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Abstract

Dynamic performance of high speed, high resolution digital-to-analog converters (DACs)
is limited by distortion at the data switching instants. Inter-symbol interference (ISI),
imperfect timing synchronization and clock jitter are all culprits. A DAC output current
controlled by an oscillating waveform is proposed to mitigate the effects of the switching
distortion. The oscillating waveform should be a multiple (k*fs) of the sampling frequency
(fs), where k>1. The waveforms can be aligned so that the data switching occurs in the
zero regions of the oscillating output. This makes the DAC insensitive to switch dynamics
and jitter. The architecture has the additional benefit of mixing the DAC impulse response
energy to a higher frequency. An image of a low IF input signal can therefore be output
directly at a high IF or RF frequency for transmit communications applications. A narrow-
band sigma-delta DAC with eight unit elements is chosen to demonstrate the radio fre-
quency digital-to-analog converter (RF DAC) concept. A sigma-delta architecture allows
the current source transistors to be smaller since mismatch shaping is employed. Smaller
current source transistors have a lower drain capacitance, allowing large high frequency
output impedance to be achieved without an extra cascode transistor. Elimination of the
cascode reduces transistor headroom requirements and allows the DAC to be built with a
1.8V supply. The RF DAC prototype is targeted to GSM transmit specifications and
implemented in 0.1 8ptm CMOS technology. Measured single-tone SFDR is -75dBc, SNR
is 52dB, and IMD3 is -70.8dBc over a 17.5MHz bandwidth centered at 942.5MHz. Mea-
sured SNR has the predicted dependence on the phase alignment of the data clock and
oscillating pulse.

Thesis Supervisor: Hae-Seung Lee
Title: Professor of Electrical Engineering and Computer Science
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1 Introduction

One of the largest growth areas in electronics over the past five years has been in applications of

wireless communications. High resolution analog-to-digital converters (ADCs) and digital-to-

analog converters (DACs) are required in these systems to meet challenging signal-to-noise ratio

(SNR), spurious-free dynamic range (SFDR), and distortion specifications in the presence of

large nearby interferers. Additionally, recent trends have pushed towards higher speed data con-

verters in pursuit of a "software radio" system, where receiver digitization is performed at an

intermediate frequency (IF) or higher [1]. This permits channel selection filters and demodulation

to be performed in the digital domain. Ideally, if the whole band can be digitized at a high speed,

the band select filter can also be pushed to the digital domain. Reference [2] claims that convert-

ing to digital as early as possible in the receiver chain can result in overall size, weight and power

reductions of over an order of magnitude. Similarly on the transmitter side, high speed, accurate

DACs require fewer mixing and filtering stages before the antenna. The desirability of these pro-

grammable architectures has created a demand for high performance, high speed data converters.

Figure 1-1 shows conventional transmitter and receiver architectures. Both architectures typically

include a low or zero-IF data converter and one or more mixing stages. The mixing stages may

not be completely eliminated due to speed and resolution limitations of modem day data convert-

ers. Of particular interest for radio applications are ADCs whose sampling frequency is four times

the carrier frequency, called fs/4 bandpass converters. This ratio of IF to sampling frequency

makes mixing down to baseband particularly simple in the digital domain, as depicted in Figure 1-

1.

Jitter in the sampling/conversion clock is one of the main resolution limits of high speed data con-

verters. Although there are many other noise sources, sampling jitter starts to dominate as input

frequencies increase. Traditional approaches to mitigating the DAC clock jitter problem have

focused on either building a high-power sampling clock with low jitter or using systems with

oversampling to reduce the inband noise. This research initially concentrated on the limits of sam-

pling jitter in converters and ultimately led to the development of a radio frequency (RF) DAC.

This DAC trades sampling clock jitter for phase noise. It also has the additional benefit of mixing

the DAC impulse response energy to a higher frequency. An image of a low IF input signal can

8 1. Introduction
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Figure 1-1: Conventional transmitter and receiver architectures.

therefore be output directly at a high IF or RF frequency for transmit communications applica-

tions to offer a lower noise, power, and area transmit solution. This saves power and hardware rel-

ative to a conventional transmitter architecture by eliminating the need for mixers and

intermediate frequencies.

This section reviews state-of-the-art in data converters and the sampling jitter problem. Chapter 2

describes the new RF DAC concept. Chapter 3 is an analysis and comparison of the SNR of a

square wave pulse used in conventional DACs and the cosine feedback pulse used in the RF

DAC. Chapter 4 discusses trade-offs in the implementation of a prototype to demonstrate the new

concept. Measurement results for the RF DAC prototype are presented in Chapter 5. Conclusions

and areas for future work are detailed in Chapter 6.

1. Introduction 9



1.1 State-of-the-art High Speed ADCs

State-of-the-art ADC architectures are dependent on the speed and resolution requirements of the

converter. High speed (>1GHz) low resolution (6b) converters are driven by disk drive and high-

speed Ethernet applications. These converters typically use a flash architecture, often with inter-

polation to save area and power or interleaving to increase speed [3]. They are currently limited

by the speed and resolution of the sampling operation as well as by offsets and mismatches in

interleaved paths [3] [5]. High resolution (>10b) converters typically utilize pipeline architectures

and currently achieve as high as lOOMSample/s rates. The resolution and speed of these convert-

ers are limited by device matching and the speed of closed-loop operational amplifiers respec-

tively [6]. Digital calibration techniques can be used to ease the matching requirements in pipeline

converters [7].

As the sampling frequency increases, continuous-time (CT) sigma delta modulators (XAMs) have

been preferred for narrowband applications because they do not have the op-amp settling-time

constraints or the fast, high-precision sample and hold (S/H) requirements that limit the maximum

clock rate in discrete-time (DT) XAMs and upfront sampled ADCs. A block diagram of a typical

current feedback CT XAM is shown in Figure 1-2. The input is no longer sampled upfront. Instead

the error signal at the output of the CT resonator is sampled. The CT resonator can be active gm-C

or passive LC, so no fast-settling op-amps are needed in the loop. This makes CT XAMs particu-

larly attractive for high speed, high bandwidth conversion. Indeed recent work has shown that

sample rates of CT ZAMs have been steadily increasing and have surpassed those of their DT

counterparts [2] [8] [9] [10] [12].

Unfortunately for their potential as high speed converters, the effect of clock jitter on the perfor-

mance of CT 1AMs is worse than an upfront sampled system. The effect of clock jitter at the

ADC is shaped by the feedback loop. The jitter in the DAC clock, however, is added directly to

the input and does not benefit from loop shaping. Furthermore, this jitter on the DAC clock acts

on the quantized DAC signal, which is a stepped version of the CT input. Thus, the CT XAM

ADC ends up with more SNR degradation due to jitter than the upfront sampled system, which

samples the un-quantized input directly [21].

1. Introduction10
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Figure 1-2: Typical CT XAM block diagram.

Reference [10] concludes that most gigahertz CT YAM ADCs are limited to an effective oversam-

pling ratio (OSR) of about 16. Above this OSR, they are dominated by in-band white noise due to

jitter rather than shaped quantization noise. Although DT XAMs have been pushed to high speeds,

their speed is limited due to the use of closed loop operational amplifiers [11]. Table 1-1 summa-

rizes the performance of some of the best state-of-the-art high-speed ADCs.

Table 1-1 State-of-the-art high-speed ADCs

SNDR Sampling Signal
ADC Architecture (ENOB) Power Rate Bandwidth
CMOS Flash [4] 33dB (5.5) 545mW 1.3GHz 650MHz
CMOS Interpolating 36dB (5.6) 300mW 900MHz 450MHz
Flash [3]

CMOS Pipeline [6] 57dB (9.4) 180mW 100MHz 50MHz
SiGe HBT CT XAM 40dB (6.3) 450mW 4GHz 20MHz cen-
[10] tered at 1GHz
AlInAs/GaInAs CT 75.8dB (12) 3.2W 4GHz 1MHz/60MHz
EAM [2] in 1MHz centered at

band 180MHz

39dB (6) in
60MHz band

GaAs CT XAM [12] 41dB (7) in 1.8W 3.2GHz 25MHz/
25MHz band 100kHz band

66d B (11) in centered at
100kHz band 800MHz

CMOS DT XAM [11] 87dB (14) 150mW 64MHz 2MHz

1. Introduction I1I



1.2 State-of-the-art High-Speed DACs

Communications applications are pushing the sampling speed and frequency domain performance

requirements of high-speed DACs [14]. Direct digital synthesis (DDS) is another application

demanding high speed DACs with good spurious performance [13]. Specifications of SNR,

SFDR, and adjacent channel power ratio in a narrow bandwidth are becoming more important

than static specifications such as integral nonlinearity (INL) and differential nonlinearity (DNL).

Furthermore, third-order distortion (IMD3) is often the only significant harmonic that falls inband

in narrowband communications applications. The SNR and SFDR performance of high-speed,

high-resolution DACs is limited by dynamic errors at the switching instants [15] [17] [30]. This

causes the SFDR performance to worsen as the input frequency increases. One source of dynamic

degradation is inter-symbol interference (ISI). When ISI is present, the DAC output is dependent

on the current data as well as the previous data, often in a nonlinear way. This problem is solved

by using a return-to-zero (RZ) DAC output pulse, which essentially nulls the memory the DAC

had of the previous data. However, this approach introduces large steps in the DAC output,

thereby increasing jitter sensitivity and causing problems in the linearity of the output stage [21]

[36]. The jitter problem will be studied further in Section 1.3.

Another source of DAC degradation is imperfect synchronization of the switch control signals

between the elements of the DAC. This is especially troublesome in a multibit DAC, where

glitches are created if the bits switch at different times. This has been solved by a combination of

building a synchronization block in front of the switches and careful layout to match path delays

[15] [30]. The accuracy of this method is still limited by the matching achievable in the synchro-

nization blocks and layout routing.

The author has not been able to find any work on directly solving the clock jitter problem in

DACs. DACs rely on a high-power sampling clock with low jitter and large oversampling ratios

to reduce the inband noise. Return-to-zero (RZ) DACs have been shown to have worse jitter per-

formance than non-return-to-zero (NRZ) DACs. A dual return-to-zero DAC has been proposed in

[16] to alleviate the jitter problem in RZ DACs.

12 1. Introduction



Table 1-2 State-of-the-art DACs

DAC Type Resolution Power Sample Rate Performance
Current Steering l0b 110mW lGSample/s SFDR = 61dB@
Nyquist [15] 500MHz output
Current Steering 16b not given 400MS/s SFDR-80dBc@300
Nyquist [37] MHz output, IMD3=-

8OdBc to 300MHz
Current Steering 14b 180mW 100MHz SFDR=72dBc
Nyquist [20] @42.5MHz output

with fs=10MHz

210mW 200MHz SFDR=50dBc
@90MHz output
with fs=200MHz

XA DAC [19] 13b 95mW 120MHz DR=85dB

SNDR=8OdB

both in 5MHz BW
1A DAC [18] 16b 290mW 96kHz SNR=113dB in a

40kHz BW

Narrowband 1A DACs with oversampling and mismatch shaping

static and dynamic mismatch problems. Research in narrowband

would seem useful in solving

1A DACs has been driven by

audio applications, which require high resolutions at relatively low speeds [18]. Multibit 1A

DACs are beginning to be investigated for MHz range-frequency applications [19]. Table 1-2

summarizes the performance of state-of-the-art high speed Nyquist rate and 1A DACs.

1.3 Jitter Limits in Converters

Both the pipeline and flash converter ADC architectures utilize up-front samplers or track-and-

holds. Resolution in these converters is not currently limited by jitter in the sampling process.

However, resolution will become jitter-limited as technology improves the speed of converters as

well as the other sources of converter noise.

In any up-front sampled ADC, sampling clock timing jitter creates an error in the sampled value.

Regardless how much resolution the ADC has, it will never achieve better signal-to-noise ratio

(SNR) than this sampling operation. The theoretical limit due to sampling a signal at frequency fi"

with a jittered clock is [21], [22]

1. Introduction 13



SNR = 20log 
(1R

2n(Ttfin,

where at is the standard deviation of a Gaussian, white-noise random sampling jitter in seconds

and OSR is the oversampling ratio, i.e. the ratio of the sampling frequency fs to the Nyquist band-

width of the signal 2 fb. As the input frequency fin increases, the achievable SNR due to a fixed

amount of sampling jitter Ct decreases. Plugging inOSR = Ls to Equation 1.1 gives
2fb

SNR = 20ig (1.2)
fn 2iar J~7

Equation 1.2 shows that even if the sampling frequency f, is scaled with the input frequency fin,

the maximum achievable SNR still degrades as the square root of fin-

The SNR for high speed DACs is similarly jitter limited. SNR for a RZ and an NRZ DAC are

derived in Appendix A. For a RZ DAC, the SNR limit is shown to be

SNR = 20log n (1.3)

where n is the fractional duration of the RZ pulse relative to the sampling period.

In the NRZ DAC case the SNR limit is shown to be

SNR = 20log 7""m (1.4)
b,2-ih Yty d iffrm

where yrms is the rms value of the digital input and ydiffims is the rms value of the difference in

input values. The jitter limited SNRs derived in Equation 1.2, Equation 1.3, and Equation 1.4 are

plotted in Figure 1-3 versus the frequency of the input tone fin. They are compared over a Nyquist

bandwidth (fs= 2fb) with f =1GHz and t = lpsec. The RZ DAC pulse is half (n=0.5) the sampling

period. Equation 1.4 is plotted for a 14-bit, 2-bit and 1-bit NRZ DAC.

14 1. Introduction
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Figure 1-3: Jitter-limited SNR computed over a Nyquist bandwidth. All
converters are sampling at fs=IGHz with a clock jitter yt=Ipsec. In the RZ
DAC the pulse is half the sampling period (n=0.5).

As expected, the RZ DAC has a jitter-limited SNR that is independent of the input frequency and

the number of bits in the DAC. The RZ DAC pulse always has two edges with jitter, whereas the

NRZ DAC has a random number of edges between 0,1, and 2. The number of transitions in the

NRZ DAC increases as the input frequency increases, so the SNR decreases. The NRZ DAC

curves depend on the number of bits at low input frequencies. For small fj, the oversampling

ratio is large and there are many samples per period. Many samples per period with a large num-

ber of bits translates to small step sizes. These small step sizes translate to less error and better

SNR. As the number of bits increases, the low-frequency SNR limit approaches that of a sampler.

At large input frequencies, however, the SNR limit becomes independent of the number of bits in

the DAC. This case corresponds to fewer samples per period, or large transitions at every sam-

pling instant. These transitions are so large that they become practically independent of how well

they are quantized.

1. Introduction 15
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Near Nyquist sampling the NRZ DAC jitter-limited SNR is expected to be 3dB higher than the

RZ DAC SNR. This is because the RZ pulse has an extra switching edge, causing af2 larger

error. The sampler SNR curve is lower near Nyquist sampling due to the lower signal power in the

rms value of a sinusoid versus a square wave.



2 RF DAC Concept

2.1 Background

Zhang [23] recognized the problem of clock jitter in the feedback DAC waveform of a CT ZA

ADC. His thesis described the use of a sine wave to generate a RZ DAC output pulse, as illus-

trated in Figure 2-1. Figure 2-1 (a) shows an f,/2 sine wave at the input to the mux, where f, is the

data update rate of the DAC. The mux switches at the zero crossings of the sinusoid, depending

on the value of the input data. Figure 2-1 (b) shows the same concept implemented using a sine

wave at frequency fs with a DC offset. If the sine wave is noise free and perfectly locked to the

data clock, first order jitter insensitivity is achieved in Figure 2-1 (a) due to the zero value of the

control waveform at the switching instant. First and second order jitter insensitivity are expected

from the waveform of Figure 2-1 (b) due to the zero value and zero slope of the control waveform

at the sampling instants.

2.2 RF DAC Description

The RF DAC concept builds on Zhang's theoretical work by using multiple pulses per DAC out-

put value. A harmonic of the DAC data clock (frequency fs) is used as the DAC control waveform

(frequency fo). Figure 2-2 (a) shows the impulse response of a conventional DAC, while Figure 2-

Control Waveforms
Output of DAC

(a) 04
0 /fs 2/f time

0 1Data EXOR fs/2

Output 
of DAC

(b) 01
0 1/fs 2/fs> // time

Data

Figure 2-1: Binary DACs with jitter insensitive output [23].
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2 (b), (c), (d), and (e) show possible DAC impulse responses using this RF DAC concept. The

control waveform frequency f. could be any multiple of the DAC data clock, fo=kfs. The RZ

pulses do not have to be identical, as illustrated by the examples in Figure 2-2 (d) and (e).

The frequency domain impulse responses for the time domain waveforms of Figure 2-2 are shown

in Figure 2-3. Cases (b)-(e) and the family of curves f0=kf, implemented as in Figure 2-2 (b)-(e)

have a high energy lobe at frequency kfs. This allows an image of a low frequency DAC's input to

be output with more energy at higher frequencies. This can also be thought of as a 'mixing DAC,'

since the oscillating control waveform essentially mixes the DAC impulse response up to kfs.

Note that the control waveform does not have to be a perfect sinusoid to produce the high fre-

quency lobe. Any distortion in the control waveform will cause a slightly different DAC impulse

response and thereby a different inband gain, but the SNR at the output is not disturbed.

The concept of a DAC with an oscillating control waveform could be applied to Nyquist rate

DACs, 1A DACs, feedback DACs in ZA ADCs, binary DACs, multibit DACs, current steering

DACs, or resistor ladder DACs. The embodiments shown in Figure 2-2 are not the only possibili-

ties. Any oscillating DAC control waveform with f0=kfs can achieve a large high frequency lobe

in the impulse response. The additional constraints fo=kfs and switching at the zero crossings of

the control waveform reduce ISI and improve noise performance.

2.2.1 RF DAC Advantages
The RF DAC has several advantages over conventional DACs. Some advantages are listed below:

Ability to directly output a high frequency signal with large energy. This could be a high IF

frequency or even a direct RF frequency in transmitters in communications systems. This can

save power and hardware by eliminating the need for mixers, choppers, and filters in the addi-

tional intermediate frequencies currently present in state-of-the-art communication transmit

systems. This concept is depicted in Figure 2-4. Noise and linearity requirements of the DAC

are also relaxed, since there are fewer circuits before the antenna.

18 2. RF DAC Concept
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Figure 2-2: DAC impulse response with multiple pulses per sampling period.
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Figure 2-3: Frequency domain impulse response magnitude for the waveforms

of Figure 2-2 normalized to fs.



9 Reduction of switch timing synchronization problems between the elements of the DAC. The

burden of timing accuracy is placed on the control waveform. If the data clock is locked to the

control waveform, it will switch at the zero value, zero slope points of the control waveforms

of Figure 2-2 (a)-(d). Thus small mismatches in the data clock or control waveform distribution

(relative to the period of the control waveform) will have little effect on the output.

* Reduced sensitivity to random jitter in the DAC data clock since the data clock switches when

the control waveform is zero valued with zero slope. Performance is sensitive to the phase and

amplitude noise of the oscillating control waveform. However, in practice it is easier to build a

low phase noise sine wave than a low jitter clock or square wave. Thus improved jitter-limited

SNR is expected over conventional square wave RZ and NRZ DACs. This point will be elabo-

rated in Chapter 3.

* Reduced sensitivity to digital signal feed-through via the Cgd of the switch transistors. Conven-

tional current steering DACs have solved this problem by using a reduced signal swing at the

input to the switch transistors [24]. Reducing the switch transistor input swing, however,

reduces the speed of the switching. In the RF DAC implementation, the output voltage is the

same value at each switching instant. Thus the charge feed through is a disturbance propor-

tional to the input that causes no distortion. Note that this constant output voltage at the switch-

ing instants is also an advantage present in any RZ DAC.

o Potential for reduced upconversion of 1/f noise. References [25] and [26] have shown that

switching a MOS transistor between strong inversion and accumulation can reduce 1/f noise

power. The best explanation for this effect is that the accumulation phase interferes with the

long time constant associated with the 1/f noise trapping and detrapping process, and therefore

with the long term memory that characterizes 1/f noise. Reference [26] has shown experimen-

tally an 8dB improvement in upconverted 1/f noise. In a current steering RF DAC implementa-

tion, the current source transistor is turned on and off by the control waveform. If the transistor

is driven into accumulation during the off state, the upconverted 1/f noise should be reduced,

offering higher inband SNR than a conventional DAC.
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Figure 2-4: Conventional transmitter architecture shown with components that

can be replaced by the RF DAC.

2.2.2 RF DAC Disadvantages
One disadvantage of using an image of the DAC output is illustrated in Figure 2-5. If the DAC

output waveform has a DC component, the thermal or wideband noise from the primary image

gets aliased inband for all of the subsequent images. If this thermal or wideband noise dominates,

it could degrade the SNR of the images relative to that of the primary output. Similarly, thermal

noise or any other source of noise in the DAC current will mix with the input and potentially alias

out-of-band quantization noise back in-band.

Depending on the number of bits and frequencies used in RF DAC, the oscillator may have to

drive a large capacitive load with a high-frequency signal. This can require large power consump-

tion, specifically as the number of bits and frequencies increase.
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3 Sources of Error in RF DAC

The RF DAC concept presented in the previous section changes the constraint from building a

good data clock or DAC switching clock to building a low noise oscillating output waveform (or

oscillator) that is accurately locked to a clock. These two waveforms are depicted in Figure 3-1.

This chapter will explore the sources of error in the RF DAC system, including locking error,

phase and amplitude noise [27]. The phase and amplitude noise will be compared both intuitively

and analytically between the square waveform and the oscillating waveform. Since this chapter is

relatively mathematical, quick intuitive arguments are first presented to explain the expected

results.

Both waveforms in Figure 3-1 will be subject to uncertainties in the amplitude, also called ampli-

tude noise. The amplitude noise of the voltage reference is expected to be the similar in both cases

and set by the noise of a bandgap. The amplitude of the oscillating DAC is twice that of the square

wave for the same amount of delivered charge. Thus the amplitude noise is expected to be worse

in the oscillating waveform than in the square waveform.

A few quick hand-waving arguments can also be made about why the phase noise performance of

an oscillating waveform is expected to be better than a square waveform with jitter. First, it is eas-

ier to practically build an oscillator with low phase noise than it is to build a clock with low jitter.

An oscillating waveform can be filtered with passive components, whereas a square wave has har-

monic frequency components that cannot be filtered as easily.

The second argument has to do with how the waveforms are used. In a DAC, the variation in the

amount of charge delivered each cycle determines the SNR. Any timing jitter t(t) on the switch-

ing edges of the square wave pulse of Figure 3-1 affects the amount of charge delivered. The

ADAC IDAC
IDAC+2A,

+A,

0 TO T T+t(T) tim time

-A,

-2A,

Figure 3-1: Square wave pulse with jitter on the switching edges (left).

Oscillating pulse with phase noise not shown (right). Both waveforms will also

be subject to amplitude noise.



instantaneous value of the timing jitter at the switching instants is important. However, in an

oscillating DAC output waveform with phase noise the instantaneous value of the phase noise is

irrelevant, only the integrated noise over a switching period contributes to SNR. This is equiva-

lent to noise averaging or band-limiting the noise. Thus the phase noise performance in the oscil-

lating case is expected to be better than the timing jitter performance of the square wave case. The

remainder of this chapter will analyze and compare the sources of error in the DAC output wave-

forms of Figure 3-1. Ideal locking between the oscillating DAC output waveform and the data

clock will be considered first. Then the case of non-ideal locking with jitter on the data clock will

be analyzed. Finally phase and amplitude noise in the oscillating waveform will be discussed intu-

itively and analytically. The chapter will conclude with an example of a numerical comparison.

3.1 Ideal Locking

Suppose the cosine feedback pulse is ideal and perfectly locked to the DAC clock. The only

source of error is then jitter in the feedback DAC clock. Integrating IDAC over a period gives the

amount of charge fed back in one cycle,

T+z(tT)

qf = A, f (I - cos(wt))dt (3.1)

T(to)

Where T(to) and T(tT) are the values of the clock jitter at times 0 and T respectively, and A1 is the

amplitude of the cosine feedback pulse. The nominal value of the integral in Equation 3.1 is AIT

when T(to) and T(tT) are zero. Thus, the error in the fed-back charge of Equation 3.1 is given by

Eq = qf-AIT (3.2)

Using Equation 3.1 and Equation 3.2 with simplification gives

Agw 2

Eq ~ 3! s (T(t -T ) (3.3)

The variance of the error Eq is given by

C72 = E[E21-E 2[E] (3.4)

For simplification, assume T(to) and T(tT) are zero-mean Gaussian uncorrelated random variables

with variance Yt 2. This is the same assumption used in Section 1.3 for deriving Equation 1.1. The

variance of the error is found from Equation 3.4 and Equation 3.3 with simplification,
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5A 2W4 Cy 6

2 s t (3.5)
e 6

The SNR can be computed by approximating the input charge as half the value of the nominal

feedback pulse AIT/2. This is the same assumption used in [21], to which this analysis will be

compared. This value is chosen to avoid modulator overload since [21] uses the DAC for feed-

back DAC in a CT 1AM.

SNR = 2 0 10gAITOSR (3.6)
2 e

Substituting Equation 3.5 into Equation 3.6 and simplifying gives

SNR = 20log 0SR (3.7)
7.3n2sa

This third order jitter sensitivity (at3) is expected due to the zero value and zero slope of 'DAC at

the sampling instants +kT. The SNR limit in Equation 3.7 is compared in Figure 3-2 to the SNR

limits in an upfront sampled converter (Equation 3.1.1) and a conventional CT EAM with a single

bit, square wave, NRZ DAC pulse as derived in [21]. The standard deviation of the sampling jitter

at is assumed to be 0.7psrms. The curves are plotted versus the input frequency for an fn=fs/4

bandpass (BP) CT XAM. The input signal bandwidth fb is 40MHz, but the relative comparison

between the curves is the same no matter what fb is used. It is clear that under ideal locking, jitter

in the feedback DAC's clock will not be the limiting source of error in the SNR performance of

the RF DAC.
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-0- Oscillating DAC Output

20 --- -- -- -- --

C,)

Figure 3-2:
with square
40MHz and

106 10 10 10

fin (fsample/4)

Comparison of jitter-limited SNR for an upfront sampled ADC, a DAC
output pulse, and an oscillating output pulse. A signal bandwidth of
sampling jitter standard deviation of 0. 7psrs were used.

3.2 Locking Error

A locking error of to between the sampling clock edge and IDAC is depicted in Figure 3-3. The

feedback waveform is sampled at an offset of to from the zero crossings of the IDAC waveform.

This creates two sources of error that could degrade SNR. The first is the static offset, or "excess

loop delay" in a CT XAM [10]. The second is the data clock jitter acting on the nonzero IDAC

waveform.

3.2.1 Static Offset

Static offset between the sampling pulse and the DAC feedback pulse in a CT EAM is the same as

the "excess loop delay" discussed in [10]. If to is known, the loop can be designed with this delay,

and the transfer function adjusted accordingly. If to is not known precisely, feedback coefficient

tuning can be used to adjust the loop transfer function [10].

3.2.2 Dynamic Offset

Figure 3-2 indicates that clock jitter in the ideally locked case will not limit the SNR. However, if

the feedback pulse and the clocking signal are not perfectly aligned as shown in Figure 3-3, the

clock jitter will act on a nonzero DAC output with a nonzero slope. Suppose the clock is offset

- Upfront Sampled ADC
- Square DAC OutputI
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'DAC t

2A1 ----

A

/: 7:
0 to 2T 2T+to 3T Time

Figure 3-3: Static locking error.

from the feedback pulse by a constant value of to as shown in Figure 3-3. The fed-back charge is

given by

T+ to + r(T)

qf= A f
to +r(O)

(1 - cos(wSt))dt

Integrating, the error in the fed-back charge is

Eq = AI(r( T) - (0))(1 - cos(wto))

(3.8)

(3.9)

Assuming that t(0) and t(T) are zero-mean Gaussian uncorrelated random variables with variance

0,2 the variance in the fed-back charge is

(3.10)a 2 = 2A 2a,2 (l - cos(w to))2

Using Equation 3.6 and Equation 3.10,

SNR = 20log 2, t(
(3.11)

1 - cos(wSto))f,

Simplifying for wst<<1 or to<<T/6 gives

SNR ~ 20log (3.12)

56 t2

Given the fixed locking delay to and the standard deviation of the clock jitter at, Equation 3.11

can be used to find the jitter imposed SNR limit.

273. Sources of Error in RF DAC
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In a conventional CTXAM with a square-wave feedback pulse, the jitter acts on a signal of height

A, when the output is switching. In the RF DAC case, the clock jitter acts on IDAC with height

A1 (1 -cos(wsto)), giving the error in Equation 3.9. Although the output in the square wave pulse

system is not always switching, the input to sampling frequency ratio may be low and the output

will almost always be switching, especially in a single bit DAC case. Thus the SNR is expected to

be better as long as AI(l-cos(wsto)) << A, (i.e. to <T/4), or as long as the DAC switching does not

occur near the peak of the cosine wave.

3.3 Phase and Amplitude Noise in the Oscillating Waveform

Timing jitter in the sampling clock is not the only source of error in the RF DAC. There are also

nonidealities in the oscillating waveform itself. These nonidealities are expressed as amplitude

and phase noise.

If the cosine pulse has phase noise $(t), amplitude noise Am(t) in the DC level and Ac(t) in the

oscillator, the feedback current can be written,

IDAC--: AI+Am(t)-(A,+A,(t))costwst+$(t)) (3.13)

The charge transferred over one period can be written as

T

qf = J(Ai+Am(t)-(AI+A(t))cos(wt±+$(t)))dt (3.14)

0

The nominal value of this feedback pulse is +A1 T when there is no phase or amplitude noise. In

the following analysis, the phase and amplitude noise will be analyzed separately. They are

assumed to be uncorrelated and the total SNR degradation can be found by computing the sum of

the squares of their error variances.

3.3.1 Phase Noise

The fed-back charge qf with only phase noise in the cosine feedback pulse is given by

T

qf = ( - cos(wt + $(t)))dt (3.15)

0

The error in qf due to phase noise is then
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T

Eq = A1 -cos(wst + (t))dt (3.16)

0

Expanding the sum and assuming $(t)<<n/2 gives

T

Eq -A If J (t) sin(w t)dt (3.17)

0

3.3.1.1 Intuitive Analysis
Suppose there is a phase noise tone at frequency w. of amplitude A and phase 0 given by

$(t) = Acos(wt+0) (3.18)

Substituting Equation 3.18 into Equation 3.17gives

T

Eq~-A Acos(wt+ 0)sin(wst)dt (3.19)

0

Integrating and simplifying gives (forw, # W)

E Atw
-(W ) ~ (cos(wt+O)-cos(O)) (3.20)

SW2 _W2

and for wr=ws

-E --- sin(0) (3.21)
Y 2

Plotting the magnitude of the maximum value over 0 (i.e. the envelope) of this transfer function

as a function of the frequency of the tone (fT= w,/ 2 n) with fs=w,/2n gives the phase noise sensi-

tivity curve shown in Figure 3-4. The envelope of the transfer function is scaled by A1 . This curve

gives an intuitive feel for the frequencies of noise that cause large error in the delivered charge.
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Figure 3-4: Envelope of Eq/AAj versus f for oscillating DAC waveform.

The curve can easily be multiplied by the measured magnitude A of the noise tones at different

frequencies when used in a specific system to get the actual sensitivity plot.

It is interesting to note that the envelope is largest at fr=fs, and that Eq/AAi with fs=ws/2n

approaches 0 as f, approaches 0 and as f. approaches oo. Eq/AAi is most sensitive to phase noise at

frequencies near f,=f,. This corresponds to modulated phase noise at offset frequencies f.=fs away

from the carrier, i.e. near DC and 2fs. Thus, when designing a DAC with the cosine feedback

pulse, it is advantageous to try to null out phase noise at DC and 2fs.

For comparison, the same analysis is performed with a conventional NRZ DAC square-wave

feedback pulse. The square-wave pulse shown in Figure 3-1 has jitter on the clocked edges

defined as t(O) and t(T). The charge in the fed-back pulse is given by

T

qf = A (2u(t - r(O)) - u(t - T- T(T)) - l)dt (3.22)

0

The noise free value of this pulse is AIT when z(O) and t(T) are both zero. This is the same nomi-

nal feedback charge in Equation 3.15. The error in the fed-back charge is

Eq = 2A 1 (T)- t(0))

30 3. Sources of Error in RF DAC
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Figure 3-5: Comparison
DAC outputs.

of Eq/AAI(fr) envelope for the square wave and oscillating wave

To compare directly with the oscillating pulse, the timing jitter is defined analogously to

Equation 3.18,

This gives

t(t) = cos(w t+ O)
ws

E 2A1
_i(w') = -(cos(wT+ 0) - cos(0))
A WS

(3.24)

(3.25)

The envelope is compared in Figure 3-5 with the oscillating pulse envelope from Figure 3-4. This

plot is also normalized to A, and plotted versus fr.

The envelope of Eq/AAI(wT) for the square-wave pulse is sensitive to noise at all frequencies

except at multiples of fs. Thus, for broadband noise, the oscillating pulse should have better SNR

performance. Additionally, if the noise at offsets of fs can be nulled, the oscillating pulse has the

potential for even better noise tolerance.

x 10

2 3 fA

-r

0

I

0 1
X 10

313. Sources of Error in RF DAC

8



32 3. Sources of Error in RF DAC

3.3.1.2 Analytical Analysis
The preceding analysis gives an intuitive view of which phase noise frequencies will cause large

errors in the fed-back charge. It does not, however, give an analytical means of calculating the

maximum achievable SNR. An analytical SNR expression is desired so that it can be compared to

the SNR of upfront sampled ADCs and CT EAMs with square-wave pulses.

To find the SNR degradation, the variance of the feedback charge error Ge2 is needed. From

Equation 3.17,

-T T

a! ~ E A 0( t )sin(wst )dt A 0( t' )sin( w/t)jdt' (3.26)

-0 0

Simplifying gives

TT

CY ~ A 2Ro ( t - t' ) sin (w, t) sin (w, t') dtdt' (3.27 )

00

where R0(t-t') is the auto-covariance function of the phase noise. Ro(t-t') can be written in the

frequency domain as a function of the power spectral density of the noise

RO()= I S (w)e"'tdw (3.28)

Simplifying gives

R(= OMS (w)cos(wT)dw (3.29)

Once S0(w) is known or measured, R (r) can be found from Equation 3.29. Then u, 2 can be

found from Equation 3.27 and used in Equation 3.6 to find the exact value of the SNR.

For the sake of comparison, assume S0(w) is a constant value of A over the frequency range wH

to wL and zero elsewhere. The previous analysis indicates that the phase noise at offset frequen-

cies ws will end up contributing most to the error in the fed-back charge. Indeed for such large off-

set frequencies from the carrier, a flat thermal noise limit is expected. Using this assumption gives
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(3.30)

(3.31)') - sin(wL(t - t'))) sin(wst) sin(wst')dtdt'

Carrying out this integration over a small band of frequencies wH WL = W, gives the same phase

noise sensitivity plot as in Figure 3-4. This corroborates that ae is dominated by the phase noise at

ws away from the carrier.

Integrating Equation 3.31 in the limit WH -> to WL -> 0

TT

lim _ (sin(wH(t
WH L 

t

00

This gives

0) - sin(wL(t - t')))sin(wst)sin(wst')dtdt'
nT

= 2

AAIT
2 - I
e 2

Using Equation 3.6 and OSR=f,/2fb with simplification,

SNR ~ 20log 1
2Afb

(3.32)

(3.33)

(3.34)

This result indicates that the SNR limit due to phase noise in the pulse is not dependent on fin or

fs. It is only dependent on the amplitude of the phase noise A and the bandwidth of the signal fb-

The only assumption made was that the phase noise spectrum was flat with an amplitude A at fre-

quencies near an offset of ws away from the carrier.

Figure 3-6 compares the jitter limited SNR in an upfront sampled signal (Equation 1.1), a conven-

tional CT EAM with a square feedback pulse [21], and a CT XAM with the cosine-shaped feed-

back pulse (Equation 3.34). The SNR is plotted for a fin~fs/4 BP converter with a bandwidth

fb=40MHz. The phase noise amplitude, A, is -150dBm with a 7dBm carrier, and the standard

ROO(T) = A(sin(wT) - sin(WLT))

Substituting Equation 3.30 into Equation 3.27,

2TT

00

1(sin(WH(t
t - t
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Figure 3-6: Comparison of maximum achievable SNR in an upfront sampled ADC with
jitter ct =0 .7psrms, a square waveform feedback CT YAM with jitter ct =0.7psrms, and a

DAC with an oscillatory output waveform where the oscillator has phase noise -
150dBm. The bandwidth of the input signal is 40MHz for all three curves.

deviation of the jitter is yt=0.7psrms. These values were chosen as typical numbers from current

state-of-the-art.

Note that, as fi increases, the maximum achievable SNR degrades for the upfront sampled con-

verter and the square-pulse feedback CT YAM, but not for the CT YAM with oscillating pulse. For

these typical clock jitter and oscillator phase noise numbers, the oscillating pulse has better per-

formance than the conventional CT XAM above f,, - 20MHz and better performance than an

upfront sampled converter above fy, - 200MHz.

There are a few more potential advantages of the oscillatory feedback CT XAM that are not

depicted in Figure 3-6:

If the DAC is built on a large single chip system, it is likely that the only clock or oscillator

available will be noisy with yt >>0. 7psrms and large close-in phase noise. As long as the phase

noise around DC and 2ws stays at the thermal limit, the curve in Figure 3-6 for the oscillatory
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waveform will be almost the same, outperforming the upfront sampled ADC and square wave-

form.

" If the phase noise around 2w is notched or nulled, the cosine feedback 1AM could also per-

form better than indicated in Figure 3-6.

* Building an accurate upfront sampled converter which operates at high fs is very difficult with-

out a large amounts of power [28] and/or an operational amplifier in the converter. Once the

opamp is introduced, however, settling time limits the maximum conversion speed [6]. Thus

building an upfront sampled converter to meet the SNR curve of Figure 3-6 in the high MHz

and GHz regions is very difficult in practice.

3.3.1.3 Amplitude Noise
Amplitude noise in the oscillating waveform also causes variations in the fed-back charge.

Expressing the amplitude noise in the mean as Am(t) and the amplitude noise in the oscillatory

pulse as Ac(t), the fed-back charge is

T

qf J(A +Am(t)-(A+A,(t))coswst)dt (3.35)

0

For comparison, the error in the fed-back charge due to amplitude noise in the square-wave pulse

is given by

T

Eq = jAm(t)dt (3.36)

0

The noise Am(t) depends on the noise of a voltage source in both DACs. On the other hand, Ac(t)

is dependent upon the oscillator. The oscillatory and square-wave pulses are compared in a sys-

tem with the same voltage source reference quality. In this case, the oscillatory pulse has an addi-

tional amplitude noise sensitivity over the square-wave pulse

T

Eq = f(A,(t)coswst)dt (3.37)

0

To obtain an intuitive analysis, consider the response to a tone at frequency f.,

Ac(t)=Acos(wzt+O). Substituting into Equation 3.36 and simplifying,
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Figure 3-7: Envelope of additional amplitude noise (Eq/A) in the oscillating pulse versus

Eq = 2 (sin(wTT + 0) - sin(0)) (3.38)

W T - W

forw, T w# and

q_= T cos (0) (3.39)
A 2

for wT=ws

This extra amplitude noise error in the cosine pulse is plotted in Figure 3-7. The error in the fed-

back charge is again most sensitive to amplitude noise at a frequency of fs away from the carrier.

If the amplitude noise is small or nulled at these large offset frequencies, then the amplitude noise

sensitivity will approach the same performance as the square-wave pulse.

Using Equation 3.37 to calculate the exact additional variance of the fed-back charge due to

amplitude noise,
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-TT

aY = E ffAc(t)A,(t')cos(wst)cos(wst')dtdt' (3.40)

-00

C = EJRAA(t-t')cos(wt)cos(wst')dtdt' (3.41)

-00

RAA(t-t') can be found from Equation 3.28, given the power spectrum of the amplitude noise.

This can be substituted into Equation 3.41 to find the exact value of a,2. If the amplitude noise is

assumed to be flat over the sensitive frequencies around DC and 2w,, the calculations fall out

exactly as in the phase noise case and Equation 3.34 gives the additional SNR limit due to ampli-

tude noise in the oscillator. The curve in Figure 3-6 is then also the maximum achievable SNR for

an oscillatory pulse with -1 50dBm of amplitude noise near frequencies ws away from the carrier,

assuming no noise in the mean of the fed-back pulse. There will be additional degradation due to

variations in the mean, but they are the same as in the square-wave pulse and are expected to be

small in a system with a good bandgap reference. If the oscillatory pulse has phase and amplitude

noise, the total noise variance can be found as the sum of the two variances in Equation 3.41 and

Equation 3.33.

3.4 Multiple pulses per sampling period

Figure 3-3 assumes that the oscillator frequency is the same as the sampling clock frequency.

Suppose instead that the cosine pulse frequency is n times the sampling frequency. An example

feedback waveform is shown in Figure 3-8 for the case n=4 with four oscillator periods per sam-

pling period.

IDAC

2A

0 T 2T 3T Time

Figure 3-8: Four pulses per sampling period.
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Figure 3-9: Envelope of Eq/AAI(fr) with four oscillatory pulses per sampling period.

This DAC is much more sensitive to locking errors than a DAC with only one pulse per sampling

period, since smaller values of locking error to can cause the clock edges to land in the middle of

the cosine pulse, giving the same or worse sensitivity to clock jitter than the square wave pulse.

However, amplitude and phase noise sensitivity are expected to improve due to averaging. A new

error envelope for the phase noise is plotted in Figure 3-9. The error in the delivered charge is

now most sensitive to noise at offset frequencies n*ws away from the sampling frequency. Thus a

DAC with oscillatory output n>1 offers a trade-off between locking error and phase and ampli-

tude noise sensitivity. The chosen value of n will likely depend on the accuracy of the locking

scheme that can be built.
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4 Prototype Design

The RF DAC concept could be used in many applications, including a direct transmit or low-IF

DAC for communications systems, a direct digital synthesis (DDS) DAC, or a feedback DAC in a

CT EAM. The prototype implemented to demonstrate the RF DAC concept needed to be flexible

in order to demonstrate, compare and fully test the concept. Specifically, the prototype needed the

ability to test different ratios of oscillating and sampling frequency, compare square waves to

oscillatory waves, adjust the phase between the sampling clock and oscillatory wave, handle a

wide range of communications input vectors, and demonstrate high speed operation for communi-

cations applications. This section begins by discussing the specifications and architectural trade-

offs in implementing a prototype to meet all of these needs. The circuit design and layout is then

discussed, focusing on the design trade-offs in implementing RF DAC that are different from

those encountered when implementing a conventional DAC.

4.1 System specifications

Since wireless communications is pushing the development of high speed, high resolution con-

verters, it seemed appropriate to pick a challenging wireless transmit specification to demonstrate

the RF DAC concept. Table 4-1 lists a few of the current wireless transmission standards.

Table 4-1: State-of-the-art wireless standards

Base-station Base-station
TX RX

System Wireless Frequency Frequency Channel
Generation System (MHz) (MHz) Bandwidth

2G GSM 850 869-894 824-849 200kHz
(MXM)

2G GSM 900 925-960 880-915 200kHz

2.5G EDGE 925-960 880-915 200kHz
(Europe)

2G GSM 1800 1805-1880 1710-1785 200kHz
(DCS)

The GSM 900/EDGE system was chosen as the target design specification due to its modem day

wide deployment in the industry. However, RF DAC could just as easily be applied to any of the

systems in Table 4-1.
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The target specifications for a TX DAC in the GSM 900 system are shown in Table 4-2. A
17.5MHz bandwidth target is chosen as half the 35MHz total GSM band. Often this band is split

among one or more suppliers, making a converter that operates on only half the band potentially

desirable to industry. The SNR specification for a 17.5MHz band is calculated from GSM trans-

mit masks found in reference [29]. These masks indicate that a -80dBc noise level is needed at

6MHz away from the signal over a 100kHz band. This requires -l30dBc/Hz, which over a

17.5MHz band gives 57.5 dB. Note that these are the levels needed at the transmit antenna. Extra

noise will be added from the filter and power amplifier still needed in the transmit signal path

before the antenna. SFDR should also be greater than 80dBc. Since the bandwidth is so narrow,

the only spur expected to fall inband is the third order intermodulation product (IMD3). For lower

frequency communications DACs which require mixing and filtering stages after the DAC, other

spurs could mix inband through the nonlinearities of these later stages. However, since the RF

DAC concept eliminates the need for the extra mixers, the SFDR requirements can be relaxed to

be closer to those actually needed at the antenna. The full scale output current of the DAC should

be maximized, since power amplifiers are only -20-40% efficient [39]. A large output amplitude

can also increase the SNR by ensuring that the output is above the other sources of noise in the

system. Pouring extra output power into the DAC doesn't make much sense unless the DAC is

more efficient than the power amplifier. For reference, state-of-the-art low-IF DACs typically

used in transmit applications have 10-20mA full scale output currents.

Table 4-2: RF DAC Target Design Specifications

Parameter Value

1/2 GSM 900 and EDGE 933.75-951.25 MHz
System Band (17.5MHz Bandwidth)

SNR > 60dB
Inband SFDR (IMD3) > 8OdBc

Full Scale Output maximum, > 20 mA (13dBm
with 50Q, 1 OdBm with 25.Q,
10-30dBm output power
typically required in transmit
applications)
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4.2 RF DAC Architecture

4.2.1 XA DACs and Mismatch Shaping

Nyquist rate DACs have an input and output bandwidth of half the clock rate. The number of bits

in the DAC sets the output quantization noise floor. High resolution typically requires trimming in

a Nyquist rate DAC [30]. In contrast, ZA DACs rely on oversampling to reduce the quantization

noise in a narrow band of interest, thereby reducing the number of elements needed in a EA DAC.

Mismatch shaping offers the additional benefit of reducing the accuracy required in the DAC unit

elements. A 1A DAC trades digital complexity and oversampling for reduced sensitivity to analog

accuracy.

Figure 4-1 shows the input data path for a 1A DAC. The narrowband digital input data is shaped

by a quantization noise shaper, typically a digital 1A ADC. A wealth of details about XA ADCs,
modulation, and quantization noise shaping can be found in [31]. Once the data is quantization

noise shaped, mismatch shaping is employed to decide which elements of the DAC should be

used to implement each input code. Mismatch shaping algorithms seek to mimic transfer func-

tions that place zeros in the band of interest, thereby nulling the inband mismatch noise [32] [33].

Although theoretically any order mismatch transfer function centered around any band of interest

is possible [32], there are trade-offs in complexity and cost of implementing different mismatch

shaping transfer functions [33].

The N-Path filter approach to bandpass mismatch shaping is an efficient method that can be

implemented in modem digital technology. An example is shown in Figure 4-2. The desired

transfer function shown in Figure 4-2 (a) is H(z)=1+z-2 . This transfer function has a zero which

will reduce the noise in a band near fS/4. Figure 4-2 (b) shows an alternative implementation of

H(z). This shows that two first order interleaved filters H'(z)=l+z- 1 can be used to implement

H(z). Figure 4-2 (c) shows the algorithm used to mimic H(z) in selecting the unit elements of an

8-element DAC that are used to implement each input code. The dark arrows and light arrows rep-

fclk fclk fclk

ipt Quantization Noise Mismatch AaoA DAC Anog

bandwidth 1 Shaping (A ADC) Shaping Output

Figure 4-1: Data path for a 1A DAC.

4. Prototype Design 41



resent the two filters. The input data is alternated between the two filters. Each filter rotates back

and forth through the most recently used elements. The reason for reusing the most recently used

elements is that the impulse response of H(z) is {1,0,1}, indicating that the errors made selecting

the elements in the previous step need to be repeated.

Reference [33] recognizes that mismatch shaping increases the data switching activity. Each ele-

ment in the process of switching introduces noise and distortion. Modified mismatch shaping is

introduced in an attempt to keep the number of elements switching constant. This reduces the

switching distortion to a DC offset. The 'modified mismatch shaping' algorithm described in [33]
offers a trade-off between mismatch shaping performance and switching noise performance.

An example MATLAB simulation of an 8-element 1A DAC with a band centered around fs/4 is

shown in Figure 4-3. The MATLAB simulation was performed using the Sigma-Delta Toolbox

[34] [35]. The ideal spectrum has an SNR of 79dB. If implemented with elements matched to 1%,
the SNR degrades to 65dB. Mismatch shaping as described in Figure 4-2 in the fs/4 band

improves the SNR by 12dB to 77dB. Modified mismatch shaping improves the inband SNR by
only 4.6dB to 69.6dB, but offers a near constant 3 elements switching per clock cycle. The simu-

lation of Figure 4-2 only models 1% element mismatches, so no SNR improvements due to reduc-

tion in switching-induced noise can be seen.

Table 4-3 shows the mean and standard deviation of the number of elements switching for various

input vectors. These values are simulated using Matlab and are the actual numbers for the test

vectors. As expected, the modified mismatch shaping algorithm has the lowest standard deviation

of the number of elements switching.
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Table 4-3: Switching statistics for various input vectors.

Mean Standard
number of deviation of

Input vector Meaning elements number of
switching elements
(out of 8) switching

'Normal' sigma-delta quantization noise shaping, but 1.9827 1.1429
input vector NO mismatch shaping

Mismatch quantization noise shaping, standard mis- 3.2658 1.3645
shaping match shaping

Modified quantization noise shaping, mismatch shap- 2.655 0.68
mismatch ing with a 'modified' algorithm that attempts
shaping to keep the number of elements switching a

constant
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Figure 4-2: Mismatch shaping in 1A DACs (a) Desired mismatch shaping
transfer function with zeros at fs/4. (b) Two-path filter implementation of H(z).
(c) Example of element rotation to implement H(z) as in (b).
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Figure 4-3: Example of mismatch shaping for a band centered at fs/4. The ideal spectrum
has an inband SNR of 79dB. The spectrum with a 1% mismatch in the elements has an
SNR 65.4dB. The spectrum with mismatch shaping has an SNR 77.5dB.

4.2.2 Nyquist vs. dA DAC

The RF DAC concept could be applied to both Nyquist rate and eA DACs. However, communica-

tion transmit applications require SNR and SFDR performance only in a narrow signal band. Out-

of-band distortion is filtered by the BPF shown in Figure 1-1. Although 1A DACs are currently

not deployed or heavily researched for high speed applications, there are several good reasons

why they are good candidates. This chapter is devoted to clarifying the advantages of 1A DACs at

high frequencies.

High frequency, high accuracy DACs are typically CMOS current steering architectures because

they are fast and cost effective [36] [24] [37]. Unit current sources are used for the MSBs to

achieve good static and dynamic performance. The static performance of these DACs is limited

by the matching of the current source transistors in these unit elements. For instance, to achieve

half of a least significant bit (LSB) accuracy at 10 bits requires a device with an area of about

300pAM2. These large current source devices consume a lot of die area and require careful layout

techniques to ensure good matching.



Using a 1A DAC with mismatch shaping alleviates the matching constraint. If mismatch shaping

is employed, inband resolution can exceed device matching. Thus smaller current source devices

can be used to achieve the same inband resolution. Furthermore, there can be fewer elements in

the DAC since quantization noise is also shaped out-of-band. This allows 1A DACs to be built

with reduced area.

Large current source devices needed in a Nyquist rate DAC also have a large gate to source

capacitance Cgs. If the high frequency oscillating control waveform needed for the RF DAC con-

trols these gates directly, their combined Cgs's will require a lot of power to drive. Smaller, fewer

current sources achievable in ZA DACs have reduced input capacitance and require lower power

to drive.

In addition to current source transistor matching, 1A DACs also shape static timing offset mis-

matches between the elements of the DAC. Although previous work [36] [24] [37] solves this

problem in Nyquist rate DACs by careful layout, this may become intractable as speeds increase.

Mismatch shaping can ensure that this source of distortion does not dominate.

Since mismatch shaping allows smaller current sources, these current sources have a lower capac-

itance at their drains. This drain capacitance can dominate the output impedance of the current

source at high frequencies. Reduced drain capacitance improves the output impedance of the cur-

rent source. This improved output impedance allows the elimination of the impedance-boosting

cascode transistor found in conventional Nyquist-rate DACs. This will be discussed further in

Section 4.3. The elimination of this transistor allows increased headroom so the DAC can be

implemented with a reduced supply voltage.

Since the use of XA DACs for high frequency transmit applications is a relatively new concept,
the advantages over a Nyquist architecture are summarized below.

" The same inband noise can be achieved with lower area due to mismatch shaping.

" 1A mismatch shaping also shapes static timing differences and offsets in the unit elements.

This allows higher SNR and SFDR performance.

" Smaller devices mean smaller drain capacitance, giving larger output impedance at high fre-

quencies. Elimination of the output impedance boosting cascode transistor allows DACs to be

built with low supply voltages in aggressive technologies. It also gives associated power and

area reduction since the cascode and its bias circuitry are eliminated.
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* Smaller drive capacitance for the oscillating control waveform (advantage applies to RF DAC
implementation only).

The primary disadvantage of using a IA architecture is that the out-of-band quantization noise

needs to be filtered. Transmit communications applications require a filter before the power

amplifier anyway. The filter may have to be narrower than previously required, or extra bits

added to the DAC to widen the bandwidth and relax constraints on the filter. Thus there is a trade-

off between the filter roll-off and bandwidth of the IA DAC.

4.2.3 Frequency Planning

There are some interesting trade-offs in choosing the input, sampling, and oscillating control

waveform frequencies. The system is intended for the GSM 900/EDGE specification as given in

Table 4-2. Setting the band center at 942.5MHz gives a constraint on the relation between the

control waveform frequency f0se and the input frequency fin:

fosc -fn = 942.5MHz (4.5)

The sampling frequency f, is another design parameter. A large oversampling ratio (OSR=fs/

2fb=fs/35MHz) increases the SNR that can be achieved in a IA implementation. Thus f,=fosc/2

was chosen to maximize the OSR. Mismatch shaping in a IA DAC is easier to practically imple-

ment and more effective if the additional following constraint is met [32] [33]:

n (4.6)

where a and b are integers.

Figure 4-4 shows the RF DAC input and output frequency spectrums as a function of fs, fin and

fose for m= 4, 8. Large fin is desirable so that the signal band is far away from any control wave-

form feed through at frequency fosc. However, the larger fi, the faster the operating speed of the

front end digital hardware operating speed.

Table 4-4 summarizes solutions to Equation 4.5 and Equation 4.6 with f =f0 se/2. The final target

frequencies were chosen with fi=f /4 to give an extra 3dB mismatch shaping over the fs/8 case

and a slightly larger OSR (15.4 versus 14.4). Since the input and oscillatory control waveforms

are implemented off-chip, the fin=fs/8 case as well as many other cases can be easily imple-

mented, tested and compared.
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Figure 4-4: Output spectrum of DAC illustrating frequency planning issues.

Table 4-4: Possible DAC input, update, and control frequencies.

Parameter Possible values

fin=fs/4 (fin=fs/8) 134 MHz (62.8 MHz)

f,= DAC Update Rate 538.57 MHz (502.6 MHz)

fose = Oscillator Frequency = fs /2 1.077 GHz (1.005 GHz)

4.2.4 1A Design Space

XA DAC achievable performance with the frequencies chosen above is shown in Table 4-5. These

numbers were obtained by simulating a ZA ADC with an nlev-level quantizer in Matlab. The nlev-

output of the ADC is the input of the nlev-DAC, and the maximum SNR at the output of the ADC

is the maximum SNR of the DAC. Worst case mismatches were implemented on the ADC output

values to simulate mismatches in the DAC unit elements. The SNR numbers in Table 4-5 are

shown with 1% and 5% mismatch. The numbers in parentheses are without mismatch shaping; the

numbers with parentheses have mismatch shaping. Although mismatch shaping is implemented in

Matlab, since fin=fs/4 it could easily be implemented on-chip in the future.
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Table 4-5: 1A DAC Design Space

Number Max. SNR with 1% SNR with
of DACOut of stable mismatch 5%mismatch
levels Order Band input (no shaping) (no shaping)
nlev Gam amplitude in dB in dB

in dBFS

9 6 2 -1 (61)64 (50)58

9 6 4 -2 (61)71 (46)58

9 8 2 -3 (60)69 (46)59

9 8 4 -3 (60)72 (46)58

13 6 2 -1 (64)66 (51)59

13 8 2 -1 (65)74 (52)63

The maximum stable amplitude input amplitude (MSA) is a measure of the stability of the YA

loop for a given loop order and out-of-band gain. The higher the loop order and out-of-band gain,
the larger the in-band SNR, but the loop becomes less stable and the MSA is lowered. A low

MSA means that the entire full scale of the DAC cannot be utilized. Table 4-5 shows the trade-off

between SNR and the maximum stable input amplitude.

There is another trade-off not depicted in Table 4-5. The more levels or elements in the DAC, the

larger the area and the more power required in the oscillator to drive the DAC. It is also desirable

to have the number of DAC elements be a power of two so that the oscillatory control waveform

can be delivered to the DAC in a tree to reduce timing offsets between the elements.

The number of DAC levels nlev is the critical design parameter, since it determines how many

unit elements are put on the chip. In the final design, nlev=9 (i.e. 8 unit DAC elements) were cho-

sen to give >60dB SNR with 1% device mismatch. Since the 1A modulator and mismatch shaping

will be off-chip, any of the 9-level systems shown in Table 4-5 can be studied.

4.2.5 System Block Diagram

Figure 4-5 shows the RF DAC testchip system design. The 1A modulated data is generated on a

computer by simulating a 1A ADC in Matlab. Mismatch shaping and serial-to-parallel conversion

are then performed in Matlab on the output of the 1A ADC, and the results are fed to the DG2020

pattern generator. The DG2020 has 36 outputs that can operate at a maximum output rate of

200MHz. The eight data lines are parallelized to 32 signals at 134.6MHz. An on chip mux serial-
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Figure 4-5: RF DAC system block diagram.

izes the data for the unit element DAC. The current output of the DAC is fed through resistors and

a transformer on the test board to a spectrum analyzer.

The clocks for the system, f, and fo are generated from HP8644A and Rhode & Schwartz SML01

signal generators. This allows the frequencies and relative phases to be easily adjusted. Further-

more, the bias point of fo can be adjusted to compare the noise performance when driving the cur-

rent source transistors into accumulation. Thus the 1/f noise reduction theory described in Section

2.2 can be tested.

4.3 Output Impedance for DACs

Since communications applications are replacing static measures of performance such as INL and

DNL with frequency-domain specifications like SNR and SFDR, it is important to re-evaluate

DAC design constraints. One particular area for improvement is the specification of DAC output

impedance. Previous work has shown that a minimum output impedance is required for given sin-

gle-ended (SE) INL [38] and single-ended second harmonic distortion (HD2) [40] performance.

SNDR and SFDR for single-ended binary DACs have been derived in [17]. This section extends

that analysis to compare output impedance specifications for INL, DNL, second harmonic distor-

tion, and IMD3 in both SE and fully-differential (FD) implementations. It is shown that the output

impedance specifications are significantly reduced when a fully-differential implementation is

used [41].
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Vout
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Figure 4-6: Single-ended DAC model with load resistor rl and unit
element output impedance ro.

4.3.1 Static Performance Specifications

There is a minimum DAC output impedance that is required to meet static INL and DNL specifi-

cations. These limits can be derived by considering the simple DAC model in Figure 4-6. Each

element of the N-element DAC has a current I and an output impedance ro. Output impedance is

modeled resistively since it is typically dominated by output resistance of the switch transistor,

the current source transistor, or a cascode transistor. Ideally, the output current is terminated

through r to produce a voltage Vout. The capacitance cl models the output capacitance due to pads

or large output traces. Although often significant, cl does not effect static measures of perfor-

mance or cause harmonic distortion. In the model of Figure 4-6, the output voltage is

kI
Vout(k) - gi+gok (4.7)

where k is the number of elements turned on. To find the single-ended DNL, the width of each

code is:

Vout(k)- Vout(k- 1) = k g (k 1)1 (4.8)
gi+gok gi+go(k-1)

The nominal code width or least significant bit (LSB) is 1 . The DNL expressed in LSBs is
gi + Ngo

DNLSE(k) = Vout(k) - Vout(k - 1) (4.9)
I

gi + Ngo

Substituting and simplifying gives



52 4. Prototype Design

0.6

0.4 --

0-

-0.2

-0.4
0 100 200 300 400 500 600 700 800 900 1000

0.1

0-7

-0-05

Input Code k

Figure 4-7: DNL caused by finite output impedance for single-ended and fully-
differential DACs. In this example, ro=100 kOhms, r1=50 Ohms, and N=21 0 =1024.

DNLSE(k) = gogl(N-2k+ 1) -go 2 (k 2 -k) (4.10)
g12 + 2gogik - gogi + (k2 - k)go2

DNLSE(k) is plotted at the top of Figure 4-7. The minimum unit element output impedance

needed to achieve a maximum 1/2 LSB DNL can be found by solving for ro=1/go in

Equation 4.10. The total output impedance rt=r0 /N is plotted in Figure 4-9. The load resistor r1=I/

g, is assumed to be 50 Ohms. The number of elements N is assumed to be 2 b, where b is plotted on

the x-axis of Figure 4-9. As the number of elements grows, a higher output impedance per ele-

ment is required.

The fully-differential DNL can be derived similarly to the above single-ended analysis. The fully-

differential DNL is plotted in Figure 4-7 versus the input code k. Output impedance requirements

for fully-differential DNL are also plotted in Figure 4-9. The output impedance is a factor of two

lower than that required for single-ended DNL.

The single-ended INL requirement is derived in [38]

INLSE(k) - Irl2k(k - N) (4.11)INLSE~k)ro

The single-ended INL of Equation 4.11 is plotted at the top of Figure 4-8 versus input code k. The

INL is even with a maximum at k=N/2. The minimum total output impedance required to give a

1/2 LSB INL is plotted in Figure 4-9.
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Figure 4-8: INL caused by finite output impedance for single-ended and fully-
differential DACs. In this example, r,=100 kOhms, r1=50 Ohms, and N=2 10=1024.

The INL for a fully-differential DAC is found by considering a fully-differential output

(4.12)Voutdiff H (N-k)I
gi+gok g+go(N-k)

where N is the total number of unit elements in the DAC and k is the number of elements turned

on. Finding the endpoints of Equation 4.12 and writing the equation for this straight line gives

Vline= 1(2k - N)
gi + gok (4.13)

The INL can be found by

VINL = Voutdiff- Vline (4.14)

Expanding Equation 4.14 and normalizing to an LSB gives

INLFD(k) =
-gigo 2 k(2k -N)(N- k)

2(g12 + gigoN+ go2 kN- go2 k)(gi + Ngo)
(4.15)

The INL of Equation 4.15 is plotted in Figure 4-8. The INL is odd in the fully-differential case
and has extrema at k=N/4 and k=3N/4.

Equation 4.15 can also be solved for the minimum impedance ro required to give 1/2 LSB INL

performance. The minimum total output impedance rtzr 0 /N is plotted in Figure 4-9. Figure 4-9
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Figure 4-9: Minimum total output impedance required to meet static 1/2 LSB
INL and DNL specifications for fully differential and single ended
implementations. The load resistor r, is 50 Ohms and the number of elements is

2 b where b is plotted on the horizontal axis.

shows that the INL output impedance requirements for a fully-differential DAC are reduced by

over an order of magnitude relative to the INL requirements for a single-ended DAC.

4.3.2 Dynamic Performance Specifications

Communications applications are demanding good frequency domain performance in the form of

low harmonic distortion. For a fully-differential DAC, the INL of Figure 4-8 is odd, causing

IMD3 to dominate the distortion. In practice, however, any imbalance in the fully-differential out-

put path will also cause some second order harmonic distortion (HD2). Since the single-ended

INL curve of Figure 4-8 is even, the second harmonic will be the SFDR limiter in the single-

ended case.

The output impedance required for a given IMD3 is derived by considering a DAC with a sinuso-

idal output. The number of switches "on" at time t for a DAC with a sin(wt) output is:

S(t)on = Nsin(wt) + 1
2

(4.16)

The number of switches "off' at time t is:

8 9 10 11 12 13

Number of bits (b)

1012

10 10

10 8

106

102

10 0
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(4.17)S(t)off = N1 - sin(wt)
2

The impedance looking into the output terminal is

gouton = gi + goNsin(wt)+ 1 (4.18)

The impedance looking into the complementary terminal is

(4.19)goutoff = g+ goN 1 - sin(wt)
2

The voltage at the output terminal is

Vouton = IN (sin(wt) + 1)
2g1+ goN(sin(w t) + 1)

(4.20)

The voltage on the complementary terminal can be similarly written, and the total fully-differen-

tial output voltage is

Voutdiff =
IN4gisin(wt)

4gi2 + 4gigoN+ go2 (1 - sin 2 (wt))
(4.21)

Equation 4.21 can be expanded in a power series. As expected in a fully-differential topology,
there are no even order harmonics.

Voutdiff= sin(wt)+ K sin3(wt)1T+dK ) +K 2

Voutdiff=' Qisin(wt) + x3 sin3 (wt)

(4.22)

(4.23)

where J and K are as follows

i = IN4gi

4gi2 + 4gigimpN

K = gimp2N2

4gi2 + 4gigimpN

(4.24)

(4.25)

The fundamental and third order (IM3) components have an amplitude [39]
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Fundamental = at + 9aM (4.26)
4

IM3 = 3 (4.27)
4

The ratio of the fundamental to the third harmonic is used to find the IMD3.

14 K+ 4
IMD3 = 3 3 (4.28)

K

Substituting and simplifying gives:

14go2N2+ 16 (g,2+g+goN)
IMD3FD = 3 (4.29)

go2 N2

The minimum required output impedance for a given IMD3 can be found by solving for go in

Equation 4.29. To achieve a 70dBc IMD3, the minimum total required output impedance is plot-

ted in Figure 4-10. R, is assumed to be 50 Ohms and b is plotted on the horizontal axis, where

N=2b is the number of elements in the DAC.

In narrowband communications systems, IMD3 is often the only significant harmonic that will

fall inband in the presence of more than one carrier. However, the output impedance required for

a given HD2 is included for completeness. Reference [40] derives the single-ended HD2 for a

given output impedance in a similar way

HD2SE = (4.30)
4gi + 2Ngo

The minimum total output impedance required for 70dBc HD2 performance is also plotted in

Figure 4-10. Single-ended HD2 requires over an order of magnitude larger output impedance than

fully-differential IMD3 for the same 70dBc spurious performance level.

Figure 4-10 summarizes the comparison in output impedance requirements for INL, DNL, HD2

and IMD3 DAC performance. If the DAC is fully-differential, the output impedance requirements

drop by over an order of magnitude for both INL and spurious performance.
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Figure 4-10: Comparison of total output impedance requirements for frequency
domain and static performance requirements. All curves assume r1=50 Ohms and

the number of elements N is 2b where b is plotted on the horizontal axis. HD2 and
IMD3 requirements are plotted for -70dBc spurious performance.

4.3.3 Elimination of the Cascode Transistor

Figure 4-11 shows a DAC current steering element. M2 and M3 switch Ml's current to Iout or Iout

depending on the digital input, Dn- MI is typically a large device for good matching. The high-

frequency output impedance of the current source is dominated by capacitance Cd at the drain of

M1 [40]. Since this capacitance degrades high frequency output impedance, an output-imped-

ance-boosting cascode transistor Mcas is often added at the drain of Ml.

As shown in the previous section, output impedance requirements can be reduced for the same

INL and spurious performance by using a fully-differential topology. Communications applica-

tions often require good frequency-domain performance in a narrow bandwidth. If only inband

SNR is relevant, device matching requirements are relaxed by oversampling compared to a

Nyquist-rate DAC. Furthermore, if a 1A DAC or any type of shuffling algorithm is used, match-

ing requirements can become even more relaxed. This reduced matching requirement means a

smaller device size for Ml, so lower Cd and higher current source output impedance. Switches

M2 and M3 can be operated in the saturation regime, further boosting output impedance. All of

these design factors combined eliminate the need for the traditional impedance-boosting cascode



lout lout

D M2 M3

Vbias2 Mcas

Vbiasl] MI Cd

Figure 4-11: Traditional current steering DAC element.

transistor Mcas at the drain of MI. Elimination of Mcas offers a headroom savings that allows

DACs to scale with technology to lower supply voltages.

4.4 Circuit Design

The TSMC 0.1 8pm, 1.8V CMOS technology was chosen to implement the RF DAC. It was cho-

sen for the high transistor ft, allowing fast switching edges and reduced gate delay. The low 1.8V

supply voltage also demonstrates the ability of the DAC to be built with reduced supply voltages

by elimination of the cascode transistor. TSMC's 0.18pm technology features 1 poly layer, 6

metal layers, deep N-Well for isolating NMOS transistors, metal-insulator-metal capacitors

(MIMCAPs), and a thick inductor top level metal.

TSMC's 0.18pm CMOS technology also features a 3.3V option. Two versions of the RF DAC

unit element core were implemented on the chip. One is built with a 1.8V supply designed for a

peak current of 20mA. The signal power at the output is divided in half by the sinusoidal nature of

the output and then in half again by the impulse response of the DAC at 942MHz, as indicated by

Figure 3. Thus the output signal current is only 1 OmA at 942MHz while the peak output current is

20mA. The 3.3V DAC core has a nominal peak current of 80 mA, while the signal current at the

output is 40mA. Depending on the stability of the XA, a full scale input may not be stable. Thus

the output current is further reduced by the maximum stable input amplitude (MSA).

A block diagram of the 0.18pm RF DAC testchip is shown in Figure 4-12. A mux and timing cir-

cuitry serialize the data from 32 lines at 134 MHz to 8 lines at 538.5 MHz. Switch drivers drive

the DAC switches at 538.5 MHz. A dummy switch driver path provides constant switching or

constant injection of current in the switch driver supplies and substrate. This has shown potential

for improving noise performance of high-speed DACs [37]. The gates of the RF DAC current
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134.6MHz 538.57MHz 538.57MHz lout
Input 32 Mux & 8 Switch 8-Element N
Data Timing Drivers RF DAC

Input 134.6MHz lout
Data fs=538.57MHz RF
Trigger ESD
Clock 

Dummy t

Divers fo=1.077GHz

fs=538.57MHz

Figure 4-12: Simplified block diagram of 0.1 8pm RF DAC test chip.

sources are driven by an off chip oscillator at frequency fo. The pin for this control waveform also

has ESD protection. Finally the current output of the DAC is sent through an off-chip transformer

to the spectrum analyzer.

There are three coefficients that can be loaded upon startup to configure the state of the DAC.

Enabledummy enables the dummy switch drivers. By allowing the dummy path to be enabled

and disabled, measurement results can be obtained to verify if the dummy path affects the perfor-

mance of the DAC. Disablemux disables the mux so the 8 unit elements of the DAC can be

driven directly from the first 8 inputs. This method only allows the DAC to be driven up to

220MHz, limited by the pattern generator in the lab. However, this option was included as a bail-

out and a quick way to test functionality without any timing issues. The final coefficient switches

the input lines between the 1.8V and 3.3V DAC. Thus when the 1.8V DAC is being tested, the

3.3V DAC should not be switching or injecting any noise, and vice versa.

4.4.1 Unit Elements

The DAC unit element core design is shown in Figure 4-13. An NMOS DAC was chosen over a

PMOS DAC for increased switching speed. MI is the current source with an oscillating gate

driven by Vosc. Switches M2 and M3 steer Ml's current to either Iout or lout depending on the

value of the data. Since the impedance boosting cascode transistor of Figure 4-11 has been elimi-

nated, M I-M3 are designed in the high output impedance saturation region.

Design considerations for the size of MNI include full scale current and matching requirements.

A 1% target matching requirement gives a constraint on the total area of device Ml. Predicted
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fs=514MHz Zout

DO
Data - Switch M2

Driver

Iout

out

DO
7 more elements

N1

VOSC=1.028GHz

Cgs M1 
M Cn1

vssanalog

@ 0 0

Figure 4-13: One of eight identical current steering DAC elements implemented in 1.8V,
0.1 8ptm CMOS technology.

matching data was only available for devices with common centroid layout techniques, but RF

DAC does not utilize these techniques (For additional comments, please see Chapter 4.5). Thus

the device size was over-designed by a factor of about 5. The W/L ratio was chosen to give

the desired peak output current at a peak gate drive of 1V. There is a trade-off in the maximum

output power and the noise sensitivity when designing the gate drive Vosc. The zero region of

the output could be longer to reduce noise sensitivity and ensure that all switching transients

fit within this region, but this extended zero region reduces the available output power. Although

a larger peak gate drive voltage could be used, this increases the VdS needed for M1 to stay

in the saturation regime, decreasing the maximum full scale output voltage. The final design

values for MI and the associated capacitances Cgs and Cn are shown in Table 4-6.

Table 4-6: RFDAC test chip design summary. All values taken at the peak gate voltage Vos
=IV.

Parameter 1.8V DAC 3.3V DAC

Peak Output Current at 16, 23.2, 28.8 mA 58.4, 80, 101.6 mA
Vosc= V, slow, nominal & (2, 2.9, 3.6 mA/element) (7.3, 10, 12.7 mA/ele-
fast process models ment)
W/L of Ml 88 m/1.1 [m 200ptm/0.7ptm

Current Source Vgs-Vt at 0.489V, 0.567V, 0.622V 0.473V, 0.552V, 0.605V
Vgs=1V, slow, nominal,
fast process models

Matching Expected 0.23%, 0.2%, 0.19% 0.2%, 0.18%, 0.16%
from TSMC Non-Relaxed
Matching Data (1%
needed)

W/L of M2,M3 30um/0.24um 150um/0.35um

Vdd of the switch driver 1.8V 2.2V
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Table 4-6: RFDAC test chip design summary. All values
=1V.

taken at the peak gate voltage Vose

Parameter 1.8V DAC 3.3V DAC

Maximum output voltage 1.8V-1.13V 3.3V-1.8V
swing of each side so all
transistors stay in satura-
tion

CgsM1 4.8pF (0.6 pF/element) 7.0 pF (0.89 pF/element)

Cn1 182 fF 730fF

Cn Idue to wiring 45.6 fF 114fF

Zout Simulated (Zout 26.4k (8.6k) 15.7k (8.6k)
needed)

Inband SNR Simulated 79.4dB with 0.5% mis- 65dB with 0.5% mis-
with -2dB full scale (FS) matches, no timing offsets matches, no timing offset
input 73dB with mismatches, 54dB with 0.5% mis-

0.2ns timing offset matches, 0.4ns timing off-
set (middle of current
peak)

Max SNR calculated due 87.6 dB 91.3 dB
to simulated transistor
noise (1/f, thermal)

The size of the switches M2 and M3 were chosen as a compromise between maximizing the out-

put impedance and keeping V(N1) high enough for MI to stay in saturation. To clarify, the output

impedance looking into the Iout terminal when M2 is on is

zout = ro2 1+gm2(r 1 + (r, ±(r j jr') (4.31)

For high output frequencies present in RF DAC,

Zout ~ ro2gm2
jo Cn

(4.32)

As the size of M2 increases, ro2 (ro2 - L ) and gm2 (gm2 - ) increase, but the capacitance C,

(Cn oW*L+ constant) at node NI also increases. Therefore, there is an optimal size for M2 to

maximize the total output impedance. The output impedance versus width W of M2 is plotted in

Figure 4-14. For low values of W, Vgs of M2 is large and Ml goes out of saturation. Once MI is
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Figure 4-14: Output impedance versus width W of M2. Plots are for various lengths of M2
with an output frequency of 942MHz at the peak output current. The current source device
size MI of 88pm/1.1pm in the 1.8V DAC.

in saturation, the curves follow the expectedJA. relationship. Figure 4-14 plots the output imped-

ance for several values of L. A large L is desirable for slightly higher output impedance and better

matching. However, a low L is desirable for ease of driving the switch and for lower Vgs of M2 so

node NI is kept high. Thus a compromise was reached for the device size by selecting a point

close to the optimal output impedance but with slightly larger W to ensure Ml stays in the satura-

tion regime.

The switch driver peak output voltage (Vddswdr) is another design parameter. Keeping M2/M3 in

the saturation regime, the voltage at the output can swing from a maximum of the supply at the

output (Vddoutput) to a minimum of Vddswdr-Vt2 where Vt2 is the threshold voltage of M2/M3. If

the output voltage swings below this value, M2/M3 will go out of saturation and output imped-

ance will be degraded. Thus it is desirable to have a low Vddswdr to maximize the output swing.

However, large Vddswdr speeds up the switching time. If the edges are faster, more of the switch-

ing happens in the zero region of the control waveform. Large Vddswdr also ensures a high voltage

for node NI to keep MI in saturation. A compromise was made so a full swing Vddswdr=1.8V
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was designed for the 1.8V DAC and a slightly reduced Vddswdr=2.2V in the 3.3V DAC. In the

final design, Vddswdr is connected to a pad and taken off chip so the value could be both changed

and decoupled from other supplies.

There are a few things in this architecture that are unlike a conventional DAC design. Conven-

tional DACs try to keep the current in the tail current source constant by minimizing variations in

node NI [24]. In this design, however, node NI varies with VOsW. Any disturbance to NI or the

output nodes due to the switching of M2, M3 appears as a constant disturbance on each switching

cycle. This is because the switches always switch when MI has nominally zero current. This

means that nodes N1, Iout and Iout always have the same voltage when M2 and M3 switch. Thus

the output disturbance is proportional to the number of elements switching, which is also propor-

tional to the input signal and does not cause any inband distortion.

Conventional DACs also seek to minimize coupling of the control signals to the outputs through

Cgd of the switch transistors M2 and M3. This typically involves minimizing the sizes of M2, M3

and reducing the voltage swing at the input of the switches. However, since the output of RF DAC
returns to the same voltage at every data switching instant, the coupling is proportional to the

number of elements switching, causing no inband distortion.

Given these transistor sizes, the noise in the unit element must also be considered. The noise of

the DAC will get mixed with the input and fall directly in band. Flicker and thermal noise of Ml

dominate the noise performance of the DAC core, as shown in the top plot of Figure 4-15. The

current noise is calculated from a simulation of the output voltage noise

. 2vn 2n2(f)df
in (4.33)

where n2(f) is the noise voltage at the output in , vn is the integrated voltage noise, in is the

integrated current noise, and r, is the 25 Ohm output load resistor. The factor of 2 in Equation 4.33

indicates that the integrated noise is not single sided in frequency, although the simulations are

single sided in frequency. So to get the total noise in a 17.5MHz bandwidth, the amplitude of the

noise must be doubled. The total noise in is plotted in Figure 4-15. The maximum SNR is

SNR =2Ognrms 0 20log (4.34)
S1.n in
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where n is the number of elements in the DAC and Irms is the rms output current. Using the value

of in=0.237pA at 8.75MHz from the top plot of Figure 4-15, Equation 4.34 gives a maximum

achievable SNR of 85dB for the 1.8V DAC and 91dB for the 3.3V DAC. If these noise models are

accurate, noise in the DAC core transistors should not limit the SNR of the system, given the 64-

72dB numbers in Table 4-5.

The bottom plot of Figure 4-15 shows the noise referred to the output expressed in dBm/ Iiz.

This plot shows that the 1/f noise corner of device Ml is around 10MHz, but that around 100kHz

the output noise will be dominated by the output resistors. The output resistor for this simulation

was modelled as 16.6Ohms, which is the actual 50Ohm resistor in parallel with 25Ohms reflected

through the transformer. This resistance was used to get the noise of the transistors correct. How-

ever, the thermal noise of the actual output resistors themselves is off since they are modelled as

the noise associated with 16.6Ohms instead of the noise associated with 500hms. Thus the cor-

rected curve is also plotted on the bottom of Figure 4-15.
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Figure 4-16: Switch drivers for each unit element of the DAC. A dummy switch driver
switches whenever the data does not. Also shown are the power and ground plane
divisions. Dummy_.Data allows the Vdd_clk and Vddswdr supply domains to see constant
switching.

4.4.2 Switch Drivers

The switch drivers receive the digital data and drive the current steering switches M2 and M3

of Figure 4-13. The switch driver schematic is based on the work of [42] and is shown in

Figure 4-16. Examples of input Data and generated DummyData show that the Dummy_.Data

path switches whenever the input Data does not switch. Also shown are the divisions of the

power and ground supply planes. The final inverters that drive the switches M2 and M3 are

on their own separate supply Vdd-swdr. This allows the switching voltage to be adjusted and

also prevents coupling from the clock and digital domains. Vdddig is the supply that is used

for all the digital timing and input data. The Vddclk domain is used for the inverters that

buffer the clock on chip as well as for the middle section of the switch drivers. Since either

the Data or Dummy_.Data is switching on every cycle, glitches on the vddclk supply from the
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switching inverters should be constant every clock cycle, reducing code-dependent timing errors.
Similarly, since either the Data or Dummy switch driver switches every cycle, the supply in-
jection in the Vddswdr domain should also be constant and data-independent to first order.

To second order, there will be some inconsistencies Conventional switch driver design tries to
achieve a high crossing point, so M2 and M3 of Figure 4-13 are never simultaneously in the
off state and node NI is held constant. If M2 and M3 are simultaneously off, node NI will
start to rise. This will cause the current through the element to change, causing distortion in
the output [15] [19].

In this design, the current is oscillating, so node NI oscillates with the current. Node NI should
nominally be at the same voltage for every switching point. The critical constraint in this design
is that all the switching transients 'fit' into the zero region of the current waveform. This ensures
that sampling clock jitter does not limit performance and that switching distortion is constant
on every cycle. Although VOS could be DC shifted to give a longer zero region, this reduces
the output power that can be achieved. Thus the switch driver design in this work strives to
minimize the total switching time, ensuring that all switching transients fit into the zero region
of the output waveform.

Conventional high speed DAC designs also use a reduced swing at the output of the switch
drivers [15] [19] to minimize charge injection of the digital control signals to the output. How-
ever, this technique reduces the switching speed of the waveform and was therefore not used
in this design.
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Figure 4-17: Time domain simulation of a single switch driver switching waveform and
the corresponding output waveform change. Note that more than the single switching
element DO is switching at the output.

A sample RF DAC switching waveform is shown in Figure 4-17. The switching point was

designed near midscale to reduce the total switching time. The swing of the switches is 1.8V

for the 1.8V DAC and 2.2V for the 3.3V DAC. The total switching time versus process is

0.05ns to O.lns for the 1.8V DAC and O.lns to 0.2ns for the 3.3V DAC.

4.4.3 Analog DAC Core Summary and Simulations

A summary simulation of the total analog DAC core is shown in Figure 4-18. Simulated are the

unit elements, switch drivers, and lead frame/bond wire models on the power supplies. Plotted

first in Figure 4-18, v(d5) and v(db5) show a unit element switching. v(vosc) is the voltage at the

gate node of the current source, oscillating at 1GHz. Shown beneath v(vosc) is <x4>i(mnl,d), the

current in one of the unit elements of the DAC core. Note that this waveform is slightly out of

phase with v(vosc), and the phase difference would be even worse if the R-C parasitics of the

Vose bond wires, traces, and on-chip wiring were included. Thus lining up the phase of the

switching clock with the zero region of the current waveform can only be accomplished by look-

ing at the SNR of the output, not the phase of the signals as they appear on the PC board.

<x4>v(nl) is the voltage at node NI of Figure 4-13. Switches M2 and M3 pull this node high as
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Figure 4-18: Time-domain simulation showing relevant DAC core node voltages and
currents for the 1.8V DAC. At the top is a single unit element switching waveform. V(vosc) is
the oscillating gate waveform, and <x4>i(mnl,d) is the drain current in one of the unit
elements. <x4>v(nl) is node NI, and v(i), v(ib) are the two halves of the differential output
voltage waveform.

the current decreases. The last plot shows the output voltages v(i) and v(ib) when the DAC is

resistively terminated. Notice that there are some transients in the output voltage, i.e. the mini-

mum voltage near 1.2ns does not quite equal that at 2. Ins. This indicates that the output current

will not quite be the same on every switching cycle, causing some code-dependent distortion.

The total analog DAC core was simulated in the time domain and the SNR calculated. This

includes the unit element current sources, switches, switch drivers, supplies with lead frame and

bond wire models. The analog unit elements and switch drivers also have mismatches, the values

1
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Figure 4-19: Total output spectrum of the analog DAC core simulation. The clock frequency

is fclk=514MHz and fosc=1.028GHz.

of which are estimated. 1024 input codes were used, with 128 time domain points per input code.

This large number of points ensures that time domain glitches or code dependencies are included

in the SNR. The results are shown in Figure 4-19 for fclk=51 4 MHz and fosc=1.028GHz. The

inband region is centered around fc1k/ 6 and the images of the input show a scaling by the predicted

sinc with a high-frequency, high-energy lobe. Note that the unwanted images of the input can be

easily filtered, since the filter will need a roll-off dictated by attenuating out of band quantization

noise.

The inband SNR is about 8 dB lower than the ideal Matlab simulation of 74dB. This is due to the

distortion in the drain current of the unit elements, as shown in Figure 4-20. Figure 4-20 shows

the simulated current through one unit element plotted in dB. Any distortion not at multiples of

fosc=1.028GHz will alias with the out of band quantization noise of the digital input and alias that

noise back inband.
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Figure 4-20: Simulation
fosc=1.028GHz.

of the current through one unit element for fc1k= 5 14MHz and

4.4.4 Timing Circuits and Multiplexer

Since the lab equipment available could only input a maximum of 36 channels at up to 220MHz,

a mux and timing circuits were needed to serialize the data by a factor of 4 from 32 lines at

134.6MHz to 8 lines at 538.57MHz. The main timing circuit is shown in Figure 4-21. The 538.57

MHz clock is divided into 4 phases, c<l> through c<4>. These phases are used by the mux to

switch the input data to a high speed latch running at 538.57 MHz. The flip-flops are reset on star-

tup if more than one of the phases c<l:4> are high. In this case, all the flip-flops are reset while

the first flip flop (on the left) of Figure 4-21 is set (set presides over reset). Similarly, if the

disablemux coefficient is high, all of the flip flops are kept in the reset state while the first flip

flop is kept in the set phase. This allows the first 8 inputs to drive the DAC directly through path

c<l> in the mux.
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Figure 4-21: Timing circuitry, generating 4 clock phases at flk/4 -

An example simulation of the circuit of Figure 4-21 is shown in Figure 4-22. The 538MHz clock

in the bottom of Figure 4-22 clocks the latches in Figure 4-21 to create c<1:4>, effectively divid-

ing the clock into four phases to multiplex the input data.

In addition to driving the mux, c<4> is buffered and drives the latches that latch the new input

data. Then on the next c<l> phase, the new data is loaded into the DAC. Similarly, c<2> and

c<3> are buffered and combined to get a 50% duty cycle at fs/4. This clock is driven off chip to

t.
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Figure 4-22: Simulation of the circuit of Figure 4-21, showing the division of the
bottom clock into four phases that multiplex the data.
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Figure 4-23: Single mux cell, repeated 8 times for each of the 8
DAC elements.

trigger the pattern generator to send more input data. Since c<2:4> are all buffered and used by
both the mux and for other purposes, c<l> also had a dummy buffer so that c<l:4> all see the
same load.

While it seemed like a good idea at the time to have the chip trigger the input data, it turns out that
driving the pad capacitance and trigger input required large buffers with lots of current drive to be
used. This created large current injection into the supplies and into the substrate at fs/4. Since this

was desired to be the input frequency band, these clock tones showed up inband in the output
spectrum and mixed with the input to create unwanted spurs. Final testing had to be performed at
a band other than fs/4, but this problem may have been avoided in the first place if the input data

trigger were built from a divider or PLL off chip.

The mux is shown in Figure 4-23. The clock phases c<1:4> determine which pass gate is turned
on. The appropriate input is then connected to the buffer and latched with a high speed latch run-
ning at 538.57MHz. The top pass gate connects the first input directly to the latch when the
disablemux coefficient is high.

Constraints on the timing circuits and latches were simulated over process, temperature, and sup-
ply. The timing constraints in all cases were met by a margin of about a factor of four. Thus the
inputs should be able to reach the 220MHz input data clocking limit of the pattern generator.
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Figure 4-24: Dummy data generation logic.

4.4.5 Dummy Data Generation

The dummy data path ensures that the vdd_clk and vdd&swdr supply domains see almost constant

switching. This is achieved by digital logic that senses if the input data has switched. If the input

data has not switched, then the dummy data will switch. Thus either the input or dummy path is

switching on each clock cycle. The logic to generate dummy data and an example waveform is

shown in Figure 4-24. A latch stores the old value of the data so it can be "xor"ed with the new

data. This creates the 'flip' signal, indicating whether or not the dummy data should flip. If 'flip'

is low, 'dummydata' should not switch since the 'data' path has switched. Similarly, if 'flip' is

high, 'dummy-data' should switch since the 'data' path has not switched. Thus either the 'data'

path or 'dummy-data' path is switching on every clock cycle. There is also an 'enabledummy'
coefficient so the converter performance can be compared with and without the dummy path

switching.

4.4.6 High Frequency Electrostatic Discharge (ESD)

The low gate oxide breakdown voltage in aggressive CMOS processes necessitates the use of

electrostatic discharge (ESD) protection for gates connected to pads. Conventional ESD clamps

result in large series resistance and large junction capacitance on the input pad [43]. Low fre-

quency digital inputs can tolerate this large R-C time constant. However, since node VOse is

designed to operate near 1GHz, alternative ESD structures were investigated.
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RF input

Figure 4-25: A gate-grounded NMOS ESD clamp.

A gate grounded NMOS transistor shown in Figure 4-25 has been shown to have an 8kV HBM
(Human Body Model) ESD level when stressed with a negative voltage, but only a 500V HBM
ESD level when stressed with a positive voltage [43]. This is because the NMOS ESD current is
dominated by drain breakdown for positive voltages and a forward biased drain for negative volt-

ages. A complimentary PMOS device can be added to the NMOS to increase the ESD tolerance to
positive voltages. However, this increases capacitance and requires a positive supply. Since the
supply of the analog portion of the DAC is on the board instead of on the chip, only an NMOS
ESD clamp was used at the VOSC input. The drain contact to poly gate spacing was increased from

the minimum 0.16gm spacing to 1.5gm and silicide blocking was used in this region. This
increases the series resistance, thereby improving the ESD tolerance [43]. Furthermore, this

NMOS ESD structure was built in a deep N-well to isolate the Vos0 node from any substrate cou-

pling.

Standard TSMC ESD structures were used on the low frequency digital inputs. No ESD protec-
tion was used on the analog output of the DAC since drain diffusions are much more ESD robust
than thin oxide gates.

4.5 Layout

DAC layout is typically challenging in terms of minimizing mismatches in the current source
transistors and timing mismatches between the elements of the DAC [15] [17] [30]. Adding a
1GHz oscillating control waveform creates additional constraints. Current source matching in this
design was only needed at a level of 1%, since mismatch shaping reduces the effect of matching
errors. However, the capacitance at node N1 needed to be minimized to reduce degradation of
output impedance at high output frequencies. Furthermore, the 1GHz Vosc gate oscillating volt-
age needed to be delivered to all of the elements at the same time. The 500MHz switching wave-
forms should likewise be delivered to the unit elements at the same time.
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Figure 4-26: 1.8V RF DAC analog core die photo. Active

area is 0.06mm 2.

This set of constraints gave the final analog core layout of Figure 4-26. While conventional cur-

rent source layout uses a common-centroid scheme, with only 1% matching needed, the current

sources here are laid out in a row with dummies on the ends. This minimizes the routing on node

NI and allows VOSe to be delivered in a tree to all of the elements simultaneously. The bulks of the

current sources are all isolated from the substrate together in one deep N-Well. The isolated P-

Well of the current sources is connected to their common grounded sources (vssanalog) and

deep N-well is star connected to a pad and pin where it is connected to Vdd. The switches are

located directly above the unit elements in their own separate deep N-Wells. They are as close to

the current sources as possible without violating deep N-Well spacing rules. The output lines Iout

and lout are located above the switches, and are wide for large current carrying capability. The

switch drivers are above the output lines, and the digital circuits are located a few hundred

microns away from the switch drivers.

The switch drivers are laid out symmetrically to minimize imperfect synchronization of the con-

trol signals at the switches. Furthermore, all the transistors in the Vddclk and Vddswdr domains

are in separate deep N-wells to isolate their backgates from the digital substrate.

The total chip layout is shown in Figure 4-27. The 1.8V and 3.3V DAC cores are as close as pos-

sible to the output pads to reduce loss. They are also separated from the digital circuitry. The lay-

out is pad limited by the 32 digital input lines. The DAC core are a relatively small portion of the
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Decoupling
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capacitors

-3.3V DAC

. Digital

-1.8V DAC

Figure 4-27: Total RF DAC test chip layout.

total chip area. The rest of the chip consists of MIM-capacitors and metal capacitors that satisfy

the minimum processing fill requirement and also decouple the supplies.

The chip is packaged in a chip-scale-package (CSP) with 64 leads. The pin-out shown in

Figure 4-28 was designed to minimize coupling from the digital inputs to the analog outputs. The

left side of the chip contains the 32 digital inputs with digital power and ground. The right side of

the pinout has the analog outputs: 'I', 'IB', '133' and 'IB33'. These outputs are surrounded on the

chip, leadframe and board by metal lines named 'Isurround'. This 'Isurround' node can be con-

nected on the board to the 1.8V supply, 3.3V supply or 'Vssanalog'. The oscillating signal that

goes to the gates VOse is also surrounded by 'Vssanalog', the source of the NMOS current source
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Figure 4-28: RF DAC testchip pinout, including separation of the power and
ground planes.

transistors. This ensures that the current that charges the current sources is returned along
'vss-analog'.

The power and ground plane divisions are also shown graphically in Figure 4-28. The analog

vss-analog, deep N-Well, switch drivers, and clock domains are separated on the chip, pinout,

and board layout. The separation minimizes coupling between the digital and analog sections of

the test chip. The grounds can be connected on the board through footprints that support either

shorts, resistors or inductors.

Double bonds are indicated by 'db' next to the pins of Figure 4-28. The double bonds require two

pads, which increase the area of the already pad-limited design. Double bonds are used to reduce

the inductance and resistance of the connections only on supplies and critical analog nodes. Since

the 1 .8V DAC design is headroom limited, downbonds were used on I and I to minimize the volt-
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age drop across the bond wire and leadframe. Since the 3.3V DAC has a larger output voltage

swing before the unit elements go out of the saturation region, a larger resistive drop could be tol-

erated and no double bonds were used.

4.6 Board Design

The test board also includes the power and ground separations indicated in Figure 4-28. Further-
more, the digital inputs from the pattern generator also had their own ground, which is not
depicted in Figure 4-28. The termination resistors for the digital inputs were as close as possible

to the return ground connection. This ensures that the large digital switching return currents are
routed directly back to the pattern generator.

The schematic for the gate bias and oscillator inputs is shown in Figure 4-29. The vbvosc and
vbvosc33 DC input voltages are decoupled on the board before reaching the resistors R3 and R4.
The AC signal from the oscillator is terminated with a 50 Ohm resistor and then AC coupled to
the gate node. The jumpers offer test points where the voltages can be measured using a FET
probe that attaches directly to the jumpers.

The main challenge in the board design was minimizing the parasitics on the critical current out-
put nodes. The board schematic for the output nodes is shown in Figure 4-30. Resistor footprints

are provided for DC testing, while the capacitor and inductor footprints provide the opportunity to
filter the output. The first transformer converts the fully differential output to a single ended one.
The center tap is connected to Vdd, and the 500hm input impedance of the spectrum analyzer is
reflected through the transformer so the outputs see 25Ohms to Vdd at the center tap.
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Figure 4-29: Schematic of the gate bias inputs for the 1.8V DAC and 3.3V DAC. The
clock bias circuitry is also shown.
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Figure 4-30: Schematic of the outputs on the board.

The transformers used were special Coilcraft 'TTWB' solder mount parts specially tuned to high

frequencies1 . The lower 3dB bandwidth was around 3 MHz and the upper 3dB bandwidth around
1GHz. Total insertion loss in the middle of the band was specified at around -1.8dB. The trans-
former has an unknown parasitic capacitance between the primary and secondary. This capaci-
tance can couple the single-ended output signal unequally to one side of the fully differential
output. A second transformer footprint was included to provide the option of reducing this
unequal coupling. The routing on the current outputs was minimized and the transformers placed
as close as possible to the test chip. The edges of the traces were rounded to prevent stray high fre-
quency electric fields.
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82 5. Measurement Results

5 Measurement Results

The prototype RF DAC was measured for both DC and AC performance. Although only AC per-

formance matters in communications systems, measuring the DC performance can help character-

ize the 0.1 8pm CMOS technology mismatch performance. Note, however, that the DC mismatch

measurements are best case for RF DAC since they do not include the higher frequency capacitive

mismatches that are present when RF DAC is operated at its full 1GHz speed.

All 26 chips returned were found to be functional at DC. The DC measurements were performed

with the parts in connected to the PC board through an S-lead socket. High frequency measure-

ments were performed with a part that had been soldered directly to the PC board.

5.1 DC Results

DC measurements of the DAC were taken using an HP 3458A digital volt meter (DVM). One side

of the DAC was terminated to Vdd via a 200i resistor, while the other side of the DAC was con-

nected directly to Vdd, as shown in Figure 5-1. Using this large resistor helped ensure a large

enough voltage swing that the voltage measurements are larger than the noise of the DVM.

Two DC measurements were performed. First, one single bit in the middle of the array was turned

on and its gate voltage was swept over a large range to determine the I-V characteristic of the cur-

rent source device MN1. During the second test, the current in each element was measured for a

shorter sweep of gate voltages to determine the matching across the array. Since RF DAC in nor-

mal operation has a varying Vgs, matching is measured versus Vgs. These measurements were

taken for all 26 chips.

Note that RF DAC was laid out in a row, using no common-centroid or array techniques. It is

expected that the matching will be worse than common centroid layout structures predict. How-

Vdd_

R=200Q

V 

Vgs MN1 9

Figure 5-1: DC testing configuration
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32ptm (88 p- - m array)
30ptm (88pm/l. 1 74gm (200 .7gm array)
57pm (200pm/0.7

Figure 5-2: RF DAC unit element layout. Transistors are in a row with dummies on the end.
No common centroid techniques were used.

ever there are dummies on each end of the RF DAC array, equal in size to the current sources in

the array. The 1.8V version of RF DAC has current source transistor sizes of 88pm/l.1pm (18

stripes per transistor) and the 3.3V version has current source transistor sizes of 200gm/0.7gm (46

stripes per transistor). A die photo is shown in Figure 5-2.

5.1.1 Repeatability

The same element on the same DAC was measured 100 times. This data shows the repeatability

of the measurement, which will also drift over time. The repeatability measurements were re-

taken about every 7 chips throughout the course of these DC tests. The standard deviation of all

the measurements is 0.28mV, which corresponds to a current of 1.43pA and a matching of

0.027%. This is significantly lower than the measured matching of 0.3-0.4%, and than the pre-

dicted matching of 0.2%. Note that if the termination resistor had been the designed 25i instead

of 2009, the current repeatability would have been 11.3p.A and 0.22%, close to the predicted

matching.

5.1.2 Transistor Transfer Characteristics (I vs. Vgs)

The DC value of output current I was measured by turning on one bit in the middle of the DAC

array, sweeping the gate voltage Vgs, and measuring the output voltage. The results were aver-

aged over all of the chips and are shown in Figure 5-3. Simulations using nominal and slow mod-

els are also shown. For comparison, an ideal square law was fit to the measurements at low

voltages.
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Figure 5-3: Output current as a function of gate to source voltage Vgs-

5.1.3 Threshold Voltage

The threshold voltage was measured by turning on each bit one at a time, sweeping the gate volt-

age by 0.lV increments, and measuring the output voltage. The threshold voltage can then be

extracted from two adjacent data points. It is assumed that the I-Vgs characteristic follows a

square law:

I = B(Vs - Vt) 2  (5.1)

Figure 5-3 shows that the square law is a good approximation up to about IV for the 88pm/l.l Im

device and up to about 0.9V for the 200tm/0.7gm device. The mean value of the threshold volt-

age is shown in Figure 5-4. The threshold voltage values are extracted from different values of the

gate voltage, and are therefore plotted as a function of the gate voltage. Also shown in Figure 5-4

is a comparison to the expected threshold voltage over process variations.
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Figure 5-4: Threshold voltage extracted from I-Vgs measurements as a function Vgs. Alsc

shown are the simulated values for slow, nominal and fast process variations.

5.1.4 Matching

The threshold voltage was extracted for every element of the array and for every Vgs value. The

mean for each chip was subtracted to give the threshold voltage variation in each element. The

variations were collected for all of the chips and the standard deviation was taken to give uyt. The

results are shown in Figure 5-5.Note that the 200 jm/0.7pm device deviates from a square law as

Vgs goes above 0.9V and the extracted Vt becomes inaccurate.

Substituting variations in P and Vt in Equation 5.1 gives

Al 2AV A
I Vs - V±

Variations in threshold voltage AVt have already been calculated and nominal variations in cur-

rent AI/I can also be calculated directly from measurements. These can be used to extract AP, as

plotted in Figure 5-6. The value of AP is larger for the 88pm/I.1 gm device. This may be due to

the fact that the 200pm/0.7 tm device has 46 stripes, whereas the 88gm/1.1 pm device only has 18

855. Measurement Results
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Figure 5-5: Standard deviation of threshold voltage variation, plotted as a function of Vgs-

stripes. Furthermore, the dummies on the ends of the arrays are the same size as one current

source transistor. The relatively large values of AP could also be due to the lack of a common cen-

troid layout scheme.

The measured total current matching is plotted in Figure 5-7 versus Vgs. The large P variation in

the 88p m/1.1 tm device causes the large deviation from the predicted current matching.
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Figure 5-6: P variation versus Vgs (i.e. the point at which P is extracted).
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Figure 5-7: Total current matching as a function of Vgs.
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Figure 5-8: Current matching versus element number for 26 chips.

5.1.5 Edge Effects

In the course of processing the data, it was noticed that there were 'edge' effects for the smaller

device. The transistors at the edges of the current source array were observed to have worse

matching than those in the middle. The total current matching for all of the chips versus element

number is shown in Figure 5-8. The 88pm/l.1 pm device has a few chips that are matched very

poorly at the end points. The 200pm/0.7pm device appears to have a gradient, since the current

matching changes from one side of the array to the other.

The mean and standard deviation of Figure 5-8 are plotted in Figure 5-9 to show the 'edge' effect.

The 200pm/0.7gm device does not have the edge effects, but it does appear to have a gradient,

which is apparent in the mean of the current mismatch versus element number. The 200pm/0.7pm

array is 570pm long, compared to 300gm in length for the 88Rm/1 .1 pm array. Therefore gradient

effects are expected to be more prominent in the larger 200pm/0.7pm array.
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Figure 5-9: Mean and standard deviation of the current matching as a function of element
number.

5.1.6 Summary of Matching Results

Matching results are summarized in Table 5-1. The matching values are extracted from the previ-

ous plots at Vgs=lV for the 88 m/1.1gm device and Vgs=0.9V for the 200gm/0.7gm device. The

devices were designed to run at a peak Vgs=lV. However, above 0.9V the 200gm/0.7gm device

characteristic starts to deviate from the square law approximation used for the matching calcula-

tions. Thus Vgs=0.9V was chosen to compare the matching data for the 200gm/0.7gm device.



88tm/ 200pm/
Parameter 1.1p m 0.7pm

18 stripes 46 stripes

GVt 0.56mV 0.55mV

GB 0.33% 0.24%

Current 0.42% 0.27%
Error

Table 5-1: Summary of measured matching parameters. Values are extracted at Vgs=IV for the
88gtm/1.1 jm device and at Vgs=0.9V for the 200ptm/0.7pm device.

5.2 AC Results

The AC measurements in this chapter are taken for one chip which was soldered to a board,

although all chips were shown functional from the DC testing. Unfortunately, the soldered chip

was not measured first for DC matching. Thus the exact DC matching characteristics of this chip

are unknown. The board is configured initially with one transformer connected to the output to

convert the differential DAC output to a single-ended signal.

5.2.1 Test Setup

The laboratory setup for measuring the AC performance of RF DAC is shown in Figure 5-10. The

DG2020 pattern generator has the ability to output 36 bits at adjustable voltage levels up to a

speed of 220MHz. The AWG420 has the same number of bits and speed, but the voltage levels

are a constant 3.3V and cannot be changed. When testing with the AWG, extra termination resis-

tors were added to the inputs of the board to reduce voltage levels, to a nominal 0-1.8V. The data

switching clock fc1k is provided by a Rhode & Schwartz SML signal generator, while the oscillat-

ing control waveform is provided by the HP 8644B signal generator. The generators are phase

locked by connecting a 10MHz reference in the back of the instruments. The phase between the

waveforms can be adjusted manually on the Rhode & Schwartz SML. Although the exact phase

between the oscillating DAC current and the data switching instants on the chip cannot be mea-

sured, the phase can be visually adjusted by observing the output waveform amplitude and the

noise floor on the spectrum analyzer.
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Figure 5-10: Lab test setup for AC measurements.

5.2.2 Spectrum and Overall Functionality

The RF DAC testchip is fully functional and can be tested up to speeds of fclk=880MHz, limited

by the fclk/4=220MHz input pattern generator data rate. The only functionality that can not be

directly tested is whether or not the dummy data is actually switching correctly. However, the
switch driver supply current is measured and found to have the expected almost two-fold increase
when the dummy data scheme described in Chapter 4.4.5 is operating. The current increase is
expected to be slightly lower than a factor of two since the dummy data path switch drivers do not
have any load.

One unexpected result is the appearance of the multiplexer clock in the output spectrum. The chip
outputs the multiplexer's fc1k/ 4 signal to trigger the input data. This means that there is a large on-

chip driver to drive the clock to the output pad, pin, and buffer. The strong fc1k/ 4 signal is likely

coupled to the output either through the chip substrate or the PC board ground. Since the multi-
plexer needs a clock at fc1k/4 , it appeared in the output spectrum and mixed with the input tone.
Thus the fc1k/ 4 planned center frequency has to be abandoned for an fc1k/ 6 input center frequency.

The complete output spectrum for the DAC with a constant bias voltage in drive-direct mode (i.e.
no multiplexer) is shown in Figure 5-11. The DAC is being clocked at fclk=lOOMHz in the top

spectrum, and at fc1k= 5 14MHz in the bottom spectrum. Both plots compare the DAC with a con-

stant gate bias and with the gate oscillating. The primary or low frequency tones are visually
aligned to give the same amplitude with and without the gate oscillating. The amplitudes of the
output images follow the predicted sin(x)/x behavior for the DAC without the gate oscillating, but
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the amplitude of the third image is boosted in the oscillating DAC case due to the high frequency,

high energy impulse response lobe. The relative amplitudes of the primary and third image out-

puts are determined by the level of the DC bias and by the amplitude of the oscillating waveform.

As frequency increases, more of the oscillating waveform amplitude is lost in the input circuit on

the board. Thus, at high frequencies a larger drive amplitude must be used to obtain the same out-

put power.

At increased clock frequencies, even-order harmonics and IM products of the input appear, as

labelled in Figure 5-11. Since the DAC is differential, no even-order distortion is expected. The

harmonics are believed to be due to mismatches in the differential paths. Since the harmonics

appear at high frequencies, an unequal capacitive coupling is suspected. However, since special

care was taken to ensure that the output paths are completely symmetrical, it is suspected that the

second harmonic is due to unequal coupling of the single-ended output to one of the nodes

through the transformer at the output. This is the reason for the inclusion of the footprint for the

second transformer. When added, the second transformer should provide increased isolation

between the single-ended and differential signals.
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The second transformer is added and the resulting output spectrum is shown in Figure 5-12.

Although the second harmonic is slightly improved, the fourth intermodulation product is worse.

When the second transformer is added, jumpers JP35 and JP36 are opened. These jumpers extend

under the transformer and are close together so they actually form a capacitance between the input

and the output. However, even if this capacitance is large, the harmonics should still stay about

the same. Thus it appears that the unequal coupling is not dominated by the transformers, but

instead by some other asymmetry in the chip layout or board routing. The insertion loss increased

slightly as expected, especially at high frequencies.

Clock feedthrough is also present in the output spectrum, and is boosted at high frequencies as

demonstrated in Figure 5-11. In fact, at lower gate bias levels, or lower output levels, even more

feedthrough can be seen. This is shown in Figure 5-13. The top spectrum is without the multi-

plexer at the maximum pattern generator speed of 220MHz. Clock feedthrough at fclk and second

harmonic distortion are seen. The bottom spectrum is clocked at the same 220MHz rate with the

multiplexer running. Clock feedthrough at both fclk and fc1k/ 4 can be seen, as well as the mixing of

fclk/4 with the inputs. Note that for such low output amplitudes the noise floor of the third image

is limited by the noise floor of the spectrum analyzer in both cases. Figure 5-14 shows the output

spectras with the clock running at 500MHz. The feedthrough and mixing effects become worse at

higher frequencies.
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5.2.3 Single-Tone Performance

A single input tone centered around ft lk/6 is used to measure the SNR performance of RF DAC.

As a first step, the SNR of the DAC running at fc1k=30MHz with a constant 0.9V gate bias voltage

is measured. This places the output tone at around 5MHz, just above the 3dB bandwidth of the

transformer. The best measurement results compared with MATLAB simulation are shown in

Table 5-2. Since the DC matching of the chip is unknown, the SNR is compared to simulations

with both 0.42% and 0.6% mismatching.
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Table 5-2: DAC SNR with constant gate bias, flk=30MHz.

SNR limit due
to analyzer

Expected low Expected low noise floor (also
Output tone, frequency SNR frequency SNR depends on
Type of input with 0.42% with 0.6% output Measured
vector mismatch mismatch amplitude) SNR
Primary Output, 71.46dB 68.9dB 81.6dB 67.65dB
Normal

Primary Output, 76.24dB 76.2dB 81.6dB 69.66dB
Mismatch Shap-
ing

Primary Output, 75.08dB 73.43dB 81.6dB 70.26dB
Modified Mis-
match Shaping

Third Image (@ 71.46dB 68.9dB 63.5dB 61dB
55MHz), Nor-
mal

The slight improvement in the measurements with mismatch shaping indicates that a little of the
SNR degradation is due to mismatch. The SNR improves slightly with modified mismatch shap-
ing, so some of the degradation may also be due to noise injected during switching. However,
there is still at least a few dB discrepancy in the SNR measurements. The sources of possible SNR
degradation are described in the following section.

5.2.3.1 Sources of SNR Degradation

A few possible sources of SNR degradation are listed in Table 5-3. For large output amplitudes,
all of the predicted noises of Table 5-3 are smaller than the measured noise.

Overloading the front end of the spectrum analyzer with large tones could also cause the front end
to saturate and produce inband noise. These tones could be either the large inband signal or the
image tones out of band. Bandpass and notch filters have been used to notch the tones, but the
SNR remains the same, indicating that this is not the source of noise.
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Table 5-3: A few possible sources of SNR degradation

Source Simulated/Estimated value

Thermal noise of output resistors -164dBm/ JHz

Thermal noise of resistor biasing -164dBm/ JHz
the gate node

Thermal & 1/f noise of the DAC -172dBm/JFz
core transistors

Noise of the spectrum analyzer -150dBm/.FHz to -l60dBm/JHz,
depending on the analyzer used

An experiment was conducted with the DAC chopping between all zeros and all ones. This is per-

formed at half the clock rate, and the output tone is observed. The results are plotted for different

gate bias voltages in Figure 5-15. As the gate bias (and therefore the current through the transis-

tors) increases, flicker noise near the carrier increases, as does the wideband noise. Theoretically,

the thermal noise should be below these levels, however the scaling of noise with the current does

indicate flicker and thermal noise.
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Figure 5-16: Plot of SNR as a function of DC gate bias voltage for the DAC running at

fclk=30MHz. The primary output is centered at 5.12MHz, and the third image is centered at

54.93MHz. The bandwidth is 1MHz for both measurements. The bottom plot shows the
amplitude increase with gate bias voltage.

A plot of the SNR versus DC gate bias level is shown in Figure 5-16 for both the primary output

at 5.12MHz and the third image at 54.93MHz. Shown on the bottom is the amplitude of the output

tone at both frequencies. As expected, the amplitude of the output increases with DC gate bias,

since the current through the transistors increases. However, the SNR ideally should be limited by

quantization noise and should not vary with the bias voltage applied to the current sources. The

SNR is also lower than that predicted by Matlab. The bandwidth is 1.02MHz, so the 1/2 band-

width used for integration is 510kHz. According to Figure 5-15, this should still be in the region

where the device is dominated by 1/f noise. Figure 5-16 indicates that the noise scales roughly

with the signal amplitude, keeping the SNR constant.

At higher frequencies, the SNR scales with the output amplitude as shown in Figure 5-17, where

the SNR as a function of DC bias level at a fclk= 5 14MHz is depicted. The primary output is now

z
C,,

E

0
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at 88.46MHz and the third image is at 942.5MHz. The bandwidth is 17.5MHz, so the integration
bandwidth is 8.75MHz, and is chosen to be centered away from the 1/f noise near the carrier.
Results are plotted for various input vectors, with and without the dummy data switching enabled.
No significant differences are seen between the curves.

It turns out that the slope of the SNR is consistent with a noise proportional to JVgs- Vt. This
curve is fitted and plotted in Figure 5-17 with the measurement results. The jVgs - Vt dependence
and wideband noise characteristic points directly to transistor thermal noise, but it is curious that
this level is about 12dBm/JHiz higher than predicted.

The bias node of the gate Vos is also sensitive to noise coupling. When a decoupling capacitor is
added to the bias node on JP24 to create a low pass filter, the SNR improvement is only on the
order of 0.1 dB. This indicates that the gate bias node is fairly insensitive to coupling on the board,
at least up to the point where JP24 is on the board (i.e. about half way between where the supply
comes in and the pin of the chip). The decoupling capacitor had to be removed for AC testing
because it would short the AC signal. However, since the SNR with and without the capacitor was
about the same, coupling onto the gate bias node does not appear to be limiting the SNR perfor-
mance of the DAC.

There is also a coupling mechanism on the PC board. This is illustrated in the measurements of
Figure 5-18. When the clock is turned off, there should ideally be no signal at the output. How-
ever, there is clearly some coupling of the digital inputs to the output. When the resistors connect-
ing the digital inputs to the chip are pulled out, the inband noise drops further. This indicates that
there is a coupling path on the PC board. It is only when the digital inputs are completely discon-
nected that no coupling is seen. When the DAC is operating, any coupling of the digital inputs to
the current source would cause the mixing of the input with itself. This means out-of-band quanti-
zation noise will be aliased back in band.

Other possible sources of noise could be substrate coupling or some other type of noise coupling
to the gate bias node. Switching distortion is another possibility, but this should be minimal at low
frequencies and should appear as tones, not as broadband noise which was observed inband on the
spectrum analyzer. Noise on the output supply voltage is another possibility.
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Figure 5-17: SNR versus DC bias level for the DAC with a constant gate bias. The first two
plots show the primary output tone at 88.46MHz and the third image of the input at 942.5MHz.
Shown in the bottom plot is the amplitude of the output tone for the two frequencies. The clock
frequency fc1k is 514MHz.
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Figure 5-18: Inband primary output spectrum with the clock turned on, the clock turned off,
the clock off with the resistors pulled out, and the clock off and the digital inputs disconnected.

5.2.3.2 SNR versus Frequency

The SNR of the DAC with a constant bias voltage is plotted as a function of output frequency in

Figure 5-19. The SNR is compared between the DAC running with and without the multiplexer.

Also plotted is the output amplitude as a function of frequency. The top two plots are for the pri-

mary output frequency, and the bottom two plots are for the third image of the output. Note the

different output frequency scales in the primary and third image plots of Figure 5-19.

The amplitudes of the primary and third images are effected by the transformer lower and upper

3dB bandwidths, 5MHz and 1GHz respectively. Otherwise the amplitudes are relatively flat with

frequency. The SNR is similar whether the DAC is running with or without the multiplexer. It

was initially suspected that the extra digital switching when the multiplexer is running could
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cause more inband noise, since Figure 5-13 indicates that it does cause more distortion tones. This

is apparently not the case.

The SNR of the primary output stays relatively constant with frequency, while the SNR of the

third image falls off rapidly with frequency. Ideally, the third image SNR should be the same as

the primary output SNR. However, some other source of noise appears to be aliased inband and

limiting the SNR of the third image.

SNR as a function of frequency for the RF DAC is shown in Figure 5-20. The SNR is practically

independent of the type of vector used at the input. Although not shown in all the graphs in this

chapter, many measurements were compared for different input vectors, and no significant differ-

ence was seen. As a general trend, the normal input vector had slightly -1 dB better SNR, but this

was not always repeatable.

The gate bias voltage and amplitude of the oscillating waveform at the input are kept constant as a

function of frequency in Figure 5-20. Due to a varying input impedance at the gate node on the

board, the amount of amplitude that actually gets to the gate varies with frequency, so the output

amplitudes vary with frequency. The output amplitudes are also plotted in Figure 5-20.

SNR as a function of frequency for RF DAC is also compared in Figure 5-21. In this case, either

the DC bias or the amplitude of the oscillating waveform was varied to keep the third image out-

put as constant as possible at about -21.5dBm over the entire frequency range. Although not as

severe as in the DAC configured with constant gate bias, SNR still falls off with frequency.
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Figure 5-19: SNR as a function of output frequency for the DAC with a constant bias voltage.
The SNR is compared with the DAC running with and without the mux. The SNR is shown for
the primary output as well as the third image. Also shown is the output amplitude as a function
of frequency.
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oscillating gate bias voltage.
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made in either the DC level or the amplitude of the gate bias to keep the third image
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5.2.3.3 SNR versus Digital Input Amplitude

Figure 5-22 shows the ideal expected SNR as a function of the digital input amplitude, expressed

in dB relative to full scale (dBFS). This graph was obtained by simulating in MATLAB. As the

digital input is increased by approximately 10dB, the output amplitude also increases by about

10dB. Since the sigma-delta is only stable up to a maximum full scale of about -I dB relative to

full scale (dBFS), vectors only up to -1.1 dBFS are measured. The input digital amplitude used for

most of the measurements in this chapter is at -1.8dBFS. Figure 5-23 shows the measured SNR

and output amplitude as a function of digital input amplitude for the DC DAC with a constant gate

bias voltage. Figure 5-24 shows the same plots for the RF DAC with an oscillating gate bias volt-

age. The output amplitude scales as expected, but the SNR improvement is lower than expected,
showing some compression at large digital amplitudes.
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Figure 5-24: SNR as a function of digital input amplitude for the RF DAC with an
oscillating gate bias voltage.
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5.2.3.4 SNR versus Phase

The SNR of RF DAC was measured as the phase was varied between the data clock and the oscil-
lator. This is depicted in the time domain pictures of Figure 5-25. The top plot shows the output
when the phase between the oscillator and clock are well aligned. The bottom plot shows the out-
put when the data switches in the middle of the oscillating waveform. The switching instants are
marked with vertical lines on the horizontal axis. These plots are shown at a reduced frequency in
order to capture the dynamics on the scope.
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Figure 5-25: Time domain output waveforms of the DAC. The top plot shows the oscillator
and clock waveforms aligned so the data switches in the zero regions of the oscillating
waveform. The bottom shows the clock and oscillator misaligned so the data switches near the
peak of the oscillating waveform.
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The SNR is expected to degrade as the data goes from switching in the zero regions to switching

at the peaks of the oscillating waveform. This is because of clock jitter, switching distortion, and

ISI present when the DAC switches at the peak of the waveform. The amplitude is also expected

to decrease slightly, since switching at the peaks of the oscillating waveform causes loss of some

of the signal energy.

SNR is plotted as a function of the phase between the clock and the oscillator in Figure 5-26. The

SNR and output signal amplitude of the third image for fc1k= 5 14MHz are plotted. Three curves

are shown for increasing values of the gate bias voltage, or for increasing bias levels of the current

in each unit element. As the bias voltage is increased, the zero region of the output waveform

decreases. Thus the region of SNR degradation widens and deepens. The triangle curve in Figure

5-26 shows that there is now no longer a zero region of the output waveform, there is always some

DC current through each element. The whole SNR as a function of phase curve is shifted down.

Notice that the SNR changes by more than the output amplitude, indicating that the noise floor is

indeed increasing.

Figure 5-27 depicts the SNR and output amplitude as a function of phase at the maximum

fclk=880MHz and a very large +16dBm input amplitude. This shows that the SNR variation is

larger at higher frequencies. Also compared in Figure 5-27 is the SNR of the primary and third

image output tones.
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SNR vs. phase for varying Vosc, 134.53MHz tone, BW=27MHz
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Figure 5-27: SNR as a function of the phase for fclk=88OMHz and a large oscillating gate
amplitude. The top two plots are the primary output frequency and the bottom two are for
the third image.
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5.2.3.5 Sensitivity to Switch Driver Supply Voltage

The SNR and output amplitudes of the primary and third image are plotted versus the switch

driver voltage (Vddswdr) in Figure 5-28. This supply controls the maximum gate voltage of the

inverters that drive the switches. The output amplitude and SNR drop with Vddswdr since the cur-

rent source transistors start to go out of saturation and into the linear region.
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5.2.4 Two-tone IMD3 Performance

Two-tone IMD performance for RF DAC is shown in Figure 5-29. The clock frequency f'ck is 514

MHz and the oscillator frequency f0sc is 1.028GHz. The two tones are placed in the middle of the

in-band region. The third order distortion component at marker 1 is in the noise floor, as designed.

This proves that the traditional output impedance boosting cascode transistor is not necessary.
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5.3 Performance Comparison

A comparison of the RF DAC performance to other state-of-the-art DACs is shown in Table 5-4.
RF DAC is the highest output frequency DAC reported to date. Both the noise floor and IMD3
performance are competitive with those of the lower output frequency DACs.

Table 5-4: Performance comparison

Work IMD3 Noise Power Maximum Output
Spectral Density Frequency

Schofield, ISSCC -8OdBc at 310MHz -162dBm/Mj at 385MHz,
2003 [37] 6MHz offset from fc1k=400MS/s
Nyquist Rate DAC 385MHz carrier

Bosch, JSSC March -65dBc at 100MHz N/A 490MHz,
2001 [15] fclk= 1GS/s
Nyquist Rate DAC

Falakshahi, JSSC N/A -157dBm/47i- 5MHz band centered
May 1999 [19] inband at DC,
ZA DAC fc1k= 120MS/s

Bugeja, ISSCC 2000 -79dBc at 25MHz -140dBm/H-z far 50MHz,
[20] away from carrier fc1k= OOMS/s
Nyquist Rate DAC (poor performance

up to fclk=200MHz)

RF DAC -70dBc at 942.5MHz -142dBm/!Jii at 942.5MHz,
XA DAC 5MHz away from fclk=514MHz, band-
(concept could be 942.5MHz carrier width=17.5MHz
extended to Nyquist (up to 1.6GHz,
rate DAC) fclk=88OMHz, band-

width= 30MHz)
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6 Conclusions

6.1 Summary

A DAC output current controlled by an oscillating waveform is proposed to mitigate the effects of

switching distortion and clock jitter. The oscillating waveform is a multiple (k*fs) of the sampling

frequency (fs), where k>1. The waveforms are aligned so that the data switching occurs at the zero

crossings of the oscillating current output. This makes the DAC insensitive to both switch dynam-

ics and clock jitter. While this RF DAC is no longer sensitive to sampling clock jitter, it is sensi-

tive to phase and amplitude noise of the oscillating waveform.

The architecture has the additional benefit of mixing the DAC impulse response energy to a

higher frequency. An image of a low IF input signal can therefore be output directly at a high IF

or RF frequency for transmit communications applications. This saves power and hardware by

eliminating the need for mixers and intermediate frequencies present in traditional transmit com-

munications systems.

The potential advantages of 1A DAC architectures for narrowband communications applications

are highlighted. An 8 unit element 1A DAC is implemented in 0.18pm CMOS technology to

demonstrate this concept. Performance specifications are targeted for GSM transmitters. Several

circuit design techniques differ from those of a conventional DAC. Specifically, the output

impedance required for a differential DAC is shown to be lower than that required for a single-

ended DAC for communications applications. Sufficient output impedance was obtained by

designing the current source and switches of the DAC in the saturation regime, and no extra cas-

code transistor is necessary. Another design difference is in the switch drivers. Conventionally

designed for a high crossing point so neither switch is off, the switching waveforms in this work

are designed for a fast switching time so that they 'fit' in the zero regions of the control wave-

form. Careful integrated circuit and board layout techniques are used to minimize the paths and

coupling of high frequency signals.

DC matching measurement results show that the current mismatch is higher than expected due to

B mismatches in the linear array layout of the current source transistors. Edge effects can be seen

in the smaller current source transistors, while a gradient can be seen in the larger transistors.

AC measurements show full functionality up to the speed of the input digital pattern generator.

Second harmonic distortion is seen at high frequencies, indicating an unequal coupling to one side

of the differential outputs. The inband noise is higher than expected both for the primary and third
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image outputs at high frequencies. Several experiments have been performed to confirm the
source of this noise, and the best hypothesis is that coupling to the current source is mixing out-of-
band quantization noise back inband. RF DAC has a 10dB improvement over the DC DAC at
high frequencies, which is attributed to increasing the signal amplitude above the other sources of
noise. The inband SNR degrades as the phase between the oscillating waveform and data switch-
ing instants is varied, as expected. Two tone results show IMD3 at the -70dBc level, limited by
the inband noise floor, demonstrating that no impedance-boosting cascode is needed.

6.2 Contributions of Thesis

The contributions of this thesis are outlined below.

1. RF DAC Concept

A. High output frequency saves power and hardware by eliminating the need for mixers and
additional intermediate frequencies in communications systems.
B. Potential for lower noise than a DAC + mixer solution by switching in the zero regions of
the output waveform

2. Clock jitter and phase noise
A. Intuitive and analytical analysis of why trading clock jitter for phase noise might be a good
idea.

3. Recognizes use of 1A DACs for high frequency narrowband communications applications
A. Previous work focuses on development of 1A DACs for low frequency audio applications.
B. This work highlights the advantages of 1A DACs over Nyquist-rate DACs for high-fre-
quency applications.

4. DAC Circuit Design

A. Comparison of DAC output impedance requirements for INL, DNL, HD2, IMD3 specs for
single-ended and differential implementations.
B. "Traditional" output impedance boosting cascode transistor can be eliminated in a differen-
tial implementation for narrowband communications applications, reducing headroom require-
ments.

6.3 Future Work

This work could be extended to a larger array size to achieve a wider output bandwidth. Extend-
ing all the way to a Nyquist rate DAC would pose new challenges in delivering the oscillating
waveforms accurately to all the elements at the same time and driving a large capacitance at high
frequencies.
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The DAC could also be used as a feedback DAC in high-speed, CT 1A ADC. This has the poten-

tial to reduce the jitter limit found in state-of-the-art CT 1AMs. The impulse response of the DAC

in this case would be different than a traditional square pulse feedback DAC, so the loop transfer

function would need to be adjusted accordingly.

It would also be interesting to study integration of the RF DAC with a filter and power amplifier

to complete the transmit signal path. A study of the power efficiency of the DAC compared to the

power efficiency of the power amplifier may give clues as to when it makes sense to spend more

of the power budget in the power amplifier as opposed to boosting the power levels of the DAC.

A suggestion for continuing this research directly would be to use high-speed, low-voltage, fully-

differential digital inputs to reduce both the pin count and coupling noise of the large-swing digi-

tal inputs.
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Appendix A: Jitter Limits in DACs

Figure A-I shows sample output waveforms for a pulse or return-to-zero (RZ) DAC and a non-

return-to-zero (NRZ) DAC. The duration of the RZ pulse T' can be any fraction n<1 of the input

data rate. The transition timing points are shown with clock jitter Atn, which are assumed in this

analysis to be independent Gaussian random variables with standard deviation Ct.

SNR can be calculated by finding the signal and noise power of the waveforms in Figure A-1.

The signal and noise powers can be found by calculating the area under the waveforms of

Figure A-1. For a current-output DAC, the area under the curve is equivalent to the amount of

charge delivered.

(a) Pulse or RZ DAC

4

y[2]

y[1]

DAC output At2 At2'

T To tim At

T'=nT time

(b) NRZ DAC

DAC output

y[ 2 ] At time

T time

Figure A-1: Example RZ and NRZ DAC outputs with clock jitter.
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A.1 RZ DAC Jitter Limit

In the RZ DAC waveform, the output signal is S=T'y[n] where y[n] is the quantized DAC output.

The error is E = At y[n] + At, y[n], which has a standard deviation of 2 ct y[n]. The SNR is then

(A.1)SNR = 20log T 20log n
{ 2 0Yt ,2fG t

For a narrowband signal, the inband noise is reduced by the OSR and Equation A. 1 becomes

(A.2)SNR = 201gnJlIR - 20log n
f2fsrt 2 fffyt

Note that the jitter limited SNR in the RZ DAC case is independent of the number of bits in the

DAC and the frequency of the input.

A.2 NRZ DAC Jitter Limit

In the NRZ DAC case, the signal is S=Ty[n] and the error is E =Dt11 (y[n]-y[n-1]). The standard

deviation of the error is cYt(y[n]-y[n-1])=oYtYdifn]. The rms values of y[n] and ydifj~n] are

M

yrms = 'Average(y 2 [n]) = y2[n

R n= I

ydiffrms = IAverage(ydiff2 [n]) = ydiff2n]

n= I

(A.3)

(A.4)

where M is the number of samples taken per period of the input waveform, M=round(

Assuming y is a sinusoid quantized to b bits

y[n] = QuantizedyAsin 2 M +0)

the rms values in Equation A.3 and Equation A.4 can be calculated. The SNR is

(A.6)SNR = 20log -''ms
Fs a ty d, ffr m s)

For a narrow band signal, the inband SNR is

(A.5)
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