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Abstract

Current, approaches used for modeling electricity spot markets are static oligopoly models that pro-
vide top-down analyses without considering dynamic interactions among market participants. This
thesis presents an alternative model, an agent-based model, and uses it to analyze the markets under
various conditions. These markets, in which the participants engage in sealed-bid auctions to sell
and/or buy electricity regularly, are viewed as multiagent systems, or as repeated games, played by
participants with incomplete information. To represent these market characteristics, the agent-based
model is selected, consisting of several power-producing agents with non-uniform portfolios of generat-
ing units. These agents employ learning algorithms, including Auer et al.’s, softmax action selection,
or Visudhiphan and Ilié’s model-based algorithms, in determining bid-supply functions from available
information.

The simulated outcomes from the agent-based model depend on the choice of non-uniform port-
folios and on the learning algorithms that the agents employ. Model verifications against the actual
markets are suggested; however, due to a lack of certain confidential information, numerical examples
cannot be presented. Nevertheless, the model is used to analyze the effects of market structures and
the effect of load-serving entities on the power-producer bidding behavior and market outcomes.

This model could provide one of the main tools for regulators, system planners, and market
participants to use scenario simulations to investigate market conditions that could lead to high
electricity prices. The model could also be used to analyze market factors (such as new market rules)
and their effects on market price dynamics and market participants’ behaviors, as well as to identify
the “best” response action of one participant against the opponents’ actions.

Thesis Advisor: Prof. Marija D. Ilié.

Thesis Committee Members: Prof. Leslie P. Kaelbling, Prof. John N. Tsitsiklis, and Dr. Robert
F. Brammer (Northrop Grumman TASC).
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Introduction

The objective of this thesis is to formulate an electricity market model that closely mimics the dynamics
of market prices, as well as the bidding behavior of market participants in the existing electricity spot
market over time. State-of-the-art, agent-based modeling is applied to capture the individual behavior
of market participants, which contributes to the dynamics of market prices. The application of this
model is the analysis of the effects of market structures and the role of active load-serving entities on
the market participants’ bidding behavior and on price dynamics.

This thesis chooses an agent-based model to formulate electricity spot markets without an competitive-
market assumption. Current approaches are static oligopoly models that provide top-down analyses
without considering possible dynamic interactions among market participants. Electricity spot mar-
kets are dynamic systems with several groups of decision-makers, consisting of power producers, who
produce and sell electricity to the market, and in some cases load-serving entities (LSEs), who buy elec-
tricity on behalf of their customers. Selling and buying electricity is done through a sealed-bid/double
sealed-bid auction.

These auctions occur repeatedly, sometimes as many as twenty-four per day. After each auction,
the market participants are not informed of their opponents’ quantity dispatched and the prices paid
for the dispatched quantity. The repetitive auctions and the information obtained after each auction
substantiate the capability of the market participants to learn the other participants’ bidding behaviors
and adjust their own bids through time. Previous studies have shown patterns of the time-varying
bidding behavior of market participants. For example, large bidders tend to submit strategic bids
to raise the market prices. Several bidding strategies have been observed, including the capacity
withholding and bidding-price raising strategies ([6], [49], and [51]). Figure 0-1 shows the bidding
prices for the bidding quantity equal to 2,000 MW of a market participant, denoted by “506459,” and
the total load in the New England market during January 18-31, 2000, denoted by “Load.” Figure 0-2
shows the bidding prices for the bidding quantity equal to 1,000 MW of another market participant,
denoted by “218387.” These figures suggest that the market participants have adjusted their bids
over time, even when demand has been relatively similar. Note that throughout this thesis “load”
and “demand,” referring to electricity consumptions are used interchangeably.

In addition, an electricity market model designed under the assumption that market conditions
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allow perfect competition is largely invalid. Several previous studies have confirmed that the compe-
tition that exists in the electricity markets is imperfect ([6], [7], [20], [25], and [51]). In cases where
there are geographical constraints on the installed capacity and the number of market participants
is limited, some power producers will be able to set the market prices. Additionally, hourly market
prices frequently exhibit high price-fluctuation. Price spikes occur regularly, especially when demand
is large relative to total installed capacity. Prices also vary during different periods, even though
demand levels during those periods are similar. Figure 0-3 shows a scatter plot of the sampled hourly
market prices and loads from May 1, 1999 to April 30, 2000, and Figure 0-4 shows the histogram of

hourly market prices during the same period.

These market characteristics indicate that the electricity market should be viewed as a multia-
gent system and/or a repeated bidding game by using an agent-based approach. In this game the
players or agents represent market participants with different marginal-cost or marginal-utility char-
acteristics, bidding strategies or learning algorithms, and (perhaps) objective functions. This thesis
presents methods to formulate a model that closely replicates the market participants’ behavior and
the resulting price dynamics, to verify the proposed model empirically given the available data, and
to extend the model to analyze effects of critical factors on price dynamics and market participants’

behavior, such as market structures or demand price-elasticity.

This proposed model consist of agents, power-producing and LSE agents, representing market
participants. Each agent submits a bid daily to a system operator who clears the market. A bid
is a function of price and quantity, such as a bid-supply function for the power-producing agents
and a bid-demand function for the LSE agents. This function indicates the amount of electricity an
agent is willing to buy or sell at the specified price. After the bid-submission deadline passes, the
system operator clears the market for that hour by matching demand to supply at the least cost
and publicly announces market prices and total consumption. This thesis adopts a price merit-order

market-clearing mechanism without unit-commitment or network constraints.

After the market clearing price (MCP) is determined, each agent is informed of the total demand,
the quantity dispatched, and the price paid for the dispatched quantity or dispatched consumption.
In the markets which adopt a uniform-pricing rule, the price paid is equal to the MCP, the maximum
bidding price of the supply bids dispatched to meet demand. Conversely, in the markets which adopt
a discriminatory-pricing rule, the price paid is the bidding price of the bid that is dispatched. The
dispatched quantity of the power-producing agents is equal to the bidding quantity whose bidding
prices do not exceed the market price. For markets with the LSE agents actively responding to the
price of electricity, the dispatched consumption is equal to their bidding quantity corresponding to

bidding price not less than the market price,

The crucial advantage of this agent-based approach is its ability to capture dynamic interactions

among the agents that cannot be displayed by the traditional supply-demand and/or (static) oligopoly
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models. Furthermore, the agent-based model can be extended to analyze the effect of the factors
influencing the agents’ behaviors on the market outcomes. These factors include the effects of the
different market structures and of the existence of active decision-making LSE agents on the bidding
behavior of the power-producing agents. Because of the flexible nature of an agent-based approach,
the agents can be modeled to represent market participants who have asymmetric characteristics, who
make decisions with incomplete information, and who employ a learning algorithm in response to the
other agents as well as to improve or to maintain outcomes. Nevertheless, the simulated outcomes
depend highly on not only the agents’ characteristics, but also on the learning algorithms that the
agents use. These result in the difficulty in model verification and in the limitation of potential usages
of this model for any existing-market analysis.

This thesis is organized as follows. Chapter 1 gives an overview of the existing electricity markets
and highlights the literatures of related fields, including the research on electricity markets, game
theory, agent-based modeling, and learning algorithms in multiagent systems. Chapter 2 provides
a detailed analysis of electricity markets as repeated games played by market participants under
different demand and supply characteristics, and explains the necessity of applying an agent-based
model to replicate the markets. The by-product of this analysis is a proposed definition of market
power based on aspects of game theory. Chapter 3 describes this new proposed modeling approach
and learning schemes adopted by the market participants. Chapter 4 presents the hypothetical spot
market models based on the approach described in Chapter 3. The simulation processes under different
learning algorithms of the agents are outlined. Simulations show the market dynamics and provide
insights into several important aspects of model characteristics and their influence on market price
dynamics. Chapter 5 presents a study of the New England electricity market to support the validity of
choosing the agent-based model. The study focuses on the bidding behavior of New England market
participants under different demand conditions. Chapter 6 shows an application of the proposed model
on analyzing the effect of market structures, including uniform and discriminatory-pricing rules, on
market participants’ behavior and price dynamics. The model is extended to show the preliminary
effect of active load-serving entities on reducing price-markups. Suggestions for future research and

conclusions are included in Chapter 7.
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Chapter 1

Reviews of Related Research and

Studies

This chapter provides an overview of research in related fields that will be applied to the modeling
of electricity spot markets. Section 1.1 gives an overview of several studies on electricity markets.
Section 1.2 highlights some literature providing background information on game theory. Section 1.3
provides the basic concept of the agent-based modeling approach and introduces some of the research
on electricity markets which use this approach. Section 1.4 describes some studies in reinforcement and
multiagent learning as well as some learning algorithms used in this thesis. Finally, Section 1.5 sum-
marizes the objective of the study and provides an overview of the modeling approach incorporating

the research fields described above.

1.1 Electricity Markets

1.1.1 Overview

Electricity spot markets are the marketplaces where electricity is traded through auctions. An auction
is a market institution with an explicit set of rules determining resource allocation and prices on the
basis of bids from market participants (for a detailed overview of auction theory, see, for instance,
McAfee and McMillan [32]). The type of auction usually used in these markets is a multiple-unit
first-price sealed-bid auction for buying and selling electricity through a single system operator, such

as in the New England electricity market.! Generally, the bidders are the power producers, because

'In the New England electricity market, as detailed in Market Rule 5-C of the New England system operator that
can be found on the New England Independent System Operator’s website [53], to determine a 5-minute real-time price
from dispatch software which schedules the units to meet energy demand during the five-minute dispatch time frame,
so that the system energy cost is minimized while meets the reliability requirement, when these conditions are present,
the real-time market price (RTMP) is set equal to the price of the most expensive MW of all the desired dispatch that
yields such solution and is eligible (according to the market rules) to set the RTMP.
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the demand side still remains price-inelastic, and the system operator “buys” power on their behalf. In
the California market, however, the auction is in a double multiple-unit sealed-bid first-price form. In
this type of auction, both sellers (power producers) and buyers (load-serving entities (LSEs)) submit
their bids® to the system operator simultaneously.

In markets which utilize the first-price sealed-bid auction, the power producers submit sealed bids
indicating the amount of power they are willing to produce at specified prices to the operator, who
schedules the units to meet the total demand on a price merit-order. On the other hand, in double
auction markets, both power producers (sellers) and LSEs (or buyers on behalf of their customers)
submit bids. The power producers indicate the price at which they are willing to sell their power
(limited quantitiesj, and the LSEs indicate how much they are willing to pay for the amount of power
they want to consume. The sellers are ranked from the lowest to the highest bidding price, while
the buyers are ranked from the highest to the lowest bidding price. The intersection of demand and
supply gives a quantity (total demand) and an interval of prices, from which the market price is set
according to predetermined rules. In both types of auctions, two market structures are employed:
uniform and discriminatory-pricing structures. In uniform-pricing auctions, each successful bidder is
paid an amount equal to the most expensive successful bidding price, multiplied by the scheduling
quantity. In discriminatory auctions, each successful bidder is paid its bidding price, multiplied by
the scheduled quantity.

The crucial inherent characteristic of using an auction mechanism to execute power trades relates to
the asymmetric possession of information among the bidders and an operator;® the bidders have their
private values for the power traded, i.e., the buyer does not know the true electricity production cost.
Bidders also have asymmetric portfolios of generating units with differences in generating technology
and capacity. Although the bidders know the system marginal cost function, they do not know their
competitors’ actual operating cost characteristics because each unit is different from the others in its

operating constraints, as well as they may have different objective functions (values).

1.1.2 Previous Research

Most studies on electricity markets, and especially those on generation competition, focus mainly on
the issue of market efficiency. These studies generally apply a static oligopoly model to the analysis of
market equilibrium and also use it to perform an empirical study. For example, Green and Newbery
[20] study the UK market by formulating the market as a single-shot game of two symmetric players
and applying a supply function equilibrium model (SFE), based on the study of Klemperer and Meyer
[28], to determine a Nash equilibrium of the market. Green and Newbery use the SFE to determine

market prices under different levels of demand, assuming that the UK market was under the duopoly

2 A bid in this thesis is referred to an offer to sell power of the bidders, who are power producers.
3Note that the system operator generally knows the operating costs of the generating units, however the customers
generally do not know this information.
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situation during 1988 and 1989. They find the existence of significant price-markups on marginal-cost
prices. Further, they use their model to show the effect of entry in later years, and recommend that
subdividing two players into five players would increase competition without the cost of excessive
entry. Several studies apply the SFE concepts and extend the study to analyze characteristics of
market equilibrium in further detail. Examples include Rudkevitch et al. [38], Baldick et al. [3],
Baldick and Hogan [4].

Von der Fehr and Harbord [13] propose to model the market as a first-price sealed-bid multiple-unit
auction (and use a Bertrand model to analyze market equilibrium). They show that pure-strategy
equilibria do not always exist; instead, multiple equilibria are in fact more likely due to capacity-
constrained price competition. Moreover, for a range of demand distributions no other pure-strategy
combinations constitute an equilibrium. They believe this suggests inherent price instability in the
present regulatory set up, which is confirmed by the evidence obtained from their empirical study of
the UK market. In addition, they emphasize this finding by showing that the Bertrand outcome is
unlikely and that the generating units with expensive operating cost may be sold at lower offering
prices than the generating units with cheaper operating costs.

Borenstein and Bushnell [6] model the California electricity market as a static Cournot market with
a competitive fringe. They argue that the quantity-setting Cournot paradigm seems to correspond to
the electricity market much more closely than the price-setting Bertrand paradigm, because generally
power producers have increasing marginal-cost functions and limited available capacities. The Cournot
outcome can be used as a base-case analysis because the Cournot equilibrium represents a worst-case
analysis of possible market power in static equilibria. By using historical cost data, they simulate
benchmark competitive and Cournot equilibrium prices for several demand levels and for demand
elasticity. From their model, significant price markups are found in high demand hours during several
months of the period of study.

Several empirical studies confirm inefficiency in the existing electricity markets. For example,
Wolak and Patrick [49] analyze the strategic behavior of market participants in the UK,* taking into
account the market structure and its rules, from April 1, 1991 to March 31, 1995. They find that the
majority of excess revenues, i.e., spot prices much higher than the average cost of supply during a
given period, are due to the exercise of market power within a short period, i.e., a 3-hour window. The
generators strategically bid by adjusting the maximum available capacity and the bidding prices of
their generating units. However, they find that declaring the availability of each unit is a high-powered
strategy that causes market prices to be substantially higher than average costs. This strategy can be
implemented successfully because market rules require the units to submit the same capacity that is
made available to the pool throughout the day, as well as to declare their availability on a half-hourly

basis during the day at the discretion of generators.

4Note that during the study period, a bidder in the UK market is required to submit one bid for a one-day auction,
which is comprised of 48 half-hour periods.
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Wolfram [51] presents an empirical study of market power in the UK during 1992, 1993, and
1994 when two rivals owned substantial shares of generating units. Wolfram makes use of several
approaches to construct this measurement and proposes a method to derive a system marginal cost
accounting for strategic capacity withholding. For example, the short-run marginal cost of a fossil-
fuel unit is a function of the type of fuel burned, the cost of the fuel, and its thermal efficiency. A
constant marginal cost for a nuclear unit is assigned.® Pumped-storage capacity is assigned a cost
based on the average pool price during the period of pumping water. A price-cost markﬁp indicates the
difference between market price and the marginal cost of producing power to meet demand. The study
shows that capacity withholding has not generally resulted in markups as large as those predicted by
conventional oligopoly models. Markups are higher for higher demand quantities. Moreover, there is
evidence showing that the pool price is just below a potential entrant’s long-run average cost. However,
the study finds that although the power producers are charging prices significantly higher than the

observed marginal-cost prices, the prices are not raised to the levels predicted by the oligopoly model.

Wolfram [50] also considers the characterization of bidder behavior and market outcomes in multi-
unit auctions based on theoretical auction literature, and applies these findings to further evaluate the
extent to which these predictions hold empirically in the daily electricity auction in the UK market
during the years 1992 to 1994. This analysis shows that the strategic behavior of the power producers
is to set the bidding price above marginal cost and to set a higher price for infra-marginal capacity.
For example, the larger participant in the auction tends to bid more than its smaller competitor does
for units with comparable costs. The bidders submit bids with a larger markup over marginal costs for
generating units that are more likely to be used after a number of other units are already operating.
Some power producers submit higher bids for given generating units during the periods when more of
their other units are available to operate. Moreover, the incentive to set a high price for infra-marginal

capacity is moderated by the incentive to ensure that a unit is not left out of the dispatch schedule.

Borenstein et al. [7] adopt a similar approach to Wolfram’s {51}, developing benchmark prices to
analyze the efficiency of the California market from June to November 1998. The evidence indicates
that market power in California’s wholesale market was a significant factor in high-price power during
the period of the study. They find that price markups are significantly larger during the higher
demand months of July and August and during higher demand hours. Low markups are found during
lower demand months and during off-peak hours. Borenstein et al. suggest that the causes of this
phenomenon include the power producers’ ability to take advantage of inelastic demand, the capacity
limits of the opponents, and the lack of storage. Other research with a similar approach, i.e., to
recreate a benchmark price that was introduced by Wolfram [50], can also be found in Joskow and
Kahn [25]. Joskow and Kahn analyze the California market during the summer of 2000, accounting

for the effect of NO, emission allowance. They conclude that there is no substantial market power

53S0 that the nuclear units would not have been a marginal unit during the period of this study.
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when the NO, emission allowance is added to the operating cost.

In addition, several other studies in this field also focus on a top-down approach to model electricity
spot and future prices. For example, Deng [12] proposes several mean-reversion jump-diffusion models
to describe the dynamics of electricity prices. Skantze and Ilic [40} model spot price dynamics based
on a principal component analysis. Both models provide potential benefits for physical and financial

asset valuation, hedging, and speculation.

1.2 Game Theory

Game theory has been studied extensively. Two types of game characteristics are considered, including
stage and dynamic games. Stage games have three elements: the set of players; the pure-strategy
space; and payoff functions. These games are played only once. A game equilibrium strategy is
determined using a Nash equilibrium concept, which describes a profile of strategies in which each
player’s strategy is an optimal response to the other players’ strategies. Repeated games are stage
games that are played repetitively. Dynamic games or multi-stage games are forms of modeling
situations with dynamic structures. Players determine their actions depending on which stages they
are in and the information available to them. After each stage game is played, a transition from
the current game (stage) to the next one occurs. Stochastic games are one type of dynamic games,
consisting of several stage-games and transition probabilities, in which each game represents one stage.
The fundamental background of game theory can be found in any introductory text on this topic, for
example, Fudenberg and Tirole [16] and Owen [37]. For general overviews and applications of game
theory, one might find Gibbons [19] very useful as well. This thesis is concerned with a repeated game.
Since the players in the game do not know their opponents’ actions and their payoffs, this game is
considered a game of incomplete and imperfect information. An explanation for viewing electricity

spot markets as a repeated game is described later.

1.3 Apgent-based Modeling

Tesfatsion [42] provides a complete overview of the agent-based computational economic (ACE) ap-
proach and of many studies that apply this method, with special focus on its importance in the study at
market economies. As Tesfatsion [42] mentions, decentralized market economies are complex adaptive
systems, consisting of large numbers of adaptive agents simultaneously involved in local interaction.
Macro-economic regularities and behaviors emerge from these local interactions and then feedback
into the determination of these interactions. The traditional model, such as the oligopoly model,
lacks the means to model this feed back quantitatively and generally places the emphasis on extrane-

ous agents and on imposed market equilibrium constraints. Interactions among decision-makers in this
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model typically play no role or appear in the form of tightly constrained game interactions. On the
other hand, the agent-based model quantitatively formulates a wide variety of complex phenomena,
such as inductive learning, imperfect competition, endogenous trade network formation, the on-going
co-evolution of individual behaviors, and the overall system dynamics. In summary, the agent-based
model consists of evolving systems of autonomous interacting agents. This model specifies the initial
state of the system by setting the initial attributes of the agents. The system then evolves over time
without further intervention from the modeler. All events that subsequently occur must arise from

the historical time-line of agent-agent interactions.

In an electricity spot market, market participants, including power producers and sometimes load-
serving entities are agents. Visudhiphan and Ilic [44] introduce a simple agent-based model of a
electricity spot market, in which each agent has a constant marginal cost and a limited capacity. The
agent performs myopic decision-making to determine a bid in the current period. The decisions to
increase, to decrease, or to maintain their bidding prices are based on the observed market outcomes
of the previous bidding period, and different assigned strategies. The simulated price dynamics show

no trace of equilibrium under various demand conditions.

Bower and Bunn [8] apply an ACE approach to simulate the behavior of an oligopoly of bidders
in a range of multi-unit, multi-period, auction settings. These researchers developed a detailed model
of electricity trading in the UK market, and also used this model, which takes into account the
discriminatory and uniform-pricing structures, to analyze the effects of different auction structures on
bidding behavior. In the model, the agents have simple myopic internal decision rules. For example,
the agents may raise or lower their bidding prices by a random percentage of the bids they submitted
in the previous trading period. The agent is also continuously updating its profit objective, as the
simulation progresses by using the previous trading day’s profit as a benchmark against the current
day’s profits. In their model, the agents know everything about their own portfolio of plants, bids,
output levels, and profits, but nothing about other agents or the state of the market. The simulations
show that the settlement procedure from the uniform to the discriminatory-pricing structures, as
well as changing the bidding procedure from daily to hourly bids, induces a rise in prices. When
no bid prices or market prices are published, large agents gain an advantage over the small agents
because of information asymmetry, especially in the discriminatory-pricing structure. The disparity
in information between the uniform and discriminatory-pricing structures significantly alter market
prices because the latter reduces the competitive pressure on large firms due to the increase in risk
of overbidding, particularly by small firms. These effects are exacerbated when inelastic electricity
demand approaches total bidding capacity. As mentioned, auction theory supports the view that
increasing the amount of available information increases the efficiency of the auction but only at the

expense of consumers, due to the difficulty of enforcing a collusive agreement.

Nicolaisen, et al. [35] propose an ACE model of a wholesale electricity market that can be used as

32



a laboratory for systematic experimentation to investigate market power and efficiency in a double-
auction pricing setup. The agents in this model also employ a learning algorithm. Their investigation
is focused on variations in the relative market power of the buyers and sellers in response to changes
in concentration and capacity. Also, the study developed a conceptual tool to understand the effects
of the discriminatory-pricing rule on structural versus behavioral market power. Their experimental
findings show that structural biases inherent in the discriminatory-pricing rule induce market power
outcomes; however, the buyers and sellers with less market power are unlikely to improve through
learning.

A similar concept of simulation-based agent-based modeling is an experimental economic approach.
This approach also aims to mimic how the market (or economic system) works. Instead of using a
computer simulation to obtain the outcomes of agents’ interactions and associated dynamics, the
experiments of interactions are performed in an economic lab. Several studies, such as those in
Backerman et al. [2] and Schuler [39], use this experimental economic approach on electricity markets.
Since this thesis does not focus on this approach, an in-depth overview on this matter is not included.

Some related studies of this approach can be found in Schuler {39].

1.4 Learning Algorithm and Multiagent Learning

The learning algorithms are generally designed for either single-agent systems, in which an agent makes
decisions against an uncertain environment, or multiagent systems, in which agents make decisions
against one another. The fundamental background of reinforcement-learning for a single-agent system
can be found in Sutton and Barto [41] and Bertsekas and Tsitsiklis [5], for instance, while Kaelbling et
al. [26} provide a comprehensive survey of the field of reinforcement learning from a computer-science
perspective. Learning algorithms in either single-agent systems or multiagent systems are generally
in a form of myopic decision-making, because of the lack of knowledge of the systems.

Several learning algorithms in single agent-systems have been developed. A few of these algorithms
are summarized below. Some studies are concerned with determining “optimal” decisions, while the
others characterize the strategies/algorithms that guarantee near-optimal outcomes with efficient run-
time. For example, Q-learning, the classic algorithm, which was first introduced by Watkins and Dayan
[46], is a model-free reinforcement learning. The agent starts with an arbitrary initial value for all
states. At each time, the agent chooses an action and observes its reward. In Q-learning, the agent
updates its Q-values for each state using the previous Q-values, the current rewards, and a learning
rate, which is a non-negative constant less than one.

McCallum [33] develops the nearest sequence memory algorithm for an agent to learn in a partially
observable Markov decision process. This algorithm is a combination of instance-based methods, which

are used in learning in continuous spaces and history sequences. The nearest sequence memory algo-
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rithm is different from the fixed-sized window techniques because it provides a variable memory-length,
such as k-nearest neighbor. This algorithm improves performance compared to several algorithms,
because recording raw experience is particularly advantageous when the agent is learning to partition
the state spaces, especially when the agent is deciding the importance of history for uncovering a
hidden state.®

In multiagent systems, the learning algorithm becomes more complicated when the agent is learning
in an environment that changes due to other agents’ actions and external uncertainties. Mosf studies
characterize the learning algorithms under the framework of two-person repeated and/or stochastic
games. The two-person games have one particularly beneficial feature in that they allow one player
to apply a reinforcement learning algorithm by assuming that the other player faces an uncertain
environment. Multiagent learning has a strong connection to game theory, where players select actions
to maximize payoffs in the presence of other payoff-maximizing players. Learning is essential in the
repeated or stochastic games of incomplete information, in which the players have no information
of the opponents’ strategies and payoffs. However, several learning algorithms yield outcomes that
depend on assumptions about the opponents’ policies, strategies, and learning algorithms. There
is still demand for new techniques for developing learning algorithms for an agent in a multiagent
environment that require the least amount of information and assumptions about the opponents’
actions and payoffs. A few studies on learning algorithms in multiagent systems are summarized
below.

Learning in repeated games in the economics community occurs in the form of fictitious play (more
detail on this topic see Fudenberg and Kreps [18]). Fudenberg and Levine [16] study a variation of
fictitious play, in which the probability of each action is the exponential function of that action’s utility
against the historical frequency of opponents’ actions. This learning algorithm is the set of behavioral
rules that map all the components from observations to actions without the internal thought process
of the players, and can be implemented in an extensive form game in which opponents’ strategies are
not observed. Fudenburg and Levine show that this method yields approximately optimal outcomes
and guarantees nearly the minmax outcome, regardless of opponents’ behavior.

Several studies in the artificial intelligence community begin by developing a learning algorithm for
an agent to make a decision against an uncertain nature, and continue by applying it to game-setups. A
similar approach to that of Fudenberg and Levine is developed independently by Freund and Schapire
[15]. Freund and Schapire [15] apply a weight-majority algorithm to an on-line prediction developed
by Littlestone and Warmuth [30] to study the close connections between playing a repeated (zero-
sum) game, on-line prediction, and boosting. This algorithm lets the learner maintain nonnegative
weights on a set of actions (decision, hypothesis). The actions that yield satisfying outcomes will

be chosen with a higher probability. Freund and Schapire’s analysis of this algorithm yields a proof

SFor more details on McCallum’s nearest sequence memory algorithm as well as an overview on previous researches
on this topic, see McCallum [33].
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of von Neumann’s minmax theorem, and applies this algorithm to find the approximate minmax or
maxmin strategy of a zero-sum repeated game.

Auer et al. [1] introduce algorithms, which are partially based on a weight-majority algorithm of
Freund and Shchapire [15], for an agent to play the non-stochastic multi-armed bandits. The objective
is to develop learning algorithms to play multi-armed bandits, which yield the expected weak regrets
within established bounds as a function of the number of actions, playing time, and probability of error,
without any statistical assumption about the payoff generating process. The algorithms determine a
probability distribution over the possible actions (the possible arms to be picked) that is a mixture
of a uniform distribution and a distribution that is a function of weight-factors associated with each
action, so that the algorithm tries out all actions and gets a good estimate of reward. In addition,
Auer et al. [1] apply these algorithms to an agent playing a repeated game without knowledge of its
opponents’ actions and their associated payoffs. These algorithms require only the number of actions
assigned to the agent and the maximum payoff that can be obtained. When the agent uses one
proposed algorithm to play the game against its opponent, it is guaranteed to obtain payoffs which
converge to the maximum payoff that can be obtained against the empirical distribution of plays by
the opponents.

Bowling and Veloso [9] introduce a new concept of a variable learning rate, proving convergence in
self-play” on a restricted class of repeated games. They define two properties of learning algorithms for
the learner: rationality and convergence. If the other players’ policies converge to stationary policies
then the learning algorithm will converge on a policy that is a best response to the other players’
policies, as well as the learner will necessarily converge on a stationary policy. Bowling and Veloso
use gradient ascent as a technique for learning in simple two-player, two-action, general sum repeated
matrix games, in which the players know the opponent’s actions and associated payoffs. The utilization
of this method, though rational, does not necessarily yield the convergent strategies. Bowling and
Veloso introduce a variable learning rate, which contributes to the “Win or Learn Fast” principle,
in which a learner should adapt quickly when it is doing worse than expected and be cautious when
it is doing better than expected. The authors prove that the variable learning rate causes gradient
ascents to converge. The concept of the variable learning rate is further applied to use with the
policy hill-climbing algorithm, which is an extension of rational Q-learning.® These authors show by
examples that when this algorithm is instructed to play several games the agents’ plays converge to
best-response policies.

Hart and Mas-Collel [21] demonstrate the characterization of an entire class of adaptive strategies,
which are Hannan-consistent, for playing repeated games. Their strategies are a mapping direction
that satisfies specific conditions for a target set, the approachable convex and closed set. Then the

average payoff vector is guaranteed to approach the target set. The regret-based strategies can be

7All players use the same algorithm.
8Q-learning algorithm yields an optimal solution at each decision stage.
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derived by replacing the payoff vector with the regret vector and by setting the target to the non-
positive orthant. When an agent uses one of these regret-based strategies to play a repeated game, it
needs to have full knowledge of its payoff matrix, but does not need to have knowledge of its opponents’

actions and their associated payoffs.

Littman [31] applies a Q-learning-like algorithm to find optimal policies and demonstrates its
application to two-person zero-sum stochastic games in which the optimal policy is probabilistic. The
agents are trained against the opponent with different learning algorithms and are able to observe their
opponents’ actions. The trained agent with fixed policy using the “max” operator in the update step of
a standard Q-learning algorithm is less successful than the update step using the “minmax” operator,
because Q-learning is designed to find a deterministic policy while the minimax-Q is designed to find
optimal probabilistic policies. Littman points out that the idea of probabilistic policies is also useful
in the context of acting optimally when the agent’s perception is incomplete. Random actions can be
used against the agents’ uncertainty of true states of environment, as well as the agents’ uncertainty

of the opponents’ moves.

Based on Q-learning and on the Nash equilibrium concept, Hu and Wellman [23] present a mul-
tiagent Q-learning algorithm for the agents to play stochastic games. The agents maintain a Q-table
containing the Q-values of each state. At each state, the agents determine a Nash equilibrium strategy
of the Q-table associated with that state. Under particular conditions the Q-values converge to the
Nash equilibrium Q-values. For an agent to play a stochastic game, given that the agent knows which
state it is in, this algorithm requires full information of all the agents’ actions and payoffs, as well as

the state reached by the joint action at each stage of the game.

Brafman and Tennenholtz {10] introduce their R-MAX learning algorithm to play two-person
general-sum stochastic games. This algorithm is proved to converge to a near-optimal average reward
in polynomial time. Given that the agent knows which state it is in, not only does this algorithm
require full information of all agents’ actions and payoffs, as well as the state reached by the joint
action at each stage of the game, but also requires the maximum possible reward and the desirable time
required to learn the game. By using this algorithm, an agent optimizes its behavior with respect to a
fictitious model associated with the real games. This optimal policy leads to either the exploration of
new parameters or the exploitation of the current condition of the model. The near-optimal expected

return that is achievable by the policy can be obtained with high probability in polynomial time.

Learning to act in multiagent systems poses a difficult problem since the normal definition of an
optimal policy no longer applies because of a moving target, and the performance of the agents depends
on the system environment. These agents face the changing environment due to the adaptive behavior
of the other agents, which may have different goals, assumptions, strategies, and learning algorithms,
as well as due to the dynamic changes of the system. The optimal course of action therefore is to

change as all the other agents adapt. These external adapting agents violate the basic stationary
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assumption of traditional techniques for behavioral learning. In some typical situations, such as in
an electricity market, in which information about the other agents is not available at the beginning,
more information about the system and the other agents is revealed during the course of interaction.
Identifying learning methods that require the least amount of knowledge of the systems and opponents

become essential in this system.

1.5 Electricity Market Modeling

This thesis proposes to formulate a model that is able to closely mimic the day-ahead electricity mar-
kets in terms of market participants’ bidding behavior and price dynamics. The repetitive auction of
trading power is modeled as a repeated bidding game played by the bidders or the market participants.
An agent-based approach is chosen to model and analyze the electricity market, in which an individ-
ual! market participant who can influence the market outcomes is considered an active decision-maker
or as an agent. The agents engage in a series of sealed-bid auctions or they play a repeated game.
This proposed approach is different from the previous research on electricity market issues in several
aspects. First, this is a dynamic model of agents’ bidding behavior that is capable of capturing the
adaptive behavior of the players in response to their opponents’ actions. Second, in the real markets,
information regarding the actions and payoffs of the others is confidential. In this model, though,
the agents extract information about their competitors from available data over time with a learning
algorithm and adjust their decisions (or actions) optimally. Third, the model consists of non-uniform
agents, which conform to market participants in the existing markets who may have various objective
functions, portfolio characteristics, and learning algorithms.

In summary, a broad spectrum of research fields is applied to this agent-based electricity market
model. Game theory and learning in games become essential in characterizing bidding strategies,
as well as in identifying the best and the most rational responses. A dynamic model that captures
individual behavior and outcomes, such as an agent-based modeling approach, plays a crucial role.
Moreover, because of incomplete information and repeated plays, the players need to learn about their
opponents and respond in a profitable manner. A multiagent learning framework provides insight in
developing the model as well as into the learning algorithm for the agents. Although this thesis
develops an approach to state-of-the art modeling an existing complex system with interactions of
multiple agents, it might not provide critical new theories in any of these fields.

This agent-based model is somewhat similar to the agent-based model of Bower and Bunn [8]. It
offers a variety of learning algorithms and/or bidding strategies of the agents. Moreover, the agent may
make its bidding decision based on its entire portfolio or its individual units with different learning
algorithms. Depending on the bidding strategies (and/or learning algorithms) the price dynamics

vary significantly; however, it is difficult to prove analytically and empirically, because the outcomes
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depend highly on characteristics and decision-making processes of the agents. The model is potentially
useful for analyzing some factors that affect market outcomes, but which are impossible to describe
with a few equations. In addition, the necessity to determine equilibrium and/or equilibrium strategy,
and to prove convergence are not essential.

The next chapter first provides a characterization of electricity spot markets as repeated games of
incomplete information. The reasons that the agent-based modeling approach are applied to formulate
an agent-based electricity market model, a model in which only power producers are assumed to be
active decision-makers or agents in the proposed model are outlined. Some learning algorithms that

will be adopted in the model are highlighted.
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Chapter 2

Electricity Spot Markets as a
Repeated Bidding Game

This chapter characterizes electricity spot markets as repeated games, outlines the reasons behind
choosing an agent-based modeling approach for these markets, and highlights the methods for de-
veloping market models. The electricity markets, especially day-ahead markets, are auction-style
marketplaces where market participants bid to sell or buy power on a daily basis. In this thesis, the
electricity market model is viewed as a series of bidding games, consisting of 24 hourly bidding games
(or single-stage games). For each game, the players decide on a bid-supply function (bid) that will
yield the best payoffs.

This chapter shows that in the single-stage bidding game, in which the bidders have finite choices
of actions (bids) and know their opponents’ actions and the associated payoffs, the bidders may
have multiple equilibrium strategies. On the other hand, when the perfect information assumption
is relaxed to better replicate the existing markets, the real bidding games played by the market
participants become games of incomplete and imperfect information.

This chapter is organized as follows. Section 2.1 describes the methodology proposed to analyze
electricity spot markets as repeated bidding games. It also explains why the repeated electricity day-
ahead market can be thought of as a series of repeated bidding games of incomplete and imperfect
information. Section 2.2 illustrates in detail the variation of equilibrium strategies in the bidding
game under different demand conditions when the game is played by a finite set of symmetric and
asymmetric players. A three-person bidding game with the assumption that each player has perfect
information about the others is analyzed to show that the multiple equilibrium condition is possible
and that the players’ characteristics affect equilibrium strategies. Additional examples of a three-
person repeated bidding game with different demand and supply characteristics are presented in the

appendix to this chapter. Section 2.3 summarizes the contributing factors that formulate an agent-
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based electricity market model. Furthermore, the learning algorithms that are applicable to the model

are highlighted.

2.1 A Bidding Game

The repeated games of electricity markets are not stochastic because the same stage games are played
over time, and there is no change in the states of the games. An outline of possible outcomes when
the agents have incomplete and imperfect information of their competitors, that is, when the agents
make a decision individually without knowledge of the entire game and encounter different demand

scenarios, is considered here.

e Deterministic and price-inelastic demand: The agents play a single-stage game with this
demand by determining their “best” bid-supply functions or their set of bidding prices and
quantities to maximize their profits. If this demand level is maintained, the same stage-game is
played again. Since the agents do not know their opponents’ bid-supply functions and payoffs,
the agents adjust their bids according to some learning algorithms that determine their next
bids based on the observed information, such as scheduling prices and quantities. For the
same demand level, if the duration of the game is sufficiently long and the agents’ portfolio

characteristics remain unchanged, an equilibrium may be attained.

e Deterministic and price-elastic demand: The agents determine their “best-reply” bid-
supply function in response to their opponents’ actions by using learning algorithms to obtain
their profit maximization objective. Like the previous scenario, the agents adjust their bids over

time, and a game equilibrium may be reached.

e Uncertain and price-inelastic: The agents determine their “best-reply” bid-supply function
in response to their opponents’ actions to achieve their expected profit maximization objective.
Von der Fehr and Harbord {13] show that no pure-strategy Nash equilibrium strategy exists in
this type of stage game because one bidding price does not yield an equilibrium outcome for all
possible demand levels. Although the agents play this game repetitively, they will not settle in

any equilibrium bidding strategy. This issue is revisited in Section 2.2.2.

¢ Uncertain and price-elastic: When the game is played repetitively, the analysis is similar
to the preceding scenario in which demand is uncertain and price-inelastic. No pure-strategy

equilibrium exists in this game.

Even though demand may have different characteristics, when the demand level of any hour is
similar to the other hours, the agents play the same stage game associated with that demand level.

The bidding games are repeated games of an unknown game set-up. Moreover, depending on the
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demand level, the same bid-supply function may yield different payoffs; hence, the game changes
its characteristics when the level of demand consumption changes. Since demands in the electricity
markets vary over time, the markets can then be viewed as a demand-dependent series of unknown
repeated bidding games.

Note that the concept of Nash equilibrium, which is a profile of strategies such that each player’s
strategy is an optimal response to the other players’ strategies, is applied to bidding-game analyses
presented in the following sections. The strategies mentioned in the following sections and chapters
are concerned with both pure strategies, which are complete profiles of actions in response to any

contingency of games, and mixed strategies, which are probability distributions over pure strategies.

2.2 A Three-person Bidding Game

This section presents a preliminary analysis of equilibrium strategies in a single-stage bidding game.
This analysis shows the variations of the equilibrium strategies according to demand levels and the
characteristics of the bidders. Both stage and repeated bidding games of small markets that consist
of three power producers and deterministic demand are analyzed. The agents are allowed to have
perfect information about the game and a finite number of bid-supply functions to choose from, i.e.,
bidding strategies and payoff functions. The effects of demand and power producers’ characteristics
on equilibrium strategies are considered. A three-person bidding game in strategic form has three
elements: the set of players ¢ € {1,2,3}; the pure-strategy space S for each Player i; and the payoff
functions u(s) for each profile s = (s!,...,sV) of the strategies. All players except Player i are
Player i's opponents and are denoted by —i.

In the following examples, the players participate in a uniform-pricing market. The players submit
their bids to an operator, who schedules the players to meet the demand at the least cost. A bid
contains a set of bidding price and quantity blocks. The operator sequences the bids according to
a merit order, i.e., from the lowest bidding price to the highest one in order to create a market
bid-supply function. The market price is equal to the bidding price where demand intersects the
bid-supply function; in other words it is equal to the price on the bid-supply function with quantity
equal to demand. The infra-marginal bidder, or the bidder whose bidding price is less than the market
price, is scheduled to generate its bidding quantity. Residual demand is defined as total demand minus
the sum of scheduled quantity of the infra-marginal bidders. The marginal bidder with its bidding
price equal to the market price is scheduled to operate the residual demand. The successful bidders
are paid the market price multiplied by their scheduled quantity. When more than one bidder is at
the margin, this thesis assumes that these bidders are scheduled to operate a weighted-portion of
the residual demand. For example, suppose that Players 1 and 2 are marginal bidders. The bidding

quantities of Players 1 and 2 are z and y, respectively. Suppose residual demand is equal to L. In
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Note that the bids and the bid-supply functions are used interchangeably in this chapter.

this scenario, Player 1 is scheduled to operate L and Player 2 is scheduled to operate ;%5 - L.

2.2.1 A Single-stage Game with Deterministic Demand

Let us analyze the Nash equilibrium strategies in a bidding game. These analyses perform under
different market characteristics, including market participants with asymmetric marginal-cost func-
tions. The scenarios in which the agents have uniform marginal-cost functions or uniform capacity
are shown in the appendix to this chapter. The first part of this section is focused on inelastic and
deterministic demand. The second part analyzes the effect of demand uncertainties on the existence
of a pure-strategy equilibrium of the games.

The general characteristics of the players are as follows: 1) each player owns one generating unit
or one unit; 2) each unit has a limited generation capacity, ¢.z; 3) each unit generates power at
a constant marginal cost,! mc'; and 4) the units are ordered such that me! < me® < mc®. The
operating cost of producing g¢* is therefore equal to mc® - ¢*. Let B* denote a bid of Player i (Agent
i), which is a set of bidding prices and quantities, i.e., B = {b*,¢'}, where b is a bidding price and
q' is a bidding quantity. The strategy space of each player is b* € [0, P.,p) and ¢* € (0,¢’,,,], where
P,,, denotes a price cap, the maximum bidding price that is allowed to be bid on the market.

In the bidding game, which adopts a first-price mechanism, the winning bidders are paid the
market price that is set equal to the most expensive bidding price of the winning bidders. (Note that
another form of determining rewards for the winning bidders in which the second most expensive
bidding prices is set as the market price for the winning bidders is not considered here. For more
detail on the second-price auctions, see, for instance, Milgrom and Weber [34] and Vickery [43].) In
the stage game or static game, when there is no demand uncertainty, each player maximizes its profit

as follows:

max (P~ mc') - §'
where P is market price, which is a function of bids and demand, P = f(B!,B~%). Let ¢ be a
scheduled quantity, in which 0 < ¢* < ¢i,,, when b < P, and §' = 0 when b* > P.

Let us consider when the players have asymmetric marginal-cost functions (that is, no players have
the same installed capacity and marginal-cost characteristics). Each Player ¢ has maximum capacity
s and marginal-cost mect. Suppose that gl,, > ¢, > ¢, and mc! < me® < me®. Let Q°
denote 23‘21 )., Let us consider when demand is equal to L1, L2, and L3, where 0 < L1 < Q*,
Q' < L2 < @?, and Q® < L3 < Q3. The bidding price is at least zero but not greater than a price

1A piece-wise linear marginal-cost function, a quadratic operating function, is another type of cost functions that is
widely used to represent cost characteristics of generating units in several studies on electricity markets. Although this
thesis does not use this form, the analysis presented here can be applied to analyze this form of cost functions with
modifications.
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cap Peap, 1.6, b € [0, Peap), (also Peqp > max; mc'). Suppose that each Player ¢ chooses its bidding
price from [mc?, P.qp) and its bidding quantity from [0,¢¢,,.]. Given the set of these bidding prices,

the Nash equilibrium strategies in this game can be analyzed as in the following examples.

Case 1: L =11

One Nash equilibrium occurs when Player 1 submits its bidding price equal to me? — ¢, where ¢ > 0

and me® — € > me!, and the other players submit their marginal-cost bids.

B! = {mCQ - € qvlna:n}

B {mc', o} 1 # 1.

Il

The market price is equal to mc? — e. Player 1 is scheduled to serve demand L1 and receives profit
equal to (mc? — me! — €) - L1, while the others are not scheduled. Cooperation between Players 1
and 2 to raise the bidding price to be mc® — ¢; and mc® — €5 is not possible, because both players
will undercut their bidding prices until Player 2 is no longer making profits. However, there will be
another Nash equilibrium, if Player 2 and Player 3’s bidding prices are less expensive than Player 1’s

bidding price, resulting in Player 1’s residual demand being greater than zero, i.e.,
L1- q?naz - q?naa: > 0.

Then, Player 1 submits its two-part bid in which the bidding price of the first part is equal to mc!
and of the second part is equal to mc® + A. When these conditions hold true, the market price is
equal to me® + A? and the profit that Player 1 obtains from this two-part bid exceeds the profit from

its marginal-cost bid, i.e.,
(me® —me' + A) - (L1 = @2 — C0) > (mc? —me! —¢) - L1. (2.1)

Equation (2.1) always holds when A > 0, eg. mc® + A = P.,,. When both conditions hold, the

equilibrium strategy is as follows:

Bl = {(mcl7ql,l)7(m03+A7q1,2)}
Bt = {mci,qfnaz}, 1 # 1

where ¢! = L1—¢%,, — @Cux — 9,8 > 0,and ¢*% = ¢} ., — ¢"! > 0. The market price is equal to

mc® + A. Player 1 receives profit equal to (me® — mc! + A) - (L1 — ¢2,,, — 63,..), Player 2 receives

ZPlayer 1 might consider a less aggressive strategy if L1 —g2,,. > 0. Player 1 sets the bidding price of the second
part equal to mc® — ¢, where € > 0 and mec® — ¢ > mc?. The market price is equal to mc?® — € in which Player 2 is
scheduled as an infra-marginal unit. This strategy is favorable when (mc®—me! ~¢)-(L1—q2,,,) > (mc? —mel —¢)-L1.
In this case, Player 1 submits its bid, B! = {(mcl,q"1), (me® — ¢,q12)}, where g1 = (L1 — 4d) and

2
1,2 1 11 ~ Imaz
" = Gmaxr — 4 -
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profit equal to (mc® — mc® + A) - ¢2,,., and Player 3 receives profit equal to A - ¢2 . In this thesis,
this strategy is called a capacity withholding strategy, and it is an equilibrium because Player 1 can
set A > 0 such that Equation (2.1) holds, and Players 2 and 3 are not better off submitting bidding
prices other than their marginal cost.

On the other hand, suppose that the players have a finite choice of bidding prices. Let Player 1

choose from {mec?, mc?

—¢€, mc® —¢,mc® + A}, where A > e > 0, Player 2 choose from {mc?, me® —
e, me® + A}, and Player 3 choose from {mc?, me® + A}. Likewise, let each Player i choose a bidding
quantity of either 0 or ¢*,,,. Without the capacity withholding strategy,® when demand is equal to
L1, there are three equilibrium strategies. For the first equilibrium, the bidding prices of Players 1, 2,
and 3 are mc? —e, mc?, and mc?, respectively. Only Player 1 is scheduled to serve the entire demand;
the market price is equal to me? — €. For the second equilibrium, the bidding prices of Players 1, 2,

3 3 3

and 3 are mc® — €, me® — ¢, me®, respectively. Players 1 and 2 are scheduled to generate half of the

entire demand; the market price is equal to mc®

— €. For the third equilibrium, the bidding prices of
Players 1, 2, and 3 are mc® + A, me® + A, and mc® + A, respectively. Players 1, 2, and 3 are scheduled

to generate one-third of the entire demand; the market price is equal to mc® + A.

Case 2: L =12

When demand is equal to L2, one Nash equilibrium is that Players 1 and 3 submit their marginal-cost

3

bid, and Player 2 submits its bidding price equal to mc® — ¢, where ¢ > 0 and mc® — e > mc?, ie.,

B? = {mCB -5 qrzn.az}

B! {mci:qfnaa:}r i # 2.

Il

The market price is equal to mc?

— ¢. Player 1 receives profit equal to (mc® — me! —€) - ¢l,,,, Player
2 receives profit equal to (mc® — mc? —¢€) - (L2 — ¢l,,.), while Player 3 is not scheduled. Note that
Player 1 is not better off submitting a bidding price greater than mc! and less than mc?. Similarly,
there are other equilibria in which Players 1 and 2 submit two-part bids. For Player 1, if the following

conditions hold,

L2 - qgnaz - Q?naw > 0)
(22)
(me® —me' + A) - (L1 = ¢}y — @) > (mc® —me! — €) - gpqq,
the players submit their bids such that,
Bl = met, gbY), (me + A, ¢*?
L= e g ) 03
B = {mc,¢hat, T F£ L

3Since the players are allowed to choose a bidding quantity of either 0 or ¢, -
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where ¢*! = L2—¢2,, —q%..—6,8 > 0,and ¢"'? = ¢}, .. —q¢"'. The market price is equal to mc® +A.
All players are scheduled. Player 1 receives profit equal to (mc® — mc! + A) - (L1 ~ ¢2,00 — Crus)>
Player 2 receives profit equal to (mc® — mc? + A) - ¢2,,,., and Player 3 receives profit equal to A- g2,

Suppose that all players know A (A + mc® = Pr,p). For Player 2, if the following conditions hold,

L2 - q;naa: - qfnaw > 0, (2 4)
(mc3 — mc? + A) ) (LI - qunaa: - q73na:c) > (Tnca —me® — 6) ) (L2 - q11na:1:)7
Player 2 submits its bid,
B = me?,g>1), (me® + A, g>?
| {( i ), ( g**)} 25)
B = {mc. g}, t # 2,

where ¢*' = L2—-¢},,,— @20, —9,in which é > 0, and ¢*? = ¢2,,. —¢*!. The market price is equal to
mc® + A. All players are scheduled to operate. Player 1 receives profit equal to (mc® —met + A) ¢}, ..,
Player 2 receives profit equal to (mc® — me? + A) - (L2 — ¢, — ¢3.42), and Player 3 receives profit
equal to A - g2,

Note that since ¢l,,, > ¢Z%.., when Equation (2.4) holds, Equation (2.2) also holds, but not
vice versa. If only Equation (2.2) holds, Player 1 will have a dominant strategy, which is to exercise
the strategy in Equation (2.3). When both Equations (2.2) and (2.4) hold, there exists a multiple-
equilibrium condition, in which Players 1 and 3 are better off submitting marginal-cost bids, while
Player 2 applies its capacity withholding strategy as in Equation (2.5). Players 2 and 3 are better off
submitting a marginal-cost bid, while Player 1 applies its capacity withholding strategy and submits
a bid as in Equation (2.3). When the capacity withholding strategy is applicable to Players 1 and 2,
by submitting a marginal-cost bid Player 3 benefits from being scheduled as an infra-marginal bidder.
(Similarly, Players 1 and 2 are better off submitting a marginal-cost bid if Player 3 submits a bidding

price equal to mc3 + A.)

Case 3: L =13

There is one unique Nash equilibrium in which Players 1 and 2 submit their marginal-cost bids, and

Player 3 submits a bidding price equal to mc® + A, where A > 0, i.e.,

BB
Bz’

{m63 + A, Qmaw}
{mec, gmaz}, 1 # 3.

]

The market price is equal to mc® + A. Player 1 receives profit equal to (mc® — me! + A) - gz, Player
2 receives profit equal to (mc® —mc? + A) - gmae, and Player 3 receives profit equal to A - (L3 — 2¢az)-
Note that Players 1 and 2 are not better off submitting a bidding price greater than their marginal
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costs. Note also that they are not better off applying the capacity withholding strategy because by
submitting a marginal-cost bid, they are scheduled to operate at maximum capacity. The strategy in
which Players 1, 2 and 3 submit the same bidding price equal to mc® + A to be scheduled to operate
equal to (gh,./@%) - L2, (q2,../Q%) - L2, and (g,,,/Q*) - L2, respectively, is not an equilibrium
strategy because each player is better off undercutting its bidding price slightly. Note that when there
is asymmetry in marginal-cost functions among the players, the equilibrium strategy is a function
of both bidding price and bidding quantity. Market price always deviates from marginal-cost price.
The undercutting is not an issue since the players with the less expensive units are always better off

submitting marginal-cost bids.

2.2.2 A Single-stage Game with Uncertain Demand

Von der Fehr and Harbord [13] show that when the players face demand uncertainties that one supplier
is unable to serve within the range of demand variation, no equilibrium in pure strategies exists. The
following examples extend this finding. Let us use the demand model of von der Fehr and Harbord.
When the market opens, demand (A) is determined as a random variable independent of price; in
particular, A\ € [A, A] C [0, @3], according to a probability distribution G(X).

When the players have asymmetric marginal-cost functions, the pure-strategy equilibrium when
demand equals L1 is that Player 1 submits a bidding price less than the next expensive marginal cost
and submits a marginal-cost bid for other demand levels. When the capacity withholding strategy
is implementable, the pure-strategy equilibrium for Player 1 is to exercise this strategy and to set
the bidding price of withheld capacity to be higher than the most expensive marginal cost, such as
mc® + A. Similarly, Player 2 submits a bidding price less than the next expensive marginal cost when
demand is equal to L2 and submits a marginal-cost bid for other demand levels. Like Player 1, when
the capacity withholding strategy is implementable, Player 2 shall exercise this strategy and set the
bidding price of withheld capacity higher than the most expensive marginal cost, such as mc® + A,
to obtain higher profits. When Player 2 is able to exercise the capacity withholding strategy, so is
Player 1. In this case, a mixed equilibrium condition exists, such that either Player 1 or Player 2 can
implement the capacity withholding strategy and the other benefits from the increased market price.
Player 3 shall submit a bidding price higher than its marginal cost when demand is higher than Q?
and submit a marginal-cost bid for other demand levels. Hence, by applying the proposition presented
by von der Fehr and Harbord [13] when there is uncertainty of demand in the form described above,

let us consider the following scenarios:

1. When A—) > min; ¢i,,,. The capacity withholding strategy is not applicable to Players 1 and
2 and, depending on the forecast demand, there could be a pure-strategy equilibrium as in the
deterministic case. For example, if X < gL, ,, , there will be a pure-strategy equilibrium in which

all players will submit bids as if demand is equal to L1. All players should submit their pure-
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strategy equilibrium as if they were scheduled to operate as a marginal unit in the deterministic
case because, when demand varies, each player becomes a marginal unit. Therefore, the players

apply the same pure-strategy equilibrium as when they are scheduled as a marginal unit.

2. A— ) < min; gl,,,. When the capacity withholding strategy is not applicable to Players 1
and 2, the pure-strategy equilibrium is that the player (called Player m) who will be a marginal
unit if the actual demand is equal to the forecast demand, submits its bid following the strategy
in the deterministic case. If A < Q™~!, where m = {2,3}, the player whose marginal cost is
the most expensive but less than that of Player m, also submits its bid to be a marginal unit
in the deterministic case. If A > Q™, Player m submits its bid to be a marginal unit in the

deterministic case.

However, when the capacity withholding is implementable, there is no pure-strategy equilibrium for
the players because the capacity withholding strategy would not yield maximum profits for any actual

load levels.

2.2.3 Comment and Discussion

Two main conclusions from the previous examples are a) there exists a multiple-equilibrium condition
under different demand conditions, and b) an asymmetry of portfolios creates an opportunity to
apply a capacity withholding strategy. For any player, whenever the capacity withholding strategy
is applicable in the deterministic demand environment, that player should choose to exercise this

strategy because
1. If this strategy is only applicable to the player, it is dominant.

2. This strategy yields minmax values if this strategy is applicable to the player and its opponents.
Although this player is better off submitting a marginal-cost bid when other players exercise
their capacity withholding strategy, by exercising the capacity withholding strategy the player

is guaranteed its minmax payoffs.

These examples also emphasize the effect of the asymmetric marginal-cost functions of the players
on the equilibrium bidding strategies. Without the unit-commitment constraints of operating the
units, the players who own the units with large capacity (large q’,,.) and which are economical to
operate (small mc?) are easily able to strategically submit a bid-supply function that causes the market
price to deviate from the marginal-cost price. On the other hand, when the players are uniform in
their capacity and operating cost characteristics, as shown in the appendix to this chapter, then it is
unlikely that the players will non-cooperatively raise the bidding price above the marginal cost. As a
result, when the players are uniform, the marginal-cost prices are enforceable. Therefore, to prevent

the players from setting the market price higher than their marginal costs, the market should have
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more than one player to prevent monopoly conditions, and each player should have marginal-cost
functions as uniform as possible. (That is, after divesting any power system, the power producers in

that power market should have portfolio characteristics as similar as they can possibly be.)

In addition, when inelastic demand is relatively close to installed capacity, for example, when
demand is equal to L3, the players are able to set the bidding price as high as possible, i.e., mc* +A =
P.,p. This thesis calls this condition an absolute market power condition of the power producers. When
this condition exists, the customers pay the highest price for electricity. To prevent the bidders from
exploiting an absolute market power condition, without considering any constraint in dispatching the
units to serve demand, such as transmission constraints, reserve requirements, and unit-commitment
constraints, the maximum capacity of the largest power producer should be less than the total installed
capacity minus the maximum demand (during a specified period). For example, consider period T'.
Let L; denote demand at time k (which belongs to period T), and let Ly,,, denote the maximum
demand during that period, i.e., Lyas = maxg ket Li. Let ¢, denote the maximum installed or

available capacity of power producer i. The absolute market condition occurs when

max g > d wzx — Lmaz-

aX Ghnaa 23: Ghrae = Dmaz
On the other hand, when the constraints, such as transmission constraints, unit-commitment con-
straints, and reserve requirements are accounted for, the largest capacity that one player can own
(max; q',,,) will be reduced. For example, when the power producers also sell ancillary services to
the system operator, the total demand is the energy demand (L) plus the ancillary service require-
ments. Suppose the ancillary service requirement (L}) at each time k is a% of the energy demand,

ie., L; = (1 + a/100) - L. The absolute market condition occurs when

max qz"nax > Z qgnaz - (1 - 0/100) CLTE.

i ,

J
Any player has “market power” in a bidding game when its dominant strategy to submit a strategic
bid exists under some demand conditions. When the game experiences different demand levels, the
player who has market power at one demand level may not have market power at the other. This
implies that the player with market power is able to maintain its strategic bid and reap profits because
the same game is played over and over again, and that strategic behavior is likely to be implemented

when portfolio-based decision-making is in place or when the players own multiple generating units.
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2.3 Multiagent Market Model

This thesis provides a framework for formulating electricity spot markets using an agent-based model
to analyze dynamic interactions of the power producers and the price dynamics as a result of those
interactions. The agent-based modeling approach provides simulation-based analyses that can capture
the dynamic interaction of the agents in the electricity markets and their effect on market price
dynamics. The key motivations to the adoption of this approach are the number of the agents in the
markets, the asymmetric characteristics and objective functions of these agents, and the repetitive
auctions.

The classic oligopoly model was previously used by several researchers, such as Green and Newbury
[20], to analyze the market in a static setup with only a few active power producers (i.e., N > 3)
facing (almost) inelastic demand. This model is very sensitive to the price-elasticity of demand. Also,
in this setup at least one player will have at least 33.3% of market shares, so this player can always set
the market price different from the marginal-cost price. Market prices determined using this model
deviate substantially from marginal-cost prices; therefore, the model becomes an unrealistic one for
analyzing the ability of a power producer to influence the market price. Moreover, existing electricity
markets in the US are not dominated by just a few players but rather by around 10 power producers,
as seen in the California and New England markets; see [52] and [53]). On the other hand, with the
oligopoly model for many agents with asymmetric marginal-cost functions, it is difficult to characterize
market prices even statically.

Furthermore, one may argue that an HHI index (see the appendix to this chapter) to determine the
level of competitiveness may be used instead. Rudkevitch et al. [38] use these indices to indicate that
the New England markets are competitive; however, the price spikes (indicating very expensive market
prices) in the New England market during low or high demand periods can be observed regularly.

Additionally, as shown in the examples in Section 2.2, the pure-strategy equilibrium in a single-
stage bidding game for any given demand level depends on the players’ characteristics. The equilibrium
strategy of the bidding game generally varies whether the players own a single unit or a portfolio of
units. For example, two portfolios with the same marginal-cost characteristics (including generation
capacities and operating costs) may have the same optimal bidding strategy when bids are determined
on a unit-by-unit basis, and different optimal bidding strategies may be obtained when the entire
portfolio is considered. If the units are able to generate power at any output (less than its capacity),
one large unit can generate power equal to two small units at the same costs of mc per unit of
power. Consider when Player 1 owns one unit with capacity ¢z, and Player 2 owns two units with
capacity ¢Zl, and ¢%2,, in which ¢}, = ¢%L, + ¢%2,. Suppose that the bids are determined
based on a unit-by-unit basis and that capacity withholding is applicable for Player 1. Player 1
anticipates market price to be mé if capacity withholding strategy is applied. Player 1 submits its

bid as B! = {(mc,q¢"'),(mé,q"?)}, where mc < mé. Suppose g2 > ¢%%, and the capacity

mazx
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withholding strategy is not applicable to any one of Player 2’s units. Player 2 is unable to set the
market price equal to mé by simply submitting a bidding price as B? = {(me,¢%,),(mé,¢%2,)}.
Note that different optimal bidding strategies may also be obtained when operating constraints, such
as unit-commitment constraints, are accounted for in determining bid-supply functions.

In existing electricity markets, power producers participate in sealed-bid auctions to trade elec-
tricity daily. These auctions are modeled as a series of a repeated game of incomplete information.
Without the information regarding the opponents’ actions and payoffs, it is not feasible to determine
an optimal bidding strategy. Fortunately, the auction occurs repeatedly, and market pri;:es and total
demand are public information after each auction finishes. The bidders can use this information,
together with their bid-supply function and scheduled outcomes, to learn their opponents’ strategies
over time. The algorithms that are suitable for an agent to play a repeated game of incomplete
information are designed so that no information about the opponents’ actions and payoffs is required.

In the next chapter, the proposed electricity market model as a multiagent system and/or a bidding

game is described in detail, and a state-of-the-art agent based modeling approach is introduced.

Appendix to Chapter 2

A. Equilibrium in a Three-person Bidding Game

In this section, let us consider when the players have uniform marginal-cost functions and when the
players have the same installed capacity. General characteristics of the players are the same as where
the players have asymmetric portfolios. The equilibrium strategies in a bidding stage-game under

different demand conditions can be derived as follows.

1. Deterministic Demand
a) Uniform Marginal-cost Functions

First, let us analyze an equilibrium of price competition in a bidding game in which there are three
identical players. Each generating unit has maximum capacity gmq., and marginal cost me. Let us
consider when demand equal to L1, L2, and L3, where 0 < L1 < @maz;, Gmar < L2 < 20maxz,
and 2¢me: < L3 < 3¢maz-

Suppose that the player can submit its bidding price such that b* € [0, Pesp] and Poyp > 0.
The only equilibrium in the game when demand is equal to L1 and L2 is that each agent submits a
marginal-cost bid, i.e.,

B' = {me, ¢maz}, 1 € {1,2,3}.

This is an equilibrium strategy because the agents cannot unilaterally benefit from submitting a

bidding price higher than me. If only one player submits a bidding price higher than me and the
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others submit a marginal-cost bid the market price is still equal to mec. On the other hand, when
demand is equal to L3, if only one player submits its bidding price higher than me, it benefits from
the market price equal to its bid, while the others become free-riders. Cooperation in which all
players submit the same bidding price greater than me is unlikely, because one player can benefit
from undercutting the price slightly to be scheduled to operate at its full capacity g¢,n... To have one
player submit a different bid seems to contradict the presupposition that all the players are identical.
Therefore, the only equilibrium in this game is that the players submit the marginal-cost bid in the

case of demand equal to L1 and L2 as well.
B = {me¢,gmas}, ¢ € {1,2,3}.

Next, suppose that the players have finite choices of bidding price, i.e.,b’ € {mc,mc+ A}, where
A > 0. Let us consider the three scenarios of L1, L2, and L3. There are two pure strategy Nash
equilibria for demand equal to L1, i.e., either all players submit a bidding price equal to mec or a

bidding price equal to me + A.

pi= ) {medmes} , i€ {1,2,3).
{me+ A, gmex}
In either one of these equilibria, the players are scheduled to generate L1/3. (Residual demand is
equal to L1. Each player is scheduled to operate ——=ae . L] = 1’3—1) While the former case
yields zero profit, the later case yields profit equal to (A - L1)/3. When demand is equal to L2, there
are four pure-strategy equilibria. These include that all players submitting a bidding price equal to
mc and that one of the players submits a bidding price equal to mc and the others submit a bidding
price equal to me + A. A marginal-cost bidder receives profit equal to A - ¢nas, while the others
receive profit equal to (A - (L2 — gmaz))/2. Cooperation strategy in which all players submit the bid
equal to me + A is not an equilibrium strategy, although it yields profits equal to (A - L2)/3. This is
because one player can defect by submitting a marginal-cost bid to obtain A - ¢,n,, instead. The four

equilibria strategies for this scenario are:

B = {me, gz} i € {1,2,3}
Bi = {me,

_ {me, gmaz } i € {1,2,3}.
B™' = {mc+ A, ¢maz}

When demand is equal to L3, there are three pure-strategy equilibria, which are that two players
submit a marginal-cost bid and the other player submits a bidding price equal to mc + A. For two
marginal-cost bidders, each player obtains profit equal to A - gmae, and the non marginal-cost bidder

obtains the profit equal to A - (L3 — 2¢m..). If all players cooperated to submit a bidding price equal
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to mc+ A, each player would receive profit equal to (A-L3)/3 which is better than A-(L3 — 2¢,,42) for
a non marginal-cost bidder. This is not an equilibrium because one player may defect by submitting

a marginal-cost bid to obtain more profit equal to A - gmaz-

Bt = {mc+ A, gmas}

. i € {1,2,3}.
Bt

Il

{me, gmaz }

Note that when there are multiple pure-strategy equilibria, a mixed-strategy equilibrium is also ob-
tained.* When the player chooses its bidding price from an infinite set, the equilibrium that is not
a marginal-cost bid is not possible because the player is unable to agree on A non-cooperatively.
However, the equilibrium resulting in positive profits when the player faces an infinite set of bidding
prices may be reached when the game is played sufficiently often. If the game is played often enough,
the players will be able to agree on some A, and the strategy of cooperation to raise the price will be

enforceable.

b) Uniform Capacity

Let us consider the bidding game played by three players called Player ¢, where ¢ € {1,2,3}. Each
Player i has installed capacity g;nqe and marginal cost equal to mc?. Suppose that me! < me? < mc®.
Three demand scenarios, i.e., L1, L2, and L3, where 0 < L1 < @maz, Gmaz < L2 < 2¢maz, and
2¢maz < L3 < 3¢mae are considered.

Suppose that the player can choose a bidding price that belongs to ' € [0, P.qp), where Peg, > 0.
In this game, when demand is equal to L1, one equilibrium is that Player 1 submits a bidding price
equal to mc? — ¢, where € > 0 and mc? —e > mc’. The other players submit their marginal-cost bid,

ile.,

Bl 2

Bi

{mc ) Qmam}

{me, gmaz}, i # 1.

The market price is equal to me? — e. Only Player 1 is scheduled to serve demand and receives profit
equal to (mc? — me! — €) - L1, while the other players are not scheduled.
When demand is equal to L2, one equilibrium is that Players 1 and 3 submit their marginal-cost

3

bid and Player 2 submits its bidding price equal to mc® — €, where € > 0 and mc® — ¢ > mc?, ie.,

BZ 3

Bi

f

{mc -6 qma:c}

{mciyq"mz}a i 75 2.

I

The market price is equal to mc® — e. Players 1 and 2 are scheduled to operate, but not Player

4However, note that in this thesis the value of o¢, a probability distribution over a set of pure-strategy equilibria, is
not determined.
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3. Player 1 receives profit equal to (mc® — mc! — €) - gmar and Player 2 receives profit equal to
(me® —mc? —€) - (L2 — gmaz)- Note that Player 1 is not better off submitting a bidding price greater

than me! and less than mc?.

Likewise, when demand is equal to L3, one equilibrium is that Players 1 and 2 submit their

marginal-cost bids and Player 3 submits its bidding price equal to mc® + A, where A > 0, i.e.,

B? {mC3 + A7Qmam}
B = {mciy%naz}v i # 3.

The market price is equal to me® + A. Player 1 receives profit equal to (mc® —me! + A) - qmaz, Player
2 receives (mc® — me? + A) - ¢maq, and Player 3 receives A - (L3 — 2¢pmaz). From this example, one can
observe that Players 1 and 2 are not better off submitting a bidding price greater than their marginal

cost.?

From these examples, when there is asymmetry in marginal costs, the equilibrium strategy is no
longer a marginal-cost bid. Price-undercutting does not play a role, since the players with the cheaper

marginal-cost units are always better off submitting their marginal-cost bids.

Second, when demand is equal to L2, there is a unique equilibrium strategy where Player 2 chooses
the bidding price equal to mc? + A, whereas Players 1 and 3 are indifferent to either of their bidding
prices. The market price equals mc? + A. Players 1 and 2 are scheduled to operate, but not Player
3. Player 1 receives profit equal to (mc? + A — me!) - gnar and Player 2 receives profit equal to
A - (L2 = gmaz)- When demand is equal to L3, there is a unique equilibrium strategy where Player 3
chooses the bidding price equal to me® + A. Players 1 and 2 are indifferent to either of their bidding
prices. The market price equals me® + A. All players are scheduled. Player 1 receives profit equal
to (mc® + A — mc') - gmaz, Player 2 receives profit equal to (me® — mc® + A) - ¢z, and Player 3
receives profit equal to A - ¢maz -

Furthermore, let us consider when Player 1 chooses its bidding price from {mct, me? — €, mc® —

e,mc® + A}, where A > € > 0, Player 2 chooses its bidding price from {mc?, mc® — ¢, me® + A},

and Player 3 chooses the bidding price from {mc®, mc® + A}. When demand is equal to L1, one

2

equilibrium is ! = mc? —¢€, b> = mc?, and b* = mc®. The market price is equal to mc? — . Only

Player 1 is scheduled to operate. Suppose that (mc® —e—mc!)-(L1/2) > (mc* —e—me!)-L1. There

is one equilibrium that yields a higher market price than that of mc? — ¢, that is, where Players 1 and

3 3

2 submit their bidding prices equal to mc® —e. The market price is then equal to m¢® — € and Player

5To submit a bidding price such as mc® + A if A = A, their profits are reduced to (me3 — me! + A) - % On the

other hand, if A > A, their profits are (me® — mc! + A) - gi——q—"—‘ﬂ—) By increasing A > A, they are able to make
more profits than if they were scheduled to operate as marginal umts However, both Players 1 and 2 have to choose
the same A. If only one of these two players submits the bid with A > 0,its will be a marginal unit and may be more
profitable than being scheduled to operate as an infra-marginal unit. Since Player 3 is able to apply a similar strategy
and Players 1 and 2 know that bidding above marginal costs is Player 3’s dominant strategy (over a marginal-cost bid),
they are always better off if they bid e lower than Player 3’s bidding price, ¢ > 0.
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3 is indifferent to any of its bidding strategies. Players 1 and 2 are scheduled to generate L1/2, but
not Player 3. Moreover, when A > 0 such that (me® + A —met) - (L1/3) > (mc? —e —me!) - L1,
there is another equilibrium, that is, where all players submit their bidding prices equal to mc® + A.
In this case, each player is scheduled to generate L1/3. Due to the existence of multiple pure-strategy
equilibria, there is also a mixed-strategy equilibrium. Likewise, with a analysis similar to that of
demand equal to L1, multiple equilibrium conditions can also be found when demands are equal to L2
and L3. The finite sets of bidding strategies of the players can ensure the possibility that the market
price is set to mec® + A in any demand L1, L2, or L3.

I1. Uncertain Demand
a) Uniform Marginal-cost Functions

When the players have uniform portfolio characteristics, the pure-strategy equilibrium is that the
players submit their marginal-cost bids, regardless of the demand levels. Therefore, demand uncer-
tainty does not affect the pure-strategy equilibrium in which the players submit their marginal-cost

bids.

b) Uniform Capacity

When the players have uniform capacity but not uniform marginal costs, the pure-strategy equilibrium
of each player can be characterized as follows. Player 1 submits a bidding price to be less than the
next expensive marginal cost when demand is equal to L1 and submits a marginal-cost bid for other
demand levels. Player 2 submits a bidding price to be less than the next expensive marginal cost when
demand is equal to L2 and submits a marginal-cost bid for the other demand levels. Likewise, Player
3 submits a bidding price to be less than the next expensive marginal cost when demand is equal to
L3 and submits a marginal-cost bid for the other demand levels. When there is demand uncertainty
in the forms described in Section 2.2 by von der Fehr and Harbord [13], the players should apply
the same pure-strategy equilibrium, as if they were scheduled to operate as a marginal unit. That is,
Player 1 submits a bidding price equal to mc? — e > mc!, Player 2 submits a bidding price equal
to me® —e > mc?, and Player 3 submits a bidding price equal to mc® + A. If there is a sufficiently
large demand deviation, the anticipated marginal unit may become an infra-marginal unit and the
anticipated extra-marginal unit may become a marginal unit, and the players would be better off
setting the bidding price as if they encounter the deterministic demands and they are scheduled to

operate at the margin.



B. HHI Index

An HHI index is defined as
HHI = ) S}, > Si = 100% (2.6)

where S; is market shares of each firm in a market. From Equation (2.6), H HI ranges between 0 and
10,000. That HHI = 10,000 refers to a market with a monopoly, and that HHI = 0 refers to a
competitive market. See, for example, Landes and Posner [29] and Ordover et al. [36], for more detail

on this subject.
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Chapter 3

Agent-based Modeling Approach

This chapter presents a detailed explanation of an agent-based electricity market model. In this model,
the market has a uniform-pricing rule and active market participants are agents, who learn the bidding
behavior of the other participants from available information and determine their bids in response to
the others. There are only the power-producing agents facing inelastic demands. The market-clearing
mechanism uses the price-merit order method. The agents know forecast demand, actual demand,
and their scheduled quantity and market price, but not the others’ bids and/or scheduled quantity.
This chapter is organized as follows. Section 3.1 lays out the general characteristics of the model
and describes the details of the model and load-based decision schemes. Section 3.2 outlines the
characteristics of the agents, available information, learning algorithms, as well as the actions or the
bid-supply functions. This thesis applies three learning algorithms: 1) Auer et al.’s algorithms to
play multi-armed bandits that is later applied to play unknown repeated games (see Auer et al. [1]);
2) the softmax action selection using a Boltzmann distribution, which shares a similarity with Auer
et al.’s algorithms in term of the action selection (see Sutton and Barto {41]); and 3) a model-based
learning algorithm that is designed specifically for this bidding game. These algorithms are presented

in Sections 3.3, 3.4, and 3.5, respectively. The conclusion is outlined in Section 3.6.

3.1 Model Characteristics

The agent-based electricity market model represents the electricity spot markets with the following
characteristics. Power-producers have portfolios of generating units with different marginal costs
and capacities, and demand is inactive and inelastic (no load-serving entity). The power-producers
participate in a sealed-bid first-price auction to sell electricity daily. They submit bid-supply functions
to a system operator prior to demand being realized. The bid-supply functions are piece-wise and
non-decreasing functions of quantities and prices, indicating the amount of power the power-producer

is willing to generate at the specified price. An independent system operator clears the market by
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using a price-merit order method, matching supply to demand and setting the market price to be the
bidding price of a marginal unit. The market has a uniform-pricing rule. After the market clears, the
power-producers are informed of total demand and market prices, as well as their scheduled outcomes,
such as scheduled prices and quantities. No bid-supply functions of the competitors are revealed. In
addition, the agents know the aggregate (system) marginal-cost function. This function is determined
by assuming that all the units are on at their full capacity. The agents do not know the marginal-cost

function of individual opponents.!

In this model, the agents do not known when the game starts, since the bid outcomes depend
on the bid-supply functions of all agents. The agents want to learn the game so that their bid-
supply functions yield profits at least better than the profits from a marginal-cost bid, and as good
as the profits from the previous periods. The agents can therefore adopt any learning algorithm
that is suitable for available information, and they may use the information revealed through the
interactions for learning about the others’ joint actions. According to Fudenberg and Kreps [18], in a
repeated game of incomplete information an agent’s play may have a broad class of assessing actions
played by its opponent given information observed through repetition of game playing, actions which
were themselves dependent on the information available to the opponents.? Learning the opponents’
bidding behaviors of the agents can also be viewed as on-line decision-making.

As mentioned in previous chapters, the equilibrium strategy of the agent in a single-stage bidding
game varies when demand changes, because the change in demand affects payoffs obtained from the
same actions and equilibrium strategies. This claim is supported by the observation of the New
England market prices, which is shown in the appendix to this chapter. The histograms of market
prices change their characteristics under different demand ranges. Generally, a typical characteristic
of the system marginal-cost function is a piece-wise non-decreasing function. The portfolio of each
power producer is a part of the system supply function. Different demand levels lead to different
groups of power producers that influence the scheduled outcomes. Figure 3-1 shows an example of
an aggregate marginal-cost function and the portfolios of power producers G1 - G6 as parts of this
function. As shown in Figure 3-1, when demand is equal to L1, power producers G1, G2, G3, and
G4 are competitors. That is, they have the units that can be bid as marginal units, setting market
prices and obtaining positive profits. Similarly, when demand is equal to L2, power producers G1, G2,
G3, G4, and G5 are competitors. Figure 3-2 shows the New England moving-average demand from
May, 1999 to April, 2001. Electricity demand generally exhibits a seasonal pattern. For example, as

shown in Figure 3-2, in the New England market there are two peak demand periods in the winter

1This is quite a strong assumption. In the existing markets, the units are operated under unit-commitment con-
straints. The aggregate marginal-cost function at each hour should account for these operating constraints; however,
the unit-commitment constraints are discarded throughout this thesis.

2Fudenberg and Kreps suggest four examples of the assessment rules including: a) the opponent will play in the
current period (t) whatever it plays in the previous period (¢ — 1); b) the opponent will play the weighted average of
the past plays; ¢) the opponent is equally likely to play any action that has been played at least 1% of the time with
zero probability for all other actions; and d) the opponent will play the equally weighted actions played previously.
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and summer months.

To play the game consecutively without considering demand variation might not capture the true
behavior of the bidders. This thesis proposes to divide the learning and decision-making processes
based on load levels and calls this approach a load-based modeling approach, meaning that the agents
play multiple bidding games simultaneously (during a daily auction round). Each game is techni-
cally correlated because of constraints of operating the generating units, i.e., the unit-commitment

constraints; however, these particular constraints are not considered here.

The concept of partitioning the bidding game into a set of bidding games depending on demand
levels shares a similarity with the idea of adaptive resolution models, which is to partition the en-
vironment into regions of states that can be considered the same for the purposes of learning and
generating actions, as mentioned in Kaelbling et al. [26]. Note that the bidding game has only one
state. Kaelbling et al. also state that without detailed prior knowledge of the environment, it is very
difficult to know what granularity or placement of partitions is appropriate. This problem is overcome
in methods that use adaptive resolution and where during the course of learning a partition is con-
structed that is appropriate to the environment. Moreover, the only way to behave truly effectively
in a wide-range of environments is to use memory of previous actions and observations to clarify the

current state. This data collection is based on a finite-history window of memory concept.

In this model, a decision-making algorithm to determine the bids of the agents is formulated based
on the levels of demand. A set of indices £ representing a range of demand such that L/™! <
L7 < L7 is introduced. Learning and data-collecting over the period are based on these load indices.
Continuous demand value is discretized into N¢ load/demand indices (£). Each index d, £, represents

demand in range d denoted by [L%~!, L?), where
£4 =L e [L4 LYY, d e N

This range is set arbitrarily and may affect the behavior of the agents as well as price dynamics. Using
these indices, load in each hour is mapped to one of these ranges, meaning that the continuous load
is mapped to a set of discrete load indices, as follows:

0<L < L' - (!

IA

' <L <I?* - r?

IA

IN-1 < [ < INY 5 M

where ILV' 5 . Figure 3-3 shows an example of the mapping from continuous demand to 16

indices, in which each index represents 500 MW of power. This figure shows also that demand in
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different hours can be mapped to the same index. Although the same demand index can occur in
several hours a day, this thesis allows an information update to take place only daily for each demand
index. Therefore, during several hours in each day demands are mapped with the same index, and an
average of any collected information during those hours is used for any update.

In addition, the concept of storing the observed data is motivated by a real-world situation in
which market participants analyze and assess market conditions to determine the best response to
any market circumstance. The agents record market outcomes or create their database in a form of
memory matrices. The matrices contain collected data for a window of Md periods and have each row
representing one load index (or one load range), £%; that is, the data stored in any row is associated
with the load index that is mapped to that row. Note that Md > 1. For any myopic decision, Md = 1.
Generally, these data can be categorized by different references, such as time of day, load levels, or

5easoI1ls.

3.2 Model of Power-producing Agents

The power-producing agents (agents) own a portfolio of generating units, which consists of at least
one generating unit. These units have a constant marginal cost. The agents submit their bid-supply
functions, pairs of bidding price and bidding quantity, to sell electricity to the market. Note that a
bid and a bid-supply function are used interchangeably throughout this chapter. The agents submit
24 bid-supply functions each day.

Let S' = P x Q' be action (or bid) spaces of Agent i, where P € [0, P.,p] and Q* € (0,¢%,,.),
where P,y is the maximum possible price and g%, is total available capacity or installed capacity of
Agent 7. In this market model, the agents choose their bid-supply function so that the undiscounted
expected sum of profits (R) are maximized. Suppose Agent i owns at least one generating unit j.
Prior to determining the bid-supply function, Agent 4 calculates its expected profits of its N* units
over K periods. This expectation is taken over uncertain demand and over variations of market prices,
which are a function of the agent and its opponents’ bid-supply functions. The undiscounted expected

profits are defined as follows:

K
Ri=max £ { S S (B -qff - ci(gf?) - Ui)
k=0 jgNi

subject to ¢ < g’ < abl.

k,min

where 15,27 denotes a forecast price paid to Agent ¢ for scheduled quantity q,ic’j of generating unit j. Let
c*I(q) denote an operating cost incurred due to producing q. Marginal cost defined by (%ﬂ =
mc*) is a constant for ¢ € [0,¢%%,.]; therefore, ¢J(-) is a linear function. Let g7 denote the

i
k,min

installed capacity of unit j. Let ¢ denote the minimum capacity that unit j needs to be operating
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at time k and let U ,t] be the cost incurred each time k due to the unit-commitment constraints. The

iJ

constraint on g, ..

is imposed to capture the inflexibility due to the unit-commitment constraints.
Since the unit-commitment constraints are not accounted for in this thesis, these constraints are
discarded by setting q}ﬂmm = 0 and U,i’j = 0. As a result, no intertemporal relationships from

period to period are considered and the agents determine their bid-supply functions for each period

k based on that period only.

Let us further assume that demand is deterministic; that is, forecast demand is equal to actual
demand. The objective function of the agents at time k is simplified such that the expectation is

taken over the variation of market prices, and it is reduced to

K
Ri=max £ {3 S (B g — cii(gi)) (3:1)
k=0 jeNi
subject to 0 < g7 < i .

According to Equation (3.1), the agents determine their “best” bids from the available information
and the assigned learning algorithm. The set of available information is summarized in Section 3.2.1,

whereas learning algorithms employed in this model are presented in Section 3.2.2.

3.2.1 Available Information

The information that the agents know before and after each bidding rounds includes:

o Forecast demand. Prior to a bid submission, the agents are informed of total forecast demand
for the next twenty-four hours. After the market clears in each bidding hour, total demand for

that hour becomes publicly available.

o System marginal-cost function. The agents uniformly know the aggregate marginal-cost function
of the market. This function is determined by assuming that all units are available and ready to
operate at its full capacity. (Before deregulation began a few years ago, information regarding
operating costs and operating constraints of the generating units in the market was publicly

known. This information is currently confidential and this assumption may not be realistic.)

o Scheduled prices and quantities. Each agent is informed only of its scheduled price and quantity
of each hour. Since the uniform-price rule is adopted here, the scheduled price in each hour is
equal to the market price of that hour. In addition, no unavailable capacity due to outage and

maintenance are considered, nor are unit-commitment constraints.

61



3.2.2 Learning in the Repeated Bidding Game

As shown in the previous chapter, this market model is considered a repeated bidding game of incom-
plete and imperfect information, which may also have multiple equilibria in some demand levels. The
typical problems of the agents in playing the incomplete information game with multiple equilibria
are to decide which actions to play based on the available information. A “good” learning algorithm
requires the least information regarding the opponents’ actions and the agent’s payoff characteristics.
The learning algorithms in general must also balance exploration of new actions and exploitation of
current best actions. (See, for instance, Sutton and Barto [41], for more detail.) Besides, in the
long run the learning algorithms may guarantee an average payoff as large as the best-reply payoff
to the empirical distribution of play of the other agents; that is, the learning algorithm or strategy
has Hannan-consistent properties.® This concept plays a significant role as a measure and a desired
property of learning algorithms or strategies.

The agents participate in the bids daily without an opportunity to have off-line training to learn to
bid. They face an on-line learning problem, and consequently the agents have to make their decisions
myopically. That is, the agent determines its decision to maximize its objective function, using only
current and past available information.* This action is called a myopic play.®

One key factor in determining a bid-supply function, besides forecast demand, is to know market
prices. Market price at each time k denoted by Py is a function of the bids of all N agents and

demand, Lg, ie., f : S'x ... x SV xRt = R,
Py = f(B;, By, Ly).

Note that one can think of demand as a mapping function from the bids to market price, i.e., L :
S'x...xSN = R, P, = L(B},B; "), where Bi is a bid function of Agent ¢ at time k and B, " is an
aggregate bid-supply function of other agents except Agent 7 at time k.

Prior to determining the bids for the next period k, from Agent #’s point of view, anticipated mar-
ket price at time k is a function of its bid B}, and its anticipated opponents’ bids, which is an assessment
based on its past bids {B%,},° demand ({L<4}), and price ({ P<x }), that is, B;i({B’%k}, {L<k}, {P<i})-

Hence,
Bl = P{(Bi(b,q), By ).

The auctions occur daily with new revealed information. Although the decisions or actions of the

3The definition of Hannan consistency strategies is described in the appendix to this chapter.

4This assumption is not realistic when the unit-commitment constraints are accounted for. For simplicity of the
model and model formulation, no unit-commitment constraints are accounted for; therefore, the agent makes a myopic
decision.

5See the appendix to this chapter for a complete definition of a myopic play.

8The subscript on variable z, (z) <k, refers to a string of variable = from time 0 up to time k — 1.
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opponents are not observable, the joint actions may be obtained. The agents may either a) learn
about their opponents from their own actions and their payoffs obtained after each bidding round
without considering their actions, or b) try to “anticipate” the market prices from past information;
that is, Bk_i is obtained from learning. This claim suggests that the agent with larger capacity and
tendency to be scheduled is likely to better estimate the actions of the agents with less capacity. Note

also that the asymmetry in the agents’ portfolio characteristics can be found in Appendix A.

To determine a bid-supply function, making use of game theory perspectives, Agent ¢ should play
a Nash equilibrium strategy. Agent i is unable to do so, because it does not know its opponents’ bid-
supply functions and their associated scheduled outcomes; therefore, it either determines its bid-supply
functions (a set of bidding prices and quantities) so that the anticipated profit, calculated from its
anticipated price P,i at time k, are maximized by following some learning algorithms, or determines its
mixed strategies according to some learning algorithms without attempting to determine anticipated

prices. One may view a simplified version of Equation (3.1) as

{bp7" a7 Y =arg max ¢ > (PUB(bL,ql), By) 47 — ¢ (7))
L7 0 | jene
This equation tells us that Agent i plays the best response strategy to the joint actions it believes
the opponents might play. Since the objective of this thesis is to construct a computer-based market
model that closely mimics characteristics of the existing electricity markets, the equilibrium strategy
or equilibrium dynamics is not a main focus. The learning algorithms may not necessarily yield the
value of the bidding game or have Hannan-consistency properties. The simulated price dynamics
depend highly on an ability of the algorithm to allow the agents to explore and exploit favorable

actions. This thesis explores three different learning algorithms/bidding selection strategies:

e The algorithms select a mixed strategy for choosing a bid-supply function. These algorithms
are similar to Auer et al.’s algorithms [1] which play multi-armed bandits and they are outlined

in Section 3.3.

e The algorithm selects a mixed strategy for choosing a bid-supply function in which the selection
method is updated based on the Boltzman distribution. This algorithm can be found in, for

example, Sutton and Barto [41], and it is highlighted in Section 3.4.

e The model-based algorithm selects a pure strategy of bid-supply function. This algorithm is

developed solely for this particular model, and it is presented in Section 3.5.
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3.3 Modified Auer et al.’s Algorithms

Auer et al. [1] provide the algorithms for an agent to play multi-armed bandits so that expected
regrets after playing for a given time 7' are within established bounds. Their algorithms are based
on the weight-majority algorithm of Freund and Schapire [15]. In the multi-armed bandit problem, a
gambler must decide which arm of K non-identical slot machines to play in a sequence of trials so as
to maximize its reward. Auer ef al. assume that each arm delivers rewards that are independently
drawn from a fixed and unknown distribution; that is, no statistical assumptions are made about the
generation of rewards. Each slot machine is initially assigned an arbitrary and unknown sequence
of rewards, one for each time step, chosen from a bounded real interval. The “worst-case” regret is
used to measure the gambler’s performance, which is the difference between the return the gambler
would have had by pulling arms ji,...,Jr and the actual gambler’s return, where both returns are
determined by the initial assignment of rewards.

In this thesis, three algorithms developed by Auer et al., including algorithms Exp3, Exp3.1, and
Exp3.P.1, are implemented. Algorithms Exp3 and Exp3.1 are illustrated in detail in the appendix
to this chapter, and only an overview of Algorithm Exp3.P.1 is presented in this section. For those
who are familiar with these algorithms, Section 3.3.1 can be skipped entirely. These algorithms are
based on the assumption that the agent knows the number K of actions and, after each trial ¢, the

agent knows the rewards z;,(1),...,;, () of the previously chosen actions 1y, ...,%.

3.3.1 Auer et al.’s Algorithm Exp3.P.1

Algorithm Exp3.P.1 works as follows:

Initialization
1. Set real values of a, y, and 6, where & > 0, v € (0,1], and § € (0,1).
2. Initialize T, and &,. Determine r*. Forr =0,1,..., let T, = 27,4,

— [
=ty and

r* = min{r € N : §, > KT,e ¥T"}. (3.2)
Repeat For r*,7* +1,..., by lettingT = T, and § = §,

Initialization

1. Set v = min {%,2 %KI,PK} and a = 24/In(KT/é).
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2. Initialize wy (i}, for 7 = 1,..., K,

Repeat Foreach t = 1,2,...,7T

.

1. For i = 1,..., K, set the mixed strategy p; = {p:(1),...,p:(3), ..., p(K)} as follows:

) wy (i) Y
3y = (1 - — — 3.3

2. Choose i; randomly according to the distribution {p¢(1),...,p:(K)}.
3. Receive rewards z,(¢;) € [0,1].

4. For j = 1,..., K, set

z(g)/pe(g) ifj = 4

0 otherwise,

#(j) =

wi1 () = we(j) - exp (‘5% (ft(j) + M(]ﬁﬁﬁfﬁ)) . (34)

In this algorithm, § denotes the probability of error. If the agent desires to have a small probability
of error so that the weak regret lies within the bound presented by Auer et al.,” the agents will have
to suffer the larger bound. This bound is an increasing function of the number of arms (K), implying
that the more arms to be tried, the bigger the guaranteed bound. Furthermore, as shown in Equation
(3.3), this algorithm yields a mixed strategy or probability distribution p; over possible K arms. This
probability distribution is a mixture of a uniform distribution (y/K) and a function of the weight
factor w,(¢) associated with each arm 7. As a result, the agent has a chance to explore all K arms
even with a small probability. The favorable arm, the arm that yields the large reward, is chosen with
an increasing probability, as shown in Equation (3.4).

Furthermore, this algorithm requires only the number of possible actions K and the probability of
error 4, while it requires no knowledge of the characteristics of the agent’s reward or the time horizon
that the algorithm is performed. These two features make this algorithm a suitable one for an agent
playing a repeated game in an unknown game set-up, such as in the bidding game. Note also that
if the reward z;(t) is in the range [a,b], a < b, then the algorithm can be used after the rewards are

translated and rescaled to the range [0, 1].

7See the appendix to this chapter for more detail.
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Application to Game Theory

The adversarial bandit problem can be easily related to the problem of playing repeated games. For
an N-person finite game, let sets {S?,..., 5% ..., SN} denote pure strategies for each Agent i. Let
ul,...,u" denote sets of payoffs for each agent, where function u* : S! x ... x §¥ — R denotes agent
i’s payoff function. Let S =S ' x ... x SN andlet S* =81 x ... x S 1 x Sl x .. . xSV Letse S
and s™¢ € S7%. Then, given s € S, let (j,57¢) denote (s',...,s"71,7,stTL, ..., sN), where j € S*.
Suppose that the game is played repeatedly over time. Each agent knows all payoff functions and,
after each round t, the agent also knows the vector of pure strategies, s(t) = (si,...,s)), chosen by

the agents. The average regret of Agent ¢ for the pure strategy j after 7" rounds is defined by:
. 1L . .
Rr(5) = 7 D5yt — wisy):
t=1
A desirable property for an agent is Hannan-consistency, in which Agent i is Hannan-consistent if

lim supmax RY%(j) =0, with probability 1.

T—oo jest

Next, let us consider the unknown game setup, that happens when the payoffs obtained by the agent
belong to a known bounded real interval. Let z;, (t) be viewed as the payoff u; (i, s_;(¢)) received by
Agent 4 at round ¢ of the game. This payoff u®(is, s; %) depends on the possibly randomized choices of

all agents which are functions of their realized payoffs. By using this algorithm, the agents can obtain:

Auer et al.’s Theorem 9.1 If Agent i has K > 2 pure strategies and plays in the unknown game

setup with payoffs in [0,1] using the mized strategy Exp3.P.1, then

max RY-(j) <

10 [2x (1 KT ) , 1001+ log, (7)) (1 KT )
jesi “V2-1\y T ’

n T +cr T n 5 +cr
where cr = 2In(2 +log, T), holds with probability at least 1 — §, for all 0 < § < 1 and for all

T = (K/8§)%/K),

From this theorem, the bound of the expected weak regret obtained from this algorithm does not
depend on the time horizon of learning and the maximum possible rewards up to that time, but
depends on the number of actions (K} and the probability of error (§). This theorem, along with
Auer et al.’s Corollary 6.5,2 implies that in a repeated game of incomplete information when the agent

adopts algorithm Exp3.P.1, the agent’s average regret is Hannan-consistent:

8See the appendix to this chapter for more detail.
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Auer et al.’s Corollary 9.2 Agent’s strategy Exp3.P.1 is Hannan-consistent in the unknown game

setup.

Two examples to show the implementation of algorithm Exp3.P.1 for players to play two repeated

games are presented next.

Examples

Algorithm Exp3.P.1 is applied to play two-player Prisoner’s Dilemma and Battle-of-the-sexes games.
Each player, Player R or C, adopts this algorithm as its strategy. These games are presented in Table
3.1.

Table 3.1: Prisoner’s Dilemma and Battle-of-the-sexes

Prisoner’s Dilemma, Battle-of-the-sexes

Player C Player C
Cooperate Defect Football Ballet
Player Cooperate | (0.6, 0.6) | (0.2, 0.8) Player Football | (0.4, 0.4) (0,0)
R Defect (0.8,0.2) | (04, 0.4) R Ballet (0, 0) (0.4,0.4)

From Table 3.1, the non-cooperative Nash equilibrium strategy of Prisoner’s Dilemma is that
Players R and C choose Defect. The simulated average rewards and the mixed strategies (p;) of both
players using algorithm Exp3.P.1 with § = 0.1 are presented in Table 3.2. One can observe that this
algorithm yields average rewards close to the Nash equilibrium rewards of the game. Likewise, three
non-cooperative Nash equilibrium strategies of Battle-of-the-sexes are that Players R and C' choose to
go 1) to Ballet, 2) to Football, and 3) to Ballet and Football with an equal probability. Furthermore,
the simulated average rewards and the mixed strategies (p;) of both players using algorithm Exp3.P.1
with § = 0.1 are presented in Table 3.2. One can observe that this algorithm yields average rewards

close to the mixed-strategy equilibrium rewards of the game.

Table 3.2: Simulated Mixed Strategies and Average Rewards

Prisoner’s Dilemma Battle-of-the-sexes

Mixed Strategies | Reward Mixed Strategies | Reward
Cooperate | Defect Football | Ballet
Player R (0.3489 0.6511 | 0.4788 Player R | 0.4954 | 0.5046 | 0.2017
Player C 0.3610 0.6390 | 0.4795 Player C | 0.4954 | 0.5046 | 0.2017

3.3.2 Playing Bidding Games Using Algorithm Exp3.P.1

Algorithm Exp3.P.1 can be modified for the agents to play the bidding games. This learning al-
gorithm lets the agents choose the bidding price and bidding quantity. Let (x)® denote any variable
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associated with the bidding price and let (x)? denote any variable associated with the bidding quantity.
This revised algorithm is called Algorithm A3 from here on. Note that the revised Algorithms Exp3
and Exp3.P for the agents to play the bidding game are called Algorithms A1 and A2, respectively.
Algorithm A3 follows these steps.

Initialization Agent i has K® choices of bidding prices, i.e., B' = {B%(1),...,B} K"} and K9
choices of bidding quantities Q* = {Q*(1),...,Q*(K?)}. Agent ¢ determines T?, 6%, rb*, T4, 59, and

r4* using the formula as shown in Section 3.3.1.

Repeat Foreachdayt=12,...,

1. Agent i obtains the scheduled prices and quantity and calculates profits (II}) from the previous
bids, i.e.,

M= Pex > a’ =3 elg’),

J J
where P is the market price at hour k&, q,’;'j is the scheduled unit associated with unit j, and

c(qfc’j ) is the operating cost of producing qfc’j of unit j.

2. Agent i determines the vectors of rewards associated with all possible bidding prices,

22 = {22(1),..., 28 (K?®)}, and bidding quantities, 2] = {z](1),...,z{(K9)}, as follows.

(a) For all k € ¢, let Z}(m) be defined as

Hi ’ib if — ;b
shimy = § TRCW =

0 otherwise,

where i? denotes the choice of bidding price chosen at hour k of day ¢ and I} (i}) denotes

the profit obtained from choosing the bidding price i}.

(b) Then, for m € K?®, z¥(m) is an average of profits associated with action m obtained in day

t and is determined as follows:
zy(m) =

where K is the total number of auction rounds in each day ¢ that action m is chosen.
Then, for n € K9, z7(n) can be determined by using a similar method.
3. Agent i receives forecast demand Ly4; for the next bidding round.

4. Agent i checks whether ¢ € T?; otherwise, it sets r®* = rb* 4+ 1, sets (r = r>*), sets T® = T?,

and sets 6° = &b.
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5. Agent ¢ checks whether t € T}; otherwise, it sets 79" = r®*+1, sets (r = r9%), sets T9 = T4,

and sets 87 = 49.

6. Agent i determines its bid for an anticipated marginal unit for hour k& based on the load index

associated with forecast demand L. The bid consists of two parts: bidding price and bidding

quantity. Agent i chooses its bidding price from K possible values as follows:

(2)

; ; b — min ¢ 3 2,/3KbIinK? b KPT®
Agent i determines «v* = min {5,2 e }anda = 24/In =5—.

Form=1,...,K®

(b)

(c)

(d)

Agent i calculates 22(m) as follows:

&t (m) = xf(m)/pg(m).
Note that £?(rm) = 0 for action m that is not chosen in day t.

Agent ¢ updates its weight associated with choice m of K? possible bid prices, w?, ,(m),
g g p t+1

using
b

Y - ab
wf+1(m) = wf(m) - exp (i—iﬁ (mf(m) + W)) )

and updates its probability of selecting choice m, p?,,(m), using

b b
b by Wig1(m) 2
pea(m) = 1 =)0+ 75-
Agent i chooses il ., ; randomly according to the distribution {p},,(1),...,pb,; (K"} and
sets

BM} = B(i%) forallket+1

where (B(-) € B?) is a choice of bidding price.

Similarly, to determine a bid quantity, Agent i chooses its bidding quantity from K9 possible

values as follows:

(a)
(b)

(c)

Agent ¢ determines 4?7 = min {%,2 %qul“’;m} and af = 2/In £

Agent i calculates £](n) as follows:

g (n)/p{(n) ifn =i

0 otherwise.

Agent ¢ updates its weight associated with choice n of K¢ possible bid quantities, w{,_,(n),

using
q

ity =) e ( 7 (800 + =T ) )
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and updates its probability of selecting choice n using

wi1(n) ‘
q — q t+1 v
piin) = (1—v )—‘—K T
Zh; wg+1(h) K
d) Agent i chooses i} randomly according to the distribution {p?_ . (1),...,p% (K9} and
& ket+1 t+1 t-+1

sets

gt = Qi) forallket+1

where (Q(-) € Q%) is a choice of bidding quantity. Let gx,wu denote the withheld capacity
and qlic,WH = qznaz - ch'
7. Agent i determines the bid-supply function for each hour k by using BM} and ¢}, as follows.

(a) The bidding price of the withheld capacity (W Hy) is set to
WH = min{BM;} + Cz, Peap}

where C; is a positive constant and P, is a price cap, indicating the maximum market
price allowed in the market. This bidding price is assigned to the capacity of the units with

the lowest marginal costs summed to the withheld capacity.

(b) For any unit j with non-zero capacity that is not considered the withheld capacity, its
bidding price b{; is set to

b{c = mc*?
where mc*J is the marginal cost of unit j.
8. Agent 7 submits the bid-supply functions for day t + 1 to the system operator.

9. The system operator clears the market for each hour k£ and informs the agents of market prices,

total demand, and their scheduled quantities.

3.4 Softmax Action Selection Using a Boltzmann Distribution

This section presents another simple learning algorithm for an agent to learn the repeated bidding
game. The concept of this algorithm is softmaxz action selection, adopted from reinforcement learning
in a single-agent environment, and is explained in detail in Sutton and Barto [41]. This algorithm
maintains estimates of the actions, as well as balances exploring new actions and exploiting current
knowledge of the value of the actions. A probability distribution over all actions is a function of the
rewards associated with the actions. The action with the most satisfactory reward, or the most greedy

action, is given the highest selection probability, but all the others are ranked and weighted according

70



to the reward estimates. As a result, this algorithm is improved from e-greedy action selection, in
which the action selection rule selects the action with the highest estimated reward and then selects
uniformly at random an action that is independent of the reward estimates with small probability e.
The drawback of the uniform distribution of the e-greedy algorithm is that the worst-appearing and

the next-to-best actions are equally chosen.

This thesis chooses the most common softmax method that uses a Gibbs or Boltzmann distribution.
Based on the Boltzmann distribution, action j is chosen on the t-th play with probability (p;(j)) as

follows:

eRt(j)/T

pe(d) = W

where R:(j) is the value estimate of action j of K possible actions at time ¢. Let 7 be a positive
parameter called the temperature. High temperatures cause the actions to be selected nearly equally,
while low temperatures cause a greater difference in selection probability for actions that differ in their
value estimates. In the limit as 7 — 0, softmax action selection becomes the same as greedy action
selection; that is, all actions are selected almost uniformly. In the softmax action selection algorithm,

the reward associated with each action is updated using the following formula:

Resr(j) = (L—a)Re(j) + - I (G) ifj = 2, (3.5)
R,(5) otherwise.

Note that « is a step-size parameter and (0 < @ < 1) is a constant. In addition, the estimate reward
" for each action j as shown in Equation (3.5) follows an incremental update rule for reinforcement
learning in a nonstationary environment, in which a constant step-size parameter, a, is used (see,
for example, Sutton and Barto [41]). This rule determines the next estimate reward (R¢4+1(j)) by
weighting the recent rewards more heavily than the past ones, and the next estimate reward is a
weighted average of the past rewards and the initial estimate Ro(j).° The learning algorithm with

softmax action selection using a Boltzmann distribution works as follows:

Initialization Set input parameters o € (0,1) and 7 > 0. Set the reward associated with each

action j to be R;(t) =¢ >0, for all j = (1,..., K), where ¢ is a constant.

9From Sutton and Barto [41],

Rtj+1(j)

a-T; (7) + (1 — ) Re; (4)
= a7+ (1 - a)(a-T;-1(7) + (1 - a)Re;—1(5))

ti
(1-a) " Ro(i) + Y _ @~ (1 - @)~ I,
k=1

where ¢; denotes the most recent period when action j is selected. Note that Z;’zl a-(1-a)ti=*=1.
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Repeat Fort=1,...

1. Set the mixed strategy p; = {pe(1),...,pe(m),...,p:(K)} as follows:

eRl (])/T

pi(j) = SR eRdm/

2. Choose i; randomly according to the distribution {p;(1),...,p:(K)}.
3. Receive rewards x;(3;).
4, For j = 1,..., K, set

Ro(j) = (- a)R(j) +a-z:(j) ifj =i
(5 =
R:(7) otherwise.

3.4.1 Application to the Bidding Game

One can observe that this algorithm, like Auer et al.’s algorithms, provides a learning tool for an
agent that requires no knowledge of its opponents’ actions and their associated rewards (payoffs).
Consequently, this algorithm can be applied by an agent to play a repeated game in an unknown
game set-up. As for the bidding game, the softmax action selection algorithm can be modified as
follows. Note that the modified algorithm is called Algorithm SAB from here on. Let K® be all
possible choices of bidding prices and let K¢ be all possible choices of bidding quantities.

Initialization Agent ¢ determines its input parameters a € (0,1) and 7 > 0. Set the reward asso-
ciated with each action m for allm € {1,..., K} to be R;(m) = 0. Agent i has K choices of bidding
prices, i.e., B* = {B*(1),..., B*(K®)} and K7 choices of bidding quantities Q¢ = {Q*(1),...,Q*(K?)}.

Repeat Foreachdayt=1,2, ...

1. Agent i obtains the scheduled prices and quantity and calculates profits (II¢) from the previous
bids, i.e.,

J

M=Pex Y g =) elgy”),
j

where Pj is market price at hour k, q,ic’j is scheduled unit associated with unit j, and c(qZ’j ) is

the operating cost of producing qfc’j of unit j.

2. Agent ¢ determines the vectors of rewards associated with all possible bidding prices,

2 = {z2(1),...,22(K?®)}, and bidding quantities, z{ = {z{(1),...,z{(K9),} as follows.
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(a) For all k € t, let &} (m) be defined as

(%) ifm =48

0 otherwise,

where i¢ denotes the choice of bidding price chosen at hour & of day ¢ and II{ (i} ) denotes

the profit obtained from choosing the bidding price .

(b) Then, for m € K® z(m) is an average of profits associated with action m obtained in day

t and is determined as follows:

ok iZ(m)

2b(m) = £

where K is the total number of auction rounds in each day ¢ that action m is chosen. Let

I®(m) be boolean, in which it is equal to 1 when z?(m) > 0, and equal to 0 otherwise.
Then, for n € K¢, z}{n) and I?(n) can be determined by using a similar method.
3. Agent 7 receives forecast demand Ly for the next bidding round.

4. Agent ¢ determines its bid for an anticipated marginal unit for hour k£ based on the load index
associated with forecast demand L;. The bid consists of two parts: bidding price and bidding

quantity. To determine a bid price, Agent i follows these steps.
(a) Agent i determines R?(m) as follows:

b ) - a)RY(m) + a-zb(m) if I’(m) =1
Ry (m) = b .
R (m) otherwise.

{b) Agent ¢ updates its probability of choosing choice m using

eR?(m)/T

b
m} = —y—————.
P = S R

(c) Agent i chooses i}, , randomly according to the distribution pf,,(1),...,p} ,(K®) and
sets

BM; = B@%) forall k€t +1,

where (B(-) € B?) is a choice of bidding price.

Similarly, to determine a bid quantity, Agent i follows these steps.
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(a) Agent i determines Rf(n) as follows:

. 1-a)Rl(n)+a-zi(n) if I(n) =1
R 1(n) = )
R} (n) otherwise.

(b) Agent 7 updates its probability of choosing choice n using

q eth(”)/T
pt(n) - Ef{_?h eR?(h)/‘r—'
(c) Agent i chooses i}, ; randomly according to the distribution { pj, (1),...,p{,;(K?)} and

sets

g = Q) forallket+1,

where (Q(-) € Q*) is a choice of bidding quantity. Let g} y y denote the withheld capacity

i — i
and qlzc,WH = Gmaz ~ k-

5. Agent ¢ determines the bid-supply function for each hour k by using BM} and ¢} as follows:

{(a) The bidding price of the withheld capacity is set to
WH, = min{BM; + Ca, Peap}

where ('3 is a positive constant and F,,, is a price cap.

(b) For any unit j with non-zero capacity that is not considered the withheld capacity, its
bidding price bi is set to

b = mehi
where mc*/ is the marginal cost of unit j.
6. Agent ¢ submits the bid-supply functions for day ¢ + 1 to the system operator.

7. The system operator clears the market for each hour k and informs the agents of market prices,

total demand, and their scheduled quantities.

3.5 An Algorithm Based on Electricity Model Characteristics

This section presents a model-based learning algorithm designed for the agent-based electricity market
model. This learning algorithm is based on the game theoretical concept to determine a “rational”
action of an agent in response to anticipated actions of opponents. The agent chooses a pure strategy

of the possible bid-supply functions to do better than its marginal-cost bid, especially when the agent
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anticipates being scheduled to operate as a marginal agent. The agent always bases its decision on a
strategy that directs the agent to “cooperate” in raising its bidding price rather than to “undercut” the
bidding prices of its opponents. This strategy unilaterally yields profit at least equal to a marginal-cost
bid.

According to this algorithm an agent follows a two-step decision-making process. First, the agent
determines its bidding capacity by applying a capacity withholding strategy. Then, the agent de-
termines its bidding price for the anticipated marginal unit. The capacity withholding strategy is
motivated also by the evidence from several previous empirical studies, indicating that the capacity
withholding strategy is exercised by the market participants in the existing electricity markets, for
instance, Wolak [49] and Wolfram [50]. In this model, the agent stores the finite data, such as its
bids, its bidding outcomes, market prices, total forecast and actual demand, and observed opponents’
joint actions, based on the load indices. The approach is most in line with the finite-history window
approach, such as in McCallum [33).

Although this algorithm does not require knowledge of the opponents’ actions and their associated
rewards, it has a few disadvantages because the agents always select their pure-strategy actions. First,
if the repeated bidding game has a mixed-strategy equilibrium, the agents will be unable to reach this
outcome. Next, the agents might not get to explore all possible actionsbecause when all agents adopt
this algorithm, they could possibly “reach” the equilibrium without ever trying out the actions that
have never been played. This algorithm is called the model-based algorithm from here on, and it is

described below.

3.5.1 Capacity Withholding Strategy

The capacity withholding (CW) strategy is motivated by the potential of an agent to unilaterally
influence the market price in the three-agent bidding game shown in the previous chapter. One
can observe that the CW strategy yields a minmax-strategy outcome. Its rewards are greater than
the rewards when all agents submit their marginal-cost bids. An agent implements this strategy
for its own profits regardless of how other agents would play. In this strategy, an agent determines
its “optimal” withheld capacity by assuming that the opponents submit their marginal-cost bids
{the system marginal-cost function subtracted by its marginal-cost function). When the demand is

deterministic, the optimization becomes

k

N
W;:’* — argrr‘}‘%x Z p}g(le]) . (q,ic,J _ W;J) _ c:]’(qz,j _ WI:J)
j=l1

The characterization of the CW strategy exploits the characteristics of the agents’ piece-wise marginal-
cost functions and also piece-wise system marginal-cost function. The agent searches for the minimum

capacity that should be withheld so that the market price increases, resulting in profits that are greater
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than those obtained from a marginal-cost bid.

The concept of the minmax value of the gamne is applied to constructing a bidding strategy of
the agents in the bidding games, and consequently, the agent employs the CW strategy when it is
implementable. When the CW strategy is implemented successfully, the agent is able to “manipulate”
market price. Note that when the competitors are also able to change the prices by imposing the CW
strategy, the agent is better off not withholding its capacity. However, to guarantee a long-term
increase in market price, the agent always chooses to withhold its capacity whenever possible to

guarantee its minmax payoff in each game.

3.5.2 The Model-based Algorithm

The model-based algorithm is used in order to determine the bid daily, and the agents make use of the
following information: historic market prices, past bidding prices of the (anticipated) marginal unit,
past bidding prices of the units, scheduled outcomes, analyzed outcomes (these variables are discussed
later in this chapter), system marginal-cost function, forecast demand, profits, anticipated profits,
and marginal-cost function. Let AP denote anticipated profits (calculated from the previous bidding
round), OP denote actual profits obtained from the previous bidding round, M P denote market price,
BM denote the bidding price of an anticipated marginal unit, and O denote the analyzed outcome.

The model-based algorithm works as follows:

Initialization Agent ¢ submits its marginal-cost bid-supply functions to an operator. The operator

schedules the agents and informs market prices, total demand, and scheduled quantities.

Repeat For each day ¢t > 1, Agent 4 follows the scheme below. This scheme is called the PORTFO-
LIO scheme.

1. Agent i obtains the scheduled prices and quantity and calculates profits (II}) from the previous
bids, i.e.,

M= Pox Y aff - Y clai?),

J J
where P, is market price at hour k, qfc’j is scheduled unit associated with unit 7, and c(q,ic’j ) is

operating cost of producing q,"c’j of unit j.

2. For each hour k, Agent i determines the bidding outcome (O) of its portfolio using the following
scheme called the OUTCOME scheme:

(a) OP < AP: This implies that the previous bid is not successful. Consider BM and M P.
1) BM < M P: This means the agent under-estimates the BM; the other agents increase

their BM s (from the previous period); or the agent overestimates the market prices so that

76



the agent would be scheduled to operate less than anticipated. Note that it is not possible
to have BM < MP and OP < AP. But BM = MP is possible. (For example, when the
agent anticipates being scheduled to operate more than it is actually scheduled.) Agent i
then sets O = 11.

2) BM > MP: This implies that the agent over-estimates the market prices. For this
reason, to increase the scheduled quantity and subsequently profits in the next bidding

round, Agent ¢ then sets O = 10. If, however, AP = 0, Agent 4 then sets O = 00.°

(b) OP = AP: This implies that the previous bid is successful. Consider BM and M P.
1) BM < MP: This implies that the agent underestimates its BM or the other agents
increase their BMs from their previous values. Agent ¢ then sets O = 11 when OP = 0,
otherwise, Agent i then sets O = 00.11
2) BM = M P: This implies the agent is able to set the market price, or the agent is likely
to set the high M P the next period, because the agent is a marginal agent at the current
period. Therefore, the agent should increase its BM the next period. Agent 7 then sets
O =11
3) BM > M P: This implies that the agent overestimates the market prices. It is unlikely
to have OP = AP when BM > MP; however, to complete the algorithm, Agent ¢ then
sets O = 00.

(c) OP > AP: This implies that the previous bid is overly successful, the opponents set the
market prices, or the agent is scheduled to operate as a marginal agent and its scheduled
quantity is more than the anticipated one. Since the outcome is satisfying,A the agent
does not change its bidding price the next period. Agent i then sets its O = 00. That
AP < OP < 0 implies that its BM is too low and the agent operates at loss. Agent 7 then
sets its O = 11.

Agent i updates its O and M P.
3. Agent i determines the bidding quantity through the CW strategy.

4. Agent i assesses whether each individual unit obtains its profit as anticipated. This scheme
is trivial in the market with a uniform-pricing rule. The scheduled unit gets paid the market
price; therefore, the outcome of each unit depends on BM . Also, the agent uses QUTCOME to

determine the bidding outcome of each unit (O,,).

5. Agent i determines the load indices associated with each hourly forecast demand. Let BM for

each hour of the next bidding round be calculated by the following scheme, called the SETPRICE

10T reduce BM means to submit a lower-than-marginal-cost bid.
!'Note that when the agent receives OP > 0, it is better off not to adjust its bid because the increased BM might
result in not being scheduled. The increased BM might allow the other agents with lower bidding prices to be scheduled.
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scheme:

BM =Tary + Ck

where Tary, is the target price and € is a constant. There are several ways to determine Tary,.
These methods directly affect the bids of the agent and subsequently affect the price dynamics
of the market. For example, when the length of the recorded memory is set to 1 (Md = 1),
Tary can be set to

Method M1: Tary = BMy_1,

or

Method M2: Tary, = MPr_y.

In addition,
¢ = AifO = 11; ¢ = 0,ifO = 00; and é = —-A, ifO = 10,

where A is a positive constant. Note that BMy, Tary and ¢; are associated with the load

indices.

6. Agent 7 determines the bidding prices of each unit (BU) from its O, using the SETPRICE

scheme.
7. Agent i determine the bid-supply function by using b}, and ¢}, as follows:

(a) For unit j with BUY less than or equal to BM, its bidding price ¥ is set to
¥ = max {mc’, min {BU7, BM }}

where mc? is the marginal cost of unit 5. Note that if the BM < mc?, BM is set to be

mel.

(b) For unit j with BUY greater than BM, its bidding price b’ is set to
¥ = max {mc’, BU?}.
(c¢) For the withheld capacity, the bidding price of the withheld capacity (WH) can be either
Method C1: WH = min{c1, Peap}
where c; is a constant and ¢; > max; me’ , Or

Method C2: WH = min{BM + ¢z, Peop}
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where ¢o is a positive constant and P, is a price cap.
The agent updates its recorded BM and BU of each unit.

8. Agent i calculates its AP. The anticipated profit is determined by assuming that BM is the
market price. The bidding blocks with bidding prices of at least BM get scheduled and get paid
at BM (for the market with the uniform-pricing rule). Similarly, the anticipated profit of each

block is calculated as well (to be used in determining O,). Then the agent records its new AP.
9. Agent ¢ submits the bid-supply functions for day ¢ + 1 to the system operator.

10. The system operator clears the market for each hour &k and informs the agents of market prices,

total demand, and their scheduled quantities.

3.5.3 Algorithms with a Game Matrix

The previous algorithm can be modified by adding a memory, so that Md > 1. This change tends to
make the decision scheme more conservative, meaning that the agents is less likely to raise the bidding
price. This modified algorithm directs an agent to a three-step decision-making process. The first and
last steps are similar to the previous algorithm in which the agent determines its bidding capacity by
applying a CW strategy and then determines its bidding price for the anticipated marginal unit. The
second step is added in order to have the agent estimate the potential joint behavior of the opponents

from the available information. This algorithm works as follows:

Analysis of Opponents’ Joint Actions

The agent can observe opponents’ joint actions. Because the agent is assumed to know the aggregate
supply function, it can differentiate strategic market prices from marginal-cost or “competitive” prices,
P,g"c. When the agent knows demand in each hour with certainty, it is able to calculate the hourly
marginal-cost price. Similarly, when the actual demand in any hour is realized, marginal-cost price of
that hour can also be determined. By observing market price and comparing it with the anticipated

marginal-cost price, the agent can considers three possibilities:

e A positive markup means a joint strategic action of the agents; that is, at least one agent
successfully submits the bid-supply function to cause an increase in the market price. Note
that if outages, maintenance, and unit-commitment constraints are accounted for, the positive

markup may result from competitive behavior.

® A negative markup indicates that some agents do not submit a marginal-cost bid; instead they
underbid so that they are scheduled to operate with more confidence, though, this condition
does not exist in the model-based algorithm since the agents always submit as the bidding price

at least their marginal cost.

79



¢ A zero markup means that the market price is actually competitive.

After the market clears, Agent ¢ compares market prices for each hour with anticipated competitive
prices and records the joint strategic behavior of the agents in a matrix. For each action in which
each element contains either “0” or “1,” let “0” represent competitive joint actions of the opponents
or a no-game condition. Let “1” represent a joint strategic action or a game-condition. This matrix
is called a GM matrix. One would expect a GM matrix to be sparse if the agents are marginal-cost

bidders. An example of a GM matrix is shown below:

05 [10 ..01] (1 0 ... 1]
£t — 00 ... 0 = GM! = 00 ... 0
N o1 1] 01 ... 1]

For each hour, the agent obtains this information (0 or 1) and stores it in the row associated with the
demand index of actual demand of that hour. When uncertainties due to outages, maintenance, and
unit-commitment constraints are considered, the non-zero price markup does not generally imply the
strategic behavior, but, when these factors are not accounted for, the non-zero price markup implies
the strategic behavior. Let v* denote an error factor. The game condition is determined using the

following scheme, which is called the GAME scheme. For given actual demand equal to Ly = (9,
1. Determine G} (£%):

| Pe(L) = B™e(L)] <~ GiLh) = 0
| Po(Ld) = By™e(Ld)| > o, Gt = 1

where G% (L?) denotes the game condition for hour k of load index £¢. When a positive markup
does not necessarily imply a strategic behavior, for all i, 4 > 0, otherwise 7' = 0. The

information in any memory matrix is recorded in order of occurrence.

2. For any demand Ly = £% d € N, where N? is the number of demand indices, the GM

matrix is updated as follows:

GM}(Lh) = GM} (L")

. . Vh=d, 1<1< Md-1,
GMy (LM = Gi(Lh)

GM{(LY) = GM}HLM) Vh#d1<1< Md

where GM; (L") is an element in row h and column I of the GM matrix. Each row h is associated

with load index h.
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Updating Memory Matrices

After each bidding round, memory matrices are updated and in this thesis the new information (z(h))
is recorded at most once for each load index. That is, for a memory matrix M, which has its element,

M"™! in row h and column [, is updated as follows:

Mh,l :Mh,H-l’ IS 1 < Md
MM =g(h), 1=Md

The agents record z(h) to represent information, such as market prices, associated with load index

L" occuring during that day. For example,

I(h,) — Zk jk(h)

K

where Z(h) is market price (M P) and K is the total number of hours in each day that have load index
Lh. Also,

z(h) = max Z(h).

Similarly, the agents can also record the bidding price of their anticipated marginal units (BM) in a

similar fashion as they record M P.

The Model-based Algorithm with a Game Matrix

When each agent, has the portfolio of units with different minimum operating capacity constraints, this
matrix becomes unique to that agent. This is because the agents may view the system marginal-cost

differently. A GM matrix enters the PORTFOLIQ scheme as follows:
1. Agent i obtains market prices and quantity and calculates profits (II¢) from the previous bids.

2. Agent 7 determines O by using the OUTCOME scheme. Agent ¢ updates its recorded O and
MP.

3. Agent ¢ determines the bidding quantity through the CW strategy.

4. Agent i assesses whether each individual unit obtains its profit as anticipated by using the

QUTCOME scheme to determine O,,.

5. Agent 7 assesses the joint actions of the opponents by using the GAME scheme to determine
GM.

6. Agent i determines the load indices associated with each hourly forecast demand (£"). Let BM

for each hour of the next bidding round be calculated by the following scheme, which is called
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the SETPRICE-GAME scheme:

BM; Tary +¢ i 3 GMY(LP) > max {1, Md/2}
BM, = mc(Lh) otherwise,

I

where Tary, is the target price and & is a constant. Let T'arj be set by either Method M1 or
M2 and & be selected using the same method as in the SETPRICE scheme. Let me(£") denote

the marginal-cost price when demand is equal to L = k.

7. Agent i determines the bidding prices of each unit (BU) from its O, by using the SETPRICE

scheme.

8. Agent i sets the bidding price for each block of the bidding quantity as in Section 3.5.2. Agent
i updates its recorded BM and BU of each unit.

9. Agent ¢ calculates its AP.

10. Agent ¢ submits the bid-supply functions for day ¢ + 1 to the system operator.

11. The system operator clears the market for each hour k and informs the agents of market prices,

total demand, and their scheduled quantities.

Note that the withheld capacity (gw n) obtained from the capacity withholding strategy is not affected
by the SETPRICE-GAME scheme.

3.6 Conclusion

An immediate problem with stage-games of incomplete and imperfect information is that determining
a Nash equilibrium strategy is no longer applicable because the agents have neither their own entire
payoff functions nor their opponents’ entire payoff functions. The concept of on-line learning to
determine the agent’s actions or bid-supply functions is implemented. Three learning algorithms in

multi-agent systems are selected.

The output of Algorithms Al, A2, A3, and SAB is a mixed strategy distribution over the actions
which are sets of price-quantity pairs, whereas the model-based algorithm yields a pure-strategy action.
This algorithm lets the agent choose a bid function such that its anticipated profit is maximized given
its belief about the others’ actions and/or assuming that the other agents’ behavior is based on a

strategy. The simulations of the agent-based market model are presented in the next chapter.
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Appendix to Chapter 3

A. Preliminary Empirical Study of the New England Electricity Market
1. Demand Levels and Price Characteristics

This appendix provides an empirical study, analyzing the New England electricity spot market dur-
ing the period May 1999 to October 1999. From available data of hourly prices and demand, the
histograms of (ex post) prices under several load conditions are presented. This analysis shows the
different characteristics of market prices under different demand conditions to confirm the importance
of deriving the load-based decision scheme of the agent in the proposed agent-based electricity spot
market model.

Instead of the probability density functions (PDFs) of price given a load level, the probability mass
functions (PMF's) of finite prices given a range of demand is derived from historic data of market prices
and demand. This is because actual demand and market prices are continuous values. However, the
observed data are limited {only 24 data points per day) and deriving a PDF of prices for each load
is not possible. Instead, therefore, the PMFs or histograms of prices given a range of demand are
determined. The procedures for constructing the PMFs of ex post hourly market prices given a range

of demand are as follows:

1. Recording the historic hourly market prices and actual demand. This information is obtained

from the ISO-NE website [53].

2. Determining load index. As mentioned, actual hourly load takes on a continuous value. To
simplify and obtain sufficient data points to represent the PDF, actual demand is discretized
into several ranges or indices, covering the maximum and minimum demand. By doing so,
continuous demand is mapped to a set of discrete indices. The more indices used, the greater

the accuracy of the mapping of actual load.

3. Mapping ex post prices to load indices. Historic hourly demand is mapped to a load index, and

its associated market price is recorded based on the load index.

4. Representing the probability of (ex post) price distribution given a load inder. For each index,
a histogram of prices is plotted and normalized so that it can be used as a PMF given a load
index. Note that to obtain a relatively smooth distribution function, sufficient data points are

required.

Figures 3-4 and 3-5 show the histograms of market prices from May 1, 1999 to April 30, 2002 with
demand in a 10,000-11,000 MW range and a 15,000 - 16,000 MW range, respectively. These histograms

indicate the different characteristics of market prices under different load ranges. When demand is in
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a 15,000 - 16,000 MW range, market prices exhibit a larger variance than prices when demand is in

a 10,000 - 11,000 MW range.

II. Observed Absolute Market Power Conditions

This analysis is performed on the New England electricity spot market during the months of May
to October 199912 to show that when the supply margin is small, there is higher likelihood of price
spikes where the market prices are substantially higher than (calculated) marginal-cost prices. The

procedures for identifying absolute market power conditions are described as follows:
1. Recording the hourly price and actual and forecast demand.

2. Calculating total available capacity for each day. Total available capacity for day d (Qq) is equal
to total net claimed capacity (or installed capacity (Q7%%)) plus net imported power (Qi™)
from the neighboring areas such as the New York power pool*® and Canada minus the planned

maintenance capacity (Q}9"), ie.,
Qd — :ina:c + Qém _ Qg/[aint.

3. Determining the marginal cost of operating each unit.

4. Calculating the hourly demand-to-supply index. This index indicates the hourly ratio of forecast

demand and total available capacity.

5. Observing the relationship between hourly market clearing price and hourly demand-to-supply
index. Note that one advantage of the index is that it incorporates both demand and supply

factors.

During the period of this study, no marginal-cost data for each unit is available. Therefore, to
follow the third step, the average operating costs of each technology type are used. These data,
as shown in Table 3.3, are obtained from the Department of Energy website [54]. Further, the
demand-supply ratios are calculated from the forecasted demand and available generation capacity,
obtained by subtracting the summer net claimed capacity (Table 3.4) from the generation scheduled
for maintenance (Table 3.5) and the interchange. In this thesis, it is assumed that the interchange
during the entire months of May, June, and July is equal to 2,400 MW. The best publicly available
information is based on the (assumed) average of interchange equal to 2,400 MW (around 60% of
(supposed) maximum transfer limits: New York Power Pool = 1,100 MW, New Brunswick = 700
MW, and Hydro Quebec = 2,200 MW).14

12This is the period of the first five months after the market started and prior to when the actual bid data were
published.

133ee htip://www.nyiso.com. for more detail on the New York power pool.

14This analysis reflects information available to public during the specified period.
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Table 3.3: Average Operating Expenses for Major Investor-owned Electric Utilities, 1993 - 1997 (Mills
per kWh)

Years
Plant Type 1993 | 1994 | 1995 | 1996 | 1997
Nuclear 21.80 | 20.86 | 20.39 | 20.65 | 24.80
Fossil Steam 22.97 | 21.80 | 21.11 | 21.25 | 21.34
Hydroelectric 6.47 | 743 | 589 | 5.96 | 5.73
Gas Turbine and Small Scale | 40.38 | 32.16 | 28.67 | 40.64 | 32.84

The types of generation technology in the New England market during the period of study are
shown in Table 3.4. Note that unit categories include CC-Combined Cycle, D-Diesel, F-Fossil, G-
Gas, GF-Gas or Oil, HD-Daily Hydro (Normally No Pondage), HW-Weekly Hydro (Pondage), J-Jet
Engine, N-Nuclear, and PS-Pumped Storage.

Table 3.4: Summer Season Net Claimed Capacity during July 1999

Plant Types HD | HW | PS F N CC D G GF J
Capacity (MW) 652 | 882 | 1,685 | 9,039 | 4,343 | 2,542 | 106 | 684 | 2,525 | 837
% of Total Capacity | 2.8 | 3.8 7.2 38.8 | 186 | 109 | 0.5 ] 29 | 108 | 3.6

Table 3.5: Samples of Scheduled Maintenance during 1999

Dates 5/01-07 | 5/08-14 | 5/15-21 | 5/22-28 | 5/29-6/04 | 6/05-11 | 6/12-18
Cap. (MW) | 5,100 5,700 4800 | 4,300 3,300 3,400 3,600

Dates 6/19-25 | 6/26-7/02 | 7/03-09 | 7/10-16 | 7/17-23 | 7/24-30 | 7/31-8/06
Cap.(MW) | 2,600 2,300 1,400 800 800 500 0

Figure 3-6 shows the relationship between the market clearing prices and the actual demand-supply
and forecast demand-supply ratios, which are obtained from public data for the period from May 1,
1999 to October 31, 1999. The scatter plot in this figure shows that when the demand-supply ratio is
not less than 0.8 and not greater than 1, the observed prices vary substantially and take on expensive

values.

B. Regret and Hannan-consistency

Regret defines the difference between the payoffs of playing two actions; that is, the regret of action
a(h) defines the difference between playing action a(;) instead of any action h (see Foster and Vohra
[14], and Hart and Mas-Collel [21]). Let R(S) denote the expected loss from using an algorithm (or
a strategy) S over T periods, and be defined as

R(S) =Y we () Re (),

t=1 a(j)eA
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where {w;}¢>0 is the probability weight implied by the algorithm, let A denote the action space, and
let R;(j) represent the loss incurred from choosing action a(j) at time ¢t. Let Ry (j|S) define the regret

incurred by S from choosing decision a(j) to be

T

Rr(j|S) = ) _ max {o, (2 wy(§)(Re(3) — Rt(m) } :
€D t=1

A learning algorithm should yield the payoff for an agent over a long period of play such that its

average is as large as the maximum payoff that can be obtained against the empirical distribution of

plays by the other agents. This condition is called Hannan-consistent. A learning algorithm (strategy)

is Hannan-consistent if, given the play of the others, there is no regret in the long run for not having

played (constantly) any particular action.

C. A Myopic Play

A myopic play can be defined as follows. Let h; be a collection of pure strategy profile (s;), i.e.,
he = (s1,-..,5¢). An assessment rule of Agent ¢ (u’) is Agent 7 assessment of the possible pure-
strategy profiles that its opponents will choose at time ¢, as a function of the past plays h;. A
behavior rule (¢') is a function of the past plays h;. The myopic play is defined by, for example,

Fudenburg and Levine [18], as follows:

Definition Given an assessment rule p® = (ui,pd,...) for Agent i, the behavior rule, ¢! =
15 M2 g
(@%,¢%,...) for i is myopic relative to u' if, for every ¢ and h, ¢i(h;) maximizes i’s immediate

expected payoff, given assessment pi(h;). That is, a*(¢i(hs), ui(ht)) = max,: ¢ s a*(s%, pi(hy)).

D. Auer et al.’s Learning Algorithms
I. Multi-armed Bandit Model

Let K denote the number of possible actions and ¢ denote each action taken by an agent, in which
i € {1,...,K}. An infinite sequence x(1),x(2),... of vectors x; = (z¢(1),...,z+(K)) denotes an
assignment of rewards where z;(i) € {0, 1] denotes the reward obtained if action 7 is chosen at time ¢
or trial ¢. The agent’s algorithm, therefore, is a sequence I1, I, .. ., where each I; is a mapping from the
set ({1,..., K} x[0x1])!~1; that is, the action indices and previous rewards to the set of action indices.
Let Gr(A) def Zthl z4(i;) denote the return at time horizon T (T > 0) of algorithm A choosing actions
i1,1%2,.... Given any time horizon T and any sequence of actions (ji,...,jr), the (worst-case) regret
of algorithm A for (jy,...,jr) is defined as G;,, . ;) — Gr(A), where (G(j, ... jr) def Eg;l z¢(Je)) is

the return at time 7', obtained by choosing actions (j1, ..., jr). Therefore, the weak regret is defined
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by
GT,maz - GT(A)

def T .
where G1 maz e max; y .y Te(j)-
Fixing an algorithm defines a probability distribution over the set of all sequences of actions. Let

P{-} and E[-] denote the probabilities and the expectations with respect to this distribution.

Assumptions Auer et al.’s algorithms are based on the assumptions that the agent knows the
number K of actions. In addition, after each trial ¢, the agent knows the rewards z(41),...,2:(i;) of
the previously chosen actions y,...,1%.

Two bounds on the performance of the algorithms are considered. The first bound is on the
expected regret, i.e., G(;, . jr) — E[Ga(T)] of A for an arbitrary sequence (j1,. .., jr) of actions. The
second bound is a confidence bound on the weak regret, having the form P{G e (T) > Ga(T)+€} < 4.
That is, the return of A up to time T is not much smaller than that of the globally best action. Next,

let us consider Auer et al.’s algorithm Exp3.

I1. Auer et al.’s Algorithm Exp3

Auer et al.’s Algorithm Exp3 can be described by the following pseudo-codes:
Parameters: Select v € (0,1].
Initialization: Set wy(i)=1fori=1,...,K.

Repeat: Foreacht=1,2,...,T

1. Set
wy (1) Y
Zf:l wi(j) K

pe(i) = (1 -1)
2. Draw i; randomly accordingly to the probabilities p;(1), ..., p:(K).
3. Receive reward z:(i¢) € [0,1].
4. Forj=1,...,K set
() /pe(g) Hj=1

0 otherwise,

we (7)exp(vE:(5)/ K).

Z,(j) =

wj(t + 1)

Algorithm Exp3 draws an action i, according to the distribution p;(1),...,p:(K). This distribution

is a mixture of the uniform distribution (v/K) and a distribution which assigns to each action a
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probability mass exponential in the estimated cumulative reward for that action. Uniform distribution
is added in to guarantee that the algorithm tries out all K actions and gets good estimates of the
rewards for each. To compensate the reward of actions that are unlikely to be chosen, the estimated
reward &;, (t) is set to @i, /p,, yielding E[#c(j)li1, .- -,ie-1] = Elpe(j) - 2 + (1 - pu()) - 0] = z(j).

This algorithm yields the main results, including

Auer et al.’s Theorem 3.1 For any K > 0 and for any v € (0,1],.

KinK

Gmaz - E[GExp3] S (e - 1)7Gmaz +
holds for any assignment of rewards and for any T > 0.

Note that Exp3 yields an expected regret of O(y/gK In K) whenever an upper bound g on the
return G, is known in advance. If the time horizon T is known, g can be set to T, since there is
no payoff greater than 1. As Gmez = Gmaez(T) < T, the bound is never worse than O(vVTK In K).
Note also that if the reward z:(¢) is in the range [e,b], @ < b, then the algorithm can be used after
the rewards are translated and rescaled to the range [0, 1].

This algorithm can be modified to yield expected weak regret to be O(v/Gmez K In K) uniformly
over T. The modified algorithm, called algorithm Exp3.1, proceeds in epochs. Let r = 0,1,2,...
denote the indices of the epochs. On each epoch r, the algorithm guesses a bound g,, ie., g, =
% -4", and determines vy,, where v, = min {1, \/ (f_l?)’;, } before restarting Exp3 at the beginning

of each epoch. After finishing Exp3 in each round, an estimate of the return of each action 1, ét—i—l (%)

is updated as Gyy1(7) = Gi(i) + 2:(¢). Once the actual gain of some action has advanced beyond
the estimate Gt(i) of any action i, i.e., @t(i) < g — K/7v,, the algorithm goes to the next epoch.
Algorithm Exp3.1 yields

Auer et al.’s Theorem 4.1 For any K > 0,

Gmaz - E[GExp&l] S 8\/6 - 1\/GmazKan + 8(6 - 1)K + 2KInK
< 105vVGmaz KIn K + 138K + 2K In K

holds for any assignment of rewards and for any T > 0.
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Figure 3-1: Examples of Different Power Producers Competing to Sell Electricity at Different Demand
Levels
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Figure 3-2: An Example of Yearly Demand Characteristics in the New England Electricity Market from
May 1999 to April 2000
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Chapter 4

Simulations and Analyses

This chapter presents the simulated outcomes of price dynamics from the agent-based market model
when the power-producing agents use different learning algorithms. The simulations show the effect
of different learning algorithms on market price dynamics and the agents’ bidding behavior. The
simulations are performed under the assumptions that demand is inelastic and deterministic and that

the agents submit piece-wise bid-supply functions.

This chapter is organized as follows. Section 4.1 outlines the hypothetical agent-based electricity
model. Section 4.2 presents simulations and analyses when the agents use Algorithms A1, A2, and A3.
Section 4.3 shows simulations and analyses when the agents use Algorithm SAB. Section 4.4 presents
simulations and analyses when the agents use the model-based algorithm. Section 4.5 presents an
analysis on the effectiveness of Algorithm A3 and compares the simulated outcomes obtained when
the agents use Algorithm A3 and when they use the model-based algorithm. Section 4.6 investigates
the effects of the input parameters of these learning algorithms on the simulated price dynamics.
Section 4.7 introduces two methods that can be applied to verify which learning algorithms provide

the best match for the existing markets. Finally, the conclusion is provided in Section 4.8.

4.1 Market Model

The hypothetical market model in this chapter consists of power-producing agents, inelastic demand,
and a system operator. The following sections describe the characteristics of the power-producing

agents, the demand, and the market rules used in the model.
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4.1.1 Characteristics of Agents

As shown in Table 4.1, there are 11 agents with non-uniform portfolio characteristics.! The aggregate
marginal-cost function (or the system marginal-cost function) is shown in Figure 4-1. From Table
4.1, one can observe that the agents have different marginal-cost functions and that Agent 5 owns the

largest capacity, equal to 21 MW.

4.1.2 Characteristics of Demand

For the simulations presented in this section, demand is assumed to be deterministic and inelastic;
in addition demand is considered as an input of the market model. Daily demand has a repeated
pattern, as shown in Figure 4-2. As mentioned previously, the agents play a series of repeated games,
in which each stage game is defined by demand levels. The learning algorithm used is also based
on these demand levels in the form of demand indices. Each index represents a demand range of 5
MW. The demand pattern has values between 30 to 100 MW. Thus, 15 demand indices are used to

represent this demand pattern, as shown in Table 4.2.

Table 4.1: Characteristics of Power-producing Agents

Marginal Cost (3/MWh)

Agent |10 [ 12 [ 15 [ 20 [ 27 [ 30 [ 35 | 38 [ 42 [ 48 [ 55 | 60 | 72 | Total
No. Capacity (MW) (MW)
1 310 2 1410104} 07] 2 01010 0}]o0 8
2 2 0l0 {302 270 010 0 00 9
3 2410 2 0| 2 0 110 0 1 0 010 8
4 210 1 0 2 0 1070 1 0 06]0 7
5 6 4 3 3 0 2 0 0 2 0 0 0 1 21
6 0 710101070 17107010410 0|0 8
7 51001210710 110]0 2 0 0|0 10
8 oOo(2(070(307;0]2 2 0| O 010 9
9 0] 2 0701 0] 2 011 01010 0|0 7
10 0yo0oj2(2j0;0|0]0]0fO0}|1[1]0 6
11 010 3 1 0| 2 0{0|0(O 1 010 7

Table 4.2: Characteristics of Demand Indices

Indices | Demand (MW) | Indices | Demand (MW) | Indices | Demand (MW)
1 < 30 6 50 — 55 11 75— 80
2 30—-35 7 55 — 60 12 80— 85
3 35— 40 8 60 — 65 13 85-—-90
4 40 — 45 9 65 — 70 14 90 — 95
5 45 — 50 10 70 - 75 15 > 95

I'This number of agents is chosen to closely represent the number of active market participants in existing markets,
such as those in New England and California.
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4.1.3 Market Rules

This agent-based electricity market model has a uniform-pricing payment rule, in which the agents
are paid market prices for the scheduled quantities. Prior to making bidding decisions, the agents
are assumed to know system marginal-cost function (as shown in Figure 4-1), scheduled quantities of
previous periods, market price and total demand of previous periods, and forecast demand. In addi-
tion, the model uses the market clearing mechanism and adopts additional market rules as described

below. The competitive outcomes when the agents submit their marginal-cost bids are shown as well.

Determining Market Clearing Prices

The agents have a piece-wise marginal-cost function and submit a piece-wise bid-supply function,
or a set of bid-price and bid-quantity blocks (or bid-blocks). The operator uses a price merit order
method to schedule the units to match demand. To determine the market prices from the bid-supply
functions and demand, the bid blocks are sequenced from the block with the cheapest bidding price
to the block with the highest bidding price. Market price in any hour is set to the bidding price of
the most expensive bid-block that is scheduled to serve demand at that hour. Let L, denote demand
at time k, P denote market clearing price, qi‘j denote agent i’s bidding capacity of bid block j, and
yi’ denote scheduled quantity, i.e., 0 < yfc’j < q,i’j . Let % be a set of units of Agent i scheduled
to operate during period k. The system operator schedules the units to meet demand (Ly) such that
total cost is minimized, where the total cost is the sum of market price multiplied by the scheduled
capacity, >; >, yfc’j. The market price is defined as the maximum bidding price of the scheduled
bid-blocks, i.e., Px = max; max;eqi by’ - I(yy’ > 0). The bid blocks with the bidding prices most

equal to the market price are dispatched.

Other Rules

When the agents submit their bid-supply functions such that more than one unit is scheduled to
operate as a marginal unit and its scheduled quantity is a weighted-portion of residual demand,
which is defined as the total demand subtracted by the total scheduled quantities of all infra-marginal
units. In addition, since no outage and maintenance capacities are considered, a supply-deficiency
condition, in which demand exceeds available capacity, is not possible; however, when the supply-
deficiency condition occurs in any hour, the total demand of that hour is set to that hour’s total
available capacity. Let $/MWh be a unit-price for 1 MWh of energy sold. In addition, the market
price is set to the most expensive price, such as P, = max; max;(mc"?) + C, where C' is a constant
that yields a market price to be higher than the most expensive marginal cost. For all simulations
in this chapter, there is a price cap P.up, the maximum possible price in the market and equal to
$150/MWHh, and the market price when the supply-deficiency condition occurs can be set to Pr,p, i.€.,

max; max;(mc?) + C = Pegp.
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Competitive Solution

Suppose the agents submit the marginal-cost bid-supply function in every bidding round. The market

prices are then the competitive prices which are shown in Figure 4-2.

4.2 Agents with Algorithms Al, A2, and A3

The agents with Algorithms A1, A2, and A3 have rewards ranging from negative values to positive
values that are greater than one. To use these algorithms, the range of the reward values is rescaled

to be between zero and one, as follows:

R=1-exp(—c-1I}) for I >0

(4.1)
R=0 for T<0

where II represents the actual reward that the agents obtain, ¢ is a positive constant, and R denotes
the rescaled reward. Note that R € [0,1]. Equation (4.1) indicates that any loss from bidding is

equally unfavorable, being assigned the rescaled reward equal to zero.

4.2.1 Algorithms Al and A2

In the simulation in which the agents use Algorithm A1, «v is set to v = 0.1,0.3,0.5,0.7, or 0.9. For
Algorithms Al and A2, each agent (Agent i) selects the bidding price of the anticipated marginal unit
from $0/MWh to P,,p, with an increment of $3/MWh. The total choices of the bidding prices (K?®)
are equal to 51. Likewise, each agent selects its bidding quantity that has a bidding price no greater
than the bidding price of the anticipated marginal unit, from 0.25 MW to its available capacity (¢,,, ),
with an increment of 0.25 MW. Therefore, the total choices of the bidding quantities (K?) vary from

agent to agent, depending on the available capacity.

Although these algorithms do not include the capacity withholding (CW) strategy as in the model-
based algorithm, the withheld capacity can be defined as the difference between total available capacity
subtracted by the bidding quantity selected through the learning algorithms (gr,wy = oz — 95)-
The bidding price for this withheld capacity (W Hy) is set to WH, = min {BM + C, P.,p}, where C
is equal to $3/MWh.

The simulations run for 1,200 hours (that is, for 50 days). Figure 4-3 shows the samples of
simulated price dynamics when all agents use Algorithm A1l with v = 0.1, Figure 4-4 shows the
samples of simulated price dynamics when all agents use Algorithm Al with v = 0.9, and Figure 4-5

shows the samples of simulated price dynamics when all agents use Algorithm A2.
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4.2.2 Algorithm A3

In the simulations in which the agents use Algorithm A3, each agent selects the bidding price of the
anticipated marginal unit from 0 to Pe,p with an increment of $3/MWh. The total choices of bidding
prices (K®) are equal to 51. Likewise, each agent selects its bidding quantity from 0.25 MW to its
available capacity (¢i,,.) with an increment of 0.25 MW. The bidding price for this withheld capacity
(WHy) is set to WHy, = min {BM + C, P.,p}, where C' is equal to $3/MWh. The simulations run
for 1,200 hours. Recall that the minimum number of stages (r) in the algorithm for the bidding price

and bidding quantity (r®* and r9*) is determined as follows:

)

* = mi N:idp=— > KT,e ¥Tr).
r* =min{r € Al P g e }
Therefore, for § = 0.9, 7* = 1. Also, let a® be set to a® = 2In K;T’b and a? be set to a? = 21n E%Z'i.

Let us further extend the model in which the agents use Algorithm A3 to examine the several
values of & on the price dynamics; for example, 4 = 0.1,0.3,0.5,0.7, or 0.9. The samples of simulated
price dynamics when all agents use Algorithm A3 with § = 0.1,0.5, and 0.9 are shown in Figures 4-6,

4-7, and 4-8, respectively.

Average Price Dynamics An average price dynamics of simulated outcomes when the agents
employ Algorithm A3 with § = 0.1 are also presented. A total of 100 simulations are performed.

Figure 4-16 shows that average price dynamics across 100 simulations for each hour.

4.2.3  Analyses

Algorithms A1, A2, and A3 yield a mixed strategy for the agents to choose bidding prices and bidding

quantities. The analyses are described as follows.

Algorithms A1 and A2: From Figures 4-3 - 4-5, one can observe that the simulated price dynamics
are similar when + is set to different values. Recall from Chapter 3 that the probability distribution
over all possible bidding prices (and bidding quantities) is a mixture of the uniform distribution v/ K®
(and v/K?) and a probability mass exponential in the estimated cumulative rewards, i.e., w;(m) for
an action m. Since the initial conditions for wy—g(m) are set uniformly to one, at the beginning of the
simulations each action is chosen almost uniformly, i.e., pf(m) = 7% (and p{(m) = #5). Additionally,
7 is small compared to K® (or K?). When ~ = 0.1, more weight is assigned to the probability mass
exponential of the cumulative rewards. When the weight associated with action m is discounted by
v, i.e., wy(m) = exp(”—j}éﬂ), the estimated cumulative rewards do not grow quickly. Although the
large value of v contributes to the large weight of the uniform distribution, the small value of v does

not put substantial weight on the probability mass exponential. Therefore, the price dynamics exhibit
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similar patterns for small or for large values of .

Algorithm A3: The simulated price dynamics with different values of & do not exhibit large differ-
ences when § = 0.1,0.3,0.5,0.7, or 0.9. Let us consider the effect of § on choosing a mixed-strategy
action. Recall that « is a function of é, i.e., & = 24/In %I For all possible actions K and the time

horizon T', the weight {w;(m)) associated with action m is a function of o, i.e.,

v (Zelm) ® )
3K pi(m)  py(m)VKT "

w1 (m) = wi(m) - exp(— (4.2)

where z;(m) is the reward associated with action m and the probability of selecting action m, p;(m),
is defined as p;(m) = (1 — )M + %. Note that v = min{2,2,/3 52K} When K is large,

Do we(h)
i.e., K* = 51 for the bidding price and K9 = 24 for Agent 10 (that is, an increment of 0.25 MW for

the bidding quantities of 6 MW), and T < K'In K, ~ is always set to 3/5. One can rewrite Equation
(4.2) as follows:

v (:L't(m)\/KT +a
3K py(m)VK

One can also observe that when ¢ has the smallest value, o has the highest value. If &« = 24/In K—T >

2¢(m)VKT ~ VKT, the weight is mainly determined by a. On the other hand, when \/ln I «
VKT, § plays almost no role in determining the weight. Also, when 4 is large, 1.e., § > 0.1, 6

for each trial yields at most ~ vIn10KT; hence, VKT >> /In{(10KT) and § plays no

significant role. As a result, each action is selected almost uniformly. When § is small, there is no

)

w1 (M) = wi(m) - exp(5+

significant, difference in the price dynamics compared to when 4§ is large as one can observe from Figure
4-9, because, for large K and T, VKT > \/C—l—T(KT), where C = —Ind. Figure 4-9 shows the
simulated prices when the agents use the Algorithm A3 with § = 0.1,0.001, or 0.00001.

In analyzing the simulations obtained from the model with Algorithms A1, A2, and A3, as shown
in Figures 4-3 - 4-8, one can observe that the bidding price of the anticipated marginal unit (BM)
does not affect the bid-supply function when the bidding quantity is equal to zero. This issue is

investigated further in Section 4.6.1.

4.3 Agents with Algorithm SAB

This section presents the simulations when the agents use Algorithm SAB with different values of
model parameters, including a temperature (7) and a learning rate (a). Recall from Chapter 3 that
the probability distribution over the possible actions at any period t, {p:}, is defined as follows. For

any action j,
e/

pe(J) = S R BT
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and the cumulative reward associated with each action j is defined as

B = (1 —.Q)Rt(].) +a-z(j) if =zt

R:(j) otherwise.
Like the model with Algorithms A1, A2, and A3, each agent selects the bidding price of the anticipated
marginal unit with the value from 0 to F.,p, equal to $150/MWh, with an increment of $3/MWh.
Likewise, each agent selects its bidding quantity from 0.25 MW to its available capacity with an
increment of 0.25 MW. Note that the total choices of the bidding quantities (K?) vary from agent
to agent, depending on their available capacities. The withheld capacity can also be defined as the
difference between the total available capacity and the bidding quantity selected through the learning
algorithms (qx,wH = q'0c — &) The bidding price for this withheld capacity (W Hy) is set to
W Hy = max {BM + C, P.qp}, where C is equal to $3/MWh. The simulations run for 1,200 hours, or
50 days.

4.3.1 Effects of 7 on Price Dynamics

In this section the simulations explore the effects of 7 for 7 = 0.1,1,10, or 100 on price dynamics
when « is set to 0.9. The simulated market prices when 1) 7 = 1 are shown in Figure 4-10, 2) 7 = 10

are shown in Figure 4-11, and 3) 7 = 100 are shown in Figure 4-12.

4.3.2 Effects of a on Price Dynamics

In this section the simulations also explore the effects of & on price dynamics for a = 0.1,0.3,0.5,0.7,
or 0.9 when 7 is set to 10 or 100. The simulated market prices when 1) @ = 0.1 and 7 = 100 are
shown in Figure 4-13, 2) o = 0.5 and 7 = 100 are shown in Figure 4-14, and 3) o = 0.1 and 7 = 10

are shown in Figure 4-15.

Average Price Dynamics An average price dynamics of simulated outcomes when the agents
employ Algorithm SAB with @ = 0.1 and 7 = 100 are also presented. A total of 100 simulations are

performed. Figure 4-17 shows the average price dynamics across 100 simulations for each hour.

4.3.3 Analyses

Algorithm SAB yields the mixed strategy for choosing the bidding prices and the bidding quantities.
As shown in the simulations (Figures 4-10 - 4-14), one can observe that when o is held constant
and 7 is varied, the fluctuation of price dynamics increases as 7 increases. Let us consider when
7 =0.1,1,10, or 100, and when o = 0.1 or & = 0.9. As one might anticipate, the higher temperature,

7, causes all actions to be selected more equally, while the lower temperature causes the actions that
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yield the higher rewards to be selected with a higher probability. Furthermore, as shown in Figure
4-10 when 7 = 1, the price dynamics shift to a steady-state pattern.

When 7 is set at the large value the agents increasingly explore the possible actions. For example,
when 7 = 100, the simulated price dynamics are similar to the price dynamics obtained from the
model, in which the agents use Algorithms A1, A2, or A3 (comparing Figures 4-8 and 4-12). When 7
is held constant at 7 = 100 and « is varied, i.e., « = 0.1,0.3,0.5,0.7, or 0.9, the result as anticipated is
that a does not play a significant role in exploring the good actions, and the simulated price dynamics
are very similar under these values of a.

Additionally, one can observe that the average simulated prices when the agents use Algorithm A3
are higher than those when the agents use Algorithm SAB. This result may be caused by the difference
in mixed-strategy action selection methods, in which in Algorithm A3 each action is selected with
a probability of at least /K, while in Algorithm SAB each action is selected with a probability
depending on the associated rewards. Algorithm SAB chooses actions that yield satisfying outcomes
often and may not trial out other actions, such as the expensive bid-supply functions, as often as

Algorithm A3 may do.

4.4 Agents with the Model-based Algorithm

This section presents simulations that examine the effects of several parameters of the algorithms, such
as target price (T'ar) and increment or decrement (A) in setting the bidding price for an anticipated
marginal unit (BM), as well as the bidding price of withheld capacity (W H}). In the model with
the model-based learning algorithm, the agents can choose any bidding price greater than the lowest
marginal cost and less than or equal to P, equal to $150/MWh, and the agents can determine the

withheld capacity by using the CW strategy.

4.4.1 Choosing Tar by Methods M1 and M2

Recall from Chapter 3 that the bidding price of the anticipated marginal unit for the next period
(k+ 1), BMy,1, is determined by BMy; = Tar, + ¢ ¢ € {—A,0,A}. Methods M1 and M2 to
select the target price, T'ary, are examined. Method M1 sets Tar equal to the BM of the previous
period, BMy, that is, Tar = BM;. Method M2 sets Tar equal to the market price of the previous
period, M Py, that is, Tar = M Pj. This section shows that both Methods M1 and M2 contribute to
different price dynamics, given that other parameters, such as A and W Hy, are held constant. The
difference can be substantial when the market price is unavailable to the agents, for instance when
the market has a discriminatory-pricing structure. This issue is examined in Chapter 6. Let A = 2
and the bidding price of the withheld capacity is set to Peop (Method C2). The bidding price of the

withheld capacity is set to Pesp. Figure 4-18 shows samples of simulated price dynamics when all
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agents set Tar = BMj, using Method M1. Figure 4-19 shows samples of simulated price dynamics
when all agents set Tar = M Py, using Method M2.

4.4.2 Effects of A on Price Dynamics

This section explores the effect of the values of A for determining B M, on the overall price dynamics.
Recall that BMy = Tar + ¢, where Tary is determined by Method M1. Three values of A are
analyzed, including setting A equal to $1, $2, or $3/MWh. In the simulations in this section the
bidding price of the withheld capacity is set to Pqp. Figure 4-20 shows samples of simulated price
dynamics when all agents set A = 1, Figure 4-18 shows samples of simulated price dynamics when

all agents set A = 2, and Figure 4-21 shows samples of simulated price dynamics when all agents set

A=3.

4.4.3 Effects of W H; on Price Dynamics

This section explores the effects of methods used to set the bidding price for the withheld capacity
(WHy) on overall price dynamics. Methods C1 and C2 to set this bidding price are analyzed. For
Method C1, the agents set WH; = BM;, + C, and the constant C is set to $3/MWh. For Method
C2, the agents set WH; = P,4,. In the simulations in this section A is set to $2/MWh and Tar is
set by using Method M1 to Tar = BM. The samples of simulated price dynamics of Methods C1 and
C2 are shown in Figure 4-25.

4.4.4 Analyses

This model-based algorithm yields a pure-strategy bid-supply function. The bid-supply function is a
function of the values of T'ar, A, and W H, in which the effect of Tar, A, and W H on simulated price

dynamics can be explained as follows:

Methods to Set Tar: From the PORTFOLIO scheme, the agents determine the bid-supply func-
tions based on each individual unit and the entire portfolio. The scheduled agents are paid the market
price for any scheduled quantity; hence, the agents know the market prices and tend to obtain profits
at least equal to the price that they anticipate. The incentive of the agent to increase the bidding
price, especially for the infra-marginal units, is minimal. At any period k the agent increases/decreases
its bidding price of the anticipated marginal unit for the next period (BMy.1) based on the market
price (M Py), the anticipated profits (AP:), the actual profits (OF), and the bidding price of the
anticipated marginal unit of the current period (BMj}). Note that APy is calculated by assuming that
M P, = BMy. According to the OUTCOME scheme, when OP;, > APy, the agents no longer need to
adjust their BM}, thus, by using Method M1 to set Tar, having BMy1 = BM; + ¢, the agents no

longer adjust their bidding prices and the market prices no longer change.
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When Method M2 is used to set Tar, the agents determine their bidding price of the anticipated
marginal unit for the next period as BMyy; = M P, + ¢. Under the uniform-pricing structure, the
agents are paid the market price for the scheduled quantities and the agents know this price with
certainty. Consequently, Methods M1 and M2 tend to yield very similar simulated price dynamics.
The simulated market prices can still diverge when Method M2, BMy,, = M P, + ¢, is used, because
even if the agents obtain positive profits, they may still change their BM;. Even f A = 0, if M P,
changes, BMy1; also changes. This will either lead to over-bidding by the agents or an increase in
the market price as a result of the cumulative effect of raising the bid-supply functions of the agents.
Market prices increase due to the agents simultaneously increasing their bidding prices b} 41, hence,
the BMj, 1 of all agents increases, and subsequently, the cumulative effect of increasing BM.,; causes
the prices to escalate.

On the other hand, when the market prices are not publicly available, such as in the discriminatory-
pricing market,? market price estimation plays an important role in the determination of market prices
from the scheduled prices and scheduled quantity. The agent may over-estimate or under-estimate

the market prices, hence, BM may rise over time, causing the divergence of market prices over time.

Values of A:  Asshown in Figures 4-18, 4-20, and 4-21, one can observe that different values of A can
create different price dynamics, which can be divergent. An increase or decrease in each agent’s BM
may result in not being scheduled or in being scheduled to operate at full capacity for the anticipated
marginal units. Using Hour 8 of each day, let us consider market price divergence of this hour when
the agents use A = 1, and market price convergence, when the agents use A = 2 or A = 3. In Figures
4-22 - 4-24, let “M1 D1” denote the simulated outcomes when A = 1 is used, “M1 D2” denote the
simulated outcomes when A = 2 is used, and “M1 D3” denote the simulated outcomes when A = 3
is used. Figure 4-22 shows the market price during Hour 8 for a period of 50 days. Figures 4-23
and 4-24 show (OP; — AP;) of agents 1 and 5, respectively. One can observe that when the agents
obtain OF, — AP, > 0 and OF; > AP, > 0, the agents stop raising their BMg, resulting in the
convergence of the market prices. When the agents use A = 2 and A = 3, the convergence of prices
is observed.

When the agents employ Method M1 to set Tar, the agents that are scheduled to operate at the
margin raise the bidding price the next period. Having BM; = M P, and OP; = AP, from the
OQUTCOME scheme, these agents set O, = 11. Hence, the agents with at least one unit that has a
marginal cost equal to the market price, which is defined as Group A, gradually raise their bidding
price with an increment of A so that it becomes either higher than or equal to the agents with at least
one unit having the next most expensive marginal cost. This second group is defined as Group B. At

this point, there are several possibilities. First, if Group A’s BM is higher than Group B’s BM,

2This issue is examined in Chapter 6.
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Group A no longer obtains profits as anticipated and decides to decrease its BMyy;. Group B, on
the other hand, obtains the same profits as it anticipated (for the agents in Group B, M P, = BM}).
In the next period, Group A obtains the profits it anticipates after lowering BM; and the bid-supply
function; hence, Group A will increase the bidding price again. The same explanation is applied
to Group B. As a result, one can observe that the market prices for the same load levels alternates
between two values (odd and even values) over time. Second, Group A’s BM; at certain hours can
be equal to Group B’s BM, (because of an increment of $1/MWh). When BM);, of both Group A
and Group B are the same (for the first time) and equal to M Py, following the OUTCOME scheme,
both Groups A and B determine Oy = 11. For Group A, OF;, < AP, and BMy = M P;. For Group
B, OP, = AP, and BM; = MP;. In the next period, the market price increases according to the
bidding prices of the agents in both groups. Hence, they obtain less profit than they anticipate (since
there are more agents (Groups A and B) scheduled to operate at the margin); i.e., OPgy1 < AP
and BMy1 = M Pi4+1, and then Oy = 11.

Consequently, depending on whether A is such that BM;, of Group A is equal to BM;, of Group
B or such that BMj, of Group A is greater than BM) of Group B, the market prices can diverge or
shift to a steady-state pattern. In the simulations, A = 1 leads to divergence of market price during

Hour 8, while A = 2 or A = 3 leads to a steady-state pattern of market price during that same hour.

Values of WHj: As shown on simulated outcomes in Figure 4-25, market prices during the lower
demand hours can be higher than prices during the higher demand hours. This outcome results from
the cumulative bidding behavior of the agents, because many more agents are able to withhold capacity
during the low demand hours than during the high demand hours. Let us consider Hours 12 and 17
in Figure 4-25, where “C1” denotes the simulated prices when the agents use Method C1 and where
“C2” when the agents use Method C2. At Hours 12 and 17, demand is equal to 75.7 and 74.2 MW,
and marginal-cost prices are equal to $35 and $30/MWHh, respectively. At Hour 12, to raise the price
from $35 to $38/MWh by withholding capacity each agent needs 5 MW of capacity. Agents 1-7 and
11 are eligible to exercise the CW strategy (the total capacity with marginal cost less than $30/MWh
is greater than 5 MW), but they will lose 5 MW of scheduled capacity for only a $3/MWHh increase in
prices, which is not profitable to any agent except Agent 5. The agents use the price-setting strategy
only to set the market price at $37/MWh in the first day. On the other hand, at Hour 17, to raise
the price from $30 to $35/MWh by withholding capacity, each agent needs only 1 MW of capacity.
All agents are able to set the market price at $35/MWh. Moreover, if Agent 5 withholds an extra 6
MW, it could raise the bidding price from $30 to $38/MWh, meaning an increase in profit for Agent
5. In this scenario, total withheld capacity is 16 MW, of which 10 MW comes from each agent plus
(additionally) 6 MW comes from Agent 5, resulting in a price equal to $48/MW in Day 1.

On the other hand, when Method C2 is used, W Hy = min{BM}, + C, Peqp}, the agents set their
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W H} to be BM}, + 3. The market price at Hour 17 is equal to $35/MWh, compared to $48/MWh
when Method C1 is used. This example suggests that without explicitly setting the expensive bidding
price for the withheld capacity, the agents are still able to raise the market prices higher than market

prices when the CW strategy is not exercised.

4.4.5 Simulations with a Game Matrix

This section presents simulation and analysis when the agents employ the model-based algorithm and
have their GM, historic price (HP), and historic bidding price (HB) matrices record the opponents’
joint actions, M P, and BM, respectively. The SETPRICFE scheme in the model-based algorithm
used in the previous simulations is replaced by the SETPRICE-GAME scheme as shown in Chapter
3. The agents choose the bidding price equal to $150/MWh for the withheld capacity and they set
A = 2. The agents use either Method M1 or M2 to set T'ar when they determine the bidding price
of the anticipated marginal unit for the next period (BMjy,1) when the game condition is observed,

i.e., BMyy; = Tar + & where ¢ = {—A,0,A}.3 For any load index £*, Method M1 sets

Tar = max HB"™,
J

where HB"J is an element in row h and column j of an HB matrix. Method M2 sets

Tar = max HP™,
7

where HP"J is an element in row h and column j of an HP matrix. Note that these methods are the
same as those in the model-based algorithm when the length of the HP or HB matrix (Md) is equal to
one. Setting Tar to be the maximum recorded value allows the agents to use the most “optimistic”4
action.

When no new bid-supply function is tried and subsequently no new market price is obtained,
Method M1 produces no new value of BM. Recall from the previous chapter, the conditions in which
the agents obtain 1) OP < AP and BM = MP; 2) OP = AP =0 and BM < MP; 3) OP = AP
and BM = MP; or 4) AP < OP < 0, together with the game condition is equal to one, lead to an
increase in BM (when O = 11). Method M2 tends to produce a new value of BM, even if O = 00, due
to variation of M P. Two sets of simulations with different initial conditions are considered, including
the one with an initial condition of the GM matrix equal to one (i.e., GMy = 1) and the other with
an initial condition of the GM matrix equal to zero (i.e., GMy = 0). Both sets have initial conditions

of the HP and HB matrices equal to zero.

3 As shown in Chapter 3, the game condition for each load index occurs when the sum over the row of the GM matrix,
which is associated with that load index, exceeds 0.5.
40One may consider the most “pessimistic” action by setting BMj41 = min; HP?J(Lh) 4 A, instead.
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Figure 4-26 shows the simulated price dynamics when the agents use Method M2 to set Tar and
Md =1, 3, 5, or 10 during Hour 1 of each day. Demand is equal to 46.1 MW and the agents do not
use the CW strategy. In this figure, “Mem1” denotes the price dynamics when the agents use Md =1
and GMy = 1, and it represents the price dynamics when the agents use Md = 1, 3, 5, or 10 and
GMy = 0. In addition, “Mem3,” “Memb,” and “Mem10” denote the price dynamics when GMy = 1
and the agents use Md = 3, 5, and 10, respectively. Figure 4-27 shows the simulated price dynamics
when the agents use Method M1 to set T'ar and Md =1, 3, 5, or 10 during Hour 1 of each day and the
agents exercise the CW strategy if possible. Let “Mem1” denote the price dynamics when the agents
use Md =1, “Mem5” denote the price dynamics when the agents use Md = 5, and “Mem10” denote
the price dynamics when the agents use Md = 10. These price dynamics obtain from the simulations

that have GMy = 1.

When the agents employ Method M2, GMy = 0, and no CW strategy is present, no significant
difference between the outcomes with various values of Md are observed. According to the OUTCOME
scheme, the agents that are scheduled to operate as marginal agents will increase their bidding price
the next period if the game condition is equal to one. If Md > 2, no game condition occurs at
bidding-round 2, yielding no increase in their bidding prices. Since there is no change in BM, there
is no change in M P. Therefore, price dynamics shift to a steady-state pattern. On the other hand,
when GM, = 1, the agents with Md > 1 experience the game condition and are able to raise the
bidding prices for several periods. The simulated outcomes for Hour 1 when the agents use Method

M1 to set Tar are similar to those when Method M2 is used.

Note that market price equal to $27/MWh exhibits the game condition since the marginal-cost
price is equal to $15/MWh. From Figure 4-27, when the agents employ Method M1, GM; = 0,
and the CW strategy is in place, the agents with Md = 10 take several hours than the agents with
Md < 10 before deciding to increase their bidding prices, resulting in market prices remaining at
$27/MWh for five hours. On the other hand, when GM, = 1, the agents are able to raise the bidding
price at the first hour and continue adjusting their bidding price according to the bidding outcomes

in the later hours.

With GMy = 0, when there is no demand uncertainty as in the simulations presented here, the
length of the memory matrices plays an insignificant role in shaping price dynamics once the agents
obtain O = 00. Demand uncertainty generally creates unsuccessful outcomes and different market
prices for the same forecast demand. These factors cause changes in the HP and HB matrices which
lead to changes in bid-supply functions and price dynamics. A large Md tends to lead to more
conservative outcomes. For example, suppose the agents experience a price spike for one period after
a long period of the no-game condition. When the agents use Md = 1, a strategic bid is expected for
the next bidding round with the same demand index. When the agents use Md = 3, a competitive

bid is expected, instead. One may observe higher market prices when the agents use Method M2 than
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prices when the agents use Method M1. This is because a change in BM may occur due to a change

in MP.

4.5 Learning Algorithms and Bidding Behavior

This section presents further analysis of the effectiveness of Algorithm A3, especially when, by using
Algorithm A3, the agents gain profits as high as those they would obtain using one best-response
bid-supply function over time.> To observe long-term dynamics as a result of this learning algorithm,
simulations in this section are performed over longer periods than those of the simulations in Sections
4.2 - 4.4, which are 1200/24 = 50 periods for each load index. This section also compares the simulated

outcomes obtained when the agents use Algorithm A3 and the model-based algorithm.

4.5.1 Analyzing Algorithm A3

The effectiveness of Algorithm A3 is examined to show that the agents “learn” to improve their
bidding behavior over time and reach the best-response profits according to Auer et al.’s Theorem 9.1
as shown in Section 3.3.1. Because in the bidding game the agents have incomplete information of
the opponents’ actions and the opponents can use any action, the best-response bid-supply (BRBS)
function cannot be determined in a closed-form formulation; instead, it is obtained from simulations.

The steps used in this analysis follow.

1. Identifying the BRBS function for an agent in response to bidding behaviors of the other agents.
Each simulation assumes that the agent uses one bid-supply function obtained from one bidding
price {BM) and one bidding quantity (gx), whereas the other agents use Algorithm A3. A total
of 50 particular bid-supply function simulations are performed, and average cumulative profits
across these simulations are calculated. The BRBS function is a bid that yields the highest

average cumulative profits.

2. Comparing the bidding outcomes of the agent when using Algorithm A3 to those when using the
BRBS function.
All agents employ Algorithm A3. A total of 100 simulations are performed, and average cumu-
lative profits across these simulations are calculated. The average profits that Agent 1 obtains

are compared to the profits that it obtains from the BRBS function.

Note that the BRBS function determined from a set of bid-supply functions in which BM is equal
to 27, 33, 39, 45, 51, or 75 and ¢ is equal to 0, 1, 2, 3, 4, 5, or 6 is explored. Note that all possible
bid-supply functions include BM € {0, P.,p} with an increment of $3/MWh and ¢ € {0.25, gimqe} With

5See the appendix to Chapter 3. Auer et al. define the weak regret over T periods (the deviation of rewards from learn-

d
ing algorithm A, Gr(A), from the best outcome, GT maz) 38 GT,maz — GT(A), where GT pmaz ef max; Zle ze(Fe)
and when z¢(j:) is the reward the agent obtains from choosing action j; at time t.
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an increment of 0.25 MW that yield K? = 51 and K9 = 32, respectively. Total simulated scenarios

are shown in Table 4.3.

Table 4.3: Simulation Scenarios

Scenarios | BM | ¢q | Scenarios | BM | g | Scenarios | BM | g | Scenarios | BM | g
1 27 |0 9 33 |1 17 39 |2 25 51 10
2 27 |1 10 33 | 2 18 39 |3 26 51 | 2
3 27 | 2 11 33 |3 19 39 14 27 51 | 4
4 27 | 3 12 33 1 4 20 39 {5 28 7|0
5 27 1 4 13 33 |5 21 39 [ 6 29 7502
6 27 | 5 14 33 | 6 22 45 10 30 75 | 4
7 27 | 6 15 39 |0 23 45 | 2
8 33 10 16 39 |1 24 45 [ 4

Simulation and Analysis

Agent 1 is selected for this study because it has a relatively small installed capacity of 8 MW and
most of its units have an inexpensive marginal cost. Let § be set to 0.1. Demand is set to 66 MW for
every hour. Let each hour be considered the beginning of each trading round. The duration of each
simulation is equal to 500 hours. The simulated outcomes that show the cumulative average profits
over 50 simulations of each scenario at Hour 500 are shown in Figure 4-28.

According to Auer et al.’s Theorem 9.1, Algorithm A3 should yield average profits to Agent 1; at
least within a certain bound (BB) of the profits from the best-response action. The BB is calculated

using the formulation from Auer et al.’s Theorem 9.1 as follows:

10 2K KT 10(1 + log,(T)) KT
= —— | In — — e 7 N
BB \/§~1\/T (n 5 +CT>+ T In 3 +cr ),

where K is the total number of actions and ¢p = 2In(2 +1log, 7). One may calculate r},;, = 1
and T, = {2,4,8,...]. For the simulation duration of 500 hours, the last epoch is r* = 8 and T =
(K/8)1/K) = 98 = 256. One can observe that the higher the simulation duration, T, the lower the
bound and that the higher the possible actions, the higher the bound. In this agent-based model,
K = Kb x K7 = 1,632, where K® = 51 and K? = 32. Hence, when T = 256 hours and § = 0.1,
BB =$391. That is, the rescaled cumulative rewards over a T-period when the agent uses Algorithm
A3 will be within $391 of the rewards from the BRBS function within probability 1 — § = 0.9.

From the simulated outcome shown in Figure 4-28, the BRBS function is identified as BM =
$39/MWh, and ¢ = 6 MW or gwy = 2 MW (Scenario 21). This bid-supply function yields a cu-
mulative average of $303 for rescaled profits across 50 simulations during 500 hours. When Agent 1

employs Algorithm A3, it obtains a cumulative average of $198 for rescaled profits across 100 simu-

lations during 500 hours. The difference is $105. This result indicates that Algorithm A3 effectively
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has Agent 1 choose the BRBS function over time. Although the simulations show that Algorithm
A3 yields cumulative profits within the calculated bound, one must keep in mind that in the actual
electricity markets the power producers are unable to identify their BRBS functions in near real-time
by using the steps described above.

Similarly, when the agents employ Algorithm A3 and choose ¢ € {1, gnaz} with an increment of
1 MW, then K? = 8 and BB = $191. The simulation, when Agent 1 employs a strategy, BM =
$39/MWh and q = 6 MW or gwy = 2 MW (Scenario 21), yields Agent 1 a cumulative average of $307
for rescaled-profits across 100 simulations during 500 hours. The simulation when Agent 1 employs
Algorithm A3 yields Agent 1 an cumulative average of $225 for rescaled-profits across 100 simulations
during 500 hours. The difference is $82, which is acceptable given BB =$191. Figure 4-29 shows the

cumulative average rescaled profits over 500 hours of these simulations.

4.5.2 Algorithm A3 and the Model-based Algorithm

This section analyzes and compares the simulated outcomes obtained when only Agent 1 or 5 employs
Algorithm A3 or the model-based algorithm and when the other agents submit their marginal-cost
bids. The comparison shows the effect of the mixed and pure-strategy action selections on price
dynamics and bidding outcomes. Demand is equal to 66 MW in every hour and each hour is considered
a bidding round. A total of 100 simulations are performed, and the average prices and profits that
Agents 1 and 5 obtain are observed. Average prices across 100 simulations are shown in Figure 4-30.
In this figure, let “Algorithm A3-Genl” denote price dynamics when only Agent 1 employs Algorithm
A3, and “Algorithm A3-Gen5” denote price dynamics when only Agent 5 employs Algorithm A3.
Also, let “Model-based Genl-M1” denote price dynamics when only Agent 1 employs the model-
based algorithm with Method M1, and let “Model-based Gen5-M1” and “Model-based Gen5-M2”
denote price dynamics when only Agent 5 employs the model-based algorithm with Methods M1 and
M2, respectively.

According to the simulations in Figure 4-30, when only Agent 5 employs Algorithm A3, it is able
to raise the market prices to be higher than when only Agent 1 does. Additionally, when Agent 5
employs Algorithm A3, hourly average prices are higher than those obtained when Agent 5 employs
the model-based algorithm with Method M1 to set T'ar. Similarly, Agent 1 using Algorithm A3 is able
to raise the market prices to be higher than when it uses the model-based algorithm with Method M2.
Moreover, when Agent 5 uses Method M2 to set T'ar, the market prices increase to a higher level than
the prices obtained from other scenarios. Agent 5 obtains the profits it anticipates, and its bidding
price of the anticipated marginal unit (BM) is equal to the market prices (M P), i.e., BM = MP.
The OUTCOME scheme results in O = 11, causing an increase in BM until this condition no longer
exists, resulting in the price dynamics shifting to a steady-state pattern. For example, the agent

decreases its BM when profits are less than what it anticipates.
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4.6 Exploring the Model

In this section, the agent-based electricity market models in which the agents use different learning
algorithms are extended to examine the possible outcomes under different market scenarios. First, if
agents submit the total capacity with the bidding prices in order of their marginal costs, they compete
only in their bidding prices without consideration of the CW strategy. Second, let us consider the
scenario when only the agent with the largest capacity (Agent 5) uses the learning algorithm, while
the other agents submit their marginal-cost bid-supply functions. This analysis examines the effect
of a dominant agent on the price dynamics. Finally, the agent-based model is applied to compare
the simulated outcomes when the agents use the model-based algorithm to determine the bid-supply
function based on the unit-by-unit and the portfolio-based decision schemes. These analyses are

presented in the following sections.

4.6.1 Price-war

This section explores the market price dynamics when the agents use the learning algorithms to
determine their bidding prices but not their bidding quantities. That is, the agents compete with each
other by undercutting or raising their bidding prices of the anticipated marginal units. Algorithm A3,

Algorithm SAB, and the model-based algorithms are analyzed.

Simulations

Like the previous simulations, in Algorithms A3 and SAB the agent selects the bidding price for the
anticipated marginal unit no greater than F.,,. Let the agents using Algorithm A3 choose § = 0.9.
The samples of simulated price dynamics are shown in Figure 4-31. Let the agents using Algorithm
SAB choose o = 0.9 and 7 = 100. The samples of simulated price dynamics are similar to the ones

obtained from Algorithm A3 as shown in Figure 4-31.

When the agents use the model-based algorithm, the bidding price for the anticipated marginal
unit is set to BMy = Tar + ¢, where Tar is determined by Methods M1 and M2 and € € {-A,0,A}.
Let A = 2 and the bidding price of the withheld capacity be set to Peap, which is equal to $150/MWh.
Figure 4-32 shows the samples of simulated price dynamics when the agents use Method M1 to set
Tar. Let “M1 D2 C2” and “M1 D2 C2 noW” denote the simulated outcomes when the agents use the
CW strategy and when the agents do not, respectively. Figure 4-33 shows the samples of simulated
price dynamics when the agents use Method M2 to set Tar. Let “M2 D2 C2” and “M2 D2 C2 noW”

denote the same things as in Figure 4-32.
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Analyses

Algorithms A3 and SAB: From Figure 4-31, one can observe that when the agents use Algorithm
A3, the market price dynamics shift to a steady-state pattern. Let us consider the method to set BM
for Algorithm A3 (recall Chapter 3). When the agents set the withheld capacity equal to zero, the
bid-supply function is always equal to the marginal-cost function. Since the bidding price by, that is,
b, = BMj, is used for setting the bidding price of the withheld capacity W Hy, i.e., WHy = BMy +c,
where ¢ is a constant, with zero withheld capacity, BM} plays no role in the bid-supply function.
Consequently, the bid-supply function is equal to the marginal-cost function, and the market prices
are equal to the marginal-cost prices. Similarly, when Algorithm SAB is used for learning and the
withheld capacity is set to zero, the simulations yield the market prices equal to the marginal-cost
prices. An explanation for this result is similar to that of the simulations when the agents use
Algorithm A3. Since BMj has no role in setting the bid-supply function, the agents submit the

bid-supply function equal to the marginal-cost function.

The Model-based Algorithm: Let us consider Figure 4-32. When the agents use the model-
based algorithm with zero withheld capacity, they are able to raise the market prices above the
marginal-cost prices. Additionally, they are sometimes able to raise the market price higher than the
prices obtained when the agents exercise the CW strategy, such as in Hour 4 of each day. From the
QUTCOME scheme, when the agents obtain OP; — AP, > 0 and OP, > 0, if the agents are not
scheduled to operate at the margin, they will not raise their prices (recall Oy = 00 for OP, — AP, >0
and BM;, < MPy). Conversely, if the agents are scheduled to operate at the margin, they will raise
BM for the next period. However, suppose the CW strategy is in place and some agents obtain
OPF, > AP;. This outcome implies that at least one agent exercises the CW strategy. When this
happens, these agents have BM) < M P, and they obtain 1) an increase in the scheduled capacity,
2) an increase in the market price, or 3) an increase in the scheduled capacity and the market price.
These agents have BM} < M Pi. Hence, according to the QUTCOME scheme, when OP;, > AP, and
BMj < M Py, O = 00 and there is no change in BM} .

Let us also consider, for example, when the agents use Method M2 to determine T'ar during Hour
4 and the CW strategy is present. Let us consider Figure 4-34, which shows M Py, OP, — APy, and
BMj of all agents. At Day 4 (k = 4), Agent 1 obtains OP; > AP, and BM; = MP;, as well as
the OUTCOME scheme yields O, = 00, and, consequently, Agent 1 does not adjust its bid-supply
function the next period. Similarly, Agent 5 and the others also have OFP, > AP, and BM, = M P,
as well as the OUTCOME scheme yields O, = 00. As a result, no agents adjust their BM; ;. Note
that only Agent 5 is able to profitably exercise the CW strategy. Moreover, at Day 5 (k = 5), Agents
1, 3,4, 10, and 11 obtain OFP; > AP, and BM; = M P, and they do not attempt to raise their BMy.
The other agents obtain OF; = AP, and BM = M Py, so they raise their BM},. However, the other
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agents are able to set the market price and the market price remains the same as the price of Day 5.

On the other hand, let us consider Figure 4-35, which shows M P, OP — AP, and BM of all agents
when the agents are not allowed to exercise the CW strategy. On Day 4 (k = 4), when Agent 5 does
not receive the profit as anticipated, i.e., OFP, < AP, and BM) > MP;, the QUTCOME scheme
advises Agent 5 to lower its BMyy; and also its bid-supply function. The other agents do not adjust
their bid-supply function during this period. Further, Agent 5 is unable to change the market price
at Day 5, but it obtains higher profits than the anticipated ones. This causes Agent 5 to maintain the
same BM for Day 6 (that is, BMg = BMs). The other agents obtain OP, = AP, and BM = M P,
at Day 5 (k = 5), so that they increase their BMj+1 at Day 6. The market price at Day 6 then is
higher than that in the market when the agents are allowed to withhold their capacity. From this
point on, by applying an analysis similar to one presented here, one can show that the agents raise
the bid-supply function, resulting in the increase in market prices greater than the increase in market

prices when the CW strategy is in place.

4.6.2 Dominant Agent

This section explores market price dynamics when only the dominant agent, Agent 5, who owns 21
MW of installed capacity {(or 21% of the total installed capacity), uses Algorithm A3, Algorithm SAB,
and the model-based algorithm.

Simulations

Like the previous simulations, when Agent 5 uses Algorithms A3 and SAB and selects its bidding price
for the anticipated marginal unit to no greater than Pe,p. Let Agent 5 choose § = 0.9. The bidding
price for this withheld capacity (W Hy) is set to WH, = max {BM; + C, P,,p}, where C is equal to
$3/MWh. The samples of simulated price dynamics are shown in Figure 4-36. When Agent 5 uses
Algorithm SAB, let Agent 5 choose & = 0.9 and 7 = 100; the samples of simulated price dynamics are
shown in Figure 4-37. When Agent 5 uses the model-based algorithm, BM; = Tar + ¢, where Tary is
determined by Method M1 on the overall price dynamics and ¢ € {—A,0,A}. Let A beset to A =2
and let the agent use Method C2 to set W Hy, = P.,p. The samples of simulated price dynamics when

Agent 5 uses the model-based algorithm are shown in Figure 4-38.

Analyses

From Figures 4-36 - 4-38, one can observe that Agent 5 is able to influence the price dynamics, causing
the prices to be higher than the marginal-cost prices in many hours. When Agent 5 uses Algorithm
A3, one can observe that market prices shift from the marginal-cost prices to more expensive prices.
In addition, when demand is equal to 75.9 MW, Agent 5 may cause the market price to be as high
as $54/MWh compared to the marginal-cost price equal to $35/MWh. Agent 5 obtains this price
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by determining the withheld capacity to be gz wy = 18.256 MW with W H; = $54/MWHh, and then
setting the bidding quantity, ¢}, equal to 1.75 MW with BM; = $51/MWh. Note that Agent 5 can
implement this bid successfully, because there is total capacity of 74 MW from other agents except
Agent 5 with marginal cost less than $55/MWh.

Moreover, Agent 5 could cause the market price to be at most $55/MWh by having g, wg > 18.25
MW and WHy > $54/MWh, though, this agent may not be scheduled to operate gx wu and does
not receive the benefit from the high market price. When Agent 5 uses Algorithm SAB, one can
observe that the simulated outcomes are similar to those obtained from the model with Algorithm
A3; furthermore, when different values of 4 are assigned to the model, i.e., d =0.1,0.3,0.5, or 0.7, the
simulated price dynamics yields outcomes similar to the model with § = 0.9.

In addition, when Agent 5 uses the model-based algorithm, one can observe that it can apply the
CW strategy to raise the bidding prices during the lower demand hours daily (such as by withholding 6
MW at Hour 17) as the simulations in Section 4.4.3. Without other agents trying to raise or undercut
the bidding prices, Agent 5 alone is unable to raise the market prices as high as those when all agents
uniformly adopt the learning algorithms. When Agent 5 raises its bidding price and is not scheduled
to operate as it anticipates, the OUTCOME scheme directs Agent 5 to stop raising the bidding price;
consequently, the market price dynamics shift to a steady-state pattern.

Furthermore, when Agent 1, with only 8 MW of installed capacity, is the only agent who uses the
learning algorithm to determine its bid-supply function, the simulations show that Agent 1 is unable
to change the market price from the marginal-cost prices as much as Agent 5 is able to. The maximum
deviation that Agent 1 can cause during the maximum demand hour by using Algorithm A3 is equal
to $38/MWh. That is, Agent 1 has the bidding quantity, gi, at most equal to 0.75 MW and the
withheld quantity equal to 5.25 MW (the unit with 2 MW of capacity and marginal cost equal to
$38/MWh plays no role), as well as BM;, > $36/MWh.® Figure 4-39 shows samples of simulated price
dynamics when Agent 1 uses the model-based algorithm with Method M1 to set Tar and A = 2.

4.6.3 Unit-by-unit vs. Portfolio Decision Scheme

The simulations in this section show the price dynamics obtained from the unit-by-unit decision
scheme, as well as the portfolio-based decision scheme with and without the CW strategy. The
objective of this section is to demonstrate that market efficiency may occur when the agents have
the least information about the entire market. Market efficiency is defined as the difference between
market prices and competitive prices. The smaller the difference, the higher the price efficiency. These

outcomes do not guarantee that the power-producing agents can profitably operate in the market and

5In this case, Agent 1 is scheduled to operate its q,lc, plus the weight-portion of the residual demand, in which the
residual demand is equal to total demand subtracted by the capacity of the other agents with marginal cost less than
$38/MWHh and by q}c, ie., (75.9—- 75— q}c). That is, the weight-portion of Agent 1 is %—, which is the ratio of 2 MW and
5 MW from capacity of the units with marginal cost equal to $38/MWh.
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the issue regarding the profitability of power-producing agents is left for future research. In this section,
the simulations are based on the assumption that each agent owns one generating unit. Each unit may
be different in capacity and in its constant marginal cost. The agents use the model-based algorithm
to determine a pure-strategy bid-supply function. The agents adopt a similar decision scheme as in
the portfolio-based case except that no CW strategy is considered. This scenario is similar to the ones
in Section 4.6.1, in which the agents use the learning algorithm to determine only the bidding price.
Two methods to select T'ar for determining the bidding price of the anticipated marginal unit BM are
considered. In addition, two scenarios are considered. First, with Method Ul Agent i determines BM
and sets the bidding price b° such that b = max{BU, mc'} and b® = max{BM,b'}. Note that mc’ is
the marginal cost of Agent i and BU is the bidding price for its unit based on the previous outcomes.
Second, with Method U2 Agent i determines BM and and sets b' such that 4* = max{BM, BU}.
Hence, four possible scenarios are considered, including the agents use 1) Methods M1 and Ul, 2)

Methods M2 and Ul, 3) Methods M1 and U2, and 4) Methods M2 and U2.

Simulations

The agents in the following simulations, as well as the demand pattern, are the same as the previous
simulations. Furthermore, the bidding price of the withheld capacity is set to P..p, and all agents set
A = 2. Figure 4-40 shows the samples of simulated price dynamics when the agents use the unit-by-
unit decision scheme with Methods M1 and Ul denoted by “Ul M1 D2”, and with Methods M2 and
Ul denoted by “Ul M2 D2”. The simulated outcomes yield the same market prices from Methods
Ul and U2; therefore, only the outcomes from Method Ul are presented. Figure 4-41 shows the
prices obtained from the unit-by-unit decision schemes with Method U1 and from the portfolio-based
scheme. In both cases, the agents use Method M1 to set T'ar. In addition, Figure 4-42 shows the
prices obtained from the unit-by-unit decision schemes with Method U1, and from the portfolio-based
scheme when no CW strategy is present. Finally, Figure 4-43 shows the prices obtained from the unit-
by-unit decision schemes with Method U1, and from the portfolio-based scheme when no CW strategy
is present. To determine BM, the agents use Method M2 to set Tar. Note that in Figures 4-41 -
4-43 the simulated outcomes from the unit-by-unit decision scheme are denoted by “Unit-by-unit,”

and the outcomes from the portfolio-based scheme are denoted by “Portfolio.”

Analyses

From Figures 4-40 - 4-43, one can observe that the price dynamics when the agents use Methods M1
and U1 are identical to the price dynamics when the agents use Methods M1 and UZ2; in addition, these
price dynamics shift to a steady-state pattern. When the agents submit a marginal-cost bid for the first
day, the agents will either increase or maintain the bidding price. (Recall that for any % the outcome

O = 10 only when 0 << OP; < AP, and BM;, > M P;;. When the agents submit the marginal-cost
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bid, the anticipated profit is equal to zero for some agents when the marginal cost is greater than
the market price.) Note that when the agents determine the anticipated profit, they assume that the
others submit marginal-cost bids. For the infra-marginal unit, the agents obtain satisfying outcomes,
since the market price is higher than their bidding price and their BMjy; therefore, profits that they
obtain (OP;) are greater than anticipated profits (AFP;). Recall from the OUTCOME scheme that
when OP;, > AP, and BM; < M Py, the agents have no incentive to adjust their bidding price.

Only the agents that are scheduled to operate at the margin raise the bidding price for the next
period, because, for these agents, BMy = M P, and OF, = AP, resulting in Oy = 11. Hence, the
agents with marginal cost equal to market prices, denoted by Group A, gradually raise their bidding
price with an increment of $2/MWh (that is, A = 2) to be either higher than or equal to the agents
with the next expensive marginal costs, denoted by Group B. At this point, with an argument similar
to the one used in analyzing the effect of A on price dynamics, if Group A’s bidding price is higher
than Group B’s bidding price, Group A no longer obtains profits as anticipated and decides to decrease
their bidding prices. Group B, on the other hand, obtains the same profits that it anticipates (the
market price is equal to the marginal cost of the agents in Group B). In the next period, Group A
obtains the profits that it anticipates after lowering the bidding price; hence, Group A will increase
the bidding price again. The same explanation is applied. As a result, one can observe that the

market prices of the same load levels alternate between two values (odd and even values) over time.

In the unit-by-unit decision scheme, because the CW strategy is absent the agents are unable to
raise the bidding price. In addition, if the A = 1, the divergence of market prices can be observed when
the agents use Method M1 together with Ul or U2. When the bidding prices of both Group A and
Group B are the same (for the first time) and equal to market prices, following the OUTCOME scheme,
both Groups A and B determine O = 11. This result occurs because, for Group A, OFP, < AP, and
BM = M Py, and for Group B, OFP;, = AP, = 0 and BM}y, = M P;. In the next period, the market
price increases according to the bidding prices of the agents in both Groups. Hence, they both obtain
OP;, < AP, (since there are more agents (Groups A and B) that are scheduled to operate at the
margin) and BM} = M Py, and as a result Oy = 11.

Additionally, when the agents use Methods M2 and either Ul or U2 with A = 2, the price dynamics
of some hours, such as Hour 7, diverge. In this scenario, the infra-marginal agents raise their bidding
price in the next period (since BMyy1 = MP;, + ¢ and M Py > me, where me denotes marginal
cost). The marginal agents also raise their bidding price in the next period, because they obtain
OP, = APy and M P, = BM,. The infra-marginal agents who obtain satisfying outcomes also raise
the bidding price in the next bidding round. When these agents keep raising the bidding prices, their
bidding prices may eventually be comparable to the more expensive units, as explained previously. As
a result, several units with low marginal costs are scheduled to operate at the margin, whereas some

units with expensive marginal costs are scheduled to operate as infra-marginal units. The profits that
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the anticipated marginal agents receive are less than they anticipate (since many units are scheduled
to operate at the margin). As a result, the QUTCOME scheme yields Oy = 11; subsequently, the
agents maintain increases in the bidding prices. As a result, divergence of the simulated market
prices is common when the agents adopt Method M2 to determine the target price Tar in either the
unit-by-unit or portfolio-based decision scheme.

Figures 4-44 and 4-45 illustrate the divergence of market price at Hour 7. Let us consider Agents
1 and 6 with marginal costs equal to $10 and $20/MWHh, respectively. In Figure 4-44, “Price” denotes
the simulated prices, “Comp” denotes the marginal-cost prices, “Agent 1” denotes the bidding prices
of Agent 1, and “Agent 6” denotes the bidding prices of Agent 6. The competitive price at Hour 7
is $20/MWh. Agent 1 is scheduled to operate as an infra-marginal unit, while Agent 6 is scheduled
to operate at the margin on the first day. Even though the agents obtain satisfying outcomes, i.e.,
OPy > AP, they could change the bidding price for the next period (BMg1), because when M Py

changes, BMy.1 changes regardless of the bidding outcomes.

Implication: Generating-unit Divestitures

From the results shown above, one may conclude that when the agents use the learning scheme, such
as Method M2 and A = 2, that yields the divergence of simulated price dynamics regardless of the
decision schemes, no conclusive effect of the decision schemes on price dynamics is made. On the
other hand, when the agents use the learning scheme, such as Method M1 and A = 2, which yields
non-increasing dynamics over time, the unit-by-unit decision scheme results in lower market prices
than those obtained from the portfolio-based decision scheme. Recall that the agents do not exercise
the CW strategy in the unit-by-unit scheme simulation, while they exercise the CW strategy in the
portfolio scheme. The CW strategy is a critical factor in causing the expensive bid-supply functions
and, consequently, in resulting in increases in price markups. As shown in Section 4.6.1, when the
agents employ only the price-setting strategy, the simulated prices may be lower than those when
the capacity withholding strategy is in place. The agents may be unable to withhold their capacity
because they may own a number of generating units which have to operate at their full capacity or not
operate at all, and because they may have less capacity than that required to implement the strategy
successfully (W),

In summary, this outcome suggests that when the agents own small portfolios of generating units,
which are portfolios consisting of small capacity units or a few small generating units, they are less
likely to submit the strategic bid-supply functions that substantially deviate from the marginal-cost,
bid-supply functions, and cause the high price markups. Consequently, to increase the possibility of
achieving perfect competition as a result of power-system privatization, when a regulator divests the
generating units, the largest portfolio should have as small a capacity as possible. In addition, as

described in Chapter 2, the agents could not increase the bidding prices when they own portfolios
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with uniform capacity and/or the same level of marginal cost as when they own asymmetric portfolios.
The regulator should be concerned that after divestiture there should be as many power producers as
possible. To sum up, the largest portfolic in the markets should have as small a capacity as possible,

and power producers should have as similar portfolios as possible.

4.7 Verification of Agent-based Market Model

This section introduces two methods to determine whether the agent-based model can create dynamics
sufficiently close to those of the actual system that it represents. The outcomes from these methods
indicate the relationship between the learning algorithms that the agents use and the actual bidding
strategies that the power producers use in the actual system. The first method measures the average
square deviation of the simulated outcomes from the actual ones. The other method applies the
concept of Chernoff Bound to determine the “correctness” probability of the simulated outcomes
relative to the actual outcomes. In addition, it is important to determine the degree to which the
error between the simulated and the actual outcomes changes over time, for example whether error
decreases as the simulation time proceeds. Unfortunately, numerical verification of the model cannot

be presented because the required data are confidential and were not made available.

4.7.1 Average Square Error

This section presents the average square error method, which measures the error between the actual
and simulated outcomes when the model has the same input, such as inelastic demand and agent
characteristics, as the actual system. The smaller the error, the better the model. This method is
described as follows. Let y be the actual outcome observed from the market and let §(A) be the
simulated outcome obtained when the agents use a learning algorithm A. The error for any period &
(ex(A)) is the difference between the actual and simulated outcomes, i.e., ex(A4) = yr — §x(A). The

average square error for a T-period interval of the algorithm A, Er(A), is equal to

Er(A) = zle (;k(A))z _ ZZ:l(ykT- Qk(A))2 .

The model that closely mimics the actual system over time 7" shall have this property

lim ET(A) =0.

T—o0

That is, the difference between the actual and simulated outcomes will decrease, causing the average
square error to converge to zero over time. Since modeling the behavior of decision-makers closely is
difficult, the ideal model, which would yield limr_ o ET(A) = 0, may not exist. Therefore, instead

of identifying the ideal model, one may consider a model that yields acceptable error, i.e., within a
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desirable threshold E, or Er(A) < E for some period 7. Another way to interpret this measure is
to say that after time T, if Er(A4) < E, the model used in conjunction with learning algorithm A is

sufficiently good to represent the actual system.

4.7.2 Probability of Correctness

Another measurement of error uses the concept of on-line prediction. The simulated outcomes from the
agent-based model, in which agents use any learning algorithm, can be viewed as an on-line prediction.
Also the agent-based model could also be considered as one player in a two-person general-sum game
playing against nature with the payoff values equal to {0,1}. In this two-person game, the player
representing the agent-based model has a strategy which chooses actions based on the simulated
outcome from the model, whereas the other player representing nature has a strategy which chooses
actions based on actual outcomes. The payoffs of this game indicate how closely the model predicts
the actual system.

This method is described as follows. Let us define a bi-matrix game with finite possible actions
and let us define an acceptable error A. When the difference between the simulated outcomes and the
actual ones is within this acceptable band, the player obtains the payoff equal to zero. On the other
hand, when the difference is outside this band, the player obtains the payoff equal to one. Over time
T, the sum of the payoffs that the player obtains is the accumulative error between the simulated
outcomes and the actual ones. A payoff matrix of this game, in which the nature is a column player,

is as follows:

0 01 1
1 10 01 1
1 10 0 |

The payoff matrix has diagonal elements equal to zero. The concept of Chernoff Bound is applied to
determine the probability that the errors are within the acceptable band A is greater than a threshold
Z over period T'. Let p denote this probability and let X be an indicator of a random variable at any
period k that is equal to 1 if the player receives a payoff equal to 0, and otherwise it is equal to 0.

According to the Chernoff Bound, Prob(zz=1 Xe>27) < e=sZ. 5(63(2;1 X")), where s is
a positive constant and £(-} denotes the expected value. Therefore, the probability that the error is
less than the threshold Z is

T

. , r
Prob(z Xp<Z) > 1—e%%. g(es(Zkzl‘X"))_
k=1
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Note that if X} is an independent random variable, this probability is then equal to

T
Prob (Z Xe<Z) > 1—e*7 (E(e*)T,
k=1

and S(ES(ZZ:I X)) = p- eSO 4 (1 —p)-eS.

Since the outcomes of an agent-based model depend on the learning algorithms/strategies of the
agents, the cumulative error indicates how well the learning algorithms/strategies contribute to the
dynamics of the actual decision-makers’ behavior. One can notice that the method presented in this
section is similar to the average square error method, which is to determine numerically the deviation

of the simulated from the actual outcomes over time.

4.7.3 Insufficient Information

This thesis does not provide the numerical calculation of both methods to demonstrate the accuracy
of the model and the actual market because of insufficient information required for constructing the
model. This missing information includes marginal-cost functions, operating constraints and/or unit-
commitment constraints, bilateral contract obligations, as well as outage and maintenance schedules
of the power producers. Furthermore, in some markets, such as in New England, to schedule the gen-
erating units to meet demand, the system operator incorporates power system operating constraints,
including transmission constraints, voltage support, and operating reserve requirement. The prelimi-
nary study by Visudhiphan et al. [45] on the dispatch process shows that, depending on whether the
power system operating constraints as well as the generating units’ operating constraints are accounted
for, one may not be able to reproduce the market prices from the observed bid-supply functions and
demands. These factors need to be considered before comparing the observed market prices to the
simulated prices which do not account for them.

Moreover, in the learning algorithms used in this thesis, the choices of possible bid-supply functions
are limited, i.e., the agents choose a bidding price from zero to a price cap with an increment of
$3/MWh when Algorithms Al, A2 A3, and SAB are present. Conversely, in the actual market, the
power producers can choose the bidding prices from any value less than a price cap. This actual market
feature could yield different equilibrium strategies compared to the model with the limited choices
of bidding prices (recall Chapter 2). In addition, the agents discretize the range of possible bidding
prices (such as from zero to a price cap) using the same increment and also adjust the bidding price
in the model-based algorithm using the same increment. This uniform behavior may not represent
the actual behaviors of the power producers whose bidding strategies are confidential and possibly
unique.

Consequently, one can conclude that the factors that hinder the proposed model verification include

lack of system information, complexity of power system operations and their effects on market clearing
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outcomes, and infinite sets of possible actions of the market participants. However, to demonstrate
that the agent-based modeling approach should be considered an appropriate tool in analyzing the
electricity spot markets, despite these issues of the model verification, a study on the New England
power-producer bidding behavior is presented in the next chapter. This study will show that the
power producers exhibit time-varying bidding behavior that may result from learning, and also that

the bidding behavior of each power producer is rather unique.

4.8 Conclusion

The agent-based approach to model electricity markets contains both advantages and disadvantages.
This approach provides high flexibility in formulating the agents; that is, the agents can be modeled to
have different marginal costs, capacities, objective functions, and/or learning algorithms. This chapter
explores the agent-based model when the agents employ different, learning algorithms and then draws
a relationship between the simulated price dynamics and the learning algorithms. The simulations
show that the simulated outcomes depend highly on not only the agents’ characteristics, but also on
the learning algorithms that the agents use. The disadvantages of this modeling approach lie in the
difficulty in model verification. To use this model to analyze any actual market, the model should
be tested to prove whether or not it closely represents the actual market. Unfortunately, without
information relating to power-system operating constraints, generating-unit operating constraints and

characteristics, and system conditions, model verification turns out to be nearly impossible.
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Figure 4-12: Price Dynamics during Hours 721- 1200 When the Agents Employ Algorithm SAB with o =
0.9 and T=100
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Figure 4-13: Price Dynamics from Hours 721 to 1,200 When the Agents Employ Algorithm SAB with o =
0.1 and T=100
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Figure 4-14: Price Dynamics from Hours 721 to 1,200 When the Agents Employ Algorithm SAB with o =
0.5and 1=100
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Figure 4-15: Price Dynamics from Hours 721 to 1,200 When the Agents Employ Algorithm SAB with ot =
0.1 and T=10.
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Figure 4-16: Average Price Dynamics across 100 Simulations from Hours 961 to 1,200 When the Agents
Employ Algorithm A3 with  =0.1.
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Figure 4-17: Average Price Dynamics across 100 Simulations from Hours 961 to 1,200 When the Agents

Employ Algorithm SAB with = 0.1 and T =100
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Figure 4-18: Price Dynamics from Hours 721 to 1,200 When the Agents Employ the Model-based

Algorithm with Methods M1 and C2 and A= 2
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Figure 4-19: Price Dynamics from Hours 721 to 1,320 When the Agents Employ the Model-based
Algorithm with Methods M2 and C2 and A=2
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Figure 4-20: Price Dynamics from Hours 721 to 1,200 When the Agents Employ the Model-based
Algorithm with A=1 and Methods M1 and C2
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Figure 4-21: Price Dynamics from Hours 721 to 1,200 When the Agents Employ the Model-based
Algorithm with A=3 and Methods M1 and C2
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Figure 4-22: Daily Price Dynamics at Hour 8 When the Agents Employ the Model-based Algorithm with
A=1,2,0r3
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Figure 4-23: Daily Profits that Agent 1 Obtains at Hour 8 When the Agents Employ the Model-based
Algorithm with A=1, 2, and 3.
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Figure 4-24: Daily Profits that Agent 5 Obtains at Hour 8 When the Agents Employ the Model-based
Algorithm with A=1, 2, and 3.
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Figure 4-25: Samples of Simulated Prices When the Agents Employ the Model-based Algorithm with
Method C1 or C2 to Determine WH.
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Figure 4-26: Price Dynamics When the Agents Employ the Model-based Algorithm with and Method M2
and a GM Matrix
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Figure 4-27: Price Dynamics When the Agents Employ the Model-based Algorithm with Method M1 and a
GM Matrix
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Figure 4-28: Cumulative Profits that Agent 1 Obtains When It Submits a Bid-supply Function in Response
to the Opponents Employing Algorithm A3
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Figure 4-29: Cumulative Profits When Agent 1 Employs either Algorithm A3 or When It Submits a Bid-
supply Function with ¢ =6 MW and BM = $39/MWh
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Figure 4-30: Price Dynamics Obtained When Demand is Equal to 66 MW, and either Agent 1 or 5 Employs
a Learning Algorithm
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Figure 4-31: Price Dynamics from Hours 721 to 1,200 When the Agents Employ Algorithms A3 with & =
0.9 or Algorithm SAB with o = 0.9 and T = 100 to Determine Only BM
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Figure 4-32: Price Dynamics from Hours 841 to 1008 When the Agents Employ the Model-based
Algorithm with Method M1 and A=2 to Determine Only BM
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Figure 4-33: Price Dynamics from Hours 841 to 1008 of the Model-based with Method M2 and A=2 to
Determine Only BM

Day 1 2 3 4 5 6
MP 17 19 20 19 19 19
Agent #|OP-AP| BM [OP-AP|BM |[OP-AP| BM |OP-AP| BM |JOP-AP| BM |[OP-AP| BM
1 0.3 [17]0.08|19]| -7.6 |21]9.22 |18 ]| 2.05 19| 2.05| 19
2 0 17 0 19 -5 21 2 18 0 19 -4 21
3 0.3 |17 0.08|19|-8.26]| 21| 8.22]18] 2.05]|19] 2.05] 19
4 0.16 | 17| 0.03 [ 19|-5.13]|21] 5.11 ]| 18] 1.02 | 19] 1.02 | 19
5 0 17 0 19 -9 21 9 18 0 19| -18 | 21
6 0 17 0 19 -7 21 7 18 0 19| -14 | 21
7 0 17 0 19 -7 21 5 18 0 19| -10 | 21
8 0 17 0 19 -2 21 2 18 0 19 -4 21
9 0 17 0 19 -2 21 2 18 0 19 -4 21
10 0.3 |17]0.08]19]-295]|]21]|6.22 18| 2.05| 19| 2.05| 19
11 0.46 | 17 0 19 -4 211 9.34 | 18] 3.08 | 19| 3.08 | 19

Figure 4-34: Relationship between MP, (OP-4P), and BM of the Agents at Hour 4 from Day 1 to 6 When
the Agents Employ the Model-based Algorithm with Method M2
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Day 1 2 3 4 5 6
MP 17 19 20 19 19 21
Agent #OP-AP| BM [OP-AP| BM [OP-AP| BM |OP-AP| BM |OP-AP| BM OP-AP| BM
1 ol 17| -3.28] 19| -9.93| 21| 5.33| 18 0] 19] -5.32] 21
2 0] 17 0] 19 -5 21 2] 18 0] 19 0| 21
3 ol 17| -3.28] 19| -8.26] 21| 4.33]| 18 0] 19| -5.32| 21
4 ol 17| -1.64| 19| -5.13] 21| 3.16] 18 0] 19| -2.66( 21
5 0| 17] 28.87] 17 13] 19 -13| 20]26.26] 17| 31.7] 19
6 0| 17 0] 19 -7 21 7] 18 0] 19 0| 21
7 0| 17 0] 19 -7 21 5| 18 0] 19 0| 21
8 o 17 0] 19 -2 21 2] 18 0 19 0] 21
9 0] 17 0] 19 -2 21 2| 18 0| 19 0] 21
10 0] 17| -3.28| 19| -7.61 21| 2.33] 18 0] 19| -5.32] 21
11 0] 17 0| 19 -4 21| 3.49| 18 0] 19 0] 21

Figure 4-35: Relationship between MP, (OP-AP), and BM of the Agents at Hour 4 from Day 1 to 6 When
the Agents Employ the Model-based Algorithm with Method M2 Without the CW Strategy
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Figure 4-36: Price Dynamics from Hours 721 to 1,200 When Only Agent 5 Employs Algorithm A3 with &
= 0.9, While the Other Agents Submit their Marginal-cost Bids
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Figure 4-37: Price Dynamics from Hours 721 to 1,200 When Only Agent 5 Employs Algorithm SAB with

o= 0.9 and T = 100, While the Other Agents Submit their Marginal-cost Bids
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Figure 4-38: Price Dynamics from Hours 721 to 960 When Only Agent 5 Employs the Model-based
Algorithm with Methods M1 and C1 and A= 2, While the Other Agents Submit Their Marginal-cost Bids
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Figure 4-39: Price Dynamics from Hour 721to 960 When Only Agent 1 Employs the Model-based

Algorithm Methods M1 and C1 and A= 2, While the Agents Submit Their Marginal-cost Bids
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Figure 4-40: Price Dynamics from Hour 721 to 888 When the Agents Employ the Model-based Algorithm

with a Unit-by-unit Decision Scheme
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Figure 4-41: Price Dynamics from Hours 721 to 888 When the Agents Employ the Model-based Algorithm
with Unit-by-unit and Portfolio-based Schemes with Methods M1 and C1 and A= 2
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Figure 4-42: Price Dynamics from Hours 721 to 888 When the Agents Employs the Model-based
Algorithm with the Unit-by-unit and Portfolio-based Schemes with Method M1 and A= 2 without the CW
Strategy
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Figure 4-43: Price Dynamics during Hours 793-960 the Agents Uses the Model-based Algorithm with the
Unit-by-unit and Portfolio-based Schemes with Method M2 and A= 2 without the CW Strategy
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Figure 4-44: Prices and Bidding Prices of Agents 1 and 6 at Hour 7 Daily When the Agents Employ the
Model-based Algorithm with a Unit-by-unit Decision Scheme, Methods U1 and M2, and A= 2
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Figure 4-45: (OP-AP) of Agents 1 and 6 at Hour 7 Daily When the Agents Employ the Model-based
Algorithm with a Unit-by-unit Decision Scheme, Methods Ul and M2, and A= 2
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Chapter 5

Analyzing the New England
Electricity Market

This chapter presents an empirical study on the New England electricity market to support the concept
that an agent-based approach is an appropriate tool for modeling electricity spot markets. The agent-
based approach is selected for this analysis because of the characteristics of electricity spot markets,
which consist of several market participants with the potential to influence market outcomes. The
model must be capable of reproducing price dynamics from market data. The crucial problem at hand
is that these data are unfortunately not made available by the market operator and without knowledge
of the market participants’ bidding strategies/learning algorithms, it is difficult to reproduce the price
dynamics.

This empirical study analyzes the bidding behavior of the market participants, also known as Lead
Participants (LPs), and shows that agent-based behavior is a key component of modeling the dynamics
of the existing markets. The available information currently includes historic bid data, LP names and
portfolio characteristics, net claimed capacity of each generating unit, forecast and actual demand,
total capacity used for alleviating network-constraints, net imported capacity, and market rules. The
bidding behavior of the LPs is observed directly from the historic bid data, and the analysis of LP
506459’s bid data shows a possible learning algorithm. In addition, the bidding strategies of the LPs
depend on their portfolio characteristics, as well as on the types of generating units.

In summary, this empirical study analyses 1) whether the LP bidding behavior exhibits certain
patterns, i.e., demand-dependent or daily patterns, 2) whether the LPs learn the markets and how
they learn, 3) the learning algorithm that is likely to be used by the LPs, and 4) whether the LPs
submit a portfolio bid or a unit-by-unit bid. The results from this empirical study show that the
agent-based approach is an appropriate model for electricity spot markets, since by using this model

the strategic behavior of the market participants can be captured, and that potential price dynamics
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due to the strategic behavior of the market participants can be simulated.

This chapter is organized as follows. Section 5.1 provides the method used to perform an analysis
of LPs’ bidding behavior. Section 5.2 presents the method used to identify possible marginal units.
Section 5.3 presents the detail on bid characteristics of a few LPs. Section 5.5 investigates a possible
bidding strategy of LP 506459. Section 5.4 examines the bid characteristics of different types of
generating units with the same owner. The conclusion is presented in Section 5.6. For readers who
are interested in the background of the New England electricity spot market, which is operated by the
New England Independent System Operator (ISO-NE), an overview of this market and the available

information is outlined in the appendix to this chapter.

5.1 Analyzing Bidder Behavior

This section presents the method used to determine the bidding characteristics of the LPs and the
preliminary results of a few LPs’ bidding behavior. The analyses indicate the non-uniform behavior of
the LPs in the New England electricity spot markets. They also suggest that in order to understand
the dynamics of the current electricity markets it is essential to model electricity markets in general
by using an agent-based approach.

The method to determine the bidding characteristics of the LPs follows these steps:

1. Matching LP IDs and their bidding capacity with the names of the Lead Participants and their
portfolios to obtain the portfolios and generating units’ characteristics.
The bidder names and their portfolios, which contain the number of generating units, installed ca-
pacity, and types of generation technology are obtained from the posted net-claimed capacity. By
comparing a total sum of high operating limits (HOLs) with the total net claimed capacity of each
bidder’s portfolio, the LPs can be matched with the bidder names and their portfolios. Some LPs
have similar capacity and the units’ characteristics and bidding constraint characteristics (such as self-
scheduled capacity (SS)) are used to identify the LP and its portfolio. For example, pumped-storage
units have limited available capacity in each day, and nuclear units are generally under a self-scheduled
condition to avoid being turned off. The matching results are shown in Table 5.1. There are several
benefits of identifying the LPs and their portfolio characteristics. First, to differentiate the causes of
bid adjustments during the day, as to whether they come from strategic behavior or operation con-
straints, is essential. The hydropower units, for example, are limited energy sources (due to limited
water flow) and generally are not operated during the off-peak demand hours, while other units, such
as nuclear units, are able to operate all day. The unavailability of the hydropower units during certain
hours may be caused from limited flow of the rivers/streams, and not because of the strategic behavior

of the LPs who bid those units to the market.

Second, by matching the LPs and their types of units, one can identify which LPs tend to be
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scheduled to operate at the margin and thus set the market price. The crucial benefit of identifying
which units are scheduled to operate as marginal units, and is it is possible that observe the relationship
between the types of units and their bid-supply functions, as well as the portfolio characteristics and
bidding strategies. Consequently, when the agent-based market model is used for analyzing the existing

markets, proper bidding strategies (or learning algorithms) can be assigned to the agents.

Table 5.1: Some New England Market LPs during July 2000

LP ID 140603 184983 196063 | 206845 218387 331313
LP SITHE CLP PPLEP FPL SEI TMLP
LP ID 333704 353795 400693 | 405573 412080 465936
LP NU CPS WSVST UI MMWEC CMP
LP ID 483669 484516 505718 | 506459 515039 519412
LP NU_NAESCO BE TPM PGET MPLP UAELT
LPID 529934 529988 532832 | 547596 607144 629513
LP CES NRGPM | SCEM | BELD ENGC CMEEC
LP ID 647399 649626 659984 | 674577 780847 854478
LP BHE CCT DPA DETM | ENGEN | INDCK
LP ID 902793 910093 934720
LP CEEI VELCO PEC

Table 5.2 shows the portfolios of net claimed capacity (summer claimed capacity) of four LPs,

including LPs 206845, 218387, 506845, and 529988 during July 2000.

Table 5.2: LPs” Net Claimed Capacities

Types of Technology (% of Capacity) total
LPID | D F HD |HW | G J CC | PS | (MW)
206845 1 0 | 70.0 | 10.7 { 16.5 | 2.8 0 0 0 1,349
218387 | O 70 |1 9.0 | 6.0 0 | 120 0 66.0 | 1,645
506459 | 0.2 | 56.3 | 3.5 1100 | O 0 16.7 | 13.3 | 4,422
520988 4 0 | 83.0 0 0 7.0 | 10.0 0 0 2,313

2. Reconstructing the bid-supply functions of the LPs.
To reconstruct an hourly bid-supply function, bid-blocks MW of the units with positive HOL are
stacked from the lowest bid-block $ to the highest bid-block §. For the units with positive SS capacity,
the bid-blocks $ of the bid-blocks MW added up to their SS capacity are set to zero. The minimum
quantity that is scheduled to operate but not allowed to set the market price of each generating unit is
the maximum between the SS capacity and low operating limits (LOLs). Some LPs do not necessarily
set the bidding prices of the SS quantity block at zero. In this analysis, when the LPs do not set their
bidding prices of the SS capacity at zero, their bidding prices are automatically set to zero. Figure 5-1
shows a set of LP 506459’s hourly bid-supply functions. As observed in Figure 5-1, the hourly bid-
supply functions cannot be represented by a simple function, suchasy = a-z+bor y = exp(a-z+b),

where a and b are constants. Moreover, for each trading day, there are 24 bid-supply functions for
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each LP. To simplify the analysis, the bidding prices of sampled bidding quantity of each trading hour
are used.

3. Reconstructing the aggregate bid-supply function of each hour from the bid data to determine
the market price and dispatched capacity of each LP.
Similar to reconstructing an hourly aggregate bid-supply function, bid-blocks MW of the units with
positive HOL are stacked based on a price-merit order. ¥or units with positive self-scheduled capacity
the bid-blocks $ from the lowest price of bid-blocks MW summed equal to the SS capacity are set
to zero. Several LPs submit the non-zero (especially positive) bidding prices for the self-scheduled
blocks, such as LP 218387. An example of the aggregate bid-supply functions in a typical day for the
New England market is shown in Figure 5-2.

4. Determining actual demand.
The actual demand L¢ in each hour is the demand served by merit-order generating units. This
demand, the merit-order dispatch capacity, includes the import/export power flowing from and into
the neighboring grids, including the New York power pool and the Canadian power system, such as
New Brunswick and Hydro Quebec [53], though it does not account for the capacity dispatched out

of merit order to transmission constraints. The actual demand in each hour is calculated by
Z - Lk_Q{+Q{:m7

where Ly, is the actual consumption for each hour &, Q{ is the total capacity used to compensate the
system constraints due to transmitting power, and QL™ is imported power (negative QI means the
power is exported out of the New England market).

5. Determining scheduling capacity and revenue.
From the given bid data, total demand, and market prices, scheduled capacity for each hour is deter-
mined by using the price-merit order method, that is, by finding an intersection point of the aggregate
bid-supply function and actual demand. The market price of that hour is defined as the value on
the price axis of the intersection point, and is equal to the maximum bidding price of the bid-blocks
scheduled to operate at the margin. For several reasons, this market price for the New England mar-
ket is generally different from the actual price during that hour. First, an hourly calculated market
price is the price where a market-wide bid-supply function intersects with the actual demand. The
hourly price published by the ISO-NE is determined using ISO-NE’s dispatching software, resulting
in that demand to meet supply at the minimized total cost, which accounts for unit-commitment con-
straints. Therefore, by simply identifying an intersection point of the demand and supply functions,
the unit-commitment factors are not captured.! Second, an hourly published price is an average of

12 five-minute prices; also hourly demand is average demand during that hour. Since the aggregate

1See the market rules for more details on dispatching and also Visudhiphan et al. [45] for analyzing the effect of the
clearing mechanism on market prices.
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bid-supply function is not linear, an average of prices (with different demand in each 5-minute interval)
is not equal to the price of the average demand in a given hour. Third, the ISO-NE dispatches may
alleviate transmission congestion in the network; nevertheless, real-time outage of the operating units
may have occurred, and the addition dispatch might be needed. Hourly total capacity dispatched to
alleviate transmission congestion is not factored in determining the market price in this study. The
specific units, which are constrained on, turned on out-of-merit order, or constrained off, are not avail-
able. Visudhiphan et al. [45] show that one cannot reproduce market prices by simply determining
an intersection of the aggregate bid-supply function and actual demand from the available bid data,
total demand, imported/exported power, and capacity dispatched out-of-merit order, because the real

dispatch accounts for the above factors.

The scheduled capacity of each LP is a total sum of the bid-blocks MW with bid-blocks $ at most
equal to the calculated market price. When there is more than one bid-block MW with the same
bid-block $ equal to the calculated market price, these bid-blocks MW are scheduled to operate based
on the weighted portion of the residual demand. Also, when the scheduled capacity of each unit is
less than its declared LOL, the unit is dispatched at zero, and the unscheduled bid-block MW of the

units that are dispatched above their LOLs are scheduled to operate instead.

Revenue of each LP in each hour is simply the market price during that hour multiplied by the
total scheduled quantity. Note that the scheduled quantity, as well as revenue presented later in this

analysis, does not reflect the real revenue that the LPs receive from their actual electricity sale.

6.Discretizing demand and categorizing hourly demand into sequences of load-index events.
To observe whether the load-based modeling approach is reasonably good at capturing market par-
ticipant adaptive behavior, the bidding behavior of the market participants is analyzed in an order of
load-index events. Hourly forecast demand is discretized and represented by a load index. The hours
with the same load-index sequence are grouped together in their order of occurrence. The bid data

relating to each load-index sequence is analyzed.

5.2 Identifying Marginal Units

The marginal units are the last units to be dispatched; that is, the market price is equal to their bidding
prices. For the LPs to set the prices that yield the most desirable outcomes, bidding strategies and/or
learning algorithms play a critical role for the units to be scheduled to operate as marginal units.
Therefore, examining the bidding behavior of the potential marginal units may shed light on learning
algorithms/bidding strategies of the LPs. Since details regarding units dispatched in each hour are
not, available, given the available data, this thesis identifies the marginal units used during each hour

using the following steps:
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1. Determining the aggregate bid-supply function. The same method described in Section 5.1 is

used.

2. Determining actual demand Lj,. Actual demand is defined as the demand served by merit-order
generating units. Total demand L§ is simply the actual consumption (Lj) subtracted by the
quantity needed for alleviating transmission constraints (Q%) and to which the imported power

(QI™) is added, i.e., L¢ = Ly — QF + QIm.

3. Determining the actual demand range, a 1600-MW band around the L{, eg., L € [L} —
800, L} + 800]. This range is chosen arbitrarily. Motivations behind establishing this demand
range are that the actual consumption varies within the hour? and the dispatch incorporates
unit-commitment constraints. This demand range allows us to capture the units that may

potentially be dispatched as marginal units.

4. Identifying the marginal units. The marginal units are defined as the units on the aggregate
bid-supply function that have bid-blocks MW in the specified range [L¢ — 800, L¢ + 800]. From
Figure 5-3, the units that have their bid-blocks MW in band A are called marginal units.

5. Mapping an Asset ID to a unit in the LP portfolio to identify its generation technology. By
comparing the HOL of the Asset ID and the installed capacity, one can identify some units and
their generating technology without difficulty. Several units of the same portfolio have similar
installed capacity and when this happens, bid data are used. The units with daily limited
available energy are considered either hydropower or pumped-storage units. The units with no
limited available energy (DEA = 0) and with low operating limit greater than zero (LOL > 0)

are considered either combined-cycle or fossil-fueled units.

5.2.1 Results

This section presents the findings on potential marginal units in the New England market during the
observed two-week periods in January, April, July, and October of 2000. Table 5.3 shows the LPs
with the units that could be scheduled to operate as marginal units during January 18-31, 2000 and
October 18-31, 2000. Demand in January is higher than in October in almost every hour (as shown
in Figure 5-31). Since bid data of a two-week period of those months are considered, there are a total
of 336 hours, meaning 14-hour groups of data for each Trading Hour (TH). Only the data associated
with THs 4, 9, 12, 16, and 18 and the LPs with more than 7 hours scheduled to operate as a marginal
unit in each TH are presented. The * denotes that the LPs have at most 6 hours in the TH to be
scheduled to operate as a marginal unit.

The lists of the marginal units are shown in Table 5.4. The results show that several units are

consistently scheduled to operate at the margin, as shown in Table 5.3. These LPs are eligible to set

2The published total consumption is an average of 12 values of 5-minute demand.
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Table 5.3: LPs with Marginal Units during January 18-31 and October 18-31, 2000

January 18-31, 2000 October 18-31, 2000

Trading Hours Trading Hours
LPID 4]9|12|16|18T22 LP ID 419|12|16|18[22

No. of hours No. of hours
218387 | 14 | 7 | x | 7 | % * 218387 (13113 9 110| 7 |10
333704 | 11 | = T x| 9| % 400693 | « |13 {14 111 | 12 | =%
400693 | 13 | = | 11| 7 | 11 | =* 505718 | 8 |11 1311114 | 14
412080 | = | 7 | 7 | = x | % 506459 | 13 [ 13 | 13 114 | 14 | 14
465936 | * | * | = |11 ] = [ 8 515039 | = * | 10| 8 AR
484516 | 10 | * | = * * * 529934 | 7 | x * * * *
505718 | =* 7 * 8 7111 529988 | 11 | 7 * * 7 *
506459 | 14 | 14 | 14 | 14 | 13 | 14 532832 | x (12 {1312 | 7 | 14
520988 | 8 | 13113 (12| 13 {11 6745771 « | 9 | 9] 8 | 8 |11
532832 | = 1 9 | 8 {11} 9 |11 787013 | 13 | = * * * | o*
787013 | 11 | = * * * * 959445 | 10 | = * * *
910093 | 7 | x | * |10 * | 9

the market prices. Different LPs influence market prices in different hours and in different months. For
example, LP 218387 tends to be a marginal unit more often in October than in January, whereas LP
529988 tends to be a marginal unit more often in January than in October. LP 506459 always submits
the bid-supply functions such that some of its units are scheduled to operate as a marginal unit almost
every hour. Furthermore, one would expect to observe the variation of the bid-supply functions of the
LPs within a day or from day to day. This, in fact, is true, especially for LP 506459. The bid-supply
functions of LP 506459 over several days and the sample plots of bidding prices associated with a few

bidding gquantities are shown in Figures 5-14 - 5-19.

Since LP 506845 submits the bid-supply functions so that the units are likely to be scheduled to
operate as marginal units, the extended analysis of its bid-supply function is performed to identify the
types of generating units that are likely to be scheduled to operate at the margin. By observing the
bid data, it turns out that LPs submit bid-supply functions such that most of its units (accounting
for more than half of total HOL) can be scheduled to operate as marginal units. Table 5.4 shows the
units may be scheduled to operate as a marginal unit during THs 9 and 18 in the periods of January
18-31 and October 18-31, 2000. The numbers in the columns “TH 9” and “TH 18” indicate a number
of trading hours during the observed periods that the units are scheduled to operate at the margin
(14 means that the unit is a marginal unit for the entire observed period). Let H denote a hydropower
unit (either a HD or HW unit), F denote a fossil-fueled unit, PS denote a pumped-storage unit, and
CC/F denote the unit that is either a combined-cycle unit or a fossil-fueled unit. Due to limited
information on operating characteristics of the units, some units are not exclusively identified and let

x denote that the type of generating unit cannot be identified.

From Table 5.4, it is clear that several hydropower, combined-cycle, and fossil-fueled units of LP
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Table 5.4: Marginal Units of LP 506459 during January 18 - 31 and October 18 - 31, 2000

January October
Asset TH 9 TH 18 | HOL Tec. Asset, TH 9 TH 18 HOL Tec.
ID. | (Hours) | (Hours) | (MW) ID. | (Hours) | (Hours) | (MW)

16337 | 12 12 150 | CC/F
26161 14 0 64 CC 26161 0 8 64 CC
29086 12 12 22 H 29086 14 14 22 H
31965 7 0 14 H 31965 0 12 14 H
38850 12 14 13 H 34993 14 14 82 F
43414 11 10 435 F 37274 12 11 150 CC/F
45823 12 11 440 F 38850 14 14 13 H
58508 7 0 7 H 42841 0 13 290 PS
71825 12 14 192 H 43414 13 13 435 F
72183 12 13 145 CC/F 47946 13 12 10 H
79606 12 14 164 H 58508 13 12 7 H
81361 12 11 290 PS 71825 14 14 192 H
81483 14 14 290 F 79606 14 14 164 H
88818 14 14 48 H 86967 0 12 5 X
89472 14 14 42 H 88625 13 13 18 X
90417 14 13 290 F 88818 14 14 48 H
92137 14 14 147 CC/F 89472 14 14 42 H
93720 14 0 41 H 92137 12 11 147 CC/F

93270 13 13 41 H

Total (MW) 2,644 Total (MW) 1,804

506459 are generally scheduled to operate as marginal units. Moreover, marginal units vary over time.
For example, Asset IDs 81361 and 81483 are likely to be scheduled to operate as marginal units in
January but not in October. The generating units of LP 506459, which are likely to be scheduled to

operate as marginal units, are analyzed in Section 5.5.

5.3 Lead Participant Bidding Behavior

The bidding behavior of four LPs, including LPs 206845, 218387, 506459, and 529988, is analyzed.
These LPs are selected because the size of their installed capacity is more than 5% of total capacity
in the market. In particular, LP 506459 is responsible for the bid submission of the largest capacity.
Based on the bid data, LP 206845 has several units with parts of their capacity self-scheduled, LP
218387 owns the units with limited energy generation, and LP 529988 owns the units that can be
dispatched without energy constraints and with no self-scheduled constraints. By comparing the bid
data to the lists of LP generating units, one can conclude that LP 218387 owns a pumped-storage
facility, LP 506459 owns 27% hydropower capacity in its portfolio, and LP 529988 owns fossil-fueled,
gas-turbine, and jet-engine units, but no hydropower unit. The analyses were performed during the
periods January 18-31, April 17-30, July 18-31, and October 18-31, 2000. These months cover demand

during winter, spring, summer, and autumn, respectively. The demand patterns during January 18-31
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are shown in Figure 5-4, during April 17-30 in Figure 5-5, during July 18-31 in Figure 5-6, and during
October 18-31 in Figure 5-7.

5.3.1 Observing Bidding Behavior

The samples of time-series of the bidding prices given the bidding quantity of four LPs are shown in
Figures 5-8 - 5-22 below. These plots reflect the true bidding prices at the specified bidding quantities.
They are not adjusted by setting the bidding prices to zero for the self-scheduled capacity, as occurs
when the market prices and scheduled quantity are determined. A few values of bidding quantities
between the self-scheduled quantities and HOLs are chosen for presenting the plots of a time series of
bidding prices and quantities sampled from the daily bid-supply functions. Each line represents one

bidding quantity in which its value is specified on the plots.

To demonstrate that the LPs may not submit the same total HOLs daily and/or weekly, total
self-scheduled (SS) capacity and total HOLs of TH 14 during January 18-31, 2000 are shown in Table
5.5.

Table 5.5: Self-scheduled Quantity and Bidding Prices during January 18-31, 2000: Trading Hour 14

Date LP 206845 LP 218387 LP 506459 LP 529988

SS HOL 5S HOL SS HOL SS HOL

(MW) | (MW) | (MW) | (MW) | (MW) | (MW) | (MW) | (MW)

18 0 921 298 2,680 | 1,011 | 4,964 491 2,333
19 0 921 288 2,680 965 5,001 491 2,333
20 0 601 200 2,680 956 4,839 491 2,181
21 0 601 200 2,680 980 4,501 491 2,333
22 0 601 210 2,680 965 4,672 431 2,181
23 0 601 200 2,680 948 4,677 431 1,931
24 0 601 198 2,680 944 4,669 431 1,931
25 0 601 191 2,680 950 4,942 431 2,333
26 0 601 191 2,680 972 4,818 416 2,333
27 0 301 178 2,680 948 4,499 416 2,333
28 0 301 315 2,680 949 4,501 416 2,333
29 0 921 199 2,680 958 4,630 416 2,333
30 0 921 158 2,680 959 4,037 416 2,333
31 0 921 145 2,680 947 4,596 416 1,773

The examples show the bidding prices at the specified bidding quantities between January 18-24,
and April 17-23, 2000 of LPs 206845, 218387, 506845, and 529988. Additional plots of bidding prices
given quantities of LP 506459 during the last two weeks of January, April, July, and October of 2000

are also presented.
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LP 206845

The bid-supply functions of LP 206845 are sampled. Examples of a time-series of observed bidding
prices associated with sampled bidding quantities 150, 300, 450, 600, and 750 MW between January
18-24, 2000 are shown in Figure 5-8, and with sampled bidding quantities 450, 600, 750, and 900 MW
between April 17-23, 2000 are shown in Figure 5-9. These plots, together with the analyses of historic
bid data between the periods of study, indicate that LP 206845 adjusts its bidding prices seasonally. It
intends to be scheduled to operate during the peak-demand hours, especially during the peak-demand
months of January and July when one can observe the low bidding prices for the same amount of
power. Some of its capacity is self-scheduled during low-demand months, especially in April, and the
rest of the capacity is offered at expensive bidding prices. In other words, when total demand in the
market is low, this LP is not scheduled to operate beyond its total self-scheduled quantity. Using the
method presented previously, the scheduled quantities during the last two weeks of January, April,
July, and October 2000 are shown in Figure 5-10. The SS capacity of trading TH 14 during these

periods is shown in Figure 5-11.

LP 218387

Examples of observed bidding price time-series when the bidding quantities are equal to 100, 900,
1,300, 1,700, and 2,100 MW during January 18-24, 2000 are shown in Figure 5-12, and when the
bidding quantities are equal to 100, 500, 900, 1,300, 1,700, and 2,100 MW during April 17-23, 2000
are shown in Figure 5-13. This LP is responsible for determining the bid-supply function for the
second largest capacity, or 10.4% of the installed capacity in July 2000. It self-schedules parts of the
capacity, especially during the off-peak hours. Table 5.6 shows the variation of maximum available
capacity, or the total HOLs and SS capacity of this LP on January 19, 2000. During the morning

hour of low demand, the SS capacity is set to the highest, or 44% of its maximum available capacity.

Table 5.6: Self-scheduled and and Maximum Available Capacity on January 19, 2000 of LP 218387

Hour 1 6 10 13 15 18 21 23
HOL (MW) | 2,680 | 2,680 | 2,680 | 2,680 | 2,680 | 2,680 | 2,680 | 2,680
5SS (MW) 1,179 | 1,179 | 388 288 246 948 367 200

Notice that the bidding prices in Figure 5-12 do not reflect the SS capacity since this LP submits
positive bidding prices for its SS portion. From Figure 5-12, one can observe that LP 218387 submits
lower bidding prices during high-demand hours than during the low-demand hours in the morning for
the same bidding quantity, (i.e., less than half of its maximum available capacity) 100 and 900 MW.
LP 218387 submits the same bid-supply functions during the other months as well. The maximum

available capacity during April is lower than the other months. This LP is dispatched to at least its
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SS capacity for every hour. Therefore, when combined with its bidding prices, this LP is scheduled

to operate mostly during high-demand hours.

LP 506459

This LP is responsible for determining the bid-supply function for the largest capacity, or 17.8% of
total installed capacity. Several generating units are dispatched as self-scheduled units or marginal
units. The bid-supply functions of LP 506459 during the periods of interest are sampled. Examples
of observed bidding time-series prices given bidding quantities ranging from 1,000 to 3,500 MW with
an increment of 500 MW between January 18-31, April 17-23, July 18-31, and October 18-24, 2000
are shown in Figures 5-14-5-19. The bid-supply functions shift substantially within a one-day period
and tend to move in the same direction as the levels of demand within a day. For example, LP 506459
offers a higher bidding quantity during peak-demand hours than during off-peak hours at the same
bidding prices.

The portfolio of this LP contains the largest capacity and variety of units. This LP submits low
bidding prices for the first 2,000 MW of its capacity so that it is scheduled to operate every hour, and
at generally more than its SS capacity. A possible bidding strategy of this LP is described later in
Section 5.4. In addition, the bid-supply functions of five units of LP 506459 are further examined in
Section 5.5.

LP 529988

Examples of observed bidding price time-series when bidding quantities are equal to 450, 900, 1,450,
and 1,800 MW between January 18-24, 2000 are shown in Figure 5-22, and when bidding quantities
are equal to 450, 900, 1,450, and 1,650 MW between April 17-23, 2000 are shown in Figure 5-22.
This LP owns 8.4% of total installed capacity. Its total available capacity, or total HOLs, are lower
during the low demand months of April and October. The SS capacity varies within the day as well
as over months. When SS capacity is non-zero, this capacity is lower during the low-demand hours
than during the high-demand hours. Examples of the maximum available capacity and SS capacity of
this LP on a Wednesday in January, April, July, and October 2000 are shown in Table 5.7. This LP
increases its bidding prices (shifting the bid-supply functions) in April, July, and October compared
to the bidding prices in January. During those months, it is basically scheduled to operate at its SS

capacity.

5.3.2 Observation and Analyses

Based on the bid data, one can observe that:

e The bidding prices given bidding quantity (or the bidding prices for the same bidding quantity)
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Table 5.7: Self-scheduled and Maximum Available Capacity of L.LP 529988

Date Hour 1 6 10 13 15 18 | 21 23
1/19/00 | HOL (MW) | 2,333 | 2,333 | 2,333 | 2,333 | 2,333 | 2,333 | 2,333 | 2,333
SS(MW) | 235 | 282 | 516 | 491 | 491 | 627 | 669 | 359
4/19/00 | HOL (MW) | 1,682 | 1,682 | 1,573 | 1,573 | 1,573 | 1,573 | 1,682 | 1,682
55 (MW) 0 0 0 0 0 0 0 0
7719700 | HOL (MW) | 2,209 | 2,209 | 2,200 | 2,200 | 2,200 | 2,209 | 2,209 | 2,209
SS(MW) | 8 | & | 8 | &b 85 85 | & | 85
10/18/00 | HOL (MW) | 1,950 | 1,950 | 1,950 | 1,950 | 1,950 | 1,050 | 1,891 | 1,786
SS(MW) | 535 | 535 | 850 | 725 | 725 | 935 | 935 | 790

do change over time on both daily and seasonal bases. (See, for example, Figures 5-14, 5-16,

5-17, and 5-18.)

The LPs tend to submit the bid-supply functions that reflect the unit types as well as their
entire portfolios. For example, one can observe from Figures 5-24, 5-28, and 5-27, the difference
between the bid-supply functions of several units submitted by the same LP. In addition, the
bid-supply functions of the entire portfolio change according to demand levels on a daily and

weekly, as well as on a seasonal, basis.

One possible strategy of some LPs (such as LP 218387) is that they tend to submit bids to
fill their target scheduled capacity (similarly to a target utilization rate [8]). That is, the
bidding prices corresponding to the target scheduled capacity are likely to be adjusted to match

anticipated prices (or demand patterns).

The LPs tend to submit high bidding prices for two possible reasons, 1) to avoid being scheduled
to operate in low-demand (low-price) periods and 2) to set the market prices. As observed, the
bidding prices during the off-peak hours for low bidding quantity are generally higher than the
same portion of bidding quantity during peak hours. One must also keep in mind that some units
might have limited energy generation capacity, i.e., hydropower units, so that their bid-supply

function might reflect this constraint.

Whether the LPs follow a certain learning algorithm is difficult to assess. One possible learning
algorithm and/or bidding strategy of LP 506459 as observed from the bid data during the periods
January 18-31 and October 18-31, 2000 is described in the next section. As observed from the
bid data, it is not necessary that the LPs adopt only one strategy or learning algorithm over

time.

The LPs have different bidding strategies and/or learning algorithms. Some LPs submit the
same bids over time without adjustment to demand levels, while some LPs submit time-varying

bids, which do not necessarily depend on demand levels.
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e Without marginal costs or operating costs such as fuel prices of each LP, it is difficult to differ-
entiate whether the high bidding prices are a result of learning to bid strategically, of changing
operating costs, or of implementing the capacity withholding strategy.® The total available ca-
pacity in each trading hour does change over time. This may reflect that the LPs are withholding

their capacity or that the units may be unavailable due to operating constraints.

5.4 Load Indices and Bidding Behavior

Another important issue in the agent-based market model is the assumption that the agents behave
strategically in the electricity market model based on demand levels. This assumption originates from
the observed total demand and prices without knowledge of the LP bid-supply functions. To verify
whether this assumption is reasonable, LP bidding behavior is observed based on the forecast demand
level. After the demand indices associated with forecast demand are determined, the trading hours
are rearranged and grouped such that the hours with the same forecast demand index are ordered
consecutively based on their order of occurrence. For example, the total forecast demand in New
England can be discretized into 15 indices, in which each index represents demand of a 1,000-MW
range. The first index represents demand not more than 9,000 MW, while the last index represents
demand more than 22,000 MW. Table 5.8 shows the number of hours associated with each index

during year 2000.

Table 5.8: Examples of Discretized Demand in Year 2000

Range | < 9,000 | 9-10,000 | 10-11,000 | 11-12,000 | 12-13,000
Hours 34 465 862 763 785
Range | 13-14,000 | 14-15,000 | 15-16,000 | 16-17,000 | 17-18,000
Hours 812 961 1,609 1,006 719
Range | 18-19,000 | 19-20,000 | 20-21,000 j 21-22,000 | > 22,000
Hours 431 201 66 35 10

There are, however, several possible ways to observe the load-based behavior of the LPs, methods
such as referencing the observations on maximum-minimum daily demand and/or average of daily
demand. From the historic bid data, the bidding patterns of the LP are unlikely to change hourly (for
example, see Figures 5-8 - 5-23) if the hourly load indices are accounted for as in the proposed agent-
based model. Instead, the observed bid data seem to change on a daily basis. Moreover, to determine
the bid-supply function for the LPs by considering demand on an hourly basis is impractical because
the generating units generally operate on at least a daily basis due to unit-commitment constraints.
Instead of collecting the data in the memory matrices (as described in Chapter 3) based on hourly load-

indices, one can base the data on indices of daily maximum-minimum and/or average peak demand,

3Moreover, the LPs may submit high bidding prices when they realize the potential benefits of out-of-merit scheduling
to alleviate transmission constraints. However, this condition is not considered in this thesis.
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which must be during specified hours such as between 7:00 a.m. and 11.00 p.m. when demand is
relatively high (or the peak-demand hours). The information in a memory matrix is updated on a
daily basis, reducing the necessary frequency of data updating to at most 24 times a day compared
to updating hourly. The possible load-based bidding strategy/learning algorithm of LP 506459 as
observed from the bid data is presented as follows. In this study, LP 506459 is chosen due to its
capacity, and its units are likely to be scheduled to operate as marginal units because LP 506459 has a

mixed-type of generation technology, which could provide flexibility in shaping a bid-supply function.

5.4.1 A Possible Bidding Strategy

The following examples and analyses show a method to analyze a bidding strategy and/or a learning
algorithm of LP 506459. Bid data during two 2-week periods in January and July, 2000 are observed.

The steps to analyze the possible learning (bidding strategies) are as follows:

1. Discretizing demand between 7:00 a.m. and 11:00 p.m. of January 18-81, 2000 into four indices.
The criteria are based on the maximum and minimum forecast demand because prior to a bid
submission the LP is informed of the forecast demand. The first index represents the maximum
demand greater than 21,000 MW and the minimum demand greater than 17,000 MW, and
the second index represents the maximum demand between 19,500 and 21,000 MW and the
minimum demand between 16,000 and 17,000 MW. The third index represents the maximum
demand between 18,000 and 19,500 MW and the minimum demand between 15,000 and 16,000
MW. The last index represents the maximum demand less than 18,000 MW and the minimum
demand less than 15,000 MW. As shown in Figure 5-4, Day 21 is represented by the first index,
Days 18, 19, 20, 27, and 28 are represented by the second index, Days 22, 23, 24, 25, 29, and 31
are represented by the third index, and Day 30 is represented by the forth index.

2. Calculating total revenue of each day from scheduled quantity and prices. This revenue is the
total sum over 24 hours of scheduled quantities multiplied by scheduled prices (market prices),
assuming that the scheduled quantity (power) remains constant throughout the hour. (These
sets of information are shown in Table 5.9.) Figure 5-20 shows the scheduled quantities and

market prices for January 18-31, 2000.

3. Ezxamining a possible learning pattern. For each index, the first day of the observed period is
considered an initial condition. The bid-supply function of this day is used as a reference bid.
Let us consider the load series associated with only the second and third indices. Days 18 and

22 are the initial conditions for the second and third indices.

From Table 5.9, z M$/h (or M for short) denotes = million dollars per hour. For the second index,

on the 1st day (January 18) the revenue and the bidding quantity equal to an average of scheduled
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Table 5.9: Average Scheduled Quantity, Calculated Market Prices, and Revenues of LP 506459

January July

Date | Index Q P Revenue Index Q P Revenue

(MW) | (8/MWh) | (M$/h) (MW) | (§/MWh) | (M$/h)
18 2 3,100 38.24 2.02 1 2,830 42.61 2.09
19 2 2,302 37.60 1.49 2 2,505 35.39 1.53
20 2 2,078 37.49 1.33 3 2,355 33.94 1.39
21 1 2,467 39.78 1.67 3 2,753 36.16 1.73
22 3 2,592 49.34 1.74 4 2,500 34.12 1.48
23 3 2,154 35.73 1.32 4 2,197 28.32 1.12
24 3 2,207 35.64 1.35 2 2,553 35.16 1.55
25 3 2,806 37.17 1.78 2 2,547 34.04 1.49
26 3 2,407 36.77 1.52 2 2,539 33.51 1.46
27 2 2,672 39.10 1.81 2 2,638 34.52 1.56
28 2 2,700 40.11 1.85 1 2,621 34.20 1.54
29 3 2,535 35.52 1.55 3 2,202 28.42 1.09
30 4 2,024 25.49 0.90 4 2,158 27.10 1.05
31 3 2,242 32.39 1.25 2 2,456 36.78 1.54

quantity are $2.02M and 3,100 MW. The averaged scheduled price, or scheduled price (calculated
market price), is equal to $38.24/MWh. The LP substantially increases its bidding prices for the
bidding quantities 2,500 MW and 3,000 MW for the second day (January 19) and obtains scheduled
guantity and revenue equal to 2,302 MW, and $1.49M, though the scheduled price does not change
from the first day, remaining at $37.60/MWh. The LP reduces its bidding prices for bidding quantity
3,000 MW and increases its bidding prices for bidding quantity 2,500 MW (during the evening hours)
for the third day (January 20). However, the scheduled quantity and revenue decrease further to 2,078
MW and $1.33 M, respectively. On the fourth day (January 27), LP 506459 decreases its bidding
prices for bidding quantities 2,000, 2,500, and 3,000 MW. Its revenue and scheduled quantity increase
to $1.81M and 2,672 MW, respectively, with the scheduled price equal to $39.10/MWh. On the fifth
day (January 28), the LP continues decreasing the bidding prices of bidding quantity 2,000 and 3,000
MW for all hours, and 2,500 MW for the morning and evening peak-hour periods. Thus, the LP
increases its revenue and scheduled quantity to 2,700 MW and $1.85 M, respectively.

For the third index, on the first day (January 22) the initial revenue and the bidding quantity
are $1.74M and 2,592 MW, respectively, while the LP decreases the bidding prices for 2,500 and
2,800 MW for the 2nd day (January 23) during the evening peak-hours, and obtains the scheduled
quantity and revenue equal to 2,154 MW and $1.32M with the scheduled price decreasing from $49.34
to $35.73/MWh. The LP maintains its bidding prices for 2,500 and 3,000 MW, (and, though not of
interest to this thesis, increases the bidding prices for 2,000 MW during the morning off-peak hours)
on the third day (January 24). The scheduled quantity and revenue increase slightly to 2,207 MW and
$1.35M, respectively, without significant change of the scheduled price. On the fourth day (January
25), the LP decreases its bidding prices for 2,000 and 2,500 MW and increases its bidding prices for
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3,000 MW. Revenue and scheduled quantity increase to $1.78M and 2,806 MW, with an increase of
the scheduled price to $37.17/MWh. Then on the fifth day (January 26) the LP increases the bidding
prices of 2,000, 2,500, and 3,000 MW, which reduces the revenue and scheduled quantity to 2,407 MW
and $1.52M, respectively. The LP decreases its bidding prices for 2,000, 2,500, and 3,000 MW for the
evening peak-hour period on the sixth day (January 29), causing a revenue and scheduled quantity
increase to $1.55M and 2,535 MW, respectively. The LP increases its bidding prices for bidding
quantity 2,000 and 2,500 MW the next day (January 31), which results in revenue and scheduled
quantity reductions to $1.25M and 2,242 MW.

Similarly, the other example is focused on the two-week period of July 18-31, 2000. Steps similar

to those in the previous example are applied:

1. Discretizing demand between 7:00 a.m. and 11:00 p.m. of July 18-81, 2000 into four indices.
The first index represents the maximum demand greater than 19,000 MW and the minimum
demand between 13,500 and 14,000 MW, and the second index represents the maximum demand
between 17,500 and 19,000 MW and the minimum demand between 13,000 and 13,500 MW. The
third index represents the maximum demand between 16,000 and 17,500 MW and the minimum
demand between 12,500 and 13,500 MW, whereas the last index represents the maximum demand
less than 16,000 MW and the minimum demand less than 12,500 MW.# Therefore, as shown in
Figure 5-6, Days 18 and 28 are represented by the first index, Days 19, 24, 25, 26, and 27 are
represented by the second index, Days 20, 21, and 29 are represented by the third index, and
Days 22, 23, and 30 is represented by the forth index.

2. Calculating total revenue from scheduled quantity and prices. Figure 5-21 shows the scheduled
quantities and market prices between July 18 and 31, 2000. The total revenue, scheduled

quantity, and scheduled prices during this period are also shown in Table 5.9.

3. Ezxamining a possible learning pattern. Let us analyze the series associated with the first index.
The first day, or January 19, 2000, is considered an initial condition. The bid-supply function

of this day is used as a reference bid.

The revenue and the bidding prices on the first day (July 19), given that the bidding quantity is equal
to an average over a day of the scheduled quantity, are $1.53M and 2,505 MW, respectively. The LP
decreases bidding prices for bidding quantity 2,500 MW and increases them for bidding quantity 3,000
MW on the second day (July 24), and obtains revenue $1.55M and scheduled quantity 2,553 MW.
The LP lowers then its bidding prices for 2,500-3,000 MW on the third day (July 25) and increases its
scheduled quantity to 2,547 MW and revenue $1.49M. On the fourth day (July 26), the LP continues
lowering its bidding prices for 2,500-3,000 MW, and, its scheduled quantity and revenue decrease to

4Note that the indices may vary according to the demand levels. Some units might not be available during different
months, and as shown in Figure 5-32 demand in January, 2000 is higher than in July, 2000 for almost every hour.
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2,539 MW and $1.46M. Again on the fifth day (July 29), the LP lowers its bidding price further
and the scheduled quantity and revenue increase to 2,638 MW and $1.56M. On the sixth day of this
series (July 31st), the LP decreases its bidding prices for the peak demand hours further and increases
the bidding prices for the off-peak hours. By doing so the LP obtains less scheduled quantity 2,456

MW, but the revenue remains similar at $1.54M due to the scheduled price increases from $34.52 to

$36.78/MWh.

5.4.2 Observation and Analysis

A set of the bidding prices with bidding quantities of LP 506459 is shown in Figures 5-14, 5-15, 5-18,
and 5-19. Although these plots show that there is no significant evidence to indicate that load-based
behaviors corresponding to finely discretized load levels exist, there are possible load-based behavior on
a wider band of load levels. This strategy is referenced to the maximum-minimum load indices. From
this observation, LP 506459 is likely to use a strategy in which the bidding prices of a target bidding
quantity (the quantity anticipated to be scheduled) are increased if the LP obtains the anticipated
revenue; likewise, the bidding prices are decreased if the LP does not obtain the anticipated scheduled
quantity and revenue. In addition, this observation suggests possible modifications to improve the

effectiveness of the agent-based market model.

5.5 Bidding Behavior of Generating Units

This section presents the analysis of the bidding behavior of generating units, which is focused on
the units that are likely to be scheduled to operate at the margin (see Table 5.9). The cbjectives of
this study are to observe the bidding characteristics of generating units that are likely to be marginal
and to observe the characteristics of the bid-supply functions of the units with different generation

technology and with different flexibility of bid-supply functions.

Five generating units of LP 506459, including Asset IDs 23789, 37274, 43414, 79606, and 81361
are selected for this analysis. Asset ID 23789 is chosen due to its 620 MW capacity, which could be
eligible for the CW strategy, and this unit is generally bid as a base-load unit. Asset ID 37274 has a
medium capacity of 150 MW and is occasionally scheduled to operate as a marginal unit during the
observed periods. Asset ID 43414 is a large unit with 440 MW capacity and it is regularly scheduled
to operate as a marginal unit. Asset ID 79606 is a medium-size unit with 160 MW capacity and
limited available energy and it is frequently scheduled to operate as a marginal unit. Asset ID 81361

is a unit with 290 MW capacity and limited available energy.
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5.5.1 Bidding Behavior

The following analyses focus on 1) whether the LP determines its bid-supply function of each unit
according to its type of generating technology, 2) whether the bid-supply functions of the units bid
by the same LP have similar patterns, 3) whether the bid-supply function depends on demand levels,
4) how the units can be bid to operate as marginal units, and 5) whether the bidding prices of the
same set of units are ordered consistently over time (how the marginal cost (opportunity cost) of the

units change).

Asset ID 23789

By matching the capacity of Asset ID 23789 to the unit with a similar capacity in LP 506459’s portfolio,
Asset ID 23789 is identified as a fossil-fueled generating unit with in the stalled capacity 620 MW.
The plots of the bidding prices with the sampled bidding quantities equal to 300, 600, 610, and 630
MW during January 18-24, 2000 are shown in Figure 5-24. According to the bidding characteristics,
LP 506459 is likely to bid this unit to be an infra-marginal unit through SS capacity of at least 350
MW daily (except during its unavailable period in April with a zero HOL bid). The bidding prices
for the bidding quantity greater than 350 MW are similar during the observed two-week period but
vary across the observed months. The unavailability occurs during the off-peak hours for a few days

in July.

Asset TD 37274

By matching the capacity of Asset ID 37274 to the unit with a similar capacity in LP 506459’s
portfolio, Asset 1D 37274 is identified as either a combined-cycle or fossil-fueled unit. The plots of
the bidding prices with the sampled bidding quantities equal to 20, 80, 120, and 160 MW during
January 18-24, 2000 are shown in Figure 5-25. These plots with zero bidding quantity show that this
unit becomes unavailable for several days. When the unit is available (i.e., HOL > 0), the unit has
bidding prices no less than $30/MWh except during the first observed days in January. For most of
the observed days, this unit has one bidding price for its capacity and one bidding price for a one-day
period. One can also observe that the unit adjusts its bidding prices in almost an identical pattern of
daily demand during the observed period in July. The bidding prices for these periods are comparable
to the calculated market prices during the same hours shown in Figure 5-25. This suggests that this

unit is anticipated a marginal one.

Asset ID 43414

By matching the capacity of Asset ID 43414 to the unit with a similar capacity in LP 506459’s
portfolio, Asset ID 43414 is identified as a (fossil-fueled) generating unit with the installed capacity
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of 430 MW. The plots of the bidding prices with the sampled bidding quantities equal to 20, 320,
and 440 MW during January 18-24, 2000 are shown in Figure 5-26. This unit becomes unavailable
for a few days during the observed periods in July and October. As observed from the bid-supply
functions, this unit submits its bidding price of no less than $40/MWh except in January, when its
bidding prices are lower than $40/MWh. Moreover, when the unit is available, as observed from its
bid-supply function, it is not intended to operate at full capacity since the last portion (near its full
capacity) of its unit has a bidding price substantially higher than the calculated prices. This bidding
characteristic may suggest the possibility of the capacity withholding strategy imposed by the LP,
and that the LP would want to set a high market price if this unit were scheduled to operate at its
full capacity. Being scheduled to operate at part of its capacity, this unit would be eligible to provide
reserve capacity® and also to be dispatched at a short notice if other cheaper units could not to be

turned on instantaneously to meet an abrupt demand change.

Asset ID 79606

By matching the capacity of Asset ID 79606 to the unit with a similar capacity in LP 506459’s
portfolio, Asset ID 79606 is identified as a hydropower unit with installed capacity 160 MW because
it has limited daily energy available. The plots of the bidding prices with the sampled bidding
quantities equal to 20, 80, and 120 MW during January 18-24, 2000 are shown in Figure 5-28, the
sampled bidding quantities equal to 20, 80, 120, and 140 MW during April 17-23, 2000 are shown
in Figure 5-29, while the sampled bidding quantities equal to 20, 40, 80, and 120 MW during July
18-24, 2000 are shown in Figure 5-30. During high-demand months (January and July), the hourly
bid-supply functions change throughout the day. The LP appears to submit bidding prices so that
this unit is scheduled to operate as a marginal unit during the peak-demand hours (compared with
the bidding prices for forecast demand during the same periods). On the other hand, during the low-
demand months (such as April and October), the hourly bid-supply functions are similar throughout
the day and vary across different days. As shown in Figures 5-28 - 5-30, LP 506459 tends to lower
the bidding prices for this unit during the high-demand period and raise the bidding prices during
the low-demand period. This observation, together with an analysis of the bids of other hydropower
units of LP 506459, indicate that the bid-supply functions of the hydropower units in general reflect
the limited energy availability.

Asset ID 81361

By matching the capacity of Asset ID 81361 to the unit with a similar capacity in LP 506459’s
portfolio, Asset ID. 81361 is identified as a pumped-storage unit with an installed capacity of 290

MW. This is because it has limited daily energy available and its capacity matches the capacity of

5See the ISO-NE market rules.
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the pumped-storage units in LP 506459’s portfolio. The plots of the bidding prices with the sampled
bidding quantities equal to 20, 200, 260, and 290 MW during January 18-24, 2000 are shown in Figure
5-27. The bidding prices of this unit is no less than $40/MWh in most of observed periods except
in April. During the two-week period in January the bidding prices for a given bidding quantity are
higher during the low-demand hours than the bidding prices during the high-demand hours. Similar
characteristics are observed in July, except that the bidding prices are set to be lower in the evening
hours than the mid-day hours (peak-demand periods) and the morning hours. This unit is unlikely

to be scheduled to operate in October due to the high bidding price.

5.5.2 Observation and Analysis

The plots of the bidding prices, given set bidding quantities, show the variation of the bidding prices
of the units with different capacity and generation technologies. From the bid-supply functions, one

can observe that

e The bid-supply functions of the generating units submitted by the same LP may change on
a daily basis, as well as on a seasonal basis. This is especially true for a hydropower unit,
such as Asset ID 79606, as shown in Figures 5-28 - 5-30. However, the change of bid-supply
functions depends on the types of units. The bid-supply functions of some units do not change,

for example, nuclear units are submitted as a self-scheduled unit daily.

¢ The bid-supply function for each unit has its own characteristics and does not move in the same
fashion. For example, let us consider the bid-supply functions of units 79606 and 81361 in July.
The bidding prices of unit 79606 increase on the fifth day in the second week while the bidding

prices of unit 81361 decrease on the same day.

s Depending on the demand levels, the units that are dispatched as marginal units have different
types of generation technology. However, these units must be highly flexible to be turned on or
off. The marginal units of LP 506459 determined by the method presented in Section 5.2 during
THs 9 and 18 of January 18-31 and October 18-31, 2000 are shown in Table 5.4.

e The characteristics of the bid-supply function of each generating unit depend also on the unit’s
installed capacity and generation technology; for example, when Asset ID 23789, a large fossil-
fueled unit, is available, it tends to be scheduled to operate as a base-load unit. Its bidding prices
are generally lower than the scheduled price. Asset IDs 37274 and 43414 are also fossil-fueled
units but have different bidding characteristics due to the basic fact that the marginal costs and
operating constraints vary among units with different installed capacity and generating technol-
ogy. In addition, generating units that are similar in size and type of generation technology may
be bid to the market with different strategies. These different strategies may be caused by the

locational advantage of the units, though, this issue is not explored in this thesis.
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e The hydropower and some fossil-fueled units have operating flexibility in terms of being turned
on and off within a short period of time. From Table 5.4, the analysis of the bid data shows that
these types of units are often scheduled to operate as marginal during high-demand periods.
During the peak-demand months, such as January and July primarily, LP 506459 submits the
bid-supply functions, especially of the hydropower and fossil-fueled units, following daily demand
characteristics. Given the same bidding quantity, the bidding prices are lower during the hours
of high demand than those during the hours of low demand. Therefore, these units are likely to

be scheduled to operate as marginal units in most hours.

e The daily bid-supply function of the hydropower unit (not a pumped-storage unit) such as
Asset ID 79606 tends to have negative correlations with hourly demand levels. For instance, at
bidding quantity equal to 50 MW, the bidding price is higher during low demand than during
high demand. Similarly, the bid-supply functions of the pumped-storage units such as Asset ID
81361 show that the units are intended to be scheduled to operate only during the peak-demand
hours. That the hydropower unit can be turned on and off easily allows the unit to adjust its
operating condition as often as every hour. As observed, these units are bid so that they are
scheduled to operate during high-demand hours, meaning that the bidding prices during the
peak-demand hours are lower than the bidding prices during the off-peak demand hours. This
causes a significant shift during peak and off-peak hours of the bid-supply function of the LPs
who own a large capacity of hydropower units. This strategy implies that the unit can operate at
specified market prices whenever it is scheduled to operate in any hour. When demand exhibits
a two-peak pattern (such as in January, as shown in Figure 5-32) for the hydropower units,
increasing the bidding prices between two peak periods may result in a market price similar
to the prices during the peak-demand periods. When this strategy is implemented by several
hydropower units, the portfolio bid-supply function shifts toward the higher bid quantities when
demand is large; that is, the bidding quantity for the same bidding price (drawing a line parallel
to a quantity axis) during the peak-hour periods becomes lower than during the off peak period.

This is somewhat consistent with the CW strategy.

o Large generating units, such as Asset ID 23789, tend to have low bidding prices for one part
of their installed capacity, resulting in it being scheduled to operate as a base-load unit, and
the rest of its capacity, which is generally not scheduled to operate, tends to have high bidding
prices. There are several possible causes for such behavior. First, the cost of operating at the
units near their capacity may be non-constant or non-linear. Second, LP 506459 may implement
its strategic behavior, such as the CW strategy. Third, by operating less than the full capacity,
the units could be dispatched to serve near real-time demand variation {or could be scheduled

to provide reserve capacity) instead of units with the cheaper bidding prices that could not be
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turned on sufficiently quickly (note that these units could also set high market prices if the

market rules allow the units with out-of-merit dispatch to set the market price).

e As observed from the bid data, some units, such as Asset IDs 37274 and 43414, are not available
for a few days in a one-week period, i.e., their HOLs are equal to zero. These units may be
unavailable because the LP might implement the CW strategy, or these units could be under
planned maintenance. Without information of unit outages and/or operating constraints, the

unavailability may not necessarily imply that the LP applies the CW strategy.

5.6 Conclusion

The New England historic bid data, market prices, and reports show that the LPs own non-uniform
portfolios of generating units and are unlikely to share the same bidding strategy. The bidders
with hydropower can adjust their bid-supply functions hourly, but the bidders with only nuclear units
cannot adjust their bid-supply function within a day. Moreover, the bidding strategy influences market
prices. These findings support the concept that an agent-based approach is essential in modeling and
analyzing the electricity spot markets. However, to verify whether the proposed agent-based model
is a valid model to represent the electricity spot market, information about the generating units,
especially their operating constraints, is crucial. The operating constraints of each unit could play a
key role in determining bid-supply functions, bidding outcomes, and market price dynamics. Another
key factor in reproducing price dynamics using the agent-based model is to understand the bidding
strategy of the market participants. This is a very difficult and tedious task because, as mentioned,

massive amounts of generally confidential information on generating units is required, including;:
¢ Unit-commitment constraints.
e Fuel (such as oil and/or gasoline) costs.
o Water levels of river-flow hydropower units.
o Environmental constraints, for example NO, emission allowance.5

¢ Maintenance schedule.

e Possible load-obligation or bilateral contracts of the bidders, affecting the self-scheduled portion

of the bid-supply function.

e Possible change in the portfolio characteristics due to the addition of new units or decommis-

sioning of old units.

63ee, for instance, the study of the effect of the NO,, emission allowance on the market price markups in the California
market by Joskow and Kahn [25].
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Note that fuel costs affect operating costs and subsequently cause a change in the bid-supply function.
Therefore, without information regarding operating costs and constraints of generating units it might
not be sufficient to suggest that the changes in the observed bid-supply function are the result of
learning, and not of operating costs and constraints. Knowledge of the maintenance schedule is also
important in differentiating between unavailability of the unit due to implementation of the CW
strategy and that which is due to scheduled maintenance and outages.

If this information and the historic bid data of each bidder are available, one may differentiate
the variation in the bid-supply functions that may be caused by operating constraints and operating
costs, and may also be able to identify bidder learning algorithms and/or bidding strategies. Without
this information, the most that one can conclude is that the LPs are likely to adopt different learning
algorithms/bidding strategies or some forms of mixed strategies.

On the other hand, when only operating constraints and operating costs are available, without
accounting for unit-commitment constraints, the agent-based model can be used to analyze the price
dynamics. The real and simulated price dynamics might be different because the LPs apply different
learning-algorithms from those used in the model. Furthermore, the market participants may have
different objective functions. Additionally, prior to applying this model to analyze the existing market,
some modifications of load-based behavior are needed, because based on the historic bid data there
is no sufficiently explicit sign exhibiting hourly load-based decision-making. Instead, the LPs tend to
respond to daily demand patterns or daily average demand. The agent-based market model should
be used with caution since it does not fully take into account the factors that influence the decisions
of the LPs that could in turn play a key role in determining bid functions. These factors are such
as bilateral deals, transmission-related strategic behavior, and scheduling processes (accounting for

ancillary products).

Appendix to Chapter 5

A. The New England Wholesale Electricity Market

The wholesale electricity market for the New England region opened on May 1, 1999. This market is
administered by the Independent System Operator New England (ISO-NE, [53]). This is a “day-ahead
- hourly” marketplace in which wholesale electricity suppliers and power producers or LPs bid their
resources into the market the day before and submit separate bids for each resource for each hour
of the day. The bid (or bid-supply function) of each LP is a set of bid-blocks in which each block
indicates the quantity of power in MW and the associated price for that block in §/MWh. The bids
are tabulated and stacked in dollar terms from the lowest to the highest, matching the expected hourly
demand forecast for that hour and each hour in the next day. The least cost dispatch sequence for the

next day which reflects the actual bids is determined. (The dispatch algorithm can be found on the
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ISO-NE website [53].) The generating units are dispatched to match the actual (near real-time) load
on the system. The highest bid that is dispatched to meet actual load sets the market clearing price
(MCP) for all purchased electricity during that hour. Note that ISO-NE calculates a 5-minute-period
MCP. A published hourly price is an average of all 5-minute-period MCPs during that hour. All the
units dispatched to meet demand during that hour are paid the market price by buyers who purchase
power from the market.” The New England market adopts a uniform-pricing market rule in which the
LPs whose units are scheduled to produce power get paid the hourly MCP multiplied by the scheduled
quantity.

I. Demand Characteristics

Electricity demand in general exhibits a seasonal consumption pattern. Figure 5-31 shows the daily
average of forecasted demand in the New England Electricity market during year 2000. The peak-
demand periods occur during the winter month of January and the summer month of August, re-
spectively, and the low-demand period occurs during April. Average demand is higher during the
weekdays than during the weekends. Within different seasons, the daily pattern varies considerably.
For example, during the summer months peak consumption occurs once during the day, while during
the winter months, two peak consumption periods occur daily, as shown in Figure 5-32. This figure
shows a one-week period of forecast demand publicly posted on the ISO-NE website by the operator®

for Monday to Sunday periods during the weeks of January 17-21, 2000 and July 31-August 4, 2000.

I1. Bid Characteristics

In the New England market, the daily bids of all market participants are revealed to the public
after a 6-month delay period, and these historic bid data are published on the ISO-NE website [53].
Examples of typical bids are shown in Table 5.10, where TH denotes trading hour end and LP denotes
lead participant. The LP is a supplier responsible for bidding its generating unit, which is represented
by a masked number, for instance LP ID 140603. The Asset ID Number is the particular asset being
bid by a masked number, for instance Asset ID 65758. Self-scheduled (SS) capacity is the MW’s
(if any) that were scheduled to run. Daily energy available (DEA) is the entire amount of energy
available in MW'’s for the specific date for a limited energy generating unit, such as a hydropower
or a pumped-storage unit. The high operating limit of the unit, denoted by HOL, is the maximum
available capacity that the unit offers at any hour, and the low operating limit, denoted by LOL, is
the minimum operating capacity of the unit. Bid-block $ is the dollar figure the unit was bid at.
Bid-block MW is the amount of MW’s bid at a specific price for the unit. For each asset the LP can
bid up to 10 pairs of § and MW blocks.

7ISO-NE is a residual market. Residual means that to the extent that a power supplier produces electricity in excess
of the demand of its customers, its can sell the excess into the wholesale market to other market participants.
8Forecast demand is used instead of actual demand to be consistent with the rest of the analyses.

168



Table 5.10: Typical Energy Bids Submitted by Electricity Suppliers

TH LP Asset | SS DE | HOL | LOL | BB BB BB BB |... | BB
ID iD MW | MW | MW | MW $ MW $ MW | ... | MW
1 140603 | 65758 0 0 380 | 160 | 729 | 160 | 729 | 190 | ... 0
1 | 184983 | 39697 | 868 0 868 | 868 0 875 0 0 .. 0
8 | 140603 | 65758 0 0 380 | 160 | 1314 | 160 | 131.4 | 190 | ... 0
8 | 184983 | 39697 | 868 0 868 | 868 0 875 0 0 S 0

III. Lead Participants

During July 2000, at least 42 LPs submitted their bid-supply functions to the ISO-NE. Among these
LPs, the 12 largest own around 83% of installed capacity. The total HOLs of the twelve largest LPs
as of July, 2000 is shown in Table 5.11. The largest LP owns around 18% of installed capacity, while
the smallest owns less than 0.05% of installed capacity. Each LP owns at least one generating unit.
These units are generally different in generation technology types and installed capacity. According
to the market rules, the maximum capacity that the LPs can bid to the markets is dependent upon
their the net claimed capacity. LPs must notify the ISO-NE of their net claimed capacity. The net
claimed capacity of the generating units may change over the seasons (Seasonal Claimed Capacity
(SCC)) due to their operating conditions.” The types of generation technology in the New England
market are shown in Table 5.12. These data are obtained from the ISO-NE website [53]. Note that
total installed capacity shown in Table 5.11 can be lower than total HOL from the bid data and that
based on the ISO-NE’s market rules, the units are not dispatched beyond their HOLs and the units,
once eligible, are not dispatched below LOLs.

Table 5.11 shows the HOL of the 12 largest LPs between 2:00 p.m. and 3.00 p.m. on a weekday,
July 28, 2000.

B. Absolute Market Power Conditions

Another interesting issue to consider is the possibility of an absolute market power condition, which
would ocecur if the LP submitting the most expensive bidding prices was still being scheduled. This
thesis chooses LP 506459 for the analysis, because it has the largest percentage of market installed
capacity. In this analysis, the trading days that the market power condition may exist are first

identified, and then the bidding behavior on those particular days is examined. To determine the

9SCC represents the Summer and Winter Claimed Capacity of a generating unit. A summer period runs from June 1
through September 30, and the winter period runs from October 1 through May 31. Claimed capacity is the maximum
dependable load carrying ability, in megawatt, of units, excluding capacity required for station use. For example, the
units may operate all day during the summer months and only a few hours during the spring months.

169



Table 5.11: Examples of Available Capacity of 12 Largest LPs of July, 2000

Lead Participant ID | Capacity (MW) | % of Installed Cap.
506459 4,423 17.8 %
218387 2,590 10.4 %
333704 2,382 9.6 %
529988 2,096 8.4 %
140603 1,789 72 %
532832 1,327 53 %
206845 1,257 51%
483669 1,158 4.7 %
674577 1,141 4.6 %
400693 881 3.5 %
184983 867 35 %
910093 761 31 %
Others 4,162 16.8 %
Total 24,834 100 %

Table 5.12: Summer Seasonal Claimed Capacity of July, 2000

Unit Type Capacity (MW) | % of Installed Cap.
Fossil (F) 11,580 47.3 %
Nuclear (N) 1,350 73 %
Combined Cycle (CC) 3,722 152 %
Gas Turbine (G) 663 2.7 %
Jet Engine (J) 774 32 %
Diesel (D) 126 0.5%
Pumped Storage (PS) 1,650 6.7 %
Hydro-Conventional Daily (HD) 746 3.0%
Hydro-Conventional Weekly (HW) 878 3.6%
Total 24,499 100 %

market power condition the following steps are used:

1. Calculating the market capacity surplus. Forecast the total available capacity and peak demand
of each day (d) which are available in the ISO-NE morning report [53]. Total available capacity
Q4 is total installed capacity Q7'** plus imported capacity Q{im, subtracted by outages Qg“t,
where the imported capacity is the maximum forecast imported capacity within that day and
the outage capacity is the maximum forecast outage capacity within that day. Hence, Qg =
QMo + QI™ — Q¥ The forecast peak demand does not include forecast peak-demand reserve
requirements. The capacity surplus is simply the difference between forecast available capacity

and forecast peak demand. Then, the percentage of capacity surplus over total available capacity

(and/or total installed capacity) is calculated.

2. Cualculating the available capacity of the LP. Some units of the LP may be unavailable due to
outages or operating constraints. The information of available capacity can be determined from

the hourly HOLs.
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3. Comparing whether the capacity surplus is less than the LP’s available capacity. If the available
capacity is greater than the capacity surplus, the market power condition is possible. The LP
available capacity Q is defined by the difference between total available capacity H, which is
the total sum of high-operating-limit capacity of each unit j (HOLY), and total SS capacity SS9,
which is the total sum of SS capacity of each unit j (SS%); i.e.,

Q=H-55=> (HOL' - 557).

J

Note that the LP may have a load-obligation, meaning that the LP also provides power. There-

fore, the net available capacity may be less than HOLs.

Due to the market power mitigation scheme imposed by the ISO-NE, the LPs who submit substantially
high bidding prices are subject to a legal investigation. Therefore, when the absolute market power
condition occurs for any LP, meaning that capacity surplus is less than total available capacity of
the LP, the LP may submit higher bidding prices than usual (but not at the substantial value).
The available capacity of the LP, however, may not be available for imposing the strategic bidding
strategy (such as the CW strategy) because some units might not be ready to operate due to operating
constraints. The information regarding the operation constraints of the units is generally not available
to the public. These factors limit the frequency of market power conditions.

To examine the possible abuses of absolute market power conditions by some LPs, let us consider
the time-series of bidding prices given the bidding quantity of the largest LP, LP 506459, for four
2-week periods in January, April, July, and October as shown in Figures 5-14 - 5-19. These bidding
prices are accompanied by the LP minimum daily capacity surplus Q Lp or the anticipated scheduled
capacity if the LP were to withhold its capacity to take advantage of this condition. Let Qpp be
defined by Q minus the market capacity surplus. The higher the Qpp, the greater the possibility for
the LP to abuse the market power condition.

Total available capacity and minimum available capacity of LP 506459 are shown in Table 5.13.
This table contains 1) a set of 2-week period of daily total available capacity (“Total Avail. Cap.”)
which is the installed capacity (QT°%) plus imported capacity (Q)™) minus outage (Q9%!), i..,
(Qmaz 4 QIm — Q§ut), 2) capacity surplus, which is total available capacity minus the maximum
forecast demand of that day when the reserve requirement is not accounted for (“Surplus I"), 3) ca-
pacity surplus that includes the reserve requirement (“Surplus II”), and 4) the lowest Q of LP 506459
(“Min. Avail. Cap.”). By comparing “Surplus I” and “Min. Avail. Cap.,” when “Min. Avail. Cap.”
of each day exceeds “Surplus I,” it is possible to anticipate the possibility of LP 506459 having absolute
market power. During these 56 days of observations, LP 506459 might choose January 18, 21, and 28,
April 26, as well as October 30 to take advantage of its absolute market-power condition. Similarly,

with reserve requirement or by comparing “Surplus II” and “Min. Avail. Cap.,” when “Min. Avail.
P
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Cap.” of each day exceeds “Surplus II,” one could anticipate an even greater possibility of LP 506459
having absolute market power. Note that when the reserve requirement is accounted for, one might
anticipate that the LPs may exercise the absolute market power in both energy and reserve markets.
During these 56 days of observations, besides those five days previously identified, LP 506459 might
also choose several more days to raise the bidding price.

By comparing the bidding prices of these four two-week periods, the bidding prices during the days
with positive Qpp are likely to be much higher than during the days with negative Q;p. Without
the true marginal costs in each period, it is not possible to conclude that the high bidding prices have
high price markups by comparing the bidding prices. There is no significant evidence to indicate LP

506459’s exploitation of market power during the days with large Qrp to raise the bidding prices
substantially higher than the prices during days with low Qzp.
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Table 5-13: Available Capacity of LP 506459 during January, April, July, and October 2000

January April

Date Total Avail | Surplus | | Surplus I} Minimum Date Total Avail | Surplus | | Surplus il | Minimum

Cap Avail Cap. Cap Avail Cap.
1/18/00 22891 1941 197 2218 4/17/00 19624 4399 2119 2750
1/19/00 23147 2872 1132 2109 4/18/00 19898 3823 1543 2894
1/20/00 22744 2769 1029 2247 4/19/00 19142 3242 962 3037
1/21/00 22932 1857 75 2083 4/20/00 19238 3563 1283 3037
1/22/00 22739 3164 1424 2121 4/21/00 19382 4482 2202 3373
1/23/00 22790 3515 1775 2200 4/22/00 18267 4242 1785 3389
1/24/00 22844 3594 1814 2196 4/23/00 17455 4180 1905 3280
1/25/00 23288 3938 1858 2155 4/24/00 19533 3883 1603 3267
1/26/00 22954 4279 2199 2138 4/25/00 18686 3386 906 3276
1/27/00 23336 3661 1581 2132 4/26/00 18991 3091 1111 3301
1/28/00 21493 1743 1 2130 4/27/00 19597 3597 1617 3332
1/29/00 21656 3506 1237 2098 4/28/00 19617 3942 1962 3343
1/30/00 21628 4753 2673 1985 4/28/00 17131 3456 1512 3443
1/31/00 23021 4121 2041 2102 4/30/00 17149 3649 1650 3587

July August

Date Total Avail | Surplus 1] Surplus Il} Minimum Date Total Avail | Surplus t | Surplus It{ Minimum

Cap Avail Cap. Cap Avail Cap.
7/18/00 22902 3102 1122 2102 10/18/00 20966 3791 2131 2213
7/19/00 21998 3573 1593 2159 10/19/00 21090 4390 2727 2193
7/20/00 21101 3826 1462 2191 10/20/00 20524 4199 2611 2223
7/21/00 20669 3619 1255 1892 10/21/00 17747 3547 1966 1903
7/22/00 18761 3036 1252 1912 10/22/00 18203 3703 2114 1904
7/23/00 19002 3727 1946 1871 10/23/00 21097 4372 2732 1846
7/24/00 21569 3734 1664 1721 10/24/00 21145 4720 3071 1918
7/25/00 20937 3187 1107 1755 10/25/00 20711 4386 2737 1693
7/26/00 21285 3110 1030 1798 10/26/00 20831 4506 2857 1747
7/27/00 21127 3602 1522 1792 10/27/00 20926 4776 3132 1885
7/28/00 21271 3046 966 1765 10/28/00 19166 4216 2627 1602
7/29/00 19753 3678 1889 1788 10/29/00 19447 3247 1658 2007
7/30/00 19467 3742 1961 1791 10/30/00 20362 1812 193 1997
7/31/00 21328 3028 948 2191 10/31/00 20245 2295 702 1651

173



120 T—— -

. e SR S R S . L Al
e 400AM ®m 700AM A 100PM e 600 M
10 A ————
L
AR
80 - — e e VA A S S = s s E i A N
L
o 1Pe
< w
S B S A S i o i e Y -
s s A

0 ‘ ;
900 1400 1900 2400 MW 2900 3400 3900 4400

Figure 5-1: Examples of Hourly Bid-supply Functions of LP 506459 in January 2000
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Figure 5-2: Examples of Hourly Aggregate Bid-supply Functions in January 2000
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Figure 5-4: Daily Forecast Demand in New England during January 18-31, 2000
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Figure 5-5: Daily Forecast Demand in New England during April 17-30, 2000
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Figure 5-6: Daily Forecast Demand in New England during July 18-31, 2000
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Figure 5-14: Sampled Bidding Prices for Some Bidding Quantities of LP 506459 during January 18 — 24,
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Figure 5-15: Sampled Bidding Prices for Some Bidding Quantities of LP 506459 during January 25 - 31,
2000
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Figure 5-18: Sampled Bidding Prices for Some Bidding Quantities of LP 506459 during July 18 — 24, 2000
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Figure 5-19: Sampled Bidding Prices for Some Bidding Quantities of LP 506459 during July 25 — 31, 2000
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Figure 5-21: Scheduled Quantities of LP 506459 and Calculated Prices during July 18 — 31, 2000
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Figure 5-25: Sampled Bidding Prices for Some Bidding Quantities of Asset ID 37274 during January 18 —
24, 2000
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Figure 5-26: Sampled Bidding Prices for Some Bidding Quantities of Asset ID 43414 during January 18 —
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Figure 5-27: Sampled Bidding Prices for Some Bidding Quantities of Asset ID 81361 during January 18 —
24,2000
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Figure 5-28: Sampled Bidding Prices for Some Bidding Quantities of Asset ID 79606 during January 18—
24, 2000
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Figure 5-29: Sampled Bidding Prices for Some Bidding Quantities of Asset ID 79606 during April 17 — 23,
2000
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Chapter 6

Applications of the Agent-based
Market Model

An agent-based approach is an alternative tool for modeling a multiagent system to observe the dy-
namic outcomes that result from interactions among the agents or individual decision-makers. This
chapter explores two factors that might affect the agents’ bidding behavior, that is the market struc-
tures, as well as the role of active demand-side agents or load-serving entity agents. The uniform
and discriminatory-pricing market structures are considered. In uniform-pricing markets, the agents
are paid market prices for their scheduled bidding quantities. In discriminatory-pricing markets, the
agents are paid bidding prices for their scheduled bidding quantities. The simulations and analyses

when the market model adopts either of these market structures are presented in Section 6.1.

Generally, the power producers benefit from high market prices, while load-serving entities (LSEs)
benefit from low market prices. However, the LSEs are not yet active players in the markets. For
example, in the California electricity market, which operates under a sealed-bid double auction format,
clear indicators of the LSE inactivity were seen in price-spikes and rolling-blackouts due to insufficient
supply surplus during the summer of 2001.} The presence of active LSEs might diminish the ability
of the power producers to successfully implement strategic behavior and might reduce the magnitude
of market prices. Section 6.2 presents the agent-based market model with several power-producing
agents and one LSE agent. The simulations and analyses are then outlined. Like the power-producing

agents, the LSE agent determines its bid-demand functions by following some learning algorithms.

11f the active LSEs had been in place, the 1.SEs would have been able to reduce consumption and/or their willingness
to pay.
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6.1 Uniform and Discriminatory-pricing Markets

In the auction theory framework, both the uniform and the discriminatory-pricing auctions are used
to sell multiple units of goods. In the uniform-pricing (UP) electricity market, the agents are paid the
market prices for the power they produce, and in the discriminatory-pricing (DP) electricity market,
the agents with scheduled quantities are paid the bidding price of those quantities. This thesis analyzes
the effects of these payment rules on the bidders’ behavior and price dynamics using the agent-based
market model presented in the previous chapters. In this model, the payment rule is modified to fit a
DP structure, while the learning algorithm/bidding strategy of the agents remains unchanged, except
for the setting of the bidding prices of the anticipated infra-marginal units. The characteristics of the

model and learning algorithms, as well as the simulations and analyses are presented next.

Note that, since the market price of each hourly auction is not publicly available to the agents,
a market price estimation scheme of each agent is added to the learning algorithms and this price
estimation is presented in the appendix to this chapter. A preliminary analysis of the bidding behavior
of the agents in markets with both UP and DP structures is also presented in the appendix to this

chapter.

6.1.1 Models

This thesis analyzes the impact of the DP structure on price dynamics by performing two sets of
simulations. In the first set the agents use Algorithm A3 with a slight modification to the algorithm
used in Chapter 4. The second set is when the agents use the model-based algorithm. The simulated
price dynamics are compared to the ones obtained from the market model with the UP structure. The
agent-based model used for simulations in this section shares the same characteristics as those of the
model used in Chapter 4. That is, the power-producing agents have the same marginal-cost functions
in which the aggregate marginal-cost function is shown in Figure 6-1, the daily demand pattern is
shown in Figure 6-2, and the market-clearing mechanism adopts a price-merit order method. No
intertemporal effects of unit-commitment constraints of operating the generating units are in place
and the operator schedules the generating units independently to serve hourly demand through the
hourly auction. The learning algorithms used by the agents in this analysis are described in the next

section.

Algorithm A3

Algorithm A3 is used in this section. There is only one modification to replace the price-setting scheme
of each unit in the portfolio (after the bidding price of the anticipated marginal unit (BM}) and the
bidding quantity (g¢)) scheme, as follows:
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1. The bidding price of the withheld capacity (W Hy) is set to
WH, = min{b},, + C2, Peap}

where C is a positive constant and P,y is a price cap, indicating the maximum market price
allowed in the market. This bidding price is assigned to the capacity of the units with the lowest

marginal costs summed to the withheld capacity.

2. For any unit j with non-zero capacity that is not considered the withheld capacity, it determines

bl = max {mc*/, BM}}. Then its bidding price b, is set to

b, = b-m-e, mcd < BMj 6.1)
bﬁ = 5{;, mchBM,f:

where mc*’ is the marginal cost of unit j. Let ¢ > 0 be a positive constant and be equal to an
increment of the choice of the possible bidding prices. Let m denote an order of the unit such

that the marginal cost is less than BM} and the lower m is the more expensive marginal cost.

Note that this price-setting scheme is based on the analysis presented in the appendix to this
chapter in which the anticipated marginal units have the bidding prices less than the anticipated
marginal unit but higher than their marginal costs, as well as having bidding prices in order of their

marginal costs.

The Model-based Algorithm

After the end of each bidding round the agents follow the price-estimation scheme, as shown in the
appendix to this chapter, to estimate market price, denoted by P, from their scheduled outcomes.
The same price-setting scheme as that in Chapter 3 is used, except that market price is replaced by
f’, ie., MP = P. From the PORTFOLIO scheme, when the agent is in the market using the DP rule,
the agent may calculate the anticipated profit by 1) assuming that BM is the payment it anticipates
to receive, or 2) assuming that BM is the market price, and it receives the payment b"7 for each
scheduled block, i.e., b7 < BM. When the agents cautiously anticipate their profits, the profits
obtained after each bidding round are likely to be closer to the anticipated ones than when the agents
overly estimated their profits. This in turn reduces the possibility that the agents increase the bidding
prices to explore more profitable opportunities. Therefore, if the second method is chosen, one would

anticipate the price dynamics of the markets with the UP and DP rules to be similar.
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6.1.2 Simulations

This section presents simulations of price dynamics and profits of the agents in both the UP and
the DP market structures. The agents use either Algorithm A3 or the model-based algorithm. The
market price of each hour in the case of the DP structure refers to the maximum bidding price of
the scheduled bid-blocks at that hour. In the simulations in which the agents use Algorithm A3, the
agent selects BM from 0 to Peqp, which is equal to $150/MWh, with an increment of $3/MWh so
that the total choices of the bidding prices (K®) are equal to 51. Likewise, the agents select their
bidding quantity (g ,,) from 0.25 MW to their available capacity with an increment of 0.25 MW.

bbb
Let o’ be set to o = 2In K—;t and of be set to a? = 2In K—;zﬂz. Figure 6-3 shows the samples of

the simulated price dynamics under the UP structure when all agents use & = 0.9. Figure 6-4 shows
the samples of the simulated price dynamics under the DP structure when all agents use § = 0.9.
Furthermore, the profits of the agent with the largest capacity (Agent 5) received in the two scenarios

are shown in Figure 6-5. The moving-average sum of agent profits is shown in Figure 6-6.

When the agents use the model-based learning algorithm, A = 2 and the bidding price of the
withheld capacity is set to F.,p. Figure 6-8 shows the samples of simulated price dynamics when all
agents use Method M1 to set T'ar and set A = 2, and Figure 6-9 shows the samples of simulated price

dynamics when all agents use Method M2 to set T'ar and set A = 2.

6.1.3 Analyses

Bower and Bunn [8] use their agent-based model to show that in the DP structure, the agents with
the lower cost units try to submit a higher bidding price, closer to the anticipated price. This causes
the supply function to become flat in the region anticipated to be scheduled, the lower-cost capacity.
This finding is consistent with the preliminary analysis presented in the appendix to this chapter.
In addition, this behavior is incorporated into the agent-based model by having the agents set their
bidding prices as shown in Equation (6.1) when they use Algorithm A3. The agent behavior of
gradually raising the bidding prices of their infra-marginal units closer to the anticipated price is
observed when the agents use the model-based algorithm with the SETPRICE scheme.Therefore, the

simulated price dynamics when Equation (6.1) is used can be viewed as steady-state dynamics.

The difference between the price dynamics and bidding behavior of the agents when the market
model has the UP or the DP structure is rather substantial. To understand how the payment rules may
affect the agents’ bidding behavior and, consequently, the price dynamics, let us begin by analyzing

the impact of the learning algorithms on the price dynamics.
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Comment on Learning Algorithms

The general characteristics of Algorithm A3 and the model-based algorithms that might affect the

simulated price dynamics are explained as follows:

¢ As mentioned in Chapter 4, Algorithm A3 yields a mixed strategy action that allows the agents
to explore all of their possible actions (K® and K?), whereas the model-based algorithm yields a
pure-strategy action that allows the agents to choose the next action to be higher or lower than,
or equal to, the current one. Using the model-based algorithm, the exploration takes a longer

time and some actions may never be tried.

e Algorithmm A3 selects the mixed-strategy action in which there is a uniform probability distribu-
tion assigned to every action regardless of the outcome (vy/K); therefore, when the agents use

this algorithm, the market prices can take on any value from the available choices.

o When the model-based algorithm is implemented in the model, one can observe that in the
market with the DP structure the price-estimation error of the agents may contribute to a
divergence of market price dynamics (the market price may be bounded by P..p,). The over-
estimation of market prices when the agent has no units in the portfolio scheduled as marginal
units and the use of Method M1 to determine BM cause the anticipated profits (AP) of the
agent to be higher than the actual profits (OP) received from bidding. Recall that Method M1
sets Tar = BM, while Method M2 sets T'ar equal to the market price (M P) of the previous
period. Also recall that AP > OP, which implies BM < P in the previous auction round. From
the OUTCOMEF scheme, when AP > OP and BM < ]3, O = 11. That is, the agent increases
BM regularly, and submits increasing bidding prices over time through Method M1. Therefore,
when all agents use the same decision scheme, they simultaneously raise their bidding prices
for the anticipated marginal unit; consequently, the divergence of simulated market prices is

unavoidable.

Simulated Outcome Analyses

This thesis proposes to analyze the simulated outcomes from the model with either the UP or DP
structures by comparing 1) the simulated price dynamics with the same demand pattern, and 2) the
profits that the agents receive over time. The difference in price dynamics and profits between the
two structures is caused mainly by the accuracy of the agents’ market price anticipation as well as by

the bid-supply function which is a result of the anticipated price.?

Algorithm A3: From Figures 6-3 and 6-4, let “UP” and “DP” represent the simulated price dy-

namics from the UP and DP models, respectively. One can observe that the simulated prices from the

2This outcome is consistent with the analysis presented in the appendix to this chapter.
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market model with Algorithm A3 under the DP structure are likely to be higher than the simulated
prices from the model under the UP structure. Let us consider Equation (6.1). With the same BM,
in the DP market model Equation (6.1) yields a flat bid-supply function compared to the price-setting
scheme in the UP market model. For example, consider Agent 5 and suppose that its BM is equal
to $55/MWh and all bidding quantities are accounted for. The bid-supply functions obtained from
Algorithm A3 under the UP and DP market models are shown in Figure 6-7. One can observe that the
bid-supply function under the DP market model is likely to lie above the bid-supply function under
the UP market model on the price axis; that is, the agent sells its power at a higher price on the DP
market than on the UP market. The cumulative effect regarding the expensive bid-supply functions

from every agent leads to high market prices in the DP market model.

Additionally, this result, in which the market prices on the DP market are generally higher than
on the UP market, is true when the agents set § to other values such as § = 0.1,0.3,0.5, or 0.7. The
expensive simulated market prices on the DP market contribute to the substantial profits that the
agents obtain. One can also observe from Figure 6-5 that the profits Agent 5 receives from the DP
market are likely to be higher than those Agent 5 receives from the UP market. Similarly, as shown in
Figure 6-6, the average profits that the agents obtain from the DP market are higher than the average
profits the agents obtain from the UP market. Note that one key advantage of Algorithm A3 in the
DP market is that the agents require a knowledge of market prices. Therefore, the price estimation

scheme is not necessary.

The model-based Algorithm: From Figures 6-8 and 6-9, the simulated price dynamics in both
the UP and DP markets depend on the methods to set Tar and on the values of A. The simulated
prices from the market model under the DP structure over time can either be higher or lower than the
simulated prices from the model under the UP structure. Let “UP-M1” and “UP-M2” in Figures 6-8
and 6-9 represent the price dynamics when the agents use Methods M1 and M2 to set T'ar in the UP
market, respectively, and let “DP-M1” and “DP-M2” represent the price dynamics when the agents
use Methods M1 and M2 to set Tar in the DP market, respectively.

In addition, Figures 6-10 and 6-11 illustrate the relationship between AP, OP, BM, and MP
during Hour 18 of each trading day. Recall from Chapter 3 that when OP — AP > 0, BM < MP,
and OP > 0, the agents no longer increase their BM in the next period. One can observe that when
the OP — AP plot exceeds zero (crosses the zero-price axis), the BM plot no longer changes.

Recall the PORTFOLIO scheme in Chapter 3. The agents determine their bid-supply functions
based on their individual units as well as their entire portfolio. In the market with the DP structure,
the bidding prices of the anticipated infra-marginal units increase rapidly so that their bidding price
converges closely to BM . In the market with the UP structure, the agents increase the bidding prices

of their anticipated marginal units slowly, because the agents are paid the market price for their
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scheduled quantity. Hence, the agents tend to obtain the profits they anticipate and the incentive to
increase the bidding price, especially for the infra-marginal units, is lower than in the DP market.

In the DP market when the agents use Method M1 they increase or decrease BM of the next
period based on BM of the current period. Note that BM stops changing when the agents obtain
profits at least equal to the profits they anticipate, i.e., when OP > AP. Since the agents use the
same learning scheme, when the agents no longer adjust their bidding prices, the cumulative effect
causes the market prices to shift to a steady-state pattern. In this case, the agents do not use the
information about the estimated market prices (the ANTPRICFE scheme). One can observe similar
outcomes in the market with the UP structure when the agents use Method M1, that is, prices shift
to a steady-state pattern when the actual profits exceed the anticipated ones.

When the agents in the market with the DP structure use Method M2 to set Tar, the market price
dynamics tend to diverge. Unlike Method M1, the agents set BM of the next period based on the
estimated market price of the current period, P. This estimated price is obtained from the scheduled
prices and scheduled quantity via the ANTPRICE scheme (see the appendix to this chapter), in which
the market price over-estimation or under-estimation is possible. Although the bidding outcome is
satisfying and the agent does not adjust the price, BM of the next period might change. Note that, for
Method M2, BM = M P+¢, where M P is obtained from the ANTPRICE scheme and ¢ = {—A,0,A}.
Since M P depends on the agent’s and the competitors’ bid-supply functions, as well as on the positive
estimation error, each agent’s BM tends to rise over time. The cumulative effect of this outcomes
contributes to the divergence of market prices.

Nonetheless, when the agents set A = 1 and use either Method M1 or M2, as shown in Figures 6-12
and 6-13, the price competition of the marginal agents in the UP market to raise the bidding prices
persists. The OUTCOME scheme, which tends to direct the agents to cooperate to raise the bidding
price, encourages this behavior. Therefore, when all agents use the same strategy, the cumulative
effect of this behavior creates a divergence of market prices. In summary, when all agents use the
model-based learning algorithm, the divergence of simulated prices can be observed in both the UP
and DP structures. Three factors contributing to market-price divergence include the usage of Method

M2 to set Tar, the usage of the price-estimation scheme in the DP model, and the value of A .

6.1.4 Implications of the Simulations

The simulations demonstrate the effects of market structures and information asymmetry among the
agents on the agents’ bidding behavior. When the agents follow the model-based learning algorithm
with the different parameter setting presented in this section, the agents may determine expensive
bid-supply functions, causing high market prices in a market model with either the DP or the UP
structure. On the other hand, when the agents follow Algorithm A3, the agents submit more expensive

bid-supply functions in the market model with the DP structure than in the model with the UP
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structure. Consequently, this agent-based model with different learning algorithms suggests that the
market prices and profits of the agents in the DP market are likely to be higher than those in the UP
market; that is, the DP structure tends to deteriorate market efficiency more than the UP structure.

In addition, although the simulated outcomes tend to suggest tendencies towards higher market
prices in the DP markets than in the UP markets, one should realize that the outcomes significantly
depend on the learning algorithms that the agents employ. The finding from simulations may be
substantiated if the model with different learning algorithms is properly tested against the actual

market by using the method presented in Chapter 4.

6.2 The Role of Load-serving Entity

The existing electricity markets can be divided into two setups based on the activities of the demand
side. The first setup is a sealed-bid auction-style market, a market without active LSEs, such as in
New Engl‘and.3 The other setup is a sealed-bid double auction-style market, such as in California,
with active LSEs who buy the power on the behalf of customers.

This section analyzes the double auction-style market, where power producers submit a bid-supply
function, indicating the amount of power they want to sell at the bidding prices, and LSEs submit a
bid-demand function, indicating the amount of power they are willing to pay for at the bidding prices.
The aggregate bid-demand function is the LSEs’ bid-demand functions stacked from the highest to the
lowest bidding prices. The aggregate bid-supply function is the power producers’ bid-blocks, stacked
from the lowest to the highest bidding prices. The intersection of the bid-demand and bid-supply
functions gives a quantity and an interval of prices. A specified rule chooses a price from the interval.
Demand-side bidding is introduced to the market to promote efliciency outcomes when there is a lack
of price-elastic demand. However, as mentioned in McAfee and McMillan [32], the choice of bids
reflects individuals’ strategic attempts to manipulate the market selling/buying price, so that the
quantity and price interval reached are not necessarily those of the competitive equilibrium.*

The model used to analyze the effects of the LSE agents on the power-producing agents’ behavior
and on price dynamics in the double auction markets is modified from the model introduced in
Chapter 4 to reflect the presence of another set of decision-makers, the LSE agents. The LSE agents
use learning algorithms similar to those of the power-producing agents, though with slightly different
bidding price adjustment strategies. This model shows that market efficiency, which is defined as
the difference between the market prices and marginal-cost prices, is likely to improve once active
LSEs are introduced to the market (for more detail on the effect of LSE agents on market outcomes,

see, for instance, Watz [47]). Although the outcomes are as one might anticipate, the agent-based

3Currently, the load-response program has been implemented and the customers do not bid in the market.

4As quoted from [32], “Wilson [48] showed that, for the case of equal numbers of buyers and sellers with valuation
distributed uniformly, the double auction satisfies the stronger criteria of ex ante efficiency: It maximizes the expected
gain from trade.”
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model provides an alternative tool for verification. This section begins by introducing the double

auction-style agent-based market model. Then simulations and analyses are presented.

6.2.1 Models

The market model presented in this section is assumed to have the UP structure. Like in the model
in Chapter 4, prior to making the daily bidding decisions, both power-producing agents and LSE
agents are informed of scheduled quantities of previous periods, market price and total demand of
previous periods, and forecast demand. The forecast demand is defined as the quantity at which the
aggregate bid-supply function intersects the aggregate bid-demand function. In addition, the power-
producing agents also know the system marginal-cost function, while the LSE agents know the system

marginal-utility function. Next, let us consider the characteristics of the agents.

Power-producing Agents’ Characteristics

Two sets of power-producing agents are considered. Let Market-A and Market-B denote the first set
and the second set of power-producing agents, respectively; and let both markets have the same total
capacity. The aggregate marginal-cost functions of both sets are shown in Figure 6-14. Market-B
represents markets with more expensive marginal-cost units, whereas Market-A represents markets
with less expensive marginal-cost units, similar to that presented in Chapter 4. The objective of
having Market-A and Market-B representing different marginal-cost units to observe the effect of the

LSE agent on market outcomes due to different power-producing agent characteristics.

LSE Agent’s Characteristics

Let this double-auction market model have only one active LSE agent. This LSE agent has a set
of marginal-utility functions that vary hourly to exhibit peak and off-peak demand. The LSE agent
maximizes its total profits by buying power from the market and selling it back to customers. The

LSE agent anticipates its profits (R) during K periods as follows:

K
R=ed Y Y (Bt +wied) )

k=0j€EN
subject to 0 < L] ... <yl < L,

where P, denotes a forecast price of the LSE agent at time k, y{c denotes the bidding demand quantity
of bid-block j, and p? denotes a utility function of the LSE agent (or the obligation to serve its
consumers under a specified contract) associated with bid-block j. Let LI,Z denote the compensation
fee that the LSE agent has to pay when it curtails the consumption associated with bid-block g at

time k when the market price is lower than the customers’ willingness-to-pay prices. This thesis
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assumes that the consumers buy a power contract from the LSE agent. This contract indicates the
maximum market price (or the willingness-to-pay) that the customers are willing to pay for the power
they consume, as well as the minimum consumption Li,mm to be delivered in each period.

Let L{,f consist of two parts. The first part is equal to U,Zvl, and is associated with the cost that the
LSE agent pays customers when it is unable to buy the power up to L‘Ii,min' The other part is equal
to Z/{,zz, and is associated with the compensation that the LSE agent pays its customers when the
LSE agent curtails its customers’ consumption. For example, this cost incurs when the market price
is at least equal to the customers’ willingness to pay and the customers are not scheduled. Hence,
Z,{,z = u,{j,l + U,{’z. In summary, there are three additional constraints when an active LSE agent is

added to the model, including:

e Minimum Load Obligation L m:n. This is the minimum consumption of each period with the
maximum willingness to pay equal to the maximum market prices or a price cap (Pegp). This

portion of LSE i’s demand is price-inelastic.

¢ Minimum Load or L;C]mm This is the minimum load that the LSE agent has to serve customer
J when the market price is greater than its willingness-to-pay; otherwise the LSE is subjected

to pay L{gvl. For simplicity, the minimum load is set to 0 (Lyin = 0).

e Curtailable contracts allow the LSE agent to curtail consumers’ actual consumption L',’; from

the contracted quantity L{, for compensation fee m f/ multiplied by the curtailed quantity,

,mazx

le.,

J J
Uk.2 = max (Lk,maz

— L},0) -mf? - I(P < pl)-

where Z(Y') is boolean, equal to 1 if statement Y is true and equal to 0 otherwise.

Contracts with the customers of the LSE agent are pre-determined and have no intertemporal
relation between hours. The LSE agent’s marginal-utility functions of Hours 4, 12, and 18 are shown
in Table 6.1 and in Figure 6-15.

The LSE agent has incomplete information about its competitors, the power-producing agents,
and also encounters an on-line decision-making process and makes its bidding decision myopically,

i.e., the LSE agent calculates its anticipated profits as follows:

K
R=>" " (=P -yl + 1 u]) - U
k=0 jEN
subject to 0 < yi < Lfmz.

To determine its bid-demand function, this agent can either 1) determine P based on the observed

past and current information, such as market prices and total demand, and then derive its bid-demand
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Table 6.1: Samples of the LSE Agent’s Marginal-utility Functions

Marginal Utility (§/MWh) ]
Hours | 300 | 290 | 280 | 250 | 230 { 200 | 180 | 165 | 140 | 120 | 105 | 100
4 6 7 8 7 6 6 4 0 1 1 1 2
12 30 13 6 10 8 6 7 6 6 3 0 0
18 23 10 6 6 6 5 3 5 ) 2 1 2
Marginal Utility (§/MWh)
Hours | 90 | 80 | 75 | 65 | 60 | 50 | 40 | 35 | 20 | 10
4 2 1 0 2 1 1 1 0 1 1
12 0 2 0 0 1 1 1 1 0 1
18 0 0 2 0 0 0 0 1 1 1

function following some established criteria accordingly, such as those of the model-based algorithm,
ie.,
{0%, g} = max { Yo (=B L+ (L) - UZ)} ;
br,qu :
JEN
or 2) follow some learning algorithms, such as Algorithm A3 and the model-based algorithms, that
allow the agent to derive its bid-demand function without estimating Py,. Both methods are described

in detail in Sections 6.2.1 and 6.2.1, respectively.

Market-Clearing Prices

The power-producing agents have piece-wise marginal-cost functions and submit piece-wise bid-supply
functions. The aggregate bid-supply function (ABS) is a collection of the bid-supply functions of all
the power-producing agents and is constructed by sequencing the bid-blocks from the cheapest to the
highest bidding prices. The LSE agent has a set of piece-wise marginal-utility functions and submits
piece-wise bid-demand functions. The aggregate bid-demand function (ABD) is a collection of bid-
demand functions of the agents and is constructed by sequencing the bid-blocks from the highest to
the lowest according to willingness to pay. Total demand is the quantity value at the intersection point
of the ABS and ABD functions. In this thesis, the market price (P) is determined as the following

method and this method is also illustrated in Figure 6-16.

1. Case 1: The ABS function intersects with the ABD function from below; that is, the bidding
quantity of the intersected ABD block on the left of the intersection is positive and less than the
ABD block-quantity. Suppose that the bidding price of this ABD block is /2. The market price
is set to P = U2. Hence, only the quantities on the left of the intersection points are scheduled
to operate, and the entire block on the ABD function with bidding price U2 is not scheduled
to operate. If the market price is less than U2, this entire ABD block will be scheduled for
purchasing. However, there is insufficient supply to serve this demand block at any price less

than U2. Consequently, the market price is set to U2.
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2. Case 2: The ABD function intersects the ABS function from above; that is, the bidding quantity
of the intersected ABS block on the left of the intersection is positive and less than the ABS
block-quantity. Suppose that the bidding price of this ABS block is C'2. The market price is
set to P = C2. Hence, only the quantities on the left of the intersection points are scheduled to
operate/or to be purchased, and the entire block of the ABS function with bidding price C2 is
not scheduled to operate. If the market price is more than C2, this ABS block will be scheduled
to operate. However, there is insufficient demand to buy this power at a price higher than C2.

Consequently, the market price is set to C2.

3. Case 3: The ABD function intersects the ABS function at the end of their blocks. Suppose
that the minimum bidding price of the ABD block on the left-hand side of the intersection is
equal to U1 and the maximum bidding price of the ABD block on the right-hand side of the
intersection is equal to U2. Similarly, suppose that the maximum bidding price of the ABS
block on the left-hand side of the intersection is equal to €1 and the minimum bidding price
of the ABS block on the right-hand side of the intersection is equal to C2. Only the capacity
on the left of the intersection is scheduled to operate or to be purchased; hence, the market
price must be less than the bidding prices of the next most expensive ABS blocks that are not
scheduled to operate, and must be higher than the bidding prices of the next most expensive
ABD blocks that are not scheduled for purchasing. Consequently, the market price is set to
P =0.5x (min (U1,C2) + max (U2,C1)).

Modified Auer et al.’s Learning Algorithm

Like the power-producing agents, the LSE agent (Agent 7) determines its bid-demand function by
using a modified algorithm based on algorithm Exp3.P.1 of Auer et al.. This modified algorithm
is called Algorithm A3L. Let (x)° denote any variable associated with the bidding price and let (x)?

denote any variable associated with the bidding quantity.

Initialization Agent 7 has K® choices of bidding prices, i.e., B = {B(1),...,B(K®)}, and K¢
choices of bidding quantities, i.e., @ = {Q(1),...,Q(K?)}. Agent i determines 7, 6%, 7&* T3, §9,

and r?* using the formula as shown in Chapter 3.

Repeat Foreachdayt=1,2,...

1. Agent ¢ obtains the scheduled prices and quantity and calculates the profits (IIx) obtained from

the previous bids, i.e.,

Me=-Pex > yl+> (W) -u),
; ;
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where Py is the market price at Hour k, Li is the scheduled quantity associated with demand-

block j, u(g?) is a contract price of consumin L7 of bid-block j, and U is the compensation fee
Js PGy g Ly

if the agent cannot serve its customers as indicated in the contracts.

. Agent i determines the vectors of rewards associated with all possible bidding prices,

22 = {22(1),..., 2t (K"} and z{ = {z](1),...,z](K9)} as follows:

(a) For all k € ¢, let #2(m) be defined as
k

# (m) p(8) ifm =8
z;(m) =
¢ 0 otherwise,

where i¢ denotes the choice of bidding price chosen at Hour k of day t and II (i%) denotes

the profit obtained from choosing bidding price 4.

(b) Then, for m € Kb, xb(m) is an average of profits associated with action m obtained in day

t and is determined as follows:

N 532(7")

b(m) = Zn 40

> h

where h denotes the hour in day t that action m is chosen.

Likewise, for n € K9, z7(n) can be determined by using a similar method.

. Agent i receives forecast demand Ly for the next bidding round.

. Agent i checks whether t € T?; otherwise, it sets r®* = r®* 41, sets (r = r®*), sets T?

and sets §° = 5,15.

. Agent i checks whether ¢ € TY; otherwise, it sets r®* = r9*+1, sets (r = r9*), sets T

and sets §7 = 67.

Tb

T

T4

T

. Agent ¢ determines its bid-demand function for an anticipated marginal bid-block for Hour &

based on the load index associated with forecast demand Lj. The bid-demand function consists

of two parts, bidding price and bidding quantity. Agent i chooses its bidding price from K°

possible values as follows:

T

(a) Agent i determines v* = min {%,2 %&H},—Iﬁ} and o =

Form=1,...,K?

(b) Agent i calculates #(m) as follows:

(m)/pt(m) ifm =i}

0 otherwise.
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(c) Agent i updates its weight (w?,,(m)) associated with choice m of K® possible bidding

prices using

— /Yb T ab
ot = -0 g (s + ),

and updates its probability of selecting choice m using

b b

b b wt+1(m) y
Pi(m) = (1 - 9")——— + —.
. oy wp(hy  KC

(d) Agent i chooses i, , randomly according to the distribution {p,(1),...,pl,;(K")} and
sets

BM; = B(i%) forallket+1
where (B(-) € B) is a choice of bidding price.

Similarly, to determine a bid quantity, Agent ¢ chooses its bidding quantity from K9 possible

values as follows:

(a) Agent i determines v/ = min {%,2 %Kq}':,m} and of = 2/ln E%

(b) Agent 7 calculates £7(n) as follows:

zi(n)/pl(n) ifn =

0 otherwise.

cHOES

(c) Agent ¢ updates its weight associated with choice n of K7 possible bid quantities, wy,  (n),

using

ula ) = wf) - exp (575 (3 + )

and updates its probability of selecting choice n using

wi,,(n) v
q - q t+1
pii(n) = -V + —-
thql w?ﬂ(h) K

(d) Agent i chooses i}, , randomly according to the distribution { p{,,(1),...,p{,,(K?)} and
sets,

yr = Qi) forallket+1,

where (Q(-) € Q) is a choice of bidding quantity. Let W H}, denote the withheld capacity

and W Hy, = Ymae — Yk, Where ypq, is the maximum demand.

7. Agent 1 determines the bid-supply function for each Hour k by using BM}. and g as follows:
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(a) The bidding price of the curtailed capacity (W Hy) is set to
WHy = by — Ca,

where Cy is a positive constant. In this model, Cs = 3.

(b) For any block j with non-zero capacity that is not considered the withheld capacity, its
bidding price b,’c is set to
b, =,

where p% is the marginal utility of bid-block j.
8. Agent ¢ submits the bid-demand functions for day ¢ 4+ 1 to the system operator.

9. The system operator clears the market for each Hour & and informs the agents of market prices,

total demand, and their scheduled quantities.

The Model-based Algorithm

Load Curtailment Like the capacity withholding (CW) strategy of the power-producing agents,
the LSE agent has a strategy for determining the demand to be consumed at the anticipated price.
By reducing some consumption and paying the customers through compensation fees, the LSE agent

might make more profit, i.e.,

Wi =argmax{ > —B(Wi) - (L, = W) + i (L, = W) =] (W)
JEN

where W) denotes the optimal curtailed consumption at time k based on the assumption that the
other agents submit their marginal-utility or marginal-cost bids, P, denotes the anticipated market
price of the LSE agent, Li denotes the demand obligation associated with the willingness to pay pi,
and U denotes the compensation payments when the agent is unable to serve its demand obligation.

The model-based algorithm is modified for the LSE agent to determine its bid-demand function
as follows. This modified algorithm is called the model-based LSE algorithm. Let BM) denote the
bidding price of the anticipated marginal block, OP; denote the actual profits obtained at time &,
APy, denote the anticipated profits, and M Py denote the market price at time k.

Initialization Let an LSE agent submit its marginal-utility bid-demand functions to an operator.
The operator schedules the agents to purchase based on both the ABS and ABD functions, and then

informs them of market prices, total demand, and scheduled consumptions.
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Repeat For each day t > 1 that Agent ¢ follows the scheme which is called the PORTFOLIO-LSE

scheme,

1. Agent i obtains the scheduled prices and quantity and calculates the profits (II;) obtained from

the previous bids, i.e.,

M =-Pex Y Li+> @(L]) -,
J J

where Py, is the market price at Hour k, Lf; is the scheduled quantity associated with demand-
block 7, u(Li) is a contract price of consuming Li of block j, and U is the compensation fee if

the agent cannot serve its customers as indicated in the contracts.

2. Agent ¢ determines the bidding outcome (O) from the following scheme, called the OUTCOME-
LSE scheme:

(a) OP < AP: This implies that the previous bid was not successful, and that the agent has

submitted a lower BM. Let us consider the following cases.

i. OP > 0. Consider two sub-cases a} when BM > M P, the agent sets O = 10, and b)
when BM < M P, the agent sets O = 00.

ii. OP < 0. This implies under-bidding or submitting a bid-demand function at which
the agent is unable to buy power. Hence, the agent would increase the bidding prices
to improve its willingness-to-pay for power it could buy. The agent could decrease the
bidding prices in cases in which it over-pays for the consumed power. Consider three
sub-cases a) when BM > M P, the agent sets O = 10, b) when BM = M P, the agent
sets O = 11, and c¢) when BM < M P, the agent sets O = 11 as long as AP > 0, and
O = 00, otherwise.?

(b) OP = AP. This implies that the previous bid was successful and that the agent has
no reason to change its bids. The agent sets O = 00, except 1) when BM = MP and
OP > 0, in which case the agent in this case sets O = 10,% and 2) when BM > MP and
AP = OP = 0, and the agent here sets O = 10.7

(c) OP > AP. This implies that the previous bid was overly successful or that the agent could
be a marginal consumer, being scheduled to buy power more than expected. (When there

is more than one LSE agent, this may imply that the other LSEs set the market prices.)

5When the agent anticipates positive profits but does not receive them, the agent considers submitting a low bidding
price. Likewise, when the agent anticipates non-positive profits, which may result when the compensation fee exceeds
the gain from buying cheaper power, an increase in bidding prices implies that the agent would not underbid. To
underbid could result in no scheduling and in losses incurred in compensating the customers.

6The agent is considered to be dispatched as a marginal consumer and the agent may be able to lower the market
price the next round.

7The agent anticipates the lower market price for the next period, because the agent is able to buy the power
as it anticipates. It may also buy power at lower than its willingness-to-pay by decreasing its bidding prices. Since
MP < BM in the current period and the agent can anticipate positive AP the next period, by decreasing the bidding
price further, the agent could cause the M P to be lower and it might obtain more profits.
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The agent sets the O = 00® except when 1) AP,OP > 0 and BM = M P, the agent sets
0 =10,° and 2) AP <0,0P =0,and BM < MP, the agent sets O = 11 (so that its BM

increases).!?

Agent ¢ updates its O and M P.

. Agent i determines the bidding quantity through the load curtailment strategy. This bidding
quantity is the maximum load obligation, in which the agent does not compensate to the cus-
tomers for reducing their consumption. Overall profits from this lower price offset the losses

from the compensation payment for the unserved obligation.

. Agent i assesses whether each individual bid-block obtains its profit as anticipated. The agent

also uses the OUTCOME-LSE scheme to determine the bidding outcome of each unit (O,).

. Agent i determines the hourly demand from the aggregate supply function and the aggregate
demand function. The agent determines BM for each hour of the next bidding round by using

the scheme, which is called SETPRICE-LSFE scheme, as follows:
BM; = Tary + ¢

where Tary is the target price and &, is a constant, which is ¢ € {—-A,0, A}. Like the power-

producing agents, Tary is set to

Method M1: Tary = BMj_1,
Method M2: Tary = MPy_;.

In the market model with the DP structure, Method M2 is an estimation of the market price of

each agent, i.e., MPy_; = P Let & be defined as follows:
c = A0 =11; € = 0,if 0O = 00;and ¢ = —=A,ifO = 10

where A is a positive constant. Note that BMy, Targ, and A are associated with the load

indices.

. Agent i determines the bidding prices of each unit (BU) from O, using the SETPRICE-LSE

scheme.

7. Agent ¢ sets the bidding price for each block of the bidding quantity as follows.

8Since the outcome is satisfying, the agent does not change its bidding price for the next period.

9The agent is scheduled to purchase power as a marginal consumer and it may set the market price the next period:
therefore, the agent shall submit a bid-demand function that may result in lowering the market price.

10During the current period, the agent decreases its bidding price to lower than its willingness-to-pay price (due to
negative anticipated profits). However, the outcome shows that the agent has been scheduled to purchase power more
than it anticipates and the agent keeps M P in the positive profit zone.
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(a) For demand-block j with BU/ greater than BM, its bidding price ¥’ is set to
¥ = min {g?, BU?}

where mu’ is the willingness-to-pay of block j.

(b) For demand-block j with BUY equal to BM, its bidding price ¥ is set to
¥ = min {y/, BM}.

Note that if the BM is less than pu/, BM is set to p/.

(c) For bid-block j with BUY less than BM, its bidding price b’ is set to
¥ = min {g/, BU’}.

(d) The bidding price of the curtailed capacity can be set to either W H where W H < min; pf,
or WH = max{BM — C,0}, where C is a positive constant.

Agent i updates its recorded BM and BU of each demand block.

8. Agent i calculates its AP, by assuming that BM = M P. The bidding blocks with the bidding
prices of at least BM are scheduled and paying BM. Similarly, the anticipated profit of each

block is calculated as well (to be used in determining O,). Then, Agent i records its new AP.
9. Agent 7 submits the bid-demand functions for day t + 1 to the system operator.

10. The system operator clears the market for each Hour k and informs the agents of market prices,

total demand, and their scheduled quantities.

6.2.2 Preliminary Analysis

Suppose that the aggregate marginal-cost function of the power-producing agents is an increasing
function and is denoted by M C(x), where z is the quantity of power. That is, MC(z) indicates the
price of the associated quantity of power x that the power-producing agents are willing to produce.
Suppose that the aggregate marginal-utility function of the power-producing agents is a decreasing
function and it is denoted by MU(z). That is, MU(z) indicates the willingness to pay for the
associated power quantity z that the LSE agents are willing to consume. This section provides a
preliminary analysis to show that, given the aggregate bid-supply function of the power-producing
agents, the LSE agent may not necessarily be better off submitting a strategic bid-demand function.
Note that the strategic bid-demand function is defined as a bid-demand function that is not the

marginal-utility function and is determined by the demand-curtailment or by the price-setting strategy.
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The best response of the LSE agent depends on the characteristics of the aggregate bid-demand
function. The simulations shown in the next section support this finding, especially when the agents

use the model-based learning algorithm.

For simplicity, let us assume that the LSE agents have the aggregate marginal-cost function as

follows.

= a-z+b if T >z

where @ and b are constants, @ < 0, and b > 0. Let z;, denote the minimum demand that the LSE
agent needs to serve the customers before it has to pay the compensation fee. Let Yy > 0. The

power-producing agents have the aggregate marginal-cost function as follows:

é-z+d if z>zxg

MC(x) = .
= Ys if 0<x<zg

where & and d are constants; ¢ > 0 and d < 0. Let x5 denote the minimum capacity at which the
power-producing agents need to operate before they are subject to a penalty fee. Let Y5 > 0. Note
that g > 0; however, in this agent-based model zg is always set to zero. Figure 6-17 shows the

samples of these aggregate marginal-cost and marginal-utility functions.

Suppose that the LSE agent knows the aggregate bid-supply function (y), i.e., y = c¢-z+d. The
LSE agent maximizes the anticipated profit (I} by determining the slope (a) and the intercept value

on a y-axis (b) of the bid-demand function as follows:
max = max (=P -z + U —U(max(zy — z,0)))

where P denotes the market price and U denotes the contract payment that the LSE agent obtains
from the customers, and where U is assumed to be a constant. Let I{ denote the compensation fee
that the LSE agent has to pay the customers when demand of at least equal to x is not delivered.
Let us consider a set of MU (x) and MC(z) in which MU (z) intersects with M C(z) at the quantity
z*, and z* is such that z* > Xg, X. At the intersection point, ¢-z + d = a-x + b and, consequently,

T = —g—:—g and P = a-x + b. Therefore,

m%xl’[:mabx(—P-x—i—U) = m%x(—(a-x+b)~:c+U)
~ d-b
= max(—(a-d b+b)--—+U).
a,b a—c a—c



The LSE agent determines the optimal values of a and b as follows:

ol d—0b., (d - b)? (d—b)
butala g, 2 _9q- —b- = 0.
Oa (a—c) ¢ (a—c)? (a —c)? 0
o d-b _d—2b__0
b (a-¢)? a-c
With some algebraic calculation, one can obtain
2
a= —2—? —c. (6.2)

Suppose that the LSE agent submits the bid-demand function with the same values for Yz, and zj, as

in the marginal-cost function. At the point on the aggregate marginal-utility function where ¢ = =,

YL:(%—C)-$L+I),

and

2
b={(YL + cmL)/(EE -zp +1), and a=c-(2Yy — d)/(2czp + d).

Note that @ < 0 and & > 0. From Equation (6.2) for any given value ¢ > 0 and d < 0, when the
bid-supply function has ¢ 3> 1 and d < 0, the best response of the LSE agent is to have a « 0. That
is, when the bid-supply function has a steep slope for z > xg, the best-response bid-demand function

of the LSE agent will have a steep slope for z > z as well.

Suppose that the LSE agent does not submit a bid-demand function that is more expensive than
its marginal-utility function, i.e., MU(z) > y for all z. This condition implies that & > a for z > zj,.
Therefore, the slope of the bid-demand function (a) and its intercept value on a y-axis (b), which is the
best response to the bid-supply function of the power-producing agents with slope (¢) and intercept

value on the y-axis (d), should be equal to
a =min {c- (2Y, — d)/(2czr + d),4} and b = max{(Yr + cacL)/(%E -xp, +1),b}.

Figure 6-18 illustrates this relationship.

As a result, in the market that has an aggregate marginal-cost function with a steep slope, such
as with a large value of é and a small value ci, and in which the power-producing agents submit the
strategic bid-supply function, such that 0 < é < cand d < d< 0, the LSE agent may be better off
submitting its strategic bid-demand function, especially when (2czr + d < 0). On the other hand,
when the power-producing agents do not have a steep slope of the aggregate marginal-cost function or

of the aggregate bid-supply function, the LSE agent might be better off submitting its marginal-utility
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bid-demand function, especially when (2czp +d > 0).

This analysis suggests that the LSE agent will be more likely to submit a strategic bid-demand
function to buy power in Market-A than in Market-B. This observation further implies that market
prices in Market-A should be lower than those in Market-B. Note that the best-response aggregate
bid-supply function of the power-producing agents can be determined using the same method as the

LSE agent as presented previously.

6.2.3 Simulations

This section presents the simulated price dynamics and simulated profit dynamics of both power-
producing and LSE agents. Two sets of simulations are considered, including when the power-
producing agents use Algorithm A3 and the LSE agent uses Algorithm A3L, and when the power-
producing agents use the model-based algorithm and the LSE agent uses the model-based LSE algo-

rithm.

Algorithms A3 and A3L

In the simulations in which the power-producing agents use Algorithm A3 and the LSE agent uses Al-
gorithm A3L, the agents select the bidding price of the anticipated marginal unit from 0 to $300/MWh,
which is the maximum willingness-to-pay of the LSE agent, with an increment of $3/MWh. Likewise,
the power-producing agents select their bidding quantity from 0.25 MW to its available capacity with
an increment of 0.25 MW, whereas the LSE agent selects its bidding quantity from 2.5 MW to its
available capacity with an increment of 2.5 MW. Note that the increment in bidding quantity of the
power-producing agents is set to be smaller than that of the LSE agent, because the capacity of the
power-producing agents is relatively smaller than the LSE agent’s total demand obligation. The sim-
ulations shown in this section have § set to 0.1 for both the power-producing and LSE agents. Hence,
for r = 0,1,..., for the power-producing agents r®* = 0, as well as for the LSE agent, r>* = 0. In

KT8
EE

bbb
addition, let a® = 21In K—dgl and ? = 2In

The Model-based and Model-based LSE Algorithm

In the simulations in which the power-producing agents use the model-based algorithm and the LSE
agent uses the model-based LSE algorithm, A = 2 and the bidding price of the withheld capacity is
set, to the maximum willingness-to-pay of the LSE agent. The bidding price of the curtailed capacity
of the LSE agent is set to $0/MWh.

Market Scenarios

Let us define a strategic bid as a bid function (either bid-supply or bid-demand function) in which the

bidding prices and bidding quantities are determined by the assigned algorithms. Several simulation

211



scenarios are considered.

s Scenario I: The power-producing agents and the LSE agent submit strategic bid functions; that
is, they apply the assigned learning algorithm to determine the bid-supply and the bid-demand

functions, respectively.

s Scenario II: The LSE agent is assumed to have no active role; that is, the LSE agent submits
its marginal-utility bid-demand function in every period. This case implies that the power-

producing agents encounter price-elastic demand.

e Scenario III: The power-producing agents use the learning algorithm to determine only the
bidding price of the anticipated marginal unit (BM) without the bidding quantity, and the LSE

agent submits a strategic bid-demand function.

e Scenario IV: The LSE agent uses the learning algorithm to determine only the bidding price
of the anticipated marginal block (or when the curtailed capacity is maintained to zero), and

the power-producing agents submit a strategic bid-supply functions.

The hourly competitive market prices and the demands of Market-A and Market-B for a five-day
period are shown in Figures 6-19 and 6-20, respectively. A 24-hour window of moving average is
applied to all simulations. Figures 6-21 and 6-22 show the dynamics of moving-average prices and
demand when the power-producing and LSE agents in Market-A use the Algorithm A3 and Algorithm
A3L, respectively. In addition, Figures 6-25 and 6-26 show the dynamics of moving-average prices
and demand when the power-producing and LSE agents in Market-B use the Algorithm A3 and
Algorithm A3L, respectively. Note that in the plots shown in Figures 6-21, 6-22, 6-25, and 6-26,
“d01” denotes the simulated outcomes under Scenario I, “d0InoL” denotes the simulated outcomes
under Scenario II, “d01noWG” denotes the simulated outcomes under Scenario III, and “d01noWL”
denotes the simulated outcomes under Scenario IV. Also, “Comp” denotes the simulated competitive
outcomes of prices and demand obtained from the assumption that the power-producing agents submit
their marginal-cost bid-supply functions and the LSE agent submits its marginal-utility bid-demand
function.

Figures 6-23 and 6-24 show the dynamics of moving-average prices and demand when the agents in
Market-A use the model-based algorithm with Method M1 to set the target price when they determine
the bidding price for their anticipated marginal unit with A = 2. In addition, Figures 6-27 and 6-28
show the dynamics of moving-average prices and demand when the agents in Market-B also use the
model-based algorithm with the same setting. Note that in the plots shown in Figures 6-23, 6-24, 6-27,
and 6-28, “PWPW?” denotes the simulated outcomes under Scenario I, “PWnoPnoW” denotes the
simulated outcomes under Scenario II, “PnoWPW?” denotes the simulated outcomes under Scenario
II1, and “PWPnoW” denotes the simulated outcomes under Scenario IV. Also, “Comp” denotes the

simulated competitive outcomes.
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The existence of the active LSE agent will decrease the ability of the power-producing agents to
raise the bid-supply functions, causing the market prices to be reduced regardless of the learning
algorithms implemented in the model. Typically, the marginal-utility function has a non-increasing
characteristic in willingness-to-pay as the quantity increases. Then, given a marginal-utility function
where the market price increases, actual consumption increases as well. Therefore, the accumulative
moving-average profits of both the power-producing and LSE agents are used in addition to price
dynamics as measures to identify the effect of the active decision-making of the LSE agent.

Figure 6-29 shows the moving-average profits that the LSE agent in Market-A obtains according
to the four scenarios, whereas Figure 6-30 shows the moving-average profits that the power-producing
agents obtain when the power-producing and LSE agents in Market-A employ the Algorithm A3 and
Algorithm A3L, respectively. Figure 6-33 shows the moving-average profits that the LSE agent in
Market-B obtains according to the four scenarios, whereas Figure 6-34 shows the moving-average
profits of the power-producing agents.

When the power-producing agents use the model-based algorithm and the LSE agent uses the
model-based LSE algorithm to determine their strategic bid functions, the moving-average profits
that the LSE agent in Market-A obtains according to the four scenarios are shown in Figure 6-31.
Figure 6-32 shows the moving-average profits that the power-producing agents obtain. Figure 6-35
shows the moving-average profits of the LSE agent in Market-B and Figure 6-36 shows the moving-

average profits of the power-producing agents in Market-B accordingly.

6.2.4 Analyses

As shown earlier, Algorithm A3L yields mixed strategy actions and the model-based LSE algorithm
yields pure-strategy action. Because the agents can choose any action at any time when they employ
Algorithm A3 or A3L, the simulated outcomes exhibit more fluctuations than those when the agents
employ the model-based algorithm. For simplicity in analyzing the simulated outcomes, the moving
average with a 24-hour window of prices, demand, and profits are presented to capture the trend of

the outcomes over time. The analyses are described as follows.

Algorithms A3 and A3L

As one can observe from Figures 6-21, 6-22, 6-25, and 6-26, in Scenario I, when the power-producing
and LSE agents use Algorithms A3 and A3L, respectively, in either Market-A or Market-B, the
simulated prices and demand exhibit large fluctuations compared with prices and demand when the
algorithm is used by only the power-producing agents or the LSE agent. One would also anticipate
similar outcomes from Scenarios II and IV. In Scenario IT the LSE agent submits marginal-utility bids
and in Scenario IV the LSE agent does not determine the bidding quantity. Recall from Section 4.6.1
that when the power-producing agents use Algorithm A3 and do not determine the bidding quantity,
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the bid functions of these agents are their marginal-cost bid-supply functions. The same argument is
applied to the LSE agent; that is, the LSE agent submits a marginal-utility bid-demand function in

Scenarios IT and 1V.

When the power-producing agents submit their marginal-cost bid-supply function in Scenario II,
the LSE agent is able to submit a strategic bid-demand function that yields lower prices for a higher
amount of power. One can observe that in both Market-A and Market-B, the LSE agent obtains the
highest average profits over the simulation period of 1440 hours in Scenario III. In addition, the LSE
agent obtains more profit in Scenario I than in Scenario II. Although Scenarios IT and IV will have
similar outcomes, in the simulated outcome presented here the profits that the LSE agent receives
in Scenario II are higher than the profits received in Scenario IV. Note that each simulation with
Algorithm A3 yields one possible simulated path, resulting from a series of random draws according

to the probability distribution that is obtained from the algorithm.

As anticipated, the simulated outcomes from Market-A and Market-B do not exhibit a substantial
difference in price dynamics. That is, the profits that the LSE agent in Market-A or Market-B obtains
are highest in Scenario III and lowest in Scenario IV. These simulations show that the strategic bid-
demand function is a better response to the power-producing agents than the marginal-utility bid-
demand function. Using Algorithm A3 the power-producing agents tend to submit more expensive
bid-supply functions. The mixed strategy selects the bidding prices and quantities from all possible
actions. The large cumulative withheld capacity can easily lead to an expensive aggregate bid-supply
function. Besides, as a result of a series of random draws described in the algorithm, each simulation
represents one possible set of time-series dynamics. To obtain a better conclusion of the outcomes
when the agents use Algorithm A3, several simulations will be performed and the expected outcomes

of those simulations will be used, as follows.

Average Simulated Outcomes The moving-average simulated profits of the LSE agent in Market-
A and Market-B from 100 simulations are shown in Figures 6-37 and 6-38, respectively. In each
simulation, the power-producing and LSE agents employ Algorithms A3 and A3L, respectively, with

= 0.1. In each figure, the profits that the LSE agent obtains in Scenario I are denoted by “d01,” in
Scenario II they are denoted by “d01NoL,” and in Scenario IV they are denoted by “d01NoWL.” Note
that Scenario III is not investigated because the LSE agent always obtains more profits in Scenario
III than other scenarios.

From these figures, one can observe that the simulated moving-average profits of t