclaved for sterility beforehand. Flasks were

stopped with cotton in gauze caps to ensure sterile airflow. SOX BG-I I media (2ml) and 0.38M

Na2CO3 (300Il) were added to the cooled (30°C maximum) flasks as the carbon source and basic

media, respectively. Such cultures were usually inoculated with < 2ml of cells from another

culture, usually for the late (stationary growth) phase. Depending on the volume and density of

the inoculating sample, these cultures generally survived for several weeks, and growth was

often not visible to the naked eye for a few days if the inoculating sample was extremely small (<

10 ORI).

Inoculation cultures used to seed the larger reactor vessels were grown in 1 L flasks with 300ml

of H20. Again, BG- 1 (6ml) and 0.38M Na2CO 3 (300gl) were added to the culture, but here the

additional buffer of sterile-filtered 1 M HEPES (6ml) was added to create an environment more

similar to the sparged reactor vessel (see below). -10ml of a basis culture (as above) in late-

exponential or stationary phase was used for inoculation. These cultures were grown to mid-

exponential phase (A730 - 1.0, approximately 4 days) before use for inoculation of the large

reactors.

The layout of the sparged-gas vessel is shown in Figure 5-4. 6L of H2 0 was first autoclaved in

the O1L reactor vessel with a large stir-bar placed in the center of the gas-sparging ring. Since

CO2 was bubbled through this reactor, no Na2CO3 was added, only BG-II media (120ml).

Dissolved CO2 gas in the form of (H+)(HC03 ' ) increases the acidity (decreases the pH) of the

culture, drastically inhibiting growth. To counteract this, IM HEPES (120ml) was added as a pH

buffer (pKa = 7.31 at 370C). The CO2 source gas (1-3% CO2, -16% O0, balance N2) was forced

through a sterile filter into a plastic tubing ring with many small punctures at a rate of about

150ml/min. Sparged gas escaped through a pressure release valve at the top of the vessel. A

final tube, extending deep into the liquid culture, was sealed with a quick-release clamp that

could be quickly opened and closed for sampling.
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Figure 5-4: Setup of sparged-gas reactor vessel

5.2.2 Sample collection for RNA extraction
Because RNA tends to be unstable and is easily degraded by common RNAse enzymes found in

cultures, it is imperative to not only stop new transcription by cells but also freeze them to

minimize RNA degradation. However, the cells should be concentrated and stored liquid-free

(or nearly so) to ensure efficient downstream processing. The following protocol is designed to

stop transcription through inhibition by phenol, but care must be taken to keep the samples cool

and complete centrifugation as quickly as possible. If ice forms in the sample, centrifugation to

concentrate the cells will be inefficient at best, and may not allow for proper formation of a cell

pellet.

1. Prepare sampling tubes by adding 10% by volume of EtOH/phenol mixture (95% EtOH,

5% phenol, by volume)

a. For Synechocystis, an A730 reading of about I for cells growing in exponential

phase tends to give enough RNA for 1-3 arrays in 50 ml of sample

b. For test samples, 50 ml tubes were prepped with 5 ml of EtOH/phenol mixture

c. For control samples, 250 ml tubes were prepped with 25 ml EtOH/phenol mixture
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2. Store sampling tubes at -300C until ready to take samples

3. Collect sample

a. If using sparging vessel, collect sample by closing the gas outlet and opening the

sampling tube directly into the collection tube. It may take time for enough

pressure to build to force the culture up the sampling tube for the first time

b. If collecting cells from a flask, simply pour the contents into the sampling tube

4. Quickly shake closed sample tube to ensure mixing and place tube into liquid nitrogen

a. DO NOT FREEZE SAMPLE

b. Manual shaking during cooling is recommended to ensure the sample is

homogeneously cooled

5. Centrifuge sample at -0OC for 5 minutes at highest rate possible without tube breakage

6. Discard supernatant liquid in hazardous waste container (due to the presence of phenol)

7. Place tube with solid cell pellet back into liquid nitrogen until completely frozen

8. Store sample at -800C until RNA extraction step (section 5.2.3)

5.2.3 Synechocystis RNA extraction
Extraction of RNA is particularly difficult in Synechocystis because of its tough outer cell wall.

In general, chemical or enzymatic means of ysing the cells are insufficient, and the cells must be

lysed through physical means. The following protocol uses grinding to destroy the cell wall

through shaking of the cultures with beads, but other methods (e.g. rapid pressure changes) may

be used.

This protocol is an adaptation of the bacterial protocol in the RNeasy Midi/Maxi Handbook

(Qiagen) and the required columns and buffers are included in the RNeasy Midi or Maxi kits

(Qiagen). For 50ml sample tubes, the Midi columns were used with the steps listed below. For

250ml samples, Maxi columns were used with the same steps - however, when the protocols

differ, the Maxi parameters are listed in brackets. In my experience, four 50ml sample tubes or 2

250ml sample tubes can be easily processed in parallel. Note that total RNA is extracted in this

procedure, including both mRNA and tRNA, and that no DNAse step has been used to eliminate

DNA from the sample.

I. Add 450 gl -Mercaptoethanol to 45 ml of Buffer RLT (Qiagen)
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2. Add 3.5 il [7.5 jil] of the Buffer RLT solution directly to the still-frozen sample tube

a. Vortexing may be required to fully dissolve the pellet

3. Pour contents into a single [a pair of] 7 gl flat bottomed glass vial

4. Add 3.5 p1 of glass beads (O.1mm, B. Braun) to each vial and seal tightly

a. The vial will not be completely full due to packing of the beads

5. Shake the tubes, in pairs, in a mixer mill for 2 minutes

6. Place tubes on ice for -2 minutes to keep them cool

a. A second pair of tubes may be placed in the shaker at this time, and alternated

with the primary pair for the shaking steps

7. Shake for another 2 minutes

8. Ice again, 2 minutes

a. Optional: the cycle may be repeated once more, but no major differences in RNA

yield have been found

9. Pipette liquid from each vial into a clean 15ml tube

a. Care should be taken to remove as much liquid as possible, even if beads are

extracted as well

b. Do not discard vials until after Step 10

10. Rinse each vial with an additional 1-2 ml of Buffer RLT solution

a. Vortex the vials to rinse the beads thoroughly

I 1. Pipette the additional liquid into the corresponding 15ml tubes and discard vials

12. Centrifuge lysate for 5 minutes at 3200g

13. Pipette supernatant liquid from each vial into a new 15ml tube

a. Make sure to avoid pipetting any cell material or beads into the new tubes

b. [Recombine liquid from matching tubes for Maxi protocoll

14. Add 2.5ml [5.5ml] of pure EtOHi to each tube and shake vigorously

15. Pour contents into a Midi [Maxi] column in a 15ml [50ml] tube

16. Centrifuge the tube for 3 min at 3200g and discard flow-through

a. For Midi kits, sample must be added to the column in 2 steps because there is not

enough room for the entire sample; the first centrifugation should therefore only

last for a few seconds to clear enough space in the column to add the remaining

sample
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17. Add 4ml [15ml] Buffer RWI to the column and centrifuge for 3 minutes at 3200g,

discarding flow-through

18. Add 2.5ml [10ml] Buffer RPE to the column and centrifuge for a few seconds at 3200g,

discarding flow-through

19. Add another 2.5ml [lOml] Buffer RPE to the column and centrifuge for 5min [10min] at

3200g

a. The longer centrifuge time in this step is required to ensure the column is

completely dry - otherwise, the EtOH in Buffer RPE may inhibit downstream

reactions

20. Tratifcr column to a new 15ml [50ml] collection tube

2 1. Add 150 gl [0.8ml] of H20 to the column and let stand for minute

22. Centrifuge for 3 min at 3200g

23. Repeat the elution step

a. If the sample will be concentrated with LiCI precipitation (less recommended), re-

pipette original 150 gp [0.8ml] of liquid back into the column, let stand I minute,

and centrifuge 3 minutes at 3200g

b. If the sample will be dried in a vacufuge, apply a new 150 pil [0.8ml] aliquot of

H20 to the column, let stand minute, and centrifuge 3 minutes at 3200g

24. Concentrate the sample

a. LiCI precipitation procedure:

i. Add 75 pgl [0.4 ml] of 4M LiCI and the sample to a new 1.5ml microfuge

tube

ii. Refrigerate for > 1/2 hour at -- 15 °C

iii. Centrifuge at 17,500g at -2°C for 15 minutes

iv. Pipette and discard supernatant liquid

b. Vacufuge procedure

i. Place sample into a new 1.5ml microfuge tube

ii. Spin dry either without heating or with only minimal heating to minimize

RNA degradation

iii. Stop drying when < I pg remains, as completely dry RNA pellets do not

seem to work well in downstream processes
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25. Resuspend pellet in RNAse-free H 2 0

i. For 50ml sample tubes of Synechocystis, 10 .i usually gives moderate

RNA concentrations-3 gg/gl

ii. For 250ml sample tubes, 40 p.l usually gives higher concentrations of

RNA -5 pg/glI

iii. In either case, the vacufuge drying procedure usually gives higher final

concentrations than the LiCI precipitation procedure

5.3 DNA microarray protocols

These protocols, while tested specifically on Synechocystis cultures, should be generally

applicable to any samples of similar concentrations.

5.3.1 Printing of arrays
For the studies in this thesis, Dupont Co. provided plates of full-length cDNA that were spotted

to create the microarrays.. These samples represented 3078 unique cDNA sequences and a few

sequences eventually eliminated from Synechocystis ORF databases". These were shipped dry

in 384 well (16x24) plates with v-bottomed wells (Genetix) and resuspended in 5 1 50% (vol.)

DMSO in H20 and stored at -80°C until printing.

Arrays were printed on a MicroGrid II quill pin microarrayer (BioRobotics) at 35-45% relative

humidity at room temperature on Coming Gap slides. See Figure 5-5 for an example slide. A 4

by 4 array of quill pins was used to print with a 0.29 pitch (290 gm spacing) between spots, with

spots printed in a 15 by 15 sub-grid in each of the 16 super-grids.
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27. Add I tl of random hexamer primer

28. Place in a heating block at 65°C for 10 min (H2O is usually added to the heating block to

increase heat transfer)

29. Place sample on ice for 2 min to quench primer hybridization

30. Add sufficient H2 0 to ensure a final etai volume of -20 uli

a. Calculate this volume based on volume needed for later steps and the

concentration of RNA in the sample

b. If initial volume of RNA is large (-10 gl) add no H20. Add alternative amounts

of the reagents in Step 31 as noted in brackets

31. Add:

a. 2 jiL DTT (10x) [2.5 jil]

b. 4 gaL 1st Strand Buffer (5x) [5 p1]

c. 2 gL of dNTP ( 10x) [2.5 il]

i. 5 each of 100mM dCTP, dATP, dGTP

ii. 2 1 100mM dTTP

iii. 83 l of H 20

iv. Yields 100 1 of 10x dNTP

d. 2 L of Cy3 (sample) or Cy5 (control) [2.5 jii] (mix well)

e. 2.2 p.L of Superscript II [2.8 il] (mix well)

32. Place in water bath at 42°C for > 2 hrs (close to 2 hr is most desirable)

33. Add 1.5 pl NaOH (I N) [2 pl]

34. Place sample in water bath at 65°C for 10 min (destroys RNA)

a. Simultaneously prepare DyeEx Column (Quiagen)

i. Open cap /2 twist, break off tab and insert into collection tube

ii. Centrifuge 3 min/700 g/room temp

iii. Discard collection tube and put gel matrix into a new 1.5 pi tube

35. Place sample on ice for 2 min

36. Add 1.5 1 HCI ( N) [2 1] to sample (to neutralize)

37. Add control sample (Cy5) to its corresponding sample (Cy3) and mix well

38. Add mixture to DyeEx column
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39. Centrifuge column for 3 min at 700 g at room temp (discard column matrix)

40. Add 100 pi cold (-20°C), pure EtOH + 16 pI sodium acetate (3M)

41. Place solution at -15C for >1/2 hr

42. Centrifuge at 17,500g, -0°C for 15 minutes

43. Pipette out supernatant liquid (be sure to remove ALL liquid, or hybridization will be

impaired)

44. Samples may be stored at -30 C, but usually samples are processed immediately as in

section 5.3.3

5.3.2.2 Adjusted procedure

As in section 5.3.2. I1, with the following changes to improve cleanup of unreacted dNTPs and

dyes by replacing the DyeEx kit with the QIAQuick kit (Quiagen).

9. Eliminate sub-steps

13. QIAQuick processing

a. Add 490 l Buffer PN [580 W] to sample

b. Apply to QiAQuick column

c. Centrifuge at 6000rpm for I minute and discard liquid

d. Add 750 p1 Buffer PE

e. Centrifuge at 6000rpm for minute and discard liquid

f. Centrifuge at maximum for I minute to dry

g. Place sample in new tube

14. QIAQuick Elution

h. Add 30 H20

i. Wait I minute

ii. Centrifuge at maximum for I minute

i. Add 20 l H2 0

i. Wait I minute

ii. Centrifuge at maximum for I minute

76



Instead of EtOH precipitation, cDNA may be concentrated through drying in a vacufuge.

15. Spin dry in vacufuge until volume -1 L (dry is OK, but not preferred)

16. Eliminate this step

5.3.3 Hybridization of samples
Usually this step is performed immediately after processing of RNA to create labeled cDNA

(section 5.3.2).

17. Add 32 l of hybridization fluid (Clontech)

18. Place at 95 C for 8-10 minutes

a. If necessary, store samples in 50 °C heating bath until slides are ready

b. Simultaneously prepare slides

i. Boil slides for 2 minutes in H20

ii. Quench slides in cold (-20°C), pure EtOH

iii. Spin dry slides at 300-500g for 2 minutes

c. Simultaneously prepare hybridization chambers

i. Pipette -20 gl of water into each well

19. Place dry slides face-up in chamber

20. Spin down sample (low g's) and pipette onto slide surface

a. Optional - take I gl of sample and save for spect'ophotometer reading

21. Lower slide cover over sample

a. Make sure to wet entire microarray surface - generally, applying one edge of the

slide cover to the surface and gently dropping the other edge onto the slide works

well

b. Watch for bubbles trapped under slide cover - in general, these will work their

way out from under the cover due to surface tension if there is enough liquid, but

if not, small amounts of pressure may be applied with forceps to the cover to force

bubbles out

c. All steps must be done quickly, or the hot sample will evaporate somewhat and

the chances of the slide drying out are much greater

22. Close chamber, seal, and place gently into 50C water bath
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a. 55°C and 60°C baths have also worked, but drying becomes more of a problem

b. 40°C or 45°C will result in more cross-hybridization

23. Allow hybridization to occur over -12-14 hours

a. Longer than 20 hours frequently causes problems with drying

b. Less time may be acceptable

5.3.4 Cleaning and scanning of arrays
This step is always performed immediately after hybridization is complete (section 5.3.3) to limit

the possibility of samples drying before they are rinsed, because labeled cDNA tends to stick to

the surface of slides when the surfaces dry. In general, after hybridization, rinsing, and drying,

slides can be stored in the dark for an undetermined amount of time (at least one week) before

scanning without any major degradation to the signal measured on the array.

24. Rinse samples in 3% SDS/ 20X SSC (175g NaCl and 88.2 NaCit 2 H20 in I liter of

H20) solutions - 5-7 minutes each rinse

a. lOml 20X SSC, lOml 3%SDS, in 100 ml H20

i. Be sure to remove slide covers as soon as they slide naturally (without

force) from slides placed vertically in the solution

b. 5ml 20X SSC, Iml 3%SDS, in 100ml H20

c. Iml 20X SSC in 100ml H20

d. 3ml 20X SSC in 600ml H20

25. Spin dry slides at 300-500g for 2 minutes

26. Scan each slide in Axon scanner

a. "Preview" each slide with default intensities of-500mV for each channel

b. Adjust intensities to get scanned intensity ratio of-l on the "Histogram" screen,

noting that the histogram shows results only for on-screen section of slide

c. Autoscale image as necessary to ensure a full range of spot intensities can be

observed

d. Adjust scan boundaries to cover spotted surface

e. Perfonn full scan

27. Save images
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a. Preferably as 2-channel tiff files, which retain the information needed to rescale

each channel separately

28. Find microarray features

a. Use automatic spot-finding options, followed by manual examination of spots to

ensure all features on the array have been highlighted

b. Eliminate obviously damaged spots

29. Save settings file

a. A different settings file is recommended for each slide, in case slides need to be

re-analyzed

30. Use the "Analyze" icon to collect data from the outlined spots

31. Save output data file

32. Normalize and process the data file as necessary (see Chapter 6)

5,4 References

1. Stanier, R. Y. & Cohen-Bazire, G. "Phototrophic Prokaryotes: The Cyanobacteria."
Annual Review of Microbiology 31, 225-274 (1977).

2. Silva, S. Personal communication, (2003).

3. Miller, A. G. & Colman, B. "Active-Transport and Accumulation of Bicarbonate by a
Unicellular Cyanobacteri um." Journal of Bacteriology 143, 1253-1259 (1980).

4. Williams, J. G. K. "Construction of Specific Mutations in Photosystem-li Photosynthetic
Reaction Center by Genetic-Engineering Methods in Synechocystis-6803." Methods in
Enzymology 167, 766-778 (1988).

5. Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E. Y., N., N., M., Hirosawa, M.,
Sugiura, M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno, A., Muraki, A., Nakazaki,
N., Naruo, K., Okomura, S., Shimpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada,
M., Yasuda, M. & Tabata, S. "Sequence analysis of the genome of the unicellular
cyanobacterium Synechocystis sp. strain PCC6803. 2. Sequence determination of the
entire genome and assignment of potential protein-coding regions." DNA Research 3,
109-36 (1996).

6. Hein, S., Tran, H. & Steinbuchel, A. "Synechocystis sp. PCC6803 possesses a two-
component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur
bacteria." Archives of Microbiology 170, 162-170 (1998).

7. AZoM - the A-Z of materials. http://www.azom.com

8. Photosynthesis at Imperial College. http://www.bio.ic.ac.uk/research/barber/index.htmI

79



9. Schluchter, W. "UNO Biological Sciences faculty web site."

10. Pasteur Culture Collection of Cyanobacteria: Culture media.
httD://www.pasteur. fr/recherche/banques/PCC/Media.htm#BG I 1

11. CyanoBase: The Genome Database for Cyanobacteria. http://www.kazusa.or. ip/cyano/

12. Roberge, C. Personal communication, (2003).

80



CHAPTER 6 NETWORK DISCOVERY EXPERIMENTS

As discussed in Chapter 5, it has been previously reported that changing the level of light fueling

the growth of photoautotrophic Synechocystis alters the transcriptional profile of the cell

culture"2 . This provides an adjustable input stimulus for dynamically manipulating the cellular

state. For our network discovery experiments, we altered this light level many times over a

period of almost 17 hours, keeping a single large culture of cells from settling into a steady-state

while collecting samples at 50 evenly-spaced time points. Full-genome DNA microarrays were

used to determine the transcriptional profile at each time point. Time-lagged correlations3,

discussed in section 4. 1, were then applied to find genes that were highly correlated to the input

signal of light intensity. These genes were clustered and collated into a network of highly

correlated groups.

The expression profiles of the genes of these groups were used to build AutoRegressive with

eXogenous input (ARX) models. We then used these models to predict expression levels for a

variety of potential follow-up experiments, and selected a "maximally informative" confirmatory

experiment. This experiment of an additional 27 time points with a new pattern of light input

was carried out to test the accuracy of the ARX models. The resulting models contain predictive

information about transcriptional behavior and form the basis for formulating hypotheses to be

tested in future experiments.

6.1 Experiment 1: network training data

In the first experiment, a series of shifts in the experimental conditions between three light levels

("light," "low light," and "dark") was used to ensure the cells did not settle into a steady-state.

This forcing function was chosen in an attempt to allow time for major effects from each

transition to be observed (as inferred from the analysis in Gill et al.') and to include most of the

potential transitions (i.e. dark to low light, light to low light, etc.).

6.1.1 Experimental details
This experiment was conducted according to the protocols discussed in Chapter 5. In brief

batch cultures of Synechocystis sp. strain PCC 6803 were maintained in BG- 11 medium at 30 C.
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1% of a 4M solution of Na2CO3 was added as a carbon source for maintenance and inoculation

cultures. The experiment was carried out in a 10 liter glass vessel with 6 liters of working

volume sparged continuously with 1% CO2 air at a rate of approximately 150ml/min. This

sparged gas eliminated the need for Na2CO3. In this experiment, HEPES (10mM, pH 8.5) was

added as a buffer to the BG- 1 I medium to counteract acidity caused by the dissolved CO2 gas.

Cultures were typically grown at about 7000 lux under cool fluorescent bulbs, corresponding to

photosynthetic photon flux (PPF) of -90 pmol/m2/s. Note that this light level well below the

light level at which Synechocystis has been shown to grow without significant light damage';.

For "low light" experimental conditions, some of the incubator bulbs were turned off, resulting

in light readings of about 1200 lux (PPF -16 puMol/m2/s). In "dark" conditions, all bulbs were

extinguished and a box was placed over the vessel, resulting in negligible light input (< 20 lux)

compared to the other two conditions.

Cells were grown to mid-exponential phase (A 73o- 1.0) with an approximate doubling time of 12

hours. A large reference sample was taken directly from a culture at this condition. For the

time-series experiment the cells were then left in the "dark" conditions for 24 hours before the

experiment initiation with the first switch to the low light" condition. The culture density

remained constant (with changes of < 10%) after the experiments were initiated (as in Gill et

al.').

Microarray quality, sample processing, and data filters were analyzed in aggregate by

hybridizing to three microarrays 6 samples from cultures grown in parallel and labeled with

different dyes. On average, the expression ratio of 8.8% of the genes differed by greater than

1.75, while only 5.1% of the genes differed by more than 2-fold. Both of these measures are

consistent with other cDNA microarray experiments .46 . Based on these results, genes were

deemed to be differentially expressed if they exhibited an expression ratio of 2-fold or greater

with respect to the control. A compilation of all duplicate spots within the es gave a within-slide

coefficient of variation of 0. 18.

An example of such a control experiment is given in Figure 6-1, with the three diagonal lines

representing (from top to bottom) 2-fold induction, equal induction, and 2-fold repression of the

Cy3-labled sample relative to the CyS-labled one. Contrast this figure with Figure 6-2, which
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shows the high dissimilarity between the transcriptional profile of the reference (moderate light)

sample and a sample from a "dark" condition.

Figure 6-1: Example two-channel control DNA microarray experiment

Slide 23 (Dark vs. Light Control)
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Figure 6-2: Example two-channel DNA microarray experiment
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Samples were taken and stored as described in Gill e al.' except that samples were added

directly to a 10% vol. mixture of ethanol (95%) and phenol (5%) before chilling with liquid N2

(see section 5.2.2). RNA extraction and purification, labeled cDNA creation, and hybridization

were all performed exactly as in Gill et al. for the first experiment. The Cy5 labeled sample was

taken from a pool of reference RNA extracted from cells grown in an identical experimental

setup to mid-exponential phase under moderate light conditions continuously from inoculation.

Slides were scanned with an Axon Instruments 4000B scanner. Laser intensity was adjusted

manually on each channel to achieve strong spot readings relative to the background (without

saturating the detector) at both the 532nm and 635nm wavelengths. All data was filtered to

eliminate spots not significantly expressed over background noise and normalized to set the

average logarithmic expression ratio to one.

6.1.2 Time-lagged correlation implementation methodology
The step-wise procedure for implementation of time-lagged correlation analysis is enumerated

below, adapted from section 4.1. Specifically, this algorithm has been designed for use with

Synechocystis, but it has been created to be generally applicable to similar types of regulatory

reconstruction problems.

Step : Filter data to remove genes without signal intensity above noise level, and cluster

genes that may represent operons of co-expression

Step 2: Calculate time-lagged correlations between the input signal and each gene, and

each cluster of genes created in Step I

Step 3: Cluster genes found in Step 2 to combine genes with highly correlated expression

(without time-lags)

Step 4: Expand the networks of connected groups by repeating Steps 2-4

Step 5: Draw the correlated network
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6.1.2.1 Step 1: Filter genes and cluster genes into potential operons

Many genes on a cDNA microarray may not have significant expression for the conditions

measured, or may be represented by spots on the array that are prone to cross-hybridization with

cDNA from other transcripts. In either case, such genes muddle the computational picture

unnecessarily, and are easily filtered by the application of filters for not only significant

expression level but also significant expression change. Genes that were not determined to have

a measurable signal experimentally (that is, spots on the array with intensities not significantly

above background noise) for over half of the data points in our experiment were excluded from

further consideration. Also, all genes without a significant expression change (here defined at 2-

fold induction or inhibition, although this measure could differ for more accurate microarrays)

for at least one time-point were eliminated from further analysis. For our studies, such filters

typically eliminated less than 1/3 of the genome from further consideration.

The methods of clustering of data to reduce the scope of the problem and exclude uninteresting

features has been explored by many researchers7 '2 for both DNA microarray and other data

sources. Methods such as hierarchical clustering s, principal component analysis3-' 4 , and self-

organizing maps" provide methods for grouping genes into related profiles, but all are tightly

linked to the parameter values chosen by the user. For this work, a simple system that is

amenable to high-throughput analysis was desired, and therefore the number of parameters to be

input by the user was minimized.

For ,Synechocystis (see section 5. 1.1 ) as well as many other organisms, additional information for

each gene is available in the form of its position and ordering within the genome' 5. This

information, along with the experimental expression data, may suggest the existence of operons,

or genes that are co-expressed due to a common upstream promoter system. For this work,

instead of traditional clustering, genes were instead analyzed for correlation of' expression (with

zero time-lag) with other genes adjacent on the genome. Those that were correlated were

grouped into clusters and their average autoscaled profile was calculated to represent the entire

group of adjacent genes before proceeding with the rest of the analysis.

As an example, consider the sub-section of the Svnechocvstis genome shown in Figure 6-3' 5.

The numbers 565-580 refer base-pair position in the genome, in thousands. and cs0076 refiers to

85



the sequenced contig including the genes shown. Each of the arrows represents a gene and its

orientation: genes found on the complementary strand of the DNA are shown at the bottom,

pointing from right to left. The sequence starting at slr2033 and ending at sr2035 includes a

number of interesting genes:

rubA (slr2033), a membrane-associated rubredoxin,

ycf48 (slr2034), which is essential for stability or assembly of photsystem II,

psbEFLJ(ssr3451, smrO006-8), sub-units of photosystem II and the cytrochrome bf

complex, and

proB (slr2035), glutamate 5-kinase

Figure 6-3: Schematic of Synechocystis genome section

The transcriptional data from Experiment I was used to calculate the correlation of expression

for each gene in this sequence against the others. The results are shown in Table 6-1. Note that

the middle 5 genes in this sequence, marked in bold, are all correlated at levels greater than 0.65,

while the first and last genes are not well correlated with any of the others. This suggests that

these middle 5 genes are co-expressed because they may be part of an operon. with common
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regulatory elements upstream of the group. Thus, these 5 genes are clustered before continuing

the analysis to reflect this possibility.

Table 6-1: Correlation

slr2033 s1r2034 ssr3451

between sequential

ur0006 srO0007

slr2033 1.0000 -0.4895 -0.4114 -0.3835 -0.3894 -0.3468 -0.3082

slr2034 - 1.0000 08617 0.7857 0.8075 0.6508 0.4469

ssr3451 - - 1.0000 0.9190 0.8928 0.7842 0.3980

smu0006 - - - 1.0000 0.9216 0.7133 0.2476

sar0007 - - - - 1.0000 0.8166 0.3790

mr0008 - - - - - 1.0000 0.4401

slr2036 - - - - - - 1.0000

6.1.2.2 Step 2: Identification of clusters correlated with the input

The remaining clusters were then analyzed with time-lagged correlations as presented in section

4.1. This technique aims to identify correlated gene expression patterns with allowance fbr time

lags between the expression levels. Recall from section 4.1.1 the correlation formulation,

comparing gene (or cluster of genes) i to genej.

S. ()= f(e(t- .F,]:(ti + r)- X,) )6-1

6-2S (
V37'Fj

This correlation best identifies relationships of the type

g,(t) = Ag2( -r,, )+ B 6-3
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Substituting this relationship into the correlation equations shows that a maximum S12 value will

occur at = -to. At this time-lag, S12 = A-.2 where 2 is the variance of g:. This condition

corresponds to rl = 1. However, as is shown in the case studies in Chapter 3, most gene

expression values are likely to be the result of a combination of effects such as

g,(t = Ag, l(t - , )+ Bg2(t- T2 )+... +aP, (t- r, )+ -... 6-4

where P are protein concentrations in the system which we may be unable to measure directly.

In this case the pairwise correlation will be less than one. However, if we assume that most of

the genes and proteins present do not actually impact the gene during the experiment being

studied, then we may reduce the relationship to a few key interactions, each of which shows

imperfect correlation with the gene in question. By using reasonably low threshold values for r,,

a set of impert'ect connections with appropriate time lags can be calculated.

Another difficulty of this method is the nature of the data used for the correlation calculation. A

set of case studies using this technique (not presented here) shows that the accurate

d-termination of time-lags and correlations is highly dependent on the existence of features in

the data set, wherefeatures are defined as data points which vary around the signal mean. This

has also been noted by Arkin et al.3 who suggest continuous rT:rturbation of the system away

from steady-state to ensure that features exist to help uncover tile underlying system structure.

Because of this, experimental data that represents development of a single event in time (such as

viral infection in the T7 bacteriophage example) is poorly suited for use with this technique.

Thus, all experiments in our studies are run with a "large" number of changes relative to the

amount of time required to reach steady-state after such a change.

The practical difficulty with this framework is that the complexity of calculation of time-lagged

correlations for thousands of genes increases exponentially as the number of genes increases. To

simplify the calculations further, in the first pass, an input signal representing experimental

conditions (for the lactose/arabinose case in section 3.1, this variable would be sugar

concentration; in these experiments conducted for Synechocvstis, light intensity) was compared

to each gene sequentially and all genes having at least one r(t) value greater than the preselected

cutoff were set aside for further consideration. In this way. a set of "first-order" interactions was
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obtained in a computational time increasing linearly with the number of genes included, and

further iterations were then run to expand the correlation network.

6.1.2.3 Step 3: Cluster groups found in Step 2

Regulons are similar to operons as they include co-expressed genes under the control of common

promoter regions. However, regulons differ from operons because they are not necessarily

sequentially oriented in the genome. Thus, it is important to consider similarly expressed genes

for potential clusters of expression, as the expression of these genes may represent a common

regulatory effect. Those genes with high time-lagged correlation at the same time-lag compared

to the experimental conditions are good candidates for such clusters.

Here the retained genes were sorted by their time-lags with the input signal - all genes with lags

of I were put into one category, lags of 2 into another, etc. Then a nearest-neighbor" clustering

scheme was implemented with correlation (time-lag zero) as the definition of similarity. In the

nearest neighbor approach, each gene/cluster is compared to all other genes/clusters, and the

most-closely correlated two are paired. This procedure was repeated until the correlation

between groups fell below the cutoff value selected for Step 2. In this way, the difference

between these clusters is at least as strong as the differences between the correlated and

uncorrelated genes found in Step 2.

6.1.2.4 Step 4: Expand the groups by repeating Steps 2 & 3

Each of the discovered groups can then be used as a "seed" node in the same way the input

signal (i.e. light intensity) was in Step 2. In this way, the network can be expanded to arbitrarily

large size (compare Figure 6-5 to Figure 6-7, below). In general, a new correlation cutoff could

be selected here to either encourage inclusion of genes into the network or promote exclusion

and focus on "core" interactions. If the cutoff is chosen too low, however, the network could

expand to a completely incomprehensible degree for systems including thousands of genes such

as Synechocystis. For these studies, a stringent cutoff was used.
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6.1.2.5 Step 5: Draw network of interactions

The Graphviz program from ATT, presented in 4.1.3, was used to draw the sequences of lagged

correlations derived from Steps 2-4. Each gene/cluster was fixed in a temporal hierarchy based

on zero-lag for the input signal: if one group has a time-lag of interval (20 minutces after the

input signal, and second group has a lag of 2 intervals from the first group, then the second group

is placed on the third tier below the input signal. Other than this constraint, Graphviz was free to

optimize the arrangement of the groups so as to minimize the overlap between their connecting

lines, creating easily interpreted jpeg images. Examples can be found below in Figure 6-5

through Figure 6-7.

6.1.3 Results
Consider Figure 6-4. The pattern of input light is shown as a solid bar (with "light," "low light,"

and "dark" conditions represented accordingly), and the scaled expression pattern of each gene in

the psbEFLJ operon are plotted with thin lines. All data has been autoscaled to show the

expression pattern instead of absolute values. Note that all of the genes are closely correlated to

the input signal (the solid line), but generally to lag it by about I time point, or 20 minutes in this

experiment.
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Figure 6-4: Input light (solid line) and gene expression profiles, psbEFLJ operon

All such correlated genes are then complied into a network, using the algorithm discussed in

section 6.1.2. The genes found on the first iteration (e.g. those genes most directly correlated

with the input signal) are shown in Figure 6-5. Here, clusters of co-expressed genes are shown

in groups, where dark arrows indicate between-group lagged correlations. For example, the

input light signal is highly correlated, with a lag of I interval (20 minutes), to the genes of

Groups 2-6. Direct correlation is also observed with Group 7 at a 40 minutes lag. These groups

were then expanded in the second iteration by searching for genes with high correlation with

these groups, even if less significant correlation is observed against the input signal. In Figure

6-6, only those groups with a time-lag of zero relative to the primary groups identified by the

first iteration have been added. Lines without arrowheads represent these zero-lag connections.

Figure 6-7 includes all lagged and non-lagged correlations, with the appropriate time scales

relative to the changes in input light intensity. Dashed lines show inverse correlations in all
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figures in the same manner as direct correlations. For the first iteration, the cutoff correlation

value was R = 0.7, while R = 0.5 was used for the second iteration.

Figure 6-5: Networconsructia

Figure 6-5: Network construction, first iteration
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For simplicity, the named genes in each time-delayed "wave" relative to the input signal are

listed in Table 4-2 (hypothetical, unnamed genes have been excluded from this list). Particularly

abundant are many of the transcripts associated with proteins in the Synechocystis photosystem

complexes. For example, genes associated with photosystem II (such as psbEFLJ in Group 3 -

see Figure 6-5) and photosystem I (such as psaE or psaK) seem to be activated at several

different time-lags relative to the light intensity. On the other hand, many of the sub-units for

ATP synthase (such as apCADFGHII in Group 2 - see Figure 6-5) are best correlated with the

light intensity at the smallest measurable time-lag of 20 minutes. At least one sub unit for the

cytochrome bjfcomplex (petG) is also identified. Interestingly, this analysis also finds both ycf3

and ycfl8 have transcriptional expression coordinated with light exposure with the minimum

time-lag of 20 minues. It ias been suggested that they play a role in either assembly or stability

of photosystem 116 and 1117. The fast response, at the transcriptional level, of these genes to

changing light conditions is consistent with these hypotheses.

Table 6-2: Genes in correlation network at appropriate time-lags

20min:
accB,efp acp
apcA,B,C apcE, F,G
atpBE, atpC,A,D,F,G,H,I,1
bioB chip cIpP, trpB
trpE, psaD ycf58, cpcG1
crtQ-2 ctpA, rbcL,XS
cupB fus fpg, psaE
tufA, fus dnaK, glyA
gap2 gInA gpx1
guaA gyrB hemB
hemE icd ilvC
murC nbpl ndhH
nirA pacS petH
pgk ppa pphA
ycf48, psbE,F,L,J psbK
purD rfbFGC rfbE
rp119 rp136,rps11,rps13
rpoC1 rpsla rps20
secDF serA sigA
thiC valS ycf23
ycf3 ycf59

40min:
ccmK gapi
cpcA,B,C2,C1,D
natE nblAl
ndhD1 psaC
petF petG
psaL,I psaF,J
psbl psbX
rp121,27 rpsl5
rps4 serS

60min:
hspA psbB

80min:
hisD ycf46
rp124
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Other genes which have been previously identified in our lab and elsewhere as being light-

regulated, such as the allophycocyanin genes apcF (Group 6), apcE (Group8), and apcABC

(Group 3)' are also found grouped with other highly correlated genes. No that these

allophycocyanin genes are all found at time-lag of 20 minutes, while several phycocyanin genes,

such as cpcABC2CID, are found at a later time lag (Table 6-2 - note that cpcCl was filtered

from the original analysis due to low measured expression ratios, but is in fact well-correlated

with the other genes listed). Given that the allophycocyanin units make up the core of the

phycobilisome structure while the phycocyanin genes make up the rod-like projections from this

core (see section 5.1.1.1, especially Figure 5-3), a model of sequential activation seems

plausible. Furthermore, cpcGCI, found at the earliest measured time-lag, links the phycocyanin

rods to the core allopycocyanin proteins of the phycobilisome' 8.

As reported in earlier studies' z°' 9, the sub-units of the carbon-dioxide fixation complex rubisco

(rbcL, rbcS, and the potential chaperone protein rbcX) are shown to be highly correlated, at the

transcriptional level, with light intensity. Other findings, including a homologue of the carbon

dioxide concentration unit ccmK'9 as well as a handful of genes related to metabolism (icd

gap2,etc.) are also catalogued in Table 4-2 and Figure 6-7.

Also interesting is the role of any of the hypothetical genes such as slr0581 and s1r0582 in Group

4, which are in fact inversely correlated to the light intensity. A homology search using BLAST

on these ORFs suggests no strong homologies with known proteins, so assigning functional role

is difficult. However. slr0582 has at least some homology with putative binding factors, and

therefore may play some role in the transcription of genes regulated as a response to light. This

pair of adjacent genes. with operon-like co-expression and a high correlation to light-regulated

genes in Synechocvsis, is worthy of further study.

Since some correlations may be expected by random chance (although for the levels of R chosen

here, the probability of observing such correlations by chance approach one in millions, as

shown in section 6.3. I) a second experiment, with a different input light signal, was conducted to

confirm or contradict the correlations observed in the first experiment.
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6.2 Experiment 2: network validation data

The second experiment was done with a different forcing function in an attempt to maximize the

information content from both experiments (as described in Schmitt et al.20).

6.2.1 Design of experiment
In order to determine how such an experiment should be conducted to ensure it would be

maximally informative, it was necessary to construct a model of transcriptional behavior to allow

for prediction of the validation experiment's results. We predicted the output profiles caused by

a given input light intensity profile for each pair of connected groups in Figure 6-6 using ARX

models as described in section 4.2. See Figure 6-8 for an example model fit for Group 2 from

Figure 6-6. Here an ARX441 model (e.g. 4 prior measurements of the output variable, plus 4

prior measurements of the input variable lagged by I interval are used to predict the next value

of the output variable) model is used for demonstration purposes only.

Figure 6-8: ARX model fit to the average expression profile of Group 2
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In order to decide which ARX models were most appropriate for this study, a method for their

comparison was needed. Goodness of fit is a metric often used to compare models of different

type or complexity. However, calculating the least-squared error (or % of data variance

explained) can be misleading for the data used to train the model, as the number of parameters

used generally improves the goodness of fit. To rank models while considering both the number

of parameters used and the goodness of fit simultaneously, Akaike's information criterion

(AIC)2 122 was employed, as discussed in section 4.2.2.

As a test case, the prediction sum-of-square-error (SSE) and AIC criterion for all possible

models varying in complexity between ARXI11 and ARX663 were calculated for the Group

2/Group 8 pair (shown in Figure 6-6). Figure 6-9 summarizes the results, with the minimum

SSE and AIC value plotted for each model complexity. In general, models with larger numbers

of parameters have improved values of SSE. On the other hand, the AIC criterion shows a

minimum at 12 parameters, in this case corresponding to an ARX221 model. Repeating this

exercise on other pairs of gene clusters within the data set give similar results with similar model

orders (data not shown).
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Figure 6-9: Prediction errors vs. AIC criterion for ARX models

These models were then used to predict the output of new experimental profiles - in this case,

the level of light that the cells were exposed to. In order to choose an "optimal" validation

experiment, our aim was to find a profile which was predicted to create the greatest output

discrepancy between the clusters shown in Figure 6-6 (note that not all of the clusters found in

Figure 6-7 were used, as it was deemed more important to accurately determine primary

interactions than more secondary ones). The metric used to judge this was the square of the

difference between each of the modeled output profiles - that is, the expected difference the

between output variables representing each of the gene clusters.

All possible input profiles were generated subject to the following constraints:

1. the experiment should have a 20 minute sampling interval (to ensure At consistent with

the time interval of the model)

2. the input light intensity should be limited to the three levels used in the original

experiment (to avoid using the model for extrapolation)
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3. changes in the input light signal should not to be perfonned more often than every 2

hours

4. 27 total time points should be included

The third constraint was purely based on observations from earlier experiments, as it can be

difficult to resolve which input signal changes are most directly responsible for which output

features in experiments with more frequent shifts'. The final constraint was imposed by the

resources available for this study.

A summary of sum-squared differences is presented in Figure 6-10. We expect that the profile

which maximized the differences between the groups can be used as a set of optimal

experimental conditions for the follow-up experiment2 °. This optimal profile is shown in Figure

6-10. Other, similar profiles are predicted to give similar between-group differences, but these

profiles are not significantly different (a transition between light levels shifted by one time point,

for example). Contrast this with a minimally informative profile, also shown in Figure 6-10.

Such a profile, with only one state change, is predicted to allow the transcriptional profile of

most genes to reach steady-state (data not shown), limiting the experiment's effectiveness at

validating or disproving the measured correlations from Experiment 13 .

100



Predicted Differences Between Groups

'A - I ?,o1:

a_W,

a

U,
-o0
0
:z

Experimental profile

L*I irti LnTntr * Pro.

Tirma ifml~

Figure 6-10: Group differences predicted by ARX models for a collection of inputs

6.2.2 Experimental details
All experimental procedures were carried out as described in Chapter 5 and elsewhere20.

Processing of samples in this experiment differed from the first only in the way cDNA was

handled. Labeled cDNA samples were further processed with a Qiaquick nucleotide removal kit

(Qiagen) for elimination of unreacted species. Furthermore, instead of EtOH precipitation,

samples were spun-dry in a Vacufuge to increase their concentration (see section 5.3.2.2). In all

cases, the Cy5-labeled sample was taken from a reference pool of RNA extracted from cells in

the identical experimental setup in mid-exponential phase grown at moderate light conditions

continuously from inoculation.

6.2.3 Comparison of testing and validation data
Results of the second experiment for the genes shown in Figure 6-5 are shown in Table 4-2.

Most of the genes match up well between the two experiments, but exceptions could then be

used to "prune" or adjust the network shown in Figure 2. Consider, for example, the cpc genes

found in Group7, which seem to correlate less well in the second experiment. Although the
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correlation is still significant at this level for a time-lag of 2 units (40 minutes), a nearly equal

correlation at a lag of 3 units (60 minutes) has also been observed (data not shown) and further

experiments may be warranted to accurately plot these genes within the networks being drawn.

However, unless exceedingly low correlation is observed, these connections cannot reasonably

be rejected.

Table 6-3: Time-lagged correlation values, experiments 1 and 2

fpg 0.5831 -1 0.4718

pgk 0.7521 -1 0.7304

rpiA 0.6194 -1 0.4247

ss11263 0.7031 -1 0.7185

s111515 -0.7392 -1 -0.8205

ss11911 -0.7832 -1 -0.8907

ssr2078 -0.7062 -1 -0.7272

ssr2227 -0.8571 -1 -0.9117

ssr0692 -0.7791 -1 -0.8701

sir0582 -0.6686 -1 -0.4439

ss10832 -0.7446 -1 -0.9486

ginA 0.7044 -1 0.7902

guaA 0.706 -1 0.6698

gap2 0.8028 -1 0.7914

apcF 0.7222 -1 0.7767

cpcC2 0.6376 -2 0.2069
___!

cpcB 0.7299 -2 0.593

Another comparison can be made by examining the composite transcriptional profiles in a lower-

dimensional space. Data for hundreds of genes can be simplified into a few composite factors

through Principal Components Analysis (PCA). PCA has been discussed by a number of

researchers as a method for systematically reducing the dimensionality of data in an

unsupervised, or data-driven, fashion 3 ' 4 23'24. Although there are a few different ways that this

technique can be applied, we use the method of singular value decomposition (SVD) applied
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sl11213 0.6528 -1 0.6282

0.6954 -1 0.5538

atpD 0.7656 -1 0.6996

atpG 0.7923 -1 0.7986

atpl 0.7174 -1 0.7129

ssr2998 0.7368 -1 0.5498

ycf48 0.6153 -1 0.617

psbF 0.6935 -1 0.7679

psbJ 0.6534 -3 0.4751

s111070 0.7236 -1 0.5628

acp 0.7625 -1 0.734

apcA 0.7081 -1 0.7729

0.7101 -1 0.7686

atpB 0.6959 -1 0.7359

slr1331 0.6175 -1 0.5313

nbpl. 0.7482 -1 0.6761
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directly to the original data. Essentially, SVD decomposes a matrix Xwith dimensions of n rows

by p columns as follows:

X=U T V' 6-5
(nxp) (nxR) (RxR) (Rxp)

where T is a diagonal matrix whose values are the singular values of the matrix X. The singular

values ofX are defined as the square roots of the nonzero eigenvalues of the square matrix X'Xas

well as XX' (where X' is the transpose of X). The columns of U and V contain the eigenvectors of

XX' and YX, respectively. The maximum number of dimensions, R, is determined by the rank of

the matrix X.

The loadings of the genes for each of the Principal Components is given by the column vectors

of the matrix V. The projection of the samples, or the scores of the samples on the principal

components, is given by:

S=X '' 6-6

In this study, only the first two principal components were retained, representing the

eigenvectors of the two largest eigenvalues. Figure 6- 1 shows the projection of all 74 samples

into this two-dimensional space. Because some genes have missing values for some of the time-

points, only genes represented by at least one unfiltered spot for all 74 samples (47 from the first

experiment, 27 from the second) were considered. For these 113 genes, the two largest

components account for approximately 68.7% of the variance information of the total data set.

95% and 99% confidence limits, shown as dashed circles in Figure 6-11, are based on the

assumption that the variance of the 74 samples will follow a "t" distribution along each principal

component. Examination of Figure 6-11 shows that this is obviously not the case - however, the

confidence limits are still useful as a guide- to the differentiation which exists between the

samples.
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Figure 6-11: PCA projection of all 74 samples

Note that the area circled by the dotted line contains all but one of the samples taken under

"dark" conditions (with a time-lag of one). Sample 25A, the one "dark" condition sample not

within this cluster, is one of the 3 points that is most likely to be an outlier (see bottom-left

quadrant of Figure 6-1 1). This unsupervised approach (PCA) shows clearly that results from the

first experiment are consistent at a macro-level with the second experiment, as light and dark

samples are systematically differentiated.

Some further insight can be gained by examining the loadings of the genes (the columns of the

matrix V) in this PCA analysis, as shown in Figure 6-12. Here genes closest to the origin are

least relevant to the position of the samples in Figure 6-11, while the genes farther away are

more important. Note the abundance of genes also included in Figure 6-7, such as psb genes

(psbA2, psbA3, psbB, psbC, psbD, psbD2), psaB, and cpcGl (all in the rightmost two quadrants

of Figure 6-12). Additionally, note the position of slrO581 (discussed in section 6.1.2), one of
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the genes found to be inversely correlated with the input light signal. In Figure 6-12, it is located

in the upper left-hand quadrant, opposite of the positively correlated light induced genes. This is

consistent with the correlation map of Figure 6-7. Because Figure 6-12 represents only a fraction

of the genes measured, not all of the genes in Figure 6-7 are shown. Nevertheless, the existence

of significant loading values for a number of those genes found by time-lagged correlation

analysis gives an independent indicator of their importance.
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Figure 6-12: PCA loadings of all 113 genes used for PCA

The two experiments may also be compared by determining how well the ARX models

developed in section 6.2.1 succeed in predicting the transcriptional profiles found in the second

experiment. This is discussed separately in section 6.3.2 as part of the network validation

studies.
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6.3 Network validation

There are two ways to evaluate the robustness and validity of the network shown in Figure 6-7.

The first is to determine how the parameters and measurements taken affect the networks drawn

- in other words, how do small changes in the parameters or data change the conclusions of the

experiment? Additionally, the data from the second experiment may be compared to the model

predictions generated by analysis of the data from the first experiment. Both types of validation

are discussed here.

6.3.1 Network robustness

In developing the time-lagged correlation algorithm that was used to generate Figure 6-5-through

Figure 6-7, care was taken to consider the impact of the various parameters on the results. If

changing the user-input parameters a slight amount drastically changes the network structure,

then the results are called into question. Furthermore, it is important to have a metric for

understanding the impact of experimental noise or chance observations. All of these issues were

explored in this work.

6.3.1.1 The effect of R value selection

The most important input variable for construction of correlation networks as described here is

the cutoff correlation R that determines the size of the network under consideration. Consider a

shift in cutoff correlation from 0.7, as used in this study, to 0.75, the results of which are shown

in Figure 6-13. Obviously, the number of genes under consideration is reduced from the original

network shown in Figure 6-6, but this sub-set of genes merely indicates the most solid of the

correlations observed in the original network. Furthermore, since there are fewer genes to

consider, many less connections are observed.
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Figure 6-13: First-iteration correlations found with RI Ž 0.75

On the other hand, decreasing the cutoff to 0.65 increases the number of genes included in the

network. The general mapping of these genes compared to the original structure is shown in

Figure 6-14. Arrows have been included in this figure to show the how the members of the gene

clusters are mapped between the original diagram (top right) and the new diagram (bottom left).

Since the cutoff value is lower, more genes are clustered into larger groups. Most important,

however, is the fact that the overall network structure is robust to the change in R value. Thus

the R value chosen offers a tunable parameter to include a greater or fewer number of genes,

depending on the level of detail the researcher wishes to study, while only adding or subtracting

components to the network structure and not changing significantly how they are arranged.
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Figure 6-14: Effect of reduction of cutoff to IRI > 0.65

6.3.1.2 The possibility of correlations by random chance

Because R is the most important tunable parameter in this procedure, it is important to

understand how spurious observations might be introduced at a given value of R. All correlation

calculations are indicators of how improbable it would be to find correlated measurements for

two otherwise independent variables. For Pearson correlations, we expect R to follow a t-

distribution after the following transformation has been applied

NA-2 =
R

( - ':)/(M- 2)
6-7

where N is the number of observations and t 2 indicates a t-distribution with N-2 degrees of

freedom. This metric can be used with standard distribution tables to determine the significance

level of a given correlation (R) value.
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For N = 47 (as in the first experiment), the significance of an R value of 0.7 is nearly 100% - that

is, there is nearly no possibility of finding such a correlation by chance. For commonly available

tables and even Matlab's statistics toolbox, no such probability can even be calculated to default

machine precision. In fact, there is less than a 0.01% chance of finding spurious correlations

with RI > 0.7 for all N > 24.

To better quantify this, 10 million random profiles of size N=50 were generated using Matlab's

"randn" function with seed values set to the computer's clock cycle. Allowing for time-lags of 2

or less (e.g. -2 < t < 2) only 2 profiles were found to have absolute correlation (IRI) values over

0.7. Since this test accounts for 50 million comparisons (5 lags per profile), it is exceptionally

unlikely that any of the correlations found represent chance observations, and even more unlikely

that a network as large as seen in Figure 6-7 could be observed.

One difficulty with this analysis, however, is the distributions of the variables being considered

(i.e., the profiles generated randomly through Matlab) do not necessary approximate actual DNA

microarray data. One way to escape this is by shuffling the columns of the original microarray

data as a control data set. Thus, the means and variances of the data set rows and columns are

preserved, but the dynamic information content is destroyed to a greater or lesser degree,

depending on the shuffling. Using this procedure, each "gene" profile could then be compared to

the original, unshuffled light intensity profile to determine the frequency at which spurious time-

lagged correlations are measured. Note that in this scheme, the correlations within groups will

remain the same, since non-lagged correlation is independent of sample order. Therefore the

important metric to consider is the number of connected groups; that is, the number of clusters of

genes with lagged correlation compared to the input, instead of the number of individual genes

found.

Ten thousand permutations of the original data set were explored in this fashion, as shown in

Figure 6-15. Only nine of the ten thousand permutations exhibited any correlated groups, with

only one example exhibiting more than 20 connections. Compare this histogram with the

number of connections found using the actual data (shown in Figure 6-7), marked with an

asterisk in Figure 6-15. This control also shows that it is exceptionally unlikely that the network

developed in this work is a merely a result of an artifact in the DNA microarray data.
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Figure 6-15: Correlations observed with shuffled time points

6.3.1.3 The impact of noise on network construction

As discussed in section 6.1.1 and shown in Figure 6-1, DNA microarray experiments have some

measurable quantities of noise associated with not only the stochastic nature of the underlying

biological populations25, but also due to variability in the experimental techniques and even the

microarray surface properties. By running control experiments such as those shown in Figure

6-1, a composite estimate for the effect of such errors can be made. For the arrays used in this

study under these experimental conditions, it was determined that any changes greater than 2-

fold control experiments data fell outside of the 95% confidence interval (see section 6.1.1).

In order to understand how this error could affect the network reconstruction effort, random

noise with a normal distribution of similar limits (95% of noise below a factor of 2-fold in

expression level measured) was added to increasingly greater fractions of the original data set.

Consider Figure 6-16, which shows the percentage of genes from the original network that are

retained when gradually increasing percentages of the original network are corrupted by

randomly distributed noise. In the worst case, when all of the data has been corrupted by noise,
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40% of the genes in the original network are retained, showing that noise can have a significant

impact on the correlation calculations even though a core fraction of genes is robust even to

severe data corruption.
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Figure 6-16: Affect of random noise on network identity

However, this figure assumes that network calculations are made at the same R cutoff value (0.7)

used for the original, unadulterated data. Because randomly distributed profiles are expected to

have an R value of zero when compared to any independent profile, adding random noise to the

measurements is expected to reduce the R value which can be measured for even the most

correlated variables. Figure 6-17 shows how a reduction of cutoff R value from 0.7 to 0.6

recovers completely the genes eliminated from the calculations when corrupting noise is added

to 10% of the data. Greater increases in noise level obviously require even greater reductions in

R to make up for the obscuring variability (data not shown).
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Figure 6-17: Reduction in cutoffR value required to compensate for random noise

Of course, any reduction in cutoff R is expected to increase the number of genes considered in

the network (see section 6.3.1 .1 ) and increase the chances that spurious correlations are included.

Nevertheless, the robustness of core relationships in the network even when all of the data is

corrupted by random noise increases our confidence in the derived network structure.

Although there will always be some variability in biological measurements due to molecular

stochasticity, advances in DNA microarray technology promise to drive purely experimental

error to increasingly negligible levels. This will enhance our ability to accurately determine

correlation networks from transcriptional data.

6.3.2 Prediction of new profiles
The data from the second experiment was compared to all ARX models calculated from the

original experimental data - see Table 6-4, The model selected by the AIC criterion for Group

2/8 (ARX221, see Figure 6-9 in section 6.2.1) has the twelfth-best fit to the validation data (of

the 108 models tested) as measured by SSE. An overlay of the SSE values from both the

training and validation data sets is shown with the corresponding AIC predictions in Figure 6-18.
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As predicted by AIC, a model with 12 parameters minimized prediction error, validating the

model order required for accurate simulation of the system.

Table 6-4: Validation of the 20 best ARX models by the AIC criterion
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36.933 -3.2697 30.289 27 2 3 1 14

40.06 -3.2567 25.3088 10 1 2 1 8

39.331 -3.2379 23.9466 7 1 3 1 10
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Figure 6-18: Prediction errors for both data sets vs. AIC criterion

Interestingly, the model with the best predictive capacity was an ARX141 model, which has a

different form than the ARX221 models suggested by AIC, but still represents the same overall

model complexity (e.g. both of these models have 12 parameters). As expected, the models with

the largest number of parameters (ARX66x and ARX65x) do the worst job of fitting the

validation data due to overfit (see Figure 6-18). Also important is that Table 6-4 shows that all

of most accurate models include a time-lag of only one, by either AIC or SSE of the validation

data. This fits the time-lagged correlation data for Groups 2/8 (see Figure 6-7).

Figure 6-19 shows the prediction of the validation data set for Group 2 with the ARX221 model

constructed for both Groups 2 and 8. Figure 6-20 compares both groups' predicted values to the

actual validation data. Note that the distribution in Figure 6-20 is somewhat biomodal despite

the high correlation value. This is because the second experiment essentially measures

transitions between 2 states (dark and moderate light). Similar results are observed for all other

groups (data not shown) and show that models of this order are strong predictors of these groups
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as well. The weakest fit to the validation data was seen for models built for Groups 7/11, which

also have the lowest correlation coefficients with the input signal for the new data (see Table

6-3).
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Figure 6-19: Predicted and validation data for Group 2
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CHAPTER 7 OTHER TOOLS FOR ANALYSIS OF
MICROARRAY DATA

Besides time-series experiments aimed at understanding of transcriptional regulation

phenomenon, there are many applications of high-throughput DNA microarray data for other

purposes. One particularly important example is that of statistically robust distinction between

cells in two or more different states, in order to either diagnose new samples or search for

patterns indicative of the underlying biology differentiating the states. Extensive efforts made

during this work to tackle these problems are discussed in this chapter.

Oligo-nucleotide and cDNA arrays' 2 are being increasingly employed for determining

discriminatory genes and discovering new classes of disease subtypes that are differentiated at

the level of transcription3'4. Data-driven hypotheses are developed from these types of

measurements that suggest, in turn, novel experiments furthering biomedical research.

With the rapid increase of cDNA and oligonucleotide microarray data that has become available

in recent years, the need to develop techniques to answer specific questions within the

framework of massive amounts of information has become acute. The typical approach applied

to these data sets is various types of simple clustering 5 '. While clustering provides a framework

for ordering expression data into groups, these methods do not directly address questions about

the nature of sample differences or how to best categorize new samples. When samples from a

set of distinct populations are considered, methods that specifically target distinguishing

characteristics are preferable.

Differences between samples from different populations, manifested by variation in the

expression levels of individual genes, can be captured by analysis focusing on those genes that

exhibit significant changes in certain samples. This information can be used in class discovery to

hypothesize the existence of distinct phenotypic sub-groups, or can be used for class distinction

to search for biological insight into the genetic rules underlying known phenotypes. This effort

seeks to close the gap between gene expression and physiological state. Of particular interest has

been the distinction of cancers and cancer sub-types3 .6,8.
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A related problem involves the use of microarrays to diagnose samples, such as disease states,

metabolic state, or tissue types. Monitoring the genes identified as important for distinguishing

classes can provide a means for differentiating between diseases or cellular states with similar

physiological profiles but different underlying causes. Effort has been put into the problem of

accurately classifying new samples based on the discriminating genes identified above3 .

This chapter seeks to establish straightforward approaches to both the identification of

discriminating genes and the construction of classifiers based on these genes for identification

purposes. We begin statistical techniques for finding variables with significant information

content about the classification problem at hand. The focus is on techniques that will be robust

even when there is significant overlap between expression levels, including mean hypothesis

testing, Wilks' lambda criterion, and leave-one-out cross validation. Next, likelihood ratio

testing and Fisher discriminant analysis (FDA) are presented as methods of applying gene

expression information to the classification of new samples. Finally, the combination of these

techniques to analyze the statistical robustness of conclusions drawn from DNA microarray data

is discussed. Using power analysis, we suggest how to estimate the number of samples needed

to reach statistically reliable conclusions with DNA microarrays.

7.1 Data sets

Publicly available data sets from outside of this lab have been considered for this study. The first

data set comes from a study of human acute leukemias3. This data is well-suited to study the

distinction between acute myeloid leukemia (AML) and acute lymphoblaslic leukemia (ALL)

and contains 72 total samples (25 AML and 47 ALL). Samples have been hybridized on

Affymetrix chips with 7129 total features, including 6817 human genes. A further division of

ALL samples into 38 B-lineage acute lymphoid leukemia (B-ALL) and 9 T-lineage acute

lymphoid leukemia (T-ALL) was considered in extending the sample determination approach to

the multi-class case of three disease subtypes (B-ALL, T-ALL, and AML). The sample

classification among the three subtypes given in Golub et al.- was also used here, as it was based

on both clinical information and validation through their pattern discovery technique.

The other data set contains 24 tissue samples from the HUGE Index generated on the same type

of Affyrmetrix chips at Steve Gullans' lab at Brigham and Women's Hospital9. The data
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consisted of 24 tissues, composed of 5 brain samples, 4 kidney samples (Kid), 3 vulva samples

(VU), 2 samples each of proliferative endometrium (PE) and myometrium (Myo), and one

sample each of lung, liver, skeletal muscle (Sk Musc), ovary, cervix (CER), placenta (Plac),

spleen, and blood. The brain samples consisted of one each of the amygdala (BR-AG), the

Hippocampus (BR-HC), the caudate putamen (BR-CA), the motor cortex (BR-MOT), and the

level 4 sub-section (BR-L4). This data set therefore provides a challenge very different from the

first set because there are many distinct sub-classes with few samples rather than two or three

with many samples.

7.2 Discovery of interesting variables in known classes

When classes are known in advance it is necessary to consider the entire distributions of data for

known classes rather than their means or maximum/minimum values. A reasonable approach to

this problem has been undertaken by comparing the means of each class with the standard

deviations simultaneously in the definition of a simple correlation metric3. This approach works

well when there are large numbers of samples available for testing, but for small or intermediate

numbers of samples, more robust measures are desirable.

7.2.1 P tests

Golub et al3 proposed a measure P to distinguish between any two disease classes in their data

set. For any gene g, the measure of its ability to distinguish classes I and 2 is calculated as:

(P~(g)-'2(g)) 7-1
ep~g =(o/ (g)+ 2(g))

where ux is the mean and o is the standard deviation of class x9. If class I is taken to be ALL

and class 2 to be AML, then genes with the high positive P values will be characteristically high

in ALL samples, while those with large negative values of P will be characteristically high in

AML samples. In this way, a set of genes specific to both ALL and AML samples will be

uncovered. Examination of the biological characteristics of these "top genes" should then lend

insight into the different workings of the two cancers.
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While this measure makes intuitive sense, as it considers not only the distance between the group

means but also the distributions of the data in the two groups, this measure lacks a solid

statistical basis for evaluating the importance of a given P value. This is because it is unclear

how we might expect the distribution of P values to look for the case where there is no difference

between the groups, and therefore we lack a control scenario as a frame of reference for further

analysis. Furthermore, this measure fails to correct for greater uncertainty that may result from a

small sample size (although some measure of this is built into the calculation of 6i). This being

said, the values of P calculated do not differ significantly in relative importanc: from the other

calculations proposed here.

7.2.2 t-tests

In order to evaluate whether two populations are statistically different in the mean, a 2-tailed t-

test can be employed to compare the population means. If the two sample sets are drawn from

populations Xand Y with means uv and u1y and the same variance o, then in the limit of infinite

samples the difference between the measured means X and Y of the two sets will be normally

distributed

X- 1Y + yc.2(i )1 7-2

where n and m are the number of samples measured fiom the two distributions. Applying a Z-

transformation to this normal distribution reduces it to standard normal

Z= (X- )- (lux -ay) 7-3
II-+-

n m

This Z statistic can be used to determine a confidence interval for the assumption that #x-,uy = 0.

For a given signficance level o chosen by the user,

I m 1(X- Y)- z(a/2)o' < ( X- Y)+ z(a/2)o'- + 7-4
n m n m
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gives the confidence interval for u-,uy. If this interval does not include zero, then we must reject

the null hypothesis that x = ly, and we can conclude that the gene in question has

discriminating power at the confidence level chosen.

This formulation only holds if the sample sizes are large and normally distributed (n, m > 30).

However, large numbers of samples are not available for many applications. For real data with a

small number of samples, the normal distribution should be approximated as Student's t

distribution, which is a function of the number of samples taken (as n - oo, the t distribution

becomes the z distribution). Furthermore, to estimate the population variance a2 the individual

measured variances sx and sy should be combined into the pooled sample variances0

2 (n- )s +(m-l)s7sp = 7-5
P m+n-2

which is an average of the individual variances weighted by their degrees of freedom. This

approximation is useful because truly indistinguishable distributions will indeed have the same

variation and the difference in the group means will follow the t-distribution (alternatively, the

mean hypothesis test formulation of the t-test may be used" ' 2 which allows for approximate

comparison of two populations with different variances. However, we have found little practical

difference between the two and thus discuss only the simpler, more common version in this

discussion). The confidence interval is then re-written as:

(X~- Y)- tm+n 2 (a/2)s,, +- <C(. Y - )<(X )+ tm+,-2 (a/2)sp +- 7-6
n m n m

where values of the t statistic for m-+n-2 degrees of freedom can be readily obtained from tables

in basic statistic texts 3.

As an example of the discovery of discriminating features, the leukemia data presented by Golub

et al.3 was examined to first find genes which discriminate ALL samples from AML samples.

Subsequently, the ALL class was sub-divided in to B-ALL and T-ALL samples and

discriminating genes were again identified (alternatively, each class can be considered

individually. If sub-classes exist in the data, then the user may choose to analyze and remove the

most unique classes in an iterative fashion, or consider each class relative to the whole). At the
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99.99% confidence level using the two-tailed t-test, 96 genes were distinguished as

discriminatory between ALL and AML (data not shown), while 49 genes were identified at that

confidence level as distinguishing T-ALL from B-ALL (see Table 7-1).

Table 7-1: Discriminatory genes for the distinction of T-ALL from B-ALL samples

Gene
X03934 at
U23852_s_at
M23323 s at
M37271 _sat
X69398 at
M12886 at
X00274_at
X76223 s at
X59871 at
U14603 at
X60992_at
M37271 s at
M26692 s at
D63878at
M37815 cdsl at
L05148 at
D30758 at
X04391 at
M12886 at
U93049 at
J03077_s at
M32886 at
U18009 at
X99584 at
J04132 at
HG4128-HT4398 at
U05259 mrnal_at
U59878 at
X69433 at
U90426 at
S78 187 at
L10373 at
X95677 at
U67171 at
X62535 at
X73358 s at
D83920 at
D1 1327 s at
X04145 at
U18422 at
M28826 at
L76200 at
D87292 at
Z50853 at
U50743 at
U01691 s at
U50327 s at
X58529 at

Gene Discription
GB DEF = T-cell antigen receptor gene T3-delta
GB DEF = T-lymphocyte specific protein tyrosine kinase p56ck (Ick) abberant mRNA
T-CELL SURFACE GLYCOPROTEIN CD3 EPSILON CHAIN PRECURSOR
T-CELL ANTIGEN CD7 PRECURSOR
CD47 CD47 antigen (Rh-related antigen, integnn-associated signal transducer)
TCRB T-cell receptor. beta cluster
HLA CLASS 11 HISTOCOMPATIBILITY ANTIGEN, DR ALPHA CHAIN PRECURSOR
GB DEF = MAL gene exon 4
TCF7 Transcription factor 7 (T-cell specific)
Protein tyrosine phosphatase PTPCAAX2 (hPTPCAAX2) mRNA
T-CELL DIFFERENTIATION ANTIGEN CD6 PRECURSOR
T-CELL ANTIGEN CD7 PRECURSOR
GB DEF = Lymphocyte-specific protein tyrosine kinase (LCK) gene, exon 1, and downstream promoter region
PROBABLE PROTEIN DISUJLFIDE ISOMERASE ER-60 PRECURSOR
CD28 gene (glycoprotein CD28) extracted from Human T-cell membrane giycoprotein CD28 mRNA
Protein tyrosine kinase related mRNA sequence
KIAA0050 gene
CD5 CD5 antigen (p56-62)
TCRB T-cel! receptor, beta cluster
GB DEF = SLP-76 associated protein mRNA
PSAP Sulfated glycoprotein I
SRI Sorcin
Chromosome 17q21 mRNA clone LFI 13
SMT3A protein
CD3Z CD3Z antigen. zeta polypeptide (TiT3 complex)
Anion Exchanger 3. Cardiac Isoform
MB-I gene
Low-Mr GTP-binding protein (RAB32) mRNA, partial cds
IDH2 Isocitrate dehydrogenase 2 (NADP+), mitochondrial
Nuclear RNA helicase
M-PHASE INDUCER PHOSPHATASE 2
MXS I Membrane component, X chromosome, surface marker I
GB DEF = ArgBPIB protein
GB DEF = Selenoprotein W (selW) mRNA
DAGKI Diacylglycerol kinase, alpha (80kD)
HAES-I mRNA
FCNI Ficolin (collagen/fibrinogen domain-containing) 1
PTPN7 Protein tyrosine phosphatase, non-receptor type 7
CD3G CD3G antigen, gamma polypeptide (TiT3 complex)
DP2 (Humdp2) mRNA
CDI B CDI b antigen (thymocyte antigen)
Guanylate kinase (GUKI) mRNA
Rhodanese
CLPP
Na,K-ATPase gamma subunit mRNA
Annexin V (ANX5) gene. 5'-untranslated region
Protein kinase C substrate 80K-H gene (PRKCSH)
IGHM Immunoglobulin mu

In this case there are only 11 AML samples, 8 T-ALL samples, and 19 B-ALL samples under

consideration. Because of the relatively small number of samples (n < 30 within each class) in
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this case it is important to consider the uncertainty in measurement due to sample size. The use

of the t-test to compare the two sample means is thus perfectly suited to this consideration.

Another example is that of comparison of tissue samples. The 24 tissue samples from the HUGE

Index generated at Steve Gullans' lab at Brigham and Women's Hospital9 were separated into

two categories: brain and non-brain. Even though the five brain samples ae from a variety of

regions within the brain, we expect some sub-set of the genes to have "brain-specific"

characteristics, with a corresponding distribution of relative inactively in all other samples.

Using a confidence interval of 99.99% we found 386 genes were expressed in a discriminatory

manner between the two classes (data not shown). Use of even more stringent criteria, or the

addition of new samples from both the brain and from other regions of the body to help resolve

the shape of the distributions, can help to narrow the list of genes with interesting functions that

seem specific to the brain.

7.2.3 Wilks' lambda

Parametric tests such as the P-value test and the t-test are based on differences of group means

and variance calculations, and these tests may perform poorly if their underlying assumption are

violated. Such assumptions include as normality (for high N) and equal variance in the various

groups (even in the fonnrm of pooled sample variance sp2, which is a combination of two

variances). A non-parametric test (such a Mann-Whitney test) does not rely on these

assumptions and works well with a small sample size, but the results may be more critically

sensitive on the nature of the samples used for the training of the classifier than those in

parametric tests. No method is unanimously optimal for all kinds of data. Selection of a method

for application to a certain data set should depend on the characteristics of the data, the degree of

violation of the underlying assumptions, and the sample size. Our experience leads us to a well-

characterized alternative measure, called Wilks' lambda score '0.14 to assess discriminatory

powers of the individual genes. Wilks' lambda, which originated from ANOVA, is not limited

only to two-class comparisons but can also be used for multi-class distributions. It produces

more robust test results than multiple two-class comparisons using t-test because the Wilks'

lambda is based on total group variance calculations instead of differences between individual

group means.
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Genes whose expression distribution has high between-group variance (the groups are well-

separated) and small within-group variance (the samples inside each group are relatively similar)

are deemed to be discriminatory for the sample classes' 0 '5. The between-group variance (B,) of

the expression of a certain gene i is proportional to the sum of the differences between group

means of expression levels. The within-group variance of the expression of gene i (W,) is the sum

of group variances of the expression levels of the gene in a single class. Given the total variance

of expression levels of gene i, 7; = (x, - I, )(x, -Ix, ), the within- and the between-group

variances are shown in Figure 7-1 and defined respectively as follows

C C

= w' =Z(x - )'(xj-1' )
J=l J=l
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Figure 7-1: Theoretical discriminatory and non-discriminatory gene distributions
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The vector, x (Nxl), contains the expression level of gene i in N samples and x, is the mean

expression of gene i in all N samples. The superscriptj represents classj among the c classes. For

the two genes shown schematically in Figure 7-1, Gene 1 has a large between-group variance

and a small within-group variance while Gene 2 has a small between-group variance

(overlapping distributions across the classes) and a large within-group variance. For Gene 1, the

large ratio of the between-group variance to within-group variance indicates a gene with a

discriminatory expression pattern. Without loss of information, the above procedure is

implemented through a statistical test based on Wilks' lambda (A,) that allows one to establish a

formal boundary between discriminatory genes and non-discriminatory genes:

A, = 7-9
T,

In order to compare the Wilks' lambda (A,) score to a distribution with known parameters, it is

transformed to the F distribution as follows'0 '6:

F, (I-A,)(N-c) F 7-10
A, (c- I) a _ -I.)

where N is the total number of samples and c is the number of classes. In this formnn,

discriminatory genes are selected by applying a statistical cutoff determined from the F

distribution using some level of significance (in this case a=0.01). Note that a high F value

signifies a more discriminatory gene relative to one with a low F value.

7.2.4 Cross-validation
As all of the methods presented are parametric, they might produce a high false positive error

due to violation of the underlying assumptions, particularly normality. 'This is especially true for

genes that have only a small difference in their expressions between groups. In order to improve

the false-positive rate, we can incorporate an error rate calculation through a leave-one-out cross-

validation (LOOCV)10.'7 procedure into the discriminatory gene analysis. In this procedure, a

series of many LOOCVs are performed to get a good error estimate. The first step in this

iterative procedure consists of randomly dividing the data set being considered into c test
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samples (i.e. one test sample for each class) and N-c training samples. The training samples are

used to generate an initial set of discriminatory genes using any of the gene selection methods

presented (we will use Wilks' lambda score/F statistic values tor examples given here). Using

the gene with highest discriminatory score, a classifier (see section 7.3) is constructed and the

error rate calculated for the c test samples. A second classifier is then constructed using the top

two discriminating genes, which is again applied to the test samples. The number of genes

included in the classifier is thus sequentially increased to form more complex classifiers until all

genes selected by one of the parametric methods have been included. At each step, the number

of misclassified samples is determined for calculation of the misclassification error rate (see next

paragraph). A new division of the samples into training and test sets is then considered, and the

procedure is repeated.

Figure 7-2 provides a schematic of the leave-one-out cross-validation algorithm for error rate

estimation. Each LOOCV first splits the data set into randomly selected sets of N-c training and

c test sets. Then, discriminatory genes are selected on the basis of their Wilks' lambda score.

The number of genes included in the classifier is increased by one in order of decreasing

magnitude of their F value from Wilks' lambda. The number of misclassified c test samples is

counted as a function of the number of genes. The above procedure is repeated g times for

different randomly selected training and test sets. The average error rates calculated by

e(p)=m,/(cxg) are then plotted vs. the number of genes included in the classifier and the

discriminatory genes are selected based on the number of times they are identified as

"discriminatory" in all the iterations (see section 7.4.3 for examples).
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Decide the number of iterations
I /

Store the error rates vs the number of genes used
for classifiers in the given training and test set

I

All combinations of tes
training sets iterations

No
Yes

Calculate the average error rates for
the number of genes used for classification

and plot the averaged error rates vs
the number of genes

I 
Find the number of genes with disease
information content at the asymptotic

point in the plot (k)
Sort all genes based on the frequency the

Sort all genes based on the frequency they
are identified as "discriminatory" in g

iterations and then determine the final set
of k discriminatory genes, the first k genes

sorted by the frequencies

Figure 7-2: Cross-validation scheme for selection of genes

For the estimation of error rates, the entire LOOCV procedure is repeated g times using diSferent

test and training sets, until all samples have been withheld in the test set at least once. If we

denote by in,, the number of misclassified samples in the g cross-validations for a given number

of discriminatory genes (p) used in the classifiers, the averaged error rate is given by e(p) =

rnI(cxg). Then, the error rates from the g cross-validation iterations can be computed as

function of the number of discriminatory genes. Using the error rate curve, the number of

discriminatory genes can be determined at the point where the averaged error rates show an

asymptotic behavior (see Figures in section 7.4). Then, a final set of discriminatory genes is

determined based on the frequencies by which they appeared as discriminatory genes during the

g LOOCVs. The final list of genes is generally shorter than the original list of discriminatory

genes selected by parametric tests, thus enabling us to reduce the false positive error by

identifying a small set of genes robust to sample variation. If a gene with small expression

difference between the two classes of samples shows up consistently in the LOOCV procedure, it

indicates that the observed difference, even though small, is statistically reliable.
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Other methods have also introduced to reduce false positives in identifying discriminatory

genes'8 1' 9 and may be used instead of LOOCV for any given application, at the user's discretion.

Indeed, such methods may be required for some data sets, if the presence of one or more

particularly poor samples (that is, obvious outliers) causes LOOCV to give inconsistent

conclusions. For the data sets discussed here however, LOOCV has proven to give consistently

robust results.

7.3 Classification of samples

The use of microarray data to diagnose the state of a cell population assumes that the

transcriptional activity of all genes may provide more insight into the distinction between disease

states than could be uncovered through other diagnostic tools alone. Because some genes may

be more informative for classification than others for a certain sample, earlier authors have

adopted a voting scheme for diagnosing new samples3. In this method, each gene's expression

level suggests one of the two classes, and that gene's vote is weighted by how much "closer" the

expression level is to one class than the other. If possible, it is desirable to have a set of

classifiers which are optimum relative to some statistical criteria. These classifiers should

consider many variables simultaneously and assign automatically the importance of each gene's

expression level depending on the sample.

7.3.1 Likelihood ratio tests as classifiers

One such "optimum" test exists in the form of the likelihood ratio testl3 . According to the

Neyman-Pearson Lemma, no comparison of two hypotheses "null (0)" and "alternative (A)"

(e.g., a sample is cancerous vs. that it is not) has a higher significance value (lower probability of

misclassification) than the ratio

f,(x) = p(7- 0)
fA(x) p(x A)

where p(xl0) is the probability of observing x if the null hypothesis is true, and p(xlA) is the

probability of observing x if the alternative is true. If this ratio is large, then the null hypothesis

is accepted, and if small it must be rejected.
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If there are many variables to be considered independently, then the probability can be re-written

as

f 0 (X) p(XIO)p(x 2 IO) ...p(xN 10) 7-12
fA(x) p(x, I A)p(x 2 I A)... p(xN I A)

A difficulty in the use of this formulation for microarray data is the assumption of independence

between the genes. Presumably, there is significant interaction between genes; however, we

adapt the same convention as other authors3 by assuming that the expression level of each gene

can be considered independently of the other genes.

For ease of interpretation, we take the log of this ratio

log log ) logX2 ) + ... log P(Xv 10) 7-13
fA(X) P(XI A) p(x, I A)xA p(XN I A)

Thus large positive numbers indicate hypothesis 0, while large negative numbers favor

hypothesis A.

7.3.1.1 T-distributions/assumptions

In order to calculate the probability that the sample came from either of the classes being

considered, we can compare the sample expression level to the known data using the single-

tailed t-test. As with the two-tailed t-test, the statistic is set up to deal with distributions that

approximate normal as the number of samples becomes large. Instead of comparing two

distributions, however, in this case we compare a value to a distribution it "could" have been

sampled from

Sample Value = X ± t(a / 2)s 7-14

By finding the significance value "a" which solves this equation we have a measure of the

confidence that the sample value could be observed from a process with the same distribution as

the data X.
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Consider, for example, the idealized distributions shown in Figure 7-3 compared to the

distribution for an actual gene X95735 (Zyxin) from the Leukemia case study (Figure 7-4).

Because the distribution of AML samples is much larger than that of the ALL samples, the ratio

of t-test significance levels will reflect the wide distribution of AML expression levels for this

gene relative to the narrow distribution of ALL expression.

t.=2Q
Q)

U i d V UL T.

Expression Level

Figure 7-3: Idealized, normal gene distribution, 2 classes
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Figure 7-4: Expression distribution for gene X95735 (Zyxin)

As a practical matter, it is useful to fix an upper and lower limit on the ratio of sco,es, because

computer rounding of values close zero can give log ratios of +±o. By selecting a cutoff (for

example, probabilities greater than 99% or 1% are reduced to these "maximum" values) this

problem can be avoided.

7.3.1.2 Leukemia example

To demonstrate the use of log mean ratio scoring, the 96 genes identified through t-tests to

discriminate AML from ALL leukemia samples were used with the 38 training samples to give

96 pairs of distributions. These were then used to calculate log ratios for those 96 genes in each

of the 34 training samples from Golub et al.3 The results are shown in Figure 7-5. Each line

represents the cumulative score for an AML (dark) or ALL (light) sample, with the final score

for each sample represented by a circle at the right side of the diagram. The gray box shows the

region within which some of the samples have ambiguous classification - the region between the

lowest-scoring AML sample and the highest-scoring ALL sample. In this figure the impact of

each gene on the overall score is shown, ranked from most informative genes (scoring ratios with

high absolute value) to the least informative (values close to zero). Because of this ranking, the
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order in which the genes are plotted is different for each sample, depending on which genes

contributed most to the overall score.

150
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Number of Genes Considered

Figure 7-5: Discrimination of leukemia samples with log likelihood scoring

This example shows that the classification through the log ratio testing of probabilities gives not

only effective classification, but also an ordering for confidence in the results. Those samples at

the extreme of the chart are mostly clearly classified. As is shown in earlier studies3,

classification can be achieved successfully in all cases that deviate significantly from a

"uncertainty region" as chosen by the user. If this region is chosen to be large, there will be

large amounts of type 2 (missed detection) error while an exceedingly small region will cause an

abundance of type I (incorrect detection) error. In this study no misclassification occurs for

samples outside of a reasonably tight region: that is, strongly scoring samples are 100% correctly

identified while weakly scoring samples may include only 2 misdiagnosed samples (i.e., one

AML classified as ALL and vice-versa) if only type I error is accepted and no uncertainty region

is selected.
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7.3.1.3 Brain example

As a final example, we used the data from the HUGE index to classify 4 additional samples

collected from the Gullans laboratory (see section 7.1) as "brain" or "other". If enough samples

of any given tissue type exist, it should be possible to test new samples against each of the

known classes to see if that sample can be classified. For simplicity, the 50 most discriminatory

genes selected by comparing brain samples against the remainder of the population (section

7.2.2) were used for the classification. See Figure 7-6: the classifier clearly separates the new

brain sample from the othertissues.

CI t.
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Light Line: E3an

DaFrk lI ns Kidney,
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t i

I J 5 I .23 25 30 ) i

Number of Genes Considered
40 4* 5t

Figure 7-6: Discrimination of tissue samples with log likelihood scoring

Applications for such a classifier, besides diagnosis of disease states, may include identification

of the homogeneity of samples from patients. For example, if good samples can be collected for

sub-sections of a given tissue (for example, regions of the brain or kidneys) then new samples

can be tested to observe if they contain more of one sub-set or another, or if they are a more even

blend of multiple regions.
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7.3.2 Multi-dimensional discriminant analysis
Fisher Discriminant Analysis (FDA) is a linear method of dimensionality reduction from the

expression space comprised of all selected discriminatory genes to just a few dimensions where

the separation of sample classes is maximized. FDLA is similar to Principal Component Analysis

(PCA)20-22 in the linear reduction of data'0"' 4. The major difference is that the discriminant axes

of the FDA space are selected such as to maximize class separation in the reduced FDA space,

instead of variability as in the case of PCA. The discriminant axes of FDA, termed as

discriminant weights (), which maximize the separation of sample classes in their projection

space can be shown to be equivalent to the eigenvectors of W'B, the ratio of between-group

variance (B) to within-group variance (W):

W-'BV = VA 7-15

where B=T-W, W= (X, - ')(x, - ), T=(X- T)r (X - I ), and c is the number
J=I

of classes being considered. The eigenvalues (A) indicate the discrimination power for the

corresponding discriminant axes. Further details of FDA and its application in classification of

microarray data are described in Stephanopoulos et al..

Figure 7-7 and Figure 7-8 show the projection through each vector of weights ', into a new

dimensional space y, of the expression data in the 2-class (AML and AML) or the 3-class (B-

ALL, T.ALL and AML), respectively. In general, c-I dimensions may be used for classification

using this method. Note that for the 2-class case in Figure 7-7, only one discriminating

dimension is possible, so data is plotted with yl representing both axes. For 3 classes, as in

Figure 7-8, up to 2 dimensions may be used (hence yl vs. y2) although dimension y alone has

some classification power.
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Figure 7-7: 2-class discrimination of leukemia samples using FDA
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Figure 7-8: 3-class discrimination of leukemia samples using FDA
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A classification rule can be built in this FDA space. A new sample is projected into the FDA

space using the discriminant weights (). Then, the new sample will be assigned to the

predefined class whose mean is closest to the projection of the new sample'4: a new sample (x)

will be allocated to classj if

If -Y 112 = IIl(- X, )v12 <I II(- Xk )vl2 for all k •j 7-16

where y is a projection of the new sample into the discriminant axes (V). See Figure 7-9 for a

graphical representation of the decision boundaries implied by this rule, where the solid circles

represent the means of each class in the reduced dimensional space.
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Figure 7-9: 3-class discrimination boundaries for leukemia samples using FDA

It has been shown' 4 that FDA is an optimal classification procedure in the sense of

misclassification error rate under two assumptions: 1) multivariate normality of the p

discriminatory genes, and 2) equal pxp covariance matrices for each of the c classes. Violation of

the assumptions affects several aspects of FDA. For instance, with unequal covariance matrices,
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a quadratic classification rule in the FDA projection space performs better than the linear

classification rule shown here. Agreement between the quadratic rule and the linear one will

decline as the sample sizes decreases, the differences in class covariance matrices increase, the

class means become closer, or the number of discriminatory genes increases. In this case study,

we employed the linear FDA classifier for simplicity and applicability to the current study.

However, we tried to minimize the effect of violations of the assumptions: false positives have

been minimized by 2-step selection of a small sub-set of genes (Wilks' lambda as in section 7.2.3

followed by LOOCV as in 7.2.4), and we ensured sufficient mean difference among classes

using power analysis (see section 7.4). Other classifiers have also been introduced which can be

applied to various microarray data'5'2 3, and in general these may be substituted for the FDA

classifier for application to other data, at the user's discretion.

7.4 Statistical robustness

There are certain issues of statistical reliability that need to be addressed in the implementation

of array technologies. Microarray data are typically subjected to analyses such as hypothesis

testing, classification, clustering, and network modeling that rely on statistical parameters in

order to draw conclusions3'4 '8. However, these parameters cannot be reliably estimated with only

a small number of array samples and poor sample distributions of gene expression levels. Since

the statistical reliability of conclusions largely depends on the accuracy of the parameters used, a

certain minimum number of arrays is required to ensure confidence in the sample distribution

and accurate parameter values.

This section is concerned with the determination of the minimum number of gene expression

arrays required to ensure statistical reliability in disease classification and identification of

distinguishing expression patterns. This is an important issue considering the scarcity of tissue

samples that can be used for transcriptional profiling and the fact that microarray measurements

are rather costly in terms of time and reagents required. As a result, there is a tendency to carry

out only a small number of microarray measurements that in many cases are inadequate for the

intended purpose. Conclusions based on an inadequate number of arrays will not be statistically

sound.
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The method proposed here first identifies differentially expressed genes across disease subtypes,

hereafter called discriminatory genes, using Wilks' lambda score4 1'0 '14 (see section 7.2.3) and

leave one out cross-validation (LOOCV)' 7 (see section 7.2.4). Then, Fisher Discriminant

Analysis (FDA)4 '0 24 (see section 7.3.2) is invoked to define linear combinations of these

discriminatory genes that form a lower dimensional discrimination space where disease subtypes

(classes) are maximally separated. Finally, the minimum number of array samples necessary is

estimated to ensure satisfactory separation of the linear cormbinations (i.e. the projections) of the

discriminatory genes in this lower-dimensional discrimination space. It should be noted that the

minimum number of array samples is estimated only in the reduced dimensional space, and

therefore the composite expressions of the genes are well characterized and not necessarily the

individual genes themselves.

7.4.1 Power analysis
Determining the number of microarray samples has been presented as an important issue

previously2 526 and is one of the first things to be considered when attempting classification of

samples through microarrays. We present power analysis for determination of the minimum

sample size required for accurate classification. Instead of using individual genes, we used the c-

1 dimensional FDA projections (y in Figure 7-7 through Figure 7-9) in our analysis, because the

FDA classification is based on those projection variables. Then, we validated the estimated

minimum sample size by testing the entire methodology presented in this section: selecting

discriminatory genes, building a FDA classifier, and finally calculating the actual power through

power analysis.

Power analysis27 ' 29 has been used in many applications and is based on two measures of

statistical reliability in the hypothesis test, confidence level (1-a) and power (1-13). The test

compares the null hypothesis (Ho) that the means of classes are the same against the alternative

hypothesis (HI) that the means of classes are not same. While the confidence level of a test is the

probability of accepting the null hypothesis, when the means of classes are in fact same, the

power of a test is the probability of accepting the alternative hypothesis, when the means of

classes are in fact different30. Alternatively, the type I error (false positives, a) is the probability

of accepting the alternative hypothesis, when the means of classes are in fact the same, while the
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type II error (false negatives, ) is the probability of accepting the null hypothesis, when the

means of classes are in fact different30 . The estimation of the sample size in power analysis is

done in such a way that the two statistical reliability measures, the confidence and the power, in

the hypothesis test are required to meet or exceed predefined values. Typical analyses may

require as 95% confidence and 95% power, for example.

The confidence level and the power are calculated from the distributions of the null hypothesis

(Ho) and the alternative hypothesis (H1). Defining these distributions depends on the statistical

measure being used in the hypothesis test. In the case of two-class distinction with a one-

dimensional FDA projection, the normalized mean difference follows the t distribution in the

FDA space. As discussed in section 7.2.2, the t statistical measure for the hypothesis test is

defined as2 7 29

H0 :u, =/ 2 and H : t4 7-17

t= (Y,-Y2) 7-18
Sp l/n, + 1/n2

where, in this instance, , and y, are the actual mean and the sample mean of the one-

dimensional projection variable (yi) in class i. Sp is the pooled standard deviation of the projected

samples of the two classes, ni is the number of samples in class i, N is the total number of

samples, and N-2 is the degrees of freedom for the t distribution.

While the distribution of Ho with all classes having the same mean is defined as a central

distribution, the distribution of HI with all classes having different means is non-central. The

effect size () is a critical mean difference that can be considered important enough to warrant

attention, and should be set before power analysis is conducted. Power analysis estimates the

minimum sample size to ensure the power in the test for the effect size. The non-central

distribution H1 is defined by the non-centrality parameter (A), which is defined by the effect size

(see below). For the case of two-class distinction, the effect size () is the critical mean

difference normalized by the pooled standard deviation (S,). Thus, the distributions of Ho and l-H.

are defined as follows.
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(Y-1- -_7-19Ho : t - 1nI+ 1/n2 t(N- 2) 7-19

H:t= (-l = 22 7-20
SP /n1 +1/n 2 l/n2

with A, - ( Y -Y2),,, 7-21
SP

The confidence level and the power are calculated using the defined distributions of Ho and HI

for a given sample size and an initial guess for the effect size determined on the basis of

engineering judgement or prior knowledge of the system. The critical value of the inverse t

distribution at the probability of 1-a/2, shown by the dotted line in Figure 7-10, is first identified

for the distribution of Ho (here, a = 0.05 to give a 95% confidence level). For this confidence

level, the power is determined from the distribution of H1 in the region from this critical t value

to positive infinity (indicated in Figure 7-10 by the area under the HI distribution after the critical

value). If the power calculated is below the predefined value 1-j3 (here, 95%), the sample size is

increased until the power reaches this threshold. Figure 7-10 shows the confidence level, power,

type I error and type II error in the distributions of Ho and HI defined by the determined sample

size. The sample size estimated from this power analysis is the total number of samples, so that

the number of samples required in each class is obtained by dividing the total sample size by the

number of classes (c). This assumes that the standard deviation matrix is approximately similar

for each class, implying that equal numbers of samples are needed for each class. For the case

of 2-class distinction in leukemia samples (AML vs. ALL) the number of samples suggested by

this analysis is shown in Figure 7-11 (see sections 7.4.2 and 7.4.3 for application specifics).
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Figure 7-11: Sample size determination for 2-class distinction (AML/ALL)
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In the case of distinguishing c > 2 classes, instead of the t statistic, the F statistic measure derived

from Pillai's Vis used for the estimation of the sample size31. Pillai's Vis the trace of the matrix

defined by the ratio of between-group variance (B) to total variance (T), and is a statistical

measure often used in multivariate analysis of variance (MANOVA)' 6 31.

V.=trace(BT-')=_ E - 7-22
i=1 +&

where i is the i eigenvalue of W'B and h is the number of factors being considered in

MANOVA, defined by h=c-l. When W and B are computed, the c-1 dimensional FDA

projections are used, because they are the test variables for this analysis. A high Pillai's V means

a high amount of separation between the samples of classes, with the between-group variance

being relatively large compared to the total variance. The hypothesis test can be designed as

shown below using the F statistic transformed from Philai's 0,2.

Ho :ul = u2 =... = ', and H : i -, 0 3 i,j 7-23

= (V/s)/[s( h) -p+ F[ph,s(N-c -p +s)] 7-24
F (I -V/s)/[s(N-c- p+s)]

H -sV/[s(- p + s)] F[ph,s(N-c-p + s),A = sAN] 7-25
(I - Vs)[s(N - c - p + s)]

with Ae = Vc, 7-26

where p and c are the number of variables and the number of classes, respectively. s is defined by

min(p,h). The confidence level and the power can be calculated using these defined distributions

of Ho and HI for a given sample size and an effect size. The same procedure used in the case of

two-class distinction is used here to estimate the minimum sample size for statistical reliability

whereby the sample size is increased until the calculated power reaches the predefined threshold

value of 1-1 (95% for the cases shown here). Figure 7-12 shows the distributions of Ho and H1

for the case of leukemia samples from three classes, and Figure 7-13 shows the resulting sample

size needed for power of 95% (see sections 7.4.2 and 7.4.3 for application specifics).
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Figure 7-13: Sample size determination for 3-class distinction (AML/B-/T-ALL)
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The above approach is applicable only to FDA projection variables and not to the expression

data from a large number of individual genes, because the denominator in the F statistic above,

which generally has a positive value, may become negative due to the large number of genes (p)

typical in microarray experiments. PCA can be used to reduce the number of variables (p) to

resolve such a problem. There is, however, a limitation that the number of PCs (p) cannot be

larger than N-c+s=N-I and in most array cases the maximum number of PCs (p=N-c+s) does not

capture enough discriminating characteristics among the classes. Thus, we use only the

projections through FDA in our analysis. This analysis may produce a misleading sample size

estimate when the real gene expression data are not consistent with the assumptions underlying

the statistics used in power analysis (i.e. normality and equal variance). To check the effect of

possible violations of the assumptions on the estimated sample size, the actual power and mean

differences between classes are compared to the pre-defined values (see section 7.4.3 for

examples). The actual values in both cases studied were sufficiently large that we need not be

worried about the impact of data which does not perfectly match the normality or equal variance

assumptions.

7.4.2 Algorithm

See Figure 7-14 for a schematic representation of the power analysis algorithm. It is first

necessary that the type I and type II errors, an initial sample size, and a reasonable effect size are

selected for the initiation of the algorithm. Then, after the test is designed in terms of the null

hypothesis, the alternative hypothesis, and an appropriate statistic measure (t-test or F test), the

distributions of Ho and HI are determined using the degrees of freedom and the non-centrality

parameter as described above. Next, the inverse of the F distribution at the value of I-a in the

probability distribution is identified and the power is calculated using the distribution of H1. If

the calculated power is less than the predefined power, 1-, then the sample size is increased and

the power is recalculated using the same a, 13, and effect size but a new sample size until it

reaches the preset power value. Following determination of the number of samples from power

analysis, the actual effect size and power are computed and their values compared to the initial

guesses. The actual effect size and power should be larger than those used/calculated in the

original analysis so as to not underestimate the sample size.
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Figure 7-14: Power analysis scheme for determination of sample size

7.4.3 Implementation and results
Power analysis was applied to two-class distinction between ALL and AML subtypes of

leukemia. The null hypothesis (Ho) was that the two group means (i.e. the group averages in the

FDA space) were the same, with the alternative hypothesis (Hi) that the two group means were

not the same. The mean difference normalized by the pooled standard deviation was used as the

t statistic measure. The effect size was preset to 2, which corresponds to a mean difference 2

times larger than the pooled standard deviation and the predefined confidence and power were

set to 95% (equivalent to o=0.05 and 13=0.05). Figure 7-11 shows the dependence of the power

calculated from the Hi distribution on the sample size. 8 samples from each class (16 total) are

required for the FDA projection to establish a sufficient base for the H1 to be accepted. This

indicates that with these 8 samples from each class, there is a large enough mean difference

147

Two Classes 

Ho : U6 = 2, H : 16

t=
Sp,,/ln, + l/n

I~~~~~~~~~

Ho -t(N-2)

H f, -(N-2 a Ho - F[pks(N-c+p+s)]
H, -t(N-2;) =/n, /n J H-F[ph, SN-c+p+s),A= s N]H ( ___ _ H I

m

-



between ALL and AML so that an accurate classifier can be constructed in the FDA projection

space with statistical reliability.

In order to validate this minimum sample size, the proposed procedures for discriminatory gene

selection and FDA classification were applied to 8 randomly chosen samples from each class and

then the actual effect size and the actual power were calculated. The procedure of discriminatory

gene selection through Wilks' lambda (section 7.2.3) and LOOCV (section 7.2.4) was used to

identify the 50 most discriminatory genes (Figure 7-15). This final list of 50 genes is shorter

than the 388 discriminatory genes obtained by using a simple Wilks' lambda score, thus enabling

us to reduce the errors due to false positives. Then, using the 50 discriminatory genes, FDA

classification was performed (as shown in Figure 7-7). In the FDA projection space, the actual

normalized sampled mean difference was computed to be equal to 7.2453. This is more than

three times larger than the effect size used for power analysis, confirming that the effect size

chosen was reasonable enough not to underestimate the sample size. There are two potential

sources of the difference between the sampled mean difference and the effect size: 1) only the

most discriminatory genes were selected with a stringent level of significance in Wilks' lambda

and by the LOOCV, and 2) the FDA further screens out the maximal discriminating information

from the most discriminatory genes. The actual confidence and power were also close to 100%.
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Figure 7-15: Cross-validation results for gene selection, AML/ALL classification

As a multi-class case study, the distinction of three subtypes, B-ALL, T-ALL, and AML was

considered. The null hypothesis Ho is that the three group means are same, while the alternative

H1 is that at least one of the group means is different from the rest. The F statistic measure was

used for power analysis and the effect size was chosen to be 0.538. This effect size is equivalent

to 0.7 critical Pillai's V for three classes, meaning that the between-group variance is 0.7 of the

total variance. The predefined confidence and power were set to be 95%, equivalent to a=0.05

and 0=0.05. The minimum sample size was computed to be 7 samples from each class from the

power curve shown in Figure 7-13. The distributions of Ho and HI are shown in Figure 7-12.

After the gene selection procedure was applied to seven randomly selected samples from each

class, the final set of 80 discriminatory genes was identified (data not shown, but analogous to

Figure 7-15). With those genes, the FDA was performed as shown in Figure 7-16. In the FDA

space, the actual measure of effect size defined by V/(s-V) was computed to be 1.7552, which is

about three times larger than the one used for power analysis for the same reasons given in the

previous case. The actual confidence and power were also close to 100%.
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Figure 7-16: FDA results for sample-size testing, AML/B-/T-ALL classification

7.4.4 Reliability discussion and conclusions
This study addressed the issue of statistical reliability for the classification of disease subtypes on

the basis of the sample size. The appropriate statistical measures have been defined for two-class

and multi-class problems, and these statistics have been applied in a power-analysis framework

to determine the minimal sample size based on the distributions of the statistic measures. This

framework has a been applied in earlier studies33 for determining the minimum number of

subjects required in clinical trial studies, when a new drug is discovered and its efficacy is being

evaluated. In this case, the minimal sample size determined from power analysis is used ensure

statistical reliability of an efficacy measure.

This reliability issue can also be central in other applications involving any statistical analysis,

with this study giving only one example. For instance, correlations between genes are often

considered in microarray studies in the search for co-regulated genes, an example of which is a

central focus of this work (Chapter 4 and Chapter 6). A small number of samples will result in

unreliable correlation coefficients, so when additional samples are included, the estimated
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correlation coefficients will show a high degree of variability. Thus, the appropriate sample size

can be determined by power analysis to ensure that the distribution of correlation coefficients is

reliable. Another application is the construction of a regression model using gene expression

data to estimate the level of an important cellular variable. For instance, gene expression

regression models of urea level in liver tissues should also be supplemented by power analysis to

determine the sample size for the model to have statistically reliable regression parameters.

Although the range of uses is broad, the appropriate statistical measures and their distributions

should be carefully chosen in these sorts of applications.

Power analysis determines the sample size based on the assumption of honmogeneous sampling

from the entire population of each class (ie., a disease subtype as in this study). Therefore,

during sample collection, if the number of samples suggested by power analysis doesn't cover

the broad population of each subtype to capture the inherent variance of the population, the

distributions of parameters will be biased toward the type of samples collected. As a result, a

poor sampling can make power analysis appear to underestimate the necessary sample size.

Furthermore, statistical inference based on the calculated parameters can be misleading. The

FDA has recently noticed the importance of broad sampling and requested pharmaceutical

industries to include clinical trial studies on pediatric patients in order that the efficacy measure

should not be biased to adults. As a result, a well-designed sam'pling strategy is required

together with a reasonable estimate of sample size calculated from power analysis to ensure

statistical reliability.

This study uses linear combinations of individual genes as variables in the classifier instead of

classifying using the individual genes themselves. Although the discriminatory genes used for

the classifier are chosen based on Wilks' lambda score and the error rate calculated through

LOOCV, the number of selected genes is usually still large (50 or more depending on the

situation). If all individual genes are considered independently in constructing a classifier, and

new samples are classified using the sum of all gene contributions to the classifier (as in the

"voting" schemes discussed in section 7.3), the classifier will not capture the interaction of the

genes and may be biased to redundant characteristics. In addition, the parameters in the

classifier will be subject to statistical variations of the individual genes. If all the genes are

considered together as seen in multiple discriminant analysis (MDS), it may be difficult to
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estimate the model parameters due to the large number of discriminatory genes and singularity in

the data. On the other hand, the linear combinations of individual genes obtained from FDA

capture the important discriminating characteristics at the outset because the algorithm seeks the

most relevant directions (weights) for separation of classes. Thus, the number of variables used

for the classifier is significantly reduced to several FDA projection variables (the number of

classes minus one), while capturing in a large degree the discriminating characteristics in data.

This reduction in variables is achieved without significant accuracy cost in discrimination.

The use of FDA also reduces the amount of noise obscuring the information content of the data.

Signals that merely appear to be random noise will be filtered out during the process of obtaining

the weights for the linear combinations. Just as the first few PCs in PCA usually capture the

important patterns and the last few PCs only random noise, the first few discriminant functions in

FDA capture the important discriminating characteristics in the data. Only systemic noise that

happens to have similar patterns to the real signals may be retained in the data projected through

the linear combinations.

Finally, the interactions and relative contributions of the individual genes to the classification can

be interpreted from the discriminant weights in the linear combinations, improving our

understanding the discriminant features in the data. As a result, the FDA classifier using linear

combinations as variables can provide many preferable aspects of classification relative to other

techniques, including robustness in performance, non-complexity in modeling, and improvement

in interpretation.

7.5 Conclusions

We have demonstrated statistically justifiable tools for analysis of differently expressed samples

of gene-chip data. Through the use of such measures as the t-test, Wilks' lambda criterion, and

cross-validation, methods have been shown to give statistically sound indicators of the most

relevant genes for a given classification problem. These tools include appropriate adjustments to

account for the small numbers of samples typically found in microarray data. We have shown

that comparing a sample population- from one type of tissue against a varied set of other tissue

samples we can identify discriminatory genes that are likely to represent some specialized

function for the tissue type under study. We have made a sinmilar comparison for the more
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straightforward case of different disease states. These analyses provide for quick identification

Of targets for further research while employing a level of sophistication no more complicated

than typical laboratory statistical techniques.

A framework for diagnostic evaluation of new expression samples using statistically optimal

tests, such as the likelihood ratio test and Fisher's Discriminant Analysis, have also been

demonstrated. These techniques are shown to be reasonably robust even when only a small

number of samples are available, through the use of t- and F-tests on the distribution of the

measurements. Use of these frameworks provides a measure of how strongly a new sample is

classified, and whether or not the classification should be trusted. Application on leukemia data

gives 100% classification under most conditions. These tools are equally applicable to the study

of tissue identification and categorization.

Finally, we have included power analysis to create an algorithm for testing not only for robust

gene identification and sample classification, but also to give a measure of the number of

samples required to reach a given confidence level in the results of the test. Both 2-class and 3-

class distinction examples have been demonstrated for leukemia microarray data. This

methodology allows researchers to balance, in an iterative fashion, the need for reliable

conclusions against the expense of running too many DNA microarrays.
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CHAPTER 8 SUMMARY AND SIGNIFICANCE OF WORK

8.1 Summary of thesis results

As stated in the introduction, this thesis aimed to:

* Explore the use of statistical methods for DNA microarray data to identify a subset of

maximally informative genes for a given experiment,

* Develop methodologies for identifying genes that have significant changes in expression

pattern which appear to be related to changes in environmental conditions,

* Construct hypothetical regulatory networks from the relationships suggested by correlational

analyses,

* Apply these methods to elucidate the transcriptional programming of Synechocystis sp.

PCC6803,

* Identify what information or experimental conditions are required to distinguish between

hypothesized networks or establish their existence,

* Address all of these issues in a manner that is compatible with future high-throughput

experimental data, from both DNA microarrays and other sources.

Statistical methods for not only gene identification but also other DNA microarray issues have

been discussed at length in Chapter 7. t-tests, Wilks' lambda criterion, and cross-validation have

proven to provide robust identification of the most discriminatory genes, even in the face of the

relatively high amount of noise typical to DNA microarray experiments. Techniques including

likelihood ratio tests and Fisher discriminant analysis (FDA) have been shown to provide strong

classification ability based on such discriminatory genes. Finally, the use of power analysis in a

multidimensional classification scheme has been explored to create a simple metric indicating

whether or not a sufficient number of samples has been taken to support a given hypothesis, and

if not, estimate the number of additional samples that may be required. All of these tools have

been programmed into Matlab codes for use with the data formats typical to DNA microarrays.
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Chapter 4 discusses other computational tools more directly aimed at the application of DNA

microarray data to understanding transcriptional regulatory networks. Specifically, the technique

of time-lagged correlations has been explored thoroughly to not only to identify sets of co-

expressed genes, but also to put them into a temporal ordering. Such temporal patterns give

insights into the cellular response to a given stimuli, but more importantly allow for the

formation of cause-and-effect hypotheses. A practical algorithm for the application of these

correlations to DNA microarray data, where the existence of thousands of genes makes

correlation calculations exceedingly difficult computationally, has also been developed.

Programs have been written in Matlab for this entire procedure, including not only the time-

lagged correlation network algorithm but also a set of network visualization tools for use with

AT&T's Graphviz program.

In order to model these correlation networks, the use of AutoRegressive with eogenous input

(ARX) models are also discussed in Chapter 4. In this formulation, the transcript abundance of a

gene or group of genes is expressed as a function of prior measurements at earlier time-points:

measurements of its own transcript levels, those of other genes, and an input forcing function of

external conditions. These models can vary in complexity and expected prediction bias, so the

use of Akaike's Infonnation Criterion (AIC) has also been explored to make assessments of a

model's relative predictive capacity while taking into account the possibility of overfit due to an

excess of parameters.

The model organism for application of these techniques, Synechocystis, was introduced along

with appropriate experimental techniques in Chapter 5. This cyanobacterium is a uniquely useful

prototype system as it has been fully sequenced, has industrial application through fixation of

CO2 waste to biopolymers, and is photoautotrophic. This ability to process light energy into

cellular energy has been shown to be regulated at the transcriptional level by experimental light

conditions, and therefore light intensity provides an optimum, dynamically adjustable input

parameter for the type of network reconstruction problem posed by this thesis.

The application to Synechocystis of the experimental and computational tools developed in

Chapter 4 and Chapter 5 is shown in Chapter 6. A series of 50 time-points have been collected

for a single, continuous series of light intensity shifts and the extracted RNA from these samples
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has been hybridized to DNA microarrays. The microarray data has been used to create

hypothetical network maps of varying complexity, which have been tested for robustness by a

variety of statistical measures. ARX models of the gene groups in this mapping allowed for

prediction of how new experimental conditions might lead to different measured output data.

These predictions were then used to suggest the optimal validation experiment (i.e. the

experimental profile which was predicted to create the biggest between-group differences in the

network). This additional experiment of 27 DNA microarrays has been used to confirm most of

the network connections proposed by the analysis of the first experiment, while suggesting that

alternative relationships for other genes may need to be explored. Furthermore, this

confirmatory experiment validated the constructed ARX models as well as the conclusions

drawn by AIC about model complexity and predicted fit.

8.2 Significance of Results

Ultimately, it is a goal of biological engineering to achieve mechanistic, predictive models of

cellular behavior for the purpose of determining the system response to applied perturbations.

Examples include predicting the impact of environmental changes, application of novel drugs, or

genetic modifications to the cell itself. Such models will allow for the directed design of new

experiments, novel therapies, and new cell strains.

At this time, these types of mechanistic models are not generally possible, due to a lack of good

measurements at a cell-wide scale with which to fit models. However, such data is becoming

increasingly available as the promise of high-throughput proteomics and other genomic-based

technologies are realized. In the meantime, only transcriptional data is available at the scale

necessary for these modeling efforts. Since such data lack sufficient information about other

molecules in the cell, practical statistical modeling efforts provide the predictive capacity needed

to drive further experimentation. This thesis work has resulted in a suite of statistical tools for

analyzing and modeling DNA microarray data, particularly for time-series experiments aimed at

elucidating underlying transcriptional regulation.

As an example, Figure 8-1 shows the relationship between the functional form of the ARX

models and the underlying biochemical interactions. Each of the parameters a,, and by indicate a

potential relationship between the transcriptional characteristics of the genes under
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consideration, or between the environmental conditions and these genes. For strong parameters,

we hypothesize the existence some underlying mechanism for interaction, whether it is direct or

through some unmeasured intermediaries. Weak parameters, on the other hand, suggest that

fundamental links corresponding to the parameter in question may not exist between these genes,

or at least not in a form measured by the experimental conditions.
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Figure 8-1: The relationship between ARX coefficients and underlying biology

As a whole, the success of this modeling endeavor for Synechocystis can be evaluated by:

1. The function of the factors present in the model. In this case, the biological identity of

the genes in groups found through time-lagged correlation analysis indicates strong

presence of photosystem-related components (phycobilisome components, atp synthase

sub-units, photosystem I and II proteins, etc.), as discussed in Chapter 6.

2. The ability of the model to give predictive, forward-looking estimates of variables for

independent experiments. ARX models generated by this study produced purely

predictive outputs for any number of possible input profiles, although extrapolation far

outside of the range of the original experiment is expected to perform weakly for these

models.

3. The validation of the models through independent data sets. The good match between the

predictions made and the data from the validation experiment, as shown in Chapter 6,

give a measure of model robustness.
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By these criteria, the statistical models shown have utility in providing usefill information - even

accounting for experimental limitations of unobservable variables and relatively high noise

content typical to DNA microarrays.

Furthermore, we have shown that straightforward statistical models of dynamic transcriptional

data not only provide predictive capabilities for gene transcription, but also can be used to

suggest how additional experiments should be carried out. In general, such designs can elucidate

not only which parts of the models are accurately understood, but also which aspects of the

model are less strong. For example, if a coefficient in a model suggests strong correlation

between the expression levels of two genes, but the validation experiment indicates that the

hypothesis was wrong, then the coefficient in question may have been inaccurately assigned or

there may in fact be no straightforward relationship present.

As greater experimental capacity becomes available, incorporation of new data into such

statistical models can be handled directly through expansion of either the training or testing data

sets. No model can be reasonably expected to be robust to every type of environmental insult, as

models are created specifically to explain and predict the response to a sub-set of situations the

system might encounter. Nevertheless, more complete sampling of the experimental space (e.g.

the more experimental conditions measured) the better our predictive capacity for future

situations. For example, having studied light response dynamically in Synechocystis for this set

of conditions, it makes sense to turn attention to a wider array of light conditions, other factors

such as nutrient concentrations, or the transcriptional response profiles of genetically modified

strains. The synthesis of such data will lead to ever-increasing predictive accuracy for a wider

range of situations.

Another benefit of improved experimental capacity will be the ability to reduce the time interval

between measurements arbitrarily close to zero. In the current experiment, all phenomena that

occur at time scales faster than 20 minutes are temporally indistinguishable, although more

slowly evolving trends can be measured. Every reduction in time scale improves the resolution

of the measured interactions, to the point where it may become possible to directly observe the

dynamic biochemical interactions that drive cellular behavior.
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As mechanistic models also gain in accuracy and complexity, it will become important to replace

statistically derived relationships with those that can be justified physically. As long as some

parts of cellular physiology remain unknown, however, statistical models will fill the gap

between practical understanding and the underlying phenomena.
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