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Abstract

In this thesis I present algorithms for analyzing high throughput biological datasets. These
algorithms work on a number of different analysis levels to infer interactions between genes,
determine gene expression programs and model complex biological networks.

Recent advances in high-throughput experimental methods in molecular biology hold
great promise. DNA microarray technologies enable researchers to measure the expression
levels of thousands of genes simultaneously. Time series expression data offers particularly
rich opportunities for understanding the dynamics of biological processes. In addition to
measuring expression data, microarrays have been recently exploited to measure genome-
wide protein-DNA binding events.

While these types of data are revolutionizing biology, they also present many computa-
tional challenges. Principled computational methods are required in order to make full use
of each of these datasets, and to combine them to infer interactions and discover networks
for modeling different systems in the cell.

The algorithms presented in this thesis address three different analysis levels of high
throughput biological data: Recovering individual gene values, pattern recognition and net-
works. For time series expression data, I present algorithms that permit the principled
estimation of unobserved time-points, alignment and the identification of differentially ex-
pressed genes. For pattern recognition, I present algorithms for clustering continuous data,
and for ordering the leaves of a clustering tree to infer expression programs. For the networks
level I present an algorithm that efficiently combines complementary large-scale expression
and protein-DNA binding data to discover co-regulated modules of genes. This algorithm is
extended so that it can infer sub-networks for specific systems in the cell. Finally, I present
an algorithm which combines some of the above methods to automatically infer a dynamic
sub-network for the cell cycle system.
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Title: Professor

Thesis Supervisor: Tommi S. Jaakkola
Title: Associate Professor
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To Ifat:
I remember for thee the affecticn of ty youth,
the love of thine espousals;
how thou wentest after Me in the wilderness,
in a land that was not soxw

Jeremiah, Chapter 2
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Chapter 1

Introduction

The journal Nature published a special issue recently, celebrating fifty years to the discov-

ery of the structure of DNA by Watson and Crick [102], and the completion of the human

genome project. In that issue, a group from the U.S. National Human Genome Research

Institute published an article titled: 'A vision for the future of genomics research' [33]

in which they outlined fifteen grand challenges for molecular biology for the next several

decades (in a fashion similar to the challenges set forth for mathematics by David Hilbert

at the beginning of the twentieth century [57]). One of these challenges reads as fellows:

Grand Challenge 1-2 Elucidate the organization of genetic networks and protein path-

ways and establish how they contribute to cellular and organismal phenotypes.

In this thesis we try to address parts of the above challenge. Specifically, we present

computational methods for answering questions about how genes interact, how are expres-

sion programs carried out on the molecular level and what are the regulatory networks that

different systems in the cell use to respond to various external and internal changes.

1.1 High throughput biological data sources

The sequencing of the human genome is just the first step toward understanding cellular

activity. While many organisms have been fully sequenced by now(human [71, 100], fly [4],

yeast [51]) little is known about the function of most of the genes that were identified in

these organisms. In order to obtain a more comprehensive picture of the activity in the cell,

17



we would like to answer questions about how genes interact, how are expression programs

carried out on the molecular level and what are the networks that different systems in the

cell use to respond to various external and internal changes. While the same DNA sequence

is present in all cell types of the same organism, different cells express different subsets of

genes to fulfill their tasks. Even in the same cell, different systems use different subsets of the

expressed genes, as we show in this thesis. Thus, even if we obtain complete understanding

of these sequences, the above questions cannot be answered by using sequence data alone.

Recent advances in DNA microarray technology [91] allow researchers to measure the ex-

pression levels of thousands of genes in the cell simultaneously. Expression levels correspond

to the amount of mRNA for each gene (see below), and these levels vary under different

experimental conditions, and between different cell types. Thus, this data provides an

opportunity to address the above question on a global (whole cell) basis. Other experimen-

tal techniques [85] provide information about the binding location of transcription factors.

Transcription factors are proteins that bind DNA and regulate genes by either activating

or repressing their expression. By using this data, we can infer interactions between genes.

By combining binding and expression data we can discover complex interaction networks

that various systems in the cell employ to fulfill their goals.

While these types of data are revolutionizing biology, they also present many compu-

tational challenges. These challenges result from the new technology used, the underlying

biology and the fact that each of these experiments presents results for thousands of genes

at once. Further, since we are dealing with different types of data, collected at various

biological labs, a great challenge is data integration and information fusion. We discuss

these challenges in detail below. Thus, careful analysis of this data is required in order

to determine the specific function of each gene, to infer interactions between genes and to

combine biological dataset in order to discover regulatory and other networks in the cell.

This is exactly the goal of the algorithms described in this thesis.

1.2 Microarrays

In this section we present a brief overview to DNA and binding microarrays. These arrays

produce the two sources of data we will use later in this thesis to answer the biological

problems listed below.

18



Complementary DNA strands can be hybridized together through incubation. DNA

microarrays use a "probe" containing the complementary genetic material in order to de-

termine the expression levels of genes. There are two major types of DNA microarrays and

they differ in the process in which these probes are generated. In addition, in this thesis we

also analyze data from a different kind of microarray: Protein-DNA binding array (known

also as location or CHIP arrays [73]). Unlike other arrays that measure the amount of tran-

scripts for each gene, binding arrays measures the binding of proteins to intergenic regions

in the DNA. Below we discuss in more details the two types of DNA expression arrays, and

binding arrays.

1.2.1 Synthesized arrays

The largest producer of synthesized or oligonucleotide arrays is a company called Affymetrix [1].

In this thesis we will restrict our discussion to the Affymetrix GeneChip arrays (though ar-

rays produced by other companies are similar). GeneChip arrays consist of hundreds of

thousands of features. Each feature is an oligonucleotide, typically about 25 bases long.

These features act as probes and can bind to specific target DNA molecules. For each

gene, 11 to 16 probes are selected among all possible 25-mers to represent this gene. When

choosing these probes, care is taken so that cross-hybridizing with similar, but unrelated

sequences, is minimized.

In order to further reduce the effect of cross hybridization, Affymetrix uses the Perfect

Match/Mismatch probe strategy. For each complementary probe, a partner probe is gener-

ated that is identical except for a single base mismatch in its center. These probe pairs al-

low the quantification and subtraction of signals caused by non-specific cross-hybridization.

The difference in hybridization signals between the partners, as well as their intensity ratios,

serve as indicators of specific target abundance.

Affymetrix uses a combination of photolithography and combinatorial chemistry to syn-

thesize sequences on a quarts wafer. Probe synthesis occurs in parallel, and the different

bases (A, C, T, and G) are added to multiple growing chains simultaneously. Photolitho-

graphic masks are used to define which base will be added next to each of the features.

Synthesis is performed in steps, and in each of these steps, a new mask is placed over the

wafer. This process is repeated until the probes reach their full length of 25 nucleotides.

In order to prepare the sample target, mRNA is collected from cells of interest (for
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example, cancer cells). Using reverse transcription, cDNA is generated from the mRNA.

This allows the amplification of the amount of starting mRNA. Next, cDNA is transformed

back to mRNA, and the mRNA is labeled, so that the amount of transcripts hybridized

to each array feature can be measured using an optical scanner. The Affymetrix scanning

device reports the expression level by subtracting the spot intensity of the mismatch feature

from their partner match feature, and averaging across all features for each gene.

Note that oligonucleotide arrays can only be manufactured for organisms which have

been sequenced. Since each gene is represented by a chemically produced 25-mers, we

need to know the sequence of each of the genes in advance in order to manufacture the

array. While this was an issue in the early days of microarray usage (especially for human

arrays), this is becoming less of an issue as more and more organisms are being sequenced.

For organism which have not been fully sequenced, cDNA arrays provide a reasonable

alternative to oligonucleotide arrays, as we discuss below.

1.2.2 Pre-synthesized DNA arrays

Instead of the 25-mers used by the synthesized arrays, most pre-synthesized arrays [42] use

strands of cDNA extracted from a target of interest. Thus, we refer to them as cDNA arrays

in this thesis. These strands are usually much longer (up to hundreds of base pairs), and are

typically obtained from cDNA libraries. Such libraries are constructed by making cDNA

copies of mRNA from a specific organism or cell type. Following polymerase chain reaction

(PCR) amplification, these stands are printed onto a glass slide or a nylon membrane (and

thus they are also known as printed arrays).

Since the probe deposit process used to generate cDNA arrays is much less accurate

than the process used in oligonucleotide arrays, different spots on the arrays can vary in

size, and in the amount of mRNA per spot. This complicates direct comparison between

different cDNA arrays, even if the same library is used to manufacture both arrays. In order

to overcome this problem, two separate samples labeled with different fluorescent dyes are

simultaneously hybridized to the array. Examples include normal and cancer cells (for the

static case) and synchronized and unsynchronized cells (for the time series case). Instead

of using the actual reading of the scanning device, the ratio between the two samples is

used to determine the expression levels. One of the samples is used in all arrays, and the

second changes between different arrays. For example, by hybridizing normal samples to all
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arrays and samples from different cancer types to different arrays, we can use cDNA arrays

to identify genes that are specifically involved in a certain type of cancer, even if the actual

transcript level of these genes is unknown.

Apart from using two different cell types and measuring their ratio, sample preparation

is similar to that of oligonucleotide arrays. As mentioned above, cDNA arrays can be used

for any organism, even if it has not been fully sequenced. Another advantage of cDNA

arrays is that they are usually much cheaper than oligonucleotide arrays. Indeed, most of

the data analyzed in this thesis (as well as most of the published expression data) comes

from cDNA arrays.

1.2.3 Location arrays

While the above two array types are targeted to find the expression of genes in the cell,

location (or binding) arrays [73] aim to identify the location at which proteins known as tran-

scriptional factors (TF) binds in the cell. Location arrays are similar to the pre-synthesized

arrays (though synthesized arrays can also be used, the results presented in this thesis only

use pre-synthesized arrays). However, we regard them as a separate type since, unlike cDNA

arrays which are printed with the coding region of the DNA, location arrays contain the

intergenic (or upstream) regions.

For each gene (or for a subset of genes, depending on the number of genes in the specific

organism), a 500 base pair upstream region is extracted and printed on the array. This

region contains the binding sites of various transcriptional factors (TFs) that bind in front

of the gene, and regulate its expression. In order to determine the genes that are bound by

a specific TF, strains are grown in which this TF is labeled using a myc epitope tag. Using

printed arrays, the ratio of immunoprecipitated to control DNA (which is not tagged) is

determined. This process is repeated a number of times and a confidence value (p-value) is

calculated for each spot from each array using an error model. By thresholding the p-values

(for example at .001 in [73]), a binary relation is determined for each of the genes with each

of the TFs that are profiled.

While binding experiments can in principle be carried out in a time series, to date no

such experiment have been performed. Since this is a very new technology (the first paper

using this technique is from 2001 [85]) we expect that this will change in the future. Still,

since each such experiment can only profile one of the TFs, it is an important challenge to
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combine this static binding information with the dynamic (or time series) information that

is available from expression arrays. In section 8 we discuss an algorithm that can combine

the two array types to discover dynamic regulatory networks.

1.3 Gene expression data

DNA microarray experiments can be classified in a number of ways. A common way is to

divide them based on the type of array that is used in the experiment (cDNA and Oligonu-

cleotide arrays [12]). Another common way is to divide these experiments according to the

organism that is profiled (yeast [94, 43], mice [95], human [52, 78]). In this thesis we intro-

duce a new way that is targeted towards the analysis of such experiments. Gene expression

experiments can be divided into static and time series experiments. In static expression

experiments, a snapshot of the expression of genes in different samples is measured (e.g.,

cancer versus normal [52], knockout [63]). In time series expression experiments, a tempo-

ral process is measured (e.g., infection [62, 78], response to environmental conditions [49],

or a specific system in the cell [94, 107, 82]). Since gene expression is a temporal process

(see Chapter 1.4), it is essential to use time series expression data to address the inference

problem listed above. While most previous work used methods developed for static data to

analyze time series data [94, 47, 98, 107], we dedicate a large part of this thesis to princi-

pled methods for analyzing time series gene expression data. As we show in this thesis, it is

necessary to develop algorithms that are specifically targeted towards time series expression

data in order to fully utilize this data. Using such methods we are able to solve many bio-

logically important problems, including the identification of differentially expressed genes,

assignment of genes to different functional categories and the discovery of dynamic genetic

regulatory networks.

1.4 Time series expression data

One of the goals of this thesis is to provide principled algorithms for analyzing time series

expression data, and for combining this data with other biological datasets to discover

dynamic regulatory networks.

Gene expression is a temporal process. According to the central dogma of molecular

biology[5], in order to transform the information stored in the genome (or DNA sequence)
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Figure 1-1: Central dogma of molecular biology. Genes are first transcribed to mRNA and
later translating into proteins. This process is regulated by a feedback loop, and some of
the proteins serve as transcription factors, regulating the expression of other genes.
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into proteins (which are the working parts of the cell), genes are first transcribed into mRNA

and then translated to proteins (see Figure 1-1). This is a continuous process, as different

proteins are required for different functions and under different conditions. Even under

stable conditions, due to the degradation of proteins, mRNA is continuously transcribed

and new proteins are generated. Since gene expression is vital for cells, this process is highly

regulated. One of the most important ways in which the cell regulates gene expression is

by using a feedback loop. Some of the proteins are known as transcription factors (TFs).

These proteins regulate the expression of other genes (and possibly, their own expression)

by either initiating or repressing transcription.

When cells are faced with a new condition (such as starvation [77], infection [78] and

stress [49]), they react by activating a new expression program. In many cases, the expres-

sion program starts by activating a few transcription factors, which in turn activate many

other genes that act in response to the new condition [77]. Taking a snapshot of the ex-

pression profile following a new condition can reveal some of the genes that are specifically

expressed under the new condition. However, in order to determine the complete set of

genes that are expressed under these conditions, and to determine the interaction between

these genes, it is necessary to measure a time course of expression experiments. This allows

us to determine not only the stable state following a new condition, but also the pathway

and networks that were activated in order to arrive at this new state. Indeed, biologist

are well aware of these issues, and a large number of systems, diseases and developmental

processes are currently studied using time series gene expression data. As microarray tech-

nology becomes more common and cheaper, a large number of microarray experiments will

be time series experiments.

1.4.1 Examples of time series expression experiments

In this section we describe a few examples from four different types of gene expression

experiments. The main purpose of this section is to demonstrate the wide range of biological

question that expression data, and time series expression data, can be used to answer. Many

of these questions involve computational aspects, as we discuss in Chapter 1.5.
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Reference Method of ar- Duration Cell Sampling rate
rest cycle

length
WT alpha [94] alpha mating 0-119m 64m every 7m

factor
WT cdc15 [94] temperature 10-290m 112 ev. 20m for 1 hr, ev.

sensitive cdc15 10m for 3 hr, ev. 20
mutant min for final hr

WT cdc28 [31] temperature 0-160m 85m every 10m
sensitive cdc28
mutant

fkhl/fkh2 alpha mating 0-210m 105m ev. 15m until 165m,
knockout [107] factor then after 45m
yoxl/yhpl alpha mating 0-120m 60m every 10m
knockout [82] factor

Table 1.1: Summary of five different time series expression experiments. WT- wild type,
m-minutes. All of these experiments were performed to study the cell cycle system in
yeast. Note that the sampling rates are not always uniform, and vary between the different
experiments. In addition, the cell cycle duration (the time it takes the cells to divide) differs
depending on the experiment condition.

Biological systems

The biological system that has been most extensively studied using time series gene expres-

sion data is the cell cycle system in yeast. Yeast is a model organism, and many of the

yeast genes have homologes in the human genome. The cell cycle is of particular interest,

as it plays an important role in cancer, and has thus been extensively studied over the last

four decades [92]. In table 1.1 we present 5 different time series expression experiments that

where carried out to study various aspects of this system. As can be seen, three of these

experiments measure wild type (WT) behavior under different conditions, while the two

other look at knockout strains. Table 1.1 can also serve to motivate some of the work in

this thesis. While all five experiments study the same system, all show different length of

the cell cycle duration (ranging from 60 to 120 minutes). Further, these experiments were

sampled at different rates (ranging from 7 to 20 minutes) and different durations (from 2

hours to 5 hours). Since each of these datasets is noisy and contains many missing values,

we need to combine multiple datasets to fully utilize these individual experiments. Thus, a

major challenge is to develop algorithms that will allow us to combine measurements carried

out under different conditions. A number of other systems have also been studied with time

series expression experiments, including, among others the circadian clock in mouse and
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humans [95, 80].

Genetic interactions and knockouts

While an expression time course of a WT systems is useful to determine the set of genes

that function in this system, and potentially the order in which they operate, in order to

study the function of individual genes we need to carry out knockout experiments. In a

knockout experiment a gene is (or a number of genes are) deleted from the genome, and

these deleted strains are profiled using expression experiments. Such experiments allow us

to determine the down stream effects of the knockout (or knocked out) gene(s), which in

turn can be used to identify target genes and to construct genetic interaction networks.

Many knockout expression experiments have been carried out in the static case [63]. More

recently many knockout time courses are becoming available. These include cell cycle double

knockouts [107, 82] and knockouts under stress conditions [49].

Development

Understanding development is key to understanding many genetic diseases. It is natural

to use time series expression experiments to study development at the molecular level, and

to identify genes that play key role in different stages of development. For example, an

80 time points expression experiment studying the development of the fruit fly Drosophila

identified many genes that control specific stages in the fly developmental process [8]. Sim-

ilar experiments were carried out in other organisms, including the worm c. elegans [69].

More recently, expression experiments have been carried out to study human development.

In [66] human embryonic stem cells have been profiled in order to identify genes that are

involved in the specific differentiation of these cells to various tissue types.

Infectious and other disease

Identifying genes that act in response to certain infectious disease is a key issue in developing

drugs to fight these disease. Nau et al [78] studied a time course of human cells that were

infected by four different pathogens. Other examples include Huntington disease [104] and

cancer [52].

As the examples above suggest, expression experiments can be used to answer many

biologically important problems. However, as indicated above and as we discuss in the rest
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of this section, addressing these issues requires us to solve many computational problems

as well. Thus, algorithms that directly target this type of data are essential to all of the

above studies.

Networks

I
Pattern Recognition

it
Individual Gene

it
Experimental Design

Figure 1-2: The hierarchy of analysis levels for gene expression.
number of computational and biological problems, and also serves
for higher levels in the hierarchy.

Each level addresses a
as a pre-processing step

1.5 Computational challenges in expression analysis or The-

sis roadmap

The analysis of gene expression experiments in general, and time series expression experi-

ments in particular can be divided into four analysis levels (see Figure 1-2). Three of these

levels (individual gene, pattern recognition and networks) are performed after the actual

expression experiment, while the fourth (experimental design) is performed prior to the

experiment. Since this thesis focuses on publicly available datasets (that is, on experiments
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that have already been performed), we restrict our discussion to the three upper levels.

However, for the completeness of presentation we discuss the experimental design level in

this section. In addition, in Chapter 9 we mention extensions to some of our algorithms

that can be used for experimental design. Below we discuss in detail the four analysis levels.

For each of them we present the computational and biological problems that arise at that

analysis level. We also point to the specific section in this thesis in which these issues are

addressed.

1.5.1 Experimental design

Experimental design is key to the success of any expression experiment. In the past, various

aspects of experimental design have been studied. For example, Zien et a/ [108] studied

the number of microarrays required for expression experiments. Ben-Dor et al [25] studied

the combinatorial problem of selecting representative probes for genes sequences in order

to minimize cross hybridization with other genes.

Determining which experiments to carry out, and how to perform them is another ex-

perimental design issue. If we are studying a specific system in yeast, we might need to

decide which of the possible 6000 knockout experiment would lead to the biggest improve-

ment in our understanding of the system. Another important problem for designing time

series expression experiments is the determination of sampling rates. If the experiment is

under-sampled, the results might not correctly represent the activity of the genes in the

duration of the experiments, and key events can be missed. On the other hand, over-

sampling is expansive and time consuming. Since many experiments are limited by budget

constraints, over-sampling will result in shorter experiment duration, which might lead to

missing important genes that participate in the process at a later stage. As can be seen in

Table 1.1, to date, sampling rates depended on biologists intuition, and varied (depending

on the lab) even under similar experimental conditions (for example, the three alpha cell

cycle experiments [94, 107, 82] were sampled every 7, 15 and 10 minutes respectfully). An

algorithm that will aid in determining the right sampling rates will be an important tool,

and can have immediate practical applications. In Chapter 9 we discuss possible extensions

to some of our algorithms that can lead to an algorithm for determining the right sampling

rate.
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1.5.2 Individual gene level

This level focuses on the individual gene. At this level we address issues ranging from the

raw expression values for each gene to determining interactions between pairs of genes.

Computational challenges at this level include, among others, normalization and over-

coming missing values. For time series expression experiments, there is also the problem

of overcoming the fact that we have only a few samples of a continuous process. Other

problems at this level are discussed in detail in Chapter 2. Biological problems at this level

include determining how biological processes unfold in time under different experimental

conditions, which could be addressed by aligning the profiles of genes in different time se-

ries experiments (for example the five cell cycle experiments from Table 1.1) and identifying

genes that are differentially expressed in time series experiments.

Solving the computational problems at this analysis level is important both for answering

biological questions at this level, and as a pre-processing step for higher analysis levels. For

example, without proper normalization, one cannot combine different array experiments.

Likewise, continuous representation of time series data is important for discovering dynamic

models for such data.

In this thesis we present algorithms that address both the computational issues (con-

tinuous representation and alignment) and the biological issues (identifying differentially

expressed genes). In Chapter 2 we discuss an algorithm that uses statistical spline esti-

mation to represent time-series gene expression profiles as continuous curves. As we show,

this algorithm efficiently and accurately solves the missing values / missing experiments

problem. In Chapter 3 we extend this algorithm using the same spline representation to

continuously time-warp (or align) series. In Chapter 4 we discuss an algorithm that builds

upon our continuous representation and alignment algorithms, and uses them for identifying

differentially expressed genes in time series data.

1.5.3 Pattern recognition level

Due to the large number of genes that are profiled in each experiment, clustering is needed

to provide a global overview of the experiment results. In addition, clustering was used to

determine function for unknown genes [43], to look at expression programs for different sys-

tems in the cell [94] and for identifying sets of genes that are specifically involved in a certain

29



type of cancer or other diseases [6]. Another major challenge in gene expression analysis

is effective data organization and visualization. Indeed, pattern recognition algorithms for

gene expression data have been extensively studied, and several clustering algorithms have

been suggested for such data [26, 83, 96].

While clustering is important for all expression experiments (static and time series),

there are a number of issues that should be specifically addressed when clustering time series

gene expression. First, most clustering algorithms (including k-means and self organizing

maps [96]) treat their input as a vector of independent samples, and do not take into account

the duration each time point represents. Since many time series are sampled non uniformly,

such independence assumption might skew the results. In addition, when analyzing time

series expression datasets we are interested not only in the clusters themselves but also in

the relationships between the different clusters. This is especially important when using

clustering algorithms for visualization purposes (for example, using hierarchical clustering).

For time series data, such algorithms should provide an overview of the dynamics of the

system as well as the different groups (or clusters) involved.

In this thesis we present algorithms for clustering non uniformly sampled time series

expression data, and for determining expression programs by identifying relationships be-

tween different clusters. In Chapter 5 we present a clustering algorithm that infers classes

by operating directly on a continuous representations of expression profiles. As this rep-

resentation depends on the actual sampling rates, such clustering algorithm (implicitly)

weights each input point based on the time it represents. In Chapter 6 we discuss an algo-

rithm for optimally ordering the leaves of a binary hierarchical clustering tree. Hierarchical

clustering is the most popular clustering algorithm in computational biology, and many of

the papers that present new expression datasets use it to present their results. By ordering

the leaves of the hierarchical clustering tree, our algorithms allows users to identify not only

the clusters but also the relationships between these clusters. In Chapter 7 we discuss an

extended version of our optimal ordering algorithm with a new hierarchical clustering algo-

rithm which overcomes a number of problems that are inherent in the binary hierarchical

clustering method. More specifically, we present a new hierarchical clustering algorithm

that constructs a k-ary tree, where each node can have up to k children, and then opti-

mally orders the leaves of that tree. By combining k clusters at each step our algorithm

becomes more robust against noise and missing values. By optimally ordering the leaves of
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the resulting tree we maintain the pairwise relationships that appear in the original method,

without sacrificing the robustness.

1.5.4 Networks level

The final analysis level is the networks level in which we focus on the interactions between

genes, and attempt to build descriptive and predictive models for different systems in the

cell. The components of these networks are the genes (or their protein products) that are

involved in a specific system in the cell, and the transcription factors that regulate this

system. Such models should provide a description of the process that is being modeled

(for example, the cell cycle or the immune response system), and the interaction that takes

place during the activation of the system (how are the different genes involved activated

? which genes are turned on first ? which next ? etc.). Predictive models should also be

able to address question about different perturbations of the system (what happens when

we knockout a specific gene ? what will happen when we add this drug to the environment

Such models are useful for many applications. For example, in drug discovery researchers

are interested in identifying proteins that are at the root of a certain disease [52]. Using

these models we can determine which genes are the causes, and target them to prevent the

spread of the disease. Another important application is to identify side effects of a certain

treatment. Targeting a protein can cause a number of side effects which might be toxic to

the cell. Using genetic interaction models we can determine likely side effects in advance,

and target only those proteins for which these side effects are minimal.

Unlike the lower analysis levels, expression data is not enough to accurately construct

these networks. Due to the large number of genes, many different hypothesis can be gener-

ated to explain a specific expression pattern. In order to constrain the number of possible

hypothesis, we need to incorporate additional biological data, and to 'fuse' such data with

gene expression data. For example, genetic regulatory networks are key to understanding

expression programs in the cell [73]. In order to accurately construct such networks, we

need to combine disparate biological data sources, including binding and expression data.

Thus, a key computational challenge at this level is to design algorithms that are capable

of combining large scale biological data sources.

In Chapter 8 we address the above challenges, and introduce a new algorithm for ef-
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ficiently combining complementary large-scale expression and transcription factor protein-

DNA binding data to discover co-regulated modules of genes and associated regulatory

networks. A module is a foundational building block that describes the interaction of tran-

scription factors and the genes they regulate. We use the modules identified by our algorithm

to uncover regulatory sub-networks for specific biological processes. We also show how to

operate on the discovered networks of modules to label transcription factors as activators

or repressors and to identify patterns of combinatorial regulation.

1.6 Contribution

This thesis presents principled algorithms for analyzing time series gene expression and

protein-DNA binding datasets, in order to infer interactions, expression programs and mod-

els of cellular activity. As mentioned above, these problems can be largely grouped into four

analysis levels. To the best of our knowledge, this is the first attempt to provide complete so-

lution for all of these analysis levels. Thus, detailed discussion of previous work is differed to

the appropriate chapters (which focuses on the specific algorithms we present in this thesis).

The major contribution of this thesis is:

e We present principled algorithms for the different analysis levels of high throughput

biological data. These algorithms allow us to solve important biological problems by

inferring interactions between genes, determining expression programs and modeling

different systems in the cell.

Specific contributions include:

e The first general algorithm for identifying differentially expressed genes in time series

data.

e A clustering algorithm that works on the continuous representation of the expression

profile, overcoming problems related to non uniform sampling rates,

9 An algorithm for optimally ordering the leaves of a k-ary tree, which allows us to

improve (both theoretically and in practice) the most popular clustering algorithm in

computational biology, hierarchical clustering.
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* An algorithm which efficiently combines disparate data sources for the discovery of

genetic regulatory networks, and models for systems in the cell.

We believe that the methods and algorithms described in this thesis will form the basis of

a toolkit for experimental biologists working with time series expression data and with other

high throughput biological datasets. As more and more time series expression experiments

are carried out to study various aspects of cellular activity, these tools will become essential

in order to fully utilize the potential of these experiments, and to advance biology and

medicine.
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Part I

Individual Gene Level
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In this part we present algorithms for time-series gene expression analysis at the individ-

ual gene level. Our algorithms permit the principled estimation of unobserved time-points,

dataset alignment and the identification of differentially expressed genes.

In Chapter 2 we address the problem of assigning a continuous representation to each

genes' expression profile. Each expression profile is modeled as a cubic spline (piecewise

polynomial) that is estimated from the observed data, and every time point influences the

overall smooth expression curve. We constrain the spline coefficients of genes in the same

class to have similar expression patterns, while also allowing for gene specific parameters.

We show that unobserved time-points can be reconstructed using our method with 10-15%

less error when compared to previous best methods.

In Chapter 3 we use the continuous representation described above to align two or more

expression datasets. Our continuous alignment algorithm also avoids difficulties encountered

by discrete approaches. In particular, our method allows for control of the number of degrees

of freedom of the warp through the specification of parameterized functions, which helps to

avoid overfitting. We demonstrate that our algorithm produces stable low-error alignments

on real expression data.

Finally, in Chapter 4 we use the above algorithms to solve one of the most important

problems in gene expression analysis: the identification of genes with altered expression

between samples. Using time series expression data, researchers have looked at many differ-

ent biological systems under a variety of conditions to identify such differentially expressed

genes. We present the first general algorithm for identifying genes that are differentially

expressed in two time-series expression experiments. Our algorithm overcomes a number

of challenges unique to time-series data, including sampling rate differences between the

reference and test experiments, variations in the timing of biological processes, and the

lack of full repeats, by combining a noise model for individual samples with a global error

difference. As we show, we have used our algorithm to compare wild type and knockout cell

cycle expression experiments in yeast. Our algorithm identified 56 cycling genes as differen-

tially expressed. These results where validated using an independent protein-DNA binding

dataset, and were shown to improve upon prior methods. Surprisingly, our algorithm also

identified 22 non cycling genes as differentially expressed. These genes were shown to be

significantly correlated under a set of independent expression experiments, suggesting ad-

ditional roles for the transcriptional factor Fkh1 and Fkh2 in controlling cellular activity in
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yeast.
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Chapter 2

Continuous representation of time

series expression data

Principled methods for interpolating gene expression time-series are needed to make such

data useful for detailed analysis. Datasets measuring temporal behavior of thousands of

genes offer rich opportunities for computational biologists. For example, Dynamic Bayesian

Networks may be used to build models and try to understand how genetic responses unfold.

However, such modeling frameworks need a sufficient quantity of data in the appropriate

format. Another example is the identification of genes that are specifically involved in

response to a certain disease (such as a specific infection). In order to identify such genes we

need to be able to compare different expression time courses. Current gene expression time-

series data often do not meet these requirements, since they may be missing data points,

sampled non-uniformly, and measure biological processes that exhibit temporal variation.

Thus, computational methods must be used to pre-process data derived from disparate

experiments and investigators so that it may be further analyzed.

In many applications, researchers may face the problem of reconstructing unobserved

gene expression values. Values may not have been observed for two reasons. First, errors

may occur in the experimental process that lead to corruption or absence of some expression

measurements. Second, we may want to estimate expression values at time points different

from those originally sampled. In either case, the nature of microarray data makes straight-

forward interpolation difficult. Data are often very noisy and there are few replicates. Thus,

'This chapter is based on references [18] and [20]
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simple techniques such as interpolation of individual genes can lead to poor estimates. Ad-

ditionally, in many cases there are a large number of missing time-points in a series for any

given gene, making gene specific interpolation infeasible. A particular problem arises when

series are not sampled uniformly such as in [94, 32, 43].

In this section we use statistical spline estimation to represent time-series gene expression

profiles as continuous curves. Our method takes into account the actual duration each time

point represents, unlike most previous approaches that treat expression time-series like

static data consisting of vectors of discrete samples [43, 60, 47]. Our algorithm generates a

set of continuous curves that can be used directly for estimating unobserved data. However,

although our method uses spline curves (piecewise polynomials) to represent gene expression

profiles, it is not reasonable to fit each gene with an individual spline due to the issues with

microarray datasets discussed above. Instead, we constrain the spline coefficients of genes in

the same class to covary similarly, while also allowing for gene specific parameters. A class is

a set of genes with similar expression profiles that may be constructed using prior biological

knowledge or clustering methods. In this section we assume that the class information is

given (for example, from prior biological knowledge). In Section 5 we present a clustering

algorithm that extends the algorithm discussed in this section to infer classes automatically

by operating directly on the continuous representations of expression profiles.

2.1 Related work

Recently, several papers have focused on modeling and analyzing the temporal aspects of

gene expression data. In Holter et al [59] a time translational matrix is used to model

the temporal relationships between different modes of the Singular Value Decomposition

(SVD). Unlike our work, this method focuses on the SVD modes and not on specific genes.

In addition, only relationships between time points that are sampled at the lowest common

frequencies can be studied. Thus, not all available expression data can be used. In Zhao

et al [106] a statistical model is fit to all genes in order to find those that are cell cycle

regulated. This method uses a custom tailored model, relying on the periodicity of the

specific dataset analyzed, and is thus less general than our approach.

Several papers have used simple interpolation techniques to estimate missing values for

gene expression data. Aach et al [3] use linear interpolation to estimate gene expression
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levels for unobserved time-points. D'haeseleer [39] use spline interpolation on individual

genes to interpolate missing time-points. As we show in Section 2.5, both techniques cannot

approximate the expression curve of a gene well, especially if there are many missing values.

In Troyanskaya et al [98] several techniques for missing value estimations were explored.

However, none of the suggested techniques take into account the actual times the points

correspond to, and thus time series data is treated in the same way as static data. As a

consequence, their techniques cannot be used to interpolate time series expression data,

and to estimate values for time-points between those measured in the original experiments.

Even for missing value estimation, as we show in Section 2.5, the method presented in this

section outperforms the best method described in [98].

There is a considerable statistical literature that deals with the problem of analyzing

non-uniformly sampled data. These models, known as mixed-effect models [28] use spline es-

timation methods to construct a common class profile for their input data. Recently, James

and Hastie [67] presented a reduced rank mixed effects model that was used for classifying

medical time-series data. In this paper we extend these methods to gene expression data.

Unlike the above papers, we focus on the gene specific aspects rather than the common

class profile. In addition, in Section 5 we present a method that is able to deal with cases in

which class membership is not given. Another difference between this work and [67] is that

we do not use a reduced rank approach, since gene expression datasets contain information

about thousands of genes.

Since all the algorithms described in this chapter use splines, before we discuss the actual

problems and algorithms for this analysis level, we present a short review of splines in the

following subsection.

2.2 Splines

Splines are piecewise polynomials with boundary continuity and smoothness constraints.

They are widely used in fields such as computer-aided design, image processing and statis-

tics [24, 103, 45, 67]. The use of piecewise low-degree polynomials results in smooth curves

and avoids the problems of overfitting, numerical instability and oscillations that arise if

single high-degree polynomials were used. In this paper we use cubic splines since they

have a number of desirable properties. For instance, cubic polynomials are the lowest de-
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gree polynomials that allow for a point of inflection. Thus, we will restrict the subsequent

discussion to the cubic case.

A cubic spline can be represented with the following equation:

n

y(t) = CiSi(t) tmin <; t < tmax (2.1)
i=1

Here, t is the parameter (e.g., time), Si(t) are polynomials, and Ci are the coefficients.

The typical way to represent a piecewise cubic curve is simply:

S4j+() =X < (2.2)
0 otherwise

Here, I = 1... 4, j = 0... n/4 - 1 and the xj's denote the break-points of the piece-

wise polynomials. Thus, we have n/4 cubic polynomials that can be denoted pj(t) =

ZJ1_1 C4+ltl . In order to determine the coefficients of these polynomials, n equations are

required. If one specifies a value Dj plus continuity constraints up to the second derivative

for the piecewise polynomial at each break-point xj for j = 1 ... n/4 - 1, four equations are

obtained for each of the n/4 - 1 internal break-points:

pj (xj) = Dj

pj(Xj) = pj -i(Xj)

p (Xj) = P' _1 ( Xj)

p'j~z) = p'- _1(xj)

Additionally, specifying values for the end-points po(xo) = Do and pn/4- 1 (Xn/ 4 ) = Dn/4

yields a total of n - 2 equations. Thus, in order to solve for the spline coefficients, an

additional two equations are needed. Typically, these equations are obtained by specifying

the first or second derivatives at the two end-points of the spline. Note that since one

explicitly specifies the values pj (xj) at the break-points, the formulation in equation 2.2 is

particularly useful for defining interpolating splines.
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2.3 B-splines

While the method discussed so far for defining cubic splines is easy to understand, it is not

the most flexible or mathematically convenient formulation for many applications. Alter-

nately, one can write a cubic polynomial in terms of a set of four normalized basis functions.

A very popular basis is the B-spline basis, which has a number of desirable properties. The

texts by Rogers and Adams [87] and Bartels et al [24] give a full treatment of this topic.

Once again, the discussion here will be limited to features relevant to this thesis. Most sig-

nificantly for the application of fitting curves to gene expression time-series data, it is quite

convenient with the B-spline basis to obtain approximating or smoothing splines rather than

interpolating splines. Smoothing splines use fewer basis coefficients than there are observed

data points, which is helpful in avoiding overfitting. In this regard, the basis coefficients Ci

can be interpreted geometrically as control points, or the vertices of a polygon that control

the shape of the spline but are not interpolated by the curve. It can be shown that the

curve lies entirely within the convex hull of this controlling polygon. Further, each vertex

exerts only a local influence on the curve, and by varying the vector of control points and

another vector of knot points (discussed below), one can easily change continuity and other

properties of the curve.

The normalized B-spline basis can be calculated using the Cox-deBoor recursion for-

mula [87]:

, t < xi+ 1

0 otherwise

bi,k (t) = (t - Xi)bj,k-1(t) (Xi+k - t)bj+,k-l(t) (2.4)
Xi+k-1 - Xi Xi+k - Xi+1

Here, k is the order of the basis polynomials (i.e. for a cubic polynomial k = 4).

The values xi are called knots, where i = 1... n + k. A uniform knot vector is one in

which the entries are evenly spaced, i.e., x (0, 1, 2, 3, 4, 5, 6, 7) ". If a uniform knot vector

is used, the resulting B-spline is called periodic since the basis functions will be translates

of each other, i.e., bi,k(t) = bi-l,k(t - 1) = bi+l,k(t + 1). See figure 2-1 for an example. For

a periodic cubic B-spline (k = 4), the equation specifying the curve can be written as:

n

y(t) = Ci bi,4 (t) for x 4 K t < Xn+1 (2.5)
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The B-spline basis allows one to write a particularly simple matrix equation when fitting

splines to a set of data points. Suppose observations are made at m time points tj ... tm
giving a vector D = (D,..., Dm)T of data points. We can then write the matrix equation

D = SC, where C is the vector of n control points and S is a m by n matrix where [S]ij =

bj,4 (ti). If n = m (the number of control points equals the number of data points), then

S is square and the equation may be solved by matrix inversion, yielding an interpolating

spline. However, as discussed this may lead to overfitting and it is often desirable to

use fewer control points than data points to obtain a smoothing or approximating spline.

In this case, the matrix equation must be solved in the least-squares sense, which yields

C = (STS)-1STD.

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1 -

0
0 1 2 3 4 5 6 7

Figure 2-1: The B-spline basis functions axe periodic (translates of one another) when a
uniform knot vector is used. Shown here is the normalized cubic B-spline basis (k = 4) with
knot vector x = (0, 1, 2,3, 4, 5,6, 7 )T. Using the four basis functions shown, the B-spline
will only be defined in the shaded region 3 < t < 4, where all four overlap.

2.4 Estimating unobserved expression values and time points

In order to obtain a continuous time formulation, we use cubic B-splines to represent gene

expression curves. As mentioned above, by knowing the value of the splines at a set of

control points in the time-series, one can generate the entire set of polynomials from the
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B-spline basis functions. In our formulation, the spline control points are uniformly spaced

to cover the entire duration of the dataset. Once the spline polynomials are generated we

can re-sample the curve to estimate expression values at any time-point. Since the control

points are uniformly spaced, each data point has an effect that is related to the actual time

it represents, and different time points can have different effects on the overall expression

curve based on this duration.

When estimating these splines from expression data, we do not try to fit each gene

individually. Due to noise and missing values, such an approach could lead to over-fitting

of the data and may in general lead to estimates that are very different from the real

expression values of that gene (see Section 2.5). Instead, we constrain the spline coefficients

of co-expressed genes by assuming that they are drawn from the same normal distribution

and thus share the same class covariance matrix. Thus we use other genes in the same class

to estimate the missing values of a specific gene.

Though genes in the same class share the same covariance matrix for their spline coeffi-

cients, they can have different expression curves since we allow for gene specific variations.

Such variation can represent higher or lower expression levels, offsets in peak expression

time, etc. If a gene is highly represented (i.e., it does not have a lot of missing values), then

the estimated curve is mostly influenced by the the observed data (via the gene specific

parameters). However, for those genes with many missing values, or those with a set of

consecutive missing values, the class information can be used to determine values at the

missing points more effectively than other methods.

2.4.1 A probabilistic model of time series expression data

In this section we follow a method that is similar to the one used by James and Hastie [67] for

classification. However, unlike their work, in this chapter we focus on gene specific aspects

rather than the common class profile. This allows us to handle variations in expression

levels that are caused by gene specific behavior.

A class is a set of genes that are grouped together using prior biological knowledge or a

clustering algorithm. In this section we assume that class information is given. We discuss

how to deal with cases in which such class information is not given in Section 5.

We represent each gene expression profile by a spline curve. For a gene i in class j, Y(t)

is the observed value for i at time t. Let q be the number of spline control points used, and
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s(t) the vector of spline basis functions evaluated at time t, with s(t) of dimensions q by

1. Denote by ij the average value of the spline coefficients for genes in class j, and by -Yi

the gene specific variation coefficients. We assume that 72 is normally distributed vector

with mean zero and the class spline control points covariance matrix Fj, which is a q by q

matrix. Denote by Ec a random noise term that is normally distributed with mean 0 and

variance oa2 . According to this model, Y(t) can be written as:

Yi(t) = s(t)(G + 7Y) + 'E

This model includes both gene specific and class specific parameters. This allows us to

use information from other genes in the class based on the extent to which gene specific

information is missing. We restrict the missing values of a gene by requiring them to

vary with the observed values according to the class covariance matrix Fj. Using the

class average pj and the gene specific variation -yi, we can re-sample gene i at any time t'

during the experiment. This is done by evaluating the spline basis at time t', and setting

Yit'') = 8 W)(pG + -Y).

In order to learn the parameters of this model (p, y, F and o) we use the observed

values, and maximize the likelihood of the input data. Denote by Y the vector of observed

expression values for gene i, and by Si the spline basis function evaluated at the times in

which values for gene i were observed. If we observed a total of m expression values for

i in our dataset, then Si is of dimensions m by q. The kth row in Si contains the spline

basis functions evaluated at tk, where tk is the time at which the kth value was observed.

According to our model, we have:

Y = Si(p + ri) + ci

where ci is now a vector of the noise terms. Note that since we are estimating the spline

coefficients at the control points, each observed value has an effect related to the actual

time it represents. Thus, different experiments can have different effects on the resulting

curve if the expression values were sampled non-uniformly.
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2.4.2 Estimating spline coefficients from experimental data

The model described above is a probabilistic model, and thus we can solve the parameter

estimation problem by finding the parameters that maximize the likelihood of the input

data . For our solution, we assume that the expression values for each gene were obtained

independently of other genes. This assumption is not entirely true since different experimen-

tal conditions can affect multiple genes in the same experiment. However, this simplifying

assumption allows for efficient computations and allows us to capture the essence of the

results.

There are two normally distributed parameters in our model, the noise term e and the

gene specific parameters y. Thus, the combined covariance matrix for a gene in class j can

be written as:

Ej= 21 + SFjST

where S is the spline basis function evaluated at all the time points in which experiments

were carried out. Given this formulation, determining the maximum likelihood estimates

for our model parameters is a non-convex optimization problem (see [67]). Thus, we turn

to the EM algorithm. Our probabilistic model can be factored as follows:

This results in two terms, each of which depends only on one of the the variance parameters

in our model. The above equation translates into the following joint probability:

1 1 _,)T(
.I ( 2 r)nl/2fni/2exP[ 2 02 (Yi - Si(/I + 7,))T(Yi - S(p +7y))]

j iEcj

1 1

(27r) q/2 IF. 1/2 exp[-lf-- 4] (2.6)

where c is the number of classes and cj is the set of genes in class j. Note that we need to

maximize this joint probability simultaneously for all classes since the variance of the noise,

0 2 , is assumed to be the same for all genes.

This representation leads to the following procedure. We treat the yi's as missing data

and solve the maximum likelihood problem using the EM algorithm. In the E step we

find the best estimation for y using the values we have for a2, tL and F. In the M step we
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maximize equation 2.6 with respect to o2, p and I' while holding the -y's fixed. See [50] and

Section 5 for complete details.

The complexity of each iteration of the EM algorithm is O(q(n+c*q)) since we estimate

q parameters for each gene and q2 + q parameters for each class.

2.5 Results

In this section we demonstrate the application of our method to expression time-series

datasets, showing results for estimating missing values and unobserved data points. Our

results make use of the cell-cycle time-series data from Spellman et al [94]. In that paper,

the authors identify 800 genes in Saccharomyces cerevisiae as cell cycle regulated. The

authors assigned these genes to five groups that they refer to as G1, S, S/G2, G2/M, and

M/G1.

Various treatments can be used to synchronize cells. Expression experiments of the

cell cycle system in yeast used a number of different synchronization methods. To test

our spline interpolation algorithm we concentrated on the cdc15 dataset from Spellman et

al [94]. This dataset contains 24 non uniformly sampled time points (see Table 1.1). We

chose this dataset because it is the largest cell cycle dataset and the most challenging one

as it contains non-uniformly sampled data. However, similar results were obtained for the

other WT cell cycle datasets. The results presented in this section were obtained using

splines with 7 control points; however, similar results were obtained for different numbers

of control points.

We compared our algorithm to three other interpolation techniques that have been used

in previous papers: linear interpolation [3], spline interpolation using individual genes [39],

and k-nearest neighbors (KNN) with k = 20, which achieved the best results on static data

out of all the algorithms described in [98]. In order to predict a missing value for a gene g in

experiment j, the KNN method described in [98] selects n genes (in our case, n = 20) with

similar expression values to g in all of the other expression experiments. Next, the average

of expression of these genes in experiment j is computed, and this is the value assigned to

gene g in experiment j.

In order to test our algorithm on a large scale we chose 100 genes at random from the

set of cell-cycle regulated genes. For each of these genes we ran each estimation algorithm
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four different times, hiding 1,2,3 and 4 consecutive time points, while not altering the other

genes. Next, we computed the error in our estimations when compared to an estimate of

the variance of the log ratios of the expression values in the following way.

Denote by Y(t) the (hidden) expression values for gene i at time t, and by Y(t) an

estimated values. Denote by m the number of missing (hidden) data points and by n the

number of genes that were used for the test. Denote by v the variance of the log ratios of

expression values. Then the error of an estimation for m missing data points is defined as:

1 n y,= 1 -y t1e'rrmn = n V__________

If errm is above 1 then the error is (on average) bigger than the replication variance, and vice

versa. The variance v was computed using the raw expression data of the unsynchronized

cells from two different time points.

Figure 2-2 shows a comparison of the error of our estimation algorithm with the three

methods mentioned above. For our method, we performed two separate runs. In the first we

used the class information provided in [94] (the assignment of the genes to the five different

phases) and in the second we used a novel clustering algorithm described in Section 5 to

obtain the class information. As can be seen in the figure, our algorithm achieves more than

10% less error when compared with the second best method (k-nearest neighbors, KNN).

We have repeated this test by hiding different sets of experiments in order to compute the

variance of the prediction errors. For all methods, results for hiding 2,3 and 4 consecutive

points remained the same for all sets of experiments used. Results for hiding one time point

varied slightly between different sets (up to 0.1 difference), though in all cases the algorithm

presented in this section did better than any of the other methods mentioned above.

Interestingly, our algorithm does somewhat better when it is allowed to estimate class

membership than it does when the class information is pre-specified. This can be attributed

to the fact that the five classes from [94] are somewhat arbitrary divisions of a continuous

cycle. Thus, for missing value estimation our clustering algorithm is able to assign more

relevant class labels. Since our algorithm interpolates the input expression points, it can

estimate expression values at any time point during the course of the experiments. In Fig-

ure 2-3 we present results that were obtained by hiding 1,2,3 and 4 consecutive experiments.

Again, our algorithm achieves more than 15% less error than the other two techniques. Note
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Comparison of Missing Values Estimation Techniques

-+- Linear interpolation
-a- Splines for individual genes
-0- KNN

1.5-- TimeFit W/ Spellman classes
-kr- TimeFit W/ own classes
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Figure 2-2: Comparison among different missing value interpolation techniques. Five dif-

ferent methods where compared, as discussed in the text. As can be seen, in all cases our

algorithm does better than the others methods, achieving up to 15% improvement over the

best previously applied methods.
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that KNN cannot be used to estimate missing experiments, and thus is not included in this

comparison.

Comparison of Missing Experiments Interpolation Techniques

1.C5
--+- Linear interpolation
-m- Splines for individual genes

1.5- Time Fit W/ Spellman classes
-- TimeFit W/ own classes

1.36-
Lu

1.256

1.15

1.05
1 2 3 4

Num of missing experiments

Figure 2-3: Comparison among four different methods for interpolating time series expres-
sion data. For this figure we held out complete time points, and used interpolation to predict

the values of all genes for the missing time points. KNN is not an interpolation algorithm,
and thus cannot be used for this task. Again, in all cases our algorithms achieved the best

results.

2.6 Summary

Due to noise, missing values and differences in sampling rates, interpolation is an important

first step for combining and comparing time series expression datasets. In this section we

presented an interpolation method that uses mixed effects models to assign spline repre-

sentation to time series expression data. This method combines class and individual gene

information to learn a spline model for each gene. This allows us to use class information

in places where many of the values are missing, and the gene specific information where

the values are present. An additional advantage of a spline based method is that it allows

us to weight each sampled point based on the actual duration it represents. This is espe-

cially important for expression datasets, since many of these datasets are non uniformly
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sampled. We have presented results using real biological datasets that demonstrate that

our algorithm fits the data well, and that it improves upon previous methods used for the

same task.

It is important to note that our method requires data that has been sampled at a

sufficiently high rate. While it works well on several such datasets, as we have shown, for

other datasets that have been sampled at rates too low to capture changes in the underlying

biological processes, our method will not be effective. A future direction would be to use

our method to determine the quality of the sampling rate.

In the next chapter we extend the results presented in this chapter, and use the splines

generated by our algorithm to continuously align time series expression datasets.
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Chapter 3

Aignment'

In addition to different sampling rates, variability in the timing of biological processes fur-

ther complicates gene expression time-series analysis. The rate at which similar underlying

processes such as the cell-cycle unfold can be expected to differ across organisms, genetic

variants, and environmental conditions. For instance, Spellman et al [94] analyze time-

series data for the yeast cell-cycle in which different methods were used to synchronize the

cells. It is clear that the cycle lengths across the different experiments vary considerably,

and that the series begin and end at different phases of the cell-cycle (see Table 1.1). Thus,

one needs a method to align such series to make them comparable.

In this section we present an alignment algorithm that uses the same spline represen-

tation discussed in the previous section to continuously time-warp series. First, a param-

eterized function is chosen that maps the time-scale of one series into another. Because

we use parameterized functions, we are explicitly specifying the number of allowed degrees

of freedom, which is helpful in avoiding overfitting. Our algorithm seeks to maximize the

similarity between the two sets of expression profiles by adjusting the parameters of the

warping function.

3.1 Related Work

To the best of our knowledge, the only previous attempt to solve the alignment problem for

time series expression data is discussed in Aach et al [3]. In that paper, the authors present

a method for aligning gene expression time-series that is based on Dynamic Time Warping,

'This chapter is based on references [18] and [20]
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a discrete method that uses dynamic programming and is conceptually similar to sequence

alignment algorithms. Unlike with our method, the allowed degrees of freedom of the warp

operation in Aach et al depends on the number of data points in the time-series. Their

algorithm also allow mappings of multiple time-points to a single point, thus stopping time

in one of the datasets. In contrast, our algorithm avoids temporal discontinuities by using

a continuous warping representation.

There is also a substantial body of work in the speech recognition and computer vision

community that deals with data alignment. For instance, non-stationary Hidden Markov

models with warping parameters have been used for alignment of speech data [38], and

mutual information based methods have been used for registering medical images [101].

However, these methods generally assume high resolution data, which is not the case with

available gene expression datasets.

3.2 Continuously aligning temporal expression datasets

The goal of the alignment algorithm is to warp the time-scale of one realization of a biological

process into that of another. A set of genes is chosen in which the members are assumed

to have the same temporal pattern of expression (e.g., from prior biological knowledge or

clustering methods). A parameterized warping function is then selected and our algorithm

seeks to produce an optimal alignment by adjusting the function parameters. Note that

although it is possible to align individual genes this is problematic unless one has sufficiently

high quality data as from replicates or a large number of time points.

Assume that we have two sets of time-series gene expression profiles, one of which we

will refer to as the reference set. Denote a spline curve for gene i in the reference time

series as gi(s), where smin s < 5 max. Here, smin and smax are the starting and ending

points for the reference time series respectively. Similarly, we will denote splines in the set

to be warped as g2(t) for tmin 5 t < tmax. Define a mapping T(s) = t, which transforms

points in the reference scale into the time-scale of the set to be warped (see Table 3.1 for

a summary of the parameters used by our alignment algorithm). In this chapter, we use

a linear transformation T(s) = (s - b)/a, with a the stretch/squash parameter and b the

translation. However, more complex transformations could be used in our framework. We
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define the alignment error ei for each gene as:

f [gF(T(s)) - g4(s)]2 ds
2 a

e= 8 (3.1)

where a = max{smin, T-'(tmin)} is the starting point of the alignment, and #B min{smax, T-1(tmax)}

g1, 92 - splines for the two datasets
s -reference time scale
t - warped set time scale

T - a function from s to t
a, 3 - start and end points of the alignment
a, b - stretch (a) and shift (b) parameters

Table 3.1: The parameters used by our alignment algorithm.

is its end point. The error of the alignment for each gene is proportional to the averaged

squared distance between the curve for gene i in the reference set and in the set to be

warped. In order to take into account the degree of overlap between the curves, and to

avoid trivial solutions such as mapping all the values in the curve to a single point, we di-

vide this error by the time-length of the overlap # - a. Thus, our goal is to find parameters

a and b that minimize ej. As discussed, we suggest minimizing the error for a set of genes.

We define the error for a set of genes S of size n as:

ES = Cwie (3.2)
i=1

The wi's are weighting coefficients that sum to one; they could be uniform (1/n) or used for

unequal weighting. For instance, if one wishes to align wildtype time-series expression data

with knockout data, many of the genes' expression patterns are expected to be unchanged

in the two experiments. However, a subset of the genes may be highly affected. In this

case, we want to down-weight the contribution of such genes, since they are not expected

to align well. One way of formulating this is to require that the product wie2 be the same

for all genes. That is, the higher the error, the lower the weight we assign to that gene so

that the weight is inversely proportional to the error. This requirement translates into a

maximization problem for the inverse squared error, as we show below.
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From wie? = K, we get that Es = nK and so we can deduce that:

K K 1 ES
wt = -y = > w2 = 2 2 K-2 =

e C1 1/ei n

since E> wg = 1. As before, the objective is to minimize ES, or in this case equivalently to

maximize E> 1/e?.

Minimization of ES must be done numerically, since a closed form solution is not possi-

ble. In the linear case presented, we are only searching for two parameters, so we minimize

ES directly using standard non-linear optimization techniques. We use the Nelder-Mead

simplex search method (available in the Matlab package), which does not use gradients and

can handle discontinuities. For the linear warping case, the essential constraints are that

a' < 3 and a > 0. Since the use of a numerical optimization method does not guarantee

convergence to a global minimum, multiple random re-starts may be necessary. This leads

to an algorithm with running time O(rmnq2), in which r is the number of random re-starts,

m is the number of iterations for convergence, n is the number of genes in S, and q is the

number of spline control points used.

If a large number of genes are to be aligned, we suggest the following algorithm to

reduce the computation time. Begin by choosing a random subset of fixed size (e.g., 50

genes) and random initial settings for the warping parameters from a uniform distribution.

The minimization procedure is then carried out and this process is repeated with a new

random choice of warping parameters for a set number of iterations. Upon termination, the

alignment parameters that correspond to the minimum error are chosen. These parameters

are then used as the starting conditions for the ES minimization using the full set of genes.

See Section 3.3 for experimental results on how this reduces the running time on gene

expression datasets.

3.3 Results

To test our alignment algorithm, we used time series expression datasets from experiments

that studied the yeast cell cycle. We aligned the three yeast WT cell-cycle gene expression

time-series from Table 1.1. We shall refer to these datasets as cdc15DS, cdc28DS, and

alphaDS in this section. These datasets clearly occur on different time-scales and begin

in different phases Since its the longest, and contains the most time points, cdc15DS was
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used as a reference set and the alphaDS and cdc28DS were aligned against it using a

linear warping T(s) = (s - b)/a and the full set of cell-cycle regulated genes as identified

in [94]. For the cdc28DS, we obtained a = 1.42 and b = 2.25 with ES = 0.1850. These

results indicate that the cdc28DS cell-cycle runs at approximately 1.4 times the speed of

the cdc15DS cycle and starts approximately 5.5 minutes before (i.e., we calculate T(10)

since cdc15DS starts at 10 minutes). For the alphaDS, we obtained a = 1.95 and b = -5.89

with ES = 0.1812. Figure 3-1 shows the aligned/unaligned expression values for the G1

and S/G2 clusters for the cdc28DS to cdc15DS alignment. Alignment for each dataset

took approximately 5.5 minutes on a 1 GHz Pentium III machine using our algorithm that

performs initial alignments on smaller subsets of genes; the alignments took approximately

45 minutes without this improvement. In Figure 3-2 we present alignment results for three

-*-cdc28 exp. vals
1-e- cdol5 exp. vats

cdc28 spline
0.5 - cdcl5 spline

0- 0-

-0.5 -0.5.

0 50 100 150 200 250 0 50 100 150 200 250

0.5- 0.5-

0 0

-0.5 -0.5-

-1 ' '-10 50 100 150 200 250 0 50 100 150 200 250

Figure 3-1: Alignment of genes from the cdc28DS to cdc15DS. Linear warping was used
with the full set of cell-cycle regulated genes. The left-hand side shows class-averages of
unaligned expression values for two clusters. The top row shows aligned results for the G1
cluster (186 genes) and the bottom row the S/G2 cluster (283 genes). These results indicate
that the cdc28DS cell-cycle runs at approximately 1.4 times the speed of the cdc15DS cycle
and starts approximately 5.5 minutes before.

cell cycle regulated genes in the three experiments discussed above. As can be seen, using

only the input values for each gene, the three profiles (under the different conditions) look

very different. However, when using the aligned continuous representation we arrive at a

very good agreement between the three experiments for all three genes. To validate the
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Figure 3-2: Alignment of three different genes for the three WT cell cycle experiments. Left
column: input values. Middle column: aligned input values using the temporal mapping
function for the three datasets. Right column: aligned splines computed for these genes. As
can be seen, by computing the alignment parameters the expression profiles start to match.
When we introduce the aligned continuous representation, we are also able to overcome
missing values and noise, resulting in a good agreement between the three experiments for
all genes.

quality of these alignments we performed two analyses: 1) alignments of genes in alphaDS

against genes in cdc15DS with gene identity of those in cdc15DS randomly permuted and 2)

alignments of alphaDS to cdc15DS using different numbers of genes. Note that for brevity

only the alphaDS was used; we chose this dataset because it is the smallest and presumably

demonstrates worst-case results. For the first analysis, we performed 200 trials giving Es
scores between 0.2562-0.3554, with 50% of the scores lying between 0.2780-0.3129. These

results suggest that the actual alphaDS to cdc15DS Es score of 0.1812 would not arise by
a chance alignment of the genes. For the second analysis, we sampled subsets of between

5-400 genes 100 times from the full set of cell-cycle regulated genes (Table 3.2). This
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# a std a b std b
genes
5 1.80 0.42 -7.70 16.41
10 1.89 0.21 -5.06 21.5
25 1.93 0.10 -4.99 7.07
50 1.93 0.13 -5.13 9.03
100 1.96 0.03 -6.86 2.42
200 1.95 0.02 -6.38 1.76
400 1.96 0.02 -6.12 1.30

Table 3.2: Results of experiments in which random subsets of fixed size were sampled 100
times and alignment of alphaDS and cdc15DS were performed. The columns are as follows:
number of genes used, stretch/squash parameter, standard deviation of this parameter,
offset parameter, and standard deviation of this parameter. This analysis shows that the
variance in the parameters decreases as more genes are used and there is convergence to
the a and b settings found with the full set of genes.

analysis shows that the variance in the parameters decreases as more genes are used and

there is convergence to the a and b settings found with the full set of genes. Interestingly,

our algorithm is usually able to find the "actual" a and b parameter settings even when

relatively small numbers of genes are used.

Thus, these analyses give evidence that our algorithm can reliably align the cell-cycle

datasets. These results compare favorably with those in Aach et al [3] using the same

data. In their case, they found that their actual alignment score was not at a low percentile

when compared against alignments using randomized data (gene values shuffled). Further,

they indicate that poor results were obtained with small cluster sizes (an analysis over a

wide range of sizes was not presented in their paper). The fact that our method uses a

continuous representation and fits only two parameters to all the genes helps to explain its

good performance on the cell-cycle data. However, one must be careful in extrapolating

these results, since they are clearly dependent on the underlying dataset.

3.4 Summary

In this section we have described an algorithm that aligns a continuous representation of

two or more time series expression experiments to overcome problems related to the timing

of biological processes, and differences in the starting times of the measurements. Our

algorithm uses cubic splines to represent time series expression profiles, and the alignment
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is performed by fitting a temporal mapping function that minimizes the square integral

between the two curves. Using three wild type cell cycle expression dataset, we have shown

that this algorithm obtains both biological and computational significant results. This

method allows the direct comparison of two gene expression profiles, and in the next section

we use this alignment algorithm as a pre-processing step for identifying genes that are

differentially expressed between two expression experiments.
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Chapter 4

Identifying differentially expressed

genes in time series expression

datal

One of the key issues in time series gene expression analysis is the identification of genes

with altered expression between samples. For instance, one would like to identify genes

that have changed significantly after an experimental treatment or that differ between

normal and diseased cells. In clinical research, such differentially expressed genes can serve

as disease specific markers or as predictors of the clinical outcome of a treatment [99,

104, 78, 62]. In knockout experiments, differentially expressed genes represent first or

second order downstream effects of the knocked out gene [107, 82], and their identification

allows the discovery of genetic interaction networks. Other experiments have looked at

temporal expression changes when cells are treated with various agents [49] in order to

identify different expression programs in the cell.

Recently, a number of algorithms for analyzing various features of time series expres-

sion data have been introduced, but none of these algorithms are directly applicable to

detecting genes that are differentially expressed. As mentioned in Sections 2 and 3, a num-

ber of algorithm for interpolating, aligning and clustering time series expression data have

been described in the past. Clustering algorithms are useful for identifying patterns in a

single expression experiment, but they cannot be directly used to compare two time series

'This chapter is based on reference [19]
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experiments. Interpolation and alignment algorithms are important pre-processing steps,

however, it is not clear how they can be used to identify differentially expressed genes. In

this section we use the interpolation and alignment methods from Sections 2 and 3 as a

pre-processing step.

4.1 Overview of our algorithm

We present a general algorithm that fully exploits information in time-series gene expression

data to detect differentially expressed genes. Our algorithm represents the two expression

profiles to be compared with aligned continuous curves, and computes a global difference

measure between these two curves. This allows us to use a difference measure that takes

into account the entire curves, and not just the sampled points. In addition, such a method

requires a minimum of unwarranted assumptions, since we do not assume anything about

the underlying form of the data. In order to determine the significance of this global

difference, we use a noise model for individual samples to find a curve that best explains

this difference. By basing our comparison on a maximum likelihood assignment instead of

the original profile, our algorithm will err on the conservative side. That is, only global

difference values that cannot be explained by the "best" (maximum likelihood) curve will

be considered significant. Another advantage of our algorithm is that it combines a noise

model for individual samples (which is easy to compute) with a global error measurement

that captures the temporal difference between two expression profiles. Thus, it can assign

significance to temporal expression differences, while requiring only a minimum number of

expression measurements repeats. This latter point is important, since repeating time-series

experiments can be prohibitively expensive and in most publicly available data sets there

are no, or very few, full repeats [94, 107, 78].

We applied our algorithm to the comparison of time-series data of cell-cycle dependent

gene expression in wild-type [94] and knockout [107] yeast. Our algorithm identified a

larger set of 56 differentially expressed genes than reported in the previous analysis by Zhu

et al [107]. In addition, our algorithm was able to identify 22 non-cell cycle regulated genes

as differentially expressed. We showed that this set of genes is significantly correlated in a

set of independent expression experiments. Interestingly, some of these genes were found

to be cycling in the knockout experiments while they are flat in the wild type experiment.
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4.2 Related work

Many algorithms have already been introduced for identifying genes differentially expressed

between two experiments in the static expression case [52, 41]. However, due to differences

in sampling rates, and variations in the timing of biological processes (see Table 1.1), such

methods cannot be directly applied to most time series expression datasets. Previously

reported algorithms for identifying differentially expressed genes in time series data either

essentially applied static analysis methods, used ad-hoc methods that are not generally ap-

plicable, or were highly tailored for a specific data set. Previously reported methods include

cluster analysis [107, 49], generalized SVD [7], point wise comparison [78, 62] and custom

tailored models [104]. While these methods have achieved some success, they suffer from

many problems. As we demonstrate in the results section, cluster analysis fails to detect

differentially expressed genes that belong to clusters for which most genes do not change.

Generalized SVD (presented by Alter et al [7]) can be used to detect differences between

sets of genes, but they are not appropriate for comparing individual genes. Further, these

methods require that the datasets being compared contain the same number of experiments

(or time points), which is clearly not the case in general (see Table 1.1). In addition, these

algorithm cannot deal directly with differences that result from the difference in the timing

of biological processes, which requires us to align the datasets prior to comparing them.

Direct point-wise comparison of samples, essentially a static analysis method, is problem-

atic because it does not take into account the dynamic nature of the experiments, and is

unable to distinguish between systematic changes and random noise. Further, due to the

inconsistencies in time series data obtained from different sources mentioned above, in many

cases direct point-wise comparison is not possible. Finally, custom tailored models clearly

do not present a general solution, as these require significant assumptions about the shape

of the expression profiles being compared (e.g., linear or quadratic models). In most cases,

a priori knowledge that would justify using highly specific models is unavailable. Even in

cases in which some genes are known to change in a certain way over time (e.g., a sinusoidal

model for the cell cycle), using a highly specific model for the shape of expression profiles

will result in missing changes in many genes that are not behaving according to the assumed

model.
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4.3 Hypothesis testing for differentially expressed genes

Following spline assignment and alignment (as discussed in Sections 2 and 3), each gene is

represented by two continuous curves (one for each experiment). Denote the first (reference)

curve as C1 and the second (test) curve as C2 (for example, C1 could be the wild-type

expression profile, while C2 is a knockout profile). Given C1 and C2, we would like to

answer the following question: Is the difference between the two expression profiles for a

certain gene significant or not? This problem can be formulated as a hypothesis testing

problem, with the following two hypothesis:

Ho: C2 is a noisy realization of C1.

H1 : The two curves are independent.

Under the null hypothesis, we assume that C2 can be represented by the same spline curve as

C1, and that any difference between the two profiles is a result of noise in the measurement

of the test experiment. Under the alternative hypothesis we assume that both C, and C2 can

be represented by a spline curve, though we do not assume anything about the relationship

between the two curves.

The hypothesis test can be performed by looking at the ability of each hypothesis to

explain the difference between the two curves. Using log a likelihood ratio test this could

be written as:

2 log p(C2IC1, H) (4.1)
p(C2|C1, Ho)

While there are established statistical methods for comparing two curves, these methods

will not work well in our case. Unlike regular curves, the expression profile curves were

derived from very few sample points, and this fact should be taken into account when

computing the significance of the difference between the curves. In addition, most methods

require additional information about the curves (such as a noise model for the entire curve),

which is not available in our case due to the small number of full repeats. Thus, we present

a method that allows us to compute these conditional probabilities, even when only few

repeats exist.
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4.3.1 Noise model for individual samples

Here we assume that noise in individual measurements is normally distributed with mean

0 and variance a2 (see Section 4.3.5 for a discussion on how to incorporate expression-value

dependent variance into our algorithm). Since noise in individual expression measurements

is assumed to be independently varying, o2 can be computed even if few repeats exist.

Denote by Y and Y2 the actual expression values measured in the reference and test experi-

ments respectively. Let Y' the expression value at time t in the reference experiment. Then

p(X YIt, a 2 ) is the probability of obtaining expression measurement x at time t. Comparing

Y1 and Y2 directly is not possible because of their different sampling rates and temporal

expression variations. However, we can sample C2 at the same time points as the actual

reference experiment to obtain a set of values that are comparable to Y. Let ti ... tm be

the set of time points that were measured in the reference experiment. For a curve C,

Denote by C(t) the value of C at time t. Set Y = {C2(t) ... C2 (tm)}, i.e., Y2 is the vector

of points sampled from C2 at the reference experiment points. To compute the conditional

probability under hypothesis one (p(C2 1C1, H1 )), we use Y, and recall that under H1 , Ci

and C2 are independent. Thus, we can set

p(C 2 IC1, Hi) = p(Y Ha2 ,H) = (21r,2)m/2

where we set the means at the sampled points, and the number of sampled points determine

the number of degrees of freedom.

While a sample based method works well for the alternative hypothesis, under the

null hypothesis (Ho), using samples from C2 suffers from a number of drawbacks. First,

such a method does not capture global differences in expression, since it ignores systematic

differences between the curves (for example, if one were always higher or lower). Second,

in many cases sampling rates for time-series data are non-uniform. Using a sampling based

method, we assign an equal weighting to each sampled point, which does not reflect the

actual time each point represents. In the next subsection, we introduce a method for

computing p(C2IC1, Ho) that overcomes these difficulties.
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4.3.2 Combining a sample noise model with global difference

Instead of directly using samples from C2 to compute p(C21C1, Ho), we use the global

difference between the two expression curves C1 and C2, which is defined as:

Ve

f [C2(t) - C1 (t)]2dt
D(C 2, C1 ) = Vs

Here, v. and ye are the start and end of the interval in which the two curves can be

compared (the alignment interval). and V = ve - v,. Note that D(C 2 , Ci) is proportional

to the averaged squared distance between the two curves (similar to Equation 3.1 we used

for our alignment algorithm). This is a suitable difference measure for the following reasons.

First, D(C 2 , C) depends on the actual duration over which the curves can be compared,

and is thus less sensitive to sampling rates. In addition, D(C 2 , C1) can distinguish between

consistent differences and random oscillations around the reference samples, and is thus

sensitive to actual systematic differences (see Section 4.4). Finally, by relying on a scalar

global difference measure, we reduce to minimum the number of unwarranted assumptions,

since we do not assume anything about the underlying form of the data. While hypothesis

testing on multiple parameters would be advantageous if we had strong a priori knowledge

about a model for expression changes (e.g., quadratic profiles), in the absence of such

information the single global difference measure we introduce requires a minimum number

of unwarranted assumptions.

We now discover a new curve, C, that best explains the difference between Ci and

C2. Let e2 = D(C 1 , C 2 ). Setting p(C2 IC1,Ho) = p(e2 I 2 , Ho) leads to framework that

combines the individual error model (o2 ) with a global difference measurement (C2 ) which,

as discussed above, correctly captures the differences between the two curves. In other

words, p(CYi, a2 , Ho) is an induced probability measure over deviations e2 = D(C 1 , C2)

for all possible realizations of C2.

For a curve C, set Yc = {C(t1 ) ... C(tm)}. In order to find the maximum likelihood

assignment of p(e2 1, ya 2 , Ho), we need to find a curve C with the same global distance (e2 )

from C1 that maximizes the probability that C is a noisy realization of C1. Formally, this
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could be stated as the following maximization problem:

maxyc (p(Yc Yi, u)) s.t. D(C, C1 ) = e2 (4.2)

That is, we are looking for a curve C which satisfies the global error constraint (D(C, Cj) =

D(C 1 , C2)), such that when sampling from C at time points that where used in the reference

experiment (Yc), we get values that are as close as possible to the values measured in the

reference experiment. Using the maximum likelihood assignment instead of simply the orig-

inal C2, guarantees that the computations of the significance of differential expression will

err on the conservative side. That is, only a global error value e2 that cannot be adequately

explained by the "best" (maximum likelihood) curve C will be considered significant.

4.3.3 Solving the maximization problem

The maximization problem in equation 4.2 can be solved by working on the spline represen-

tation for each curve, and re-writing equation 4.2 in terms of the spline control points. In

order to show how to solve this problem we introduce additional notation. Recall that the

expression curves consist of sets of cubic splines. As mentioned in Section 2.2, splines can be

fully specified by a set of control points. Let F be the set of control points for C1, and FC

be the set of control points for a curve C. Since F and FC fully specify C, and C, we can

use the notation D(FC, FI) instead of D(C, CI). In addition, based on our model we can

write Yi = SFI 1, and YC = SFC. Since individual noise terms are normally distributed, it

can be shown (by taking the log, and ignoring constant terms) that maximizing p(YcIYi, C2 )

is equivalent to minimizing (Yi - YC)T(Y 1 - Yc). Thus, the above maximization problem

can be written as the following quadratic minimization problem:

minFc(S(Fi - Fc))T (S(F - FC)) s.t. D(Fc,Fi) = 2 (4.3)

This problem can be re-written as a quadratic minimization problem, as shown in the

following lemma.

'Note that we omit the noise term from this equation since we are now using the predicted reference
splines.
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Lemma 4.3.1 The following minimization problem:

minFc(S(F1 - Fc))T(S(F1 - Fc)) s.t. D(Fc,F1 ) =e2

can be written as:

min6 (SS)T(S) s.t. 6TAS = 1

where A is a positive definite matrix.

Proof: First, we need to explicitly represent D(C, C1) using FC and Fl. This could be

done as follows:
ye

f (s(t)[F1 - FC])2 dt
D(C, C) = D(Fc, FI) =

where s(t) is the spline basis function evaluated at time t. Set 6 = F - FC, then we have

(S(F - FC))T(S(F - Fc)) = (S6)T(S6). As for the integration, denote the number of

splines (or the number of piecewise polynomials) by q, and let PO ... Pq be the set of start

and end points for the individual splines (that is, the first spline starts at p0 = vs and ends

at pi and so on). Thus, the integration part can be re-written as:

J (s(t)[F1 - Fc])2dt = J (s(t) 6) 2 dt = Z6T( ](s(t)8 (t)h )dt) 6

Since s(t) is continuous polynomial between pi and pi+1, we can evaluate the integral in the

above equation. Note that this integral is actually a matrix, and, as just mentioned, each
Pi+1

entry in that matrix can be evaluated. Set Bi = ( f (s(t)s(t)T)dt and let B = E Bi, then
Pi

Ve

f (s(t)6)2 dt = 3TBJ. Note that B is positive semi definite, since the integral on the right
vs
hand side measures the squared distance between two splines. To show that B is positive

definite, we note that if 6 = 0, then the two sets of control points differ in at least one entry.

Using a B-spline basis function, each polynomial is only supported by four control points.

Since the basis for a cubic polynomial is of degree four, two identical cubic polynomials

cannot be represented by two different sets of four control points. Thus, at least in the

segment corresponding top this polynomial the two curves differ, and since the integral

measures the squared distance between the two curves, the result will be greater than 0.
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Setting A = B/(V + e2 ) proves the lemma since both V and e2 are positive values.

Next, we use Lagrange multipliers to show that the solution is a vector 6, such that 6 is

the eigenvector with the smallest eigenvalue for the matrix A-ISTS, as we prove in the

following lemma.

Lemma 4.3.2 Let 6 he the eigenvector with the smallest eigenvalue for the matrix A-STS,

then 6 (appropriately scaled), is the solution to the following minimization problem:

min6(S6)T(S6) s.t. 6TA6 = 1 (4.4)

Proof: Using Lagrange multipliers we can write: L = (S6 )T(S 6 ) - ASTAS - A. Taking

the derivative w.r.t. 6, and setting 2 = 0 we get: STS6 = AA6 -> A-ISTS6 A6. Thus,

6 is an eigenvector of A-'STS. Multiplying both sides of the above equation by STA we

get: 6TSTS6 = A6TA6 = A, where the last equality results from our constraint (6TA6 = 1).

Since jTSTS6 is the quantity we wish to minimize, A must be the smallest eigenvalue of

A'STS, and 6 should be the eigenvector corresponding to that eigenvalue, appropriately

scaled so that 6TA6 - 1. 0

Now, set F6 = F1 - 6 and Y6 = SF6. Based on the discussion above, we can now compute

p(C2IC1, Ho) =p(Y|Y1 , 9 2 ).

4.3.4 The complete algorithm

Figure 4-1 presents the complete algorithm we use for identifying differentially expressed

genes in time-series data. The input to the algorithm is the set of genes G, the two expres-

sion datasets, El and E 2 and a significance threshold e. Following spline assignment and

alignment, we solve equation 4.4 for each gene, and use the solution Y to compute the log

likelihood ratio as follows. First, as discussed above we set p(C 2 |C,, H1 ) - p(Y'la2 , H1),

which can be written as p(Y2'lY, or2) since under HI, C2 represents the mean curve for the

second experiment. For HO we have p(C 2 |CI, Ho) = p(Y3|YI, u2 ), and thus the log likelihood

ratio evaluates to:

(yI-yI)T (yI-y y)
p(C2 |C,,H1) 2oge 2,2 (y, _ y 3 )T ( y, - y)(

2 log = 2 log (4.5)
p(C2|ICI, Ho) _(y - y6) T 1y,- y6) C.2

e 2,2
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Next, to perform a significance test, we use the chi-square distribution with q degrees of

freedom (where q is the number of spline control points used by the curves). It is also

possible to incorporate our confidence in the reference curve into the p-value computation,

as we show in Appendix A.1.

DiffExp(G, El, E 2 , E) {
For all genes i E G

Compute spline assignment (C', C2) and control points(Fi, Fi) for i in both experiments
Align the two datasets
For all genes i E G{

= D(C , C)
Let Y be the solution for equation 4.4 using ej and Fl

o-
s = 1- cdf of the chi-square distribution for r with q d.o.f
If s < c output i

}
}

Figure 4-1: Complete algorithm for identifying differentially expressed genes in time series
data.

The computational complexity of this algorithm is linear in the number of genes we

are testing. Spline assignment and alignment can be done in linear time (see Sections 2

and 3). Next, for each gene we need to solve the maximization problem from equation 4.2.

As shown in Lemma 4.3.2 this can be done by finding eigenvectors for the matrix A-ISTS.

The dimensions of this matrix depend only on the number of points sampled for each

gene, and the number of spline control points used. Both these values can be considered

as constants with respect to the number of genes (typical numbers are less than 30 time

points and 10 control points, while there are over 6000 yeast genes). Thus, we can solve

the maximization problem in a constant time, and the total running time is linear in the

number of genes.

As we show below, the above algorithm can be modified so that it can use variances that

depend on expression value magnitudes. It is also possible to present a symmetric version

of this algorithm. See Appendix A.1 for details.

4.3.5 Value specific variance

So far we have assumed that all expression values have the same variance, a2 . In practice,

we have found that the variance of expression measurements depends on the magnitude of
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expression values or fold changes (see Figure 4-2). Taking this fact into account is especially

Value Specific Variance

0
-1.5 -1 -0.5 0 0.5 1 1.5

Log fold change

Figure 4-2: The variance associated with different log fold change values. This variance was

computed from the 2 repeats in the fkhl/2 [107]. As can be seen, the higher the absolute

log fold change, the higher the associated variance. Since most values are relatively low,
using the same variance for all values results in an under estimate of the variance for genes

that have large changes during the cell cycle. Instead, we incorporate the value specific
variance into our algorithm, as discussed in this appendix.

important for time series data, since small shifts in the magnitude of expression values can

result in large global differences for genes with high fold change values. Thus, taking value

specific variance into account reduces the effect of experimental artifacts and associated

high variance, allowing us to accurately detect significant changes and ignore changes that

are a result of noise.

Our framework for combining an individual error model with a global difference mea-

surement (equation 4.2) can be modified to use variances that depend on expression value

magnitudes. Instead of maximizing p(YclYi, o 2 ) we maximize p(YcYi, of ... o2) where

2, ... 2m are the m expression value specific variances for the samples in Y1. Recall that

the rows of S (the spline basis function matrix) correspond to the time points that were

sampled in the reference experiment. Denote by Si the ith row of S. Let Sj = Si/ai. Then

maximizing p(YclYi, c2 ... 2 ) is equivalent to minimizing S'(F - Fc))T (S'(Fi - FC), and

we proceed by replacing S with S' in equation 4.4. This results in the differential weighting

of the individual errors around Y1 , leading to a reduction in the effect that experimental
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artifacts and associated high variance can play in determining differential gene expression.

In order to compute the value specific variance for a value x we use the following method.

Let R1 and R 2 be two repeats of the same experiment, and let 0 denote a weighting coeffi-

cient (for the results presented in this chapter we use 0 = 0.25), which allows us to control

the range of values that will contribute to the computation of the variance. For r' E R1 let

r2 E R 2 be the corresponding repeat in the second experiment. Set

p(rI) = 2 e(r-X)2 1 (202)

and P = sumjp(r'). Then the value specific variance for x, vx is computed by setting:

( -r )2

That is, vx is computed by using a Gaussian bump around the selected value (x), and

weighting the contribution of the different repeats based on their distance from x.

4.4 Results

We have tested our algorithm using synthetic data and cell cycle expression data. As we

show below, our algorithm generated correct results for the synthetic data and biologi-

cally meaningful results for the expression datasets we used. In both cases, our algorithm

improved upon prior methods for comparing time series expression datasets.

4.4.1 Synthetic data

In order to test our algorithm, to determine significance thresholds under a variety of ex-

pression profiles and noise models, and to compare it to previous methods that work by

comparing individual points we first tested our algorithm on synthetic data. We gener-

ated four sets of samples Y1, Y2, Y3, Y4 as follows (see Figure 4-3). Y1 consisted of a

set of uniform samples from a sinusoid between 0 and 41r. Y2 was generated by adding

random noise (normally distributed with mean 0) to Y1. Y3 was generated by adding a

positive value, b, to the values in Y1. Finally, we set Y4 = aY1 where 0 < a < 1. The

parameters a and b were selected such that the mean absolute error of all sets with respect

to Y1 was equal. While Y2 is a noisy realization of Y1, Y3 and Y4 represent consistent
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additive or multiplicative differences. If the input set is normalized appropriately, such

consistent differences over time might represent real biological change. For example, in cell

cycle experiments, genes that show a reduced cycling profile are probably effected by the

experimental condition and should be detected.

We repeated the process of generating Y2, Y3, and Y4 1000 times for each of several

sampling rates (sampling rates were chosen to be similar to those used in prior actual

expression experiments), and was various noise variances. For all the different sampling rates

and noise models, our algorithm correctly identified the Y2 samples as a noisy realization

of Y1. As the sampling rate increased, so did the ability of our algorithm to correctly

detect consistent changes (Y3 and Y4) as differentially expressed (see [16]). To compare

our results with methods that work directly on the input samples, we have also performed

the hypothesis testing with the actual samples by replacing Y6 with Y2, Y3, Y4. In Figure 4-

4 we present the results of the two methods using 24 samples (similar to the sampling rates

of [94]) and a noise model derived from time series repeats from Zhu et al [107]. While

in all cases our algorithm correctly identified Y2 as a noisy realization of Y1, the sample

based method identified 90% of the Y2 samples as differentially expressed. Since in time

series experiments most genes do not change, such a high false detection rate cannot be

tolerated. In addition, our algorithm was able to detect more of the Y3 and Y4 curves,

since the number of degrees of freedom it uses is smaller than the number used by the sample

based method. Similar results where obtained with other sampling rates and different noise

models.

4.4.2 Yeast cell cycle and knockout data

To test our algorithm on biological datasets and to compare our algorithm with algorithms

that have been used in the past, we used a dataset from Zhu et al [107]. These authors per-

formed an experiment in which two yeast transcriptional factors (Fkhl and Fkh2) involved

in regulating the cell cycle were knocked out and a time-series of gene expression levels was

measured in synchronized cells. Focusing on 800 previously identified cell cycle regulated

genes (from Spellman ct al [94]), the authors used hierarchical clustering to compare their

results with a time series wild-type (WT) dataset from Spellman et al [94]. Using this

method Zhu et al identified two clusters (Clb2 and Sici) that contain genes affected by

the knockout. They were able to demonstrate direct binding of Fkh2 only to promoters of
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Figure 4-3: The four different sets we generated to test our algorithm. See text for details.
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Figure 4-4: Comparison with methods that work directly on the input samples. In all
cases our algorithm correctly identified Y2 as noisy realization of Y1. In contrast, sampling
based methods detected 90% of the Y2 samples as differentially expressed. Such high false
detection rate cannot be tolerated in time series experiments. In addition, our algorithm
detected more of the multiplicative curves (Y4) as differentially expressed, indicating that
the low false positive rate does not come at the expense of high true positive rate.
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genes from the clb2 cluster and therefore they suggest that the forkhead proteins affect the

Sici cluster genes indirectly through Swi5 and Ace2. Note that since the two experiments

used different sampling rates, direct point-wise comparison of the samples is not possible.

Independently, Simon et al [92] used DNA-binding experiments to identify genes that are

regulated by nine cell cycle transcription factors, including Fkhl, Fkh2, Swi5 and Ace2. We

applied our algorithm to the two time series data sets (WT and mutant) and have used the

binding data to verify our results.

Identifying differentially expressed genes controlled by Fkhl and Fkh2

We used our algorithm to identify genes that are differentially expressed in the Fkhl/Fkh2

knockout experiment, when compared to the alpha WT experiment. Of the 800 cell cycle

regulated genes, our algorithm identified 56 genes as differentially expressed with a p-value

< .005 (see Appendix 4.3.5 for a discussion about the value specific variance used).

In Table 4.1 we present the top 30 genes (in decreasing significance) identified by our

algorithm. As can be seen, many of the genes identified by our algorithm are confirmed

by independent binding experiments, and prior literature. While many of the genes come

from the two primary phases that are either directly controlled by Fkhl/Fkh2 (G2/M)

or indirectly controlled (M/G1), there are a number of genes from other cell cycle phases

suggesting a role for the forkhead transcription factors in G1 and S phases. These results

are supported by the genome-wide binding data that describes association of Fkh1 and

Fkh2 with genes expressed in G1 and S (Simon et al [92]). In order to verify our results on

a global scale, we computed the percentage of genes in our list that are bound by each of

the nine cell cycle factors (using a binding p-value cutoff of 0.005), and compared this result

to the percentage obtained from using the entire set of 800 cell cycle regulated genes. We

then computed a p-value for the enrichment of each factor for differentially expressed genes

using the hyper-geometric distribution. We expected to find enrichment for three types of

factors:

1. Fkh1 and Fkh2 which should bind directly to regulated genes.

2. Swi5 and Ace2 which should bind the promoters of the indirectly regulated genes.

3. Mcml and Nddl which are co-factors of Fkh2 in the regulation of G2/M genes (Koranda

et al. [70]) and therefore should bind at least a subset of the Fkh2 target genes.

As can be seen in Figure 4-5, the set of genes identified by our algorithm agree very well
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Differentially expressed cycling genes
Gene P-value Phase Previously comments
name identi-

fied?
Cwpl 1 * 10-16 S/G2 No bound by Fkh2 and Ace2
Ctsl 1.4*10-15 G1 Yes bound by Fkh1 and Fkh2
Olel 3.5 * 10-14 M/G1 No bound by Swi5

Egt2 1.7 * 10-10 M/G1 Yes bound by Ace2 and Swi5

Scw11 1.8 * 10~0 GI Yes bound by Fkhl, Fkh2, Ace2 and Swi5

YER124C 8 * 10 * -9 GI Yes bound by Fkhl, Fkh2 and Ace2

Ald6 1.2 * 10-" S/G2 No

YHR143W 2.7 * 10-8 GI Yes bound by Fkhl, Fkh2 and Ace2

Pho5 3.4 * 10-8 G2/M No
YLR194C 3.5 * 10-8 M/G1 No bound by Swi5
YBR158W 5.5 * 10-8 M/G1 Yes bound by Fkhl, Fkh2, Nddl, Ace2 and

Swi5
YNL058C 9.7 * 10-8 G2/M Yes bound by Nddl and Mcml

Clb2 4.4 * 10-7 G2/M Yes bound by Fkhl, Fkh2, Nddl and Mcml
Dip5 5.1 * 10-7 G2/M No

YPL158W 5.3 * 10-7 M/G1 No bound by Swi5
YNL078W 8.5 * 10-7 M/G1 No bound by Ace2 and Swi5

Pry3 9.1 * 10-7 GI Yes bound by Fkhl, Fkh2, Ace2 and Swi5

Utr2 1.34*10-6 M/G1 No bound by Fkhl, Fkh2 and Mcml

YDR055W 1.36*10-6 M/G1 No bound by Swi5
YGL184C 1.5 * 10-6 S No
ClbI 1.8 * 10-6 G2/M Yes
Pbi2 2.6 * 10-6 S No
Sici 7.5 * 10-6 M/G1 No bound by Swi5
Pholl 1.53*10-5 G2/M No bound by Fkhl
Phol2 1.77*10-5 G2/M No
MnnI 2.1 * 10-5 GI No
Bud9 2.4 * 10-5 G1 Yes bound by Fkhl, Fkh2, Mcml, Ace2 and

Swi5
Pryl 4.6 * 10-5 G2/M No bound by Fkh2 Nddl, Mcml and Ace2

Pir 4.7 * 10-5 M/G1 Yes bound by Mcml and Swi5
Ashl 5.3 * 10-5 M/G1 Yes bound by Swi5

Table 4.1: Top 30 differentially expressed cell cycle genes identified, ordered by significance
p-value. Phase based on assignment by Spellman et al [94]. Previously identified column
based on a list of genes extracted from Zhu et al [107]. Binding information taken from
Simon et al [92] using a p-value cutoff of 0.005. Note that many of the genes in this list that

are bound by one of the effected factors were not identified using cluster based method.
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with the binding data. All of the above factors were significantly enriched for genes in the

identified set; on the other hand, there was no enrichment for binding of Swi4, Mbpl and

Swi6. Overall, the expression changes of 37 out of the 56 genes (66%) can be explained by

the binding of the six factors listed above (p-value = 4 * 10-11). A number of other genes

can be explained using prior knowledge (see Table 4.1). In order to examine the different
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Figure 4-5: Differentially expressed cell cycle genes. The y axis is the percentage of genes

bound by the nine factors in the entire set of 800 cell cycle regulated genes and in the

set identified by our algorithm. Values in parenthesis following factors names are the p-

value for the enrichment of each factor for differentially expressed genes. These values were

computed using the hyper-geometric distribution. As can be seen, all the relevant factors

are significantly enriched for genes in the selected set.

ways in which these 56 genes were affected, we clustered their expression profiles in the

knockout experiment (using the K-means algorithm) into three different groups. Most of

the genes (45 out of 56) belonged to cluster 1. As can be seen in Figure 4-6, this cluster had

a flat profile, indicating that genes in this cluster lost their cycling ability in the knockout

experiment. The second and third clusters contained fewer genes (8 and 3), and represent

75



2

1.5 - Cluster 1
-- Cluster 2
-- Cluster 3%.0

% 40
4f.

0

0 20 40 s0 60 100 120 140 160

Figure 4-6: Results of clustering the 56 cell cycle genes identified by our algorithm as
differentially expressed. Cluster 1 is composed of genes that are directly affected, while
clusters 2 and 3 contain genes with second order effects. See [16] for the list of genes in each
of these clusters, and for their expression profiles in the knockout experiment. See text for
discussion.

either loss of cycling early on (cluster 2) or seeming participation in only one cycle, instead

of the two that are covered by the experiment duration. Interestingly, 8 out of the 11 genes

in the second and third clusters (over 70%) were bound by Swi5 or Ace2 (compared with

only 10% in the entire set of 800 cycling genes), suggesting that these clusters are composed

of genes with expression changes caused by second order downstream effects of the knockout

of Fkhl/2. In contrast, genes in the first cluster were more likely to be bound by Fkh1/2

or one of there 2 co-factors (44% versus 20% in the entire set of 800 cycling genes).

Comparison with clustering based methods

As mentioned above, due to the differences in sampling rates, and to the different cell cycle

durations (see Table 1.1) in the two time series experiments, all previously reported methods

for identifying differentially expressed genes other than clustering based analysis cannot be

applied to these data sets. Thus, we compared our results with the list of 42 genes identified

in the original paper by Zhu et al using cluster analysis. The two lists overlapped in 21

genes. As can be seen in Table 4.1 many of the genes identified by our algorithm and not

detected by hierarchical clustering seem to be controlled by one of the factors effected by
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the knockout, indicating that they were correctly identified by our method. In addition,

many of them seem to be losing there cycling ability (see top row of Figure 4-7). It is likely
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Figure 4-7: Genes identified by our algorithm that were missed by the clustering method
used in [107]. Top: Five of the cell cycle regulated genes. WT expression is represented
by the solid line, and knockout by the dashed line. A P-value appears to the right of the
gene name. As can be seen, all of these genes displayed significant reduction in their cycling
ability. In addition, all of the above genes are bound by either Fkhl/2 or by Ace2 or Swi5,
indicating that our algorithm identified a relevant set of genes. Bottom: Five of the non-
cycling genes. Note that some of these genes seem to be cycling in the knockout experiment
while they are not cycling in the WT experiment, see text for discussion.

that these differences are missed when using cluster analysis because most of the genes

in their clusters did not significantly change. We have also looked at the 21 genes that

were detected by Zhu et al and were not detected by our algorithm. Most of these genes

belonged to two clusters (CLB2 and SIC1) that were identified by Zhu et al as composed of

differentially expressed genes. However, unlike other genes in these clusters (that were also

detected by our algorithm), following alignment, many of the genes that were not identified

by our algorithm do not seem to be changing in expression between the two experiments

(see [16] for figures). Further, unlike the set identified by our algorithm, these genes did

not show significant binding enrichment for the five factors mentioned above.

Analysis of non-cell cycle regulated genes

Though the main function of the Fkh1/2 transcription factors is in regulating the cell

cycle, they are also involved in other functions including mating type switching and cell

morphology. We have used our algorithm to identify differentially expressed genes in the

set of 5000 genes that are not cell cycle regulated. Due to the size of this set, we have
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used a more stringent p-value of .0001 (thus, in random data we would expect only 5

genes to be identified as significantly differentially expressed). Our algorithm identified

22 genes as significantly changing in the knockout data. We note that Zhu et al did not

identify any non cycling genes as differentially expressed, perhaps because of the limitation

of the cluster analysis method. In a sharp contrast with the cycling genes, all except one

Differentially expressed non cycling genes
Gene P-value comments
name
YDR098C 1.9*10-10
YER037W 4.7 * 10-"
Ural 6.4 * 10-8
YCRO07C 2*10-7
Gdh2 3.6 * 10-7

Cit1 1.8 * 10-6

YOL164W 1.4 * 10-5

YFR026C 1.4*10-5
Ade5,7 4 * 10-5
Mdh2 7.5 * 10-5

Ura3 1.5 * 10-4

Ctrl 1.8*10-4
Cit2 1.9 * 10-4

YNL279W 2.2 * 10-4 bound by Digi, Stel2

YLR162W 4.3 * 10-4

Figl 5.1 * 10-4 bound by Swi5

Hxt6 5.2 * 10-4

Fre7 5.4 * 10-
Pot1 5.5 * 10-4

Acbl 6.2 * 10-4

YMR040W 9.1 * 10-4

Adel 9.9 * 10-4

Table 4.2: The 22 non cycling genes identified by our algorithm as differentially expressed,
ordered according to their significance p-value. Binding data for Digi is from Lee et al [73].
As discussed in the text, most of these genes are significantly correlated with yeast response

to stress in a set a stress related expression experiments.

of the promoters of the effected non cycling genes are not bound by any of the cell cycle

transcription factors (see table 4.2), suggesting that these genes are not controlled directly

by the forkhead proteins or by their direct targets (Swi5 and Ace2). Fkhl/2 double null

mutation has global affects on cell growth; the cells shows pseudohyphal and invasive growth

phenotypes, unusual cell morphology and slow growth rates (Hollenhorst et al. [58]; Zhu et

al. [107]). Thus, some of the changes in gene expression in the mutant cells may be due
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to the overall changes in the cell rather then to the direct effects of Fkh1/2. Following the

method of Hughes et al [63] we searched a dataset of over 500 expression experiments for

those experiments in which the set of genes identified by our algorithm were significantly

correlated (either down or up regulated). We have identified 20 such experiments (see

Appendix A.2). We have carried out a randomization analysis to test the significance of

these results, and concluded that if random sets of equal size are used, no experiments are

selected (see Appendix A.2). This indicates that the set of genes identified by our algorithm

are significantly associated with the experiments selected by this method. The experiments

in which these genes where significantly correlated fall mainly into the following categories:

Red/Ox stress, response to alpha factor, response to zinc depletion and starvation. These

finding suggests that:

1. Our algorithm finds relevant sets of differentially expressed genes.

2. Fkhl/2 may be involved in cellular pathways that are connected to the conditions under

which these experiments were carried out.

3. Since some of the non cycling genes are cycling in the knockout experiment while they

are fiat under WT conditions (see Figure 4-7), the effects of the identified conditions may

vary along the cell cycle.

Our ability to raise such hypothesis indicates the importance of principled algorithms for

the analysis of time series gene expression data.

4.5 Summary

In this section we have described a principled algorithm for identifying genes with altered

expression between two time series datasets. This algorithm is useful for identifying interac-

tions between genes, selecting genes that can serve as markers for a certain disease and for

determining subsets of genes that react differently to changes in experimental conditions.

One of the main advantages of this algorithm is its ability to work with few (or no)

experimental repeats. By combining a noise model for individual samples with a global

error difference we are able to assign significance to differences in expression profiles without

computing complete statistics for these expression curves.

We have used transcription factor knockout data to test our algorithm, and to show that

it correctly detects differentially expressed genes that were not detected using prior methods.
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In addition, we have shown that by focusing on the set detected by our algorithm, we can

correctly detect first and second order effects of the experimental condition. The main

advantage of the dataset we used is that our results could be validated using protein-DNA

binding data. Our algorithm can be used to analyze many biological systems, including

infectious and other diseases, and cell behavior under different treatments which have been

studied using time series expression data. For such systems, there is usually no independent

high-throughput data source that can be used to validate sets of differentially expressed

genes. Thus, it is essential to use principle computational methods that were shown to

produce correct results, such as the algorithm described in this paper, when analyzing such

systems.
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Part II

Clustering and Ordering

81



A major challenge in gene expression analysis is effective data organization and visual-

ization. Because of the large number of genes that are profiled in each experiment, clustering

is needed to provide a global overview of the experiment results.

Time series expression data introduces a number of new challenges. First, when clus-

tering non uniformly sampled time series data we should take into consideration the actual

duration each point represents. In addition, when clustering such data we are also interested

in the relationships between the clusters, and not only in the clusters themselves.

In this section we present a number of algorithms that address these challenges. In

Chapter 5 we present a clustering algorithm that operates directly on the continuous rep-

resentations of gene expression profiles. As we demonstrate, this algorithm is particularly

effective when applied to non-uniformly sampled data. In Chapter 6 we discuss an algo-

rithm for optimally ordering the leaves of a hierarchical clustering tree. This algorithm

allow us to correctly determine gene expression programs that cannot be revealed by using

the random ordering of the hierarchical clustering algorithm. Finally, we extend our optimal

leaf ordering algorithm to address a number of problems related to the binary hierarchical

clustering algorithm. More specifically, hierarchical clustering is very sensitive to noise, it

usually lacks of a method to actually identify distinct clusters, and produces a large num-

ber of possible leaf orderings of the hierarchical clustering tree. In Chapter 7 we propose

a new hierarchical clustering algorithm which reduces susceptibility to noise, permits up

to k siblings to be directly related, and provides a single optimal order for the resulting

tree. Our algorithm constructs a k-ary tree, where each node can have up to k children,

and then optimally orders the leaves of that tree. By combining k clusters at each step our

algorithm becomes more robust against noise and missing values. By optimally ordering

the leaves of the resulting tree we maintain the pairwise relationships that appear in the

original method, without sacrificing the robustness.

82



Chapter 5

Clustering continuous curves1

When clustering time-series expression data one should pay spacial attention to non uni-

formly sampled datasets such as in [94, 32, 43]. Unlike static data in which the samples

are independent measurements taken from different individuals [52], in time series expres-

sion data, the different points are all measurements of the same continuous process. When

clustering non uniformly sampled datasets that were performed to study uniform processes

(such as the cell cycle [94, 82] or circadian clock [95, 80]) it is important to take into ac-

count the duration each point represents, since points representing longer durations should

be weighted higher than those representing shorter ones.

Many clustering algorithms have been suggested for gene expression analysis (see [84]

for a review of a number of these algorithms). However, as far as we are aware, all these

algorithms treat their input as a vector of data points, and do not take into account the

actual times at which these points were sampled. For example, K-means and self organizing

maps [96] place the same weight on all input points, and treat them as independent samples.

In contrast, our algorithm weights time points differently according to the sampling rate.

In this section we extend our splines framework from Section 2 so that it can be used

when the class information is not given. This allows us to cluster the continuous repre-

sentation of each expression profile. Instead of operating on the set of sampled points,

our clustering algorithm uses the spline control points. These control points are uniformly

spaced, and each one is influenced by the sampled points based on the duration these points

represent. Thus, our clustering algorithm implicitly assigns weights to the sampled points

'This chapter is based on references [18] and [20]
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based on the duration they represent.

We have used both synthetic and real data to test our algorithm. As we show in

Section 5.2, working on the continuous representation of the input data allows our algorithm

to improve upon previous clustering algorithms.

5.1 Model based clustering algorithm for temporal data

The algorithm described in Section 2 assumes that the class information is known in advance.

Though this information is sometimes available, either from previous knowledge or from a

classification algorithm [94], in most cases such information is not known (for example,

see [78, 49]). In this section we describe a new clustering algorithm that simultaneously

solves the parameter estimation and class assignment problems.

TimeFit(Y, S, c, n) {
For all classes j {

choose a random gene i
= (SiSi)-1 SfY // initialize class center with a random gene

}
Initialize F, a2 y arbitrarily
Repeat until convergence {

E step:
for all genes i and classes j

M step:
for all genes i and classes j, Find the MAP estimate of Yij

Maximize F, a2 , p w.r.t. P(jli) // see text for complete details
for all classes j, pj +- I Zp(jli) // update the class probability

}
}

Figure 5-1: Estimating the model parameters without class information. The posterior

probabilities P(jli) can be used for clustering as described in the text.

Instead of the fixed class model described in Section 2.4, here we assume a mixture

model. Thus, we can model the gene expression vector for gene i in the following way.

First, we select a class j for gene i uniformly at random. Next, we sample 7i using class

j's covariance matrix I'j, and sample a noise vector ei using a2 . Finally we construct Y by

setting:

Y = Si(p + Yi) + ei

In Figure 5-1 we present TimeFit, our spline fitting algorithm that performs class as-
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signment. The number of desired classes, c, is an input to TimeFit. Initially all classes are

assumed to have the same prior probabilities, though it is easy to modify this algorithm if

one has a prior knowledge about the different classes. TimeFit begins by choosing for each

class one gene at random, and using this gene as an initial estimate for the class center

(or average of the spline coefficients). We now treat the class assignments as the missing

variables, and iterate using a modified EM algorithm. In the E step we estimate for each

gene i and class j the probability that i belongs to class J, P(3i1), using the values we ob-

tained for the rest of the parameters in the M step. In the M step, instead of equation 2.6

from Section 2 we now maximize our parameters for each class using the class probability

(P(jli)) as computed in the E step. In addition, we now treat the -yj's as parameters,

and find their MAP (maximum a posteriori) estimate, which is then used in the E step.

In the next section we describe in detail the modified EM algorithm we use in TimeFit.

TimeFit increases the likelihood monotonically, and is terminated when the parameters

converge. When algorithm converges, for each gene i we discover the class j such that

p(j1i) = max<k<,cP(k i) and assign i to this class. Using this "hard" clustering, when we

need to re-sample gene i's expression curve (either for missing values estimation or for new

time points) we use the estimated class js parameters (-yi,j, pj) and continue as described

in section 2.

As with most EM algorithms, TimeFit is sensitive to the initial random assignment of

class centers (pjs). Thus, we recommend that the algorithm will be repeated a number

of times (in the results presented in this chapter we have re-run it five times for each

dataset). Out of these runs, we select the parameter assignment that achieves the highest

log likelihood for the complete model (see below), and report it as the final result of the

algorithm.

5.1.1 The modified EM algorithm

We now present the details of the modified EM algorithm simultaneously infers the class

assignment and the parameters of our model (see also [50] for initial derivation of our spline

assignment algorithm from Section 2). We start with the complete log likelihood of our
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model given by:

103(EpjZ(j 1) exp[-(Yi-Si(p(+pZji)))(Yi-Si(pg +1,))/262 [ 1 0]1
Un ]rj 1/ 2 72p- ,yJP -Yij

(5.1)

where j is the class index and ni is the number of observed values for gene i. Z(jI) is an

(unobserved) binary indicator variable that assigns each gene to exactly one class.

In the E step we compute the expected values for Z(jAi):

p -( ( py +I,5) (If -T p 4,))o.
p(j() E(Z(ji)|Yi) = k -S(k+Yik )(Y - Si (1k +Yik))/0 e kkik

Where k goes over all possible classes, and Pk is the prior probability of class k.

In the M step we first find the MAP estimate for 7,yj by setting:

rnj=(Oa
2 F7 + S[S.)f 1 S[ (y -IL

Next, we maximize a.2 , j and r w.r.t. the class assignment probabilities computed in the E

step:

2 ZiZjp(Ii)(Yi - Siij + Y,))T(Y - Si(j + yi,j))

Lj is computed by setting:

p'ii = (Zp(Uji)SiSi)-1(p(jPi)S(Yi - si7Xi M

Then we set Fj to:

p(ji)7[,p ( 1 +STSi/o2)-1

Ep~jli)

For TimeFit, the complexity of each iteration of the EM algorithm is O(cq(n + q)) since

we now estimate c + cq parameters for each gene (q for each class).
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5.2 Results

In order to explore the effect that non-uniform sampling can have on clustering we generated

two synthetic curves as follows. The first curve, fi is obtained using the equation fi (x)

sin x. The second curve is given by the following equation:

sin x < 7T
f2( ) =

sin x + (x - r)/(207r) : x > r

We sampled each curve 64 times between -- r and 7r and then sampled between 7r and 5g

(the remaining portion of the curve) at different rates of either every 7r, 7r/2,7/4 or 7r/16.

Note that since all curves were sampled between -7r and 57r, the maximal difference between

the sampled values (amplitude of the curves) is at most 0.2. For each different sampling we

generated 100 vectors from each curve, and added random noise (normally distributed with

mean 0 and variance 0.2). Next we used our TimeFit algorithm, and compared the results

to those of the Gaussian mixture clustering algorithm (that is, the probabilistic version

of K-mean). Gaussian mixtures is a clustering algorithm that assumes a mixture model

and tries to assign genes to classes using the class centers (see [84] for details). Unlike our

algorithm, this Gaussian mixtures algorithm treats all points in the same way, and does not

use the actual times they represent. As can be seen in Figure 5-2, the lower the sampling

rate, the larger the difference between the performance of TimeFit and Gaussian mixtures.

For example, for the sampling rate of 7r, Gaussian mixtures does only slightly better than

chance, while TimeFit has a much higher classification success.

Next we tested TimeFit on the cdc15 dataset (see Table 1.1) and compared the results

to Gaussian mixtures. For both algorithms we generated five classes. When analyzing

the results we used the Spellman clusters as the gold standard, and determined how many

clusters in our results correspond to these clusters. The results are presented in Table 5.1.

As can be seen, four out of the five clusters that were generated by TimeFit correspond

to Spellmans' clusters, containing at most two neighboring phases with 10 or more genes

(the fifth contained genes from three consecutive phases). Since we are dealing with cell

cycle data, the clusters defined in [94] can only have arbitrary boundaries and thus joining

two of them is reasonable. On the other hand, in the k-means clustering result, cluster

4 contains more than 20 genes from four different phases, while cluster 5 contains more
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Comparison between k-means and TimeFit
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Figure 5-2: A comparison between Gaussian mixture and TimeFit for clustering the vectors
from fi and f2. The success rate was determined by the total number of correctly clustered
vectors out of the 200 vectors. For both algorithms we have used the result that obtained
the highest likelihood for each of the sampling rates. As can be seen, the lower the sampling
rate, the greater the advantage of using our algorithm.
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than 20 genes from three different phases. Thus, the results of our clustering algorithm

are in better correspondence with existing biological knowledge than those of the Gaussian

mixtures algorithm.

TimeFit Gaussian mixtures

Phase / Cluster 1 2 3 4 15 1 2 3 4- 5

G2/M 121 52 4 0 8 117 6 1 60 1
M/G1 2 62 33 8 1 6 51 3 45 1

G1 0 9 166 40 71 0 24 125 104 33

S 0 1 2 0 65 0 0 3 7 58
S/G2 30 3 4 0 81 18 0 0 22 78

Table 5.1: Comparison between Gaussian mixtures and TimeFit using the cdc15DS. For

both algorithms we have used the result that obtained the highest likelihood. As can be

seen, in most cases each of the clusters generated by TimeFit contains genes from 1 or 2

neighboring phases. For k-means there is one cluster (4) that contains more than 20 genes

from 4 different phases.

5.3 Summary

In this section we have discussed an algorithm that extends our splines framework to clus-

tering. Unlike previous clustering algorithms, our algorithm works on the continuous rep-

resentation of the expression profile. This allows us to overcome problems related to non

uniform sampling rates, and to produce clustering results that are superior to methods that

work directly on the input points. In the next chapter we address another issue related to

clustering time series expression data: Determining the relationships between clusters.
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Chapter 6

Optimal leaf ordering for

hierarchical clustering trees1

Hierarchical clustering is one of the most popular methods for clustering gene expression

data. Hierarchical clustering assembles input elements into a single tree, and subtrees

represent different clusters. Thus, using hierarchical clustering one can analyze and visualize

relationships in scales that range from large groups (clusters) to single genes. However, the

ordering of the leaves, which plays an important role in analyzing and visualizing hierarchical

clustering results, is not defined by the algorithm. Thus, for a binary tree, any one of the

2 -1 orderings is a possible outcome.

Using hierarchical clustering, genes that are placed close to each other in the linear

representation of the results, are assumed to share a common function [43]. Thus, the order

in which the genes are presented can have an effect on the biological analysis of the results.

In addition, when analyzing time series data one is not only interested in the clusters, but

also in the relationships between different clusters. To this end, ordering the clusters can

help in analyzing the results.

In this section we present an algorithm that re-orders the resulting hierarchical clustering

tree so that an optimally ordered tree is presented. This ordering maximizes the sum of

the similarity of adjacent leaves in the tree. As we show in Section 6.5 such ordering allows

us to recover expression programs that are not visible using the random ordering of the

hierarchical clustering procedure.

'This chapter is based on references [22] and [14]
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6.1 Hierarchical clustering

Hierarchical clustering starts by computing the similarity matrix (S) between all pairs of

genes, based on their expression levels. Using the similarity matrix S we combine at each

step the two most similar clusters (initially each gene corresponds to a single cluster), and

form a new cluster which contains both clusters. There are many different ways in which to

choose the different clusters to combine at each step, and these differ based on the distance

metric used between clusters. Popular methods include: average linkage, single linkage and

complete linkage (see [84] for details). Since our algorithm works for all of these methods,

we do not discuss the details of these distance measures here. After combining the two

clusters, we compute the similarity of the new cluster to all remaining clusters. For n

genes, this step is repeated n - 1 times until we are left with a single cluster that contains

all genes. See [43] for a detailed description of the hierarchical clustering algorithm used in

this section. The running time of this algorithm is O(n 3 ) since for each of the n - 1 merging

steps we perform we need to search the S matrix for the highest similarity. Though there

are faster algorithms for hierarchical clustering [44], the above algorithm is the one that is

implemented in Cluster [43], and is the one most papers use.

Unlike most other clustering methods, in hierarchical clustering the clusters are not

uniquely determined. The only available information is the subtrees in which genes reside.

Thus, the user has to determine which of the subtrees are clusters, and which are only a

part of a bigger cluster. Any improvement to the basic algorithm (such as the leaf ordering

algorithm) helps the user in identifying the different clusters and interpreting the data in

the right way. In addition, one might be interested not only in the clusters but also in the

relationships between them (for example, when studying time series data). This information

is not available in the random order generated by hierarchical clustering.

6.2 Related work

The application of hierarchical clustering to gene expression data was first discussed by

Eisen [43]. Hierarchical clustering has become the tool of choice for many biologists, and it

has been used to both analyze and present gene expression data [43, 94, 79].

The problem of ordering the leaves of a binary hierarchical clustering tree dates back

to 1972 [53]. Due to the large number of applications that construct trees for analyzing
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datasets, over the years, many different heuristics have been suggested for solving this

problem (cf. [53, 37, 48, 43]). These heuristics either use a 'local' method, where decisions

are made based on local observations, or a 'global' method, where an external criteria is

used to order the leaves. For the local methods, decisions made in an early stage of the

ordering are irreversible, and thus can lead to less than optimal order in the following steps.

For the global methods, fitting an external criterion that was generated in a different way

is infeasible in most cases, since there are n! possible global orderings, while only 2"-1 of

them are consistent with the tree.

Recently it has come to our attention that the optimal leaf ordering problem was also

addressed by Burkard et al [29]. In that paper the authors present an 0(n 3) time, 0(n2 )

space algorithm for optimal leaf ordering of PQ-trees. For binary trees, their algorithm is

essentially identical to the basic algorithm we present in section 6.4, except that we propose

a number of heuristic improvements. Although these do not affect the asymptotic running

time, we experimentally observed that they reduce the running time by 50-90%. In addition,

we present several results on synthetic and real data they show that optimal leaf ordering

helps in analyzing biological datasets.

6.3 Problem statement

First, we formalize the optimal leaf ordering problem, using the following notations. For

a tree T with n leaves, denote by z, -- -, z, the leaves of T and by v 1 ... V-1 the n - 1

internal nodes of T. A linear ordering consistent with T is defined to be an ordering

of the leaves of T generated by flipping internal nodes in T (that is, changing the order

between the two subtrees rooted at vi, for any vi E T). See Figure 6-1 for an example of

node flipping.

Since there are n - 1 internal nodes, there are 2 n-1 possible linear orderings of the leaves

of a binary tree. Our goal is to find an ordering of the tree leaves that maximizes the sum of

the similarities of adjacent leaves in the ordering. This could be stated mathematically in

the following way. Denote by <D the space of the 2n-1 possible orderings of the tree leaves.

For # E (D we define DO(T) to be:

n-1

DO(T) = S(zoi, zoes)
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1 2 3 4 5 1 2 4 5 3

Figure 6-1: When flipping the two subtrees rooted at the red circled node we obtain different

orderings while maintaining the same tree structure. Since there are n - 1 internal nodes

there are 2 1 possible orderings of the tree leaves.

where S(u, w) is the similarity between two leaves of the tree. Thus, our goal is to find an

ordering # that maximize DO(T). For such an ordering 0, we say that D(T) = DO(T).

6.4 An 0(n') algorithm for binary trees

Assume that a hierarchical clustering in form of a tree T has been fixed. The basic idea is

to create a table M with the following meaning. For any node v of T, and any two genes i

and j that are at leaves in the subtree defined by v (denoted T(v)), define M(v, i, j) to be

the cost of the best linear order of the leaves in T(v) that begins with i and ends with j.
M(v, i, j) is defined only if node v is the least common ancestor of leaves i and j; otherwise

no such ordering is possible. If v is a leaf, then M(v, v, v) = 0. Otherwise, M(, i, j) can be

V

Figure 6-2: Computing M(v, i, j) for a binary tree rooted at V.
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computed as follows, where w is the left child and x is the right child of v (see Figure 6-2):

M(v, i, j) = max M(w, i, h) + S(h, 1) + M(X, 1,]) (6.1)
hET(w),

1 E T(x)

Let F(n) be the time needed to compute all defined entries in table (M(v, i, j)) for a tree

with n leaves. We analyze the time to compute Equation 6.1 as follows: Assume that there

are r leaves in T(w) and p leaves in T(x), r + p = n. We must first compute recursively all

values in the table for T(w) and T(x); this takes F(r) + F(p) time.

To compute the maximum, we compute a temporary table Temp(i, 1) for all i G T(w)

and I E T(x) with the formula

Temp (i, 1) = max M(w, i, h) + S(h, 1); (6.2)
hET(w)

this takes O(r 2p) time since there are rp entries, and we need O(r) time to compute the

maximum. Then we can compute M(v, i, j) as

M(V, i, j) = max Temp (i, l) + M(x, l,j). (6.3)
IET(x)

This takes O(rp2 ) time, since there are rp entries, and we need O(p) time to compute the

maximum.

Thus the total running time obeys the recursion F(n) = F(r) + F(p) + O(r 2p) + O(rp2)

which can be shown easily (by induction) to be O(n 3 ), since r 3 +p 3 +r 2p+rp2 < (r+p)3 = n 3 .

The required memory is O(n 2 ), since we only need to store M(v, i, j) once per pair of

leaves i and j.

We use some more notations to present a precise bound on the running time of our

ordering algorithm. Intuitively, if f(n) = Q(g(n)) then we can think of f(n) as being 'not

less than' g(n) (just as f (n) = O(g(n)) means that f(n) is 'not more than' g(n)). If f(n) is

both upper and lower bounded by g(n) (that is, f(n) = O(g(n)) and f(n) = Q(g(n))) then

we say that f(n) = e(g(n)). Based on the analysis above, for a balanced binary tree with n

leaves we need Q(n 3 ) time to compute Equation 6.1; hence the algorithm has running time

O(n3 ).

We can further improve the running time of the algorithm in practice by using the

following techniques:
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6.4.1 Early termination of the search.

We can improve the computation time for Equation 6.2 (and similarly Equation 6.3) by

pruning the search for maximum whenever no further improvement is possible. To this end,

set smax(l) = maxhET(W) S(h, 1). Sort the leaves of T(w) by decreasing value of M(w, i, h),

and compute the maximum for Equation 6.2 processing leaves in this order. Note that if

we find a leaf h for which M(w, i, h) + smax(l) is bigger than the maximum that we have

found so far, then we can terminate the computation of the maximum, since all other leaves

cannot increase it.

6.4.2 Top-level improvement.

The second improvement concerns the computation of Equations 6.2 and 6.3 when v is the

root of the tree. Let w and x be the left and right children of v. Unlike in the other cases, we

do not need to compute M(v, i, j) for all combinations of i E T(w) and j E T(x). Rather,

we just need to find the maximum of all these values Mmax = maxij M(v, i, j).
Define Max(v, i) = maxheT(v) M(v, i, h). From Equation 6.1 we have

Mmax

max max M(w, i, h) +
iCT(w),jGT(x) hET(w),lET(x)

S(h, l) + M(x, 1, j)

= max Max(w, h) + S(h, 1) + Max(x, 1)
hET(w),IET(x)

Therefore we can first precompute values Max(w, h) for all h E T(w) and Max(x, 1) for all

I C T(x) in O(n 2 ) time, and then find Mmax in O(n 2 ) time. This is in contrast to the O(n3 )

time needed for this computation normally.

While the above two improvements do not improve the theoretical running time (and

in fact, the first one increases it because of the sorting step), we found in experiments that

on real-life data this variant of the algorithm is on average 50-90% faster.

6.5 Results

We tested our algorithm on several different inputs. First, we used randomly generated

datasets to test the effect that optimal ordering has on the sum of similarities of neigh-
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boring leaves (the function our algorithm maximizes). Next, we generated datasets to test

the effect optimal ordering has on the visual representation of the hierarchical clustering

results. We conclude this section by presenting biological results that were obtained using

the cell cycle data of [94].

For random data, we chose 60 values (representing 60 time points) at random for each

leaf. Next, we computed the resulting similarity matrix, and then hierarchically clustered

these data points. Denote by S(T) the sum of the similarity between adjacent leaves in the

linear ordering of the tree T' that is generated by the clustering algorithm (for example,

from Eisen's Cluster [43]). Denote by D(T') the sum of the similarity between adjacent

leaves after optimally ordering the leaves of T'. Set I = (D(Tr) - S(Tr))/S(T). I is

the increase in similarity of D(T) compared with S(Tr). We found that even for a large

number of random data points (n = 1500), I is on average 20%, indicating that optimal

ordering has a big impact on the similarity of neighboring leaves in the linear ordering (see

figure 6-3).

50

45-

40-

35-

30

25

S20 -

15-

10-

5-

0
200 400 600 800 1000 1200 1400

number of leafs

Figure 6-3: Average increase in the sum of similarities of neighboring leaves for a randomly
generated dataset, as a function of the number of leaves. Note that even for a large number
of leaves the increase is large.
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6.5.1 Generated data

In order to test the effect of leaf ordering on the presentation of the data, we generated

several input data sets. Each data set had some structure which we permuted, and then we

ran the hierarchical clustering algorithm to cluster the data set. In this section we compare

the results of the Eisen clustering algorithm [43] with our ordering algorithm. The Eisen

results where generated using Cluster (the software package that implements Eisen's algo-

rithm). All the figures in this section where generated using TreeView.

In Figure 6-4 we present a dataset that were manually generated. As can be seen,

although there is some structure in the Cluster output, it is obvious that the ordering

algorithm captures the true underline structure.

Cluster result Input (permuted) Ordering result

Figure 6-4: Comparison between the ordered and non ordered hierarchical clustering on a

generated dataset. Green corresponds to decrease in value (-1) and red to increase (1).

Next, we performed a larger scale test in the following way. We generated 100 data

points for each leaf. For each leaf we set 40 of these points to -1 with high probability

(living a small probability of generating a different value for these 40 data points). The rest

of the points where generated at random. The results of the initial ordering (which is similar

to the random ordering of Cluster), and of the similarity maximizing ordering are shown

in Figure 6-5. As can be seen, the clusters where identified correctly by the hierarchical

clustering algorithm. However, the ordering of the clusters is much better when using our

algorithm. This can be important for time series data in which one is not only interested in

the actual clusters, but also in the relationship between the clusters (such as which genes

are repressed early in the time series and which are repressed at the end, etc.). In addition,

as we show in the two cluster enlargements, the ordering algorithm orders the clusters

themselves, and not only the relationships between them.
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Optimal
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Figure 6-5: Comparison between the ordered and non ordered hierarchical clustering. The

small images are enlargements of the same cluster in both results. As can be seen, the

ordering algorithm orders the clusters so that the relationship between them is apparent.

In addition, it also orders the genes inside each cluster as can be seen in the small images.

6.5.2 Biological results

We tested our algorithm using the cell cycle data presented in [94]. In that paper, the

authors identify 800 genes which are cell cycle regulated in Saccharomyces cerevisiae.

The authors assigned these genes to five groups termed G1, S, S/G2, G2/M, and M/G1.

These groups approximate the commonly used cell cycle groups in the literature (see [94]

and http://cellcycle-www.stanford.edu for the complete data set and gene assignment to the

different groups). The assignment to different groups was performed by what the authors
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call a 'phasing' method. This method compares the 'peak expression' for each unknown

gene with the expression of genes that where known to belong to each of these group. Genes

where assigned to the group to which their peak expression was the most similar.

After performing the phasing algorithm the authors clustered these 800 genes using

hierarchical clustering. Most of the genes that belong to the same group where clustered

together. However, some clusters where a mix of two or more groups, and the relationship

between the clusters was not apparent

We used our ordering algorithm to generate an optimal ordering of these 800 genes

in the 24 cdc15 experiments. As can be seen in Figure 6-6, our algorithm was able to

correctly recover the cell cycle order (starting with G2/M and going through MIG1, G1,

S and S/G2). In addition, our algorithm was able to reorder some of the clusters so that

the different gene groups (clusters) are correctly separated (as can be seen in the G1, S

and S/G2 groups which are mixed in the hierarchical clustering results but are correctly

separated in the optimal ordering results). Thus, while still using unsupervised learning, our

algorithm was able to correctly identify the cell cycle groups and the order of these groups,

achieving a high correlation with the phasing method (which is a supervised algorithm)

that was used by the authors of [94].

6.6 Summary

We presented an O(n 3) algorithm for computing the optimal ordering of hierarchical clus-

tering trees. The algorithm we presented is general, and works for any binary tree when a

metric is defined on the leaves. We have also presented a number of improvements which

drastically reduce the running time of this algorithm in practice. Using optimal ordering

one can arrive at results that are better than the original hierarchical clustering results.

We presented several examples in which the results of the ordering algorithm are superior

to the original clustering results. The ordering allows the user to determine not only the

clusters, but also the relationship between different clusters. This could be very important

in time series data analysis.

In addition to an optimal ordering algorithm, we have recently presented an algorithm

for optimal level ordering, which solves a variant of the optimal ordering problem in O(n)

time and space (see Section 7.5). While O(n 3) is a reasonable running time for most
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Figure 6-6: Comparison between hierarchical clustering (left) and optimal ordering (right)
using the cell cycle data of [94]. For each of the genes in these figures we plotted a dot on its
right which represents the group to which it belongs according to [94] (red for G2/M yellow
for M/G1 etc.). We have indicated areas in the clustering trees that contain a significant
number of genes from a specific phase by placing the name of that phase to the left of
the plotted dots. As can be seen , the cell cycle phasing is much more apparent in the
optimal ordering result, which correctly recovers the order of the groups in the cell cycle.
In addition, using optimal ordering one can better reconstruct the groups themselves as can
be seen in the case of the G1, S and S/G2 groups.
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expression datasets, for very large ones (over 10000) this time might be prohibitive. The

level ordering algorithm allows users to achieve a reasonable ordering of such datasets in

a very fast time. In addition, we have recently shown [13] how to use the level ordering

algorithm for a completely different task: Improving lossless image compression. Since

many algorithms construct trees as part of their solution to various problems, we anticipate

several more uses of our optimal ordering and level ordering algorithms for many different

computer science problems, including text compression, image compression and database

visualization (see also Section 7.5).

While our ordering algorithm solves one of the major problems of hierarchical clustering,

ordering the leaves, there are a number of problems it does not address. Hierarchical

clustering is very sensitive to noise and it usually lacks of a method to actually identify

distinct clusters. In the next section we present an algorithm that solves these problems

by constructing a k-ary tree instead of a binary tree, and uses an extension of the optimal

ordering algorithm discussed in this section to restore binary relationships that are lost

when using more than two children per node.
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Chapter 7

K-ary clustering and ordering

As mentioned in the previous section, hierarchical clustering is one of the most popular

methods for clustering gene expression data. However, hierarchical clustering is very sensi-

tive to noise, since in a typical implementation if two clusters (or genes) are combined they

cannot be separated even if farther evidence suggests otherwise [84]. In addition, hierarchi-

cal clustering does not specify the components of the tree that comprise a distinct cluster,

making it hard to distinguish between internal nodes that are roots of a cluster and nodes

which only hold subsets of a cluster. Finally, as discussed in the previous section, the or-

dering of the leaves, which plays an important role in analyzing and visualizing hierarchical

clustering results, is not defined by the algorithm.

In this section we propose a new hierarchical clustering algorithm which reduces sus-

ceptibility to noise, permits up to k siblings to be directly related, and provides a single

optimal order for the resulting tree, without sacrificing the tree structure, or the pairwise

relationships between neighboring genes and clusters in the result. Our solution replaces

the binary tree of the hierarchical clustering algorithm with a k-ary tree. A k-ary tree is

a tree in which each internal node has at most k children. When grouping k clusters (or

genes) together, we require that all the clusters that are grouped together will be similar

to one another. It has been shown (e.g. in CLICK [84]) that relying on similarities among

large groups of genes helps reduce the noise effects that are inherent in expression data.

Our algorithm utilizes this idea for the hierarchical case. In our case, we are interested in

groups of genes that are similar, where the notion of similarity depends on the scale we are
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looking at.

The number of children of each internal node is not fixed to k. Rather, k is an upper

bound on this number, and if the data suggests otherwise this number can be reduced. An

advantage of such a method is that it allows us to highlight some of the actual clusters since

nodes with less than k children represent a set of genes that are similar, yet significantly

different from the rest of the genes. Such a distinction is not available when using a binary

tree.

Finally, our algorithm re-orders the resulting tree so that an optimally ordered tree is

presented. This ordering maximizes the sum of the similarity of adjacent leaves in the tree,

allowing us to obtain the best pairwise relationships between genes and clusters, even when

k > 2.

The running time of our clustering algorithm (for small values of k) is 0(n 3), which

is similar to the running time of currently used hierarchical clustering algorithms. As for

our ordering algorithm, for k = 2 the running time is O(n 3) as discussed in the previous

chapter. For k > 2 our ordering algorithm runs in 0(4kn 3) time and O(kn 2 ) space which

is feasible even for a large n (when k is small).

The rest of this chapter is organized as follows. In Section 7.2 we present an algorithm

for constructing k-ary trees from gene expression data. In Section 7.3 we present the optimal

leaf ordering algorithm for k-ary trees. In Section 7.4 we present our experimental results,

and Section 7.6 summarizes this chapter and suggests directions for future work.

7.1 Related work

The application of hierarchical clustering to gene expression data was first discussed by

Eisen [43]. Hierarchical clustering has become the tool of choice for many biologists, and

it has been used to both analyze and present gene expression data [43, 94, 79]. A number

of different clustering algorithms, which are more global in nature, where suggested and

applied to gene expression data. Examples of such algorithms are K-means, Self organizing

maps [96] and the graph based algorithms Click [83] and CAST [26]. These algorithms

generate clusters which are all assumed to be on the same level, thus they lack the ability to

represent the relationships between genes and sub clusters on different scales as hierarchical

clustering does. In addition, they are usually less suitable for large scale visualization tasks,
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since they do not generate a global ordering of the input data. In this chapter we try to

combine the robustness of these clustering algorithms with the presentation and flexible

groupings capabilities of hierarchical clustering.

Recently, Segal and Koller [88] suggested a probabilistic hierarchical clustering algo-

rithm, to address the robustness problem. Their algorithm assumes a specific model for

gene expression data. In contrast, our algorithm does not assume any model for its in-

put data, and works with any similarity/distance measure. In addition, in this chapter we

present a method that allows not only to generate the clusters but also to view the rela-

tionships between different clusters, by optimally ordering the resulting tree.

The optimal leaf ordering problem for k-ary trees was previously addressed by Burkard

et al [29]. In that paper the authors present an O(2kn 3 ) time, O(2kn 2 ) space algorithm

for optimal leaf ordering of PQ-trees. Unlike their algorithm, the algorithm we present

in this section uses a different search strategy over the children of a node. Burkard et al.

suggest a dynamic programming approach which is more computationally efficient (O(2kn 3 )

vs. O(4kn 3 )), while we propose a divide and conquer approach which is more space-efficient

(O(kn 2 ) vs. O(2kn 2 )). The number of genes (n) in an expression data set is typically very

large, making the memory requirements very important. In our experience, the lower space

requirement, despite the price in running time, enables using larger ks.

7.2 Constructing K-ary Trees

In this section we present an algorithm for constructing k-ary trees. We first formalize

the k-ary tree problem, and show that finding an optimal solution is hard (under standard

complexity assumptions). We then present a heuristic algorithm for constructing k-ary trees

for a fixed k, and extend this algorithm to allow for nodes with at most k children.

7.2.1 Problem statement

As is the case in hierarchical clustering, we assume that we are given a gene similarity

matrix S, which is initially of dimensions n by n. Unlike binary tree clustering, we are

interested in joining together groups of size k, where k > 2. In this paper we focus on

the average linkage method, for which the problem can be formalized as follows. Given n
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clusters denote by C the set of all subsets of n of size k. Our goal is to find a subset b E C

s.t. V(b) = max{V(b')Ib' E C} where V is defined in the following way:

V(b) = 1 S(ij) (7.1)
i,j~b,i<j

That is, V(b) is the sum of the pairwise similarities in b. After finding b, we merge all the

clusters in b to one cluster. The revised similarity matrix is computed in the following way.

Denote by i a cluster which is not a part of b, and let the cluster formed by the merging

the clusters of b be denoted by j. For a cluster m, let Iml denote the number of genes in

m, then:

.. Emsb IMIS*m i
S(Zij) =

'E-Eb IMI

which is similar to the way the similarity matrix is updated in the binary case. This process

is repeated (n - 1)/(k - 1) times until we arrive at a single root cluster, and the tree is

obtained.

Finding b in each step is the most expensive part of the above problem, as we show in

the next lemma. In this lemma we use the notion of W[1] hardness. Under reasonable

assumptions, a W[1] hard problem is assumed to be fixed parameter intractable, i.e. the

dependence on k cannot be separated from the dependence on n (see [40] for more details).

Lemma 7.2.1 Denote by MaxSim(k) the problem of finding the first b set for a given k.

Then MaxSim is NP-hard for arbitrary k, and W[1] hard in terms of k.

Proof: The NP-completeness is proved by a reduction from MAX-CLIQUE. Given a graph

G, we construct the similarity matrix SG in the following way. For any two nodes i, j E G we

set SG(i,j) = 1 if there is an edge between i and j in G, and 0 otherwise. Denote by bk the

b set generated by MaxSim(k) using SG. For a given k we can test if V(bk) = k(k - 1)/2,

and if so there is a clique of size k in G. repeating this for all k = 2... n possible values of

k solves the MAX-CLIQUE problem, so MaxSim(k) is NP-complete.

As for the W[1] completeness, the same reduction holds since Clique is W[1] complete

for a fixed k (see [40] pages 248-249).
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7.2.2 A heuristic algorithm for constructing k-ary trees

As shown in the previous section, any optimal solution for the k-ary tree construction

problem might be prohibitive even for small values of k, since n is very large. In this

section we present a new heuristic algorithm, which has a running time of O(n 3) for any

k, and reduces to the standard average linkage clustering algorithm when k = 2. The

algorithm is presented in Figure 7-1 and works in the following way. Starting with a set of

n clusters (initially each gene is assigned to a different cluster), we generate Li which is a

linked list of clusters for each cluster i. The clusters on Li are ordered by their similarity

to i in descending order. For each cluster i we compute V(bi) where bi consists of i and

the clusters that appear in the first k - 1 places on Li, and V is the function described in

equation 7.1. Next, we find b = argmaxi{V(bj)}, the set of clusters that have the highest

similarity among all the bi sets that are implied by the Li list. We merge all the clusters in

b to a single cluster denoted by p, and recompute the similarity matrix S. After finding b

and recomputing S we go over the Li lists. For each such list Li, we delete all the clusters

that belong to b from Li, insert p and recompute bi. In addition, we generate a new list Lp

for the new cluster p, and compute bp.

KTree(n, S) {
C = {1...n}
for all j E C // preprocessing step

Lj = ordered linked list of genes based on similarity to j
bj = j U first k - 1 genes of Lj

for i 1 : (n - 1)/(k - 1) { // main loop
b = argmaxjEc{V(b)}}
C=C\b
Let p = min{m E b}
for all clusters j E C

S(p'j) = ZEb" ImtS(M ,j)

remove all clusters in b from LJ
insert p into Lj
bj = j U first k - 1 cluster of Lj

C = CUp
generate LP from all the clusters in C and find bp

}
return C // C is a singleton which is the root of the tree

}

Figure 7-1: Constructing k-trees from expression data

Note that using this algorithm, it could be that even though j and i are the most similar
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clusters, j and i will not end up in the same k group. If there is a cluster t s.t. bt includes

i but does not include j, and if V(bt) > V(bj), it could be that j and i will not be in the

same k cluster. This allows us to use this algorithm to overcome noise and missing values

since, even when using this heuristic we still need a strong evidence from other clusters in

order to combine two clusters together.

The running time of this algorithm is O(n 3 ). Generating the Ljs lists can be done in

O(n 2 log n), and finding bj for all genes j can be done in kn time. Thus the preprocessing

step takes O(n 2 log n).

For each iteration of the main loop, it takes O(n) to find b, and 0(nk) to recompute S. It

takes O(kn 2 + n2 + kn) to delete all the members of b from all the Ljs, insert p into all the

Ljs and recompute bj. We need another O(n log n + k) time to generate Lp and compute

bp. Thus, the total running time of each iteration is O(kn 2 ). Since the main loop is iterated

(n- 1)/(k - 1) time, the total running time of the main loop is 0(k(n - 1)n 2 /(k-1)) = O(n 3 )

which is also the running time of the algorithm.

The running time of the above algorithm can be improved to O(n 2 log n) by using a

more sophisticated data structure instead of the linked list. For example, using Heaps, the

preprocessing step has the same complexity as we currently have, and it can be shown that

the (amortized) cost of every step in the main loop iteration becomes O(n log n). However,

since our ordering algorithm operates in O(n 3), this will not reduce the asymptotic running

time of our algorithm, and since the analysis is somewhat more complicated in the Heap

case we left the details out.

7.2.3 Reducing the number of children

Using a fixed k can lead to clusters which do not have a single node associated with them.

Consider for example a dataset in which we are left with four internal nodes after some main

loop iterations. Assume k = 4 and that the input data is composed of two real clusters, A

and B such that three of the subtrees belong to cluster A, while the fourth subtree belongs to

cluster B (see Figure 7-2). If k was fixed, we would have grouped all the subtrees together,

which results in a cluster (A) that is not associated with any internal node. However, if we

allow a smaller number of children than k we could have first grouped the three subtrees of

A and later combine them with B at the root. This can also highlight the fact that A and

B are two different clusters, since nodes with less than k children represent a set of genes
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A, A 2 A 3 B A 1 A 2 A 3 B

Figure 7-2: Fixed vs. non fixed k. In the left hand tree k is fixed at 4. This results in a

cluster (A) which does not have any internal node associated with it. On the right hand

side k is at most 4. Thus, the three subtrees that form cluster A can be grouped together

and then combined with cluster B at the root. This results in an internal node that is

associated with A.

that are similar, yet significantly different than the rest of the genes.

We now present a permutation based test for deciding how many clusters to combine in

each iteration of the main loop. There are two possible approaches one can take in order

to perform this task. The first is to join as many clusters as possible (up to k) unless the

data clearly suggests otherwise. The second is the opposite, i.e. to combine as few clusters

as possible unless the data clearly suggests otherwise. Since we believe that in most cases

more than 2 genes are co-expressed, in this paper we use the first approach, and combine

all k clusters unless the data clearly suggests otherwise.

Let k = 3 and assume b = b,, i.e. b, = argmaxi{V(bi)} where i goes over all the clusters

we have in this step. Let d be the first cluster on L, and let e be the second cluster. Since d

is the first on L,, it is the most similar to c. We now wish to decide whether to combine the

first two clusters (c and d) or combine all three clusters. Let maxe = max{S(c, e), S(d, e)},

that is maxe is the maximal similarity between e and one of the two clusters we will combine

in any case. In order to test the relationship between maxe and S(c, d), we perform the

following test. In our case, each cluster c is associated with a profile (the average expression

values of the genes in c). Assume our dataset contains m experiments, and let Pc,Pd and

pe be the three clusters profiles. Let p be the 3 by m matrix, where every row of p is a

profile of one of the clusters. We permute each column of p uniformly and independently at

random, and for the permuted p we compute the best (si) and second best (82) similarities

among its rows. We repeat this procedure r times, and in each case test if 82 is bigger than
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maxe or smaller. If s2 > maXe at least ar times (where a is a user defined value between 0

and 1) we combine c and d without e, otherwise we combine all three clusters. Note that if

c and d are significantly different from e then it is unlikely that any permutation will yield

an 82 that is lower than maxe, and thus the above test will cause us to separate c and d

from e. If c and d are identical to e, then all permutations will yield an s 2 that is equal to

maxe, causing us to merge all three clusters. As for the values of a, if we set a to be close

to 1 then unless e is very different from c and d we will combine all three clusters. Thus,

the closer a is to 1, the more likely our algorithm is to combine all three clusters.

For k > 3 we repeat the above test for each k' = 3 ... k. That is, we first test if we should

separate the first two clusters from the third cluster, as described above. If the answer is

yes, we combine the first two clusters and move to the next iteration. If the answer is no

we apply the same procedure, to test weather we should separate the first three clusters

from the fourth and so on. The complexity of these steps is rk2 for each k' (since we need

to compute the pairwise similarities in each permutations), and at most rk3 for the entire

iteration. For a fixed r, and k << n this permutation test does not increase the asymptotic

complexity of our algorithm. Note that if we combine m < k clusters, the number of main

loop iteration increases. However, since in this case each the iteration takes O(n 2m) the

total running time remains 0(n3 ).

7.3 Optimal leaf ordering for k-ary trees

In this section we discuss how we preserve the pairwise similarity property of the binary

tree clustering in our k-ary tree algorithm. This is done by performing optimal leaf ordering

on the resulting k-ary tree. We present an algorithm that extends our binary optimal leaf

ordering algorithm from Section 6 to general k-ary trees.

The Optimal order of the leaves of a k-ary tree is defined in the same way as the optimal

ordering for binary trees. That is, we are looking for an ordering that maximizes the sum

of the similarities of neighboring leaves in the ordering. However, unlike binary trees, for

which we have 2 n-1 possible leaf orderings, for a k-ary tree there could be as many as

k!n/(k- 1 ) possible orderings. Even for a relatively small value of k, this is a much higher

number if n is big.

For a k-ary tree, denote by vI ... Vk the k subtrees of v. Assume i C vi and j E Vk, then
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any ordering of v 2 - vk- 2 is a possibility we should examine. For a specified ordering of the

subtrees of v, M(), i, j) can be computed in the same way we computed M for binary trees

by inserting k - 2 internal nodes that agree with this order (see figure 7-3). Thus, we first

V

2 23

V V V - - Vk
V1 V2 V3 V4 Vk

Figure 7-3: Computing M(v, i, j) for the subtrees order 1 ... k. For each possible ordering

of 1 ... k we can compute this quantity by adding internal nodes and using the binary tree

algorithm.

compute M(vi, 2 , h, 1) for all h and I leaves of vi and v 2 . Next we compute M(vi, 2,3 , *, *)

and so on until we compute M(v, i, j) for this order. This results in the optimal ordering

of the leaves when the subtrees order is vi . .. k. Since there are k! possible ordering of the

subtrees, going over all k! orderings of the subtrees in the manner described above gives

rise to a simple algorithm for finding the optimal leaf ordering of a k-ary tree. Denote by

P1 -. Pk the number of leaves in v1 ... Vk respectfully. Denote by E the set of k! possible

orderings of 1... k. The running time of this algorithm is O(k!n 3) as can be seen using

induction from the following recursion:

F(n) = ZF(pi) +

k-1 i

>1I:( (EP0(j))2P0(i+1) + E (j)p (i+)
OEO i=1 j=1 =

< + 5k! ((Z p,) 3 - p )

i 0E6 i

=k!(p1 +P2 +... Pk )3 = kMn3
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Where the inequality uses the induction hypothesis. As for space complexity, for two leaves,

i E v, and j E Vk we need to store M(V, i, j). In addition, it might be that for two other

leaves m E v2 and I E Vk- 1 i and j are two boundary leaves in the internal ordering of the

subtrees of v, and thus we need to store the distance between them for this case as well.

The total number of sub-distances we need to store for each pair is at most k - 2, since

there are only k - 2 subtrees between the two leftmost and rightmost nodes, and thus by

deleting all sub-paths which we do not use we only need O(kn 2 ) memory for this algorithm.

7.3.1 Improving the running time using a divide and conquer algorithm

Though O(k!n3 ) is a feasible running time for small ks, we can improve upon this algorithm

using the following observation. If we partition the subtrees of v into two groups, 7' and

v", then we can compute M(v) for this partition (i.e. when the subtrees of v' are on the

right side and the subtrees of v" on the left) by first computing the optimal ordering on V'

and v" separately, and then combining the result in the same way discussed in Section 6.4.

This gives rise to the following divide and conquer algorithm. Assume k = 2 ', recursively

compute the optimal ordering for all the (k2) possible partitions of the subtrees of v to two

groups of equal size, and merge them to find the optimal ordering of v.

We now prove that the running time of the divide and conquer algorithm for ordering k-

ary trees presented above is 0(4kn3). In order to compute the running time of this algorithm

we introduce the following notations: We denote by 1(v) the set of all the possible partitions

of the subtrees of v to two subsets of equal size. For -y E F(v) let vy(i) and V,(2) be the

two subsets and let p,(i) and Py(2) be the number of leaves in each of these subsets. The

running time of this algorithm can be computed by solving the following recursion:

k

F(n) = F(p + P2- +Pk) = F(pi) + D(v)
i=1

Where

D(v) = S P2(I)P7y(2) + Py(1)Py(2) +
yEr(v)

+D(v7(l)) + D(v-( 2 ))

and D(i) = 0 if i is a singleton containing only one subtree. The following lemma discusses
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the maximal running time of the divide and conquer approach.

Lemma 7.3.1 Assume k = 2m then

M)! k k

D(v) < (m (i3 _
-Ij=O (2 i). Z=P3

Proof: By induction on m.

For m = 1 we have k = 2 and we have already shown in Section 6.4 how to construct

an algorithm that achieves this running time for binary trees. So D(v) = p2P2 + pip2 <

2(pi + p2)3  1

Assume correctness for m - 1. Let k = 2m. Then for every y E F(v) we have

P,(l)Py(2) +Py(1)P2,(2) + D(v(l)) + D(V-y( 2 )) <

2 (2m-1)!
P-Y(1)P-y(2) + ( Z1Xy2
P1Y(1)Py(2) + P-y(1)P2(2) + m-2 2j

HjO (2) CY(1)

P 3 ++ (2 M1)
3 _ 3

- 1 ++ m-2(2i!E P
jY(1) Ei=O jEy(2) jEy(2)

(2m-1)! k 3 c

-l HI- 2 (2 i !) j1

The first inequality comes from the induction hypothesis, and the second inequality arises

from the fact that 7(l) does not intersect 7(2) and 7(l) U-y(2) = {1 ... k}. Since JIF(v)j =

(k2) = (2m ) ) summing up on all y E IF proves the lemma.

It is now easy to see (by using a simple induction proof, as we did for the binary case)

that the total running time of this algorithm is: O( _4! n-3 ) which is faster than the
H2=O (2i)!

direct extension discussed above. If 2m < k < 2 m+1 then the same algorithm can be used

by dividing the subtrees of v to two groups of size 2m and k - 2m. A similar analysis

shows that in this case the running time is O( k 2_! n 3 ), which (using the Sterling
1Ig k] (2T)!

approximation) is O(4k+o(k)n 3 ).

Thus, we can optimally order the leaves of a k-ary tree in O(4kn 3) time and O(kn2 )

space, which are both feasible for small ks.

113



7.4 Experimental results

First, we looked at how our heuristic k-ary clustering algorithm (described in Section 7.2.2)

compares with the naive k-ary clustering which finds and merges the k most similar clusters

in each iteration. As discussed in Section 7.2.1, the naive algorithm works in time O(nk+l),

and thus even for k = 3 it is more time consuming than our heuristic approach. We have

compared both algorithms on a 1.4 GHz Pentium machine using an input dataset of 1000

genes and setting k = 3. While our k-ary clustering algorithm generated the 3-ary tree

in in 35 seconds, the naive algorithm required almost an hour (57 minutes) for this task.

Since a dataset with 1000 genes is relatively small, it is clear that the naive algorithm does

not scale well, and cannot be of practical use, especially for values of k that are greater

than 3. In addition, the results of the naive algorithm where not significantly better when

compared with the results generated by our heuristic algorithm. The average similarity of

the descendants of an internal node in the naive algorithm tree was only 0.8% higher than

the average similarity in the tree generated by our algorithm (0.6371 vs. 0.6366).

Next we compared the binary and k-ary clustering using synthetic and real datasets, and

show that in all cases we looked at we only gain from using the k-ary clustering algorithm.

Choosing the right value for k is a non trivial task. The major purpose of the k-ary

algorithm is to reduce the influence of noise and missing values by relying on more than

that most similar cluster. Thus, the value of k depends on the amount of noise and missing

values in the input dataset. For the datasets we have experienced with, we have found that

the results do not change much when using values of k that are higher than 4 (though there

is a difference between 2 and 4 as we discuss below). Due to the fact that the running time

increases as a function of k, we concentrate on k = 4.

For computing the hierarchical clustering results discussed below we used the correlation

coefficients as the similarity matrix (S).

7.4.1 Generated data

To test the effect of k-ary clustering and ordering on the presentation of the data, we

generated a structured input data set. This set represents 30 temporally related genes,

each one with 30 time points. In order to reduce the effect of pairwise relationships, we

chose 6 of these genes, and manually removed for each of them 6 time points, making these
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time points missing values. Next we permuted the genes, and clustered the resulting dataset

with the three methods discussed above. The results are presented in Figure 7-4. As can

be seen, using optimal leaf ordering (o.l.o.) with binary hierarchical clustering improved

the presentation of the dataset, however o.l.o. was unable to overcome missing values, and

combined pairs of genes which were similar due to the missing values, but were not otherwise

similar to a larger set of genes. Using the more robust k-ary tree algorithm, we where able

to overcome the missing values problem. This resulted in the correct structure as can be

seen in Figure 6-4.

Hierarchical clustering Binary clustering with o.l.o. 4-tree clustering with o.l.o.

Figure 7-4: Comparison between the three different clustering methods on a manually
generated dataset. Green corresponds to decrease in value (-1) and red to increase (1).
Gray represents missing values.

7.4.2 Visualizing biological datasets

For the biological results we used two datasets. The first was a dataset from [79] which

looked at the chicken immune system during normal embryonic B-cell development and

in response to the overexpression of the myc gene. This dataset consists of 13 samples

of transformed bursal follicle (TF) and metastatic tumors (MT). These samples where

organized in decreasing order based on the myc overexpression in each of them. In that

paper the authors focused on approximately 800 genes showing 3 fold change in 6 of 13
samples. These genes were clustered using Eisen's Cluster ( [43]), and based on manual

inspection, 5 different clusters where identified. In Figure 7-5 we present the results of the

three clustering algorithms on this dataset. The left hand figure is taken from [79], and

contains the labels for the 5 clusters identified. [79] discuss the five different classes, and
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separate them into two groups. The first is the group of genes in clusters A,B,E and D which

(in this order) contain genes that are decreasingly sensitive to myc overexpression. The

second is the cluster C which contains genes that are not correlated with myc overexpression.

As can be seen, when using the k-ary clustering algorithm (right hand side of Figure 7-5)

these clusters are displayed in their correct order. Furthermore, each cluster is organized

(from bottom to top) based on the required level of myc overexpression. This allows for

an easier inspection and analysis of the data. As can be seen, using binary tree clustering

with o.l.o. does not yield the same result, and the order that is generated by this algorithm

divides E into two parts that are separated by D.

The resulting 4-ary tree for the myc dataset is presented in the left hand side of Fig-

ure 7-5. Each node is represented by a vertical line. We highlighted (in red) some of the

nodes that contain less than 4 children. Note that some of these nodes correspond to clus-

ters that where identified in the original paper (for example, the top red node corresponds

to cluster C). Had we used a fixed k = 4, these clusters might not have had a single node

associated with them.

7.4.3 Clustering biological datasets

The second biological dataset we looked at is a collection of 79 expression experiments that

where performed under different conditions, (from [43]). In order to compare our k-ary clus-

tering to the binary clustering we used the MIPS complexes categories (http://www.mips.biochem.mpg.de)

We focused on the 979 genes that appeared in both the dataset and the MIPS database.

In order to compare the binary and 4-ary results, we have selected a similarity threshold

(0.3, though similar results were obtained for other thresholds), and used this threshold to

determine the clusters indicated by each of the trees. Starting at the root, we went down

the tree and in each internal node looked at the average similarity of the leaves (genes) that

belong to the subtree rooted at that node. If the average similarity was above the selected

threshold the subtree rooted at that node was determined to be a cluster. Otherwise, we

continued the same process using the sons of this internal node.

This process resulted in 36 distinct clusters for the binary tree and 35 for the 4-ary tree.

Next, we used the MIPS complexes to compute a p-value (using the hyper geometric test)

for each of the clusters with each of the different complexes, and to chose the complex for
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Figure 7-5: Color comparison of the three different clustering algorithms using the myc
overexpression dataset. The left hand side is the figure that appears in the original paper
containing the five different clusters that where identified. Note that by using the k-ary
clustering algorithm we where able to both identify and order the clusters correctly (based
on the required myc gene expression). The tree in the figure is the 4-ary tree where some
of the nodes that contain less than 4 children are highlighted. See text for more details
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which the cluster obtained the lowest p-value. Finally, we looked at all the clusters (in both

trees) that had both more than 5 genes from their selected complex and a p-value below

10-3.

The results seem to support our assumption that the 4-ary tree can generate more

meaningful biological results. The above process resulted in 10 significant clusters in the

binary tree, while the 4-ary tree contained 11 significant clusters. Further, as shown in

Table 7.4.3, the clusters generated by the 4-ary algorithm where, on average, more specific

than the binary clusters. Out of the 7 complexes that where represented in both trees,

the 4-ary tree contained 4 clusters for which more than 50% of their genes belonged to

a certain complex, while the binary tree contained only two such clusters. In particular,

for the Proteasome complex, the 4-ary tree contained a cluster in which almost all of its

genes (28 out of 29) belonged to this complex, while for the corresponding cluster in the

binary tree was much less specific (28 out of 39 genes). These results indicate that our

k-ary clustering algorithm is helpful when compared to the binary hierarchical clustering

algorithm. Note that many of the clusters in both the binary and 4-ary algorithms do

not overlap significantly with any of the complexes. This is not surprising since we have

only used the top level categorization of MIPS, and thus some of the complexes should not

cluster together. However, those that do cluster better when using the 4-ary algorithm.

Complex # binary tree 4-ary tree

genes __________

#E com- cluster p-value #E com- cluster p-value
plex size plex size

Nucleosomal 8 8 48 2 * 10-' 8 15 3 * 10-

Respiration 31 11 67 2* 106 14 27 5 * 1-

chain
Proteasome 35 28 39 8 * 10-" 28 29 0
Replication 48 27 88 5 * 10-18 30 106 3*10-

Cytoskeleton 48 15 53 3 * 10-9 9 28 2*10-

RNA processing 107 12 26 4 * 10-6 13 46 7_* 10-4

Translation 208 152 231 0 144 195 0

Table 7.1: Comparison between the binary tree and 4-ary clustering algorithms for the

complexes that where identified in both trees. In most cases (5 out of 7) the 4-ary results

where more significant than the binary results. See text for complete details and analysis.
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7.4.4 Comparing the sum of similarities for different trees

For each of the three datasets described above, we have also computed the sum of similarities

of adjacent leaves in the orderings of the tree (M(v, *, *) for the root node 7), for the three

different ordering strategies (binary clustering, binary with o.l.o. and 4-ary with ordering).

In all cases the ordering of the trees (both in the binary and 4-ary cases) significantly

improved this sum when compared to the random order (by 4% on average). However,

the difference between the binary and 4-ary orderings was not significant. In two of the

three datasets the 4-ary algorithm achieved a higher value, while for the third the binary

ordering had a higher value. This could be attributed to the fact that the 4-ary algorithm

can place highly similar genes in different subtrees, if their similarity is the results of noise.

This increases the robustness of the clustering, but at the same time decreases the sum of

similarities of neighboring leaves.

7.5 Extensions: optimal ordering for lossless image compres-

sion

While the optimal leaf ordering algorithm discussed in this section was motivated by prob-

lems in computational biology, it can also be applied to other problems in computer science.

Here we present an example of such a problem, which benefits from introducing optimal

ordering for trees.

In image processing and computer graphics, trees are used to represent, store and retrieve

images, and to synthesize new textures from a sample input [15]. One of the most popular

lossless image compression algorithms, GIF, works on a linearized version of the input

image. Since GIF uses the Lempel-Ziv (LZ) compression algorithm [74], any improvement

to the scanning method used can improve GIFs' compression rates. Many algorithm have

been suggested for this task [35], but, as we have shown in a recent paper [13], a scanning

method that represents the image as a tree, and reorders the pixels using a variant of

the optimal leaf ordering algorithm from Section 6 outperforms all previous methods. The

algorithm we present for this task solves a restricted version of the optimal ordering problem

which we call level ordering. Unlike optimal ordering, the level ordering problem asks to

optimally order each level in the tree while holding the levels above it fixed. This allows us

to reduce the running time while still achieving a good ordering of the leaves. We present an
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algorithm that solves the level ordering algorithm (for quadtrees) in 0(n) time and space.

This algorithm allows us to order any image, regardless of its size.

To retrieve the original image, a context-based pixel ordering (such as the optimal level

ordering) necessarily needs to associate the specific ordering with the given image. Encoding

the associated ordering imposes a space overhead. To achieve a compact encoding of the

ordering, we use the ordering of upper levels in the tree to learn an ordering for lower levels.

Specifically, our context-based pixel ordering technique is shown to be effective for lossless

image compression even when the cost of encoding the ordering is included.

In [9], we show that by ordering the leaves of the image tree we are able to present

first context based scanning algorithm that actually improves GIF image compression. Our

algorithm improves the compression rates by up to 9% when compared to the line scan

result, and up to 4% compared to the best previous scan result. Since lossless compression

rates are usually between 20-40%, this is a significant improvement.

7.6 Summary

In this section we have presented an algorithm for generating k-ary clustering tree, and

ordering the leaves of this tree so that the pairwise relationships are preserved despite the

increase in the number of children. Our k-ary clustering algorithm runs in 0(n3 ). As

for ordering, we presented an algorithm which extended our binary optimal leaf ordering

algorithm to the task ordering k-ary trees. Our algorithm has a running time of 0(4kn3 )

and its space complexity time is 0(kn2 ), which improves upon previous space requirements.

We presented several examples in which the results of our algorithm are superior to

the results obtained using binary tree clustering, both with and without ordering. For

synthetic data our algorithm was able to overcome missing values and correctly retrieve

a generated structure. For biological data our algorithm is better in both identifying the

different clusters and ordering the dataset.

While clustering algorithms are useful to draw initial conclusions, and to detect ex-

pression programs, these algorithm cannot determine the specific pathways and networks

involved in the process being studied. Thus, in the next part we present a new algorithm

which combines expression and binding data to discover complex biological networks for

various systems in the cell.
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Part III

Modeling Biological Systems
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Chapter 8

Computational discovery of gene

modules and regulatory networks1

One of the main goals of computational molecular biology is to determine the structure and

function of complex networks in the cell. Using such networks we can accomplish many

different objectives. For example, regulatory networks provide valuable information about

the organization of the cell in the molecular level, which is one of the long term goals of

molecular biology [5]. In addition, such networks can be used to determine possible causes

of different diseases or developmental problems. For drug discovery, these networks allow

us to determine proteins that can serve as potential drug targets. While such targets can be

determined by a number of methods, using networks we can identify not only appropriate

targets, but also the side effects of targeting a specific protein. This can both reduce the

expenses and the time it takes to develop new drugs and to bring them to market.

While computational analyses of transcriptional profiling data have provided many in-

sights into biological pathways by identifying genes with similar patterns of expression,

these methods are unable to distinguish among genes that despite similar expression pat-

terns differ in their cellular function and in their mechanisms of regulation. A variety of

new high-throughput data sources are becoming available [97, 73, 91], and these hold the

promise of revolutionizing molecular biology by providing a large-scale view of the regulation

of genes in the cell. Fundamental goals at this scale involve discovering patterns of com-

binatorial regulation and how the activity of genes involved in related biological processes

'This chapter is based on references [21] and [73]
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is coordinated and interconnected. However, each high-throughput data source measures

only a particular aspect of cellular activity and suffers from limitations in accuracy. Thus,

an important goal is to integrate information from multiple data sources, so that each type

of data can compensate for the limitations of the others. A further goal is to develop meth-

ods that can aid in deducing abstractions that can conceptually reduce genetic network

complexity without significant loss of explanatory power.

In this section we present a method that combines expression data with in vivo protein-

DNA binding data for module discovery, and thus provides direct access to underlying

biological mechanism.Modules are groups of genes that are both co-expressed and bound

by the same set of transcription factors. We present the GRAM (Genetic RegulAtory

Modules) algorithm, which identifies genetic modules that share common regulators as

well as expression profiles by combining direct information from DNA binding experiments

with functional information from expression experiments. Our method exhaustively and

efficiently searches the entire combinatorial space of subsets of transcription factors to dis-

cover what factors control what genes.We discover that genes grouped together in previous

work [65, 81] are, in fact, controlled by different transcription factors. This allows us to

accurately reconstruct the underlying networks used by the cell to control gene expression

programs under different conditions.

GRAM is both efficient in combining information from large complementary data sets

and robust as it makes few assumptions about the underlying data. It uses genomic expres-

sion and transcription factor protein-DNA binding data sources to discover gene modules.

Importantly, GRAM performs an efficient exhaustive search over all possible combinations

of transcription factors implied by the protein-DNA interaction data, applying a stringent

criterion for determining binding. Once a set of genes bound by a common set of transcrip-

tion factors is found, the algorithm identifies a subset of these genes with highly correlated

expression, which serves as a seed for the module. The algorithm then seeks to add addi-

tional genes to the module that are similarly expressed and would be considered bound by

the same set of transcription factors if a more relaxed binding criteria were used.

We applied our GRAM algorithm to a collection of genomic binding experiments pro-

filing 106 Saccharomyces cervisiae transcription factors in rich media conditions [73] and

a second data set of over 500 expression experiments profiling yeast cells under a variety

of conditions. Complete details on the data used are available on the supplementary web
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site [17]. We use the discovered modules to build a regulatory network of transcription

factors and modules, and also use modules to label transcription factors as activators or

repressors and identify patterns of combinatorial regulation. Further, we present a method

for using modules to build automatically genetic regulatory sub-networks for specific bi-

ological processes, and use this to reconstruct accurately key elements of the amino acid

starvation response, the cell cycle system in yeast and the regulation of genes following a

treatment with rapamycin. Finally, we validate the quality of the results obtained with our

module discovery algorithm, by performing analyses using four independent data sources.

8.1 Related work

Recently, there have been many papers that focus on discovering genetic regulatory net-

works. While I will mention many of these papers in this section, this is by no means a

comprehensive overview of systems biology references. See [61] for a recent review.

A number of papers focused on networks derived from one type of data, usually genes

expression or protein interaction data. Friedman et al [47] used expression experiments

performed on yeast cells to learn static Bayesian networks and subnetworks for the regula-

tion of gene expression in yeast. Hartemink et al [55] used Gal related expression dataset,

and extended Bayesian networks to model the types of relationships between proteins and

their targets. While these approaches work in some cases, in general it is hard to infer the

structure of the network by using only indirect (expression) information.

Other papers combined binding and expression data, though unlike the approach pre-

sented in this section, they have used a strict cutoff for the binding data, reducing it to

binary relationships based on the computed p-value. For example, Hartemink et al [56] used

binding data to constrain the structure of the learned static Bayesian network. Idekker et

al [64] combined protein interaction and binding data to construct the network structure,

and then used expression data to identify specific subnetworks in that network. Unlike

these two approaches, we do not rely on the strict threshold alone. We use expression to

allow us to overcome problems associated with a strict p-value cutoff (such as a low true

positive rate [73]). Thus, we allow relationships that cannot be detected using these two

approaches.

A number of methods have been recently suggested in order to combine DNA motifs

125



with gene expression to discover the different transcriptional modules that are activated in

response to external conditions [65, 81]. These methods start with an initial set of genes

that are selected using a certain criteria (DNA binding motif, functional category) and

use expression data to refine the initial set. While these methods represent an important

first step, the method presented in this paper improves upon them in several ways. First,

our method exhaustively and efficiently searches the entire combinatorial space of subsets

of transcriptional factors. This allows us to distinguish modules that were found to be

identical in previous work but that are controlled by different transcription factors (see

Section 8.4). Second, unlike previous methods, our method comprehensively combines the

two data sources (binding and expression data) by revisiting the binding data after refining

the initial set. Finally, our method focuses not only on the genes themselves but also on

the relationships between the factors binding to these genes and the bounded set of genes.

This allows us to discover the way in which the cell responds to the external conditions by

assigning functional annotations to the different transcriptional factors.

Note that all the above approaches (and several others that where not mentioned above)

generate networks that represent a static (or a steady state) version of gene expression. In

contrast, as we show in the following section, our algorithm allows us to represent a dynamic

network, by combining our module discovery algorithm with our interpolation and alignment

algorithms from Section I. This is especially important for networks that model dynamic

systems in the cell, such as the cell cycle system, which is one of the examples we present

in section.

8.2 The GRAM algorithm

In this section we present the GRAM algorithm for discovering gene modules. As mentioned

above, modules are sets of genes that are both co-expressed and regulated by the same set

of transcription factors (TFs). Together with the factors that regulate these modules, they

can serve as a basis for a network that represents general regulation of gene expression

in the cell. The computational challenge is to integrate the large binding and expression

datasets to identify such modules.

In order to reduce the assumption the algorithm makes, and to allow an exhaustive

search over the space of potential sets of regulators, we do not assume that the expression
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patterns of genes in a specific module are directly effected by the expression profiles of

the factors regulating these modules. Indeed, in many cases TFs are post transcriptionally

modified, and since we currently cannot examine the protein levels of these genes, we cannot

eliminate regulation inference based on expression data alone. For example, the expression

profiles of four out of the nine cell cycle TFs are not cycling [92], while there is evidence that

by knocking out some of these non cycling factors the expression levels of many cell cycle

regulated genes are altered(see [107] and Section 4). Thus, instead of basing our regulation

decision on expression data, we base it on binding data. However, since the binding data is

noisy, we complement it with expression data, by using a reduced p-value cutoff for genes

that have similar expression patterns to genes that are bound by a set of factors (based on

a strict p-value). Thus, in addition to discovering gene modules, our algorithm can discover

new regulation relationships that are missed when using a strict p-value cutoff.

8.2.1 Identifying gene modules

The GRAM algorithm exhaustively searches the space of all possible sets of regulators (see

below). For each such set F, our algorithm involves three stages (see Figure 8-1). In the

first stage, the set of all genes G that are bound using a strict p-value by all of the factors

in F are selected. In the second stage, we look at the expression profiles of the genes in G,

and determine an expression center c for which the ball in expression space defined by c and

a given radius r (denoted B(c, r)) contains as many of the genes in G as possible. Finally,

in the third stage we look for genes with a combined p-value below a certain threshold, and

an expression profile contained in B (c, r). These are the set of genes that we include in the

module regulated by F.

Below we discuss in detail if the the three stages of the algorithm.

Initial strict set

Let b be a matrix of binding p-values, where rows correspond to genes and column corre-

spond to transcription factors, so that bij denotes the binding p-value of TF j to gene i.

Let T(i,p) denote the set of all transcription factors that bind to a gene i with p-value less

than p, i.e., the list of factors j such that bij < p. Let F C T(i,p) denote a subset of the

transcription factors that are bound to i. Let G(Fp) be the set of all genes to which all the

factors in F bind with a given significance threshold p. That is, all the genes k such that
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GRAM (E, B,p 1 ,p 2 ) { // E and B are the expression and binding datasets respectfully
For all genes i {

Set T = T(i,p1) // see text
// Exhaustively search the regulators space for subsets controlling modules
For all F C T s.t. F has not been previously explored {

// Step 1: Find the initial strict set
Let G = G(Fpi)
Let n = Gl and s, be the similarity threshold for n
// Step 2: Find the expression core set
Find the expression center c for G and sn // see text
// Step 3: Expansion by relaxing the p-value cutoff and using expression core
Set M(F) = genes j s.t. d(ej, c) < s, and PF,J < P1

// Report the module that was found
if M(F) > min size, output F, M(F)
Mark all genes in M(F) so that they are not considered for F' C F

}
}

}

Figure 8-1: GRAM algorithm for identifying gene modules.

F C T(k,p). The GRAM algorithm begins by going over all genes i. Using a strict p-value

cutoff pi, we search over all subsets F C T(i,pi) that have not been explored in previous

steps for modules regulated by the factors in F.

Note that we are working with a dataset containing over 100 TFs. Thus, there are

potentially exponential number of subsets of factors of size 10. However, since we initiate

our search at the genes themselves, the number of actual subsets we are searching is much

smaller. In particular, this approach allows us to exhaustively search all possible subsets of

factors that are present in the dataset we are looking at.

Expression core set

For every set of transcription factors F, the genes in G(Fpi) serve as candidates for a

module regulated by F. For each such set G(Fpi) with a sufficient number of genes (we

currently require at least five genes), the algorithm attempts to find an expression core set

i.e. a subset of the genes in G(F,pi) that are co-expressed. Let IG(Fpi) = n, that is,

there are n genes bound by all the factors in F with a p-value less than pi. In order to find

such a subset we look for a point c in expression space such that for an expression similarity

threshold Sn, the ball centered at c of radius s, contains as many genes in G(Fpi) as
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possible. In order to reduce unwarranted assumptions, we do not assume any probability

model for gene expression data. Instead, we rely on randomizations tests to determine a

suitable radius for similar expression patterns. Randomization tests have been extensively

used in computational biology, and in general seem to provide good results. Thus, s" is

computed by using a randomization test in the following way. We select at random n genes,

compute c for this set (see below), and determine the distance r of the 5% closest genes

that were not included in the random sampled set. This process is repeated many times (it

is actually performed as a pre-processing step, for different possible sizes of n), and we set

s, to be the median r obtained in this randomization tests.

Let ej denote the expression vector for gene i, and let d(ei, c) denote the distance between

the expression profile of gene i and the selected center c. Denote by C(F, pl, c) the set of

genes in G(Fpi) that are all at distance at most sn from a given point c in expression

space. In order to find the best center, we would like to solve the following maximization

problem:

maxIG(F, pi, c)j (8.1)

Unfortunately, the exact solution of this problem is exponential in the dimension of the

expression space [10]. Since our algorithm is intended for large datasets of expression

experiments, such a search is prohibitive. Instead we use an approximation algorithm, that

has good theoretical guaranties, and runs in time O(n3 ). Note that since n is the number of

genes in G(F,pi), n << n. the total number of genes (since only a small number of genes

are bound by all the factors in F), and so such a running time is reasonable.

The algorithm we use is very simple. We go over all triplets of genes from G(F,pi),

and for each such triplet we compute the center for this triplet c, and the number of

genes in G(F, pi) that are contained in C(F, pl, c). We select the point c which maximizes

C(F, pi, c)I over all the centers we have looked at for all triplets.

In order to present the theoretical guarantees of this algorithm we cite a lemma from [10].

Let P be a set of points in a high dimensional space. For S C P let B(S) denote the smallest

ball enclosing all the points in S, let CB(S) be the center of such ball and let rB(s) be its

radius. Then the following lemma is proved in Badoiu and Clarkson [10].

Lemma 8.2.1 [Badoiu and Clarkson 03] There exists a set S C P of size 2/, such that the
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distance between cB(S) and any point p E P is at most (1 +e rB(p).

Set e = 2/3. According to the above lemma, there are three points in the subset we are

looking for, for which the ball defined by the center of these three points and a radius of

(1 + E)sa contains all the points in the set we are looking for. Since we are going over all

possible triplets of points, we are guaranteed to encounter the three points from the above

lemma. In other words, our algorithm finds a solution which is at least as good as a solution

that can be found for n* = sA/(1 + 2/3).

Final module

Now that we have a center for the expression profile of the module, we expand the set of

genes included by re-visiting the p-value table to detect genes that where omitted due to

noise in the p-value measurements. This is done in the following way. For a gene i, we

first check if d(ei, c) < n8 , and if so we move on to test the binding of the factors in F to

gene i. First, if there exists a factor f E F such that bf > p2, i will not be added to the

module. P2 is determined using a set of independent chromatin IP experiments. Next, for

all genes that pass these two requirements (expression similarity and a P2 or less p-value

with all factors), we compute the combined p-value for the factors in F. This is done using

the Fischer method [46] which can be described as fellows. If each p-value pf has a uniform

distribution between 0 and 1, then -2logpf has a X2 distribution. Thus, if the tests for

each factor are independent 1 then for gene i

-2 E log Pi,f
fEF

has a X2 distribution with |Fl degrees of freedom. Using the X2 distribution we can compute

a new combined p-value based on the above sum. Denote this p-value by Pi,F. Then we

add i to the module M(F) if Pi,F < P1 (where p, is our initial strict p-value).

Following this step, we arrive at a module that contains similarly expressed and co-

regulated genes. We repeat the above process for all possible subsets of TFs, until we

determine the list of all modules contained in the datasets we are looking at.

'This assumption is not entirely true since experimental conditions can affect some genes in all experi-

ments. However, this simplifying assumption makes computation easier, and allows us to capture the essence

of the results
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Note that if a gene i is included in a module controlled by a set of TFs F, it is likely

to be included in any module controlled by a subset F' C F. Since we are interested in

the complete set of factors controlling a gene, we do not gain anything from including i in

M(F'). Thus, prior to computing the set of genes contained in M(F'), we filter out any

genes that have already been found to included in a module controlled by a superset of F'.

This reduces the number of overlapping modules, without reducing the explanatory power

of this approach.

8.2.2 Sub-network discovery algorithm

Our sub-network discovery algorithm extends the GRAM to the task of inferring subnet-

works for specific dynamic and static systems in the cell. For a given system, the GRAM

algorithm is run on the full set of transcription factors and a large set of expression data

(containing expression data that specifically studies this system, and expression data under

other conditions). In the second step, genes in the generated modules are flagged if they

are determined to be involved in a given biological process based on an objective criteria.

For instance, the criteria could be a fold change above a threshold in a set of relevant ex-

pression experiments or a more complex criteria such as cycling behavior in a time series

gene expression experiment. A statistical test based on the hypergeometric distribution is

then used to determine which modules contain a significant number of flagged genes. The

transcription factors that regulate these significant modules are then collected into a list.

We then select a set of expression experiments in which the biological process of interest is

expected to be particularly active. Finally in the third step, our module discovery algorithm

is run using this expression data, the flagged genes, and the list of regulators determined in

the previous step, producing a set of modules with genes and factors presumably directly

involved in the process of interest.

In order to present a dynamic model for a subsystem, we combine the above algorithm

with our interpolation and alignment algorithms from Sections 2 and 3. After determining

the modules for the subnetwork, we interpolate the expression profiles of the genes in the

discovered modules. Next, we select one module as an anchor (or time point 0), and align

the rest of the modules to this module using our continuous alignment algorithm. Unlike

the alignment discussed in Section 3, in this case we only allow a shift between the two sets

that we align, and thus we can use the shift parameter to determine the actual starting
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time (with respect to the selected time point 0 module) of the aligned module. We repeat

this process for all modules, resulting in a temporal ordering of the discovered modules.

Note that this way we can determine the actual activation time for factors, even if their

expression profiles do not change under the experimental conditions, based on the time of

the modules they regulate. This allows us to correctly assign factors to different stages in

the system, without directly observing their protein levels.

8.3 Results

In this section we discuss results that are based on a number of applications of our GRAM

algorithm. First, we have applied our module discovery algorithm to a large collection of

gene expression experiments in order to identify modules for gene regulation in rich media

conditions. Next, we have verified the results obtained by our modules discovery algorithm

using a variety of other high throughput data sources (including sequence and literature

data) and a set of independent biological experiments. Finally, we have used our subnetwork

discovery algorithm to discover subnetworks for a number of systems in the cell, including

the cell cycle system and amino acid starvation. In collaboration with the Young laboratory

at the Whitehead Institute we have also explored a novel network for gene expression in the

Tor pathway using a collection of binding experiments that where performed after treating

cells with rapamycin.

8.3.1 Gene modules in rich media conditions and modes of regulatory

control

The GRAM algorithm was applied to genome-wide binding data for 106 transcription factors

and over 500 expression experiments (complete details on the data used are available on

the supplementary web site [17]).

In order to determine the values for pi and P2 we have performed independent experi-

ments to test the prediction of the binding data at a number of different confidence levels.

We used gene-specific PCR analysis with selected regulators to test the results predicted

at each of the different p-value thresholds. We could then determine how frequently a

regulator-gene interaction is correctly predicted at different p-values threshold.

We selected two different regulators, Nrgl and Stbl, for further testing. For each reg-
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ulator, we selected sets of genes with p-values closest to one of four thresholds (0.001,

0.005,0.01,0.05) and performed chromatin IP and gene-specific PCR. See http://web.wi.mit.edu/young/reguilat

for complete results.

Based on these independent experiments, we have used p, = .001 and p2 = 0.01. For

these values we have determined that p, achieves a 70% true positive rate and a 5% false

postive rate, while P2 achieves over 90% true positve rate, but over 50% false positive rates.

Thus, it is important to start with p1 in order to reduce the false positive rate, but using

only the strict p-value of p1 reduces the number of true positives that can be determined.

By complementing binding with expression data, we can use the higher cutoff (P2) and thus

increase the true positive rate without increasing the false positive rate, as we show below.

One-hundred eight modules were found that correspond to a variety of biological func-

tions (see Figure 8-2 and supplementary data [17]) and in many cases, modules that share

a biological function have overlapping transcriptional regulators. The modules contain 659

distinct genes and are regulated by 68 of the transcription factors. The discovered modules

are typically controlled by multiple transcription factors, and in a number of cases these

factors were previously known to interact including Hap2/3/4/5, Hap4/Abfl, Ino2/Ino4,

Hirl/Hir2, Mbpl/Swi6, and Swi4/Swi6. These results provide evidence that the GRAM

algorithm identifies not only biologically related sets of genes, but also relevant factors that

are interacting to control the genes. By integrating binding and expression data the GRAM

algorithm improves on either data source alone as we show in Figures 8-3 and 8-4.

Identifying activators and repressors

While genomic binding data is very useful in helping to determine which transcription

factors regulate a gene, it does not provide information on the type of regulation being

exercised. In particular, it cannot tell us whether factors act as activators or repressors.

Our approach to identifying activators/repressors was to search for transcription factors

with expression profiles that are positively/negatively correlated with the profiles of reg-

ulated genes (activators/repressors). We determined the significance of these correlations

by computing correlation coefficients between all factors and all modules and taking the

5% tail of the distribution of absolute correlation coefficients. Out of the 108 modules, 28

(26%) were bound by a factor determined to be either an activator or repressor. Tables 8.1

and 8.2 present the eleven activators and five repressors determined using the method de-
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Figure 8-2: Rich media gene modules network - Visualization of the network of modules
and regulatory factors reveals that there are many groups of connected modules/regulators
involved in similar biological processes. The network consists of 108 modules containing

659 distinct genes regulated by 68 factors. The directed arrows point from transcription
factors to the modules that they regulate. Modules are colored according to the MIPS

category to which a significant number of genes belong (significance test using the hyper-

geometric distribution p < 0.005). Modules containing many genes with unknown function

or an insignificant number belonging to the same MIPS category are uncolored. When the

discovered modules were compared to results generated using the binding data alone, the

module discovery algorithm yielded an almost three-fold increase in modules significantly

enriched for genes in the same MIPS category.

scribed above (see Also Figure 8-5). Ten of the eleven activators were already identified

in the literature; the literature offered less information about the five repressors. One of

these repressors was previously identified, while in at least one case, a factor may serve in

both activator and repressor roles under different conditions. Ino4 and Ino2 are thought to

dimerize and activate genes in low inositol conditions, but while Ino4 is required for binding

it apparently does not affect activation. In our analysis, the highest degree of negative

correlation occurs in stress condition expression experiments, suggesting that Ino4 might

serve as a repressor under certain conditions and an activator under others.

135



.001

.01

Figure 8-3: Binding data: the GRAM algorithm can improve the quality of DNA-binding

information, since it uses expression data to avoid a strict statistical significance threshold.

Shown is DNA-binding and expression information for the 99 genes bound by Hap4 with

a p-value i .01 using the statistical model in Lee et al. The blue-white column on the

left indicates binding p-values, and the horizontal yellow line denotes the strict significance

threshold of .001. As can be seen, the p-values form a continuum and a strict threshold is

unlikely to produce good results. The blue horizontal lines on the right indicate genes that

were selected for modules by the GRAM algorithm. As can be seen, most have a p-value Z

.001, but some have p-values below this threshold. The lower portion of the figure shows the

genes selected by the GRAM algorithm only, and it can be seen that they exhibit coherent

expression. Further, all the selected genes are involved in respiration.
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Figure 8-4: Expression data: the GRAM algorithm can assign different regulators to genes
with similar expression patterns that cannot be distinguished using expression clustering
methods alone. Hierarchical clustering of expression data was used to obtain the sub-tree
on the left. On the right, the regulators assigned to genes by the GRAM algorithm are color
coded. As can be seen, many genes with very similar expression patterns are regulated by
different transcription factors.

Activators identified by our algorithm
Factor Module function Corr. Comments

W/
mod-
ule

Ste12 Pheromone response +0.64 Activator, required for
pheromone response

Hap4 Respiration +0.60 Activator of CCAAT box
containing genes

Yapi Detoxification +0.53 Activator, possibly involved
in oxidative stress response

Nrgl Carbohydrate transport +0.50 Previously identified as a re-
pressor

Fkhl Cell cycle +0.49 Activator of cell cycle genes
Cadi Detoxification +0.47 Activator, involved in multi-

drug resistance

Aro80 Energy and metabolism +0.40 Activator, involved in regula-
tion of amino acid synthesis

Swi6 Cell cycle +0.39 Activator of cell cycle genes
Msn4 Stress response +0.38 Activator, involved in stress

response

Fkh2 Cell cycle +0.37 Activator of cell cycle genes
Hsfl Stress response +0.36 Activator of heat shock re-

lated genes

Table 8.1: Eleven activators were identified by computing the correlation between the ex-
pression patterns of genes in a module and the regulators. Ten of the eleven activators were
previously identified in the literature.
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Repressors identified by our algorithm
Factor Module function Corr. Comments

w/
mod-
ule

YFL044C Unknown -0.44 Function unknown

Azfl rRNA transcription -0.41 Previously identified as an ac-
tivator

Nrgl Unknown -0.40 Transcriptional repressor for
glucose gene expression

Yap5 Ribosome biogenesis -0.39 Function unknown

Ino4 Fatty acid biosynthesis -0.39 Previous evidence of involve-
ment in Ino2-Ino4 dimer that

activates in low inositol con-
ditions

Table 8.2: Five repressors were identified by our algorithm. One of them was previously

reported in the literature, and two have not been studied before. In at least one case, a

factor may serve in both activator and repressor roles under different conditions. Ino4 and

Ino2 are thought to dimerize and activate genes in low inositol conditions, but while Ino4

is required for binding it apparently does not affect activation. In our analysis, the highest

degree of negative correlation occurs in stress condition expression experiments, suggesting

that Ino4 might serve as a repressor under certain conditions and an activator under others.
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Modes of combinatorial regulation

A central feature of eukaryotic transcriptional regulation is combinatorial control, the ability

of different combinations of transcription factors to specify distinct biological outcomes [93].

We sought to determine how combinations of regulators affect expression by examining the

correlation between expression profiles of genes from pairs of modules that share at least

one transcription factor but have no genes in common. This analysis suggests four distinct

types of coordinate regulation:

" Additive - the binding of additional factors increases the expression levels of the bound

genes. Our analysis suggested that this is the most common type of coordinate regu-

lation. The complete set of pairs of modules that exhibit additive control appears on

the supplementary website [17].

" Negative - a factor serves as an activator for one module, but addition of a partner

factor for a second module abolishes activation or causes repression. This results in

negative expression correlation between the two modules under all conditions. For

example, the module controlled by the two cell cycle activators Swi4 and Mbpl was

strongly negatively correlated with a module controlled by Swi4 and Skn7. This is

plausible, since there is evidence that Skn7 acts as a repressor in the oxidative stress

response in yeast [72].

" Delayed - one factor regulates two or more modules in a similar way, but addition

of a partner factor causes expression of the genes in the two modules to be offset

temporally. Thus, the average expression of the modules can be aligned after an

appropriate time shift. For example, Swi6, a cell cycle transcription factor, is known

to partner with both Swi4 and Mbpl to regulate genes in the G1/S cell cycle phase.

However, since Swi4 itself is regulated by Swi6, expression of the set of genes regulated

by Swi6/Mbp1 occurs earlier than that of those regulated by Swi6/Swi4 (see Figure 8-

6). Many other cell cycle factors exhibit this type of delayed regulation.

" Conditional - addition of a partner factor causes expression changes in a subset of

conditions. For example, our algorithm discovered a module regulated by Met4 alone

and a second regulated by Met4 and Cbfl. As shown in Figure 8-6, under many

conditions the average expression profile of genes in the module regulated by Met4 is
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Figure 8-5: Examples of an activator and a repressor. Top: The expression levels of Hap4

correlates very well with the expression levels of the genes in the module in regulates,

indicating that Hap4 is an activator. Bottom: Unlike Hap4, the expression levels of Yap5

are anti-correlated with the expression levels of the genes it regulates, indicating that it

acts as a repressor. See [17] for the list of genes contained in these modules.
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very similar to that of genes in the module regulated by Met4/Cbfl. However, there

are some experiments in which the average expression profiles of genes in the two

modules are anti-correlated, most notably under stress conditions.

8.3.2 Validation of the GRAM algorithm results using independent data

sources

In this section, we investigate the GRAM algorithms ability to discriminate real transcription-

factor binding events from erroneous ones, and hence improve on the results obtained using

the genomic DNA-binding data alone. As with any high-throughput microarray method,

considerable noise is inherent in genomic DNA-binding data. To deal with noise, Lee et

al [73] used a statistical model for determining binding that required their trading off false-

positive and negative rates. Their decision was to choose a relatively stringent p-value

cutoff (.001) to reduce the false-positive rate, but this can unfortunately result in a low

true positive rate. The GRAM algorithm presents a powerful alternative to using a single

p-value threshold to predict binding events, since our method allows the p-value cutoff to be

relaxed if there is sufficient supporting evidence from expression data (see also Figure 8-3).

Out of the 1560 unique factor-gene interactions detected by our algorithm, 627 (40%)

would not have been detected using the DNA-binding data alone with a stringent p-value

cutoff. One would like to show that these interactions are not erroneous by comparing them

against some independent gold standard. Unfortunately, no such data source exists on a

genomic scale for transcription factor-DNA interactions.

Our approach was to verify that the GRAM algorithm improves true positive rates with-

out significantly increasing false-positive rates by using available data from four indepen-

dent sources: transcription factor-gene interactions identified in the literature, conventional

chromatin-IP (chIP) experiments, the MIPS database and DNA sequence motif informa-

tion. We first focused on known transcription factor-gene interactions involved in the cell

cycle, since this is an extensively studied system. We performed a literature search and

found 51 previously identified binding relationships [17]. Seven of these binding relation-

ships were not detected in the genomic binding assay using a stringent cutoff, but three

of these were identified by the GRAM algorithm. Since our method added only 59 new

factor-gene relationships for the cell cycle genes, this result was significant, with a p-value

< 3*10-5. To further verify our results, we performed conventional chromatin-IP exper-
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Figure 8-6: Combinatorial regulation modes - Our analysis of pairs of modules that share at

least one transcription factor but have no genes in common revealed several distinct types

of coordinate regulation. Examples of two such types are shown in the above figures. (a) In

delayed control a factor regulates two or more modules in a similar way, but the expression

of these sets of genes are temporally separated, an affect brought about by the activity

of different bound partner factors. As can be seen, the average expression of genes in the

module regulated by Swi6/Mbpl lags that of genes in the module regulated by Swi6/Swi4,
though both belong to the G1 phase. (b) In conditional control, a partner factor affects

expression primarily in a subset of conditions. As can be seen, under many conditions the

average expression profile of genes in the module regulated by Met4 is very similar to that

of genes in the module regulated by Met4/Cbfl. However, there are some experiments in

which the average expression profiles of genes in the two modules are anti-correlated, most

notably under stress conditions.
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iments for the factor Stbl and 36 genes. The profiled genes were picked randomly from

the full set of yeast genes. In these verification experiments, three additional genes were

determined to be bound by Stbl that were not detected in the genomic binding experi-

ments using a stringent p-value cutoff. Our algorithm identified all three genes as bound

by Stbl without adding any additional genes that were determined not to be bound in the

conventional chromatin-IP experiments (see Table 8.3 and [17]).

The Stbl-Swi4 Module

Orf name Gene name Cell Binding p-value
cycle for Stbl
phase

YOR065W Hcml G1 0.0012

YDR501W YDR501W GI 0.00002

YGR109C Clb6 Gi 0.0013

YGR221C YGR221C GI 0.0009

YIL14OW Sro4 Gi 0.008

YIL141W YIL141W GI 0.008

YMR179W Spt2l Gi 0.007

YNL289W Pell GI 0.0000005

YPL256W Cln2 GI 0.00007

Table 8.3: A module controlled by Swi4 and Stbl. Out of the nine genes contained in the

module, five had a p-value higher than .001 for Stbl, and where thus not considered as

bound by Stbl in Lee et al [73]. However, independent chromatin-IP experiments for Stbl

confirmed the prediction of the GRAM algorithm for three out of the five genes included

(HCM1, SRO4 and SPT21), while the two others were not tested. these results indicate

that the GRAM algorithm can improve the true positive rate without increasing the false

negative rate.

Next, we looked at the extent to which genes in the same module belonged to an iden-

tical MIPS [2] sub-category. For each module we have computed the overlap between the

genes contained in that module and the different MIPS sub-categories. We have used the

hyper-geometric distribution to compute a significance value for this overlap, and assigned

module to their most significant category, provided that the overlap for such a category

was significant with a p-value < 0.005. We repeated the same process using the binding

data alone (that is, using the initial strict set instead of the modules identified by our al-

gorithm). When these results were compared, we observed that for the modules discovered

by the GRAM algorithm there was almost a three-fold increase in modules significantly

enriched for genes in the same MIPS category. Thus, this results indicate that using ex-

pression we can arrive at much more coherent modules when compared to binding data on
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its own.

Finally, we investigated the extent to which genes in our modules are enriched for

DNA binding motifs as compared with results obtained using genomic binding data alone.

We identified 34 transcription factors that regulate at least one module and have well-

characterized DNA binding motifs in the Transfac database (http://transfac.gbf.de/TR.ANSFAC/).

For each of these 34 factors, we generated a list of genes in modules bound by the factor

and a second list of genes bound by the factor using the genomic binding data alone (strin-

gent p-value cutoff of .001). We then computed the percentage of genes from each list

that contained the appropriate known motif in the upstream region of DNA. As is evident

from Figure 8-7, in almost all cases, the percentage of genes containing the correct motif

was higher when gene lists were generated using the GRAM algorithm instead of from the

genomic binding data alone.

8.3.3 Discovering networks for systems in the cell

Inspection of the global visualization of the network of modules and regulatory factors

shown in Figure 8-2 suggests that there are many groups of connected nodes involved in

similar biological processes. However, this global network was generated using expression

data obtained under a variety of conditions and in some sense represents an average or

consensus picture. One would like to be able to zoom in to obtain details on modules

and factors involved in similar biological processes. For this task, we developed the sub-

network discovery algorithm discussed in Section 8.2.2, that uses the globally discovered

modules in combination with expression data specific to a certain biological process. This

algorithm automatically infers relevant sub-networks and uses a minimum of prior biological

knowledge.

We have applied our sub-networks discovery algorithm to discover three subnetworks

for specific systems in the cell. We start with a sub-network for gene regulation in re-

sponse to amino acid starvation. This network demonstrates the basic capabilities of our

algorithm, as it uses publicly available datasets to automatically infer the network. Next,

we describe a dynamic network for the regulation of gene expression during the cell cycle,

which demonstrates the ability of our algorithm to infer dynamic sub-networks when high

quality time series expression data is available. Finally, we present a novel network for

the regulation of gene expression under rapamycin. For this network we collaborated with
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Figure 8-7: Motif discovery using the upstream regions of genes in modules discovered by
the GRAM algorithm produces superior results to those obtained using genomic binding
data alone. Shown is a comparison of the percentage of genes containing known regulatory
motifs using modules or binding data alone. Thirty-four known motifs for factors regulating
at least one module were determined using the Transfac database. For each factor with a
known motif, two lists were generated: one containing genes determined bound by the factor
using genomic binding data alone and the second using the GRAM algorithm results. The
percentage of genes containing the appropriate motif was then calculated for each list. As
can be seen, in most cases using the GRAM algorithm results produces a much better list,
resulting in a higher percentage of genes containing the known motif. See supplementary
web site [17] for complete results and factors names.
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the Young laboratory at the Whitehead Institute to generate a new binding dataset under

the appropriate condition. As we show, by using both expression and binding data that

where specifically generated under these conditions, our algorithm is able to derive many

new biological insights that cannot be discovered if one only uses binding in rich media

conditions.

Amino acid starvation network

We applied the sub-network discovery algorithm to the task of reconstructing a regulatory

network for the yeast amino acid starvation response and obtained biologically meaningful

results. When yeast cells are starved of amino acids, a characteristic response occurs involv-

ing expression changes in hundreds of genes [54, 76]. Our analysis generated 16 modules

containing 132 unique genes regulated by 16 transcription factors. As shown in Figure 8-8,

all of the genes in the modules fall into one of six functional categories. Four of these

categories involve biosynthesis of different amino acids or their components. Almost all the

factors in the network and many of the genes in the modules have been previously reported

in the literature to be involved in the amino acid starvation response. For instance, one

module is regulated by both ARG80 and ARG81, a complex known to regulate amino acid

biosynthesis. This module contains arginine biosynthesis genes such as ARG1,3,5,6 and

CPA1. A module regulated by DAL81 contains genes involved in amino acid transport such

as the permeases BAP2 and AGP1. Such genes are known to be induced during starvation

conditions, presumably to increase uptake of amino acids. Seven of the modules contain

genes involved in ribosomal function, which is not surprising, since a large number of riboso-

mal proteins are known to be strongly repressed under amino acid starvation conditions [76].

It is interesting to note that a number of the amino acid starvation modules discovered by

our algorithm are a refined version of the transcriptional modules discovered by Ihmels et al

algorithm [65] (see Section 8.4). This indicates that our algorithm can be used to construct

the actual network employed by the cell under different conditions.

Given that most of the the binding experiments we used were performed on yeast growing

in rich media, it is interesting that our algorithm was able to find a number of the modules,

such as those associated with specific metabolic responses. One possibility is that the

genomic binding assay is permissive, indicating not only the regions of DNA the factors

bind to under ideal growth conditions but also where factors have the potential of binding.
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Figure 8-8: Amino acid starvation sub-network - An amino acid starvation network in yeast

was automatically recovered using our sub-network discovery algorithm and a minimum

of prior biological knowledge. The network consists of 16 modules containing 132 unique

genes regulated by 16 transcription factors. All the genes in modules fall into one of six

functional categories. Four of these categories involve biosynthesis of different amino acids

or components. Almost all the factors in our network and many of the genes in the modules
have been previously reported in the literature to be involved in the amino acid starvation

response.
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Another possibility is that some factors may bind constitutively to certain genes and require

a second activating event under the appropriate conditions. It is also possible that many

factors are involved in pathways that are operational in rich media conditions, but at lower

levels.

Cell cycle network

When additional information is available, such as temporal expression data, even richer

regulatory networks can be inferred. We applied our sub-network discovery algorithm to

the yeast cell cycle in combination with a continuous temporal alignment algorithm to un-

cover not only modules and their regulating transcription factors, but also the temporal

relationships among these modules. The cell cycle regulatory network was selected because

of the importance of this biological process, the availability of extensive genome-wide ex-

pression data for the cell cycle (see Table 1.1), the extensive literature that can be used

to explore features of a network model, and our interest in determining whether a prin-

cipled computational approach can reproduce substantial portions of the simple network

that was previously modeled using a more directed manual approach [92]. As mentioned

in Section 8.2, to produce a dynamic cell cycle transcriptional regulatory network model,

the modules are aligned around the cell cycle . Since the modules contain genes that are

co-expressed in this process, the expression data can be used to instruct the assembly of

the network to represent this temporal process. Fifteen modules containing 75 genes and

regulated by 11 factors were found using the sub-network discovery algorithm (see Figure 8-

9). We then applied a continuous alignment method in order to determine the phasing of

the modules. A module regulated by the factors Swi5/Ace2 and containing genes known

to be active at the G1/M boundary was chosen as the start of the cell cycle and the other

modules were aligned against this, allowing us to localize all the modules temporally. We

were then able to approximately place the boundaries for S, G2, and M and thus estimate

the lengths of these phases by using prior biological knowledge about where genes in four

other modules peak during the cell cycle.

Three features of the resulting network model are notable. First, the computational

approach correctly assigns all the regulators to stages of the cell cycle where they have been

described to function in previous studies (Simon et al [92] and references within). Second,

the algorithm identified two new regulators (Skn7 and Stbl) that are likely to be involved
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Figure 8-9: Cell cycle sub-network - In order to investigate the yeast cell cycle, we applied
our sub-network discovery algorithm in combination with a continuous temporal alignment
algorithm to uncover not only modules and their regulating transcription factors, but also
the temporal relationships among these modules. The automatically recovered network is
extremely similar to the one described in [92],which required considerable prior biological
knowledge to construct. Modules are shown as ovals containing the names of regulating
factors. Dashed lines pointing to factors indicate that these factors are contained in one of
the modules. As can be seen, the cell cycle is controlled by factors regulating factors in a
cycle.
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in cell cycle control but not traditionally considered cell cycle regulators (see Bouquin et

al [27]). Third, and most importantly, the reconstruction of the regulatory architecture

is automatic and requires no prior knowledge of the regulators that control transcription

during the cell cycle.

Our algorithm recovered many modules regulated by sets of transcription factors that

are known to be associated or in complexes, such as Swi4/Swi6, Swi6/Mbpl, Swi5/Ace2,

and Fkhl/Fkh2/Nddl/Mcml. Interestingly, the recovered network suggests that combina-

torial factor interactions may provide control that allows for sub-dividing cell cycle phases

into different biological functions. For instance, a module regulated by Mbpl/Swi4/Swi6

seems to encode genes involved with budding and can be localized at the M/G1 boundary.

Another module regulated by Mbpl/Swi6 can be localized at almost the same time, but

encodes a number of genes involved with DNA recombination and repair. A module in the

middle of G1 can be localized that is regulated by Swi4/Swi6 and contains genes involved

in cell-wall synthesis, and at the G1/S boundary a module can be localized that is regulated

by Swi4/Fkh2/Nddl and contains many genes involved with histone synthesis.

Rapamycin network

Rapamycin is a compound that has been found to possess antimicrobial, immunosuppressive,

and anticancer properties. The compounds mechanism of action has been shown to be

highly conserved from yeast to humans [34]. It acts on the Tor proteins, which are critical

in sensing and responding to cellular stress, and particularly in nutrient signaling [90].

In S. cerevisiae, rapamycin treatment causes the cell to enter a starvation-like state, in

which it down-regulates numerous energy intensive processes, and acts as if it lacks quality

nitrogen sources [54]. We selected 14 transcriptional factors that had been implicated in

the above references as regulators of rapamycin response in S. cerevisiae, and performed

genome-wide protein-DNA binding assays. In general, we found that the binding behavior

of the 14 factors in rapamycin showed little overlap with their binding behavior in rich-

media conditions obtained in previous experiments [73]. These results provide support for

our view that profiling in alternate conditions is important for gaining a more detailed

understanding of genetic regulation.

We ran the GRAM algorithm using genome-wide binding data for the 14 transcrip-

150



nitogeuurfan0srn atransport fadltation

phe~rona
respons~eTGccksiuou

module categories

unknown

1i att acid metabolism

Figure 8-10: Rapamycin gene modules network - Analysis of the rapamycin regulatory

network reveals several novel biological insights (see text for details). Thirty-nine modules

containing 317 unique genes and regulated by 13 transcription factors were discovered. Red

rectangles indicate transcription factors. Circles indicate modules. Black arrows point from

transcription factors to the modules that they regulate. Green arrows between transcription

factors indicate that the source transcription factor binds at least one module containing the

target transcription factor. Modules are colored according to the MIPS category to which a

significant number of genes belong (significance test using the hypergeometric distribution

p i 0.05).
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tion factors in rapamycin and 22 previously published expression experiments relevant to

rapamycin conditions [90, 54]. Thirty-nine modules containing 317 unique genes and reg-

ulated by 13 transcription factors were discovered (see Figure 8-10). Twenty-three of the

modules were found to contain a significant number of genes (p-value < 0.05) belonging to a

single MIPS category, with a total of 9 categories represented. The GRAM algorithm added

119 genes (38%) that were not bound with a strict p-value in the binding experiments, and

many of the added genes could clearly be identified as belonging to the appropriate biological

pathways. This result is similar to that obtained and validated for the rich-media regulatory

network, suggesting that the GRAM algorithm can generally reduce the false-negative rate

without significantly increasing the false-positive rate.

Analysis of the rapamycin regulatory network discovered by the GRAM algorithm re-

veals several biological insights. First, our results provide direct evidence for several regu-

latory relationships that had not previously been described in the literature. Our results

indicate that Msn2/4 may be involved in repressing the pheromone response after rapamycin

treatment, a role that these factors have not previously been implicated in. Msn2/4 are

bound to five modules that contain a significant number of genes with down-regulated

expression profiles (see [17] for the modules), and many of these modules contain genes

involved in the pheromone response. An additional finding is that Dal82 and Msn2 regulate

a module containing genes involved in mRNA processing. In general, the role of the TOR

pathway/rapamycin in mRNA processing has not been explored, and Dal82 and Msn2 have

not been previously implicated in regulating this function. Our results also indicate that

Hap2 regulates two modules (along with Gln3 and/or Dal8l) containing genes involved in

nitrogen catabolism. While the major role of the Hap complex is thought to be in regulating

genes involved in respiration, there was some previous evidence that the complex is involved

in regulating ammonia utilization [36]. Our findings provide further support for this hypoth-

esis and suggest coordinate activity with Gln3 and Dal8l. It should be noted that many of

the transcription factors profiled have been demonstrated to be regulated by cytoplasmic

sequesterization [90, 34], so we did not expect to be able to identify activator/repressor rela-

tionships by searching for transcription factor expression profile correlations with regulated

modules.

Analysis of the rapamycin network architecture reveals several instances of fairly com-

plex interactions among modules. For example, several factors are apparently involved in
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a feed-forward regulatory architecture. Dal8l, Dal82, Gln3, and Hap2 all bind to modules

containing Gati, which has been previously identified as a general activator of nitrogen

responsive genes [34, 90]. These modules containing Gati also contain many genes involved

in nitrogen metabolism. Further, Gati itself binds a number of modules with Dal8l, Dal82,

and Gln3, and these modules contain many genes involved in nitrogen metabolism. This

suggests a feed-forward regulation mechanism, in which Gati activity is amplified by the

other mentioned transcription factors. Analysis of the network also reveals several instances

of non-transcriptional regulatory interactions between modules. For example, Msn2 binds

to a module containing Crml, which is a nuclear export factor critical in allowing Gln3 to

move from the cytoplasm to the nucleus after rapamycin treatment [90, 34]. This finding

suggests that Msn2 activation upon rapamycin treatment may act to enhance or enable a

step in Gln3 activation. As another example, Gcn4 binds to a module containing genes in-

volved in amino acid biosynthesis, including Nprl, a serine/threonine protein kinase that is

known to promote the function of the general permease Gapi [90]. Gapi itself is contained

in a module regulated by Dal8l and Gln3. These findings suggest regulatory connections

between these modules, in which Gapi is transcriptionally regulated by Dal8l/Gln3, Nprl

is transcriptionally regulated by Gcn4, and then Gapi is non-transcriptionally activated by

Nprl. It is possible that such regulatory relationships, which are clearly more complicated

than simple activator/repressor mechanisms, may be especially important for facilitating a

rapid and flexible response to environmental emergencies such as rapamycin treatment.

8.4 Discussion

Many microarray expression data sets have been analyzed using clustering methods such as

k-means, or self-organizing maps [96]. While clustering can be used to classify genes and

determine their function, it is less appropriate when it comes to modeling systems in the

cell. In this section we have presented an algorithm that infers such models by abstracting

expression regulation using modules. While a number of previous methods have used similar

approaches in order to discover the different transcriptional modules that are activated in

response to external conditions, our algorithm improves upon these methods in a number

of ways.

As discussed above, a number of previous methods [81, 65] start with an initial set of
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Figure 8-11: Comparison with the Ihmels et al [65] results. Left: A subset of the genes
belonging to Module 2 of the Ihmels et al paper. Right, three of the amino acid biosynthesis
modules identified in our paper. As can be seen, our method extends the results in the Ihmels
paper by identifying not only genes that participate in a certain transcriptional module, but
also provides evidence as to the pathway that is used to activate these genes. This allows us
to answer more detailed/specific questions regarding the relationships between genes and
the factors that control them.
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Figure 8-12: Comparison with the results of Pilpel et al [81]. Left: a subset of the genes
that belong to the Mcml-Mcml module from the Pilpel et al paper. Right: subsets of some
of the cell cycle modules from our paper. As can be seen, the modules discovered by our
method are a refined version of the module from the Pilpel paper. Note that our modules
differ not only in the set of factors regulating the modules, but also in the different cell cycle
phases to which they belong, providing a better understanding of how the cell regulates the
complex expression program that is associated with the cell cycle system.
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genes that are selected using a certain criteria (DNA binding motif, functional category) and

use expression data to refine the initial set. While these methods represent an important

first step, the method presented in this paper improves upon them in several ways, as

discussed in Section 8.1. Figures 8-11 and 8-12 present a comparison between modules

discovered by our algorithm and modules that were generated by previous work. As can

be seen, using direct (binding) information allows us to accurately reconstruct not only the

modules, but also the networks and pathways used by the cell to control gene expression

programs under different conditions.

8.4.1 Limitations of the GRAM algorithm

While our module discovery approach produces many meaningful biological results, it is

important to understand its inherent limitations. For instance, our approach identified

only a relatively small number of transcription factors as activators or repressors. This

may be due to several issues. First, our method cannot detect the many factors that are

post-transcriptionally activated and thus have expression levels that are not expected to

fluctuate significantly. Second, we used the entire set of expression experiments to de-

termine the activator/repressor relationships. While using more data can produce more

statistically significant results, it may be that only under certain conditions a factor serves

as an activator or repressor. Finally, we required a very high correlation between modules

and regulating factors. In general, by relaxing threshold parameters, the algorithm can be

used in an exploratory mode to discover more relationships but with less confidence. For

similar reasons, the sub-networks induced by our algorithm are necessarily incomplete. For

instance, GCN4 is known to be a master regulator of the amino acid starvation response, so

it seems odd at first that it shows up as a regulator of only one module in the sub-network.

However, it is also known that GCN4 expression is repressed under non-starvation condi-

tions. Hence, it is probable that little GCN4 binding is seen when yeast are grown on rich

media. Note that this limitation is primarily a limitation on the data available. Indeed, as

we have shown in the rapamycin sub-network, when using the right binding condition our

algorithm is able to identify many more meaningful relationships when compared to those

identified under rich media condition.
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8.4.2 Summary

In this chapter we have presented GRAM, an algorithm for discovering groups of gene that

are both similarly expressed and regulated by the same set of transcription factors. GRAM

combines expression and binding data to discover these modules. We have applied GRAM to

a number of biological datasets in order to determine how genes are regulated in the cell, and

how various systems in the cell respond to external conditions. Our results suggest the power

of using both binding data obtained under ideal growth conditions and expression data

obtained under specific conditions to discriminate relationships of real biological relevance.

In the future, genomic binding data obtained under a variety of conditions is likely to

become available and should be of great value in further discovery of genetic regulatory

networks.
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Chapter 9

Conclusions and future work

In this thesis I have presented algorithms for inferring interactions between genes, identifying

expression programs and discovering networks for different systems in the cell. These results

are summarized in Section 9.1. While computational biology deals mainly with algorithms

for various issues that arise when studying biological systems, a number of algorithms that

were originally developed for computational biology problems are appropriate for other areas

in computer science as well. As I discuss in Section 9.2 two of the algorithms presented in

this thesis can be (and have been) applied to other problems in computer science. This is a

strong indication that as we tackle exciting problems that arise from biology, we will benefits

other areas of computer science. Finally, one of the nicest properties of computational

biology is that there are more open problems than solved ones. In Section 9.3 I discuss a

number of open problems that are left for future work.

9.1 Conclusions

Gene expression, and other high throughput biological datasets are revolutionizing molec-

ular biology by providing a large scale overview to the activity of genes in the cell. While

these techniques are promising, they require new computational tools for handling noisy

datasets, pattern recognition and information fusion.

In this thesis I have presented algorithms for inferring interactions between genes, iden-

tifying expression programs and discovering networks for different systems in the cell. Since

gene expression is a temporal process, in order to truly understand different systems in

the cell we must study the temporal expression patterns of genes that participate in those
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systems. As we have shown in different parts of this thesis, by developing algorithms that

are specifically targeted to the analysis of time series expression data we can obtain a much

clearer picture of the expression programs in living cells. We presented several algorithms

that address various aspects of the analysis of time series expression and other high through-

put biological datasets. Our algorithms overcome many problems that are unique to time

series expression data, including non uniform sampling rates that differ between experiments

(even those that study the same system under different conditions), difference in the timing

of biological processes and lack of experimental repeats. Our algorithms can also determine

temporal expression programs by determining relationships between different gene clusters.

As for modeling systems, we presented algorithms that can combine static binding data and

time series expression data to infer dynamic models for the cell cycle system.

While the above algorithms address computational challenges, it is important to note

that they also improve our understanding of the underlying biology, as we demonstrated

throughout this thesis. For example, our algorithms where able to identify many more

correct targets in a knockout time series expression experiment, and suggested new roles for

the two knocked out factors, Fkhl and Fkh2, in controlling cellular activity. Our algorithms

have also identified new factors that control the cell cycle system, and determined the phase

in which they are involved. Several other networks can be determined by our algorithm,

and as we showed using the rapamycin network, these models provide new insights as to

how gene expression is regulated on the molecular level.

While this thesis presents a number of computational tools and algorithms for analyzing

gene expression data, there is still a lot of work to be done in this area, as we discuss below.

I believe that as expression analysis becomes a simpler and cheaper method, many of the

datasets will be time series datasets, simply because the process we are interested in is

temporal. It is my hope that the methods discussed in this thesis will serve the many

biology researchers working in this area when they analyze, visualize and build models for

the systems and process they are studying.

9.2 Relation to other problems in computer science

As a field, computational biology applies computational methods to problems in biology.

Recent technology advances in biology (such as better sequencing machines and microarrays)
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are generating large quantities of data. Making sense of these individual data sources, and

combining them to create a better picture of the activity in the cell requires the improvement

of existing, and the development of new, computational methods. While these methods are

primarily aimed at solving problems arising in biology, the computational methods that

are being developed can also be applied to other areas in computer science. In this thesis

we have presented a number of such algorithms, that, while developed for clustering and

ordering expression datasets, can also be applied to improve image compression (our optimal

leaf ordering algorithm) or to improve the clustering of non uniformly sampled datasets (our

continuous clustering algorithm from Chapter 5).

I believe that advances in computational biology will prove to be useful in a number

of different areas in computer science. Below I list two additional research areas that are

being pursued in computational biology, and that are likely to have an impact on a number

of other areas in computer science.

9.2.1 Graphical models

Early on, Markov and hidden Markov models have been used to model families of proteins,

and splice sites for genes [11]. More recently, various graphical models have been used to

model the regulation of genes in the cell. For example, Friedman et al [47] used expression

experiments performed on yeast cells to learn static Bayesian networks and subnetworks for

the regulation of gene expression in yeast. Hartemink et al [56] used binding and expres-

sion data to learn such Bayesian networks. Segal et al used Probabilistic Relational Models

(PRMs) [89] which extend the standard attribute-based Bayesian network representation

to incorporate a relational structure, to identify networks of modules using gene expres-

sion data. Yeang and Jaakkola [105] used Markov random fields to model transcription

regulation.

The above are only representative examples of methods that employ graphical models to

model networks in the cell. Biological datasets present a number of challenges that should

be dealt with when applying such methods to model systems in the cell. In most biological

systems, there are a large number of genes involved, and many types of connectivity (for

example, protein-DNA and protein-protein interactions). In addition, many of the observa-

tions (such as the protein levels themselves) are missing, and the ones that are observed are

very noisy. This will require the development of faster inferences and learning methods that
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can accommodate large fractions of missing data. Another type of graphical models that

should be developed for computational biology are models that will allow us to combine

time series and static data in a unified framework (see also Section 9.3.2). I believe that

the methods and models developed to address these problems will prove useful in a number

of other areas which deal with large quantities of noisy data.

9.2.2 Visualization and graphics

An important future area will be the visualization of large scale biological data sets. Many

high-throughput data sources are becoming available, and visualizing the agreements and

disagreements between these sources will be an important tool for analyzing these exper-

iments and for suggesting new biological experiments. Some of my research has already

dealt with these issues (for example, our k-ary clustering algorithm described in Chap-

ter 7), however, new tools will be required in order to effectively visualize regulatory and

other complex networks in the cell.

Biological networks are composed of a large number of interacting components. Further,

there are many potential interaction modes (for example proteins can serves as activators or

repressors, they can work together or alone and interact by binding DNA or directly binding

other proteins). In addition, since we are using a large collection of high throughput datasets

to discover these networks, each link can be derived from a number of different data sources.

Developing methods which will allow us to graphically query such networks to obtain the

information that was used to derive individual links and other proprieties of these networks,

will be an important tool for researchers studying biological processes.

Methods that are developed for visualizing complex biological networks can be used to

visualize and study other networks, such as the Internet routing network or the world wide

web. It has been shown [23] that biological networks share common topological features

with these other networks, and thus research into visualization issues in computational

biology is likely to lead to more general solutions for visualizing complex networks.

9.3 Future work

While many issues related to the analysis of high throughput biological datasets have been

addressed in this thesis, the algorithms presented here are by no means the only possible
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solutions to the challenges they address. In addition to improving upon the results presented

in this thesis, there are number of possible extensions that I am interested in, and I list

some of them below.

9.3.1 Determining sampling rates for time series expression experiments

An important problem for time series expression experiments design is the determination

of sampling rates. As shown in Table 1.1 under different experimental conditions the same

system behaves faster or slower, depending on the experimental setup. Thus, it is hard

to determine the correct sampling rate in advance. If the experiment is under-sampled,

the results might not correctly represent the activity of the genes in the duration of the

experiments, and key events can be missed. On the other hand, over-sampling is expansive

and time consuming. Since many experiments are limited by budget constraints, over-

sampling will result in shorter experiment duration, which might lead to missing important

genes that participate in the process at a later stage.

A future direction would be to use the tools developed in this thesis for the task of

determining the right sampling rates for these experiments. Due to the differences in the

timing of biological processes (see Table 1.1), it is impossible to determine such rate in

advance. Thus, we propose to use an online algorithm in the following way. The researcher

will chose the highest possible sampling rate, and will sample at that rate. While the

sampling rate will be high, the samples will not be hybridized (that is, the expression

experiment will be performed on these samples) but rather frozen until we determine if we

need to use them or not. In order to determine which of the samples should be hybridized,

our algorithm will start by hybridizing very few (uniformly spaces) samples. Next, we use

our interpolation algorithm to fit a continuous representation to each of the genes on the

array. Using techniques from active learning we will determine what are the areas on the

curves that we are least confident in, and the algorithm will select a new sample from that

area to hybridize. This process will be repeated until we reach a certain confidence on

the entire curve. When this happens we will terminate the experiment and use the set of

hybridize samples (and their continuous representation) as the results of our experiment.

There is still a lot of research necessary in order to make the above method useful.

We need to determine how to calculate confidence for different points on the interpolated

curves, and what is the appropriate confidence level such that when we reach this level we
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terminate the experiment. Still, we believe that such an approach can determine good and

correct sampling rates for any experimental condition.

9.3.2 Combining static and time series expression data

While time series expression data is necessary for constructing dynamic models for systems

in the cell, such experiments are more expensive and time consuming when compared to the

static expression experiments. One of the most important types of expression experiments

are knockout (or perturbation) experiments. These experiments allow us to determine the

set of genes that are directly and indirectly affected by a a knockout of a specific gene. In

addition, by determining the direction of the change (up or down regulated) we can infer

the function of the knocked out gene or one of its immediate targets.

While knockout datasets are useful, they are also more expensive. In yeast there are

almost 6000 genes. Performing a knockout time series expression experiment for each of

these genes under a variety of experimental conditions is impractical at this stage. Further,

in some cases a single knockout is not enough, and changes are only visible when a double

knockout is carried out [107]. Even if we restrict ourselves to certain systems (and thus, we

only need to knockout certain genes that are involved in this system), time series double

knockout for all possible combinations are not practical.

Instead of performing time series knockout experiments for all these genes, we propose

to perform a few time series experiments, and a large number of static knockout experiments

(static experiments can be done at roughly 4% of the time and expense of time series exper-

iments [94]). We then intend to develop an algorithm which will use the static experiments

to determine the connectivity and parameters of the model, and the time series experiments

to derive the dynamics of the model. We plan to use dynamic Bayesian networks for this

task, and to constrain the parameters of the network using the static datasets. This will

require us to develop a new probability model which will be able to constrain the dynamic

structure based on static data.

9.3.3 From model organism to humans

While the algorithms presented in this paper are general, all the results presented were

obtained using yeast expression and binding data. Yeast is one of the most studied model

organisms, and it contains a large number of genes that have homologes in humans. Thus,
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we expect that the algorithms discussed in this thesis will be useful to analyze higher

organisms as well.

Still, there are number of issues that should be addressed more carefully when moving

from yeast to humans. First, yeast can be grown in the lab. Thus, for yeast sample quantity

is not an issue. However, when dealing with humans the amount of the material needed

becomes a bottleneck for expression experiments. Another issue is the fact that humans

have many more genes (up to six times more than yeast) and many more transcription

factors [71, 100]. In addition, while yeast genes are controlled by an average of two or three

TFs [73], it is believed that human genes are controlled by a much larger number of factors.

Thus, we need to extend our algorithms to address the above issues. More specifically,

we intend to develop algorithms for analyzing short (up to 10 points) time series expression

datasets to infer significant changes in sets of genes. While many profiles can be found in

short datasets due to noise (especially in human samples, since there are tens of thousands of

genes profiled), we will try to determine which of these profiles are significant and which are

the result of noise. In addition, we intend to improve our networks algorithm so that they

can handle much larger sets of TFs, and efficiently search these large spaces to determine

modules for the regulation of gene expression in humans.
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Appendix A

Appendix

In this appendix we provide further details about the algorithm and results for identifying

differentially expressed genes which were discussed in Section 4. In Section A.1 we present

a symmetric version for this algorithm. In Section A.2 we present the details of the method

we have used to identify the expression experiments in which the non cycling genes identified

by our algorithm are significantly co-expressed.

A.1 The symmetric version of our algorithm

So far we have assumed a fixed referenced curve. That is, when we compute the area

between the reference and test curves we do not consider the fact that the reference curve

might be a noisy realization of the true underlying curve. Under the null hypothesis we

assume that both datasets where generated from the same underlying profile, and thus a

symmetric version of our algorithm seems more appropriate for this hypothesis. As we show

in this section, the algorithm presented in the methods section can also be described as a

symmetric test on both the reference and test curve (with appropriately scaled p-values),

and thus our algorithm is suitable for the null hypothesis as well.

Instead of relying on the reference curve, we assume that both Ci and C2 are realiza-

tions of the same underlying curve C. We reformulate the comparison in terms of joint

probabilities over the two curves (making the comparison symmetric) but rely on the dis-

tance between the curves rather than on the points directly. As in the methods section, Let

e2 = D(Cl, C2). For the null hypothesis we solve the following maximization problem:
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maxc,c',c" P(Yc', Yc" Yc , 0 2)s.t.D (C', C") = e2

where C' and C" are new (arbitrary) versions of the reference and test curves and

C denotes the common underlying true curve. Due to the Gaussian noise we assume for

individual measurements, the maximization over C yields YC = (Yc' +Yc")/2 and therefore,

ignoring constant terms we have:

log P(YciYc"|Yccx) = -(1/2 2 )(IYc' -CYc +||Y_" -YcI ) -(1/4C 2 )||Yc' - Yc"| 2

If we now set Y = Yc' - Yc" = SF' - SF" = S6, then we end up solving the same

optimization problem as before:

mini(S6)T(SS) s.t. 6T A6 = 1

The only difference between the result obtained by this method (symmetric), and the result

discussed in the methods section (asymmetric) is that the value of the likelihood ratio test

using the symmetric test is half the value obtained using the asymmetric method. Thus,

for every p-value cutoff used by the asymmetric method, there is a corresponding p-value

for the symmetric method which yields the same results (i.e. the same set of genes are

determined to be significantly changing). Since our p-value is tuned using synthetic data,

changing from the asymmetric to the symmetric method would not have changed the results

presented in this paper. Since the asymmetric method is somewhat easier to explain, we

have focused on it in the methods part of our paper.

A.2 Non cycling genes

As mentioned in Section 4.4.2 our algorithm identified 22 of the non cycling genes as differen-

tially expressed (p-value < 0.001). In order to determine the role Fkhl/2 play in controlling

this set, and to test whether this set is biologically significant, we have used large collection

of gene expression experiments (see supplementary website [16]). As was done by Hughes

et al [63], we have looked for experiments in which these genes was significantly correlated,
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in the following way. Denote the set of genes selected by our algorithm by S, and let G

represent the entire set of genes profiled. For experiment i, let Gi be the set of genes in G

with a log fold change higher than 1 (or a 2-fold change), and let Si represent the same for

the genes in S. Let GI be the set of genes in G with a log fold change less than -1, and let

S' represent the same for the set of genes in S. Using G, S, G' and Su, we can perform a

hyper-geometric test to compute the significance (or p-value) for the up-regulation of the

genes in S in experiment i. The same could be done for down regulation by replacing Gu

and Su with G' and Si. Using these p-values we include experiment i in the selected set if:

" The p-value for either up-regulation (Si) or down-regulation (Sd) is below 0.001 and

" At least 25% of the genes in S are up or down regulated (depending on the direction

used for the p-value).

Based on these criteria, 20 expression experiments were selected (see Table A.1). As can

be seen, these experiments come from six different datasets, indicating that our result are

not an artifact of a specific hybridization method. Most of these experiments are related to

stress response. These results suggest a new function for Fkhl and Fkh2 which is related

to controlling yeast response to stress.

In order to test the significance of these findings, we performed the following random-

ization test. We have selected at random sets of 22 genes, and for each such set looked at

how many expression experiments satisfy the criteria presented above (p-value < 0.001 and

at least 25% of the genes in the same direction). We have repeated this process 1000 times.

For all of the random sets, we did not find even one experiment that was significantly corre-

lated (according to the above criteria) with this set. We conclude that the genes identified

by our algorithm represent a biologically significant set of genes that are involved in yeast

response to stress.
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Significant experiments for non cycling genes

Change Reference Experiment Experiment details
type

up-regulated Gasch [49] red/ox 105min 1mM menadione / 105min wt

up-regulated Gasch [49] red/ox 180min 2.5mM DTT / 180min DTT pool

up-regulated Gasch [49] red/ox 120min 2.5mM DTT / 120min DTT pool

up-regulated Gasch [49] red/ox 40 min 1.5mM diamide / 40 min wt

up-regulated Gasch [49] red/ox 50 min 1.5mM diamide / 50 min wt

down- Gasch [49] red/ox 15min 2.5mM DTT/ 15min DTT pool

regulated
up-regulated Gasch [49] starvation 6hr YNB-AA / 6hr wt

up-regulated Gasch [49] starvation 10h YPD 30C / 10h wt

up-regulated Gasch [49] starvation Id YPD 25C / ld wt

up-regulated Gasch [49] starvation 2% EtOH / EtOH Carbon pool

down- Natarajan [76]starvation 6gcn4 100mM 3AT / 6gcn4 100mM 3AT

regulated 6gcn4

up-regulated Jelinsky [68] a factor G1 arrest - 0.3uM a factor 120 min a fac-

tor/wt

up-regulated Roberts [86] a factor, 90 min a factor, 50nM / 90min wt

pheromone

up-regulated Roberts [86] a factor, 120 min a factor, 50n / 120min wt

pheromone

down- Lyons [75] zinc replete vs. deficient zinc / 3mM 61nM

regulated

down- Lyons [75] zinc replete vs. deficient zinc / 3mM 76nm

regulated
down- Lyons [75] zinc 6zapl excess vs. deficient zinc/ 6zapl 3mM

regulated- 6 zapi 61nM

down- Lyons [75] zinc 6zapl excess vs. deficient zinc, 6zapl 3mM

regulated _zapl 76nM

up-regulated Causton [30] others Alkali 80'/0'

down- Jelinsky [68] others 30 min 0.1% MMS / 30 min wt

regulated

Table A.1: The 20 expression experiments in which the set of non cycling genes identified

by our algorithm were significantly correlated. See text for discussion.
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