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Abstract
The conservation of angular momentum provides an elegant model for human walk-
ing and might be used to generate stable robotic locomotion if employed by a control
algorithm. To examine the extent to which the body regulates angular momentum,
a force model was developed to predict horizontal ground reaction forces assuming
perfect angular momentum conservation. These model forces closely matched exper-
imental forces, suggesting that the body does indeed regulate angular momentum.
To determine how various links of the body contribute to total angular momentum,
link angular momenta were calculated. Angular momenta in the medial-lateral and
vertical directions showed evident cancellation of link angular momenta whereas an-
gular momentum in the anterior-posterior direction did not. Link by link, angular
momentum in the medial-lateral direction was much larger than angular momenta
in the anterior-posterior and vertical directions, which makes it more likely to cause
stability problems. Hence, angular momentum in the medial-lateral direction is the
key angular momentum to regulate.

Thesis Supervisor: Hugh M. Herr
Title: Assistant Professor, Department of Health Sciences and Technology
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Chapter 1

Introduction

1.1 Background

The mechanics of walking and running are complicated, as exemplified by the diffi-

culties involved in building robots that can emulate human walking. The first step in

dissecting any complex system is to search for an underlying principle that governs

the functioning of that system. In the case of rigid moving bodies, angular momen-

tum about the center of mass (CM) is a fundamental physical quantity related to the

torque applied to the CM. Specifically, angular momentum is conserved in the CM

frame if the sum of external torques about the CM is zero. During the aerial phase of

human locomotion (for example, when both feet are off the ground during running),

the only force acting on the body is gravity, which acts through the CM, resulting

in zero torque. Thus, angular momentum is conserved. However, the interaction of

the feet with the ground during walking introduces external torques about the CM,

so there is no a priori reason for angular momentum to be conserved.

1.2 Motivation

Angular momentum during human locomotion has been studied, but it has not been

investigated thoroughly for normal human walking. Much research done on angular

momentum thus far is related to sports. Dapena and McDonald analyzed angular
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momentum during the hammer throw in 1989 [2]. In 1993 Dapena studied angular

momentum in the discus throw [1], and LeBlanc and Dapena investigated angular

momentum during the javelin throw in 1996 [9]. Angular momentum in these sports

has little relevance to angular momentum during normal human locomotion.

Hinrichs and colleagues studied angular momentum of the arms during running

in 1983. They found that arm angular momentum reduced leg angular momentum

in the vertical direction during running and that angular momenta of the arms in

the other two directions tended to cancel each other. [5] Hinrichs corroborated these

results in a similar study in 1987 [3]. In 1992 he did case studies of asymmetric

arm action during running, finding that runners with an asymmetric arm angular

momentum profile in the vertical direction still had a symmetric total arm angular

momentum profile. Based on these results, he suggested that one arm has the po-

tential to compensate for the other in generating angular momentum in the vertical

direction. [4] However, Hinrichs and collaborators did not do a detailed analysis of

lower body angular momentum, and they considered only running, which is a less

fundamental form of locomotion than walking.

In 1998 Xu and Wang quantified angular momentum changes during walking [13].

However, they studied only the lower body, and we believe that the entire body must

be considered to shed insight on how the body regulates angular momentum.

Riley and colleagues in 1997 studied angular momentum of thirteen elderly sub-

jects who suffered sit-to-stand failures and thirteen who did not. They found that the

angular momentum profile of those who lost their balance during sit-to-stand differed

from that of the control subjects. [10] Their work suggests that regulation of angular

momentum is integral to balancing.

In 2000 Simoneau and Krebs studied whole-body angular momentum during walk-

ing in five elderly subjects, three considered "non-fallers" and two considered "fre-

quent fallers." They found that angular momentum characteristics for the two groups

were similar whereas the ankle and knee torques of thp "frequent fallers" were smaller

than those of the "non-fallers." They suggested that the inability to control angular

momentum with the appropriate torques leads to falling. [12] One weakness of their

14



study is the limited number of subjects in each category. In addition, they looked

only at whole-body angular momentum without investigating individual link angular

momentum.

Angular momentum has been used to control bipedal robotic walking. Sano and

Furusho produced more natural walking by monitoring and controlling the angular

momentum of their bipedal robot in 1990. They used ankle torque of the stance

leg to produce a desired angular momentum function that was based on changes in

angular momentum undergone by an inverted pendulum in gravity. [11] However, they

considered only angular momentum for sagittal plane rotations and used a somewhat

arbitrary function for the desired angular momentum. A better understanding of how

angular momentum is regulated by the human body may enable robotic engineers to

better design control algorithms for robotic walking.

Kajita and colleagues in 2001 used control of angular momentum to balance their

humanoid robot while it stood on one leg. They used ankle torque to minimize angular

momentum associated with sagittal and coronal plane rotations. [8] However, they

did not consider balance during walking. Again, knowledge of how the human body

regulates angular momentum might aid robotic engineers in producing biologically

real behavior in balancing or walking robots.

The aim of this work is to expose an underlying principle governing human lo-

comotion. We hypothesized that total body angular momentum in the CM frame

is highly regulated, and we tested this hypothesis by collecting and analyzing kine-

matic and kinetic data on five subjects walking at self-selected speeds. One specific

improvement to previous work is that total body angular momentum during walking

was considered instead of only upper or lower body angular momentum. Also, angular

momentum in all three directions was examined instead of only angular momentum

in one or two directions. Furthermore, link angular momenta were calculated to in-

vestigate the partition of angular momentum throughout the human body (in other

words, how various links combine to give total angular momentum). Besides provid-

ing an elegant model for human locomotion, the conservation of angular momentum,

if used as a control objective, might produce stable robotic locomotion with enhanced

15



biological realism.
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Chapter 2

Force Analysis

2.1 Force Model

A model was developed to predict the ground reaction force (GRF), which is the force

that the ground exerts on the body during locomotion, if angular momentum about

the body CM were conserved. The forces between the feet and ground can be summed

to yield a single GRF vector F that acts on a point on the ground called the center

of pressure (CP). The torque T about the body CM due to the GRF is therefore

r x F, where r is the vector from the body CM to the CP. Angular momentum L of

a point mass, say the CM of a foot, about the body CM is defined as x p, where

pY is momentum of the point mass. Force is change of momentum over time, which

leads to the following equation relating torque and change of angular momentum over

time:
dp5 dL'r 'x - x dF _ dL X(2.1)
dt dt

If angular momentum is conserved, dL in Equation 2.1 goes to zero and torque must

be zero as well. This provides a constraint on the GRF:

-- = 6=r x r (2.2)
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or written in component form,

7= 0 = ryF - rFy (2.3)

=% = = rF- rF. (2.4)

7 = 0 = r.F - r,F.. (2.5)

Solving Equations 2.3 and 2.4 for F, and F., respectively, gives

F -- r (2.6)
rz

F =- . (2.7)

Equations 2.6 and 2.7 predict the x and y components of the GRF from the z compo-

nent of the GRF and components of the vector from the body CM to the CP. These

equations were derived assuming perfect angular momentum conservation, which al-

lows the quantification of the level of angular momentum regulation. This can be

accomplished by measuring GRF during walking and comparing the results to model

predictions. Specifically, Fz, rz, r, and r. in Equations 2.6 and 2.7 were experimen-

tally determined to predict F, and Fy using those equations. The predicted F, and

Fy were compared to experimental measurements of F, and Fy. A higher correlation

between model predictions and experimental measurements indicates a greater degree

of angular momentum regulation.

2.2 Human Model

A model of the human body was created using Creature Library (CL) and SD/FAST.

CL is software developed in the Leg Laboratory of the MIT Artificial Intelligence Lab-

oratory that provides an accessible user interface for SD/FAST, commercial software

that simulates systems composed of rigid bodies. The size and shape of a system (in

this case, the human body) is specified using CL, which then works with SD/FAST

to generate physical parameters such as mass and moment of inertia of each com-

18



ponent of that system (the head, body, and limbs). The human model is shown in

Figure 2-1. The model of the human body consisted of thirteen links (pair of feet,

pair of shanks, pair of thighs, pair of hands, pair of forearms, pair of upper arms, and

trunk and head) with twelve joints (pair of ankles, pair of knees, pair of hips, pair of

wrists, pair of elbows, and pair of shoulders). The feet and hands were modeled as

rectangular boxes; the shanks, thighs, forearms, and upper arms as truncated cones;

and the trunk and head as a cylinder with an elliptical cross-section with a sphere on

top.

Figure 2-1: Human model created in Creature Library. The model consists of thirteen
links (pair of feet, pair of shanks, pair of thighs, pair of hands, pair of forearms, pair
of upper arms, and trunk and head) with twelve joints (pair of ankles, pair of knees,
pair of hips, pair of wrists, pair of elbows, and pair of shoulders). The feet and hands
are modeled as rectangular boxes; the shanks, thighs, forearms, and upper arms as
truncated cones; and the trunk and head as a cylinder with an elliptical cross-section
with a sphere on top.

19



Subject Sex Age Weight (kg) Walking Speed (m/s)
1 female 21 50.1 1.29 ± 0.02
2 female 21 49.9 1.05 ± 0.01
3 female 21 62.7 1.35 ± 0.05
4 male 24 82.6 1.25 i 0.03
5 male 31 76.8 1.32 ± 0.04

Table 2.1: Physical characteristics of experimental subjects. Five subjects partici-
pated in the walking and hip rotation experiments. There were three female and two
male subjects, who ranged in age from 21 to 31 years, in weight from 49.9 to 82.6 kg,
and in walking speed from 1.05 to 1.35 m/s.

2.3 Data Collection

Data were gathered in the Gait Laboratory of Spaulding Rehabilitation Hospital in

a study approved by the MIT Committee on the Use of Humans as Experimental

Subjects. Five subjects participated in the experiments; their physical characteristics

are shown in Table 2.1. Physical measurements of the subject's links were taken to

accurately model the subject. Markers were placed on various parts of the subject's

body: sixteen lower body markers, five trunk markers, eight upper limb markers, and

four head markers. An infrared Vicon Motion Capture System recorded the marker

positions as the subject moved about the testing platform. Two force plates in the

center of the platform recorded GRF and CP measurements when the subject stepped

on them. The subject walked at a self-selected speed for six or seven trials, each trial

consisting of one traversal of the testing platform. In a different experiment, the

subject started from standing and rotated his or her hips (similar to how one twirls

a hula hoop) at an increasing speed for ten seconds. Figure 2-2 shows the coordinate

system used in analyzing the data. x is defined as the forward direction, y points

toward the left from the subject's perspective, and z is in the vertical direction.

Figure 2-3 shows an overview of the analysis done on the data.

20



z

y

Figure 2-2: Coordinate system of walking experiment. x is defined as the forward
direction, y points toward the left from the subject's perspective, and z is in the
vertical direction.
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Figure 2-3: Overview of data analysis. Software programs are in ovals, and data are
in boxes. Arrows indicate the flow of data.

2.4 Calculation of Predicted Forces

A program ForceCalc was developed for calculating the forces predicted by Equa-

tions 2.6 and 2.7 from the data gathered in the Gait Laboratory using Matlab. Force-

Calc determined the body CM position from the marker position data and the link

masses given by Creature Library and SD/FAST. It subtracted the body CM posi-

tion from the CP position to obtain r, which was used along with Fz provided by the

force plates to calculate Fx and Fy using Equations 2.6 and 2.7. These forces were

compared to the experimental F, and Fy measured by the force plates in the Gait

Laboratory. For each subject, data from all trials were combined to give the coeffi-

cient of multiple correlation (CMC), a statistical measure of how well the model and

22



experimental forces correlated. A CMC of 1 means 100% similarity (for example,

two sine waves that are in phase) and a CMC of 0 implies no correlation between

waveforms (for example, two sine waves that are 180 out of phase). The CMC was

developed by Kadaba and colleagues to quantify the repeatability of kinematic data

in normal adult gait. The CMC is given by

CMC = 1- l _ (Yit -it)2/MT(N- 1)

CM E=1 3 _I Et=l (1 4t - Yi)2/M(NT - 1)

where Yijt is the value of the kinematic variable at the tth time point of the jth trial

on the ith test day. M is the total number of test days, N is the total number of

trials on the ith test day, and T is the total number of time points in the jth trial.

it is the average of the variable at time point t on the ith test day and is given by

I N
Yit -= 3 Yijt. (2.9)

1i is the grand mean on the ith day and is given by

1 N T
N j = T Y' [7]= t(2.10)

j -1 t=1

Equation 2.8 was modified to yield the CMC for measuring the similarity between

model and experimental forces in our study:

CMC = 1 - 2j= 2 =I(Yjt- )2/T (2.11)
3=1 t= (y/,- Y)2/(2T - 1)

where Ylt is the model force at the tth time point, Y2t is the experimental force at

the tth time point, T is the total number of time points, Yt is the mean of the model

and experimental forces at the tth time point, and Y is the mean of Yt for the trial.
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2.5 Results

Figures 2-4 through 2-8 show the model and experimental forces during a sample

trial of the walking experiment for each subject. Forces generated by heavier subjects

were naturally larger. F=, the GRF in the direction of walking, was greater than Fy,

the GRF perpendicular to the direction of locomotion, for each subject. Model and

experimental forces were similar, and the degree of similarity was quantified by the

CMC. 150 ... ,
50

0 -

-1

-150

-200 . . . . . . . . I
1.1 1.2 1.3 1.4 1.5 18 1.7 1.8 1.9 2

LL.

Time (s)

Figure 2-4: Model and experimental forces during walking vs time (Subject 1). The
experimental F varies from -124 N to 100 N, and the experimental F, varies from
-47 N to 37 N.
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Figure 2-6: Model and experimental forces during walking vs time (Subject 3). The
experimental F, varies from -180 N to 112 N, and the experimental Fy varies from
-46 N to 57 N.
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Figure 2-7: Model and experimental forces during walking vs time (Subject 4). The
experimental F, varies from -204 N to 150 N, and the experimental Fy varies from
-64 N to 55 N.
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Subject CMC for F CMC for Fy
1 0.92 0.98
2 0.89 0.96
3 0.90 0.96
4 0.84 0.95

5 0.87 0.85

Mean 0.88 ± 0.03 0.94 + 0.05

Table 2.2: Coefficient of multiple correlation for force analysis. The mean CMC for
Fy (0.94 + 0.05) is higher than that for F. (0.88 ± 0.03) and has a larger standard
deviation.

Table 2.2 shows the CMC for Fx and Fy of each subject and the mean CMC and

standard deviation in CMC across the five subjects. The CMC for each subject was

found by combining all the subject's walking trials and using Equation 2.11. Across

the five subjects, the mean CMC for F, was 0.88 ± 0.03, and the mean CMC for Fy

was 0.94 ± 0.05. To review, CMC varies between 0 and 1, with 1 corresponding to

perfect correlation and 0 corresponding to no correlation.

Model and experimental forces during a trial in the rotation experiment for Subject

3 are shown in Figure 2-9. While the subject was standing or rotating slowly near

the beginning of the trial, model and experimental forces were comparable. However,

they diverged as rotation of the subject's hips accelerated.

27
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Figure 2-9: Model and experimental forces during rotation vs time (Subject 3). Model
and experimental forces are similar when the subject starts the trial with standing,
and they become increasingly disparate as the rotation of the subject's hips acceler-
ates. Experimental Fx reaches a maximum of 94 N and experimental Fy reaches a
maximum of 126 N at the fastest rotation speed.
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2.6 Discussion

Model and experimental ground reaction forces during walking matched closely (Fig-

ures 2-4 through 2-8). The degree of correlation was quantified by the CMC (Ta-

ble 2.2), which measures the similarity between two waveforms. The waveforms were

the model GRF predicted in the presence of perfect angular momentum conservation

and the experimental GRF measured by the force plates. The mean CMC for Fx

across the five subjects was 0.88 ± 0.03 and the mean CMC for Fv was 0.94 ± 0.05.

The CMC for F, was smaller than the CMC for F.. This makes sense because forces

generated in the direction of motion (Fr) were larger and thus more difficult to control

such that angular momentum was conserved. However, the CMC for both F: and

F, was high, supporting the hypothesis that angular momentum is regulated. The

disparity between model and experimental forces during the hip rotation experiment

(Figure 2-9) indicates that angular momentum conservation is not a necessary con-

dition for stable human motion, which suggests that the body may actively regulate

angular momentum during walking.
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Chapter 3

Angular Momentum Analysis

3.1 Calculation of Angular Momentum

A program LCalc was developed in Matlab for calculating the total angular momen-

tum about the body CM and the individual link angular momenta. First, LCalc

determined the CM position of each link and found the angular momentum of the

link CM about the body CM using position marker and mass data. It then calcu-

lated the angular momentum of each link about its own CM using position marker

and moment of inertia data. Finally, it added these angular momenta to give the

total link angular momentum, which was summed across all links to obtain the total

angular momentum about the body CM.

3.2 Principal Components Analysis

Principal components analysis (PCA) was done on the link angular momenta to give

the partition of angular momentum throughout the body. PCA is a statistical method

that reduces the number of parameters needed to describe a data set. PCA takes a

matrix of data in one basis (in this case, the basis of the angular momenta of the body

links) and transforms the matrix into a basis that eliminates the covariances of the

new variables. The new variables are the principal components (PCs). First, PCA

finds the covariance matrix S of the original variables (the link angular momenta of
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which there are thirteen):

S2 81,2 ' 81,13

2
S2,1 S2 ... S2,13

813,1 S13,2 .' S13

(3.1)

where s is the variance of the ith variable and sj is the covariance between the ith

and jth variables. If sj is nonzero, a linear relationship exists between the ith and

jth variables, which indicates a redundancy in the variables describing the data. PCA

seeks to eliminate that redundancy by finding new variables with zero covariances.

Since sij = sj,i, S is a symmetric matrix, and because S is the covariance matrix of

real data, it can be assumed to be nonsingular. Linear algebra theory states that any

symmetric, nonsingular matrix, such as S, can be reduced to a diagonal matrix L by

pre- and post-multiplying it by a particular orthonormal matrix U:

U'SU = L. (3.2)

The diagonal elements of L are the eigenvalues i of S, and the columns of U are the

eigenvectors ui of S. By definition, S, ui, and li satisfy

Sui = liui, (3.3)

which canl be solved easily to find ui and i. Thus, the eigenvectors of S (the PCs) are

the new variables written as a linear combination of the original ones, and they form a

basis in which the covariance matrix is L. As L is a diagonal matrix, the covariances

of the new variables are zero, which is the desired result. PCA orders the PCs such

that the diagonal elements of L, the variances of the new variables, decrease along the

diagonal. Although there are the same number of PCs as original variables, usually

only a subset of these is necessary to account for the variance in the data (in this

case, the total angular momentum). [6] Therefore, instead of dealing with thirteen

32
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individual links, we could see how the link angular momenta combined to give the

total angular momentum by considering the first few principal components.

3.3 Results

3.3.1 Angular Momentum

The total angular momentum L over one gait cycle during walking for each subject

is shown in Figures 3-1 through 3-5. A gait cycle starts when the right heel strikes

the ground and ends when the right heel hits the ground again in the next step. The

trials for each subject were combined to produce a mean angular momentum with

error bars given by one standard deviation. Heavier subjects naturally produced

greater angular momenta. For each subject, Ly was larger than L, and Lz was the

smallest of the three.

T

4-

E

i
-J

01

0

0.5

-1

00

10 20 30 40 so50 0

Percent Gat Cycle

Figure 3-1: Angular momentum during walking vs percent gait cycle (Subject 1). The
seven trials were combined to produce mean angular momenta with error bars given
by one standard deviation. L varies between -0.9 kg - m 2 /s and 1.0 kg . m 2 /s, Ly
between -1.8 kg.m 2 /s and 2.8 kg.m 2 /s, and L, between -0.5 kg.m 2 /s and 0.5 kg.m 2/s.
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Figure 3-2: Angular momentum during walking vs percent gait cycle (Subject 2). The
six trials were combined to produce mean angular momenta with error bars given by
one standard deviation. Lx varies between -0.8 kg-m 2/s and 0.9 kg.m 2 /s, Ly between
-1.6 kg m2 /s and 3.1 kg r m 2 /s, and Lx between -0.5 kg m 2 /s and 0.5 kg . m 2 /s.
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Figure 3-3: Angular momentum during walking vs percent gait cycle (Subject 3). The
six trials were combined to produce mean angular momenta with error bars given by
one standard deviation. L varies between -1.5 kg m2 /s and 1.6 kg.m 2 /s, Ly between
-2.1 kg m 2 /s and 4,.7 kg -m 2 /s, and Lz between -1.0 kg. m 2 /s and 1.1 kg - m 2/s.
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Figure 3-4: Angular momentum during walking vs percent gait cycle (Subject 4). The
seven trials were combined to produce mean angular momenta with error bars given
by one standard deviation. L varies between -2.3 kg - m 2 /s and 2.5 kg * m 2 /s, Ly
between -3.2 kg.m 2 /s and 7.1 kg.-m2 /s, and Lz between -1.6 kg-m 2 /s and 1.5 kg.m 2/s.
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Figure 3-5: Angular momentum during walking vs percent gait cycle (Subject 5). The
seven trials were combined to produce mean angular momenta with error bars given
by one standard deviation. L varies between -2.6 kg m 2 /s and 2.0 kg m 2 /s, Ly
between -3.0 kg.m2 /s and 5.4 kg.m 2 /s, and Lz between -1.1 kg.m2 /s and 1.2 kg.m 2 /s.
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3.3.2 Principal Components

PCA was done on the link angular momenta as detailed in Section 3.2. Figures 3-6

through 3-10 show the percent variance in total angular momentum explained by

the first five principal components. For each subject, PCA was done on the link

angular momenta combined from all walking trials. The first PC explained most of

the variance in angular momentum in each case.
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Figure 3-6: Percent variance in angular momentum explained by first five principal
components (Subject 1). The first PC of L. explains 78.3% of the variance in L,.
The first PC of Ly explains 85.6% of the variance in L,. The first PC of Lz explains
93.1% of the variance in Lz.
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Figure 3-7: Percent variance in angular momentum eplained by first five principal
components (Subject 2). The first PC of L. explains 74.6% of the variance in L.
The first PC of L, explains 85.7% of the variance in Ly. The first PC of L, explains
91.4% of the variance in L.
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Figure 3-8: Percent variance in angular momentum explained by first five principal
components (Subject 3). The first PC of L, explains 70.0% of the variance in L.
The first PC of Ly explains 86.8% of the variance in Ly. The first PC of Lz explains
91.9% of the variance in L.
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Figure 3-9: Percent variance in angular momentum explained by first five principal
components (Subject 4). The first PC of L, explains 69.8% of the variance in L.
The first PC of LY explains 87.2% of the variance in L,. The first PC of L explains
91.2% of the variance in Lz.
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Figure 3-10: Percent variance in angular momentum explained by first five principal
components (Subject 5). The first PC of L explains 70.3% of the variance in L.
The first PC of L explains 88.4% of the variance in LY. The first PC of L, explains
94.2% of the variance in Lz.
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Subject _os%sLy L 

1 78.3 85.6 93.1
2 74.6 85.7 91.4
3 70.0 86.8 91.9
4 69.8 87.2 91.2
5 70.3 88.4 94.2

Mean 72.6 3.8 86.7 t 1.2 92.4 1.3

Table 3.1: Percent variance in angular momentum explained by first principal com-
ponent. The mean percent variance in L, explained by the first PC of L. (%sL) is
lower than the mean %sY and the mean %sL and has a larger standard deviation.
The standard deviation in the mean %sLs is comparable to that in the mean %Ly,

though the mean %sL is larger.

A summary of percent variance in L, Lv, and Lz explained by the first PC of

each and the mean and standard deviation for each quantity across the five subjects

are displayed in Table 3.1. The mean percent variance in L, Ly, and L_ explained

by its first PC was, respectively, 72.6% ± 3.8%, 86.7% ± 1.2%, and 92.4% ± 1.3%. The

link-to-number correspondence in Figures 3-11 through 3-15 is given in Table 3.2.
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Number Link
1 left foot
2 right foot
3 left shank
4 right shank
5 left thigh
6 right thigh
7 left hand
8 right hand
9 left forearm
10 right forearm
11 left upper arm
12 right upper arm
13 trunk and head

Table 3.2: Link-to-number correspondence. Each link is
reading of the x-axis in Figures 3-11 through 3-15.

assigned a number to ease
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The relative contribution of the body links listed in Table 3.2 to the first PC of

angular momentum for each subject is shown by Figures 3-11 through 3-15. Some

general trends appeared across subjects. The largest contributions to the first PC of

L, came from the feet, shanks, and trunk and head. The feet and shanks carried the

most weight in the first PC of Ly. For the first PC of Lz, the shanks and thighs were

the major contributors.

a

-0.5
ci

I
1

it

-Sg
s0I

0.5

0

-0.5

_,

0.5

0

1 2 3 4 5 6 7 8 9 10 11 12 13

Link

Figure 3-11: Relative contribution of body links to first principal component (Subject
1). The largest contributions to the first PC of L. come from the feet (Links 1 and
2), shanks (Links 3 and 4), and trunk and head (Link 13). The feet and shanks carry
the most weight in the first PC of L. For the first PC of L,, the shanks and thighs
(Links 5 and 6) are the major contributors
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Figure 3-12: Relative contribution of body links to first principal component (Subject
2). The largest contributions to the first PC of L: come from the feet (Links 1 and
2), shanks (Links 3 and 4), and trunk and head (Link 13). The feet and shanks carry
the most weight in the first PC of LY. For the first PC of L, the shanks and thighs
(Links 5 and 6) are the major contributors
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Figure 3-13: Relative contribution of body links to first principal component (Subject
3). The largest contributions to the first PC of L= come from the feet (Links 1 and
2), shanks (Links 3 and 4), and trunk and head (Link 13). The feet and shanks carry
the most weight in the first PC of L. For the first PC of L,, the shanks and thighs
(Links 5 and 6) are the major contributors
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Figure 3-14: Relative contribution of body links to first principal component (Subject
4). The largest contributions to the first PC of L, come from the feet (Links 1 and
2), shanks (Links 3 and 4), and trunk and head (Link 13). The feet and shanks carry
the most weight in the first PC of Ly. For the first PC of Lz, the shanks and thighs
(Links 5 and 6) are the major contributors
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Figure 3-15: Relative contribution of body links to first principal component (Subject
5). The largest contributions to the first PC of L., come from the feet (Links 1 and

2), shanks (Links 3 and 4), upper arms (Links 11 and 12), and trunk and head (Link
13). The feet and shanks carry the most weight in the first PC of Ly. For the first
PC of L,. the shanks and thighs (Links 5 and 6) are the major contributors.
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3.4 Discussion

The first principal component of Lx, Ly, and LX accounted for, respectively, 72.6% ±

3.8%, 86.7% ± 1.2%, and 92.4% ± 1.3% of the variance in those quantities (Table 3.1).

This suggests that instead of describing the total angular momentum by considering

the sum of thirteen individual links, we can use just one variable to explain a great

deal of the total angular momentum: the first principal component. Insight into the

partition of angular momentum, in other words how the body uses various links to

regulate angular momentum, can be gained by examining the contribution of each

link to the first principal component (Figures 3-11 through 3-15).

In the case of L., the major contributors to the first PC were the links of the

lower body. The antisymmetry of the bars for left and right feet indicates that the

angular momenta of these two links cancel each other during walking. The same

reasoning applies to the pair of shanks and pair of thighs. L, which is the key

angular momentum to regulate because it is the largest angular momentum link by

link, showed almost perfect cancellation.

For Lz, the opposite signs of the bars for the lower and upper body links suggest

that the angular momenta of the lower and upper body cancel each other in part. The

cancellation was not as perfect as it was for Ly because the bars do not sum to zero.

The body is less likely to become unstable from small values of angular momentum,

and since Lz was much smaller than Ly link by link, complete cancellation was not

as vital in the z direction.

The link contribution profile to the first PC of L. indicates that there was no

cancellation among the links, yet L was still small compared to Ly (Figures 3-1

through 3-5). This is possible if the body minimizes L: of each link independently,

and each link Lz points in roughly the same direction during walking. PCA would not

be sensitive to this sort of control mechanism. This phenomenon could also account

for the incomplete cancellation seen in L,.
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Chapter 4

Conclusion

4.1 Future Work

The next step is to expand the study to additional subjects and to determine how

factors such as walking speed and body morphology affect angular momentum regula-

tion. To investigate the effect of walking speed, the subject will walk slower or faster

than his or her self-selected speed. The results of this experiment will be compared

to the experiment at the self-selected speed. Weights will be attached to the sub-

ject's arm or leg during walking to examine the effect of body morphology on angular

momentum. Comparing these trials to the ones without weights, we expect that the

angular momenta of the body and links will look similar with and without the weights.

We hypothesize that the body will compensate for the additional angular momentum

introduced by the attached weights by rotating other links faster to generate angular

momentum to cancel the increased link angular momentum. Alternatively, the body

could move the link with the weights more slowly to reduce the angular momentum

contribution from that link.

In addition, force and angular momentum calculations will be improved by exam-

ining the validity of certain assumptions made during the analysis. First, the center of

mass of each link was assumed to adhere to the norm established from anthropological

data. Error in the link CM would affect force and angular momentum calculations.

Also, angular momentum associated with rotations of each link about its own z axis
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(the line joining two joints) was assumed to be very small compared to the other

two angular momenta as not much twisting of the links occurs during walking. This

would affect calculation of link angular momenta and thus total angular momentum.

4.2 Concluding Remarks

To determine the extent to which the body regulates angular momentum, a force

model was developed to predict the GRF in the x and y directions assuming perfect

angular momentum conservation. These model forces closely matched experimental

forces, suggesting that the body does indeed regulate angular momentum. The an-

gular momenta of the links of the body were calculated to determine the partition of

angular momentum. We found that Ly and Lz showed evident cancellation of link

angular momenta whereas L did not. Link by link, LY was much larger than L. and

Lz, which makes it more likely to cause stability problems. Therefore, Ly is the key

angular momentum to regulate. In the course of this work, a computer human model

and software programs (ForceCalc and LCalc) were developed to analyze data.
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