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Abstract

In this study we discuss the problem of Model Order Reduction (MOR) for a class of nonlinear
dynamical systems. In particular, we consider reduction schemes based on projection of the origi-
nal state-space to a lower-dimensional space e.g. by using Krylov methods. In the nonlinear case,
however, applying a projection-based MOR scheme does nor immediately yield computationally
efficient macromodels. In order to overcome this fundamental problem, we propose to first ap-
proximate the original nonlinear system with a weighted combination of a small set of linearized
models of this system, and then reduce each of the models with an appropriate projection method.
The linearized models are generated about a state trajectory of the nonlinear system corresponding
to a certain ‘training’ input.

As demonstrated by results of numerical tests, the obtained trajectory quasi-piecewise-linear re-
duced order models are very cost-efficient, while providing superior accuracy as compared to ex-
isting MOR schemes, based on single-state Taylor’s expansions. In this dissertation, the proposed
MOR approach is tested for a number of examples of nonlinear dynamical systems, including mi-
cromachined devices, analog circuits (discrete transmission line models, operational amplifiers),
and fluid flow problems. The tests validate the extracted models and indicate that the proposed
approach can be effectively used to obtain system-level models for strongly nonlinear devices.

This dissertation also shows an inexpensive method of generating trajectory piecewise-linear
(TPWL) models based on constructing the reduced models ‘on-the-fly’, which accelerates simula-
tion of the system response. Moreover, we propose a procedure for estimating simulation errors,
which can be used to determine accuracy of the extracted trajectory piecewise-linear reduced order
models. Finally, we present projection schemes which result in improved accuracy of the reduced
order TPWL models, as well as discuss approaches leading to guaranteed stable and passive TPWL
reduced-order models.
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Chapter 1

Introduction

1.1 Motivation

Progress in fabrication technology of integrated circuits (ICs) over the last decade resulted in an
unprecedented expansion of functionality of systems built on a single chip. Simultaneously, the
design of modern ICs has become substantially more complex, creating a pressing demand for
new, more effective and efficient, automated verification and optimization strategies and tools, in
order to avoid costly multiple redesigns.

Today’s systems-on-a-chip integrate analog and digital circuitry, as well as micro-electro-
mechanical systems (MEMS), leading to complicated mixed-signal, mixed-technology designs.
The complicated, multi-physical descriptions of the subsystems force the designers to move to
higher levels of abstraction and use inexpensive behavioral macromodels in system-level design.
At the same time, however, shrinking process technologies generate a need to consider low-level
physicals effects e.g. transistor-level effects, details of implementation, parasitic effects, or signal
integrity [57]. Consequently, simple heuristic macromodels, such as e.g. SPICE macromodels used
in the past, are often insufficiently flexible and inaccurate for computational prototyping of modern
integrated circuits.

In order to provide circuit designers with models of various circuit’s subsystems, which would
be adequate, yet suitable for system-level simulation, sophisticated approaches for macromodel
extraction from a detailed physical description of the original device need to be applied. In order
to be useful, such techniques for extracting macromodels (system-level models) need to satisfy a
number of requirements. The most important ones may be summarized as follows:

e The extraction techniques should generate macromodels which provide feasible, accurate
enough models of the original subsystems or devices.

e The extraction process should be relatively inexpensive, and as automatic as possible, i.e. re-
quire little or no extra modeling expertise from the designers to obtain a macromodel.

e The macromodels should be inexpensive to use. — More specifically, the cost of simulation
with a macromodel should be substantially lower than the cost of analogous simulation with
the original model.

17



e The system-level models extracted from various subsystems of a system-on-a-chip should
use a simple, uniform description, regardless of the original, possibly very different, de-
scriptions of the subsystems.

The above requirements also provide the main goals of macromodeling. So far, one of the
most successful approaches toward macromodel extraction, which often meets the requirements set
forth above, is based on the concept of model order reduction (MOR). MOR techniques generate
‘reduced order models,” based on the original, detailed description of a device or system at hand.
By the term ‘reduced order model” we mean a model which:

e uses a significantly reduced number of variables or states, as compared to the original model,
to describe a given system,

e is relatively inexpensive to simulate and store in computer’s memory — the computational
complexity associated with evaluating this model is significantly smaller than the analogous
complexity for the original model.

e is controlled by a limited number of relevant inputs.

Thus, a reduced order model provides a designer with a convenient abstraction, necessary to ef-
ficiently perform system-level simulation and verification. Reduced order modeling has therefore
been applied in a number of engineering disciplines. In electrical engineering MOR techniques
were first developed for macromodeling lumped circuits and interconnects [7], [16], [17], [19],
[28], [43], [44], [52], [64], [77), [78], [82]-[84], [86], [87], [97], [100], [101], {121]. Then, those
techniques were extended and applied to distributed electronic systems, full-wave electromagnetic
modeling of various structures (including e.g. waveguiding structures) [8], (111, [12], [21], [53],
[85], [90], [104], [111]-[113]. Another important class of MOR applications refers to modeling
power grids, and power electronic circuits [70], [80], [89]. Integration of micro-electro-mechanical
systems (MEMS) on a chip, created a need to construct efficient macromodels for this class of de-
vices through reduced order modeling. Consequently, many MOR strategies have been developed
for MEMS [14], [15], [27], [40}-[42], [66], [73], [76], [88], [110}, [118].

Applications of model order reduction reach far from electrical engineering, and include prob-
lems in computational fluid dynamics e.g. modeling turbomachinery, supersonic flows in jet engine
inlets [41, [9], [37], [49], [115]-[117], efficient modeling of biological systems [50], [51], [120],
rapid thermal processing [2], problems in chemical [61] or mechanical [59] engineering.

Apart from a growing pool of applications of MOR in various disciples of science and engineer-
ing, fast progress in developing various model reduction approaches is observed. The following
section briefly describes major classes of existing MOR techniques, and comments on their appli-
cability, as well as some of their advantages and limitations.

1.1.1 Previous work on model order reduction

So far, the largest group of model order reduction algorithms applies to linear systems, or more
precisely linear time-invariant (LTI) systems. Within the MOR algorithms for LTI systems one
may distinguish the following most popular classes: 1) MOR algorithms based on Krylov sub-
space methods, 2) methods based on Hankel norm approximants and truncated balancing realiza-
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tion (TBR), 3) techniques using Karhunen-Loéve expansion (or Proper Orthogonal Decomposi-
tion (POD)). All of those methods apply the concept of approximating a certain part of a high-
dimensional state space of the original system with a lower-dimensional state space, or, in other
words, they perform projection of the original state space (cf. Chapter 2, [22], [34], [74]). The
projection is achieved in a number of different ways.

The first group of MOR algorithms uses Krylov subspace methods to construct the projection
bases. Krylov subspace methods provide numerically robust algorithms for generating reduced
bases which include a certain number of moments of the transfer function of the original system.
Consequently, the transfer function of the reduced system approximates well the original transfer
function around a specified frequency, or collection of frequency points [34]. Owing to their
robustness and low numerical cost, Krylov subspace algorithms proved very suitable for reduction
of large-scale systems, and gained considerable popularity, especially in electrical engineering.
A number of Krylov-based MOR algorithms have been developed, including techniques based
on Lanczos method [11]-[13], [25], [26], [29], [30], [90], or Amoldi algorithm [7], [8], [18]
[28], [43], [44], [78], [88], [100], {101], [110], [113], [117]-[119]. The main drawbacks of those
methods are, in general, lack of provable error bounds for the extracted reduced models, and no
guarantees of preserving stability or passivity of the original system. Nevertheless, it has been
demonstrated that if the original system has a desired structure, then both stability and passivity
may be preserved with the reduced system, by exploiting the fact that congruence transformations
preserve definiteness of a matrix —cf. e.g. PRIMA algorithm [67], [77], [78], see also [7], [8], [19],
[24], [28], [97], [98], [101], [119]. Also, some efforts have been been undertaken to develop error
estimates for Krylov-based reduced models [5], [103].

Another group of MOR algorithms suitable for the analysis of LTI systems is based on Hankel
norm approximants and truncated balancing realization (TBR) [32], [36], [65], [75], [81], [85],
[87], [99], [105], [121]. Unlike Krylov-based method, balanced realization methods have provable
error bounds for the extracted reduced order models [32], [75], and guarantee that stability of the
original system will be preserved in the reduced order model.! The main drawback of this class of
MOR methods is high numerical cost of extracting the reduced models, associated with expensive
(O(N®)) solution of Lyapunov equations. Due to this fast growing complexity, applicability of
TBR methods for large-scale systems is limited. In order to overcome this difficulty methods based
on approximate Grammian computation have been developed {4], [10], [64], [65], [71], [87], [99],
[105], [121].

Yet another approach toward linear model order reduction is based on Karhunen-Loéve ex-
pansion, or equivalently Proper Orthogonal Decomposition (POD), which obtains projection bases
from time- or frequency-domain snapshots [9], [37], [49]1, [102], [115]-[117]. If time-domain
snapshots are used, generation of the reduced bases is inexpensive, but at the same time the choice
of suitable inputs for time-domain simulation becomes involved. On the other hand, generating
frequency-domain snapshots is more costly, but more adequate bases are obtained, and spatial
symmetries of the modeled system may be used to reduce the cost of model extraction [116]. One
may also exploit connections between TBR and POD, in order to efficiently obtain approximate

truncated balanced realizations of the original linear system, by using proper orthogonal decom-
position method [58], [65], [116].

IStability preservation does not immediately imply passivity preservation. For a discussion on passivity for TBR-
based models refer to [85].
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The reduction methods for LTI systems may be extended to modeling linear time varying (LTV)
systems, or parametrized LTI systems. MOR methods for LTV systems are based on the concept
of time-varying transfer functions, and Krylov-based reduction [82], [86], [94]. The recently de-
veloped algorithms for extracting geometrically parametrized reduced order models which allow
one to efficiently perform not only simulation, but also optimization, exploit similarities between
frequency variables and geometric parameters, and perturbation theory to construct macromodels
with Krylov subspace methods, or truncated balanced realization [1], [20], [38], [67], [113].

While model order reduction is currently a well established approach to generate low-cost
macromodels for linear systems, developing effective and efficient MOR strategies for nonlinear
systems remains a challenging and relatively open problem. Furthermore, due to a broad scope
of applications (cf. Chapter 2 for examples) which require nonlinear macromodeling, nonlinear
model order reduction constitutes an area of very intensive investigation.

A number of linear MOR techniques described above have been extended to the nonlinear case.
The simplest approach for generating reduced order models for nonlinear systems is based on lin-
earization, or polynomial (Taylor) expansion of system’s nonlinearity, and subsequent application
of Krylov projection [14], [16], [17], [74], [83], [84], [86], [110] (cf. also Section 2.3). Bilineariza-
tion of the nonlinearity [6], [47], [84], [86], as well as functional (Volterra) series expansion [42],
[50], [51], [86], followed by a suitable projection, provide similar solutions. The main drawback of
those approaches is that they generate macromodels valid only locally around the initial operating
point of the nonlinear system. This is a straightforward consequence of an inherently local nature
of approximation of the nonlinearity by polynomial or functional series, and limits application of
the discussed MOR methods to weakly nonlinear systems, and ‘small’ input disturbances. An-
other difficulty which arises while using e.g. polynomial expansions of nonlinear operators is fast,
exponential growth (with the order of the expansion) of computational and memory complexity
associated with using the macromodels. Consequently, practical implementations are limited to
quadratic expansions.

MOR techniques based on Proper Orthogonal Decomposition (Karhunen-Loéve expansion)
have also been widely used to model nonlinear systems (2], [15], [40], [41], [52], [89], [120].
Yet another group of methods generates approximate truncated balanced realizations for nonlinear
systems [69], [95], often exploiting POD to find approximate Grammians [59], [61]. The main
problem with this class of algorithms applied to the nonlinear case is that they generally inad-
equately address the problem of efficient representation of the nonlinearity in the reduced order
model. Consequently, despite the reduced order of the solved system, the cost of evaluating the
projected nonlinear operator often remains very high, which severely reduces performance of the
corresponding reduced order models. This issue is addressed in more detail in the following chap-
ter. Another problem with using the discussed algorithms is a high cost of generating the reduced
order models, due to necessity of computing snapshots in the time domain, which in turn requires
performing simulation of the original nonlinear system.

Summing up, a number of fundamental issues in reduced order modeling of nonlinear systems
remains unresolved. On one hand they include overcoming the ‘weak nonlinearity’ constraint
which severely limits the scope of applications, and on the other hand they involve addressing
questions related to cost-efficient representation of system’s nonlinearity and to numerical cost of
generating the reduced order models.
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1.2 Scope and goals of the dissertation

In this study, we will investigate the problem of model order reduction for strongly nonlinear
systems. We will focus on considering dynamical systems (1st order ODEs) in state-space formu-
lation, since it constitutes by far the most popular description for systems in various engineering
disciplines.

Also, we will attempt to design MOR approaches which are cost-efficient — provide relatively
inexpensive strategy for automatically extracting the reduced order model, and above all gener-
ate feasible reduced order models which are easy and inexpensive to use, and consequently may
effectively and efficiently applied in system-level simulations. To this end, we will select numer-
ical techniques which, in author’s opinion, proved most effective and robust at different stages
of model reduction. In order to validate the proposed MOR strategies, we will select examples
of systems from engineering domain, which proved challenging for previously developed macro-
modeling techniques. According to the above description, the scope of this dissertation may be
summarized in the following points:

o Presenting formulation of the model order reduction problem for nonlinear dynamical sys-
tems.

e Proposing a cost-efficient method of representing system’s nonlinearity.

e Developing automatic, effective, and efficient state-space reduction and model extraction
strategies.

¢ Analyzing selected properties of the extracted macromodels, including stability and passiv-
ity, and investigating the problem of estimating errors associated with reduced order model-
ing.

e Presenting selected application examples and validating the proposed MOR strategies for
those examples through numerical simulations.

e Carrying out performance tests for the proposed MOR algorithms, and extracted macromod-
els of nonlinear systems.

In this context, the emerging main goal of this dissertation is developing an automatic, cost-
efficient model order reduction strategy applicable to those strongly nonlinear systems, which
could not be effectively treated by the previously existing MOR algorithms.

1.3 Chapter outline

We start in Chapter 2 by defining nonlinear dynamical systems in mathematical terms, and present-
ing examples of selected problems from the domains of electrical engineering (nonlinear analog
circuits, micro-electro-mechanical systems) and computational fluid dynamics (shock dynamics
problems), which are then formulated as initial value problems for nonlinear dynamical systems.
Next, we describe a general model order reduction approach based on the state space projection
framework, and discuss the main challenges associated with using this approach for reducing non-
linear systems. We also present strategies for generating a suitable state-space projection basis,
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focusing on using popular Krylov subspace techniques (cf. e.g. [34]). Finally, we discuss some of
the earlier attempts to overcome difficulties of nonlinear MOR, based on polynomial expansions
of the nonlinear operator [83], and leading to reduction schemes appropriate for weakly nonlinear
dynamical systems.

Chapter 3 presents an originally developed reduction technique — a Trajectory Piecewise-Linear
(TPWL) MOR scheme [91], based on considering a collection of linear models along a state-space
trajectory of the original nonlinear system. Also, possible methods for constructing the reduced
order basis are discussed, including a novel approach in which multiple bases corresponding to
different Krylov subspaces are aggregated [92]. A fast approximate simulation algorithm is also
proposed, which allows one to efficiently generate TPWL reduced order models. This chapter
also discusses issues related to simulating the extracted reduced order models, e.g. possible time
integration schemes, or limitations of the proposed approach.

Chapter 4 provides error analysis for TPWL reduced order models. First, a procedure for a
posteriori error estimation is developed. This procedure can be used to estimate the solution errors
on the fly, during the actual simulation with a given reduced order model. Then, a method of
selecting linearization points for the TPWL reduced order models, based on the a posteriori error
analysis is proposed. Finally, we discuss the problem of error boundedness for infinite system
trajectories, using a priori error analysis.

In Chapter 5 we focus on the problem of preserving stability and passivity with the TPWL
reduced order models. The presented discussion provides insight to the problems which may arise
when replacing the original nonlinear system with a trajectory piecewise-linear system. Possible
approaches for ensuring stability and passivity of a TPWL system are considered.

Chapter 6 presents computational results, which validate the proposed TPWL model order
reduction algorithm for the examples of nonlinear analog circuits and micromachined circuits.
Results of both time-domain and periodic steady-state simulations are presented and discussed.

Chapter 7 analyzes performance of the proposed MOR strategies, the cost of basis generation,
and efficiency of simulation with the reduced order models, using results of numerical tests for the
implemented MOR algorithms.

Finally, in Chapter 8, we present our conclusions, and brief recommendations for future work.
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Chapter 2

Model Order Reduction for nonlinear
dynamical systems

In this chapter we first define the class of dynamical systems to be considered in this study, and
briefly state which types of problems associated with those systems typically arise in engineering
applications. Then, in order to provide further motivation and background, in Section 2.2 we
present examples of systems which may be described in terms of nonlinear dynamical systems,
and will be used throughout this dissertation to test the proposed MOR techniques, and illustrate
problems associated with nonlinear model order reduction.

Finally, in Section 2.3 we present a general framework for Model Order Reduction, based on
the concept of projecting the original state space into a low-dimensional, reduced-order space.
At that point we also discuss the main challenges associated with Model Order Reduction for
nonlinear systems, and describe the simplest strategies for nonlinear MOR which provide a starting
point for more sophisticated algorithms proposed in the following chapters.

2.1 Formulation of the problem

In this study we focus on nonlinear dynamical systems (first order ordinary differential equa-
tions) in the following state-space form:

{ 45) — £(x) + B(x)u 2.1

y=Clx ’

where x = x(t) € RN is a vector of states (evolving with time ¢) for a given system, f: RV — RN
and g : RV — R are nonlinear vector-valued functions, B = B(x) is a state-dependent N x M
input matrix, # € RM is an input to the system, C is an N x K output matrix and y € RX is the
output. The first of the equations is called the state evolution equation, and the second one — the
output equation. Typically, states contained in vector x have some physical meaning. They are
e.g. voltages at specified circuit nodes, or values of pressure at certain grid points.

Although the above form of a dynamical system is not the most general one, it is sufficiently
ample for a broad class of engineering problems. Consequently, in this thesis we will formulate
model order reduction algorithms for systems in form (2.1). Possible extensions, such as including
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the case of nonlinear input term (B(x,u)), or nonlinear output (y = C(x)) will be briefly discussed
in Section 6.1.3. The problems associated with dynamical systems in form (2.1), most commonly
encountered in engineering include:

1. Finding the response of system (2.1) to a given input signal u = u(¢) on a specified time
interval ¢ € [0,T] (T > 0), and for a given initial state of the system xo (x(0) = xo). Math-
ematically, it corresponds to solving an initial value problem for the first of equations (2.1)
for a given time interval and computing the output y(¢).

2. Finding the periodic steady state of system (2.1), for a given periodic input signal u (with
period T'). Mathematically, it corresponds to finding a solution x(t) for the first of equations
(2.1), for T € [0, T, such that x(0) = x(T').

In the rest of this study we will implicitly assume that functions f(x), g(x), and B(x) are regular
enough to ensure existence and uniqueness of solutions to problems described above.

2.2 Examples of nonlinear dynamical systems

Before we turn to defining the problem of Model Order Reduction for nonlinear systems, in this
section we present examples of devices from engineering domain which can be described in terms
of dynamical systems in form (2.1). The presented examples show how broad of a spectrum of
problems may be modeled using the framework of dynamical systems. More importantly, those
examples serve us later on to validate the proposed MOR techniques and, due to their often strongly
nonlinear dynamical behavior, illustrate well certain challenges associated with nonlinear model
order reduction.

2.2.1 Nonlinear analog circuits

The first group of examples includes nonlinear analog circuits. In those devices the nonlinearities
are introduced by various electronic elements, such as diodes, transistors, or nonlinear resistors.
Due to an inherently discrete nature of lumped circuits, those systems may be directly cast into a
standard state-space form (2.1) of a dynamical system.

The first of the circuit examples, considered also by Chen et al. [17], is a nonlinear transmission
line circuit model shown in Figure 2-1. The circuit consists of resistors, capacitors, and diodes with
a constitutive equation iz(v) = exp(40v) — 1, where v is the voltage between diode’s terminals. (In
the linear model, considered later on, we assume that iz(v) = 40v, and in the quadratic model
— iy(v) = 40v 4 800v2.) For simplicity we assume that all the resistors and capacitors have unit
resistance and capacitance, respectively (r = 1, C = 1). The input is the current source entering
node 1: u(r) = i(z), and the output is chosen to be the voltage at node 1: y(¢) = vi(#). Using
constitutive relations for capacitors, resistors, and diodes, as well as Kirchhoff’s current law, we
obtain a dynamical system:

{ %:f(x)—i—Bu 2.2)
y=Clx ’ '
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Figure 2-1: Example of a nonlinear transmission line circuit model.
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Figure 2-2: Example of a transmission line model with quadratic nonlinearity.

where x = [vy,v2,...,vn]7 is a vectors of states, and consists of voltages v; at subsequent nodes

of the system, N is the number of nodes, B =C = [1,0,.. .,O]T, and

-2 1 ] I 2 —exp(40x;) — exp(40(x; — x2))
1 -2 1 exp(40(x; —x2)) — exp(40(xz — x3))
flx) = x+ :
I -2 1 exp(40(xy—2 —xn—1)) —exp(40(xy—1 — xn))
i 1 -1 ] i exp(40(xN_1 ——XN)) -1

We also considered an example of a transmission line circuit model with a simple quadratic
nonlinearity (cf. Figure 2-2), which served mainly to test the proposed error estimation procedure
(cf. Chapter 4). The quadratic nonlinearity is introduced to the circuit by adding nonlinear resistors
to the ground at each node:

in(v) = g - sgn(v)V?,
where v is the voltage at the resistor terminals, g is the conductivity coefficient, and sgn(v) = 1 if

v > 0 and sgn(v) = —1if v < 0. If we take C = r = g = 1, then the nonlinear operator f (cf. (2.1))
takes the following form:

fv) =Av—n(v), (2.3)
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where:

2 1 san(vi))
A= T e 2.4
1 -2 sgn(vw)vy
and v = [v1,...,vn] is the vector of states.

If the number of nodes N is large, simulating the behavior of the presented circuits becomes
computationally expensive. Consequently, in order to reduce the effort associated with circuit sim-
ulation, one may consider using macromodels, instead of full order models. However, in the first
circuit, a strongly nonlinear element (a diode) is connected to every node of the circuit, which
makes it a challenging system for the existing MOR techniques. As shown in the following chap-
ters, the presented transmission line circuit models provide excellent examples to test performance
and accuracy of the discussed model order reduction techniques.

Another circuit example we consider in this study is an operational amplifier with differential
input and output, and consisting of 70 MOSFETs, 13 resistors and 9 linear capacitors connected
to 51 circuit nodes. (The netlist for this circuit in the NITSWIT circuit simulator format [54] is
included in Appendix A.) Nodal analysis yields a nonlinear model of the device in form (2.1), with
voltages at the circuit nodes defining a state vector. It should be noted, that if MOSFET transistor
models include the effect of a nonzero gate oxide thickness (as controlled by the ‘tox’ parameter
— cf. Appendix A), then the capacitances become nonlinear, and consequently g(x) (cf. equation
(2.1)) becomes a nonlinear function of x. Also, the op-amp is modeled as a multiple input system
with eight inputs: 1) the differential input with signals v,1 and vy;2, 2) the auxiliary inputs vemmrst»
Vends Vintns Vintps Vrsts and Veumin used in common mode rejection testing.

The main difficulty with simulating this circuit lies not in the order of the system of nonlin-
ear ODEs to be solved (which in this case equals N = 51), but rather in handling the multiple
nonlinearities associated with each of the transistor models. Some circuit simulators use e.g. a
piecewise-linear model separately for every transistor in the circuit (cf. e.g. Saber [109]). During
simulation of the circuit the operating points for each of the transistors change at very differ-
ent times and frequencies. Consequently, a very large number of piecewise-linear regions, and
a variety of timescales need to be taken into account during a single simulation, which leads to
complicated and often costly integration schemes.

In this context Model Order Reduction algorithms may serve as a tool to generate a simplified
and unified description of the entire circuit, rather than its numerous components (e.g. transis-
tors). Such a description in terms of a reduced order dynamical system can be used in conjunction
with straightforward time integration schemes, and more importantly — very easily incorporated
to system-level simulators. As we will show in the following chapters, the proposed trajectory
piecewise-linear (TPWL) MOR approach allows one to model the discussed op-amp circuit with
such a compact, easy to use macromodel, consisting of a small number of linearized models.
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Figure 2-3: Micromachined switch (following Hung et al. [40]).

2.2.2 A micromachined device

Another example which can be modeled as a nonlinear dynamical system is the micromachined
switch (fixed-fixed beam) shown in Figure 2-3. The switch consists of a polysilicon beam sus-
pended over a silicon substrate. The beam has length [ = 610um, width w = 40um, and height
h = 2.2um. When voltage is applied between the beam and the substrate (cf. Fig. 2-3), the beam
deflects toward the silicon substrate. One should also note that a layer of air between the beam and
the substrate plays an important role in the behavior of this microdevice, acting as a damper for the
deflecting beam.

Since [ > w we may assume that the deflection of the beam is uniform across its width. Con-
sequently, following Hung et al. [40], the dynamical behavior of the discussed coupled electro-
mechanical-fluid system can be modeled with 1D Euler’s beam equation, and 2D Reynolds’ squeeze
film damping equation given below:

2

. 0*u 0%u w d“u
BIS g — S5 = Fuect fo (P—Pa)dy—p 53, 2.5)
V-((146K)u’pVp) = 12#@, (2.6)

where x, y, and z are as shown in Figure 2-3, E is Young’s modulus, / is the moment of inertia
of the beam, § is the stress coefficient, p is the density, p, is the ambient pressure, p is the air
viscosity, K is the Knudsen number, u = u(x,?) is the height of the beam above the substrate,

and p = p(x,y,t) is the pressure distribution in the air below the beam. The electrostatic force is

approximated assuming nearly parallel plates and is given by Fyj,r = — E"%’Z , where v is the applied

2
voltage.

For the considered example the following set of parameters has been used: E = 149GPa,
S/(hw) = —3.7MPa, p/(hw) = 2330kg/m>, p, = 1.013-10°Pa, p = 1.82- 10 kg/(m-s), A =
0.064pm. Also, for the system described by equations (2.5) and (2.6) we consider the following
initial conditions:

u(x,0) = up, p(x,y,0)= pg,
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for all x € [0,1], and y € [0, w], where ug = 2.3um is the length of the gap between the substrate and
the undeflected beam, and the following boundary conditions:

u(0,t) = u(l,t) = uo, Op(0,y,1)/ox= op(l,y,1)/ox=0, p(x,0,1) = p(x,w,t) =ps, (2.7)

forall x € [0,1],y € [0,w],and ¢ > O.

The following state-space representation x = [xj ,x2,x3]7 has been selected for the physical prob-
lem described above:

3
X|=Uu, Xp= a—(d”;—), X3 =p. (2.8)

Using the above state-space variables equations (2.5) and (2.6) may be written as follows:

8x1 X2
_— = 2.
o 32 )
0x) 2)6% 3x% w 9%x1 *x 3gow 5
—_— = 54— —pa)dy+S=5 —El—| — —— 2.
o 3g P /0 (s = pa)dy + ox? ox? } 20 2.10)
ox3 X2X3 1 AN 3
—_—= - Vill+6— Vx3 ). 2.1
ot 30 1 12p R R 2.11)
The above equations may be written in the following compact form:
ax 2
== N(x) + Bv*, (2.12)

where N is a certain nonlinear integro-differential operator, and B is a constant input vector. One
should note that, although selecting state vector in form (2.8) is only one of many possible choices,
it leads to a particularly simple form (2.12), with B being constant (i.e. independent of x or 1) due
to the appropriately selected state-space variables (2.8). One may also consider a ‘more natural’
state vector X = [¥},%2,%3]7, where:

X1 =u, 552:%) X =p,
which then leads to a system in the following form:

%:N@+Mﬂ& (2.13)

Both forms (2.12) and (2.13) were used to test the proposed model order reduction approaches.
In order to solve system (2.12) or (2.13) we perform spatial discretization of the computational
domain, using the following grid in the X —J plane: x=i-Ax,y/ = j-Ay,fori=0,...,(n+1) and
i=0,....,(m+1), where x* =0, "1 =1,y =0, y"Hl = w, Ax =1/n, and Ay = w/m. Applying
a standard finite difference scheme to equations (2.9)-(2.11) yields a large nonlinear dynamical
system in form (2.1) of order N = 2n+mn. (Please refer to Appendix B for a detailed formulation
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of the discrete system.) In our tests we take n = 40, and m = 20, which leads to a system of order
N = 880. For the considered example we also select our output y(¢) = u(l/2), i.e. as a height of
the center of the deflected beam — cf. Figure 2-3.

The microswitch problem has been selected as one of the main test examples for model order
reduction algorithms proposed in this dissertation due to a number of factors. Firstly, because of a
complicated structure of the nonlinearity, and a relatively large number of equations to be solved
(after discretization) this device is expensive to model using straightforward time integration of
the original model. Secondly, the ability to model the dynamics of the pull-in, which is a strongly
nonlinear effect observed during operation of the discussed microswitch, is of particular interest
to MEMS engineers. Finally, the microswitch example proved very challenging for the existing
MOR techniques. As illustrated in Chapter 6, some of those recently developed techniques failed
to provide accurate macromodels of the original system. Summing up, many problems of nonlinear
model order reduction become very visible while considering the presented micromachined switch
example.

2.2.3 Fluid dynamics problems

In this study we also consider problems associated with fluid dynamics. In particular, we focus on
two examples of shock movement in a fluid, which is an inherently nonlinear phenomenon.

We start by considering a model problem based on 1D Burgers’ equation:

oU(x,t)  ofUlx1)) _
at + ax - g(X),

(2.14)

where U is the unknown conserved quantity (mass, density, heat etc.), f(U) = 0.5U2 and in this
example, g(x) = 0.02exp(0.02x). The initial and boundary conditions used with the above PDE
are:

U(x,0)=1, U(0,1) = u(z),

for all x € [0,1], and ¢ > 0, where u is the incoming flow, and [ is the length of the modeled
region. Discretizing U with respect to x yields U = [Uy,...,Uy]T, where U; = U (x;), and x; = iAx
(Ax=1/N, where N is the number of grid points). Applying Godunov’s scheme for approximating
d/0x [39] to (2.14), we obtain the following equation at node i > 0:

dU; 1
-dT’ =% (Firrj2—Fio1j2) = 8(x1),

where:
Fiipn= { minUG[Ui,UiH]f(U) Ui < Ui
v maxye(, v, fU) Ui>Ugq *

Please note that for f(U) = 0.5U2, and if all U;’s are positive, then Fipip= 0.5U2. Discretiz-
ing (2.14) with respect to x, and incorporating the boundary conditions results in the following

dynamical system:

au
= =F(U)+G+Bu?,
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Figure 2-4: The left graph shows snapshots of the moving shock. The right graph shows the shock
passing through a specified location at x = 40.

where G = 0.02[exp(0.02x1) ....exp(0.02xy)]”, B = [(1/(2Ax))0...0]7, and:

—0.5U?

FU) = 1 0.5(U% - U3)

0.5(Ux_; — Ug)

Figure 2-4 shows the shock movement, as modeled by Burgers’ equation (2.14), for [ = 100,
N = 1000, Ax = 0.1, and the incoming flow u(t) = /5.

The second problem refers to modeling shock dynamics for a supersonic flow of air in a 2D
section of a jet engine inlet. Figure 2-5 shows the engine inlet geometry, along with Mach contours,
for an example of a flow (in a steady state, with freestream Mach number M = 2.2). The incoming
supersonic flow is subject to perturbations, due to e.g. atmospheric air density disturbance. If this
disturbance is significant enough, it may cause the shock to move toward the inlet, a phenomenon
known as ‘unstart’ [60]. In order to model this effect inviscid and unsteady Euler equations are
used. Finite-volume discretization of those equations leads to a large, nonlinear dynamical system

in the form
dF(U)
dt

where U = [Uy, ..., Uy] is a state vector, and U; = [p?,q',q", , H'] defines a state of the system at
node i, where p' is the air density, ' and ¢, are the streamwise and normal components of the
flow velocity, respectively, and H' is the total enthalpy, for node i. Also: r specifies bleed mass
fluxes, d contains the inlet disturbances, F and R are nonlinear vector-valued functions. A detailed
description of the mathematical formulation, boundary conditions, and discretization is out of the
scope of this dissertation, and may be found in [60].

= “’R(gﬂnvd)a (215)
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Figure 2-5: The engine inlet geometry and Mach contours for a supersonic flow (following Lassaux
[60]).

State evolution equation (2.15) is complemented by an output equation in the form: y = C(U),
where C is a (nonlinear) function, and y is the output. For our example y is the average Mach
number at the throat.

One should note that discretization considered in [60] leads to a system of order N = 11730.
Consequently, simulation of nonlinear system (2.15) becomes very costly. Moreover, linearization
of (2.15) (e.g. at the steady state) leads to a model which is unable to reproduce shock movement
(cf. Chapter 6). Therefore, in order to model the unstart phenomenon efficiently, nonlinear MOR
approach needs to be used.

2.3 Projection framework — challenges of nonlinear MOR

In this section we discuss one of the most widely used general frameworks for Model Order Re-
duction of systems described in state-space form — the projection framework. We also point out
the main difficulties associated with using this approach in the nonlinear case.

Let us consider again nonlinear dynamical system (2.1):

{ dfi(tx) = f(x)+ B(x)u
y=Clx ’

where x is a vector of states. Suppose the above system is of order N, i.e. vector x contains N states.
Projection-based model order reduction techniques aim at generating a system of order ¢ < N
(i.e. involving state vectors of order g) which would approximate (in some sense) the original
system through selecting a ‘useful’ or ‘relevant’ subspace in the original state-space of RV. This is
achieved by constructing a suitable N x g matrix V, whose columns span a certain subspace (and
define a basis in the reduced-order state space), and approximating all states x from the original
state space by reduced-order states z:

x~x=Vz. (2.16)

In order to construct equations for the reduced system, we consider a residual r = (f(Vz) +
B(x)u —dg(Vz)/dr), and require this residual to be orthogonal to a reduced order space, spanned
by columns of a suitably selected matrix W, i.e.:

wir=o. (2.17)
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This condition leads to a reduced order system of equations in the following form:

{ LW g(Va(t)] =W f(Va(r)) + WTB(V2()u(t) 2.18)

y(t) = CTVz(t). '
where z € R9. Please note that throughout this thesis we assume that f,g: RY — RN and conse-
quently W is an N x g matrix. When W =V, which is often the case, condition (2.17) means that
the residual error, due to restricted representation of x, should be orthogonal to the reduced state
space.

System (2.18) is a reduced order system, in the sense that the unknown is a vector of order g,
and the number of state evolution ODEs to be solved also equals g. If f and g are linear functions,
i.e. f(x) = Fx, and g(x) = Gx, and the input term is state independent, i.e. B(-) = B, then dynamical
system (2.18) will transform into:

dz ‘
{ WIGVED =W Fve(t) + WTBu(t) (2.19)

y(r) = (VIC)T2(t)

Note that WT GV and WTFV are both g x ¢ matrices. If M is a number of inputs, and K is the
number of outputs, then WTBis ag x M matrix, and VTCis a g x K matrix. If the number of inputs
and outputs is small, e.g. M,K < g, which is typically the case, then evaluating any of the terms
from left or right hand side of (2.19) will require at most O(g?) operations. Also, simulation of the
reduced-order linear system (2.19) will be inexpensive. If we use backward Euler time stepping
scheme, and the number of steps equals p, then the cost of simulating (2.19) will be at most O(pq®).
Tt is crucial to note that this cost does not depend on the size of the original system N, but only
on the size of the reduced system g, which is essential for achieving a substantial reduction in the
simulation time. Summing up, in the linear case reducing the order of the system automatically
implies reducing the numerical cost associated with evaluating/simulating the system at hand. In
other words, order of a model is a suitable measure of complexity for linear dynamical systems.

This in turn implies that, in the linear case, by applying model order reduction we immediately
satisfy the main goal of macromodeling — substantial reduction of numerical cost of simulating a
given system. The only issue which needs to be considered is constructing reduced order bases V
and W, such that the reduced order system will provide a feasible approximation of the original
system.

In the nonlinear case the situation is much more involved. Although, in system (2.18) the
number of equations is reduced to ¢, and the unknown vector of states is of order ¢, this does
not imply that system (2.18) is inexpensive to simulate. Let us assume that evaluation of f(x)
takes O(N®) operations, where ot > 1. (In a typical case we assume that the cost of evaluating a
nonlinear function f(x) : RY — R to be at least linear in terms of N.) Let us now consider the cost
of evaluating the corresponding term — WT f(Vz) in the reduced order system. Except for a few
specific forms of f (cf. e.g. [2]) computation of this term is performed in the following 3 steps: 1)
computing x = Vz, 2) evaluating the full-order nonlinear function X = f (x), and 3) computing Wiz
This three-step procedure requires O(N®+2Nq) operations, and is actually costlier than evaluating
f(x). Also, in order to simulate system (2.18) one needs to compute a Jacobian W1 J r(z)V (where
J¢ is the Jacobian of f) at every Newton iteration, which requires O(Ng) operations, provided J,
is sparse, i.e. the number of its nonzero elements is of O(N), rather than O(N?). Consequently,
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in this case the cost of simulating reduced order model (2.18) will typically be dominated by the
cost of evaluating the nonlinear term W7 f(Vz), and its Jacobian. If using backward Euler time-
stepping scheme, the discussed simulation cost will be roughly O(pk(Ng +N®+ ¢3)), where p is
the number of timesteps, & is an average number of Newton iterations per timestep, and the term ¢°
refers to the cost of factorizing the reduced order Jacobian. Unlike in the linear case the simulation
cost depends on the order of the original system N, which will adversely affect the simulation
performance.

This brief analysis also shows that in the nonlinear case reduction of the order of a system
at hand does not automatically imply reduction of numerical cost associated with simulating the
reduced order model, which is one of the most profound differences between linear and nonlinear
model order reduction. This also follows from a somewhat more general observation, that order of
a model is not a valid measure of complexity of a nonlinear system.

Consequently, in order to obtain efficient, low-cost reduced order models for nonlinear systems
the following two issues need to be addressed by a MOR technique:

1. Constructing low-order projection bases W and V, which approximate ‘useful’ parts of the
state-space.

2. Applying low-cost, yet feasible approximate representation of system’s nonlinearity (asso-
ciated with f(x) and g(x)).

The first of the issues — developing suitable projection bases for linear systems — has received
a considerable attention, leading to successful approaches based e.g. on Proper Orthogonal De-
composition (Karhunen-Lo€ve expansion) (cf. also Chapter 1). At the same time, the problem of
finding cost-efficient representations of nonlinearity has been widely overlooked or ignored. Many
of the MOR techniques presented in literature (cf. e.g. [40], [59], [89]) treat system in form (2.18)
as their final reduced order model, and do not analyze the cost associated with evaluating that
model.

In this study we will attempt to propose an approach which will address both issues mentioned
above. Moreover, we will focus on numerical techniques which perform model extraction at a low
cost, and therefore are well suited for reducing large-scale dynamical systems.

In the next section we briefly describe the simplest approaches for 1) obtaining a low-cost rep-
resentation of the nonlinearity, 2) constructing a reduced order projection basis, which will provide
a necessary introduction for a new strategy toward nonlinear model order reduction presented in
Chapter 3.

2.3.1 Nonlinearity representation based on polynomial expansion

In order to extract efficient reduced order models for nonlinear systems, one needs to find repre-
sentations for f(-) and g(-) which allow approximate evaluation of W7 f(V) at a cost significantly
lower than O(N), where N is the size of the original system.

The simplest such approach is based on a polynomial expansion of the nonlinearity, or more
specifically on Taylor’s expansion about some (usually initial or equilibrium) state xy. We expand
[ (following [82]) as:

f(x) = f(xo) +Ao(x —xp) + %Wo(x—xo) ® (x—x0)+..., (2.20)
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where ® is the Kronecker product, and Ag and Wy are, respectively, the Jacobian and the Hessian
of f(-) evaluated at the initial state xo. Analogously, we expand g in Taylor’s series about xg.

If we only take a linear approximation of g, then:
dg(x(1))

— = %(g(xo) + Go(x(t) — x0)) = Go

dx(t)
dt ’

where Gy is the Jacobian of g at xo. Consequently, approximate evaluation of d(W'g(V-))/dt
becomes inexpensive — it requires O(g?) operations. If we also take only the constant and linear
terms from expansion (2.20), and substitute those expansions in (2.18), we will obtain the following
reduced order model (cf. also [14], [17], [83], and [110]):

g -
{ GOra% — WTf(xo) + Ag,Z+ Boru , 2.21)

y=Clz

where Agr = WTAgV (Jacobian of f) and Go, = VI GoV (Jacobian of g) are ¢ x g matrices, By, =
VTB(x), C, = VIC, and VZ = x — x¢. Including also the quadratic term from the expansion of f
yields the following quadratic reduced order model [83]':

{ Gor% = V7 f(x0) + Aorz+ s Wor(2®7) + Boru (2.22)

y=CI'z

where Wy, = VI Wo(V ® V) is a g x g® matrix. One should note that the above quadratic model still
uses linear approximation of g(x). Clearly, one could also consider a quadratic expansion for g(x)
which would lead to a more complicated form of the reduced order model.

In the linearized reduced model (2.21), the reduced Jacobian matrices Ag, and Gy, are typ-
ically dense (even if the original, nonreduced Jacobians are sparse and structured), and there-
fore are represented explicitly. Consequently, the cost of approximately computing W7 f(Vz) and
d(WTg(Vz))/dt terms in model (2.21), and the cost of storing the reduced matrices Go, and Ao,
will be O(¢?). For the quadratic model (2.22), this cost will equal O(g*). The cost of simulating
models (2.21) or (2.22) is therefore independent of N, and keeping in mind that ¢ is typically of
order 10, it will be very low.

Nevertheless, memory and computational costs for models based on Taylor’s expansions will
grow exponentially with the number of nonlinear terms included. Also, already construction of
the reduced order Hessian (the quadratic term) may become involved for some applications, since
generating the explicit, nonreduced Hessian matrix may be difficult or impossible for large N,
due to O(N?) cost of storing the matrix. In such cases implicit representation of the Hessian, or
numerical approximation of the quadratic term based on directional derivative of Jacobians need
to be used - cf. [16].

Consequently, although the discussed method may be extended to higher orders [83], it is lim-
ited in practice to cubic expansions. For instance, if we consider quartic expansion of order g = 10,
then the memory storage requirement exceeds g° = 100,000 elements. In addition, the computa-
tional cost of evaluating the quartic approximation to VI f(V-) is O(g°). Also, if the quartic term is

! An alternative formulation of the quadratic reduced order model based on Taylor’s expansion is presented in [17].
According to our experience, both formulations give almost identical results.
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not given in a simple analytic form, its accurate numerical evaluation will be virtually impossible.

At the same time, using only two or three terms from Taylor’s expansion is often insufficient
in order to adequately represent nonlinearity of a given system. Also, expansions like (2.20) are
inherently local, i.e. (2.20) provides suitable approximation of f(x) only in some neighborhood
of the expansion point xg, which is typically an equilibrium point. If the operating point of the
original nonlinear system varies significantly from xo, using this approximation becomes very
inaccurate. Consequently, application of model order reduction approach based on Taylor’s expan-
sion of the nonlinearity about a single state of the system is limited to weakly nonlinear systems,
and/or limited ranges of input signals. As shown in Chapter 6 they fail to provide accurate models
for examples of systems described earlier in Section 2.2.

Apart from the Taylor series approach, another popular technique for representing system’s
nonlinearity is based on bilinear approximation. For description of bilinearization procedures for
nonlinear systems, and reduction of bilinear realizations please refer to [6], [83], and [86]. In
general, bilinearization techniques share common limitations with methods based on Taylor’s ex-
pansions discussed above.

2.3.2 State-space projection techniques

A large number of different numerical techniques for constructing reduced order projection bases
have been developed over the last decade (cf. Chapter 1). In this section however, we present only
a single such algorithm, based on the concept of a Krylov subspace, and in its simplest version
valid for LTT systems. We select this particular method, since it provides a good starting point for
discussing the projection methods for nonlinear systems proposed in Chapter 3.

Krylov projection algorithms are one of the most widely used techniques for constructing re-
duced order bases for large-scale LTI dynamical systems (cf. Chapter 1), particularly in the elec-
trical engineering domain. One of the main reasons for their popularity is low computational cost,
and ease of generating the projection basis from the original state-space model.

Let us consider the following system:

dx _
{E 4 = Ax+ Bu ‘ (2.23)

y=CTx

In the most basic version of the projection algorithm we take W =V (cf. equation (2.19)),
where V' is an orthonormal basis in the following g-th order Krylov subspace:

Ky (A™'E,A"'B) =span{A~'B,A"'EA"'B,...,(AT'E)7"'Aa'B}. (2.24)

A numerically robust way of generating an orthonormal basis in the above Krylov subspace is
based on the Arnoldi algorithm. A simple version of this algorithm, applying the Modified Gram-
Schmidt (MGS) orthogonalization, is given on the next page.

The cost of executing the MGS-Arnoldi algorithm includes: 1) The cost of solving the system
Av = x. (Provided A is sparse and structured, very efficient, almost-linear complexity algorithms
may be applied to solve this system.); 2) the cost of the orthogonalization, which is O(¢?N). This
means that for sparse and structured matrices generation of the reduced basis V may be very cost-
efficient.
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MGS-ARNOLDI(A,B.E ,q)

Input: System matrices A, E, input vector B, order of the reduced system g;
Output: Projection basis V;

(1) vi=B/|Bl2

(2) fori=1toq

(3) x = Ev;

) Solve: Av = x;

(5) Orthogonalize v:
for j=1toi

(6) o= v;v;

@) Vi=v—0ovj;

(8) Setv; =v/||v|2

(9)  Set: V=[v,...,vgl

Also, suppose we use basis V, such that colspan{V } = K, (A~ 1E,A"1B) (cf. (2.24)) to construct
the reduced order model. Then, the transfer function H,(s) for this model:

H,(s) = CI (sE,—A,) " 'B,,

where A, = VTAV, E, = VTEV, B, = VTB, and C, = VT C, will match the first ¢ moments of the
transfer function H(s) = CT (sE — A)~ !B for the original model. (For a proof of this fact see [33].)
This property of reduced order models based on Krylov projection proved very advantageous in
many engineering applications. It implies e.g. that the reduced order model will accurately model
the steady-state response of the original system. In fact, reduced models using Krylov projection
are typically able to approximate correctly the response of the original system for a wide frequency
range. If more advanced projection schemes are applied, e.g. multipoint Krylov schemes, using
different frequency expansion points, better accuracy of the reduced order models for selected
frequency intervals may be achieved.

The main drawback of projection schemes based on Krylov subspace methods is, that the result-
ing reduced model cannot provide correct global approximation for the original model. Therefore,
Krylov-based MOR methods lack of provable error bounds. Also, in general, the extracted reduced
models are not guaranteed to preserve stability, or passivity of the original system.
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Chapter 3

Trajectory Piecewise-Linear Model Order
Reduction

In the previous chapter we described the main challenges associated with model order reduction
for nonlinear systems. In particular, we pointed out the issue of efficient representation of system’s
nonlinearity, which has a substantial impact on the performance of the extracted reduced order
models. In this context we briefly analyzed a method of Taylor series expansion of the nonlinearity
as the simplest representation yielding reduced order models whose complexity does not depend
on the original size of the system N, but only on the size of the reduced system g. This approach,
however, features a number of drawbacks. On one hand, reduced order models based on Taylor’s
series expansion become prohibitively expensive for high series order, due to the fact that com-
putational and memory complexities associated with those models grows exponentially with the
order of the expansion. On the other hand, simple linearized reduced order models (cf. (2.21)),
although computationally inexpensive, may be applied only to weakly nonlinear systems and are
usually valid for only a very limited range of inputs [110], which is a simple consequence of the
fact that linearization approximates a given nonlinear system only locally, around the expansion
point. This leads us to proposing a representation of system’s nonlinearity, and then a model or-
der reduction scheme, based on collection of linearizations of the original nonlinear system about
suitably selected states [91]-[93].

In this chapter we first describe a representation of a nonlinear system in a form of a weighted
combination of linearized models from different expansion points, briefly discuss the weighting
procedure, and show how state projection framework (cf. Chapter 2) may be employed in this case
to obtain a cost-efficient quasi-piecewise-linear reduced order model. Then, in Section 3.2, we
propose and examine a method of generating the quasi-piecewise-linear models by selecting lin-
earization points from a state-space trajectory of the original nonlinear dynamical system. Finally,
in Section 3.3, we present a procedure for fast approximate simulation of the original nonlinear
system, which allows one to inexpensively generate an approximate state-space trajectory, and
consequently significantly reduce the cost of extracting the reduced order model.
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Figure 3-1: Collection of linearization points xp, ..., Xe in a 2D state space. For each x;, the cor-
responding circle marks a region in the state space in which a linearized model about x; ‘suitably’
approximates the original nonlinear system.

3.1 Quasi-piecewise-linear representation

In this study we propose to approximate the nonlinear dynamical system in form (2.1) by a suitable
combination of linear models, being linearizations of the original system generated at different
points in the state space. The key idea in this approach is to consider multiple linearizations about
suitably selected states of the system, instead of relying on a single expansion about the initial or
equilibrium state, in order to overcome the ‘weak nonlinearity’ limitation.

To start our discussion, let us assume we have generated s linearized models of the nonlinear
system (2.1), with expansions about states xp, ..., Xs—1:

%(g(xf) +Gi(x—xi)) = f(xi) +Ai(x —x;) + B, (3.1)
where xg is the initial state of the system, A; and G; are the Jacobians of f(-) and g(-), respectively,
evaluated at states x;, and B; = B(x;). Each of the above models approximates adequately the
original nonlinear system in some neighborhood of its expansion point x; (cf. Figure 3-1). By
constructing a dynamical system which includes all those linearized models we potentially obtain
a model which will provide an adequate approximation of the original nonlinear system over a
larger region in its state space.

One possible approach to construct such a system is to take a weighted combination of linearized
models (3.1):

s—1
jt 3 765 + Gt ) Zwi F(x0) +Ailx—x;) + Biw), (32)
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where W;(x) € R are state-dependent weights. (We assume that all the weights are nonnegative,
and satisfy a normalization condition, such as e.g. 25 o Wi(x) = 1, for all x, which means that in
(3.2) we take a convex combination of the linearized models.)

Before we discuss the choice of the weighting procedure (cf. Section 3.1.1), and a strategy of
selecting suitable linearization points x; (cf. Section 3.2) let us consider the problem of constructing
a reduced order model from system (3.2). Note that system (3.2) is still nonlinear. Nevertheless,
since the nonlinearity is introduced through scalar weights, an efficient reduced order representa-
tion may be derived. Assuming we have already generated g-th order bases V and W (cf. (2.16)
and (2.17)) projecting (3.2) yields:

LS (V) (WTgx) 4 W Gi(Vz )
i=0

s—1
= ¥ wi(Ve) (W f(x) + WTA(VZ—x) + WT Bu) . (3.3)
i=0

Note that evaluating either left or right hand side of the above equation will be inexpensive (in
a sense that it will require less than O(N) operations), provided computing w;(Vz) is inexpensive,
and s < N. In fact, instead of weights w; which take a nonreduced state vector as an argument, we
may use a new set of weighting functions w;(z), which depend on the reduced order state vector
z. This will typically reduce the cost of evaluating the set of weights from O(sN) to O(sq). (For
a broader discussion see the following section.) Replacing w;(Vz) with w;(z) in (3.3) yields the
following reduced order model:

{ (2 wi(2)Gir)z+ 8- w(2)) = (ZZdwi(2)Ai)z+Y - w(2) + (3 wil2) Bir)u

3.4
y=0Cz s (3.4)

where:
Gir =WTGY, Ay=WTAYV, B,=W'B;, C,=C"V,

v=[WT(f(x0) —Aoxo),-..,WT (f(xs1) — As—125-1)]
S = [WT(g(xO) - Goxo) - WT(g(xs_l) - Gs—lxs—l)] ’

and w(z) = [wo(z) ... ws—1(2)]7 is a vector of weights, such that Yo !wi(z) = 1 for all z. Assuming
that the cost of computing w;(z) is O(g), and the number of system inputs (M), and outputs (K) is
relatively small, i.e. M, K < g, the cost of evaluating any of the terms in model (3.4) will require at
most O(sq?) operations. Note that for the weighting procedure discussed in the following section,
typically only one or two of w;’s are non-zero at a time, and consequently model evaluation time
is rather insensitive to s. In any case, if the number of linearization points is kept small, in a sense
that s 2 g, then the complexity associated with (3.2) will not exceed the complexity of a quadratic
reduced order model (2.22) (cf. Section 2.3.1). This means that system (3.4) is characterized
both by reduced order and reduced complexity, as compared to the original nonlinear system, and
therefore provides an attractive framework to construct reduced models for nonlinear dynamical
systems. Also, as shown in Section 3.1.2, specific time-stepping schemes may be used with model
(3.4) in order to perform inexpensive time-domain simulations.
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3.1.1 Discussion of the weighting procedure

In this Section we discuss the problem of computing weights w; and w; used in models (3.2) and
(3.4). Our goal is to find procedures for computing a distribution of weights, such that system’s
nonlinearity will be adequately approximated by the resulting convex combination of the linearized
models in some neighborhood of the linearization points. Furthermore, the cost of computing the
weights needs to be low. In particular, we impose the complexity of computing the collection of
weights w; for the reduced order model not to exceed O(sq), where s is the number of linearized
models, and ¢ is the order of the linearized system.

Let us first consider the problem of approximating e.g. f(x) from equation (2.1) with a lin-
earized model from a given state x;: f(x) = f(x;) + Ai(x — x;), where A; is the Jacobian of f
evaluated at x;. Then:

o -700 = (L= W (et s(a—2))ds ) (6-30) © (v ),

where W is the Hessian of f. This clearly implies that, for x € B(x;,€), where € > 0

1

IfF@W=F@I <5 sup (W=l (3.5)

xEB(x;,€)

The above means that, provided the norm of Hessian is bounded in the neighborhood of x;, the
error due to a linear approximation to f grows at most quadratically with the growing distance
between the expansion point x;, and the evaluation point x € B(x;,€). It also suggests that one
may use information on the distances between x and x; to compute the distribution of weights.
If information on the norms of Hessian in the neighborhoods of the linearization points x; is not
available, we may use an intuitive heuristics following from (3.5), which says that the ‘dominant’
linear model used in (3.2) should be the one corresponding to expansion point x; which is the
closest to the current state x of the system. In other words, we take

Wi = Wi(|lx—xoll,-.., [|x —xs-1]), (3.6)

such that, if j = argmin;_q__(;_1)llx — x|, then W; = max,—q __ (s—1){Wi}-
The question which arises now is how to construct weights w; for the reduced order system
(3.4). Using (3.6) one could take:

wi =wi([|[Vz—=xoll,.. ., [|[Vz—xs-1]])- 3.7

However, evaluation of w; would then require computing Vz, which involves O(Ng) operations,
and would be too costly. In order to lower this cost, instead of using distances {|Vz — x;|| in the
nonreduced state space, one may consider the distances between the reduced order state z, and
projections z; of the linearization points x; onto the reduced state space. The projections z; may be
taken as least-square approximations of x; in basis V, 1.e.:

(20,215, 25—1) = [VTxo,VTxl,...,Vszﬁl],

where V is an orthonormal projection basis. One should note that when we move from the original
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to the reduced order state space the geometric relations may be deformed. In particular, relative
distances between subsequent linearization points may be different in the original and reduced
spaces. In order to overcome this problem one can make sure that all linearization points can be
represented exactly in the reduced order space, i.e. x; € colspan{V }, for all i. Then, for any z

Wzl = IV Vala = (Va—Va) (Va-Va) = (e~ 2V V(z-2)) > = le— 2.

That means that the Cartesian distances between linearization points x; and x’s representable in the
reduced order space (i.e. such that x = Vz for some z) are preserved after orthonormal projection.

There may be various weighting procedures which select the ‘dominant’ linearized model based
on the information about distances ||z — z;||2. Below we present one which proved efficient for the
considered application examples:

1. Fori=0,...,(s— 1) compute d; = ||z — zil|>.
2. Take m = min;—q . (s—1)d;-

3. Fori=0,...,(s— 1) compute w; = e~Pdi/m,
4. Normalize w; at the evaluation point:

(a) Compute S(z) = 2;-;(1) wj(z),
(b) Fori=0,...,(s—1) set w;(z) = wi(z)/S(2).

where f is a positive constant. In our implementation of the algorithm we took B = 25. In this
way we obtain a weighting procedure such that the distribution of weights changes rather rapidly
as the current state z evolves in the state space, i.e. once e.g. z; becomes the point closest to z,
then weight w; almost immediately becomes 1. This provides a rationale for referring to model
(3.4) as to a piecewise-linear reduced order model of nonlinear system (2.1) (cf. Figure 3-2 for
sample shapes of the weights computed with the discussed weighting procedure). However, please
note that model (3.4) is not piecewise-linear in a strict sense, since weights w;, although rapidly
changing, still remain continuous and smooth functions of their arguments.

As already mentioned, the above weighting procedure provides only one possible choice. Many
other options are available, although in general it seems challenging to determine which one will
yield most adequate approximations for a broad class of nonlinear functions, especially if available
information consists only of locations of the expansion points x;, and the corresponding data for
the linearized models (i.e. Jacobians and values of f(x;)).

One of more specific questions refers, e.g. to the value of coefficient § in the above weighting
procedure. If B is large then the weights change relatively rapidly, and otherwise they have mild
slopes. If we consider a quadratic nonlinearity, larger values of 3 seem to be more adequate. This
is motivated by the following observation. Let us take a 1D function in form f(x) = ax® + bx+c,
and approximate this function by a combination of two linearized models from points xp and x;:

F(x) = wo(x)(c+ bx -+ 2axgx — axd) + w1 (x) (¢ + bx + 2ax)x — ax?),
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Figure 3-2: Shapes of the weights for a sample distribution of 4 linearization points in 1D.

where wo(x) +w (x) = 1, for all x. Then the error between f and f equals:

e(x) = f(x) — F(x) = awo(x) (x — x0) +aw1 (x) (x —x1)%.

We may now consider two extreme choices of the weights — the first one:

|1 x€|xo,(x0+x1)/2]
ml)={ o ¥e e nm

and wi (x) = 1 —wo(x), and the second:

wo(x) = 755, wi(x) =12 .

If we now compute E = [;' e(x)dx then in the first case we will obtain E = a(x; —x9)>/12, and
in the second case — E = a(x; — xo)° /6. This indicates that using rapidly changing weights will in
this case reduce the approximation error. Clearly, for different sorts of nonlinearities the situation

may be substantially different.

Apart from the case of quadratic nonlinearities, in which rapidly changing weights may be ad-
vantageous, a more general argument in their favor may also be given. Weights generated using the
algorithm presented above lead to quasi-piecewise-linear approximations of the original nonlinear
function, that is ‘most of the time’ model (3.4) actually reduces to a certain linear model. This
may allow one to predict or control more easily some properties of that model. For example, if
we know that all the Jacobians A;, are stable (Hurwitz) matrices, then in the regions where only a
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single weight is nonzero, the “A” matrix for system (3.4) is clearly Hurwitz. On the other hand,
in the regions with multiple nonzero weights, the associated “A” matrix may not be stable, since a
convex combination of stable matrices may not be a stable matrix. This means that those regions
may potentially give rise to undesirable system’s instabilities. Nevertheless, note that the discussed
procedure still does not guarantee stability of the resulting quasi-piecewise-linear model.

The weighting algorithm discussed in this section is a simple heuristic with limited justification.
Yet, it requires no extra knowledge on the system, and as shown in Chapters 6 and 7, provides an
effective and efficient approach for the considered application examples.

A slightly more sophisticated weighting algorithm may be developed if norms of the Hessian
of f may be computed or estimated during model extraction. Suppose we are able to compute
norms of W (Hessian of f) at the linearization points:

fio = ||W(xo)ll2, fir = [[W(x1) |2, - -, fis—1 = [[W (x5 1) 2.

We may define n; = 7;/ (max j—o,.s—1{7;}). Then, instead of distances d; = ||z~ z;||» which serve to
compute the weights w;, we may take scaled distances d; = (ng)l/ 2d;, fori=0,...,s—1, and plug
them into the weighting procedure presented above. By selecting such scaled distances (which is
motivated by formula (3.5)), we include information on the curvature of f, which determines the
range of applicability of a given linearized model, into the weighting procedure. Unfortunately,
very often computation of norms of the Hessian of f is not possible, or too expensive. In this
case the coefficients 7; may be taken as e.g. lower bounds for ||W(x;)||2, which in turn can be
approximately computed using directional derivatives of the Jacobians of f:

o UG+ el —x) —J () - (x—xi) |l
‘ el — xilf3

) (3.8)

where J is the Jacobian of f, € is a small positive number (e.g. € = 1-1079), and x is a state
different than x; (e.g. it may be taken as a state near x;, taken from a trajectory of system (2.1)
passing through x;). One may note that computing the above estimates is straightforward, and can
be easily performed during extraction of the reduced order model.

We have tested this approach for the example of the micromachined switch, described in Sec-
tion 2.2.2. We have generated a quasi-piecewise-linear reduced order model (in form (3.4)) of
order g = 29, consisting of 23 linearized models located on a trajectory of system (2.1) corre-
sponding to a step 9-volt input voltage (cf. Section 3.2 for description of model generation strat-
egy). Then, we tested the discussed reduced order model for an 8.5-volt step input voltage. We
computed the relative error in the output (which is the deflection of the center of the beam) as:
e=|ly —=yrll2/llyll2, where y, = [y,(0),y,(AT),...,y,(T)] is a vector of outputs at subsequent
timesteps (AT = 0.001ms, and 7 = 1ms) computed with the reduced order model, and y is a
respective reference output computed with the full order nonlinear model. If we used regular dis-
tances d; to compute weights with the procedure described above, the error e equaled 3.5%. If
scaled distances d; were used, this error was lowered to 2.4%. In order to find scalin g coefficients
we used estimates of the Hessian norms computed with (3.8). Although, in this case using Hessian
norm estimates (3.8) proved effective, reliablity of this approach is not yet well established.
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3.1.2 Time stepping schemes for quasi-piecewise-linear models

One may note that, since weights w; in (3.4) depend on z, this system still consists of nonlinear
ODEs. Consequently, in general, time domain integration of (3.4) would require solving a non-
linear system of equations at each step. If we apply backward Euler scheme, finding the solution
for each subsequent time step requires a few Newton iterations, which in turn involves computing
Jacobians of w;, and solving a linear system at each iteration.

We have found that very often, instead of a strict backward Euler scheme, a simplified time
stepping method can be used. The idea is to first compute the weight distribution for an estimate
of z to be computed at a specific state. Then, we can substitute the fixed values of the weights to
(3.4), and solve a linear system to find z. Suppose we want to compute z at timestep #;. This can
be achieved by using the following procedure:

1. Compute an estimate z¢ for z(¢;). To this end one may use any of the methods for finding
an initial guess for Newton’s algorithm. The two simplest approaches include taking z¢ =
z(tj-1), or using linear extrapolation:

ti—1t;q
2° = z{tj-1) + (z(tj-1) “Z(tj—Z));TL“j—‘“
j-17tj=2

2. Find wo(z°%),...,ws—1(2°).
3. Substitute the above values of weights to the first of equations (3.4):

s—1 s—1
¥ wi(Z%)Air)z+v - w(z) + ( Zlowi (2°)Bir)u.

s—1
Z(S WG+ 5-w(@) =

The above equation becomes now a linear ODE.

4. Apply any discrete time-stepping scheme, and find z by solving a single linear system of
equations.

Please note that the above scheme is substantially less expensive than e.g. a full backward Euler
scheme, since it does not require computing derivatives of the weighting functions, and provides
a solution in a single linear solve (single Newton iteration). Also, in the case when solution z
obtained from the linear solve is in a very different region, from the one predicted by z°, one may
shrink the timestep Af, and repeat the computations. This will prevent problems related to large
timestep instability, similar to the ones observed for the forward Euler scheme. Summing up, we
have used the time-stepping algorithm extensively, and found it very effective for all the considered
application examples.

3.2 Generation of TPWL models

So far we have not discussed the how to generate quasi-piecewise-linear models given by (3.4).
More specifically, we have not yet answered the two fundamental questions: 1) How to select the
collection of linearization points x;? 2) How to construct the reduced order projection bases V and
W? (cf. equation (3.4)). The following sections address those questions in detail.
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3.2.1 Selecting linearization points through simulation

We start our discussion on selecting a collection linearization points for quasi-piecewise-linear
models, given by equations (3.4) with repeating a basic fact that linearization of f from state x; is
an accurate approximation for the original nonlinear function at some given state x, provided x is
‘close enough’ to x;,i.e. ||x—x;|| < €, or x lies within an N-dimensional ball of radius € and centered
at x;. Consequently, in order to obtain a good global approximation of f, it is obviously desirable
to cover the entire N-dimensional state space with such balls, thereby assuring that any state is
within € of a certain linearization point (and a corresponding linearized model). The problem is
that the number of balls will grow exponentially with order of the state space N. For example, the
number of radius 0.1 balls required to fill a 1000-dimensional unit hypercube will equal roughly
10109 Generating and storing in computer’s memory such a large number of models would be
inefficient, if not impossible.

Since it is computationally infeasible to cover the entire N-dimensional state space with suitable
linear models, we propose to generate a collection of models along a single, fixed trajectory of the
system. (The idea of using a collection of linearized models along e.g. an equilibrium manifold or
a given trajectory has also been used in design of gain-scheduled controllers for nonlinear systems
- cf. [96], [106].) We generate this trajectory by performing a single simulation of the nonlinear
system for a fixed ‘training’ input. (Instead of an exact simulation of the original nonlinear system
we may perform an approximate, fast simulation — cf. Section 3.3.) Given a training input signal
u(t), initial state xo, and a finite number of models to be generated s (s > 1), the proposed algorithm
for generating the collection of linearized models may be summarized in the following steps:

1. Generate a linearized model about the initial state xg, and set i = 0;

2. Simulate the nonlinear system while

min (M) <9,
o<j<i \ ||xj|

for some & > 0, i.e. while the current state x is close enough to any of the previous lineariza-
tion points;

3. Generate a new linearized model about x;1; = x, and set i := i+ 1;
4. If i < (s— 1) return to step 2.

This procedure is also depicted in Figure 3-3. Provided the weighting algorithm described in
Section 3.1.1 is used, the above procedure generates a quasi-piecewise-linear model of the original
nonlinear system in form (3.4), which from now on we will call a Trajectory PieceWise-Linear
(TPWL) model.

It should be stressed at this point that the quasi-piecewise-linear approach resulting from the
discussed procedure is different from methods presented e.g. in [23] or [46], where piecewise-
linear approximations of individual elements of a circuit (e.g. diodes or transistors) are considered,
and a very large collection of linear models is used. In our algorithm, piecewise-linear approxima-
tion applies to a trajectory of the entire nonlinear system, and therefore the number of linearized
models may be kept small.
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Figure 3-3: Generation of the linearized models along a trajectory of a nonlinear system in a 2D
state space. Trajectory ‘A’ is called the ‘training’ trajectory.

As illustrated in Figure 3-3, the procedure proposed above allows one to ‘cover with models’
only the part of the state space located along the ‘training’ trajectory (curve A). Let us assume that
the reduced order model (3.4) is composed of linear models generated along this trajectory. If a
certain system’s trajectory, corresponding to a given input signal «, lies within the region of the
state space covered by these models (or, in other words, stays sufficiently close to all linearization
points), we expect that the constructed piecewise-linear model (3.4) will suitably approximate the
input/output behavior of the original nonlinear system (cf. curves B and C).! It should also be
stressed at this point that, although the considered trajectory stays close to the states visited by
the ‘training’ trajectory in the state space, the corresponding input signal can be very different in
terms of dynamics and frequency content from the ‘training’ input. In other words, we may apply
a TPWL model for inputs which are significantly different from the ‘training’ input, provided the
corresponding trajectories stay in the region of the state space covered by the linearized models
(cf. curve C and results in Chapter 6). This case is also illustrated in Figure 3-4, which shows
computational results for the example of a micromachined switch (cf. Section 2.2.2). This figure
presents the system response to a 7-volt step input voltage, computed with a TPWL reduced model
of order g = 41, generated with an 8-volt step input training voltage. (The model was extracted
using the fast simulation algorithm proposed in Section 3.3.) We should stress that, in fact, the
input to the system is the squared input voltage u(¢) = v*(¢). One may note that the obtained
output signal approximates very accurately the output signal computed with the full nonlinear
model of the device (the curves on the graphs overlap almost perfectly). In this case the TPWL
model provides significantly more accurate results than the linear or quadratic models based on
expansions about the single state (the initial state of the system).

A different situation occurs when the input signal causes the trajectory to leave the region

The additional rationale for this observation is that in typical situations the dimensions of observable and control-
lable spaces of a dynamical system are much lower than the dimension of its state space. (This is expected to be true
for the examples of nonlinear dynamical systems presented in Section 2.2.)
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System response for step input voltage v(t) = 7H(t)
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Figure 3-4: Comparison of the system response (micromachined switch example) computed with
linear, quadratic, and TPWL reduced order models (¢ = 40 and g = 41) to a step input voltage
u(t) = 7. The TPWL model was generated for an 8-volt step input voltage.

covered by the linearized models (cf. curves D and E in Figure 3-3). Then, the TPWL model
(3.4) will most likely not provide significantly better approximation to the nonlinear system than
a simple linear reduced model (2.21). This situation has been illustrated in Figure 3-5. Due to a
significant difference in scales (amplitudes) between the ‘training’ input (u(¢) = 7%) and the testing
input (u(t) = 9°) the piecewise-linear model is no longer able to reproduce accurately the response
of the nonlinear system. Now, if we generate a TPWL model with a 9-volt training input (cf. Figure
3-6), then this model is able to reproduce accurately the nonlinear response. One should note that
in this case the TPWL is able to accurately model the dynamics of a strongly nonlinear pull-in
effect (the beam is pulled down to the substrate), which is of particular importance in applications
[40]. One may note from the graph that the linear model is not able to reproduce this phenomenon
at all, while the quadratic model is unable to reproduce the correct dynamics. Still, this example
shows that if a TPWL model is to be used for inputs with very different scales, one should consider
more complicated schemes of generating the linearized models, based e.g. on multiple training
inputs.

There is another important issue concerning the above procedure for selecting linearization
points from a state-space ‘training’ trajectory of the original system. In order to ensure appropriate
quality of approximation of f, and to be able to reproduce nonlinear effects in the behavior of
a dynamical system, the linearization points should be changed ‘frequently enough’ during the
proposed piecewise-linear simulation. This is controlled by a constant parameter & in the procedure
presented above. In our first approach this parameter was set arbitrarily. However, it was found
that a proper choice of 8 depends significantly e.g. on the amplitude of the input signal u(z).
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System response for step input voltage v(t) = 9H(t)
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Figure 3-5: Comparison of the system response (micromachined switch example) computed with
linear, quadratic, and TPWL reduced order models (g = 40 and g = 41) to a step input voltage
u(t) =9 (t > 0). The TPWL model was generated for a 7-volt step input voltage.

System response for step input voltage v(t) = 9H(t)
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Figure 3-6: Comparison of the system response (micromachined switch example) computed with
linear, quadratic, and TPWL reduced order models (g = 40 and g = 41) to a step input voltage
u(t) =9 (¢ > 0). The TPWL model was generated for a 9-volt step input voltage.
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Therefore, in order to achieve better robustness of the discussed procedure the choice of §
should be as automatic as possible. A simple procedure for determining an appropriate value of §
in a less arbitrary way is the following. First, for a given input signal, we perform a reduced order
simulation of the linearized dynamical system, with linearization about the initial state, to find the
final (steady state) vector x7. Although, in most cases, x7 will not be the correct steady state for
our nonlinear dynamical system, it will give us information about the scale of changes between the
initial and the final state:

d = |lxr — xol|/||x0]|-

(If xo = 0 we may take d = ||x7||.) It is clear that in order to capture any nonlinear effects one has to
select the value of 8 such that & < d. We have found that in practical situations it is usually enough
to select d = d /5 or & = d/10. Still, also this approach suffers from a certain level of arbitrariness,
and cannot be used if a given input signal does not lead the linearized dynamical system to a steady
state. In the following chapter we discuss a procedure for selecting linearization points based on
error estimates, which provides a more grounded approach to this problem.

Apart from a procedure for selecting linearization points, the other necessary element for gen-
erating a Trajectory Piecewise-Linear (TPWL) reduced order model is a method for constructing
reduced order projection bases V and W. The following sections describe some of the possible
approaches, focusing on Krylov subspace algorithms.

3.2.2 Constructing the reduced order basis — a simple algorithm

The simplest approach for generating the reduced order basis V employs Krylov subspace projec-
tion algorithm well known from linear MOR, and described in Section 2.3.2. This algorithm may
be used also in the nonlinear case, particularly if we start our simulation at an equilibrium point
of the original system (which commonly occurs in applications). Then, we generate a basis V in a
suitable Krylov subspace corresponding to a linearized model from the initial, equilibrium state of
the system xp (f(xp) = 0). Furthermore, since we start the simulation at state xp, we also incorpo-
rate this state to the projection basis. Finally we take W = V. The procedure for constructing the
reduced order basis V = [vy,...v,], where v; € R, is summarized in the following three steps:

1. Generate linearization of dynamical system (2.1) about the initial, equilibrium state xg:

{ Go5) = Ao (x — x0) -+ Bou(r) (3.9)

y(1) = CTx(z) ’

where By = B(xp), and Ag (Gp) is the Jacobian of f(x) (g(x)), evaluated at x = xp, and
construct an orthogonal basis V = {v1,...,v.ps} in the I-th order Krylov subspace

Ki(Ay 'Go,Ay ' Bo) = span{Ag ' Bo, ..., (A5 ' Go) A5 ' B}, (3.10)

using the Arnoldi algorithm [110] (or block Amoldi algorithm [88] if the number of inputs
M > 1).

2. Orthonormalize the initial state vector xo with respect to the columns of ¥, and obtain vector
Vim+1. (To this end one may use e.g. the SVD algorithm.)
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3. Take V as a union of V and viyro1: V = [Vivima1].

The final size of the reduced basis V equals ¢ = IM + 1. Note that the above choice of basis
V ensures that I moments of the transfer function for the reduced order linearized model match [
moments of the transfer function for the original linearized model (3.9) [34], [83]. Moreover, the
Jast two steps of the algorithm ensure that the term corresponding to the initial condition in the
transfer function for the full order linearized model? will be exactly matched by a respective term
in the transfer function for the reduced order linearized model, provided the simulation starts also
at xo. Exact representation of the initial state also ensures that we may correctly start the reduced
order simulation of the nonlinear system. Note also that if xo € colspan(V'), then clearly steps 2
and 3 become unnecessary.

The above algorithm provides one of the least expensive approaches for generating a reduced
order basis (with complexity of O(¢>N) + O(gN) if Ao is sparse and structured). However, in
the nonlinear context, its main drawback is that it uses only the linearized model from the initial,
equilibrium state of the system. This may adversely influence quality of the resulting TPWL
reduced model, and force increment in size g of that model in order to achieve satisfactory accuracy.

3.2.3 Constructing the reduced order basis — an extended algorithm

The simple algorithm for generating the reduced order basis presented above, which constructed
a Krylov subspace only at the initial, equilibrium state of the system, can be extended in order to
include in the reduced order basis Krylov subspaces corresponding to other linearization points
located along the training trajectory [92]. This extension of the reduced basis is motivated by
the following fact. As already mentioned in the previous chapter (Section 2.3.2), if we use basis V
spanning Krylov subspace (3.10) to construct a linear reduced order model, then the first / moments
of the transfer function for this reduced order linear mode! match the first I moments of the transfer
function for the original linearized model (3.9). Consequently, important dynamical features of the
nonreduced linearized model are preserved by the reduced order linear model [34], [83]. Since in
the TPWL model we use a collection of reduced order linear models, taking a union of bases in
Krylov subspaces corresponding to subsequent linearized models as a reduced order basis V will
ensure that, for every resulting reduced order linear model, the first few moments of its transfer
function will match the first few moments of the transfer function of the corresponding nonreduced
linearized model. Consequently, we may expect that important dynamical properties for each of
the linearized models will be preserved after the projection process.

Two important technical details arise during the construction of the union of bases at different
linearization points. Firstly, if we linearize about a non-equilibrium state and/or start our simula-
tion at a non-equilibrium state, the following terms contribute to the dynamics of the system: 1)
B;u input term, 2) ( f(x;) — Asx;) term (which can be treated as an additional input), where x; 1s
a given linearization point (cf. (3.12)). Note that if x; is not an equilibrium (or if it is an equi-
librium, but the initial condition does not equal x;), the second term no longer corresponds to a
simple shift in the output. Consequently, bases corresponding to two different Krylov subspaces
K; (A;lGi,Ai”lB,-), and K;(A; G, Ai—1 (f(x;) —Aix;)) (cf. (3.10)) need to be constructed. Secondly,

21f simulation is started at xg this term equals CTxg /s, and corresponds to a constant shift in the output.
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we need to eliminate redundant (e.g. almost parallel) vectors (which may appear after we take a
union of a collection of bases) from the reduced basis. To this end we may apply e.g. singular
value decomposition (SVD) algorithm, and discard vectors corresponding to the smallest singu-
lar values. Using the above motivation, we developed an extended algorithm for generating the
projection basis, which may be summarized in the following steps:

1. Set Ve =[],i=0;

2. Repeat until the ‘training’ simulation is completed:

(a) Consider linearization of dynamical system (2.1) about state x;:

G4 = f(x) +Ai(x() — x) + Buu(r)
{ y(t)dz CTx(r) ; (3.11)

where A; is the Jacobian of f, evaluated at x;, G; is the Jacobian of g evaluated at x;, and
B; = B(x;) and construct two orthogonal bases V| and V; in the following g;-th order
Krylov subspaces:

span{Vi} = K4, (A7 'G, A7 ' B),

span{V2} = K4, (471 Gi, A7 (f (i) — Aixi)),
using the Amoldi algorithm [110];
(b) Take V = [V} V; x;];
(€) Set Vagg 1= [Vige V1;

3. Orthogonalize the columns of the aggregate basis V,,, using SVD algorithm and construct
the final reduced order basis V which includes orthogonalized columns of V4, corresponding
to singular values larger than some €3 > 0.

One may note that the above method is more expensive than the simple algorithm presented
earlier, since we need to generate two orthogonal bases at every linearization point. To this end
we need to perform LU factorization of Jacobians A; at every linearization point x;. In the simple
approach, presented in Section 3.2.2, this had to be done only once. The extended algorithm also
requires an additional SVD step.

Nevertheless, since we generate a ‘richer’ basis we expect that it will more adequately approx-
imate the original state space. One may argue though that the above method may generate models
of significantly larger order than the simple algorithm. In fact the situation is often the opposite.
As shown in Section 7.2, the extended basis generation algorithm has potential to extract suitable,
accurate reduced bases with a lower order than the simple algorithm which uses single linearization
about the initial state.

3One may also use block Arnoldi algorithm [88] to construct a basis in Krylov subspace Ky (A,-"1 G,-,Ai‘1 [Bi](f(x;) ~
Aix;)]), spanning the same range of vectors as the union of bases V; and V5.
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3.2.4 Beyond Krylov-based reduction schemes

In this study we focus on reduction approaches based on Krylov subspace methods, which dom-
inated MOR for linear systems in electrical engineering applications. Nevertheless, also methods
based on truncated balanced realization (TBR) have recently gained much interest in the engineer-
ing community, due to their superior accuracy, as compared to Krylov-based methods, guaranteed
error bounds, and stability preservation property for the linear reduced order models.

Truncated balanced realization algorithm can also be used to generate reduced order bases for
TPWL models in form (3.4) for nonlinear dynamical systems. Similarly as in the case of Krylov-
based methods, a few different strategies toward generating the projection bases V and W can be
considered.

In the simplest approach we may apply a standard TBR algorithm to obtain a balancing trans-
formation for the linearization of system (2.1) at the initial state xo. In an extended approach we
may include subsequent linearization points in the projection bases, as well as generated truncated
balancing transformations for linearizations of system (2.1) at different states, located along the
training trajectory. In this way we clearly obtain a richer basis, which includes ‘most controllable’
and ‘most observable’ parts of the state space for an entire collection of linearized models which
form a TPWL model. In order to perform the projection the multiple bases corresponding to dif-
ferent linearization points need to be aggregated into a single basis using a biorthonormalization
algorithm.

Due to high complexity of the TBR algorithm (O(N?), where N is the original size of the
system), and problems with ill-conditioning of Lyapunov equations, reduction algorithms based
solely on TBR are limited in practice to systems with a few hundred unknowns. In order to allow
effective and efficient reduction of larger systems one may use a two-step hybrid reduction, first
applied for linear systems in [45]. In this reduction approach a standard Krylov subspace method is
first used to reduce the original TPWL model to a medium-sized model (e.g. of order g; = 100), and
then TBR is used to further compress that model. Detailed description of TBR-based projection
in the context of trajectory piecewise-linear model for nonlinear dynamical systems may be found
in [107]. The results presented in the quoted paper indicate that applying TBR-based projection,
or hybrid two-step projection may lead to reduced models with superior accuracy as compared to
models based solely on Krylov subspace reduction.

3.3 Fast generation of TPWL models — approximate simulation
algorithm

One may note that the proposed method of generating TPWL models of nonlinear dynamical sys-
tems requires performing simulation of the original nonlinear system (2.1), which may be very
costly, due to the original size of the problem. In order to reduce the computational effort associ-
ated with reduced model extraction, we note that it is unnecessary to compute the exact trajectory
for the ‘training’ input in order to generate a collection of linearized models. In fact it suffices to
compute an approximate trajectory, and take linearization points from that trajectory. As long as
the approximate trajectory stays close to the exact trajectory, the collection of linearized models
corresponding to points from an approximate trajectory will ‘cover’ the suitable region in the state
space. In order to find an approximate trajectory of the original nonlinear dynamical system (2.1)
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we may perform a much faster approximate simulation. Our idea is to use reduced order linearized
systems instead of the full order nonlinear system to perform the simulation. Note that in the al-
gorithm from Section 3.2.1, we generate subsequent linearized models as we go along the training
trajectory. Therefore, at a given linearization point we may generate a linearized system, reduce
its order, and then simulate it to reach to the next linearization point. This idea is summarized in
the following steps of a fast simulation algorithm:

1. Take i = 0, set xp to be the initial state;
2. While i < s do:

(a) Using projection basis V construct a reduced-order model of dynamical system (2.1),
linearized about state x;:

T dz _vT 4. T . s Tp.
{ VIGVE =VIAVz+ VI (f(x) —Axi) + VT B (3.12)

y=Clvz ’

where z is a reduced order approximation of state vector x (x & Vz). This step requires
computation of the Jacobians A; and G; (at x = x;) in the non-reduced state space;

(b) Simulate reduced order linear dynamical system (3.12), i.e. compute z(¢) for subse-
quent time steps ¢ = ¢;, while the state Vz(¢;) is close enough to the initial state x;
(x; #0), i.e. when:
Va(t)) = xill/ 1zl < 8,

where & is an appropriately selected constant (cf. discussion at the end of Section 3.2.1);

(c) Take the next linearization point x;;; = Vz(r}), i :=i+1.

Note that in the above algorithm the projection basis V can be picked in a number of different
ways. For instance, it may be generated only once, at the initial state of the system, using the
approach from Section 3.2.2. Alternatively, at each linearization point we may generate a different
basis e.g. in a Krylov subspace corresponding to a linearized model at this point. Clearly, the
second approach will typically yield more accurate simulations, at an additional cost of generating
multiple projection basis.

As shown in Chapter 7 using the above approximate simulation algorithm can dramatically
improve performance of the MOR procedures. It has also been found that it can serve one as an
accurate standalone simulation tool. Nevertheless, special care should be taken when using the
discussed approach. For instance, it may happen that the affine function VIAVz 4+ VT (f(x;) — Aix;
from the right hand side of the first of equations (3.12) has a zero close to the linearization point
x;. Then, for a zero input signal, the linearized model will tend to the zero of the mentioned affine
function, rather than the actual equilibrium of the nonlinear system. Consequently, although the
operating state will not change significantly, the simulation error will rapidly grow. Therefore, in
order to use the above procedure as a reliable simulation tool, one needs to be able to estimate the
error due to approximations introduced by the reduced order linearized models. Those issues are
in focus of the next chapter.
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Chapter 4

Error analysis for TPWL models

One of the crucial problems of model order reduction is assessing quality of the extracted reduced
order models. In the linear case, this assessment is done most often in the frequency domain
by comparing transfer functions of the original linear system and the reduced order system. For
instance, for techniques based on Hankel model order reduction or truncated balanced realization
global error bounds can be given in terms of L™ norm of the difference between the two transfer
functions [32], [72]. On the other hand, reduction methods based on Padé approximation and
Krylov subspace algorithms generate models with transfer functions which provide only local
approximations for the transfer function of the original system.

In the nonlinear case, since frequency domain description of systems in terms of transfer func-
tions is not available, we compare time-domain responses of the original and reduced order sys-
tems. A number of different questions may be asked in order to determine quality of approximation
of a given nonlinear system by a reduced order TPWL system. First, we may look for the error
between solutions computed with the original and TPWL models for up to a specific time T, and
for a given finite input signal u : [0, T] — RM _1In this case, as shown in the next section, a posteriori
error estimation may provide us with precise answers, at least for certain classes of systems.

If we are also interested in global approximation properties of TPWL models, we should con-
sider infinite time domain input signals, and ask if an error bound between the corresponding
outputs (or states) for the original and TPWL models exists and can be given. In order to approach
this problem, a priori error analysis presented later in this chapter may be applied.

4.1 A posteriori error estimation

A posteriori error analysis aims at obtaining an error bound for a solution which has already been
computed with an approximate model. In other words, one’s goal is to compute a bound between
the solutions (e.g. vectors of states, or outputs) obtained with the approximate model and the origi-
nal (‘exact’) model, from an initial time 7o up to a given time 7, using information on the computed
approximate solution up to time 7. In this section we present a method which a posteriori esti-
mates the error of solving (2.1) with a trajectory piecewise-linear model (3.4). More precisely, we
derive an iterative formula for an error bound of ||x(¢) — Vz(z)||,, where x(¢) is a solution of (2.1)
at time 0 <7 < T, and z(¢) is solution of (3.4) at the same time, both corresponding to the same
initial condition and the same input signal u(¢).
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The following derivation of the error bound is based on the assumption that the original non-
linear function f (cf. (2.1)) is negative monotone, i.e. [114]:

Fro0Vey =0T (F(x) = ) < —Mx =) (x—y). (4.1)

The above assumption is satisfied by a number of nonlinear systems, including e.g. a certain class
of nonlinear analog circuits [114]. (For instance, nonlinear function f given by (2.3), for the
nonlinear transmission line model with quadratic resistors, is negative monotone.) Also, one may
easily note that if f is negative monotone then system (2.1) is L, stable for any admissible p,
provided g(x) = Gx, where G is a symmetric positive definite (SPD) matrix.

For simplicity we will also assume in this chapter that g(x) from equation (2.1) is an identity
transformation, and that B(x) = B. Still, the following derivations may be easily extended for the
case of an arbitrary invertible transformation g(x) (with appropriately modified assumptions), and
a state-dependent input matrix B(x).

We will look for an estimate of {|8x(¢)||2, where: 8x(¢) = x(r) — £(¢) = x(t) — Vz(t), and x(¢)
and z(¢) are solutions at time ¢ of (2.1) and (3.4), respectively (for the same initial condition Xol,
and the same input signal «). From (2.1) and (3.4) we have:

x = f(x)+ Bu,
= 5_21 wi(2) [VVT () +VVT AV (z—2)] +VVT Bu,

i=0
where x = x(¢), z = z(¢) and u = u(t). From the above we obtain:

§x = f(x) — f(&) + h(z) + (I-VVT)Bu, (4.2)

where .

h(z) = f(Vz) — ZW, @) [VVT f(x) +VVIAV (z—2)] .
=0

Since ¥ Y wi(z) = 1 for every z, we may write:

sz Z){ (xi) +Ai(Vz—x)] + {/01(1—S)W(ei(S,z))ds-(Vz—)q)@(Vz—x;‘)}},

where 6;(s,2) = x; +(Vz —x;), and W(-) is the Hessian of f: W(-) = [wf-‘j] € RV*NVXN "and ij =
%;—{’a%]l Then h(z) becomes:

= si] wi(2) { [I=VVT)(AVz+ f (%)) + VVT AVz — Awxi]
i=0

#] [ aweas vi-r e v: )|} @3)

UIf x, cannot be represented exactly in basis V, the initial condition for the reduced system is taken as z, = Vix,.
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Left multiplying (4.2) by 8x7, and applying property (4.1) and Schwartz inequality gives:
d
E(HSXH%) < —M||8x|13 + [|8xl211R(2) + (I = VVT) Bul . “.4)

Let us now consider time interval [t;,7;1]. Suppose we know ||8x(¢;)|]2. Then, applying Compari-
son Lemma [35] to differential inequality (4.4) yields:

18x(t)ll2 < 5= sup [lA(z(1)) + (I = VVT)Bu(t)||2(1 — exp(—A(t — 1))

Te[tbti-f—l]

>

+|8x(z) l2exp(—A(r — 1)), 4.5)

for all # € [t;,#;11]. The above inequality leads us to proposing the following scheme of computing
error estimates e(#;) of ||0x(z;) ||, at timesteps #y,#1,12,. . .:

1. Atinitial time #g set
e(r0) = 1= VVT|lallxl2,

where x, is a known initial condition;

2. Fori=1,2,... iteratively compute

eft) =5 sup_[Ih(e(®))+ (1~ VVT)BuD)la(1 - exp(~Alt ~1i-1))

TE[tio1,t]

+e(ti-1) exp(—A(ti —ti-1))- (4.6)

Clearly, [|8x(to)ll2 = [[(I = VVT)x,|)2 < e(to), and also it follows from (4.5) that e(t;) > [|8x(1;)]}2
forevery t1,1,.. ., i.e. e(t;) provides a desired error bound. In practice, we replace the supremum in
the above formula by a maximum over a discrete set of timesteps between #;_ and #;, corresponding
to a certain numerical time integration scheme. (If #; are the same as subsequent integration steps,
then we take a maximum of the two values at the ends of the considered time interval.) Clearly,
this method of evaluating the supremum implicitly assumes that neither 4(z(z)), nor u(¢) behave
pathologically between subsequent integration timesteps.

The main challenges associated with using the above scheme are related to: 1) Finding A
(compare (4.1)) which should be as precise as possible. (Quality of the error estimates heavily
depends on this parameter, therefore one could consider using different A’s in different regions of
the state space, if at all possible and computationally feasible.); 2) Finding estimates of ||k(z(¢))]l2,
given by (4.3), which typically requires estimating ||W (x)||2 — the norm of the Hessian of f.

Moreover, note that in general the cost of evaluating h(z) given by (4.3) can be as high as the
cost of evaluating the initial nonlinear model, which would make using the above error estimation
procedure impractical. However, in many cases we may compute the discussed estimates at a
significantly lower cost. If we apply the aggregate reduced order basis V, described in Section
3.2.3, one may easily note that Vz; = x;, for every i. Furthermore, if we include (f(xi) — Asxi)
(V) in the reduced basis V, then VVT (f(x;) — Aix;) = (f(xi) — Aix;) (cf. (4.3)) and |h(z)||2 may be
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estimated as follows:
(D)2 < EWz(Z)[ SupllW( Ma2llz=zll5 + 1T = VVDAV ]|zl -

Then, we may replace (4.6) with

e(”'):%fe?,“pt]zow’ 2(9) | 3sup ¥ ) l(6) =2l + 0= VY AV LI

+{|(1— VVT)BH2”L£(’C)H2] (1 —exp(—A(t; — ti—1))) +e(ti-1) exp(—A(ti — ti-1))- 4.7

One should note that since the values of norms ||(I— VVT)A;V||2 (for every i) and ||(I—VVT)B|)
can be computed during construction of the reduced model, the cost of evaluating (4.7) 1s O(sq)
only. This means that error estimation may be performed ‘on the fly’, along with the reduced order
simulation, without increasing the complexity of the fast TPWL solver.

In order to verify the proposed method of estimating simulation errors for TPWL reduced
order models, we considered a simple test example of a transmission line model with quadratic
nonlinearity at every node, introduced in Section 2.2, and shown in Figure 2-2. In our test the
original number of nodes N = 100, and C = r = g = 1. It may easily be proven that function f
describing system’s nonlinearity (given by equation (2.3)) is negative monotone, provided all v;
are nonnegative at all times (which is satisfied if the input current i(¢) > 0 for all 7).

The value of A (cf. (4.1)) may then be taken as: A = —1-max{A; € 6(A)}, where 6(A) is the
spectrum of matrix A, given by (2.4). For N = 100, A = 9.67 - 10~4. We also have that ||W(x)|]2 =
2g = 2, for all x. Knowing A and ||W (x)||2 we are ready to use formula (4.7) to compute the error
bounds.

In a numerical test we generated a reduced order TPWL model of order g = 25 (with s = 16
linearization points), and simulated both the original nonlinear system and its TPWL reduced order
model, with the input current i(¢) equal to unit step. (It should be stressed that g is relatively large,
as compared to N for this example, and therefore it may be inefficient to use the extracted TPWL
model in practice. Still, this reduced model provides useful insight while considering the problem
of error estimation.) The actual error ||8x||3 and its estimate were computed at every timestep.
Figure 4-1 shows comparison of the actual error and its estimate for the considered case. One
may note that formula (4.7) gives reasonable bounds for the error of approximating the original
nonlinear system with a TPWL reduced order model.

One should note that the error estimation procedure described above may be used not only
to assess errors in solutions computed with an existing TPWL reduced order model, but also to
improve the algorithm for generating the TPWL models (or, more precisely, the algorithm for
selecting subsequent linearization points). In a simple algorithm for selecting linearization points
described in Section 3.2.1, during the ‘training’ simulation subsequent linearization points are
selected using a simple geometric criterion: if the current state is ‘far enough’ from all previous
linearization points, then it becomes the next linearization point. Instead of this geometric criterion
one may use a measure based on error estimates (which exploit additional information on the
nonlinear system at hand) to select a collection of linearization points. This idea is developed in
the following section.
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Figure 4-1: A posteriori error bounds for a TPWL reduced order model of a nonlinear transmission
line model with quadratic resistors.

4.1.1 Selecting linearization points based on error bounds

As already mentioned, error bounds computed ‘on the fly’ with a procedure described in the pre-
vious section may be used to select a collection of linearization points more effectively, while
extracting a TPWL reduced order model.

Below we present a procedure which uses fast approximate simulation described in Section 3.3,
and a posteriori error bounds derived in the previous section to select a collection of linearization
points Xg, . .., Xs—j:

1. Generate a linearized model about the initial state xo; Set i = 0 and the initial error estimate
e(0) =0;

2. Simulate the nonlinear system while

where

le(t)ll>
( Val ) =6
1

e(ti) = 55 sup sup W () ]21[Vz(t) — xill 3+
T€{te-1,te] | XET (Va(ty-1),Va(t,)))

17 =VVT) AV 2(T) + Bu(2)) 2] (1 - exp(—Alte — ti1)))+
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Figure 4-2: Comparison of relative etrors for two different reduced order TPWL models. x and x,
are vectors of states computed with full nonlinear, and reduced-order TPWL models, respectively.

+e(ti—1) exp(—Atx — tr-1)), (4.8)

t; and #;_; are the current and previous timesteps, respectively, z(#) is the current reduced
order state, and T (., B) denotes a trajectory of the simulated system between states o and f;

3. Generate a new linearized model about x;1 = Vz(t); Set e(ty) =0, i:=i+1;

4. If i < (s — 1) return to step 2.

One may also develop a similar procedure if exact, full-order nonlinear simulation is performed
to find the training trajectory.

We have tested the above procedure again for the example of a transmission line circuit model
with quadratic resistors, introduced in Section 2.2. First, we used a simple procedure for selecting
linearization points (cf. Section 3.3), based solely on distances between the points in the state
space, and obtained a TPWL model of order g = 27 with s = 15 linearizations. Then, we applied
the above procedure based on error bounds to select linearization points. We have taken ¢ = 0.18
to obtain a TPWL model (of order g = 27) again with 15 linearizations. In order to compare
the quality of both TPWL models we tested them for a step input voltage with amplitude 1, and
computed the relative errors. The results of this comparison are shown in Figure 4-2. One may
note that, on average, the relative error for a TPWL model obtained with the procedure discussed
above in this section is significantly lower than the error for the TPWL model obtained with a
simple algorithm of selecting linearization points. As one would expect, taking into account the
impact of system’s nonlinearity, results in a better selection of linearization points.
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4.2 Error boundedness and a priori error estimation

In this section we briefly discuss the problem of global approximation properties of TPWL models.
One of general questions is: does there exist a global bound for an error between the solution
computed with the full nonlinear mode! and the reduced order TPWL model, valid for all times,
and any (infinite) input signal u?

This question brings a number of issues which need to be considered. Firstly, if one looks at
the a posteriori error bound, given by (4.5), one may immediately note that a global error bound
follows from this inequality provided: 1) the input signal u(¢) is bounded for any time (which
implies that an infinite signal u is bounded in terms of L norm.), and 2) the trajectory of the
reduced order TPWL system is also bounded. (We also need to assume that Hessian W (x) is
bounded for all x.) Please note that inequality (4.5) has been derived under assumption that f was
negative definite, which in tumm implies that the original nonlinear system was L, stable (and, in
particular also BIBO stable.) Consequently, a trajectory of the original system corresponding to a
bounded input is also bounded. Unfortunately, we do not know if a trajectory of the TPWL system
corresponding to a bounded input is also bounded, or in other words whether the reduced order
TPWL model preserve input-output stability of the original nonlinear system. This question is
discussed in detail in Chapter S.

Secondly, if we take an input signal leading to a corresponding unbounded trajectory of the
original nonlinear system, then the discussed global error bound for the TPWL model will not
exist in a vast majority of cases. This is motivated by the fact that any TPWL model, by our
assumption, consists of a finite number of linearized models. Consequently, if the distance between
the linearization points and the current state of the nonlinear system grows infinitely, then none of
the linearized models will be able to approximate correctly the original nonlinear system for that
trajectory. This can be clearly seen if one tries to derive an a priori error bound, as described
below. For simplicity we will compare just the original nonlinear model

= f(x) + Bu, 4.9)

with a full-order TPWL model
X = 2 ) [f(x:) +Ai(R—x;)] + Bu. (4.10)

The first of the equations may be transformed as follows:

s—1

=f(x)+Bu= Y (%) (x))+Bu= sz(X){ [f ) + Al — xi) ] +

i=0 i=0

[/01(1 —)W(x+s(x—x;))ds- (x—x)® (X~xi)} } + Bu. “.11)

Subtracting equation (4.10) from (4.11) yields:
. s—1 s—1 1
Sr= S wi(®)A; | sx+ Y w,-()z)/o (1= )W (x+s(x —x))ds- (x—x) ® (x—x),  (4.12)
i=0 i=0
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where 0x = x — X. We now make use of the following theorem:

Theorem [108]: Given a linear time-varying differential equation:

= A(1)x(r) +v(1),

where t > 0, x(t),v(t) € RN, A(t) € R¥*N, and both v(-) and A(-) are piecewise-continuous, |[x(¢)|

is bounded as follows:

st < eso [ wda@las st + [ exp{ [ mnataiolas o,

fort > o> 0, where 19 is the initial time, and ;,4(-) denotes a matrix measure induced by an RN

norm || -||.

For proof of the above theorem see [108]. Note that the above inequality based on matrix
measures will give tighter bounds than inequalities derived using Gronwall’s inequality. In our

case we take A(t) = (Zf;(} Wi(ﬁ(t))A,) , since X(t) is a fixed, although possibly unknown trajectory
in the state space. Applying the above theorem to error equation (4.12), and keeping in mind that

dx(ty) = 0 yields:

¢ ¢ s—1
[18x(2){]1,2,00 < /to eXp{/T Mindl,z,w[;)wi(f(s))Ai]ds} X

drt.
1,2,00

s—1
3 #(E0) [ (1= () +5(6() ) (D) =) @ (x(0) )
=0
Since: » .
Hind {;)Wi(f(s))Ai} < ;)Wi(f(s))#ind[f\iL
and

Hfol (1 =)W (x+s(x—x))ds - (x —x;) ® (x— x;)

inequality (4.13) may be further transformed as follows:

185(¢) 1.2 < / exp{ / zw, ) ind1 2 [A}ds}x

3 s (s W) b=l v
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Moreover, since 0 < w;(£) < 1 and 2?;5 w;(X) = 1, for every £, we have:

1 !
80l 2- < | exp{ / umaxds} 350 W (2 o I(e) x5 o =

1 t
3P IV @lhze [ xp st~} max | [lx(®) ~silf oot <
X 0 ! yroeylS—

1 1
S SuplIW ()12, sup [ max{fx(t) - x,-n%,z,x] — (1 - exp(pmax(t = 10))],  (4.15)
x TE [t9,1] i€{0,....(s—1)} — Pmax
Where fimax = MaXic (o, ... (s—1)} Pind1,2,20[Ail-
From the above it follows that the error 8x will be bounded for all times ¢ > £y, provided: 1) the

trajectory x(¢) is bounded for all times, and 2) pmax < 0. Note that for a given matrix A = [a;;] we
have:

fina1 = maxj{a;;+Tizjlaijl}, Mina2 = Amax[AT +A)/2,  pinge = max;{ai + 3z aij| }-

Consequently, one may immediately infer from the above analysis that, for a bounded input
signal (and a stable original nonlinear model), dx will be bounded for all times in the following
cases: 1) All A;’s are symmetric and strictly stable; 2) All A;’s are strictly diagonally dominant,
with all diagonal elements being negative. Note that if we were comparing solutions of the original
nonlinear system and the reduced TPWL model, then the above conclusions hold, provided we
replace Jacobians A; with VVTA;.

One may continue derivation (4.15) in order to replace the term

max ||x<r>-xi||2} ,

sup
TE[[Q,I] iE{O,...,(s—l)}

with a term which depends only on sup.c(;, .1 [|4(T) — #(7) ||, where u is the testing input, and i is
the training input, used to generate a given TPWL model. This can be achieved by considering the
training trajectory %, which satisfies the following equation:

%= f(%)+Bi. (4.16)

Subtracting (4.16) from (4.9) gives:

Ox = f(x) = f(%) + B(u—1l),

where 8x = x — % Assuming additionally that f is Lipschitz continuous, i.e. AV, ol f(x1) —
F(x2)|] < Lilx; — x2||, the above equation yields:

[18x(r)]] < L/tot 18x()fldT+ /tot [1Bl[[|2(7) — a(7) |, (4.17)
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for all r > 9.2 Applying Gronwall’s inequality to (4.17) gives the following bound:

(1) = %)l = [[8x()]| < @ sup [lu(t) —#(7)|| [exp(L(r = 10)) — 1]

T€ty,1]

Then, we have:

TE€[to,t 1€ [t0,1] telty,r] LI€{0;,(s—1)

2
w%L@%mwmwwﬂs{wmmwﬂmwww[ mu}wm—mﬂs

Te[to,t] TE[IO,I] ie{or“,(svl

2
SP?wWWM%MmWWWFmWJwa[ munmm—mﬂ- (4.1

The above inequality may be applied in (4.15) to obtain an a priori error bound. Since ||£(t) — x|
is known a priori (% is a training trajectory), for every 7 and 7, this bound will only depend on the
distance between the testing and training inputs ||u(t) — #(7)||. Unfortunately, the discussed bound
will typically be very conservative, especially in the case of stable systems. This is a consequence
of applying Lipschitz condition in the derivation of (4.18), yielding an estimate of ||x(t) — xi|)?
which always grows exponentially with time. Therefore, practical importance of the considered a
priori bound will be limited.

Furthermore, even knowing that dx is bounded, i.e. that trajectories of the original nonlinear,
stable system, and the respective TPWL reduced order model, corresponding to the same bounded
input signal do not diverge may not be enough. Often, we need to know whether the response
of a given TPWL model to a finite energy signal will also have finite energy. This leads us to a
question of whether a TPWL model preserves the property of L, (or more generally L,) stability
of the original nonlinear system. Those issues are discussed in the following chapter.

2 Above we have implicitly assumed that the training and testing trajectories begin at the same initial state.

64



Chapter 5

Stability and passivity preservation with
TPWL models

In this chapter we analyze if, or under what conditions trajectory piecewise-linear reduced order
models preserve stability and/or passivity of the original nonlinear system. The property of pre-
serving stability and passivity by a reduced order model plays a crucial role, firstly in the context
of controlling the approximation error, and secondly if reduced order models are used as part of a
larger system, composed of many interconnected subsystems. If one replaces an original passive
model of a given subsystem (e.g. a model of an interconnect) with a reduced order model, which
is not guaranteed to be stable, then simulation of the entire system (with the reduced model) may
yield nonphysical solutions. For instance, it may happen that the reduced model of the subsystem
will become an active element, i.e. will act as a (nonexistent) energy source. Such situation will be
especially common if feedback loops exist in the modeled system.

In order to prevent the situation when a reduced order model of a passive system exhibits
nonphysical behavior (exhibits an instability, or generates energy), a number of approaches for
extracting stable and passive reduced order models have been proposed, mostly in the context of
linear circuits and interconnects [67], [77], [78], see also [7], [8], [191, [24], [28], [97], [98], [101],
[119]. One of the most widely used ideas, exploited in algorithms such as PRIMA [77], [78] is
that congruence transformations preserve definiteness of a matrix. Consequently, given a class of
stable linear dynamical systems with negative definite system matrices, the corresponding reduced
order systems (obtained with congruence transformations) also have negative definite system ma-
trices, and therefore are stable. Below, we will build an analogy between negative definite linear
dynamical systems, and nonlinear systems with nonlinearities satisfying a ‘negative definiteness’
condition, and then explore how this analogy can be used to ensure stability and passivity of tra-
jectory piecewise-linear reduced order models.

5.1 Stability analysis

In this section we consider the problem of stability of TPWL reduced order models. First, we
present some background in stability theory. Subsequently, we briefly describe the problem of
stability preservation for linear systems, and then turn to discussing nonlinear systems and TPWL
models. Finally, we present conditions which are sufficient to ensure L, (input-output) stability of
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TPWL models, analyze the assumptions imposed on the original nonlinear system, and describe
approaches for enforcing stability of a system, e.g. based on modifying the weighting procedure.

5.1.1 Background

This paragraph gives definitions of asymptotic, exponential, and L, (input-output) stability, and
presents a few basic facts from stability theory which will be useful later on. In order to define
asymptotic and exponential stability we consider an autonomous (unforced, time invariant) system

x=f(x), G.D

where f : RY — RV is a globally Lipschitz continuous function. We also assume throughout this
section that system (5.1) has an equilibrium point at x = 0, i.e. f(0) = 0. One should note that
this assumption does not make our discussion or results less general, since if system in form (5.1)
has an equilibrium point at xp # 0, then we may perform a change of variables: X = x — xo, and
analyze the following equivalent system: X = f(%) (where f(%) = f(x) for any x), which clearly
has an equilibrium at the origin.

Asymptotic stability: System (5.1) has a globally asymptotically stable equilibrium point at
x=0if:

1. For each € > 0, there is 8 > 0 such that, for any initial condition xo, if |jxo]| < O, then
llx(£)|| < & for every ¢ > t, where x() is the solution of (5.1) with initial condition x(t0) = xo,
and

2. limy e x(t) =0.

Exponential stability: System (5.1) has a globally exponentially stable equilibrium point at x =
0, if there exist constants k > 0 and y > 0, such that, for any initial condition xo,

()]} < Kllxolle ¢,

where x(¢) is the solution of (5.1) with initial condition x(fp) = xo.

Clearly, if x = 0 is a globally exponentially stable equilibrium point, then it is also a globally
asymptotically stable equilibrium point for system (5.1). Also, in the linear case, i.e. if f{x) = Ax,
asymptotic stability implies exponential stability.

In order to define L), stability we consider a nonautonomous (forced) system with an additional

output equation:
x= f(x,u)
{ y= h(xau) ’ (5:2)

where f(-,-) is Lipschitz continuous, and &(-, -) is continuous. We define space L, as follows:
Ly={v:|¥le, <=},
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where v : [tg,o0) — RY is a vector-valued time signal, fo is the initial time, and

lle, = ( / mHv(t)ll”dt) "

where || - || is some norm in RY. An extended space L, is defined as:
Lpe = {V ‘v € Lp, VTZ[O},
where v; is a truncation of v:

vit) fp<t<1t
V‘(t):{ O() z0>‘t -

Ly, stability: System (5.2) is L, stable for some p € [1,0], if there exist nonnegative constants y
and P such that, for all input signals u, and for all T > #g, if u € Lpe then

yelle, < vllulz, + B,

where y is the output signal of (5.2) corresponding to the input signal u.
The following fact, presented in [48] links exponential stability with L, stability:

Theorem 1:  Suppose f is continuously differentiable, the Jacobian matrices [0f/0x] and [0f/0u]
are bounded, and h(x, 1) satisfies the condition:

Vol PG w) | < Ml + i flul,

for some nonnegative constants 11, 2. If x = 0 is a globally exponentially stable equilibrium point
of the unforced system: x = f(x,0), then system (5.2) is L, stable for any initial condition xo, and
any p € [1,e].

Summarizing, provided f and & satisfy some basic continuity conditions, global exponential
stability of the origin for the autonomous system, implies L, stability of the corresponding forced
system. Consequently, in the following sections we will focus on finding conditions for expo-
nential stability of the origin for an unforced TPWL system, which will guarantee L, stability for
the corresponding forced TPWL system. Another useful theorem is the following version of the
classical Lyapunov stability theorem.

Theorem 2 (Lyapunov): Let x = 0 be an equilibrium point for system (5.1). If there exists a
continuously differentiable function V : RN — R, and positive constants ki, kp, k3, and ¢ such that

killxll© < V(x) < keIl (5.3)

V(x) = [V (x)/0x] - f(x) < —ks]|x]|°, (5.4)

for all x, then x = 0 is a globally exponentially stable equilibrium point for system (5.1).
Proofs of the theorems cited above may be found in the book by Khalil [48].
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5.1.2 Stability of linear systems

Before we turn to the problem of stability preservation for nonlinear systems let us first examine
the linear case. Consider an unforced linear system

X = Ax, (5.5)

where A is a nonsingular N x N matrix with real elements. Then x = 0 is a unique, isolated
equilibrium point for this system, and x = 0 is the globally asymptotically (exponentially) stable
equilibrium point, if and only if matrix A is Hurwitz, i.e. if all eigenvalues A; satisfy condition
Re(A;) < 0. Now, let us consider the corresponding reduced order linear system, obtained from
(5.5) using an orthonormal projection:

:=VTAvy, (5.6)

where V is a real N x g orthonormal matrix with rank g. Again, system (5.6) will have an asymp-
totically (exponentially) stable equilibrium point at x = 0, if and only if matrix VT AV is Hurwitz.
Therefore, the fundamental question is to find conditions under which matrix VT AV will be Hur-
witz, provided A is Hurwitz. Since all eigenvalues of A have negative real parts A cannot be positive
definite. Consequently, we have two cases:

1. Ais negative definite, i.e. for any x # 0, we have (x*)T Ax < 0. (This condition also means that
the quadratic form on the left hand side of the inequality takes only real values and implies
that all eigenvalues of A are real and negative.) Clearly, then matrix VT AV is also negative
definite and Hurwitz, since it is obtained from matrix A by a congruence transformation,
which preserves matrix definiteness. For any z # 0, we may take x = Vz and then, since A is
negative definite, we have

() vTAvz = (x)TAx < 0.
This implies that 0 is an asymptotically stable equilibrium for system (5.6). In this case for
any projection basis V (assuming V is real and full rank) the corresponding reduced order
system (5.6) preserves stability of the original system (5.5).

2. A is indefinite. (Note, this implies that A is nonsymmetric, since any symmetric Hurwitz
matrix is negative definite.) In this case we cannot guarantee that for any real, full rank
matrix V matrix VT AV will be Hurwitz. Only for some special choices of V (e.g. if every
column of V is an eigenvector of A) matrix VT AV will remain Hurwitz.

To sum up, if we consider a general reduced order basis V, we can guarantee that x = 0 will be
an asymptotically stable equilibrium point for system (5.6) only if A is negative definite. Otherwise,
the stability will be preserved only for certain choices of V.

5.1.3 Stability of projected nonlinear systems

Now, let us consider an unforced nonlinear system x = f(x). Recall that in the linear case, the
reduced order linear system preserved stability of the original linear system for any projection
basis V provided system matrix A was negative definite. In the nonlinear case we introduce a
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condition on f analogous to negative definiteness:

DoVe 27 flx) < —Axx.

(5.7)

Clearly, we also assume that f(0) = 0. Note that the above condition is significantly weaker than
the assumption of negative monotonicity, introduced in Chapter 5.!. One may also note that the

following fact is true:

Fact 1 Given Lipschitz continuous function f, such that £(0) = 0, for any initial condition xo,

and for any ¢ > #o, the solution x(¢) of the Cauchy problem:
x=fx), x(to)=xo

satisfies the inequality
[Ix(@0)fl2 < [x(20) |l ),

for some A > 0 (independent of xp), if and only if condition (5.7) holds with the same A.

Proof: (<) Let us consider problem (5.8). Then, we have
I i=x f(x) < —Axlx.
Since 2x7% = d(||x||3) /dt = 2|jx||2 - d(||x||2) /dt, the above yields:
d(]|x[2)
— L < A .
g S Ml

Using Comparison Lemma [35] we obtain condition (5.9).
(=) Since x() is a solution of (5.8) it is also a solution the following Cauchy problem:

d 2
VUEED — 57 (), x(eo) G = ol -
From the above and condition (5.9) we obtain:

0l +2 [ () (o(5))ds = [0 < [l 0,

for any ¢ > 19, and for any xp. Simplifying the above yields:

/th(s)f(x(s))ds < % (e“z}”(’“"’) -~ 1) .

Ip

Substituting ¢t = fo + € (¢ > 0) and dividing both sides of the above inequality by € gives:

1 to+€

—/t xT(s) f(x(s5))ds < U—E(—)EH—% (e"z}”e - 1) )

€Jn

' is negative monotone if 350 Vey (x— )7 flx—y) < —A(x=y)T (x—y).
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Since f is Lipschitz continuous, taking the limit of both sides of the above inequality for € — ot
yields condition (5.7) with x = xp (but xp was arbitrary). This concludes the proof. B

Using the above fact we easily conclude that condition (5.7) implies that the origin is an ex-
ponentially stable equilibrium point for system % = f(x), provided f(0) = 0 and f is Lipschitz
continuous (cf. definition of the exponential stability in Section 5.1.1). Clearly, the projected func-
tion f(-) = VI f(V-) also satisfies condition (5.7) (with the same A if V' is an orthonormal basis),
since for any z:

T H2) ="V f(Vz) = (Vo)  f(Vz) < AVTVz= Az (5.10)

Therefore, the projected system z = V7 f(Vz) also has an exponentially stable equilibrium point at
the origin.

5.1.4 Stability of TPWL systems

Finally, let us consider an unforced reduced order TPWL system corresponding to the original
nonlinear system (5.1):

z= Zw, Y [VT () +VTAVZ-VTAx)], (5.11)

where A; = [0f(x;) /0x], and x; are the linearization points. Below we will also assume that the first
linearization point xo = 0, i.e. one of the linearized models is generated at the equilibrium point of
the original nonlinear system.

Before we discuss how one may ensure stability of system (5.11), or more precisely how the
negative definiteness condition (5.7) can be exploited to this end, let us discuss some of the general
problems which arise when using a linearization or collection of linearizations to approximate a
nonlinear system. Let us first consider properties of a single linearization of (5.1) at the equilibrium
point x = O:

X = Agx, (5.12)

where Ag is the Jacobian of f at the origin. In general, if x = 0 is a globally asymptotically stable
equilibrium point for system (5.1), we cannot guarantee that it will also be a (globally) asymp-
totically stable equilibrium for system (5.12). We need to make a slightly stronger assumption
on the original nonlinear system, namely that the origin is the globally exponentially stable equi-
librium point for that system. Then x = 0 is also the globally exponentially (= asymptotically)
stable equilibrium point for the linearized system (5.12) (cf. [48] for a proof of this fact). Un-
fortunately, exponential stability of the origin for nonlinear system (5.1) does not imply negative
definiteness of matrix Ag, and consequently does not guarantee stability of the reduced linearized
system z = VT AgVz. Nevertheless, if we assume that f satisfies condition (5.7), then the origin will
be an asymptotically (exponentially) stable equilibrium point also for the reduced order linearized
system 2z = VT AgV z, which follows from Fact 2 (below), Fact 1, and preservation of the matrix
definiteness by congruence transformations (cf. Section 5.1.2).
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Fact 2: If f: RV — RV satisfies condition (5.7) and f(0) = 0, then x” Agx < —AxTx for any x,
where Ay is the Jacobian of fat x = 0.
Proof: Since f(x) = [fi(x),..., fv(x)]” then
xTon = xT [fol (0)7 R foN(O)]T ’
where V, f;(0) is a directional derivative of f in direction x, evaluated at 0. Since:

VL) = lim FOTENZAO) L iley)

i
—0+ A g0t €

3

and by (5.7)
ex! fex) < —Ae*xx,

then

xTAgx = lim x

i) EN] i L e < lim (<3aTx) = —AxTx. W
£—0+ € £—0+

£ g0+ E2

If we now consider TPWL model (5.11), the stability analysis becomes much more involved due
to the following facts: 1) We consider a collection of linearized models of (5.1) at nonequilibrium
points x; (except for xp); 2) At each state z we take a convex combination of those models.

Firstly, since we linearize around nonequilibrium points the following problem may occur. Sup-
pose that, for a given j € {1,...,(s— 1)}, there exists a nonempty set D in the state space, defined
as follows: D = {z € R7:wj(z) = 1}. If z € D then TPWL system (5.11) reduces to a single,
linearized dynamical model:

= VTf(Xj) + VTAj(Vz —xj).

Let us now consider Z = (V7A;V)~1(VTA;x; — VT f(x;)). Tt is trivial to check that if 7 € D then
Z will be an equilibrium point for TPWL system (5.11). In order to illustrate this situation better
let us consider the following example of a simple 1D dynamical system: % = —tan(x), where
x € (~m/2,m/2).> Now, let us generate a corresponding TPWL system with two linearization
points xo = 0 and x; = 1t/4. It is easy to check that the resulting TPWL system takes the following
form:

E=wo(x) (—=1-x)+wi(x) (-1-2-(x—7/4)). (5.13)
The original system has a single equilibrium point at x = 0. In the TPWL model an ‘artificial’

equilibrium point may appear at X = 11/4 — 1/2, depending on the applied weighting procedure. If
we use e.g. the following weighting procedure:

_J 1 |x—m/4l<1/4
wi(x) = { 0 otherwise

y

INote that f(x) = — tan(x) satisfies condition (5.7).
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Figure 5-1: The effect of artificial equilibrium in a 1D TPWL system.

and wo(x) = 1 — wy(x), then for the initial condition x(0) = 1/4 the solution x(r) of (5.13) will
monotonically tend to 0 as t — oo. On the other hand, if we apply the following weights:

1 x—m/4 <3/5

0 otherwise ’

i) = {
and wo(z) = 1 —w1(z), then the solution of (5.13) (with the same initial condition x(0) = ©/4) will
monotonically tend to the artificial equilibrium point at (11/4 — 1/2) as t — e (cf. Figure 5-1).

This example shows that TPWL models may introduce some numerical artifacts, such as ad-
ditional equilibria, which will usually be very undesirable. Clearly, if such artificial equilibrium
exists, the TPWL model will not have a globally asymptotically stable equilibrium point at x = 0.
Nevertheless, as also illustrated in the above example, by an appropriate choice of weights, one
may eliminate artificial equilibria. In the following sections we will discuss how weights can be
used to ensure that a given TPWL system does not have such additional equilibria.

Another issue is that, without any extra assumptions of the nonlinear operator f, we only know
that Ap = df/0x(0) is Hurwitz. We do not know anything about properties of all other Jacobians A;
(i=1,...,(s—1)). Moreover, even if we knew that all A; were Hurwitz, then a convex combination
of those matrices does not have to be Hurwitz. Also, even if f satisfies condition (5.7), then, except
for Ao, none of the Jacobians A; is guaranteed to be negative definite or stable.

The above mentioned problems indicate that, in general, reduced order TPWL models will not
preserve stability of the original nonlinear system, even if f from the original nonlinear system
is negative definite. Still, one may attempt to find conditions, to be satisfied by a TPWL model,
which will be sufficient to guarantee its stability. Note that, as found in the previous section, if
f(-) is negative definite, then also VT f(V.) is negative definite, implying exponential stability of
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the origin for the corresponding reduced order system. One may therefore consider an analogous
condition for a TPWL system:

(ZWZ ) [V f) +VTA(VZ— xz)]) < —ksz'z, (5.14)

where k3 is some positive constant. In view of Fact 1, the above condition implies exponential
stability of the origin for system (5.11) (provided w;’s are Lipschitz continuous). It also has advan-
tages which will be described later in this section. At this point let us only note that it does ensure
that system (5.11) has an equilibrium only at x = 0, since by (5.14) the right hand side of (5.11)
must be nonzero for all z # 0.

The above stability condition may also be derived using Lyapunov theorem (Theorem 2 from
Section 5.1.1). The theorem states that the origin is guaranteed to be a globally exponentially sta-
ble equilibrium point for system (5.11), provxded we can find a Lyapunov function V (z) satisfying
conditions (5.3) and (5.4) with f(z) = 32 wi(z) [VT f(x) + VT Ai(Vz - x;)]. The simplest func-
tion we may consider is a quadratic function V(z) = éz z. Clearly, for this function condition (5.3)
is satisfied automatically. Since 9V (z)/dz = z!, condition (5.14) directly follows from (5.4).

The most important question is whether it is always possible to construct a TPWL model, such
that condition (5.14) will be satisfied. A related question is whether, for given x; and A;, it is
possible to find weights w;(z) such that inequality (5.14) will hold for all z, and some constant
k3 > 0. The following simple fact gives a positive answer, for the case of negative definite matrix
AQ:

Fact 3: If matrix Ap is negative definite then, for given x; and A;, where xg = 0, we can find
weights w;(z) such that condition (5.14) will hold for any z.

Proof: Take the following weights: wo(z) =1,and wi(z) = ... = w,_1(z) = 0. Then condition
(5.14) reduces to: zT VT AgVz < —k3z! z, since xo = 0 and f (xo) = O We also have:

ZIVTAGVZ B (V2)TAgVz .
T

sup (Vz)TAVz < sup xT Agx.

sup == =
z w0 (V)TVz ey =1

z#0 Z

Since hypersphere S = {x: ||x|| = 1} is a compact set, the supremum on the right hand side of the
above inequality is attained, and we can define k3 = — MAX|[y|=1 X TAox. A is negative definite,

i.e. xT Agx < 0 for x € S, and therefore k3 > 0. Consequently
VT AGV7
up ————

< s, (5.15)

7#£0 Z°Z

which ends the proof. I

Consequently, provided Ag is negative definite we can always find a weighting procedure such
that the discussed TPWL system will have an exponentially stable equilibrium point at the origin.
Still, the above proof raises a question whether such weighting procedure will generate a feasible
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Figure 5-2: Admissible weight distribution in a stability-preserving weighting procedure.

TPWL model of the original nonlinear system. The worst case scenario is when, in order to
preserve stability, the weighting procedure implies using only a single linearized model at the
origin. In this case the TPWL model would be no more accurate than a simple linear reduced
order model. Therefore we may ask the following question: Is it possible to generate a weighting
procedure such that, for all z, condition (5.14) is satisfied and, for every i, there exists g;, such
that, for all z, if z € Be,(z;) (i.e. if z is in a ball with radius €; centered at z;, where z; = VTx;is
the projection of linearization point x;) for some particular j=0,...,(s— 1) then w;j(z) = 1?7 In
other words, is there a stability-preserving weighting procedure which will also select the ‘optimal’
linearized model (in particular — the model which is the closest to the current state of the system z),
provided z is close enough to the linearization points? As proved below, the answer to this question
is positive, provided nonlinear function f satisfies condition (5.7).

Theorem 3 Suppose f : RV — RY is Lipschitz continuous, f(0) = 0, and f satisfies condition
(5.7). Suppose also that all linearization points x; can be represented exactly in an orthonormal
basis V,i.e. x; = Vz;, fori=1,...,(s— 1). Then, the origin is an exponentially stable equilibrium
point for TPWL system (5.11) if, forall i = 1,..., (s — 1), wi(z) = O for z € (R9\Bg,(z;)), where

[32 2k A
g < *Wi—i“—w‘;‘“xi“z—w , (516)

2, W(x) is the Hessian of f

and X is any positive constant such that A < A, W = sup, ||W (x)|
evaluated at x, and Bg,(z;) = {z € R7: ||z —zi|| < &} (cf. Figure 5-2).

Proof: We will prove that assumptions of the theorem on the weights and function f imply
condition (5.14). Since, for every z Ef;g wi(z) = 1, and x; = Vz; this condition may be written in
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the following form:

1

(Sil wi(2)z" [V f(x) + VT AV (z— z,-)]) < —k3 si (wi(2)2" 2).
i=0 i

i=0

Therefore, the condition which clearly implies (5.14) is the following:
Dsky>0Vizo, . (s-1) Veen, 77 (VI f(x) +VTAV (- 2)) < —ks2'z, (5.17)

where D; = {z: w;(z) # 0}. First, we note that if z € Dy then, since A is negative definite (cf. Fact
2), we have:

(VT fx0) +VTAV (2~20)) =27 VTAVz < AT VIV = ATz < —ksd . (5.18)

Therefore condition (5.17) needs to be considered only for i = 1,...(s— 1). If we subtract
term z/ VT f(Vz) from both sides of (5.17), and use (5.7), we will obtain the following condition
equivalent to (5.17):

Fin0 Vizt,n(s—1) Veen; 20 (VIFx) +VIAV (z—2) =V f(V2)) <Az (5.19)
Since:
VIf(Vz) =V f(x) + VT A(Vz—x) + /0 1(1 —S)VIW (i +5(Vz—x))ds(Vz—x) ® (Vz—x1),
for all i and z, condition (5.19) may be expressed in the following equivalent form:
Fsin0 Viet,(s-1) Vee; 21 (— /01(1 —$S)VIW(6i(s,2))ds(V(z—2)) ® (V(z - Zi))) <Az,

where 6;(s,z) = x; +s(Vz—x;). Below we write two subsequently stronger conditions implying
the above inequality:

Frsiso Vizt, (s-1) Veeb,

l/ﬂl(l ~SVIW (i +s(Vz—x))ds(V(z—2)) @ (V(z—z))

< Mizla,
2

1 ~
Boin0 Visto(o-1) Veen, 5 Wiz = all3 < Alellz, (5.20)

where W = sup, ||W (x)]|2, and we used the fact that ||V ||, = ||V||2 = 1, since V is an orthonormal
basis. Suppose now we consider a ball B,(z;) for a given i, and D; C B,(z;). This means that
wi(z) # 0 only if ||z — z;||2 < €;. If we impose that

1 ~
Yict,... (s=1) Ve, ~2~W8;?’ < Mlzll2,
for some A > A > 0, then condition (5.20) will be satisfied. Since llzll2 > llzillz — & > ||xill2 — &
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foreveryi=1,...,(s— 1), we may write an even stronger condition:

2A
Viet, o (s=1) & < W(HXin —€).

Solving the above inequality for €; yields condition (5.16). Therefore, as we have shown condition
(5.16) implies condition (5.14), which proves that the origin is an exponentially stable equilibrium
point for TPWL system (5.11). B

One may note that, forany i = 1,..., (s — 1), condition (5.16) implies that €; < ||x;||2. It is also
clear that we should take A closest to A in order to obtain the loosest bound for €;. Condition (5.16)
also tells us that as A grows (i.c. when the trajectories of the original nonlinear system converge
faster to the origin —cf. Fact 1), we may take larger radii €; in the TPWL model, which is intuitively
correct. Also, if f is smoother, i.e. if second derivatives (represented by W) are smaller we may
take larger radii.

A trivial observation is that condition (5.14) implies that a given TPWL system has no non-
zero equilibria. It is interesting to note that for 1D systems an opposite implication holds, i.e. if f
is continuous and negative definite, and a 1D TPWL system has no non-zero equilibria, then this
system is also negative definite, and therefore has an exponentially stable equilibrium at the origin.
Such implication most likely does not hold for higher-dimensional systems.

Also note that Theorem 3 provides a set of guidelines for selecting subsequent linearization
points. The discussed theorem defines state-space regions around the linearization points x; (or,
more precisely, balls with radii €;, centered at x;), which are admissible support regions for the
corresponding weighting functions w;. Note that if distances between x; become large enough,
those regions may become disjoint (cf. Figure 5-2), which means that in order to enforce stability
we may need to set wg to 1 in the regions located between the linearization points. This in turn
may adversely affect accuracy of a given TPWL model. In order to avoid such situation one may
select subsequent linearization points in such a way that e.g. [lxi_1 — x|z < (€i-1+&;), for every i.

5.1.5 Computing stability-preserving weights

Furthermore, Theorem 3 tells us that, provided f satisfies condition (5.7), we can select an ‘op-
timal® linearized model provided current state z of the TPWL model is close enough to some
linearization point z;, or more precisely provided z is in ball centered at z; with radius €;, satisfying
condition (5.16) for some i. Still, condition (5.16) is only a sufficient one, and it is significantly
stronger than condition (5.14) (with x; = Vz;). Consequently, in practice we may use (5.14) instead
of (5.16) in order to compute stability-preserving weights.

Below we present an example of a weighting procedure, based on condition (5.14), which
guarantees that the origin will remain an exponentially stable equilibrium point for the reduced
order TPWL model. The procedure assumes we already have another algorithm which computes
‘optimal’ (in some sense) weights W;(z) based on the information about the current state of the
system.

Given current state z of TPWL system (5.11):

1. Compute w;(z) and take w;(z) = W;(z) fori=0,...,(s — 1).
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2. Set
IF={ie{0,...(s—D}:z" VI f(x) +VTAV (z—z)] < 0},

I"={ie{0,...,(s=D}:2" VT f(x)) +VTAV(z—2)] >0}
3. While

i=0

s—1
(s1=2"- (Z wi(z) [VIf(x) + VT AV (2 - Zi)]) ) > (52 =—kz"2),
where £ is a fixed small positive constant, do:

(a) Set j = argmax;c;-{wi(z) 1 wi(z) < 1}.
(b) Set k = argmin;c;+{wi(z) : wi(z) > 0}.
(c) Set & =min{(1—w;(z)),wi(z),81}, where

51— 82

& = - (VIf(a) +VTAYV (2—2) = VT f(xj) —VTA;V (2~ 7))

(d) Setwi(z) := wi(z) — 95, and w;(z) == w;(z) + 3.
The above procedure gradually transfers weight from models for which
VT f(x) +VTAV (z-2)] >0,

which is undesirable from the point of view of stability, into models for which an opposite con-
dition is satisfied. The weight is transferred first from the models which are ‘least optimal’ to the
models which are ‘most optimal’ for given z. It is also important to note that Fact 2 guarantees
that the above procedure will always finish. (In the worst case the entire weight will be put on the
linearized model from the origin.) Please also note that the above procedure may be modified in
such a way, that condition (5.14) will be satisfied with k3 = A.

Fact 2 also tells us that the above procedure will guarantee stability even if f does not satisfy
condition (5.7). The only assumption we need is that Ag is a negative definite matrix. Nevertheless,
this weighting procedure will most likely generate more feasible models if f satisfies condition
(5.7), as stated in Theorem 3. There is yet another issue which needs to be considered: if €; from
Theorem 3 are small as compared to the distances between the linearization points then, most
likely, the above procedure will select an ‘optimal’ model only if the current state of the system
is very close to some linearization point, and otherwise select the 0-th model. A solution to this
problem would be putting the linearization points closer to each other, as suggested in the previous
section. For the example of transmission line circuit model with quadratic nonlinearities, it has
been found that such approach leads to a reasonable number of suitably distributed linearization
points.

Modifying weights w; is just one possible approach for enforcing negative definiteness of TPWL
system (5.11), which in turn implies exponential stability of its equilibrium at the origin. In a
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different approach one may add a dissipative term (—x(z)z’ z) to the right hand side of (5.11). The
value of K(z) can be then selected in such a way that condition

Z' (Sil wi(z) VT f(a) + VI Ai(Vz—x) — k(2)7] ) < —ksz'z (5.21)

i=0

holds for all z. Again, one may specify k3 = A, in order to mimic condition (5.7) for the original
nonlinear function f (or condition (5.10) for the corresponding projected function).

5.1.6 L, stability of TPWL models

Let us now consider the following forced TPWL system:

{ ¢=3gwil2) [V7 fa) +VTAVZ = VT Ax)] +V Bu (5.22)

CTVZ

Using Theorem 1 which links exponential stability with L, stability, and Theorem 3, we for-
mulate the following corollary:

Corollary 1:  Suppose f: R¥ — RV is Lipschitz continuous and differentiable, £(0) = 0, and f

satisfies condition
Too Ve 2T f(x) < —AxTx.

Suppose also, that all linearization points x; can be represented exactly in orthonormal basis V,
ie x;=Vzfori=1,...,(s—1). Then, system (5.22) is L, stable for any initial condition xp, if
foralli=1,...,(s—1), w;i(z) = 0 for z € (R1\Bg,(z)), where

‘i< \/ Do 523)

and A is any positive constant such that A < A, W = sup, ||W(x)||2, W(x) is the Hessian of f
evaluated at x, and Bg,(z;) = {z € R? : ||z —zi|| < &}

Proof: This corollary follows directly from Theorems 1 and 3. We only need to check that
assumptions of Theorem 1 hold. First, the appropriate Jacobians are bounded, since ||B|,, and
|Ail|2 are finite, and [ow;(x)/dx] = [0] provided |x||> is large enough, since we consider only a
finite number of models (s), and €; must be finite for all i = 1,...,(s — 1). Moreover, for all z,
y(2)ll2 = ICT V|2 < |ICTV]2l|zll2. Therefore, assumptions of Theorem 1 are satisfied. B

5.2 Passivity analysis
In this section we present a basic result on passivity of TPWL reduced order models, which follows
from the stability analysis presented in the previous sections. Let us first define passivity for a

nonlinear dynamical system:
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Passivity: System (5.2) is passive if there exists a continuously differentiable positive semidefi-
nite function V : RV — R such that

oV
v)cERN quRM uTy 2 g;f(x’ u) + SyT%
for some & > 0. It § > 0 then we call system (5.2) output strictly passive.

Theorem 4: Suppose we consider the following nonlinear system:

x= f(x)+Bu
{ PA S (5.24)

Then, the above system is output strictly passive provided C = B, and

Inso Ve 2T f(x) < —AxTx.

Proof: We consider a simple quadratic function V(x) = xx. This function is clearly positive
semidefinite. We compute:

uly— %‘—g(f(x) +Bu) =y u—xT f(x) —x"Bu =
yiu—x' f(x) —xTCu= —xT f(x) > AxTx> 0.

This means that system (5.24) is passive. Furthermore, since y'y = xT CCTx < ||CCT||2xT x then
from the above we obtain:

av oV A
Ty> 2 B A x> — B — Ty
u'y> ax(f(x)+ u)+Aix' x> ax(f(x)—i— u)+||CCTH2y ¥y
Cohsequently, system (5.24) is output strictly passive. Il

Theorem 4 immediately implies the following corollary:

Corollary 2:  Suppose assumptions of Corollary 1 are satisfied. Then the trajectory piecewise-
linear system (5.22) is output strictly passive provided C = B.

Proof: Since assumptions of Corollary 1 hold, then condition (5.14) is satisfied — cf. proof of
Theorem 3. This means that assumptions of Theorem 4 are satisfied for f = g, where

g(z) = Sil wi(z) VT f() +VTAVZ—- VT Ax))] .
i=0

From Theorem 4 it follows immediately that system (5.22) is output strictly output passive. W

79



80



Chapter 6

Application and validation of the TPWL
MOR algorithm

Theoretical analysis, presented in Chapters 4 and 5 offers important, yet sometimes limited insight
to properties of the proposed Trajectory Piecewise-Linear (TPWL) model order reduction strategy.
Therefore, in this chapter we focus on discussing results of numerical experiments with TPWL
reduced order models, extracted for examples of strongly nonlinear systems described in Section
2.2. Those computational results provide additional insight to some of the features of the discussed
MOR strategy, validate it for the considered application examples, and present its potential.

6.1 Transient simulations

This section focuses on presenting results of time-domain simulations for the considered examples
of nonlinear systems. The main goal of the performed tests was to find out whether the proposed
TPWL MOR technique really generates a model of the original nonlinear system. Recall that a
TPWL reduced order model, consisting of a collection of linearized models is obtained by sim-
ulating the original system for a given training input signal, and then by selecting linearization
points from the corresponding training trajectory. In order to show that we have indeed generated
a model of the original system we should verify that it gives correct outputs not only for the input
it was generated with (i.e. the training input), but also for other inputs. This verification was done
experimentally for different application examples (nonlinear analog circuits and a micromachined
device) by performing simulations of the TPWL reduced order models for selected testing input
signals.

Results of transient simulations presented in this section also illustrate some of the difficulties
which arise in reduced order TPWL modeling. We use examples of the micromachined device and
fluid flow problems to briefly discuss those difficulties, mainly related to the projection stage of
the TPWL MOR approach.

6.1.1 Modeling analog circuits

First, we considered the nonlinear transmission line circuit model (shown in Fi gure 2-1, in Section
2.2) with N = 100 nodes, and generated its reduced order TPWL model of order ¢ = 10 using a step
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System response for step input current i(t) = H(t-3)
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Figure 6-1: Comparison of the system response (nonlinear transmission line circuit model) com-
puted with linear, quadratic, and TPWL reduced order models (of order g = 10) for the step input
current i(t) = H(t—3) (H(t) = 1fort >3 and H(z) = 0 fort < 3). The TPWL model was generated
using a unit step input current.

training input i(¢) = H (¢ — 3). For this example, the linearization point changed 4 times, therefore
our model used 5 reduced order Jacobians Ay, ..., A4,. The reduced order model was tested for
different inputs, including the step input used to generate it. Figure 6-1 shows the computed
transient for the step input (the training input).

Figures 6-2 and 6-3 show the reduced order simulation results for a cosinusoidal input, and
an exponentially decaying input, respectively. In all the cases the output voltages obtained with
the TPWL reduced order model accurately approximate the reference voltages (the curves overlap
almost perfectly).

The results shown verify that a TPWL reduced order model, generated for a step training input
current, can be successfully used to model responses of the original nonlinear circuit for inputs
which are very different from the step signal, i.e. cosinusoidal and exponentially decaying signals.

Figures 6-1, 6-2, and 6-3 also provide a comparison of the proposed TPWL reduced order
model with linear and quadratic reduced models, generated using methods described in [17], [83]
and [110] (cf. also Section 2.3.1). It is apparent from the graphs that the TPWL reduced order
model gives significantly more accurate results than the linear and quadratic reduced order models
using Taylor’s expansion about the initial state. One may note that, for the case of the step input
current, the linear and quadratic reduced order models are unable to accurately compute the steady
state of the system. It should be stressed at this point that all the models (linear, quadratic and
TPWL) were of the same order and, moreover, applied the same projection basis V (obtained with
the procedure described in Section 3.2.2).
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System response for input current i(t) = (cos(2r t/10)+1)/2
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Figure 6-2: Comparison of the system response (nonlinear transmission line circuit model) com-
puted with linear, quadratic, and TPWL reduced order models, for the input current i(¢) =
(cos(2m/10) 4 1) /2. The TPWL model was generated using a unit step input current.
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Figure 6-3: Comparison of system response (nonlinear transmission line circuit model) computed
with linear, quadratic, and TPWL reduced order models, for the input current i(¢) = exp(—t). The
TPWL model was generated using a unit step input current.
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Figure 6-4: Op-amp input signals v;,1 and viy,).

The discussed example of the nonlinear transmission line circuit model has also been used in
[6] to test a model order reduction approach based on Carleman bilinearization. In [6], a bilinear
model of order ¢ = 17 has been generated for the original circuit with N = 100 nodes. The graph
included in the cited paper, showing system’s response to a step input signal clearly indicates
inferior accuracy of the bilinear model of order ¢ = 17, as compared to a TPWL model of order
q = 10 (cf. Figure 6-1).

Next, we considered the operational amplifier example, described in Section 2.2. The examined
. circuit had N = 51 nodes and eight inputs: 1) the differential input with input signals v;,1 and vj,2,
2) the auxiliary inputs Vemmrsts Vends Vintns Vintps Vrst, aDd Vemmin used in common mode rejection
testing. We considered two full-order models of the op-amp: 1) simplified — employing linearized
capacitance models for MOSFETSs (Then, g(x) = Gx — cf. equation (2.1).); 2) regular — employing
nonlinear capacitance models (i.e. with a state-dependent capacitance matrix G(x) = dg(x)/dx).
In both cases the full nonlinear simulations were performed using NITSWIT circuit simulator,
described in [54] and [55]. In order to generate the reduced order TPWL models we applied the
following set of training inputs:

0 <290
vin1(t) = { 12.5-1073(t—290)/10 290 <t < 300 ,
12.5-1073 t > 300
Vina = —Vin1 (cf. Figure 6-4), and auxiliary input signals shown in Figure 6-5.

For the case of the system with a linearized capacitance matrix we obtained a TPWL model
of order ¢ = 18 (with 35 linearization points, and 8 inputs), and for the case of the system with
nonlinear capacitance we obtained a model of order 34 (with 29 linearization points). As one
may note, due to an increased complexity of the applied MOSFET device models, the order of the
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Figure 6-5: Auxiliary inputs for the op-amp circuit.

resulting reduced order model is higher in the second case.
The obtained reduced order TPWL models were then tested for the following piecewise-linear
input (cf. Figure 6-4):

0 t <290
vim(t) = ¢ 11.5-1073( = 290)/110 290 < 7 < 400 |,
11.5-1073 t > 400

and vjy = —vjy1. Figures 6-6 and 6-7 show a comparison of the transients computed with NITSWIT,
and with the reduced order TPWL models for one (of the two) output nodes of the amplifier. One
may note excellent agreement of the output signals for both cases, which indicates that suitable
reduced order TPWL models of the original systems have been extracted. The results also indicate
that the proposed MOR method may be successfully used for multiple input systems with state-
dependent matrix G(x). It is important to point out that not only do the TPWL models have a lower
order than the original system, but also they are much easier to use. Since a TPWL model consists
of a weighted combination of linear models, the time-stepping is very straightforward. In a simpli-
fied backward Euler time-stepping scheme (cf. Section 3.1.2) we compute weights w; (cf. equation
(3.4)) e.g. using the previous state of the system, or a predictor of the next state and then, assuming
that these weights are fixed, we find the state at the next timestep by performing only a single
Newton update (i.e. solving a low order linear system of equations). In a more sophisticated time
stepping scheme, one can account for derivatives of w;(x), which is also straightforward, since the
weights are simple scalar functions. In a regular simulator, if using backward Euler scheme, one
needs to compute a number of Newton updates for the full order nonlinear system at each timestep,
which is considerably more complex.
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6.1.2 Modeling MEMS

In order to validate the proposed TPWL MOR approach also for the example of the micromachined
switch described in Section 2.2, we performed analogous tests as in the previous section. For this
example we considered two different algorithms of generating the reduced order basis: the simple
one, described in Section 3.2.2, and the extended one, introduced in Section 3.2.3. In the first case
the reduced model of order g = 41 (with s = 9 linearization points) was generated for an 8-volt step
training input voltage. In the second case, we generated a TPWL reduced model of order ¢ = 26
(with s = 11 linearization points), for a 9-volt step training input voltage. Both models were tested
for a cosinusoidal input with a 7-volt amplitude. Figures 6-8 and 6-9 show results of the simulation.
The transients obtained with the TPWL models match very accurately the reference result obtained
with the full nonlinear model of order N = 880. Once again, it results that a TPWL model may be
used for inputs which are dynamically different from the training input. Note that in this case the
testing input signal, not only had a very different frequency content, but also a different amplitude,
as compared to the training signal. The graphs also show that the TPWL models offer superior
accuracy as compared to linear and quadratic reduced order models. Also note that the described
TPWL reduced order model of order g = 26 was also successfully used to perform periodic steady
state simulations, as shown in Section 6.2.

Yet another test has been performed for the example of the micromachined switch packed in air
under low pressure of pg = 0.01atm. In this case, the layer of air provides a much lighter damping
for the beam, and consequently oscillations of the beam occur for a step input voltage (cf. Figure
6-10).

System response for input voltage v(t) = 7cos(4x t)
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Figure 6-8: Comparison of the system response (micromachined switch example) computed with
linear, quadratic, and TPWL reduced order models (of order ¢ = 40 and ¢ = 41) for the input
voltage u(t) = 7cos(4mt). The TPWL model was extracted for an 8-volt step input voltage.
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System response for input voltage v(t) = 7cos(4n 1)
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Figure 6-9: Comparison of the system response computed using the linear, quadratic, and TPWL
reduced order models, for the input signal u(t) = (7cos(4mt))>.
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Figure 6-10: Comparison of the system response (for air pressure pg = 0.0latm) computed with
the full order model, and a TPWL model of order g = 19.
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In this case a TPWL reduced model of order ¢ = 19 (number of linearizations s = 12) has been
generated using the extended algorithm for constructing the projection basis. The training input
was a 5.5-volt step input voltage. The TPWL model was then tested for u(z) = 5.5%, and u(t) =
(5.5exp(—50¢))* input signals. As shown in Figure 6-10, for the first input excellent agreement
with the full nonlinear model is observed, while for the second input some error in the computed
transient occurs.

Further results validating TPWL models for the micromachined switch example have already
been presented in Section 3.2.1, and also can be found in Section 7.2. The mentioned results also
show some limitations of TPWL models. In particular, it has been found that when the amplitudes
of the testing inputs differed too much from the amplitude of the training input, the corresponding
TPWL model was unable to provide adequate accuracy.
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Figure 6-11: Instability in a TPWL model of order g = 14. Both training and testing input signals
equaled a 5-volt step voltage.

Also, serious problems with stability of TPWL models have been observed for some values
of g. Although the original nonlinear system is clearly stable and dissipative (passive), some of
the TPWL reduced order models show very unstable behavior. For instance, a TPWL model of
order ¢ = 14 (with 11 linearizations, generated and tested for a step 5.5-volt input voltage) is
unstable (the solution tends to —ee), as shown in Figure 6-11. This instability is due to the fact
that, for some orders g of the reduced TPWL models, either some or all of the reduced Jacobians
Ajr are unstable. As checked, all the full-order Jacobians A; are Hurwitz, and they ‘lose’ stability
during the reduction process. This occurs because the original Jacobians A;, although stable are
nonsymmetric and indefinite. Consequently, the corresponding reduced order Jacobians, obtained
with congruence transforms (and Krylov-based reduction) are not guaranteed to be stable. It is also
interesting to note that if full-order Jacobians are used in a TPWL model, instead of the reduced
ones, we obtain a correct, stable transient. This clearly indicates that the main problem is ensuring
stability of the reduced Jacobian matrices. So far, this problem remains open. It appears though
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Figure 6-12: Shock movement in 1D, N = 100.

that it may be solved only by applying some new reduced order projection scheme. Please note
that strategies for stabilizing TPWL systems presented in Chapter 5 cannot be applied in this case,
since the original system’s nonlinear function does not satisfy negative definiteness condition (5.7).

6.1.3 Modeling fluid flow problems

The other two application examples, introduced in Section 2.2.3 are associated with shock move-
ment in a fluid, which requires using nonlinear models. The first of the examples refers to shock
propagation in 1D, as modeled by Burgers’ equation. We considered discretized systems of or-
der N = 100 (length of the region [ = 100, Ax = 1), and N = 1000 (length of the region [ = 100,
Ax = 0.1). We have generated TPWL reduced order models of order g = 31 (with s = 21 linearized
models) for the first case, and g = 38 (with s = 24 linearized models) for the second case. Then,
we tested our models for a steady incoming flow u(¢) = /5. The results of the reduced order sim-
ulations and their comparison to the respective results obtained with full order model are shown
in Figures 6-12 and 6-13. One may note that for N = 100 the reduced order TPWL model is able
to accurately approximate both shock propagation and its shape. However, for N = 1000, while
dynamics of the shock is modeled correctly, its shape cannot be represented accurately. Due to
a very large slope associated with the shock a phenomenon similar to Gibbs’ effect occurs if a
reduced order model is used. We have observed that if a full-order TPWL model is used instead
the discussed effect disappears. This indicates that the problem lies in an inability to represent
a shape with a large slope in the reduced order basis, similar to an inability of accurately repre-
senting a step function by a small number of Fourier modes. The problem persisted for all the
considered projection bases, generated with different MOR strategies, and it appears to be difficult
to overcome without applying additional solution smoothening techniques.
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Figure 6-13: Shock movement in 1D, N = 1000.

Next, we considered the problem of modeling shock dynamics in the jet engine inlet described
in Section 2.2.3. In order to apply the piecewise-linear representation introduced in Section 3.1
we select linearizations of nonlinear dynamical system (2.15) at states U; and for zero input distur-
bances 11 =d = 0!:

au ,

E— = —R(U,0,0) —A{(U —U;) ~ Bpitit — Baid, (6.1)
where E,’ = dF(Q_i)/d_l_]_,A,- - aR(_U_,', 0,0)/ag, Bmi = BR(_Q,-, O, O)/an‘”l, and Bd,' = aR(Q,-,0,0)/ad.
Since the output, selected as the average Mach number at the throat, is also a nonlinear function of
the state U, we also consider linearizations of the output equation y = C(U) about states U ;:

y=CU)+GU -U,), (6.2)

where C; = dC(U;)/dU . Taking a weighted combination of equations (6.1) and (6.2) leads to a
TPWL model in the form:

s—1 dU s—1
(Z()WI(X)EI) g?“ = Wt(x) [——R(UI,O,O) AZ(Q - QI) = Bpith _Bdid]
i= i=0
s—1
y= ;)wxx) [CU)+GU -U)). (6.3)

'Note that, since in the original nonlinear system R(-) is a nonlinear function of the inputs, we need to consider
linearization both at a given state U; and for fixed values of the inputs.
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Figure 6-14: Average Mach number at the throat of the engine inlet vs. time, computed with full-
order nonlinear, linear, and TPWL models. N = g = 11730.

Note that the form of the above TPWL system is slightly more general the form of TPWL systems
discussed so far (cf. e.g. equation (3.4)), due to the nonlinear output equation.

In order to find out whether model (6.3) can be used to simulate strongly nonlinear behavior of
the original nonlinear system, we first generated a full-order TPWL model (g = N = 11730). To
this end we applied the following input signals: 1) inlet density disturbance:

d = —Bexp(—g(t — 1,/ f0)?),

where $ =0.03, g=0.03 fg, tp, =20, and f = 3.4255; 2) bleed mass flux 7 = 0. For the above inlet
density disturbance, shock movement at the throat is observed. Consequently, the operating state
of the modeled nonlinear system changes very substantially, and linearized models generated at
the steady state of the system are unable to capture the strongly nonlinear behavior associated with
shock propagation. The above input has been used first as a training input, to generate a TPWL
model of order 11730, with s = 28 linearizations, and then as a testing input. The results of the
simulation are shown in Figure 6-14. Clearly, the TPWL model provides very good approximation
of the response for the full nonlinear system, while the linearized model is unable to capture the
effect of the moving shock.

Problems begin when we try to perform reduction of the TPWL system (6.3) using a projec-
tion basis generated with Krylov-based methods. According to our experience the reduced order
models generated with projection algorithms presented in Section 3.2 fail to provide accurate ap-
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proximations of the transient shown in Figure 6-14 for all tested orders. Analogous observations
are reported in [60] for the linearized reduced models extracted with Krylov subspace methods. In
the cited reference, Lassaux claims that the main cause of the observed problems with order re-
duction is the discrete formulation of the dynamical system which incorporates algebraic relations
defining the boundary conditions as separate equations to system (6.1) (which also causes matri-
ces E; to be singular). In [60], a ‘condensed’ formulation of system (6.1) is proposed, in which
equations related to boundary conditions are eliminated, and a change of variables is performed.
If Krylov reduction is applied to the ‘condensed’ formulation of system (6.1), one obtains reduced
models which correctly approximate the original system around the linearization state, as reported
in [60] and also found during our own numerical tests. Unfortunately, the change of variables lead-
ing to the ‘condensed’ formulation, varies from one linearization point to another. Consequently,
state representations vary across the collection of linearization points, which makes application
of quasi-piecewise-linear scheme (in the form presented in Chapter 3) impossible. In order to be
able to use this collection of linearized models, with each one employing a different state repre-
sentation and a different projection, one needs to perform suitable translations of states during the
piecewise-linear simulation. This approach is currently under investigation, in the context of the
presented problem of supersonic flow in the jet engine inlet.

6.2 Periodic steady state simulations

In order to further validate the TPWL reduced order models we performed a series of periodic
(sinusoidal) steady state simulations. In this section we present a comparison of periodic steady
states computed with the full order nonlinear models and the reduced order TPWL models. The
tests were performed for the examples of a nonlinear transmission line circuit model (cf. Figure
2-1), the operational amplifier, and the micromachined switch, described in Section 2.2.

In the first series of tests, we computed the sinusoidal steady state for the nonlinear transmission
line model with N = 1500 nodes, excited with the input current i(¢) = (cos(2nz) + 1)/2. The
simulation was performed using a simple, fixed-timestep shooting method [56]. Figure 6-15 shows
the computed sinusoidal steady state output of the system in the time domain (output y(¢) = v;(z),
where v1(2) is the voltage at node 1 of the circuit). One may note that the result obtained with the
reduced order model of order g = 30 closely matches the reference result.

The frequency domain analysis has also been performed for the sinusoidal steady state output
signal y(t) shown in Figure 6-15. We computed a complex DFT of the discrete output signal
y(n) = y(nAt). The first four Fourier coefficients ¢; (not normalized) are shown in Table 6.1. One
may note that the sinusoidal steady state y(¢) obtained with the discussed reduced order model
matches closely up to the 3rd harmonic of the reference sinusoidal steady state for the considered
nonlinear transmission line model. This result suggests that the extracted reduced order models
may be used to analyze second-order effects like harmonic distortion.

We have performed analogous tests for the micromachined switch example. We used a TWPL
reduced order model of order g = 26, generated for a 9-volt step input voltage to find the sinusoidal
steady state of the micromachined switch. To this end we applied the shooting method with our
reduced model, and then computed harmonics of the resulting periodic signal. Table 6.2 compares
the first three harmonics computed with the reduced order model and the full nonlinear model.
Also for this application example one notes good agreement in the computed harmonics.
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Figure 6-15: Comparison of the sinusoidal steady state (nonlinear transmission line circuit
model) computed using the full nonlinear and the reduced TPWL model, for the input signal
i(t) = (cos(2mt) +1)/2.

Table 6.1: Comparison of the subsequent harmonics of the sinusoidal steady state, computed using

the full order nonlinear model, and the reduced order TPWL model.

Har- Full nonlinear Reduced order Error
monics model TPWL model [%]
dc (co) 9.3736 9.4061 04
Ist (¢1) 3.9684-0.26251  3.9630-0.2641i 0.2
2nd (¢p) -0.2803+0.0617i -0.3100+0.05781 10.5
3rd (¢3) 0.0223-0.0106i  0.0233-0.01381 13.5

Table 6.2: Comparison of the subsequent harmonics of the sinusoidal steady state, computed using
the full order nonlinear model, and the reduced order TPWL model. The input signal to the system

was u(t) = (9cos(nt))2.

Harmo Full nonlinear Reduced order Error
-nics  model TPWL model [%]
dc  1.9587 1.9526 04
Ist -0.1967+0.03511 -0.1935+0.03521 1.6
2nd  -0.0289+0.02831 -0.0263+0.02631 8.2
3rd 0.0004+0.01431 -0.0017+0.01551 17.6
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Table 6.3: Comparison of the main intermodulation harmonics of the sinusoidal steady state, com-
puted using the full order nonlinear model, and the reduced order TPWL model (g = 39).

Har- Full nonlinear Reduced order Error
monics model TPWL model [%]
dc  -0.4967 -0.4915 -1.1
fH—f1 0.0072-0.0223i 0.0077 - 0.0232i 4.3
2fi—f>» 0.0046-0.00371 0.0044 -0.00291 -10.9
fi -0.0667 +0.1116i -0.0667 + 0.1116i 0.1

f>» -0.0638-0.10031 -0.0629 - 0.1008i -0.1
2f»— fi 0.0013-0.00501 0.0015-0.0051i 1.9
2f1 0.0104 +0.00081 0.0108 + 0.00101 3.8

Table 6.4: Comparison of the main intermodulation harmonics of the sinusoidal steady state, com-
puted using the full order nonlinear model, and the reduced order TPWL model (g = 35).

Har- Full nonlinear Reduced order Error
monics model TPWL model [%]
dc -0.4967 -0.4921 -1.0
fH—fi 0.0072-0.02231  0.0081 - 0.0226i 2.4
2fi— f> 0.0046 - 0.00371  0.0056 - 0.0042i 18.8
fi -0.0667 +0.11161 -0.0667 +0.11081 -0.6

f> -0.0638 -0.10031 -0.0634 - 0.1005i -0.1
2f>»— f1 0.0013-0.0050i 0.0019 - 0.0048i -0.3
2f1 0.0104 +0.0008i 0.0108 + 0.0004i 37

In a different series of tests, we applied a TPWL reduced order model to compute intermodu-
lation distortion for the considered op-amp example (using nonlinear capacitance models for the
MOSFETs). We extracted two TPWL models: the first one of order g = 39 (with 39 linearization
points), and the second one of order g = 35 (with 36 linearization points) for a sinusoidal training
input (which was the same in both cases):

Vint (t) = —Vina(t) = (2-20-sin(27 fi1) +24) - 1072,

where fi = 1MHz. Then, the models were tested for the input signal being a sum of two sinusoids
with different frequencies:

Vin1 (1) = —vin2 (t) = [20- (sin(2m fi1) + sin(2m for)) + 24] - 1072,

where f; = IMHz and f> = 1.2MHz, and the spectrum of the computed sinusoidal steady state was
extracted using DFT. Tables 6.3 and 6.4 show the complex amplitudes of the main intermodulation
products and the driving harmonics obtained with the TPWL reduced order models, and the full
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nonlinear model of the considered op-amp. The error shown in the tables is the relative error of
the computed complex amplitude. The results indicate that the TPWL reduced models are able
to effectively reproduce the intermodulation distortion effects in the considered case. At the same
time, comparison between the two tables shows that the computed amplitudes of intermodulation
products vary significantly depending on the applied TPWL model, which suggests that in this case
we are close to the limits of applicability of the considered macromodels.
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Chapter 7
Performance of TPWL MOR algorithms

In this chapter we consider performance of the proposed MOR technique, based on selecting a
collection of linearizations from a state-space trajectory of the original nonlinear system. First, we
discuss efficiency of both TPWL model extraction and time-domain simulations with the reduced
order models. Then, we compare accuracy of TPWL reduced models, extracted with two different
projection bases (generated with algorithms presented in Sections 3.2.2 and 3.2.3, respectively).
Also, efficiency of model extraction in both cases is considered. Finally, we discuss performance
and accuracy of the fast piecewise-linear simulator, introduced in Section 3.3.

7.1 Model extraction and time domain simulations

First, we considered efficiency of TPWL mode] extraction for the example of the nonlinear trans-
mission line circuit model, described in Section 2.2. The original system had order N = 1500, and
the corresponding reduced TPWL model of order g = 30 (with s = 21 linearization points) was ex-
tracted for a 1-volt step training input using the fast approximate simulator (cf. Section 3.3). Also,
linear and quadratic reduced order models of the same order were extracted (with the expansion
point at the initial equilibrium state). All the reduced models were tested for the same input signal,
equal to the training input signal. Table 7.1 shows a comparison of execution times both for model
extraction, and reduced-order simulation for all the discussed MOR techniques.

Table 7.1: Comparison of the times of model extraction, and reduced order simulation for the
linear, quadratic, and TPWL MOR techniques. The original problem had size N = 1500. All the
reduced model had size g = 30.

MOR Model extraction Simulation
method time [s] time [s]
linear 44.8 1.18
quadratic  2756.5 31.5
TPWL 80.7 8.0
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Table 7.2: Comparison of the times of mode] extraction, and reduced order simulation for the
linear, quadratic, and TPWL MOR techniques (N = 880, ¢ = 26).

MOR Model extraction Simulation
method time [s] time {s]
linear 14.8 1.0
quadratic  3712.3 33.3
TPWL 293.5 8.3

One should note that all the extraction algorithms, and the reduced order solvers were imple-
mented in Matlab. The tests were performed on a Linux workstation with Pentium III Xeon proces-
sor. One may note that performance for linear and TPWL MOR algorithms is comparable, while
generation of the quadratic reduced model is significantly more expensive, due to the costly reduc-
tion of the Hessian matrix, which requires ¢ computations of the matrix-vector product W (x ® x),
where W is a full order N x N? Hessian matrix (usually represented implicitly — cf. [17], or Section
3.1.1).

From the table it also follows that simulating the TPWL reduced model is more expensive
than simulating the linear model, which is due to the fact that in a TPWL model it is necessary
to compute a weighted combination of the Jacobians at every timestep. Nevertheless, the TPWL
solver again outperforms the quadratic solver of the same order. One should note that for all the
reduced order solvers the simulation time is much shorter than the corresponding simulation time
for the full-order nonlinear solver, which equals 9573 seconds, or about 160 minutes (for Matlab
implementation).

Analogous tests have been performed for the micromachined switch example. In this case
the original nonlinear system had order N = 880, and the extracted reduced linear, quadratic, and
TPWL models had order g = 26. The TPWL model was extracted for a 9-volt step input voltage,
and the number of linearizations equaled 26. Table 7.2 shows model extraction times, as well as
reduced order simulation times for this case. One may note that the performance pattern for the
discussed MOR algorithms, and the corresponding reduced order solvers is analogous as in the
previous example.

Let us briefly analyze the memory requirements for the TPWL reduced order solver. As already
discussed in Section 3.1, the memory complexity for TWPL reduced models is O(sg?), where s is
the number of linearization points. Consequently, this memory cost is roughly s times larger than
the cost for the linear reduced order simulator (which is O(g?)). The memory cost of the quadratic
reduced order solver is O(g°) (the reduced order Hessian must be stored explicitly as a matrix), so
if s & g, then the memory requirements for the TPWL solver are approximately the same as for
the quadratic solver. For the examples of the nonlinear transmission line and the micromachined
switch s = 21 = (2/3)g, or s = 26 = g, so in those cases the amount of memory used by the TPWL
algorithm was comparable to the amount of memory used by the quadratic solver.
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Figure 7-1: Comparison of the system response (micromachined switch example) computed using
the TPWL models extracted with the simple and extended reduced order bases. In both cases the
models were generated for a 5.5-volt step input voltage.

7.2 Performance of the extended algorithm for generating the
reduced order basis

This section presents computational results comparing two algorithms for generating the reduced
order basis — a simple one, presented in Section 3.2.2, and the extended one, introduced in Section
3.2.3. Figure 7-1 shows the deflection of the center of the micromachined fixed-fixed beam com-
puted using the two considered methods. In both MOR methods a 5.5-volt step input voltage was
used as a ‘training’ input, and the number of linearization points equaled 6. For the simple algo-
rithm the order of the reduced model equaled g = 31. In the extended algorithm, a basis of order 7
(=2-gi+1, g; = 3 for every i — cf. Step 2(a) in the algorithm from Section 3.2.3) was generated at
each of the linearization points. Then, the size of the aggregate basis V,,, has been reduced from
42=6-7 to 28 using the SVD algorithm. One may note that the TPWL model of order ¢ = 28,
generated with the extended reduced order basis, gives significantly more accurate results than the
TPWL model extracted with a simple basis. (On the graph, the dashed line overlaps perfectly with
the solid line.) In order to obtain the desired accuracy with the model extracted with the simple
basis, the order of the basis needs to be increased to ¢ = 41 in the considered case (cf. Figure 7-2).

Yet in a different test (cf. Figure 7-3) we simulated the pull-in effect for the micromachined
switch example. Again in this case the MOR method employing the extended reduced basis pro-
vides the best accuracy among the considered MOR techniques. It also generates a model with the
lowest order.
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Figure 7-2: Comparison of the system response (micromachined switch example) computed using
the full nonlinear simulator, and the TPWL reduced order model extracted with the simple reduced
order basis. The model of order q=41 was generated for a 5.5-volt step input voltage.

System response for étep input voltage v(t) = 9H(t)

G T T T 1
—05) e ms -t st o S e e 6 5 ot s o 5 3 s st 6t -
[
(<]
Q
£
c
2 -t 1
[$3
2
°
=]
k< o
£ )
215} -
2
8 — full nonlinear model, N=880
© == linear reduced model, q=40
—— quadratic reduced model, g=40 \
=25 | tpwt reduced model, simple basis, g=41 =N ]
-~ - tpwl reduced model, extended basis, g=26 ‘\
l RS
0 0.1 0.2 0.3 0.4 0.5 0.6
Time [ms}

Figure 7-3: Comparison of the system response (micromachined switch example) computed with
different MOR algorithms. The TPWL models were generated for a 9-volt step input voltage.
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Figure 7-4: Comparison of the error in the output vs. the order g of the reduced order TPWL
models, generated with simple and extended projection bases.

Please note that for the extended algorithm the size of the basis can be kept small since we gen-
erate very low order bases at each linearization point. On the other hand, in the ‘simple’ approach
we generate the projection basis at a single point, but then it needs to have a much higher order,
if desired level of accuracy is to be reached. In order to more precisely compare relative accu-
racy of TPWL models extracted with simple and extended projection bases we examined the error
e=|ly —yrll2, where y, = [y,(0),y(AT),...,y,(T)] is a vector of outputs at subsequent timesteps
obtained with a reduced order TPWL model, and y is the corresponding vector obtained with a
full order nonlinear model. This error was computed for TPWL reduced models for the microma-
chined switch, having different orders g. All the compared models have been trained and tested
for the same 5.5-volt step input signal, and used the same number of linearization points (s = 11),
in order to obtain a fair comparison. The results are shown in Figure 7-4, and clearly indicate that
the ‘extended’ algorithm generates projection bases which lead to more accurate TPWL reduced
models. Tt can also be observed from the graph in Figure 7-4 that once a certain order of the
model is reached, the accuracy of the model does not improve (and does not tend to 0, while we
increase the order of the model). The non-zero ‘limit error’ is due to the applied piecewise-linear
approximation of system’s nonlinearity. This error can be lowered only if we improve quality of
the TPWL approximation, e.g. by increasing the number of linearization points.

Let us briefly compare the cost of extracting a TPWL model, using the ‘simple’ and ‘extended’
algorithms. On one hand, the approximate training simulation (with fast simulator presented in
Section 3.3) is typically cheaper if we use the ‘extended’ algorithm, since the linearized models
generated ‘on the fly,” during the piecewise-linear simulation have lower orders. On the other hand,
if LU factorization of Jacobians is performed to construct Krylov subspace(s), then the ‘extended’
algorithm requires factorizing a full-order Jacobian at each linearization point, while the ‘simple’
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Table 7.3: Comparison of the times of model extraction, and reduced order simulation for the
TPWL MOR algorithms using two different methods of generating the reduced order basis. The
tests were run for the micromachined switch example. The original problem size equaled N = 880.

Reduced basis Model  Simulation
generation extraction  time [s]
algorithm time [s]

simple, q=28 26.5 3.1
simple, g=31 274 34
simple, q=41 30.9 6.5
extended, q=28 66.8 3.1

algorithm needs to perform such factorization only once — at the initial state, where the projection
basis is generated. The cost associated with Jacobian factorization typically dominates over the
simulation cost, rendering the ‘extended’ algorithm computationally more costly. This is illustrated
in Table 7.3, which shows model extraction times for the discussed algorithms, for selected values
of g. The times were measured on a Linux workstation with Pentium 4, 2-GHz processor.

7.3 Performance of the fast piecewise-linear simulator

The algorithm for approximately generating the training trajectory for TPWL model extraction
proposed in Section 3.3, may also be used as a standalone fast simulator for nonlinear dynamical
systems. Effectiveness of this simulator has already been indirectly verified by the quality of the
extracted TPWL reduced models, as shown in previous sections and chapters. In this Section we
present a few selected simulation results which confirm high accuracy of solutions computed with
the discussed fast simulator, which performs a series of simulations of linear reduced order models
generated ‘on the fly’.

First, we used the proposed fast simulator to compute voltages induced in the nonlinear trans-
mission line, in response to a step input current i(¢) = H(t — 3), where H(-) is the Heaviside (step)
function. To this end, we used nonlinear transmission line circuit model with N = 1500 nodes,
shown in Figure 2-1 (cf. Section 2.2.1). Figure 7-5 presents the output voltage v; () (voltage at
node 1) for time from 0 to 10 seconds, computed using full order linear and quadratic models,
as well as the proposed fast piecewise-linear simulator. The reference result is computed with a
simulator using the full order nonlinear circuit model. In the simulation the number of timesteps
was 1000 (T = 10, AT = 0.01), the fast piecewise-linear simulator used the reduced basis of order
q = 30 generated at the initial state (the original problem size was N = 1500), and we used 21
different linear models during the fast simulation. As Figure 7-5 clearly shows, the output volt-
age obtained with the fast simulator matches very well the reference result (the curves overlap
almost perfectly). Table 7.4 shows the relative error between the vector of voltages at node 1 at
subsequent timesteps: v1 = [v(0),v1(AT),...,vi(T)] computed with linear, quadratic and TPWL
simulators and the corresponding reference voltages v e, obtained with the full nonlinear model
of the circuit. It is apparent that the proposed fast piecewise-linear simulator computes a very ac-
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Figure 7-5: Comparison of the system response (nonlinear transmission line circuit model) com-
puted with full-order linear, quadratic, and nonlinear models, and the fast piecewise-linear simula-
tor. The input signal was a step current i(t) = H(t —3) (H(t) = 1 fort >3 and H(t) = 0 for ¢ < 3).
N = 1500.

Table 7.4: Quality of solutions obtained with linear, quadratic, and fast piecewise-linear simulators.

Model ”‘_’1“Zl,re¢_‘”2
viresll2

linear, N = 1500 0.384

quadratic, N = 1500 0.049

TPWL, N = 1500, g =30 0.003

curate solution (with adequately matched steady state), easily outperforming linear and quadratic
simulations. We also compared simulation times for the proposed fast piecewise-linear simulator
and the full nonlinear simulator, for the example of nonlinear transmission line circuit model with
N = 1500 and N = 100 nodes, excited with three different input signals. The results are shown
in Table 7.5. In order to ensure appropriate accuracy, the order of the reduced basis used by the
fast piecewise-linear simulator equaled ¢ = 30 (for N = 1500), and ¢ = 10 (for N = 100). Both
simulators were implemented in Matlab. Note that high performance implementations will most
likely give significantly lower absolute execution times, and may change the relative performance
of the two algorithms. The tests were performed on a Linux workstation with Pentium III Xeon
processor. It is apparent that for either small or large original problem sizes N the piecewise-
linear simulator was significantly faster than the full nonlinear solver. For N = 1500 a 100-fold
acceleration in computation time was achieved.
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Table 7.5: Comparison of simulation times for the full order nonlinear simulator, and the proposed
fast piecewise-linear reduced order simulator.

Input, Simulation Simulation

problem size time [s], full time [s],
nonlinear model fast pwl simulator

i(t) =H(t—3)

(N = 1500, g = 30) 9573.3 80.8

(1) = exp(—)

(N = 1500, g = 30) 11713.1 110.9

i(t) = sin(2mt /10)

(N =100, g = 10) 25.4 2.7

7.3.1 Using a posteriori error estimates in fast simulation

In Section 4.1.1 we proposed a procedure for selecting subsequent linearization points (located on
the training trajectory) based on a posteriori error bounds. This procedure may again be used as
a separate simulator, alternative to the one considered above (and presented in Section 3.3). The
difference between these two simulators is that the first one (called from now on ‘simple’ fast
simulator) uses only the information on distances between the states in order to decide whether
the next linearized model should be generated, while the other one (called from now on ‘extended’
fast simulator) makes this decision based on the estimated error in the solution computed at a
given timestep. In the ‘simple’ approach, an arbitrary parameter controls how frequently linearized
models are changed, while in the ‘extended’ one, linearized models change so frequently, to ensure
that the relative error of the solution does not exceed a prescribed value. This means that in the
‘extended’ approach one may guarantee quality of the computed solutions. Unfortunately the
‘extended’ fast simulator, described in Section 4.1.1, may only be used for systems with negative
monotone nonlinearities, and if estimates of Hessian norms are available.

The transmission line circuit model with quadratic resistors (cf. Figure 2-2) is an example of a
system, for which those conditions are satisfied. Consequently, we used it to compare the two fast
simulators discussed above. Also note that while in the previous section the fast simulator used
projection basis generated at the initial state, both ’simple’ and "extended’ fast simulators examined
in this section generate a new basis (in a suitable Krylov subspace) for every new linearization point
(cf. Section 3.2.3).

In the first test we computed values of the output of our system y,; = y,(iAT), for AT = 0.01
and i = 1,...,10000, in response to a step input current i(¢) = 1. Both ‘simple’ and ‘extended’
fast simulators used 16 reduced linearized models of order 7 to perform this simulation. For the
‘extended’ simulator, the number of linearizations used corresponded to the maximum estimated
relative error € = 0.1 (cf. Section 4.1.1). The relative errors (with respect to the full nonlinear
model) in the solutions computed with both fast simulators are shown in Figure 7-6. One may
note from the graph that the ‘extended’ simulator distributes linearization points (identified by
sharp notches) much more evenly during the simulation, as compared to the ‘simple’ simulator.
This leads to overall lower levels of the errors. Also note that this error does not exceed the
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prescribed value of € = 0.1. Nevertheless, since the number of linearization points is the same
in both simulators, the ‘simple’ simulator outperforms the ‘extended’ one in the beginning of the
simulation. Consequently, if we compute

e=ly —yrll2/lIyll2, (7.1)

where y = [Vi,---,Y10000] contains values of output computed with fast simulators, and y, — the
corresponding values computed with the full nonlinear model, we will obtain that ¢ = 0. 53 for the
‘simple” simulator, and e = 0.52 for the ‘extended” simulator.

In the second test we used input current i(z) = (cos(mz/50))? (¢ € [0,100]). Both fast simula-
tors used 45 reduced linearized models of order 7 to perform this simulation. For the ‘extended’
simulator, the number of linearizarions used corresponded to the maximum estimated relative error
e = 0.05. Figure 7-7 shows relative errors of the solutions computed with the ‘simple’ and ‘ex-
tended’ simulators. One may note that in this case both simulators distribute linearization points
rather evenly. However, if one computes e, given by (7.1), then for the ‘simple’ simulator equals
e = 0.26, and for the ‘extended’ one — e = 0.15. This means that the ‘extended’ model is able to
select the linearization points in a more optimal manner.

We also compared simulation times for both ‘simple’ and ‘extended” algorithms. The tests
were performed on a Linux workstation with Pentium 4, 2-GHz processor. For the first input
signal, simulation with the ‘simple” algorithm took 3.5 seconds, and with the ‘extended’ algorithm
— 6.1 seconds. For the second input signal, the simulation times equaled 3.9 and 6.7 seconds,
respectively. The full nonlinear simulation took 57.2 seconds, for both input signals.
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Chapter 8

Conclusions

In this dissertation we studied the problem of constructing reduced order models for nonlinear
dynamical systems, which mathematically describe a broad and important class of devices and
phenomena in all branches of engineering. We focused on addressing the following aspects of
nonlinear model order reduction:

e modeling strongly nonlinear systems in which system’s operating point varies significantly
with time,

e cost-efficient representation of nonlinearity in a reduced order system.

The main motivation behind this choice of topics is lack of MOR methods which would adequately
approach the important problems mentioned above. Firstly, the majority of existing nonlinear
MOR algorithms are based on polynomial or functional expansions about a single state of a given
system, and consequently cannot be applied to modeling systems in which a strong nonlinearity
drives the system through a series of different operating points. Unfortunately, single-state ex-
pansion limits very considerably the scope of application of those methods. Secondly, very often
existing MOR strategies overlook the problem of computational complexity associated with using
the extracted reduced order model. Unlike in the linear case, order reduction (e.g. corresponding to
a certain state-space projection) of a nonlinear system does not usually imply a commensurate re-
duction of numerical cost associated with solving/evaluating the reduced order system. Significant
simulation speedups may be achieved only if order reduction is accompanied by a cost-efficient
representation of system’s nonlinearity. Finally, some of the MOR methods are characterized by
high cost of extracting the reduced order model, which effectively eliminates them from being used
for larger dynamical systems.

Consequently, during the entire process of constructing a new MOR strategy for nonlinear dy-
namical systems we took a cost-driven approach, which manifested itself through:

e proposing a simple, easy to handle approximation of system’s nonlinearity, based on a
weighted combination of a relatively small collection of linearized models,

e developing procedures for a generating reduced order projection basis, exploiting inexpen-
sive Krylov subspace methods,
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e constructing an algorithm for approximate simulation of the original system (based on re-
duced linear models generated ‘on the fly’), to reduce the costs of model extraction.

In order to be able to account for strongly nonlinear effects in the reduced order model, the idea
of selecting linearization points from a state-space trajectory of the original nonlinear system has
been proposed, leading to a Trajectory Piecewise-Linear (TPWL) model order reduction strategy.

Properties of the proposed TPWL MOR approach, as well as its applicability, have been in-
vestigated primarily by performing suitable numerical experiments. The TPWL MOR algorithm
was applied to extracting models for a few selected examples of devices which are composed
of strongly nonlinear elements and/or demonstrate strongly nonlinear input-output behavior, and
proved challenging for the existing MOR approaches. The examples included a micromachined
switch, nonlinear transmission line circuit models, an operational amplifier, and a jet engine inlet
operating at supersonic speeds. In particular, the micromachined switch example and the nonlin-
ear transmission line circuit model were used by a number of researchers to test different MOR
approaches, based on polynomial expansions of the nonlinearity, bilinearization, and Karhunen-
Loéve expansions. As reported in literature, reduced order models generated by existing MOR
techniques were unable to capture strongly nonlinear effects in the behavior of the discussed sys-
tems, were lacking accuracy (in modeling either transient or steady-state behavior), or were offer-
ing insufficient computational speedup.

Results of numerical experiments, presented mostly in Chapter 6, indicate that the TPWL MOR
method outperforms previously used MOR algorithms based on polynomial expansions about a
single state of a system (e.g. linear, quadratic reduced models), often in a number of aspects.
Models extracted with the TPWL method were found to be able to capture strongly nonlinear
effects (such as pull-in effect for the micromachined switch example, or shock movement for the
supersonic fluid flow problems), and adequately simulate both transient and steady-state responses
for systems with a large number of strongly nonlinear elements (e.g. for the nonlinear transmission
line models, or the op-amp example). The discussed models were able to compute adequately the
first few harmonics, and the main intermodulation products of a periodic steady state in a nonlinear
system, indicating that they may be effectively used to find distortion in nonlinear circuits, such
as op-amps. However, it has also been found that the applied reduced order projection bases have
difficulties with adequately representing some of the shocks.

As shown in Chapter 7, TPWL MOR algorithms and the corresponding reduced order models
are characterized by high performance, and low computational complexity. Thanks to the pro-
posed fast approximate simulation algorithm, and the applied reduced order projection techniques,
extraction of TPWL models can be performed very efficiently, often at a significantly lower cost
than extraction of e.g. quadratic macromodels. Memory resources required to store a TPWL re-
duced order model are also modest, and comparable to those necessary to store a quadratic reduced
order model. Finally, as shown through performance tests, simulation of a reduced order TPWL
system is very fast, due to efficient representation of the nonlinearity, and the applied time-stepping
scheme which uses estimates of the next state to compute the weights at a given timestep. Sum-
ming up, the results of computational experiments clearly indicate that using TPWL reduced order
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models results in very large speedups in computation time, and requires very modest computer
resources. They confirm that the developed TPWL MOR strategy adequately addresses important
problems of nonlinear model order reduction, including macromodeling of strongly nonlinear sys-
tems, and providing an efficient representation of system’s nonlinearity. Consequently, the main
goal of this dissertation has been achieved.

Computational tests performed within this study also aimed at investigating limitations of TPWL
model order reduction approach. Recalling that a given TPWL model is associated with a training
trajectory corresponding to a certain training input, a question which arises is establishing a class
or range of inputs for which a given TPWL model will be sufficiently accurate. Giving a general,
yet practical answer to this question is difficult, since e.g. a priori error analysis (which ultimately
gives a bound for the error between solutions computed with the TPWL model and the original
nonlinear system, expressed in terms of e.g. the distance between the testing and training input
signals) typically yields very conservative bounds (cf. Chapter 4). In order to practically assess the
range of applicability of a given TPWL system, numerical tests were performed. Results of those
tests, presented in Chapters 3 and 6, suggest that often a TPWL model can provide an adequate
model of the original nonlinear system even for a testing input signal which is dynamically very
different from the training input signal (e.g. a sinusoidal signal vs. a step signal), for which this
model has been generated. The mentioned results provide therefore an important argument in favor
of TPWL MOR approach.

Although practical importance of a priori error estimates is limited, we have found that a pos-
teriori error bounds may be effectively used to assess quality of the computed solutions during the
actual simulation with a reduced order TPWL model. In Chapter 4, a procedure for computing
such error bounds ‘on the fly’ has been derived for the case of systems with negative monotone
nonlinearity. It has also been shown that this procedure may be effectively applied to compute
realistic error bounds for an example of a nonlinear analog circuit.

Another aspect of MOR, which may become particularly important if using reduced order mod-
els to replace subsystems in larger, interconnected systems refers to the property of preserving
stability and passivity of the original nonlinear system. Chapter 5 presents discussion of those
problems, focusing on negative definiteness as the simplest property which may help one to ensure
stability of TPWL reduced order systems. In that chapter some basic results, stating under which
condition a TPWL reduced order model is guaranteed to be stable, are presented. Those results
provide a starting point for developing strategies for constructing guaranteed stable and passive
reduced models.

Yet another issue studied in this dissertation refers to making the model extraction process as au-
tomatic as possible. In the initial version of the proposed TPWL MOR algorithm a few arbitrarily
set parameters are used. The most important one controls ‘how often’ the subsequent linearization
points will be picked, which determines the final number of the linearized models in a TPWL re-
duced order system. In an effort to eliminate this arbitrary parameter, in Chapter 4 we proposed
a procedure for selecting linearization points based on a posteriori error analysis, valid for nega-
tive monotone nonlinearities. As shown using a computational example, the proposed procedure,
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apart from making the model extraction more automatic, leads to an improved distribution of the
linearization points. In the thesis we have also suggested possible enhancements of accuracy of
TPWL models, e.g. we presented a weighting procedure which exploited information on Hessians
of the nonlinear function.

Previous chapters also present problems which were observed while performing simulations
with TPWL reduced order models for given application examples, and could not be resolved so
far. They include problems with stability of TPWL models for the case of nonsymmetric, indefi-
nite nonlinear operators (e.g. for the micromachined switch example), as well as difficulties with
reduced order representation of shock shapes, and inadequate projection basis generated by Krylov
subspace methods for the problem of the jet engine inlet. The above problems suggest that further
investigation is needed in the following topics:

¢ stability and passivity preservation, while reducing stable systems with nonlinear operators
which do not satisfy the negative definiteness condition,

e error analysis for the case of non-negative monotone nonlinearities,

o reduced order projection strategies for TPWL models, based on methods other than Krylov
subspace algorithms, e.g. TBR or Fourier Model Reduction (FMR).

Possible extensions of the TPWL MOR approach proposed in this study also include:

e applying a different projection basis for each of the linearized models (and performing nec-
essary translations of states between different representations in reduced order subspaces),

generating TPWL models using multiple training trajectories,

optimizing the choice of linearization points,

automatic order selection based on error analysis,

considering weighted combinations of higher order models, obtained with polynomial ex-
pansions at different states of the system.

Some of the topics mentioned above have not yet been considered, while others are currently inves-
tigated by researchers following on this initial study, which gives promise for further development
of reduction algorithms based on the concept of trajectory quasi-piecewise-linear approximations
for nonlinear dynamical systems.
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Appendix A

Netlist for the op-amp example

Following is the input file for the NITSWIT circuit simulator, which contains the netlist for the
op-amp example, along with definitions of the input signals. For a description of the file format
please refer to [68].

glckal 0

cdif 14 15 ¢ ¢ = 4pf

ccerml 14 702 ¢ ¢ = 1pf

cccmm2 15 702 ¢ ¢ = 1pf

P e e T R T TP

vemmde 902 0 de v = 10.2mv

mrr2 902 700 r r = 1

vemmrst 903 0 pwl t0=0 v0=-2.5 tl1=150ns vl=-2.5 t2=155ns v2=2.5
mrr3 903 610 r ¥ = 1

mpcmml 14 620 702 100 pch w = 14u 1
mpemm? 15 610 702 100 pch w = 14u 1
mrra 911 601 r r = 1

vinl 911 0 pwl t0=0 v0=0 t1=290ns v1=0 t2=400ns v2=11.5mv t3=10000ns v3=11.5mv
vin2 901 0 pwl t0=0 v0=0 t1=290ns vl=0 t2=400ns v2=-11.5mv t3=10000ns v3=-11.5mv
mrrl 901 602 r r = 1

vgnd 904 0 pwl t0=0 v0=2.5 t1=220ns v1=2.5 t2=230ns v2=-2.5 t3=10000ns v3=-2.5
mrr4 904 605 r r = 1

vintn 905 0 pwl t0=0 v0=-2.5 tl=250ns vl=-2.5 t2=260ns v2=2.5 t3=10000ns v3=2.5
mrr5 905 606 r r = 1

vintp 906 0 pwl t0=0 v0=2.5 £1=250ns vl=2.5 %2=260ns v2=-2.5 t3=10000ns v3=-2.5
mrxr6 906 607 r r = 1

vrst 907 0 pwl £0=0 v0=2.5 tl1=230ns v1=2.5 t2=240ns v2=-2.5 t3=10000ns v3=-2.5
mry?7 307 608 r ¥ = 1

venmin 908 0 pwl t0=0 v0=2.5 £1=200ns v1=2.5 t2=210ns v2=-2.5 t3=10000ns v3=-2.
mrr8 908 609 r r = 1

cinl 601 1 ¢ ¢ = 8.84pf

cin2 602 2 c ¢ = 8.84pf

cintl 1 603 ¢ ¢ = 1.105pf

eint2 2 604 ¢ ¢ = 1.105pf

3u
3u

nou

mngml 1 6039 0 200 nch w = 20u 1 = 3u

mngm2 2 609 0 200 nch w = 20u 1 = 3u

mngndl 603 605 0 200 nch w = 20u 1 = 3u
mngnd2 604 605 0 200 nch w = 20u 1 = 3u
mnintl 603 606 15 200 nch w = 20u 1 = 3u
mnint2 604 606 14 200 nch w = 20u 1 = 3u
mpintl 603 607 15 100 pch w = 20u 1 = 3u
mpint2 604 607 14 100 pch w = 20u 1 = 3u

mnrstl 10 608 14 200 nch w = 20u 1 = 3u
mnrst2 11 608 15 200 nch w = 20u 1 = 3u

R L L g NN T
H

;* f£irst stage **** low gain **** hi by *¥#trex
SRR KA R AR AR KR XA KR AR AR RN AR KA AR RN AR AR Ak ®

mnl0inl 3 1 7 200 ncc w = 200u 2 = 3u ad = 900p as = 900p
mnlfinZ 4 2 7 200 ncc w = 200u 1 = 3u ad = %00p as = 900p
mpl0ldl 200 8 3 100 pch w = 22u 1 = 5u ad = 81lp as = 81p
mpl0ld2 200 8 4 100 pch w = 22u 1 = 5u ad = 8lp as = 81p
mplOpul 3 9 100 100 pch w = 72u 1 = 5u ad = 162p as = 162p
mplOpu2 4 9 100 100 pch w = 72u 1 = 5u ad = 162p as = 162p

1 = 3u ad = 300p as = 300p

mni0foll 100 3 5 200 nch w = 132u
mnl0fol2 100 4 € 200 nch w = 132u 1 = 3u ad = 300p as
1% CUYTENE SOUICES **H ¥ ¥k Akt kb adhask ekt s sshedss
mnl0dpbs 7 201 200 200 nch w 21%u 1 = 5u ad = 1296p as = 1296p
mnl0fbsl 5 201 200 200 nch w 72u 1 = 5u ad = 324p as = 324p
mnl0fbs2 6 201 200 200 nch w 72u 1 = Su ad = 324p as = 324p
mni0pubs 8 201 200 200 nch w = 72u 1 = 5u ad = 324p as = 324p
mnl0csbs 9 0 8 200 nch w = 1324 1 = 3u ad = 300p as = 300p
mpllpubs 9 9 100 100 pch w = 36u 1 = 5u ad = 162p as = 162p
SRR R A Ak R R R AR KR KX RNk R R R R KRR KR AR KA K kN

coffsetl 5 10 ¢ ¢ dpf

coffset2 6 il ¢ ¢ 4pf

300p

W on R
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roffsetl 10 0 ¥ r = lell
roffset2 11 0 r x = lell

KK A KR AN AR AR KR A KRR A AR E R AR RR AR A IR TRk A F AT h KRRk

;%% 2nd stage ** medium gain *ErRrrEERrAEREEEE
SRR AR K AR R AR AR KR KA KR AR AR AR ANy

mndifprl 12 10 19 200 nch w = 100u 1 5u ad = 450p as = 450p
mndifpr2 13 11 19 200 nch w = 100u 1 Su ad = 450p as = 450p
mpdifpri 16 10 21 100 pch w = 100u 1 5u ad = 450p as = 450p

nou

0

mpdifpr2 17 11 21 100 pch w = 100u 1 = 5u ad = 450p as = 450p
mpcurbsl 12 101 100 100 pch w = 192u 1 =51 ad = 900p as = 900p
mpeurbs2 13 101 100 100 pch w = 192u 1 = 5u ad = 900p as = 900p

mpcurcsl 14 102 12 100 pch w = 96u 1 5u ad = 450p as = 450p
mpcurcs2 15 102 13 100 pch w = 96u 1 S5u ad = 450p as = 450p
mncurbsl 16 201 200 200 nch w 96u 1 = 5u ad = 450p as 450p
mncurbs2 17 201 200 200 nch w 96u 1 = 5u ad = 450p as 450p
mncurcsl 14 202 16 200 nch w = Su‘ad = 225p as = 225p
mneures2 15 202 17 200 nch w = 48u 1 Su ad = 225p as = 225p
mndifbs 19 209 200 200 nch w = 210u 1 = 10u ad = 900p as = 900p
npdifbs 21 109 100 100 pch w = 420u 1 = 10u ad = 1800p as = 1800p

P S S 2 L2 L s E L A R R L L LR

non

IS
o
o
o

wow

;** cmm feedback P S L LR T R R R a2 AR A R 2

KA KKK KK AA KRR KR KRR RE R E R K R A AR A AN H TR R X F A d ok h kA h A K
i

mpermfla 16 702 20 100 pch w = 30u 1 = Su ad = 270p as = 270p
mpemmflb 17 702 20 100 pch w = 30u 1 = 5u ad = 270p as = 270p
mpermEZa 30 700 20 100 pch w = 30u 1 = Su ad = 270p as = 270p
mpcrmE2l 30 700 20 100 peh w = 30u 1 = 5u ad = 270p as = 270p
mnemmm? 30 30 200 200 nch w = 28u 1 = 5u ad = 112p as = 112p
mnermmmla 16 30 200 200 nch w = 14u 1 = 5u ad = 70p as = 70p
mnemmmlb 17 30 200 200 nch w = 1d4u 1 = 5u ad = 70p as = 70p

mpemmbs 20 101 100 100 pch w = 96u 1 = 5Su ad = 450p as = 450p

FR e L e L A R R
J6% hi swing biasing ****¥rrerrrEIEEELEREACERER
e T e LA AR AL A AR
ibiasl 100 202 i i = 40ua
ibias2 100 203 i i = 40ua

mnxbsl 202 202 204 200 nch w = 48u 1 = 5u ad = 225p as = 225p
mnxbs2 204 202 200 200 nch w = 10u 1 = 6u ad = 90p as = 90p

mnxbs3 201 201 200 200 nch w = 48u 1 = Su ad = 225p as = 225p
mnxbs4 100 203 201 200 nch w = 48u 1 = 5u ad = 225p as = 225p
mnxbs5 205 201 200 200 nch w = 48u 1 = 5u ad = 225p as = 225p
mnxbs6 203 202 205 200 nch w = 48u 1 = 5u ad = 225p as = 225p
wnxbs? 206 201 200 200 nch w = 48u 1 = 5u ad = 225p as = 225p
mnxbs8 102 202 206 200 nch w = 48u 1 = 5u ad = 225p as = 225p
mnxbs9 207 201 200 200 nch w = 48u 1 = 5u ad = 225p as = 225p
mnxbsl0 103 202 207 200 nch w = 48u 1 = S5u ad = 225p as = 225p
mnxbsll 208 201 200 200 nch w = 48u 1 = 5u ad = 225p as = 225p

maxbsl2 109 202 208 200 nch w = 48u 1 = 5u ad 225p as = 225p
mnxbs13 209 209 200 200 nch w = 105u 1 = 10u ad = 900p as = 900p

7******************w**********««***************

mpxbsl 102 102 104 100 pch w = 96u 1 = 5u ad = 450p as = 450p
mpxbs2 104 102 100 100 pch w = 20u 1 = su as = 180p as = 180p
mpxbs3 101 101 100 100 pch w = 96u 1 = Su ad = 450p as = 450p
mpxbs4 200 103 101 100 pch w = 96u 1 = 5u ad = 450p as = 450p
mpxbs5 105 101 100 100 pch w = %6u 1 = 5u ad = 450p as = 450p
mpxbs6 103 102 105 100 pch w = %6u 1 = 5u ad = 450p as = 450p
mpxbs7 106 101 100 100 pch w = 96u 1 = 5u ad = 450p as = 450p
mpxbs8 209 102 106 100 pch w = 96u 1 = 5u ad = 450p as = 450p

mpxbs9 109 108 100 100 pch w = 210u 1 = 10u ad = 1800p as = 1800p
P e R AL AR AR A b by

SH% GUppLy FREERRRA KRR EE LRSI A R AR A AR

S EREEEE AR AR R AR AR R AR R RN AN
véd 909 0 de v = 2.5v

mrrg 909 100 r r = 1

vss 910 0 de v = -2.5v

mrrb 310 200 r r = 1

AR R R KRR R R AR KA AR SRR
iv% pochannel mosfet: *AxFxxrrxaswsiririicexwxs

B L R b bbb bbbl

model nch nmos vto = 0.9 kp = 30.0u gamma = 1.36 phi = 0.747 cgso = 520p cgdo =
520p tox = 50n 1d = 400n c¢j = 320u mj = 0.5 cjsw = 900p misw = 0.33 js = 100u

model ncc nmos vto = 0.9 kp = 40.0u gamma = 1.36 phi = 0.747 cgso = 520p cgdo =
520p tox = 50n 1@ = 400n ¢j = 320u mj = 0.5 cisw = 900p misw = 0.33 js = 100u

kKK R KRR R AR A I A KA KK TN A RN KTRR AT AR AR R AR F AT RN
i

;** p-channel mosfet: P s LA S SR S L R R
Ak A AR KAk ke kR AR AR AR R R R KA R E R A A RN F AR KKK K HE
i

"

model pch pmos vto = -0.9 kp = 15.0u gamma = 0.59 phi = 0.66 cgso = 400p cgdo
400p tox = 50n 1d = 500n c¢j = 200u mj = 0.5 cjsw = 450p mjsw = 0.33 js = 100u

relax2 options stop = 1000ns askparam=1l dosteady=0 nralpha=0.3 dodc=1 gmin=le-9 newjacob=1
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Appendix B

Derivation of the discretized system for the
micromachined switch example

In order to discretize the problem described by equations (2.9)-(2.11) and boundary conditions
(2.7) we introduce the following regular grid over the problem domain:

¥ =iAx, i=0,...,(n+1)

Y=jAy, j=0,.. (m+1)’ (B.1)

where Ax=1/(n+1), Ay=w/(m+ 1), [ is the length of the beam, w is the width of the beam, and
n and m are the number of grid points inside the computational domain, in the x and y directions,
respectively. Then, the state variables (2.8) are approximated by the vectors:

xi(t) ~ xi1(t)=[x](),.... @)
x(t) ~ x20) =[3(0),...,.x8(0)]" , (B.2)
x3(t) ~ x3(0)=[x31e), .. (), )T

where x| (1) = x; (x,1), x5 (¢) = x2(x',¢), and x (t) = x3(x',y/,t). Note that the values of the state
variables at the boundaries have not been mcluded in the above discrete representation. Therefore,
the dimension of the obtained state space x = [gl,gz,gg}T equals 2n+ mn. Based on the above

finite-dimensional representation of the state space, the following discrete analogues of equations
(2.9)-(2.11) may be written:

dx;  1x
a " 352 (B.3)
dx, 2x3 3 3eow
” _3ﬁ+p [INT(x3 Pa) +S(D2(x1 — up) El(D4(x1—uo))] 5 B
d T T ~
—6%3— = —dzag{%}x3+dlag{£1:;‘47»o_l—)_:(él“uo)}(x3o(D:(x3-pa))) (B.5)
—~ [x?+6hx
+ diag{ =L 12,[1} {x30(LAP(£3”Pa))+(:x(X3—Pa)) +(__y_(x3—pa))]



Note that the following shortcut notation has been applied in the above formulae:

- T
aob = albl,...,akbk} s
a _ [ i1 k k) ¥
E = a/b NN/ /b y
T B K7
y = c/b,...,c/b] ,
B r T
— 1 k
a"® = |(a )n,“.,(a )n] )
[ 1 k r
atc = {a +¢,...,a +c} ,
~ m -
——
Cl]
al al
diag : = )
ar a”
an
| —
- m - mnxmn

where k is the order of vectors g = [a1 e ,ak]T andb = [bl, ... ,bk]T, and c is a scalar. The discrete
matrix operators in formulae (B.3)-(B.6) are given by:

r m
”~ 1 ™~
-1
1
1 —1
Dy =—— ,
=2 2Ay
1
-1
1
-1
L m d mnxmn
m
P 1
1...1 |
M:Ay n, szzix . ’
m —_ 1
—
i1 WL P
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_ 1
=X 1
1
1
1
1
1
N———
= mnxXmn
-2 1
1
1
1 -2
m
-2 1
1
1 1
N e
m

- mnXxXmn

- mnxXmn

-~ nXn



Note that the above discrete operators implicitly include appropriate boundary conditions, given
by (2.7). The discrete output equation may be written in the following form:

[n/2]-1

B - . (B.6)
y=CTx, C€=[0,...,0,1,0,....,01], (1.0
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