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Abstract

This work presents a theoretical and numerical investigation of high index-contrast pas-
sive components that can serve as building blocks at the end-pointsand nodes of WDM
communications systems. The main characteristic of these structures is their miniature
size (on the order of the optical wavelength), and their low radiation loss due to the strong
light confinement in high index-contrast systems. Thus large scale, high density optical
integration may be possible with the associated advantages of increased functionality,
compactness and low-cost. Novel devices for filtering, optical interconnections and cou-
pling to fibers are presented, specifically: a class of resonant add/drop filters that rely on
symmetry and degeneracy of modes, low-loss right-angle bends, splitters, crossings based
on transmission cavities, and fiber-chip couplers based on cascades of resonators or lens-
ing mechanisms. Their operating principles are explained and an approximate analysis is
obtained by analytical methods such as coupled-mode theory and gaussian/ray optics. For
accurate analysis and optimized design, extensive numerical simulations are performed
using the Finite Difference Time Domain method. The numerical results are in good
agreement with the experimental data obtained for bends that were farbricated and tested
at MIT. Issues that remain to be addressed for this technology to be viable and possible
future directions are also discussed.
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Chapter 1

Introduction

1.1 Motivation
The concept of integrated optics has existed since 1969 when a complete work of

waveguide analysis and design of waveguide bends and filters was presented [1],[2]. How-

ever it is only recently that favorable conditions for the development of this technology

have emerged. The bandwidth requirements for internet services and the promise of high

bandwidth links to homes are driving the development of high data-rate communication

systems. Wavelength Division Multiplexing (WDM), which is the main approach to

increasing the capacity of optical fibers, relies heavily on devices for efficient signal pro-

cessing at the optical level, thus creating a need for low-cost high-performance integrated

optical devices.

The minimum size of integrated optics devices depends on the dielectric contrast of

the layers used to form the components. High index-contrast waveguides refer to

waveguides with a high-index core and a low-index cladding. Examples of high index-

contrast systems (with the advantage that they are compatible with silicon ULSI process-

ing), are strip waveguides of silicon (Si) or silicon nitride (Si 3N4), on a silicon oxide

(SiO 2) substrate with air or SiO 2 cladding. The index differences of -2-2.5 and -0.5-1,

respectively are much larger than those of typical wave guiding systems, such as optical

fibers or doped silica waveguides with index-differences as small as 0.01. High index-con-

trast waveguides are characterized by stronger light confinement and much smaller cross-

sectional dimensions (in the sub micron range) than the above mentioned typical wave

guiding systems, which have cross-sectional dimensions on the order of lOx10 pim2. They

also tend to have stronger polarization dependence, greater scattering loss caused by sur-
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face roughness and connection to fibers is much more difficult. On the other hand, the

light is strongly confined in high index-contrast systems and thus coupling to radiation

modes is very small. Moreover, because of the miniature size of such devices, even a high

dB/cm loss corresponds to a low overall loss. Thus, abrupt changes in the light flow can be

achieved very efficiently in a very small area, allowing the dense integration of optical

devices on a chip.

The idea that large index differences lead to miniaturized devices is not new but has

only recently gained interest for several reasons [61]: High quality crystalline materials

with high dielectric contrast were not available. Tolerances to device imperfection espe-

cially with regard to the interfaces between the low- and high- index materials are

demanding. Critical dimensions as small as 100nm are involved which were well out of

the reach of lithography previously available. Now, advances in nanofabrication allow the

consideration of high index-contrast structures of sub micron dimensions for integrated

optics.

The devices examined in this thesis are passive devices for wavelength filtering and

optical inteconnections. Such devices are essential components of photonic integrated cir-

cuits (PIC). PICs contain optically interconnected devices on an appropriately designed

solid state substrate, that successively reroute or process the signal while it is still in its

optical form. Of great importance is also the ability to couple light and efficiently in and

out of the PIC, which a very challenging task due to the large mode mismatch between

fibers and integrated waveguides.

The common feature of many of the devices presented here, is that their operation is

based on resonance and that their sizes are on the order of the optical wavelength. Their

behavior is modelled numerically using the Finite Difference Time Domain (FDTD)
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method, while analytical methods, such as the Coupled Mode Theory (CMT) in time serve

as a starting point.

1.2 Outline of the thesis
Using the theoretical and numerical tools presented in chapters 2 and 3, respectively, this

thesis investigates: symmetric resonant Channel Dropping Filters (CDF) for WDM appli-

cations, in chapter 4, high-performance waveguide bends, splitters, and crosses in chapter

5, fiber-chip couplers, in chapter 6 and finally, conclusions and future work, in chapter 7.

1.2.1 Theoretical background
The final design and modelling of our optical structures relies heavily on numerical simu-

lations. However, most of the times it is necessary to start with a theoretical analysis that

provides a proof of concept, an intuitive understanding of the operating principles and

even an initial guess for the design parameters to be optimized through simulations. Ana-

lytical methods we use include: Coupled Mode Theory (CMT) in time for filters and other

resonant structures, Gaussian beams and ray optics for lensing structures, Effective Index

Method (EIM) to reduce a 3D analysis into two dimensions, etc. A brief theoretical back-

ground for these methods and some basic examples that will be useful throughout this the-

sis are presented in next chapter.

1.2.2 The FDTD method
The method of choice for modelling waveguide based devices, has traditionally been the

Beam Propagation Method (BPM), [8],[9]. Because of its inherent assumptions, this

method is limited to weakly guided structures with little variation along the propagation

direction. An alternative method without such limitations is the Finite Difference Time

Domain (FDTD) method [13],[14] (and references therein) which has been extensively

applied to the design of complicated RF and microwave devices. As optical devices

approach the size of the optical wavelength the FDTD method has emerged as a powerful
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tool for the modeling and design of integrated optics, e.g. [12].

The FDTD method solves the full-vector Maxwell's curl equations without any

approximation other than the replacement of differential equations with finite differences

on a discrete mesh [15]. Very complex structures can thus be modelled in two or three

dimensions, provided their features are sufficiently resolved by the discretization. In prac-

tice, because the 3D FDTD often has prohibitive time and memory requirements, the 2D

method is preferred which, combined with the Effective Index Method (EIM) in the third

dimension, offers a sufficiently accurate analysis of most planar devices. Another impor-

tant limitation of the FDTD method is that a finite spatial domain must be used to model

unbounded geometries, so approximate representations of open boundary conditions are

used. The challenge is to terminate the mesh in a way that allows scattered waves to leave

the computational domain with negligible spurious back-reflections from the border and

various methods have been proposed [16]-[20]. Although it is computationally intensive,

the FDTD method has the advantage that with only one simulation we can find the system

response over a wide frequency range through Discrete Fourier Transform (DFT) or Fast

Fourier Transform (FFT) of the time dependent data, thus it is well suited for modelling

resonant structures.

1.2.3 Resonant channel add/drop filters
Resonator-based integrated devices can interact with optical signals in a PIC in such a way

as to selectively transmit, reflect or detect the signals that are resonant with these devices.

Channel add/drop filters can access one channel of a wavelength division multiplexed sig-

nal without disturbing the other channels and are therefore important elements in WDM

communications. Resonant filters are attractive candidates because they can potentially

realize the narrowest linewidth for a given device size and because a number of coupled

resonators can shape the simple Lorentzian response of a single resonator yielding desir-
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able higher order characteristics[34],[36],[48]. Ring and disk resonators based on semi-

conductor waveguides with a very large lateral refractive index contrast can have sizes on

the order of the optical wavelength and theoretically achieve very high radiation quality

factors (Q) due to small bending loss [36],[38]. This small size leads to a free spectral

range (FSR) as wide as 6THz (-50nm) capable of accommodating a set of WDM channels

across the erbium-doped amplifier bandwidth. However the surface-roughness-induced

radiation loss and coupling between counter-propagating waves in a ring [41] can deterio-

rate the filter performance. An alternative way to achieve the same behavior is based on

the excitation of two degenerate symmetric and anti-symmetric standing wave modes in a

resonant system with symmetry [44],[47]. An intuitive understanding and approximate

prediction of the filter behavior can be gained through CMT in time, but for accurate mod-

elling extensive simulations are required. The FDTD method is particularly suited for

these type of structures and is our main numerical tool.

1.2.4 Low-loss waveguide components
The dense integration of photonic devices creates the need for components that provide

complicated low-loss optical interconnections within a small chip area. In this work we

show that we can use resonant cavities appropriately placed in high index-contrast

waveguide bends, splitters and crosses, to greatly enhance the performance of these com-

ponents [67]. On resonance, the transmission is maximized and the reflection minimized,

limited only by the radiation loss. The peak values are set by the ratio of the quality factors

of the resonator associated with coupling to radiation and to the waveguide modes, respec-

tively. The name High Transmission Cavity (HTC) has been adopted for these compo-

nents.

FDTD simulations show that it is possible to achieve up to 99% transmission in sharp

900 bends using this concept. Two of these bends placed back to back can make up a T-
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splitter with similarly high performance and the ratio of output power in its two output

ports can be varied by displacing the input waveguide with respect to the junctions sym-

metry plane. Crossings with a cavity of fourfold symmetry at the center can be designed

with more than 95% transmission and ~ -30dB crosstalk (power leaking sideways) are also

demonstrated numerically.

1.2.5 Fiber-PIC coupling
High index-contrast systems may enable high density optical integration. However, for

this technology to be viable in optical communication systems it is necessary to be able to

couple light efficiently from an optical fiber into the optical devices on an optical chip and

vice versa. This is a very challenging task due to the large mismatch between the fiber

mode and the integrated waveguide mode in both size (-10 m vs. <-1 m) and shape (cir-

cular vs. highly elliptical).

In this work we investigate theoretically the possibility of coupling light from a fiber

into high index contrast waveguides, using structures only a few pm long, much shorter

than mode converters encountered in the literature. We present two coupling schemes for

lateral mode conversion, one employing cascaded square resonators and one employing

lens-like structures. The latter is much easier to design and results in better performance

(-90% coupling efficiency). The combination of this mechanism with graded index lens-

ing through a layered structure in the vertical direction is also investigated in a 3D mode

conversion scheme.
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Chapter 2

Theoretical Background
This chapter contains the theory which is the basis for the analytical calculations in this

thesis.

2.1 Modes in optical waveguides

A bidirectional waveguide along the z-axis is invariant under z-mirror symmetry. Any

field propagating in the waveguide can be transformed into a symmetrical field propagat-

ing in the reverse direction which also satisfies Maxwell's equations. The formalism pre-

sented next, closely follows [3].

2.1.1 Normal modes
The normal modes of a waveguide are sourceless fields with a e-jPz z-dependence that

remain bounded for all x,y. We assume a ejOtt time dependence. Writing the fields out as

(2.1)

7=NT + 2HZ

Maxwell's curl equations can be written as:

ET -jVTEz= -WoJ X 71T

f7IT - jVTH, = w X (2.2)

VT(^ x PT) = iowpHz

VT(^XI7T) =-jwEEz

If there is a single solution for a given P the mode is non-degenerate. In the case of

lossless waveguides $ can be purely real or purely imaginary and the corresponding

modes are called propagating or evanescent. For non-degenerate modes:

- For real B: EPT, 7T are purely real and E, Hz are purely imaginary.
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* For imaginary B: tT, 74 T are purely imaginary and Ez, HZ are purely real.

Forward propagating modes are characterized by some abstract index v e N and are

related to backward propagating modes -v by z-mirror symmetry:

mode +v : {eTv(x, y), ezv(x, y)Z, 4Tv(x, y), hzv(x, y^ P(2
(2.3)

mode -v : {'Tv(x, y),-ezv(x, y)Z, - Tv(x, y), hzv(x, y3Iep

Note that in lossless waveguides, due to time reversal symmetry, the backward propa-

gating modes are related to the complex conjugate of the forward propagating modes as

follows:

-V V 
(2.4)

In open waveguides the set N is divided into a set of discrete points (which can be

empty) and a continuous set. Discrete points correspond to the discrete (guided) modes

that carry finite power and have a real physical meaning. The continuous parts of N corre-

spond to the continuous (radiating) modes that do not carry finite power and do not have

any individual physical existence; however integrals over these modes may be physical

fields.

2.1.2 General form of guided fields
For any part of a waveguide limited by two cross-sectional planes, the general solution of

the source free Maxwell's equations is a sum of forward and backward propagating

modes.

Et(x, y, z) } = [Aez _((XY) +xAvev Av(), y) (2.5)
71(x, y, Z) v c N A +V (X' Y) 1 -V (X' Y)
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Since the forward and backward components are related by (2.3) the field can be

expressed in terms of forward components only by defining

vV(z) = Ave

j(z ) = Ave

-j vz

-Apz

+ A-ve

- A-ve

jICz

(2.6)

Then we can write:

I
I

PT(x,

7IT(x,

y, z)

y, z)

y, z)

y, z)

I
I

V

V

jV (Z) TV (X' Y)

jv(z)ezv(x, y)

vv(z)hzv(xy)

I
I

(2.7)

(2.8)

2.1.3 Orthogonality relations
The general orthogonality relation of the normal modes is in lossless waveguides is:

'ffv(lxy)X g*(x,y) - dxdy = 'ffbtv(x,Y)xATrp*(x,y)dxdy = P V8g

where PV is:

* purely real if Bv is purely real and is the power carried by the mode.

- purely imaginary if $v is purely imaginary.

The power carried along the z-axis by an arbitrary field in a lossless waveguide is

(2.9)

P(z) = IRe $ (x, y) x *(x, y) -2dxdy = Re(Pvvvjv*)
V

P(z) = Pv(Av 2 _ -A_vI 2 )+
v, free

Pv(AvAv* - Av*Av)
v, evan
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Every propagating mode plays its own part in the power independently of other modes.

Power carried by evanescent modes couples v with -v modes but v remains uncoupled

from p # v.

2.1.4 Completeness of normal modes
In a bidirectional waveguide: Any two-component vector VT(x, y) defined in the xy-

plane can be written as a linear combination of the transverse electric and magnetic fields

of the forward traveling modes as:

VT(x, y) = 2 uv\ev(x, y) (2.12)
v E N

or

VT(x, y) = 2 WVATV(x, y) (2.13)
v e N

In contrast with expansion (2.5):

" z- dependence of normal modes does not appear in (2.12)-(2.13)

* there is no a priori relation between the waveguide and VT(x, y)

- only two components (x and y) are considered in (2.12)-(2.13)

These expansions are the basis of perturbation theories in systems that are close to an

ideal waveguide. The starting point consists in using the normal modes of the ideal

waveguide to represent the transverse components of the exact complete field through

expansions like (2.7) with unknown vv(z), jv(z). Note that (2.8) cannot be also exact

unless the system is identical to the ideal waveguide.

Using the orthogonality conditions we can extract the modal amplitudes from the total

field expansion of (2.12) (or (2.13)):

U = 1f 7(x,y) x hv*(x, y) Zdxdy (2.14)
2v
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2.2 Excitation of modes by localized currents
The orthogonality relations can be used to derive the fields { , f} excited in an ideal

waveguide by currents , of finite extent as shown in the schematic [3]:

zi z2

Figure 2.1: Schematic of a waveguide with localized current excitations.

Consider two different field distributions {E P, iY1} and {E 2, 12 } excited by two dif-

ferent current distributions { 1, 9 1} and {12, 2 } at the same frequency and in the

same material system. These two fields satisfy a reciprocity relationship:

V - (El x712 + 11 xP 2 ) = 01 'P2--12)-2 'El -92 - 11) (2.15)

We replace {I 1, 711} with the unknown field { , 71} excited by the currents Y, n

and {E2 , 712} with the sourceless backward traveling mode {-,(X, Y), h-v(x, y)}ejPvZ

and integrate (2.15) over x,y. The transverse part of V leads to a contour integral at infin-

ity:

[Exh_v+71xt-v~rdO->0
r --> -

the the LHS of (2.15) reduces to

(x _ + 7 x -v) e ^ejzdxdy (2.16)
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Since (2.16) depends only on transverse components we use the expansions (2.7) for

{ET, 71T} based on the discussion on completeness in section 2.1.4. Due to the orthogo-

nality relations (2.9) and the relations between the v, -v, and v* modes, the double inte-

gral in (2.16) gives -4AVPv . Assuming that the modes are normalized to unit power we

finally get:

dAV 1. (2.17
- _ - f - - vLj)eJzdxdy (2.17)

or

dz AdA _ Jf*) + ± -4 Nv*)eJUvzdxdy (2.18)

By integration with respect to z we can find the amplitudes of the forward propagating

modes.

Similarly for backward propagating modes we substitute {E2, 2 } with the source-

less forward traveling mode {ev(x, y), hv(x, y)} and using the same relationships

as before we get:

dz A -v JJ).v--A9 ' vle 1,dxdy (.9

In the following sections it will be convenient to use:

AV bv(z)e V(2.20)

A-v bv(Z)e jz

Knowing the forward amplitudes at z I and the backward amplitudes at Z2 we can find

the amplitudes resulting from the interaction of the waveguide modes with the currents:
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b (z2)v(z2 - z1 b (zi) - dzffdxdy( - v* - ] fv*)eJv(z - zi) 2 1

(2.21)

bv(zi) = e j v(z2Z-zb b(z 2) -' dzffdxdy() -_v* - .4 2 -v*)e-jv(z - Z2

With the procedure described above we have obtained the transverse components of

the total field. The axial components are obtained from the axial part of Maxwell's equa-

tions.

VT(^ X PT) = jwxH + M (2.22)

VT( 2 X 11T) = -jweEz - z

Using the source-free mode relations

VT(^ x hv) = joLhvz
(2.23)

VT(^ x = -joEevz

we finally get:

J
Ez= v(z)ezv(

v E N (2.24)
M

Hz = vv(z)hzv(x )-Z
v E N

2.3 Scattering matrices

The scattering matrix formalism comes from microwave engineering where it is a funda-

mental tool for characterizing microwave circuits. It can be extended to optical systems in

spite of some difficulties due to radiating modes.

We consider systems like the one shown in the schematic of Figure 2.2 and follow the

analysis of [3].
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b1 bk

1) (k

b-

2

Figure 2.2: Schematic of a multi-port optical system.

The optical system which is assumed passive, is viewed as a black box enclosed inside

a surface S. Energy with the outside world is exchanged through several ports that can be

optical waveguides or free space beams. The S-matrix theory is based on the following

assumptions:

* Every outlet has its own propagation axis and the electromagnetic fields are well con-

fined around these axes, so that effective outlets can be defined outside which the fields are

negligible. Physical ports correspond to the intersections of S and the effective outlets.

" The field is negligible everywhere on S outside the ports.

" The outlets are lossless waveguides

- There is no evanescent mode in the ports.

In a given port (k), the transverse field can be given a modal expansion. Assuming

that the propagation axis points toward the optical system we can write

$T(x,Y)= I (akv+bkv)T,kv(x, y)
v E N(k) (2.25)

14 T(x, y) = I (akv -bkv)T,kv(x,y)
v e N(k)

where x, y are the local coordinates, akv, bkv are the input and output waves, respec-

tively for the mode v and N(k) is the set of input modes for this port. The expansions
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(2.12),(2.13) are valid only for port k but they can be extended to the whole surface S

with the definition:

generalized modal field p = original field v, within port k
0 anywhere else

We can now use the total mode expansion valid throughout S.

T7= (a L+ b 9)tr,
p e M (2.26)

1T = , (ag - b 9Ar,
g e M

where M = u N(k) and an extended orthogonality relation:

ff x X h* -dS = 28 ,, (2.27)
S

This relation is valid only for fields on S that are zero outside the ports, n is the

inward pointing normal and the modes are assumed to be normalized to unit power. If the

transverse fields are real then (2.27) holds with instead of The total power

absorbed in the system is given by:

P = | = (l *-A*) (2.28)

where A, T are the column matrices of the a,'s and b's are related through the scat-

tering matrix 3 as:

? = 3 - (2.29)

If all the elements of A are zero except some input av, the output waves are given by

the v-th column of 3. Then the diagonal term Svv is the reflection coefficient of the

mode v and the non-diagonal terms Sgv are the transmission coefficients from the mode

v to the mode p . If the total fields PT, 7T on S are known, we can use the orthogonality
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conditions to obtain vV = av + b , jv = av - bv and v, = aI + bg , ji = a 9- b .

Then Svv and S.V are given by:

v -i v -j___
S +j = V It - (2.30)

Some important properties of the scattering matrix are given below:

- If the reference input/output planes at the ports are displaced and 1 is the displace-

ment associated to the mode (p), it can be shown that the new scattering matrix 3' is

given by:

'=- - 1 or S'gV = Spve I + PIV) (2.31)

where X is the diagonal matrix with elements e p t.

" A linear, reciprocal system has a symmetric scattering matrix:

3T = 3 or Sgv = sv (2.32)

" If the system is lossless its scattering matrix is unitary:

S7S= 1or ISgv 2 = 1 (2.33)
V

where 3t = 3*T.

The theory presented here will be useful in the calculation of the coupling efficiency

between fundamental fiber and waveguide modes obtained by different fiber-chip coupling

schemes in Chapter 6.

2.4 Effective index method

Because in most cases it is cumbersome to apply the above theory or preform numerical

simulations using the full-vector modes of 3D waveguide-based structures it might be

preferable to perform the analysis in two dimensions using an effective 2D model derived

from the real 3D structure. An approximate method which appears in many variations and

is widely used as a starting point for 2D numerical simulations, is the Effective Index
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Method (EIM). Its origin is in [30] where the analysis of slab waveguides is extended to

channel waveguides with 3D field solutions that are the products of solutions of two inde-

pendent slab waveguides. This leads to a set of transcendental equation for the transverse

propagation constants k,, k and the propagation constant is p2 = k2 n - kX - ky . This

analysis was modified in [31] by assigning the effective index n2 = n? - (k /ko) 2 to the

wider of the two slabs (referring to Figure 2.3). Both analyses yield reliable results well

above cutoff and for large aspect ratios but have large discrepancies from the exact solu-

tions near cutoff. We present its simplest forms here. Two waveguide systems often

encountered are shown: in Figure 2.3(a) and (b) and the equivalent 2D system in (c).

III III III III

z

(a) (b)

z
n, ni1

y

X

(c)

Figure 2.3: Schematic of (a) a rib waveguide (b) a ridge waveguide (c) 2D system result-
ing from effective index method.
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Case (a)
In this case we simply treat each of the regions 1,11,11 as a slab waveguide and find the

effective indices fi , P, ,respectively from the transverse resonance condition.

n2-n2 ' j2 _n2'e at nrr - ns jn 1 n 

k d n-n 2 = atan r e s atan r j+ m7 (2.34)0 1 s n n2 c n n2

where n e , Tzi , niii, k0 = 2n/X, d is the thickness of the slab waveguide in

each region and:

1 for TE modes

rs = (ns c2 (2.35)
s, c s [ jJ for TM modes

and we set m = 0 to find the fundamental mode.

These effective indices are used in the equivalent structure of Figure 2.3(c) for a 2D

analysis, e.g. by repeating the above procedure for the orthogonal polarization we can find

an estimate for the effective index of the total 3D structure. Note that although the EIM

may can give a good estimate of the effective index, especially for large aspect ratios, it

tends break down near cutoff. It also often leads to wrong conclusions about the number of

modes supported by the 3D waveguide, i.e. a waveguide that in reality is single-mode may

be found to be double-mode by EIM.

Case (b)

In the case of Figure 2.3(b) the regions I and II cannot be treated as slab waveguides

and we use a perturbation approach which is also applicable in case (a). We start from

finding the effective index for the slab waveguide of region IIM from (2.34), and the

associated fundamental mode profile, and then use perturbation theory to find the effective

indices in regions I and II [7].
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If we know the mode profile (p(x) and propagation constant B of a waveguide struc-

ture with index distribution n(x) then we can find the change AP$ of the propagation con-

stant of a slightly modified distribution n2 (x) + An 2(x) by assuming that (p(x) is

unchanged. The scalar wave equation satisfied by (p(x) is:

V2(p + [k (n2 + An 2 ) (p + A) 2 ](p = 0 (2.36)

where ko = 2 / and = kone.

To first order we can write ($ + A$) 2  32 + 2BA$ and we use the fact that (p(x) is

the exact solution of

V2(p + [k2 n2_ ](p = 0 (2.37)

so (2.36) becomes:

2 2
[k0 An -2BA]p = 0 (2.38)

We now multiply (2.38) by (p* and integrate over x to get:

fAn 2kpl2dx
Afl = 2n~I 2 x(2.39)

e 2ne jp|2dx

Equation (2.39) is applied in region (I) with ne = njj, $(x) = $1 (x) and

An 2(x) = n1 (x) -n 2 (x) to give An, = Aii and in region (II) with n, =

$(x) = $y(x) and Xn2 (x) = n j(x)-n 2(x)togiveAn, = AFZ

Then Fz = n1 + AF1 and hg = nil +ARg.

Note that this method can also be applied in case (a) giving slightly more accurate

results. In this work the equivalent 2D structure resulting from EIM will be used as input

in 2D FDTD simulations of 3D guided wave structures.
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2.5 Resonators
Most of the waveguide devices discussed in this work are based on resonant cavities. Res-

onance is a general physical phenomenon that takes many forms, one of the most familiar

being in circuit theory, e.g. LC circuits. The basic characteristic is the buildup of energy in

the resonator due to the excitation of one or more resonant modes and the gradual dissipa-

tion of this energy due to loss and/or coupling with input/output ports. In the case of inte-

grated optics the loss is due to radiation or material absorption and the input/output ports

are optical waveguides directly or evanescently coupled to the cavity. We use the coupling

of modes in time approach presented in [6] to describe the evolution of the resonant mode

amplitude a. The squared magnitude of this amplitude is equal to the energy stored in the

resonant cavity:

tal2 = W (2.40)

In the absence of any external excitation, the mode in the cavity decays exponentially

with a finite lifetime t due to various mechanisms of power dissipation such as material

loss, radiation, coupling to waveguides etc. The basic equation is:

da .(.=a jWO - -) a (2.41)

where o is the resonant frequency and 1/T = E(1/Ti) is the sum of all decay

rates I/Ti.

The rate of change of the energy in the cavity is equal to the dissipated power. From

(2.40) and (2.41) we have:

dW dja| 2 -dt dt W = -Pd (2.42)

The quality factor Q of the resonator is given by:
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1 Pd 2
- - 2(2.43)

Q OOW WOT

and is related to the spectral full half maximum width Aw 1 / 2 by:

1 = 01/2(Q (2.4)

2.5.1 Coupled resonators
We use the same formalism to describe the coupling of two resonators which, for simplic-

ity are assumed lossless.

da

1112a2 (2.45)
da

2
Tt =jW2 a2 + 1 2 1 aj

where ai, Co, i = 1, 2 are the mode amplitudes and resonant frequencies, respec-

tively, and p12, '21 are the coupling coefficients which can be found by energy conserva-

tion arguments in [6]. The rate of change of the total energy must be zero:

d(a, 12+|a 2 2) = a1 * 12 a 2 + a(G 12a 2 )*+ a2 *ja2 1a 1 + a2 2 1a1 )* = 0 (2.46)

This relation must hold for all a 1, a2 , thus:

I'12 = ~L2 1* = -jp. (2.47)

If the resonators are identical (wo = W2 = 0o ) it is easy to show that the total system

has two eigenmodes with even and odd symmetry, as, a = a 1 ± a 2 , respectively and the

resonant frequency is split into two frequencies os, a = ) T W-

2.5.2 Resonator-waveguide coupling

The use of a resonator as part of an optical system involves coupling with waveguides and

interaction of the resonant and waveguide modes.
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Evanescent coupling
In evanescent coupling the resonator mode is excited by the mode field of a side coupled

waveguide as shown in the schematic of Figure 2.4. Our analysis is based on the theory

presented in Section 2.2 in combination with the theory in [34]. A modified version

appears in [47].

S-1 s-2

+ 1 2

Figure 2.4: Schematic of a resonator evanescently coupled to a waveguide

In general, the resonator modes interact with the forward and backward propagating

modes of the waveguide over a finite length along which the fields of the resonator modes

overlap with the waveguide fields. The interaction region is assumed to be fully contained

between the input/output reference planes, defined on either side of the resonator, as

shown in Figure 2.4. For simplicity we consider a resonator and a waveguide each sup-

ports only one mode in the frequency range of interest. The resonator mode amplitude is

denoted by a and lal 2 is equal to the energy in the mode. The unperturbed resonator mode

field is denoted by tr(x, y, z) normalized to unit energy. The amplitudes of the incoming

(outgoing) waves at the waveguide are denoted by s+ 1(s_1 ) and s 2(s- 2), respectively

and S±(1, 2)12 is the power carried by the waveguide modes. For simpler notation the sub-

scripts v, -v of the waveguide modes are omitted. The fields of the unperturbed forward

and backward traveling waveguide mode are {+ (x, y 4+ (x, y) } and
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{_ (x, y), _ (x, y)} = {=*(x, y), -A*(x, y)}, respectively, normalized to unit power.

The influence of the coupling along the interaction length is expressed by the z-varying

amplitudes b+ (z) = A+ eTIIz which satisfy:

b+ (zI) =+ (2.48)

b ±(z 2 ) = s42

We can readily use (2.21) with I = jcoE(n (x, y, z)-nr (x, y, z))a(o)tr(x, y, z)

and 20 = 0 where n(x, y, z), nr(x, y, z) are the index distributions of the total system

and the resonator respectively and Y is the polarization current excited in the waveguide

by the resonator mode. We get:

S_ e-jP(Z2 - ZO) S 0 2 dffxy(n2 -n2 e e(z - zi)a) (.9

s 2  (+i 4OZ dfdd(-n)kr -_ e a (2.49)

-j(z - z) E 22 2 -jl3(z - 2
s = e js+ 2 - j 2 dz fdxdy(n 2-nr )tr'+ e )a (2.50)

The evolution of the resonator mode in time is given by:

da . I I
= - + +22 (2.51)

o e1

where o is the resonant frequency, 1 is the decay rate due to loss, I/te is the

decay rate into the waveguide mode and K1 , K2 are the input coupling coefficients associ-

ated with the forward and backward propagating modes in the bus.The input coupling

coefficients K1, 2 can be found by power conservation. Neglecting the loss the rate of

change of the energy in the resonator mode must be equal to the difference between the

incoming and outgoing power:

dial2 = + s+2 -_ I - S-2 (2.52)

From (2.51) we have:
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dial 2
_2 Ia 2 +Ka+ +
-- al + KIS+1a* + C.c. + K2s+2a* + c.c.

Substituting (2.49)-(2.50) into (2.52) and comparing with (2.53) we find:

. CO Eo 22 2) _*.-
K -_j , dzfdxdy( n -nr er e_4 0 I r1/ \ . -

(0622 2 2)K2 ~ 4_ Z dzJf dxdy(n -nr er2 - 4 1

-43(z - ZI)
(2.54)

*e AZ - Z2) (2.55)

Ku + 1K21 2 =
e

Setting z2 - z = 1, the outgoing waves can now be written as:

s-1 = (s 2 - K2*a)

s-2 = e (s+ 1 - K 1 *a)

(2.56)

(2.57)

Equations (2.57) show that in the absence of the resonator the waveguide mode propa-

gates undisturbed with a phase delay due to the finite length 1.

If the excitation is s+1 ~ ejwt, s+2 = 0, then at steady state we get from (2.51):

. 0 1
T 0- )+ -+

and (2.57) become:

j(CO - 0 ) + 1 +1
J~o- o)+- + -

0 Te

2

1 1 S+1
j(0) - 00) + - + -

T Te/
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(2.58)

s_1 = -e

s-2=-0

(2.59)



The above analysis can be generalized for the case of a resonant structure supporting

M 1 modes, evanescently coupled to N 1 waveguides:

dam (. 1
-- yJom - - I - am + I Km, (2n- 1 )s+(2 n - 1) + Km, 2ns+2n (2.60)

om n emn n

-j Pnlni
s-(2n - 1) = e +2n Km, 2n am

mn (2.61)

-j~nln

s-2n = e (S+(2 n - 1) Km, (2n - 1)am)
m

f2 112 2
I Km, (2n - 1) + Km, 2n = - (2.62)

emn

where m = 1, ... , M counts the resonator modes and n = 1, ... , N the waveguides.

Km, (2n - 1)' ( Km, 2n) express the coupling between the mth resonator mode and for-

1.
ward (backward) propagating mode in the nth waveguide and - is the decay rate of

emn
the mth resonator into the nth waveguide. The results of this analysis will be useful for

the study of the resonant channel dropping filters in Chapter 4.

Direct coupling
The simplest case is shown in the schematic. The resonator is enclosed in a surface S that

intersects the input waveguide at z = Z2 and we make the assumptions of section 2.3 for

the field distributions. In general the input/output reference plane can chosen at any

z = z1 i z2 . The method of Section 2.2 can be applied again in combination with the the-

ory of [6]. This time the excitations are the surface currents at z = z2 produced by the

resonator fields tangential to that plane whereas the fields inside S are taken zero:
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S-1

S+1

1~-~t /
resonator i

zi Z2

Figure 2.5: Schematic of a resonator directly coupled to a waveguide.

= -2 x Ar(x, y, Z)8(z 2 )a

a= 2 x br(x, y, z)8(z2)

In this case the boundary conditions are:

b+(z1 ) = s+1

b_(z2) = -b+(z2)

b4 (z2 ) = e-jP(Z2-1z) s+1- ffdxdy(--2 x hr

s_1 = e-jP(z2-z) (b(z2) - 1J'dxdy(-2 x Ar-

-z X rj - )ej(2 - Zi)a

-2 X A+

Combining (2.65) and (2.66)and using the second of (2.64) we get:

+ 1ffdxdy(2 X tr)'(A+ -A-

or, using (2.4) and the fact that =T hz = -hz* as well as the vector identity

(axt) - = (txt).- weget:

s_1 = -e I 2 (Z2 - ZO -s+1 + 1ffdxdytr x AT+
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(2.63)

(2.64)

(2.65)

(2.66)

s_1 = -e-j2P(Z2-Z1) -s+1 )ejD(Z2 -Z) (2.67)

(2.68).gejP2 - Zd)



The same result is obtained if we expand the fields on the left of z = Z2 in terms of

the waveguide modes and on the right in terms of the resonator modes and apply the

orthogonality conditions for the waveguide modes to the continuity condition for the tan-

gential electric fields at z = z2 -

The evolution of the resonator mode is given by:

J(0 - _a +Kls+1 (2.69)
tTO e

and the rate of change of the energy is:

d a| 12 _1 2
dia s+1 -s_ 1 (2.70)

Or:

dial -al + Is+ 1a* + c.c. (2.71)
Tt Te

Substituting (2.68) into (2.70) and comparing with (2.71) we get:

Ki = jdxdytr* X T+ 'Ze 2j 1(z2zj)a (2.72)

2 2
2 2Kil = (2.73)

Setting z2 - ZI = 1, the outgoing waves can now be written as:

S_ = e -j201(-s+1 + K 1*a) (2.74)

Equation (2.74) shows that the absence of the resonator is equivalent to a short that

results in complete reflection of the input with a phase delay due to the finite length 1.

If s+1 - ejOt then, using (2.69) at steady state, we get:
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a = (2.75)

T 0 TTo Te

And (2.74) becomes:

2

s_1 = -e 1 s+1 (2.76)
j(O - %0) + - + -

The above analysis can be generalized for M 1 modes excited in the resonator and

for N 1 ports, with the following relationships:

dam = riom- 1m + KnS+n (2.77)
dt T mom n emn n

s = e-j2Pln( s +I Krnm* a (2.78)

2
SKmn - (2.79)

emn

where m = 1, ... , M counts the resonator modes and n = 1, ... , N the waveguides.

Kmn is the coupling between the mth resonator mode and the nth waveguide mode and

1.
-- I is the associated external decay rate.
emn

The results of this analysis will be useful for the study of the low-loss waveguide com-

ponents in Chapter 5.

2.6 Gaussian beams
Free-space propagation and wave guiding problems can be simplified if we approximate

the spatial dependence for the fields by Gaussian functions. The theory presented in this

section will be useful in the analytical study of fiber-chip couplers.

2.6.1 Propagation of Gaussian beams

Gaussian beams are the exact solutions of the paraxial equation in media with refractive
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index profile of the form:

2( 
2  2

n 2 (x, y) = n 0 - - (2.80)
hx hY

The case of free space of index no is covered by hX = h = oo. We follow the analysis of

[4].

From Maxwell's equations for time harmonic fields we get

V2P + (02 En2p = _V ' 2 V n2) (2.81)

(282)
Vn

2

We assume that n2 << 1 over a wavelength and factor out the fast z-variation by set-

ting f = xA(x, y, z)e-jkz where k = kon , k = 0O j e. Then (2.81) becomes:

2 2

2+
ax2 ay2

In the paraxial approximatio

2 1_ 2 y
+ + k2 x y W

az 2 h 2 h2

n

2

a << k , k2

= 0

so (2.83) becomes:

2 2

2+
ax2 ay2

= 0

Substituting into (2.84) the trial solution:

kx 2

2qx(z)

2 -~
+ ky 2

2q (z)I

with initial conditions qx(zx) = qox, q,(z,) = qoY we find, as shown in [4]:
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(2.84)

i(x, y, z) = exp {-jP(z) + (2.85)

Ly 2(_x2 -Y2

- j2k + k2_xy
az h 2h2



P= j[ xIzn + In (2.86)
2 qo q0

and

qo(x,,)cos[(z-z , ,]+h sin[(z-z )/h ]
q Z ( c)[z-= (2.87)'I, -(qo(,,Y)/hx ,)sin[(z - zx Y)/hx 1+ cos [(z - zx ,)/hx ]

The real and imaginary parts of 1 /qx, (z) give the radii R, RY and beam waists

wx, wy , respectively in the x,y directions:

1 _ 1 . 2 (.8
- J (2.88)

q -(z) RX,(z) kw 2 XY(Z)

Knowing how the q-parameters of the gaussian beam evolve during propagation we

can trace the evolution of the phase front curvature and the beam waist.

If the initial beam widths and q-parameters are:

2h kw 2

WoPx, y) = k j) )2 = -ih , (2.89)

which correspond to the eigenmode of (2.83) then the beam propagates through the

medium maintaining its width and plain wave fronts. Otherwise, when w #(x) A i

the widths in x- and y- directions vary periodically with z as: ([5])

2(z) = w2 2xcos2 Q{1 + tan2 }(2.90)
with oscillation periods hx Y/2

In a uniform medium hx = h, = oo and from (2.87) we find:

q ((z) = q, Y)+ z (2.91)

) 1+ 2z R (Z) = z I+ (2.92)

lO(x, Y) z '
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where z = kw 2 /2 and w is the minimum waist. These relations showwhere ZxY) = kw(XY)/A 0

that as a gaussian beam propagates in free space it spreads out curving its phase fronts.

In a dielectric structure with cylindrical symmetry hX = h the gaussian beam has

cylindrical symmetry as well and is described by one q-parameter qx = q = q and

RX = R = R , w = w, = w.

Restoring the e-ikz dependence in (2.85) we can obtain the propagation constant and

effective index: ([5])

=k- - and n = n - (2.93)
kw2 kw 2  (konow,)2

It is interesting to note that the variational method with gaussian trial functions pre-

sented in 2.6.3 results in the correct answer for the effective index and the beam width

only for the eigenmode of a quadratic medium.

2.6.2 ABCD matrices
In the previous analysis the evolution of the q-parameter of a gaussian beam as it prop-

agates through a medium is in general given by a transformation of the form

Aq 1 +B
q = Cql+D (2.94)

2Cqj +D

where A, B, C, D are the elements of the matrix describing the behavior of a ray through

an optical system as:

[r21 B i 
(2.95)

r2' C D r,'

where ri is the distance of the ray in medium i = 1, 2 from the z-axis and r.' its

slope.
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The advantage of the ABCD formalism is that a cascade of different elements can is

simply described by the product of the individual ABCD matrices. It is also easy to follow

the evolution of the q-parameter and therefore of the beam waist and phase front as the

beam propagates through different stages of the cascade. For elliptical Gaussian beams

qx # q and the ABCD matrices are used separately in the x and the y direction to

describe the evolution of the two q-parameters. The ABCD matrices for basic optical ele-

ments that serve as building blocks for common optical systems are shown below ([4]):

[0 1'O4

R

n -

2 2
n (r) n2 r2

h2)

1 0

L n 2 R n2

for planar interface R = oo

cos hsin

L sin cos

Figure 2.6: ABCD matrices for basic elements (from [4]).
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2.6.3 Approximation of effective index and mode profile using Gaussians
It is well known that the fundamental mode of an optical fiber can be well approximated

with a Gaussian beam especially in the practical range 1.8 V < 2.4, where

V = koa n - no is the normalized frequency, a is the core radius and ni, no are the

core and cladding index, respectively. In this range the fiber is single mode and the field is

well confined. This approximation has the advantage of replacing a complicated expres-

sion for the mode field with a much simpler form - e-(r/w)2 which depends on a single

parameter.

In order to find the parameter w which best approximates the mode field we use a trial

field distribution $(x, y) in a stationary expression for the propagation constant

= 2nne/X [3]. This approach leads to the best approximation for both w and n.

With a e--IA z-dependence the scalar equation is:

V2$(x, y) + k [n2(x, y) - n2]$(x, Y) = 0 (2.96)

We multiply (2.96) by $* and integrate over all x,y to get:

ffn 2 (x, y)k$(x, y)j 2 dxdy - 1 VT ( y)(2dxdy

n2 k (2.97)e ffI0(xY)I 2 dxdy

With $ = e-r/w)2 , r = x2+ y2 we obtain:

2 2 2 2 2(-) 2
ne n - (n -no)e k2 (2.98)

0

and the best width is found from

ane a
= 0 w = (2.99)
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2 2 1
n, = n- 2 1(1 + 21nV) (2.100)

koa0

We now apply the same method for a symmetric waveguide with rectangular cross-

section and index distribution:

n(x, y) = IxI:a,IyI<b (2.101)
no x| > a, |y| > b

With the trial function p(x, y) =ei(x/wx)2 + (y w ) 2 1 in (2.97) we get:

2 ,a'\ b'r 2 2)
n = ef a ef (n - no + no - + (2.102)

x 
y

where

2 2
erf(x) = exp(-t )dt

The best estimate for the widths and the effective index is found from:

2 a 2

e e 0 (2.103)
aWX awy

We note that for a step-index waveguide the approximation of the mode profile by a

Gaussian is better suited for the field inside a waveguide core and for getting an approxi-

mate value of ne. It is a poor approximation of the evanescent field in the cladding espe-

cially for strongly guided modes. However this approximation can be useful in the study

of coupling between fibers and waveguides of different cross-sections.
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Chapter 3

The Finite Difference Time Domain (FDTD) Method

3.1 The Yee algorithm

The FDTD method has been extensively applied to the design of complicated RF and

microwave devices with dimensions comparable to the wavelength of operation. As the

size of photonic components approaches that of the optical wavelength, FDTD has the

potential to play a similarly useful role in the design of optical devices as a complement to

the widely used beam propagation method (BPM).

The BPM has been the main modeling tool of waveguiding structures with slow varia-

tion along the propagation direction, negligible back-reflections and low beam divergence.

It was first proposed in [8] and later in a more efficient form in [9]. Many extensions of the

basic BPM scheme have been proposed to overcome its limitations, such as the wide-angle

full-vector BPM [10] and the bidirectional BPM [11]. However, in practice, the BPM is

not viewed as a suitable method for modelling high index-contrast structures that in gen-

eral are characterized by strong guidance and rapid changes along the propagation direc-

tion. For such cases the FDTD may be a better choice.

The FDTD method solves the full vector Maxwell's equations without any approxima-

tion other than the replacement of differential equations with finite differences. The spatial

domain is divided into a 2D or 3D mesh (in the simplest case rectangular) and, given an

initial field distribution or a source excitation, the code updates, at every time step, the

electric and magnetic fields at each location following Yee's algorithm [15]. This algo-

rithm solves for both electric and magnetic fields in time and space using the coupled

Maxwell's curl equations VxE = a , VxA = E rather than solving for the
at at

electric or magnetic field alone with a wave equation. As shown in Figure 3.1 the Yee
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algorithm places the E and 71 components in 3D space so that every E (TI) component is

surrounded by four circulating 71 (E) components. This provides a simple picture of a

three dimensional space filled by an interlinked array of Faraday and Ampere contours

which can be helpful in specifying field boundary conditions and singularities. Other fea-

tures of this algorithm are [14]:

" The resulting finite-difference expressions for the space derivatives of the curl opera-

tors are central-differences and second-order accurate.

- Tangential and components are naturally continuous across material interfaces that

are parallel to the grid coordinate axes so in this case no special care is needed to match

the field boundary conditions at the interface.

z

Ez HH

EY

(i~j,k)

E Hz

Figure 3.1: Yee's cell and assignment of electric and magnetic field components

- The material permittivity, permeability and conductivity at each component location

have to be specified in advance. For a rectangular mesh this results in a staircase approxi-
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mation of the geometry of interest with a space resolution set by the size of the lattice cell.

* The location of the A and 71 components in the grid and the central-differences of

these components implicitly enforce Gauss's law so that the Yee mesh is divergence-free

for a source-free space of interest.

* The A and 1 field components are in a leapfrog arrangement in time as illustrated in

Figure 3.2. All the electric field computations in the space of interest are completed and

stored in memory for a particular point in time. Then all the magnetic field computations

in the space are completed and stored in memory using the electric field data just com-

puted. The A field for the next point in time is then computed using the newly obtained N

and this process continues until the time stepping is completed. This leapfrog time step-

ping is fully explicit and no matrix inversion is involved. The resulting finite-differences

for the time derivatives are also central and second order accurate and the time stepping

algorithm is non-dissipative.

Sp t = 1.5At

A A A A

x =O x =Ax x =2Ax x=3

t = At

t = 0.5At

t= OAt

Ax

Figure 3.2: Space-time chart of the Yee algorithm showing the use of central differences
for the space derivatives and leapfrog for the time derivatives (from [14]).
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3.2 Finite Differencing

3.2.1 Three-dimensional algorithm
The field components are represented by 3D matrices based on the Yee cell as follows:

Ex(x, y, z;t) = Ex((i + 1/2)Ax, jAy, kAz, (n + 1/2)At) = Ex n + 1/2
i + 1/2, j, k

E (x, y, z;t) = E (iAx, (j+ 1/2)Ay, kAz, (n + 1/2)At) E n + 1/2
i, j + 1/2, k

Ez(x, y, z;t) = Ez(iAx, jAy, (k + 1/2)Az, (n + 1/2)At) Ezn +1/2
i, j, k + 1/2

Hx(x, y, z;t) = Hx(iAx, (j + 1/2)Ay, (k + 1/2)Az, nAt) Hx n
i, j+ 1/ 2 , k + 1/ 2

H (x, y, z;t) = H ((i + 1/2)Ax, jAy, (k + 1/2)Az, nAt) H Yn
Y Y i + 1/2, j, k + 1/2

(3.1)

(3.2)

HZ(x, y, z;t) = Hz((i + 1/2)Ax, (j + 1/2)Ay, kAz, nAt) = H zIn
z~i + 1/2, j + 1/2, k

As an example we show the expressions for the updating of the x-components of the

electric and magnetic field at each grid point. Similar expressions can be derived for the

rest of the field components.

E n+1/2
i +1/2, j, k

At

+ - i, j, k

i, j, kAt

2Ei, j, k

_ i ,j,kAt
2E _ J' k E n-1/2

+ Ci,j,kAt x i+1/2,j,k1+ j
2ij, k

nH 7
n-HJ

i+ 1/2, j +1/2, k i +1/2, j -1/2, k

Ay

H |n - n
li + 1/2, j, k + 1/2 i + 1/2, j, k - 1/2

(3.3)
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C-*i, j,kAt

H n 2 , j,k H ni
Xi, j+1/ 2 ,k+1/ 2  +*i, j,kAt xi,j+1/2,k+1/2

1+ +
2 j , jk

At E zIn+1/2 - Ez n+1/2 
(3.4)

i,j+ 1,k+1/2 i +1/2,j,k+ 1/2
__i,j, k Ay

l+T*i,j,kAt E n+1/2 -E n+1/2

2 pi, j, k i, j+ 1/2, k + 1 A, j+ 1/2, k
Az

Where e is the permittivity, p the permeability, a the electric conductivity and c*

the magnetic conductivity, also represented by 3D matrices.

An important issue in the discretization is the proper choice of the time step At rela-

tive to the spatial steps Ax, Ay, Az that guarantees the stability of the algorithm. It can be

shown that the algorithm is stable when the following relationship holds:

cAt 1 (3.5)
1 1 1

(Ax) (Ay)2 (Az)2

Equation (3.5) is known as the CFL criterion. If Ax = Ay = Az = A then (3.5) is

simplified to

A t 5 (3.6)

It is noted that this simple stability condition holds for uniform rectangular grids while

more complex conditions may be required for variable or unstructured meshing.

3.2.2 Two-dimensional algorithm
Because the full 3D FDTD simulation can be very demanding in time and memory it is

often preferable to perform a calculation in a 2D domain derived from the initial 3D struc-
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ture, by ignoring the variation of the fields along one direction, e.g along the z-axis. Then

Maxwell's equations are decoupled into two systems of equations:

TE fields (Es, EY HZ)

aiE, _ 'aHZ
a- - _ E x ( 3 .7 )

- -a(3.8)

_E z _ l _x (3y)-aH (3.9)
t p Fy axaHlz 1 aEx aE Y

TM fields (Ez, H,, HY )

x _ 1 -a *Hx (3.10)
at pt ay

aH - ( aEz *H 
(3.11)

aEz a1 aH aHS= - -a aEzJ (3.12)

and the discretization is analogous to the 3D case only now the fields and material

properties are given by 2D matrices. Figure 3.3 shows how the Yee cell is modified in this

case.
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I EX LI.(i,j,k) (ijk)

(a) (b)

Figure 3.3: Yee's cell for the 2D case: (a) TE (b) TM

The stability condition (3.5) is modified accordingly:

cAt 1 (3.13)
1 1

(Ax)+ (AY
which in the case Ax = Ay = A reduces to

At AT (3.14)

3.3 Boundary conditions

The main limitation of FDTD and other numerical methods based on finite-differencing, is

the modelling of unbounded geometries by a finite computational domain. Thus the finite-

difference equations must be modified at the boundaries of the truncated grid to approxi-

mate fields that are leaving the computational domain without back reflections. Many

techniques have been proposed to implement an Absorbing Boundary Condition (ABC)

[16],[17],[18]. These ABC's permits outgoing waves to leave the computational domain

using a one-way wave equation. The waves incident on the boundaries still suffer from

unwanted back reflections into the computational domain that are low close to normal

incidence but can be high for other angles. These spurious reflections may contaminate the
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simulation results and lead to instabilities, especially in the case of resonant structures.

Many improvements of this technique have been developed that are based on a more accu-

rate approximation of the one-way equation. A different approach was proposed in by

Berenger[19],[20], called Perfectly Matched Layer (PML) that, compared with traditional

ABCs, reduces spurious reflections by orders of magnitude from ~10-2 - 10-3 down to

~10-5 _ 10-7 for all angles of incidence. This allows the border to be brought much

closer to the structures inside the computational domain resulting in a smaller grid. The

PML boundary condition, originally proposed in 2D, was extended to 3D [22]. It has also

been used in other numerical tools such as finite-difference mode-solvers and BPM, [25]

and [26], respectively.

In the PML technique the computational domain is surrounded by a layer of an artificial

anisotropic conductor with graded electric and magnetic conductivity. Each electric and

magnetic field component is split into two components in the absorbing boundary so that

one component "sees" the loss and the other does not. The net effect is a non-physical

absorbing medium adjacent to the outer FDTD mesh boundary that has a wave impedance

independent of the angle of incidence and of the frequency of the scattered waves. The

fields inside the PML decay exponentially very sharply and where the PML mesh is trun-

cated the fields can be simply set to zero. Another way to view the PML is as a complex

coordinate stretching transformation along the three cartesian coordinates [21].

In 3D all six vector field components are split and the resulting PML modification of

Maxwell's equations yields 12 equations:

aH Ha a (3.15)
+ *yHx= -(Ez +Ezy xz +a H*zHxz = ,(E+E (31yz)
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aH +
±zcy*Hyz

aH x
a a+c*XH = (EZX+EZY)Fzy

+ G*Hlzx ( E, + EZY)

aE a

EYZ + z E (H +H

-ZX +cyEx =-(H +H)oat a )' Z X ZV

aH~ +

E- +

C- +

aEZ,
, at

aC* H F(Ex E+ Exz)

a
G xz a(H

c YE Z

y Ezy

+Hyz

a

a
=x H,+xz)

In the 2D case only the z-component of the electric (magnetic) field for TE (TM)

polarization is split into two subcomponents. For the TM case the modified Maxwell's

equations are:

aE

oat

oT + cY* H

, aH
+ CYEZ = a

= (E +E y

a az

The electric and magnetic conductivities cx, y, z and y*x, y, Z are chosen to match the

wave impedance as:

- = - (X = x, y, z (3.23)
Eo to
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(3.17)

(3.18)

(3.19)

(3.20)

E +

aH
toj + H= a(E

(3.21)

(3.22)+EZY)



A schematic of the PML boundaries in 2D with the associated conductibities is shown

in Figure 3.4.

0x1' * xl' Gy2 ' 6*y2

perfect conductor

Gx2, C*x2' 0 y2' * y2

perfect conductor ,
wave
source

0, 0, (Y 1, aY* t1

xl (*pX1e ryct cd* yu t
perfect conductor

perfect conductor

(x2' Y*x2, ay 1' a* y1

Figure 3.4: PML boundaries in a 2D computational domain

The loss is increased gradually with depth p within each PML as

a(P) = amax( )n (3.24)

where 5 is the PML thickness. Typically n = 2, however it has been shown that the

residual back reflection from the boundary is further reduced if n = 4 [27], which is used

in this thesis as well.

From (3.24) we get a PML reflection factor of

R(O) = exp(
-2Omax 6 cosO)

(n + 1), 0 c )
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where 0 is the angle of incidence. The conductivities are assigned by choosing R(0)

usually around 10-6.

Because the attenuation of the outgoing waves within the PML is so rapid that the Yee

time stepping algorithm may not be suitable; instead a exponential time stepping is used

[14]. For example:

Ezx(t) = e-t/ E + E ax e Xt/ E (3.26)
x

and the discretized form:

-a At/E

E n+1/2 =eEAt/ 0  n-1/2 e - H n -H " (3.27)
EIi, j +zx //x i+ 1/2, ji/2j)

The PML method has been modified to terminate optical waveguides in [23] and it is

widely used in this form for simulations in guided wave optics. All the FDTD simulations

in this thesis employ the same method. It must noted that in spite the superior performance

of the PML, it has been shown that it does not act as an absorber for evanescent waves [24]

which become more important for frequencies below the cutoff of waveguiding structures.

However, most our simulations involve 2D waveguides with zero cutoff frequency (TE)

thus no such problems are expected.

3.4 Source implementation

The simplest way to implement a source for the excitation of the fields in the computa-

tional domain is to impose a field or current with appropriate spatial and temporal depen-

dence at one or more points, at each time step. This leads to a field that propagates in all

directions (for a point source) or forwards and backwards (for a surface excitation) posing

a problem when we want to find the back-reflections from an object of interest.
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A modification of the FDTD algorithm known as total-field/scattered-field formulation

is used to make the electromagnetic wave emanating from a source propagate in only one

direction with negligible power flux in the opposite direction ([14] and references therein).

This approach is based on the linearity of Maxwell's equations which allows a decomposi-

tion of the fields as

tot =inc + Escat (3.28)

tot - inc scat

where the incident fields Einc, 7inc are assumed known and are the field values that

would exist in vacuum. Escat, 1scat are the scattered field values which are initially

unknown and result from the interaction of the incident wave with any materials in the

computational domain. The FDTD algorithm can be applied to each of these fields in a

computational domain that is zoned into two regions as shown in Figure 3.5, a total fields

region and a scattered fields region, separated by a virtual interface used to connect the

fields in each region.

connecting
surface

grid
truncation

total field
region

scattered field
region

Figure 3.5: Zoning of FDTD grid (from [14])
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z cat tot z tot jz tot

io-1I7y,scat i 1y,tot i + 74y,tot y, tot

io -1/2 io+ 1/2

Figure 3.6: 1D example of total/scattered field region interface

Special care is needed when the finite differences are taken across to ensure consis-

tency of the algorithm. The Yee algorithm naively applied across the interface of Figure

3.6 yields:

E n+ I ,ttn +At(H In+ 1/2-H I+12j(.9
EZ, tot + = Ez tt + 1/ y, scat (3.29)

stored in stored in memory
memory

Hy, scat n Hy, scatI -1 + Ez, tot n-Ez, scat ) (3.30)

stored in stored in memory
memory

In equations (3.29)and (3.30) scattered fields are subtracted from total fields and the

updating of the total fields is incorrect. Correction terms that are functions of the assumed

known incident fields must be added to make the algorithm consistent. We use the fact

that:

Hya In+1/2 = H In+1/2 - H in+1/2 (3.31)
yscatio - 1/ 2  y, totl - 1/2 y H i - 1/2

E tot = Ez, incIn + Ez, scatIn (3.32)

and we substitute (3.31) into (3.29) and (3.32) into (3.30). The corrected relations now

read:
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n +1 = n + tH + 1/2 -H n + 1/2 AtH n+ 1/2(3.33)Ez, tot Ez, tot . E+ HY, tot H 12 y, tot I - -HAXy, inc I - (3/2 3

stored in stored in memory known
memory

Hy, scatca/2= y, s2a+ It2(+ z, scat -Ez, scat - Ez, inc (3.34)
io-1/2 1 - 1/2 f L~4  

io L io1 gtAx Z o
stored in stored in memory known
memory

The data for the incident fields have the time dependence of (3.38) (next section) or

simply sinusoidal dependence Es(n) = sin [2nfo(nAt - 3t)] and the spatial dependence

can be chosen to be the fundamental mode profile at the center frequency f 0 , for the

waveguide where the source is located. This mode profile can be obtained using a finite

difference mode-solver e.g. [28],[29] or can be approximated by a Gaussian profile. Other

source options include electric or magnetic dipoles and planes waves, the latter being

more common for sources in free space.

3.5 The use of Discrete Fourier Transform (DFT) in FDTD
It is often desirable to obtain frequency dependent phasor quantities from the time depen-

dent real field quantities, for further processing. A typical example is the calculation of

radiation (far) fields using the field distribution on surfaces within the computational

domain. This is known as the near-to-far-field transformation and eliminates the need to

extend the computational domain to the far field in order to obtain the far-field data ([14]

and references therein).

In this thesis, we need the phasor quantities of the electric and magnetic fields in order

to obtain the Poynting vector and consequently the power flux through waveguide cross

sections as a function of frequency (e.g. as it is done in [38]). Thus transmission and

reflection responses of the devices of interest can be calculated. These data can be effi-

ciently and simultaneously obtained for multiple frequencies with only one FDTD run. A

wideband electromagnetic excitation of the structure of interest is provided and the DFT
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of all the field components is performed recursively in parallel with the time-stepping for

each frequency of interest and point on the cross section. The DFT data for each frequency

and point on the cross-section are stored in the memory as sums that are updated at each

time step by the addition of the new term. For example in the 2D TE case, the calculation

of the power flowing in the x-direction through a waveguide cross-section defined by

i = i0 , ji < j j2 is done through DFT sums that are updated at every time step, i.e.:

E y R,y . E n+1/2 cos 27f n+! AtER, i, j+1/2 iK, j+1/2 ij, j+1/2

n + 1/2 (3.35)

EI, y ,j1/ ,j +1/2E -sin 2nfm n+ )At)
, j + 1/2 1,1j + 1/2 i, j+ 1/2 +

~ m ~ m n

HR, z. = H R,zI. .+ H cos( 2 nfmnAt)
io, J io, io rj

(3.36)
n

h M I= Hz . + H z [-sin(2nfmnAt)]1, zi, j lio, j .o .

where m counts the discrete frequencies fm of interest, and n is the time step.

ER, y, HR, z are the real parts of the DFT of the electric and magnetic fields at fm and

A1 , HI, z the corresponding imaginary parts. The power through the waveguide cross

section at the each frequency fm, is obtained after the completion of the time stepping by

summing the real parts of the Poynting contributions over the entire cross section:

j2
Py =_ { MR, 1/2 R, z I. + AI x HI, Z4.} (3.37)

. i =j , l + 1/2, j io, j lio+ 1/2, j io,

The electric field of the source excitation usually has a temporal dependence of the

form:
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ES(n) = exp[-(n t3T]sin[2nf,(nAt - 3T)] (3.38)

and an appropriate spatial dependence, depending on the source location, e.g. the fun-

damental for waveguide excitation at the center frequency f, .

The Gaussian pulse in time transforms to a Gaussian pulse in frequency which, with

proper choice of t, extends over the entire bandwidth of interest centered around f, . The

form of (3.38) ensures that the source waveform is essentially zero at the start of the time

stepping and that it has odd symmetry in time about the peak of the Gaussian envelope.

The spectrum of the source is concentrated about f, and has zero dc component.

The DFTs of the fields along selected cross-sections can be also be used in overlap

integrals (sums) with a known mode profile, following the discussion in Section 2.1 and

assuming that the proper orthogonality and normalizations hold. Thus we can find the

fraction of power coupled into this particular mode only instead of the total power flux that

may contain contributions from other guided and radiation modes.

When we are interested of the spectrum of the field at only a few points, a faster

method is to simply store at each time step the value of the field at the points of interest

and then apply the Fast Fourier Transform (FFT) to the stored data.

When such calculations are performed the FDTD simulation must be run for a suffi-

ciently large number of time steps so that the impulse response of the structure of interest

has the time to ring down to zero otherwise the computed DFT is inaccurate due to win-

dowing effects of the true impulse response. Similarly, a large number of time steps is

required to ensure that the FFT can adequately resolve narrow spectral peaks, which is

important when high-Q resonant structures are involved.
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3.6 Resonator calculations using FDTD

The fact that with one FDTD simulation it is possible to obtain information about the

behavior of a structure over a wide frequency range makes this method particularly suited

for modeling resonant cavities. The quantities of interest are: (a) the resonant frequency

and wavelength, (b) the quality factor Q0 due to loss or radiation (c) the quality factor Qe

due to external (direct or evanescent) coupling to waveguides, and (c) the reflection/trans-

mission spectra at the ports of resonant systems with one or more input/output ports. The

quality factors are related to the exponential decay rate of the amplitude of the resonant

mode and the resonant frequency by:

_ 00 oe (3.39)
2 e 2

where 1 /t, 1/e are the decay rates of the resonant mode amplitude due to loss and

external coupling, respectively. The total ("loaded") Q is given by

1 1 1
- I + 1 (3.40)

Q QK, Qe

and can be found by the power or intensity spectrum by

Q= o (3.41)
Af 1/2

where fo is the resonant frequency and Af 1/2 is the full width half maximum band-

width of the Lorentzian response.

In order to find f and Q0 of an uncoupled cavity we first provide a source excitation

in the form of a dipole within the cavity or the fundamental mode of a side-coupled

waveguide. When the mode field is established inside the cavity the source is turned off,

the coupling waveguide, if any, is removed and the cavity fields are left to ring down due

to radiation. The field values at one or more points inside the cavity are stored in memory
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at every step and the cavity is surrounded by a virtual box inside which the electromag-

netic energy is calculated at each step in time. At the end of the simulation, the time

sequence of the field values at the chosen point(s) is transformed by FFT to yield the

amplitude spectrum assuming that the number of time steps has been sufficient for the

FFT to accurately resolve the frequency response. If the resonances are very narrow the Q

may not be extracted accurately from the spectrum. It is then preferable to extract it from

the exponential decay of the amplitude at the monitored point or the decay rate of the

energy in the virtual box and then use (3.39) to find Q0. If the source bandwidth is wide

enough to excite more than one high-Q resonances, the time dependent sequence of the

field amplitude or the energy shows the beating of these modes at different frequencies

and is not helpful to finding the decay rate. If Q0 cannot be found accurately from the

widths of the spectral peaks obtained by FFT it may be necessary to rerun the simulation

with a spectrally narrow excitation to ensure excitation of only one mode. The magnitude

of the mode amplitude a decays exponentially as

|a(t)i = |a(O)|exp - a(O)Iexp 010j (3.42)

and the energy W of the mode in the cavity decays as

W(t) = W(O)exp rt (3.43)

The Q can be easily extracted using the above relations from the slope of the functions

ln(Ia(t)I) = ln(la(0))- oot/2Q or ln(W(t)) = ln(W()) - o~t/Q

To calculate the "loaded" Q of a resonant cavity due to coupling to a waveguide we

start again by exciting the cavity with the mode of a side coupled waveguide and temporal

dependence of the form of (3.38) to cover the bandwidth of interest. There is a buildup of
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energy in the cavity which then decays into the waveguide. If the resonator supports stand-

ing wave modes then the total system acts as a reflector. The transmission spectrum (cal-

culated by DFT during the simulation as described in Section 3.5) has a dip at the

resonance frequency and the reflection spectrum has a peak at the resonance frequency.

from the latter the total Q can be extracted using (3.41). If the cavity is lossless the trans-

mission dip goes all the way to zero and the reflection peak goes up to unity. In practice

there is always some loss which leads to incomplete reflection and the magnitude of the

reflection peak depends on the ratio Q,/Q,. Thus f , Q0 l Qe can be simply found from

the transmission or reflection response. If the coupling between resonator and waveguide

is very weak then the resonance frequency f, and Q0 of the uncoupled resonator do not

change in the presence of the waveguide. However, in most cases of interest, the coupling

is strong enough to result in a shift of fo and Q0 from the values of the unloaded resona-

tor. The basic relations that allow an easy extraction of the basic resonator quantities from

the transmission and/or reflection spectra of a resonator side-coupled to a waveguide are

given below.

2o2 ) (i) 2  2 2

1+

2 o 2Q 2 2fQe
ITI = |IR (3.44)

-2 2 2T 2

and at resonance:

IT 2 = 2 R01 = 1 (3.45)

q Q
S 1 R1 2  + --1

In Chapter 4 these relations are used to exctract the Q's from FDTD simulation trans-

mission data of resonant filters.
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Chapter 4

Resonant Add/Drop Filters

4.1 Introduction
The wide use of optical wavelength division multiplexing (WDM) calls for compact, effi-

cient filters for multiplexing and demultiplexing all the channels in a data stream or for

adding and dropping an individual channel leaving all the rest unperturbed. The main

requirements for the amplitude response of such filters are 1) low insertion loss 2) low

crosstalk (typically < -25dB), that is rejection of out-of-band signals 3) fast roll-off of the

passband edges. Recently the phase response has also received some attention in the con-

text of communication systems [49]-[51].

Add/drop filters and multiplexers/demultiplexers are very important components in

WDM systems and have been investigated extensively in the literature. Three broad types

of filters have emerged [49]: 1) Mach-Zehnder interferometer (MZI) based devices which

include the waveguide grating router (WGR) [32],[33] 2) fiber Bragg gratings (FBGs),

including apodized and chirped gratings and 3) resonant cavity filters [35],[36],[44] which

are the focus of this work. Filters of this type may offer superior spectral responses com-

pared with the other filtering mechanisms. The passband shape of a resonator filter can be

custom designed by the use of multiply coupled resonators [34],[36],[48]. Further, the

response outside of the resonant passband is free of side lobes, and the roll-off rate along

the passband edge is governed by the number of mutually coupled resonators. Resonator

filters can also be analyzed as lumped elements, their response depends on each resonator

as a unit, but not on the details of the resonator. The passband shape depends sensitively

on the relative interactions among all resonators, and on their interactions with the bus

waveguides to which the input and output ports are connected.
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High index-contrast resonators have dimensions of a few wavelengths and are of par-

ticular interest as building blocks for resonant add/drop filters. They have a large free

spectral range (FSR) and thus can accommodate the entire bandwidth of erbium-doped

amplifiers, are capable of both filtering and routing functions, and are ideally suited to

large-scale integration. Ring and disk resonators are the most common building blocks for

resonant filtering and routing functions [36],[40]. The strong light confinement in high

index-contrast systems allows Q's on the order of 10 3 - 10 4 in rings with radius only

3 - 10tm [36]. This type of resonators supports a purely traveling wave, thus a single

ring or disk resonator placed between two optical waveguides, one acting as the signal bus

and the other as the receiving waveguide, can transfer all the channel power from the bus

to the receiver. While this is an ideal basic structure for channel add/drop, its performance

can be affected adversely by the coupling between counter propagating waves caused by

surface roughness [41]. Moreover high-index contrast microring resonators are coupled to

input and output waveguides via a point contact, and therefore a very small gap, of the

order of 100 nm, is required for sufficient coupling which pose a challenge in the fabrica-

tion [39]. Racetrack resonators [42] may offer a solution to this problem but the effect of

surface roughness is still an issue.

It has been shown that the performance of a ring channel dropping filter could be real-

ized with a standing wave resonant structure instead, which is not as sensitive to surface

roughness. The operating principle is based on the excitation of two degenerate modes in a

symmetric resonant structure. The concept was first proposed using group theoretical

arguments and illustrated numerically using photonic crystal microcavities [44],[45]. In

this chapter we use a simpler formulation based on CMT in time to explain the operation

of the filter and present numerical examples using conventional high index-contrast
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waveguides and cavities [47]. The theory presented in the following sections is based on

Section 2.5 and [47],[48].

4.2 Four-port system with single mode resonator

The basic implementation of the channel add/drop filters considered here is a four-port

system that consists of a resonator placed between two waveguides. A schematic is shown

in Figure 4.1. The resonator is evanescently coupled to the two waveguides which we shall

refer to as the bus and the receiver, respectively. The response of this system can be found

using the theory presented in section for evanescent resonator-waveguide coupling.

In this section, we consider a resonator that supports only one mode in the frequency

range of interest, with amplitude denoted by a normalized to the mode energy.

_s_J s-2
s+1 0d -s+2

bus

receiver M

Figure 4.1: Schematic of a four-port filter consisting of a resonator evanescently coupled
to two waveguides.

The waveguides are assumed to be single-mode and the waveguide dispersion is

ignored in our analysis. This simplification is justified if the resonance peak is narrow. The

amplitudes of the incoming (outgoing) waves in the bus are denoted by s+1(s_ 1 ) and

s+2(s- 2 ) and in the receiver waveguide by s+3(s- 3) and s(s_4), respectively and are
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normalized to the power in the waveguide mode. The squared magnitude of these ampli-

tudes is equal to the power in the waveguide mode. The evolution of the resonator mode is

described by:

da ')(. 1 1 1'
JCO - - -- -- + K2 s+2 + K3 s+3 + K4 s+4  (4.1)

where o, is the resonant frequency, 1 /T is the decay rate due to loss, 1/te l/te'

are the rates of decay into the bus and the receiver, respectively, Ki, K2 are the input cou-

pling coefficients associated with the forward and backward propagating modes in the bus,

and K3, K4 are similarly defined for the receiver. The decay rates are related to the

unloaded quality factor and the external quality factors and of the resonator by

QO = (o TO / 2 , Qe = to e/ 2 , Q'e - oT' e/2.

Following the analysis of section 2.5.2 the outgoing waves are given by:

S_1 = eIjpd(s+ 2 - K* 2 a) (4.2)

S- 2 = e-jd(S+2 - K la) (4.3)

S- 3 = -jo'd (S+4 K* 4a) (4.4)

S_4 = e-j'ds3 - K* 3 a) (4.5)

where , $' are the propagation constants in the bus and the receiver, respectively. As

shown in 2.5.2, the squared magnitude of the coupling coefficients is equal to the decay

rates into the waveguide modes. So we can write:

K.= -e i = ,., (4.6)

with l/teI(l/Te2) and l/te3(l/te4) defined as the decay rates in the forward

(backward) direction in the bus and the receiver, respectively, satisfying:
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1 1 2
-+ -T I

e, e2

1 1 2
- + - - = - -

e e 3 e 4 e

and Oi, i = 1.. .4 are the respective phases. We choose 1 as the input port and we set

s = 0, i = 2...4. If s+1
- e , then, from (4.1) we find, at steady state

Se-e1,

.1j(O - W0 )+ -
1 1

+ - + --
0 +1

0 e e

Substitution of (4.8) in (4.2)-(4.5) yields the filter response of the system:

-+1  R = -e-i
S+1

-= T = e-jd I
s+

1

3 DL
s+

1

- D R -
S+

1

1e
e

d F 1 e 2

0( -m)+ - + -e+ -e

1

el

(O - o) + -+ -
T o e

W)I - 02)

(4.9)

(4.10)
I

+ -e

1 j(0 1 - 04 )
e

-jp'd Je 1 e 4

0 e

1 I(01-03)
e

(O - 0)1+ 1+ -+
T e

1

-e

where R represents the reflection at the input port, T the transmission through the bus

and DL, DR represent the transmission (channel dropping) into the left and right ports of
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the receiver, respectively. From (4.9)-(4.12) we can derive the different behavior of a trav-

eling wave and a standing-wave mode in this configuration.

Traveling wave mode: In this case the power in the resonator flows continuously in

one direction only e.g. in a ring or disk resonator as shown in Figure 4.2(a). Thus,

from(4.7) we have

1 1
te2 Te3 

(4.13)
1 2 1 2

Te3  Te Te4 T e

therefore (4.9),(4.12) lead to R = DR = 0 over the entire bandwidth.

At o = co, the power incident in the bus in the forward direction is partially trans-

ferred to the receiver in the backward direction, limited only by loss. If in addition

1 1 1- - -- = - (4.14)
e I e TO

then at resonance, from (4.10),(4.11) we get T = 0 and IDLI2 = 1 - e,o, and the

input signal power at o = o is completely removed from the bus and transferred

(dropped) to port 3 of the receiver reduced by a fraction Te ft 0 due to loss. Thus a system

consisting of a single travelling mode resonator between two waveguides operates as first

order channel dropping filter.

Standing wave mode: In this case there is no net power flowing in either direction of

the resonator (pure standing wave) e.g. in a quarter-wave shifted DFB resonator as shown

in Figure 4.2(b). The resonant mode decays equally into the forward and backward propa-

gating modes of the waveguide so from (4.7) we have
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1 1 = 1 1 = 1 1 (.5
Tel Te2 Te Te3 Te4 Ie

If in addition (4.14) is satisfied, the power transfer into the receiver at resonance is

maximized and from (4.9)-(4.12) we find R = ITI = 0.25 and

IDLI2 = IDRI2 = 0.25(1 - ,e/X,). That is, at best, half the input power at (0 = (>

remains in the bus and is equally distributed between ports 1 and 2 while the other half,

reduced by a fraction e/t, due to loss, is equally distributed into ports 3 and 4 of the

receiver. Thus a single standing wave resonator between two waveguides is not sufficient

for the channel dropping function. A theoretical example of the filter response illustrating

the different behavior of the two types of resonators is shown in Figure 4.2(c).

Clearly, a single-mode traveling wave resonator side-coupled to the bus and the

receiver can fully transfer a channel at the resonance frequency from the bus to the

receiver while a single-mode standing wave resonator is not adequate for channel drop-

ping.
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Figure 4.2: Four-port systems using (a) a traveling wave, (b) a standing wave resonator,
and (c) an example of the corresponding filter response with Qe = Q'e = 2000 and negligi-
ble loss.

4.3 Symmetric standing-wave channel add/drop filters
In this section we show how it is possible to obtain the response of a single-mode trav-

elling-wave resonant filter using a pair of standing-wave modes.

4.3.1 General form of a symmetric add/drop filter
We consider a resonant structure supporting two standing-wave modes, placed between

the bus and the receiver, with a symmetry plane perpendicular to the waveguides, at
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z = 0 as shown in the schematic of Figure 4.3(a). The two modes of the system are sym-

metric and anti-symmetric with respect to this plane. The symmetric mode has amplitude

as and the anti-symmetric mode has amplitude aa With the reference planes defined at

z = + d/2, the phases of the coupling coefficients differ by even (odd) multiples of n in

the case of the symmetric (anti-symmetric) modes. Thus, the forward and backward inci-

dent waves couple into the symmetric mode in phase and into the anti-symmetric mode

out ofphase and the expressions for the resonator modes can be simplified as:

das . 1 1 I
1s0 - -- as + Ks-a +1+ s+2)+ Ks(s+3+s+4) (4.16)

dt ~s O es T s) /+ 2 ss3s4

a=Joa - I - Iaa + Ka(s+1 - s+2) + K'a(s+3 - s+4) (4.17)
a T K Oa ea Tea

where os, a are the resonant frequencies, 1/TOs,a are the decay rates due to loss,

1/res, a 1 /'s, a are the rates of decay into the signal bus and the receiver, respectively,

and Ks, a IKc s, a are the input coupling coefficients associated with the bus and the

receiver, respectively. The amplitudes of the outgoing waves are given by:

S_ = e -jd(s+2 ~ K* sas + K*aaa) (4.18)

S-2 -jd(S+I - K* sas ~ K* aaa) (4.19)

S-3 = e-j'd (S+4 ~ K sas + K'*aa) (4.20)

s_4 = ejo'd (S+3 - K* sas - K* aa) (4.21)

In analogy with (4.6), the input coupling coefficients can be written as

K 1 ejs, a 1 J-s, a

Ks a e-s, a = e (4.22)

es, a es, a
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Figure 4.3: (a) Schematic of a channel dropping filter using a resonant structure with a
symmetry plane perpendicular to the waveguides. (b) Filter response when a pair of
degenerate symmetric and anti-symmetric standing-wave modes is excited with Qe = Q'e
= 2000 and negligible loss.
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With s+1 as the input signal at frequency (o, we find the filter response at the four

ports of the system, at steady state.

1

Tes
+

.1 1 1
-os) + -- +--+---

tes

j(O - (0s) + 1
1 1

Os es

R = e -

T = e-jpd

DL -j'd

DR = e

1 N)

ea

j~ a) + ii +iT+ j
O ea.1 1 1

j(0 - 0a) + -- + ± --

to 'Uea ea ea/

1 I(Oa O(Ya)e
e a a

W a)+ -+ -+ -
Oa ea

1 J(Oa - 'a)e
' e

ea ea

((O-0a) +
I I 1

Oa ea tea)

The two modes are degenerate if they have equal frequencies and equal decay rates:

OS a 0

Tes a e

T'es T a T' e

e a 0

(4.27)

(4.28)

(4.29)

(4.30)

Under these conditions,(4.23) gives R = 0 over the entire bandwidth of the resonator

and equations (4.24)-(4.26) become:
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2

T = e- - (4.31)

+ - + +
e e e

2

D -je ((O, + Os) - (O's + 0'a)PdI'esi O(.2

DR = -e em (4.32

j(O - 1O) + 1 + - + -
o e e

2
(OS + a) -(O'S + 'a) d

2 JT 'dAO
.DR = eW- (0)+I+1+1Cos -2 (4.33)

TO e IrIe

where: AO = (Os - 0 1s) - (Oa - 6 'a). At the resonance frequency the transmission

through the bus is:

1 1 1

-j135 o e -e
T = e 1 1 (4.34)

1 +1 +1
To TIe Te

This expression shows that, as in the case of a travelling wave resonator, if the decay

rates satisfy (4.14), the input signal power is completely removed from the bus and trans-

ferred to the receiver reduced by a fraction Te/,c due to loss. Under this condition, the

bandwidth of the Lorentzian response is determined entirely by the coupling to the bus

waveguide and its peak is set by the ratio -e/,/-c0. The distribution of the dropped signal

power between the two receiver ports is determined by the phase difference AO as fol-

lows:

i) If AO = 2nnt, where n is an integer, then DL = 0 for all frequencies and we have

forward drop. This condition implies that if the resonant structure has a horizontal symme-

try plane as well, i.e. parallel to the waveguides, the symmetric and anti-symmetric modes

have the same symmetry (even, if Os, a - o s, a = 0 or odd, if Os, a - 0 1s, a = C ) with
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respect to this plane. This is illustrated in Figure 4.4 and typical response is shown in Fig-

ure 4.3(b). An example for this case is a composite system made up of two identical stand-

ing wave resonators [47], as we shall see in the next section

AND OR AND

aa

ii.

forward drop

Figure 4.4: Illustration of mode symmetries required for forward drop (case i).

ii) If AO = (2n + 1)2c, then DR = 0 for all frequencies and we have backward drop.

This condition implies that if the resonant structure has a horizontal symmetry plane as

well, the symmetric mode has even (odd) symmetry, i.e. 0s - 0's = 0(n), and the anti-

symmetric mode has odd (even) symmetry, i.e. Oa - ofa = (0) with respect to this plane.

This is illustrated in Figure 4.5. An example for this case is a ring resonator [36], if we

consider its traveling-wave modes as superpositions of degenerate symmetric and anti-

symmetric standing-wave modes that are excited with a 7/2 -phase difference
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iii) In any other case both DL and DR are nonzero.

AND OR

aa

backward drop )
Figure 4.5: Illustration of mode symmetries required for backward drop (case ii)

4.3.2 Symmetric add/drop filter with two identical standing-wave cavities

The symmetric resonant system analyzed in the previous section can be implemented

using two identical coupled resonators, each supporting only one standing-wave mode in

the frequency range of interest. The resonator pair is placed between the bus and the

receiver waveguides, so that the total system has a symmetry plane at z = 0. A schematic

is shown in Figure 4.6. Normally, the mutual coupling of the two resonators would split

the resonant frequencies (Section 2.5.1), lifting the degeneracy. In this section, we show

that the coupling to the waveguides can be designed to cancel the effect of frequency split-

ting caused by the mutual coupling and to reestablish the degeneracy.
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The mode amplitudes of the resonator on the left and on the right of the symmetry

plane are denoted by aL and aR, respectively. The resonant frequency, decay rates, and

coupling constants for the left resonator are defined as in Section 4.2, and for the right res-

onator are found by mirror symmetry. The resonator on the left is excited from the left by

s+1 and s+3 , and from the right by the outputs of the right resonator. The resonator on the

right is excited from the right by s+2 and s4 and from the left by the outputs of the left

resonator. The distance from the left (right) reference plane of the resonator on the left of

the symmetry plane to the left (right) reference plane of the resonator on the right of the

symmetry plane is denoted by 1, as shown in Figure 4.6, and for simplicity is the same in

both waveguides. The equations for the mode amplitudes for the two resonators are:

daL
jCO - - e e) a, L - jga R

S e e

+ e I s+, + e j02e- (S+2  1 -jIP I aR (4.35)

+ -- e -s+3+ e e S+4 - -e 3 aR
e e e

daR . 1 1 1 .
0R L

+ e jos + 1 e JO2eJ(s+1 e-ja a (4.36)+ 1 +2 -7 \+1 - LJ
e e e

+ -- e s++ -- e e S+3- ~eT 3 L)
e e e

where g is the mutual coupling coefficient between the resonators and is real by power

conservation. For the decay rates, we have used the fact that a standing-wave mode decays

equally into both directions.
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Figure 4.6: Schematic of a symmetric channel dropping filter employing two identical
standing wave resonators

Expressions analogous to (4.2)-(4.5) have been used for the outgoing waves of the left

(right) resonator that appear as inputs to the right (left) resonator. In (4.35),(4.36) we can

see that, in addition to the direct coupling expressed by, the two resonators are also indi-

rectly coupled through the waveguides. We define the amplitude of the symmetric and

antisymmetric modes of the total system as

aL + aR
as -

aL- aR
aJ=2

which, due to (4.35) and (4.36), satisfy the following relations:
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+1 - [ p -- sin$-+sin]

dt aae e a s]

+ (I COS$) + (1 coso'){ as

2 1+02 - CO S (4.38)

+ -e { (S+1 S+2)

e sino

j03+04-o') CS0
S2 2 s
+ -e (s+3 iS+4)

e isin ]

where:

O= P1+01-02 
(4.39)

$ = $'l+03 - 04

Comparing (4.38) with (4.16) and (4.17) we have

s0 } =(- sin o - sin $ (4.40)
Na e e

. 0+02-Pl co
Ks 2 j( 2 2osco2

= e (4.41)
Ka e jsin{ K } iei~1+;2l~{ 2
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K S 2 2 cos

s} e (4 .42)

2

1 1 _ 1
(4.43)

- = Ks ~~ TI lal 2(4.44)
es ea

1 1,12 1 _ ,12

-I I Ks2 ~T~ K al (4.45)
es ea

From (4.41) and (4.42), we can see that the symmetric and the antisymmetric excita-

tions couple into the system with a n/2 phase difference. In the special case that qp and

ip' are even (odd) multiples of n, only the symmetric (antisymmetric) mode is excited,

leading to the behavior of the standing wave resonant system described in, with decay

rates 2 /,e and 2 /T'e into the bus and the receiver, respectively, and 1 /, due to loss. The

conclusions derived for the filter response of the symmetric system shown in apply to this

system as well: the system can operate as a channel add drop filter if its symmetric and

antisymmetric modes satisfy the degeneracy conditions (4.27)-(4.29). The decay rates due

to loss are already equal, as seen in (4.43). From (4.40), the condition degenerate frequen-

cies is satisfied if:

1. 1
p - - sin --- sin' = 0 (4.46)

Te e

and from (4.41)-(4.42) the conditions for equal decay rates are satisfied if:

cos$ = 0 (4.47)

cos$' = 0
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Therefore, there are two degrees of freedom in designing this system: knowing the

propagation constants I, P' and the phase differences 01 -02 and 03 - 04, we must

choose the distance 1 so that the symmetric and antisymmetric modes have decay rates

equal to those of the individual resonators 1 /T and 1 /t' e* Then, by varying the coupling

between the waveguides and the resonators, we must make 1/te and 1 /t'. such that the

splitting of the resonance frequencies due to direct coupling between the two resonators is

cancelled.

The signal power at resonance is completely removed from the bus if the degenerate

decay rates satisfy the maximum power transfer condition (4.14). In this special case, the

bandwidth of the Lorentzian response is then set by Te and the peak power at the output

ports of the receiver by the ratio Te/T 0 . However the symmetry of the response between

add and drop functions is lost.

The direction of channel drop is determined by the phase difference AO as explained

in 4.3.1. From (4.41)-(4.42) we can see that:

if sin$>0
Os - 0a = (4.48)

if sin$<0
2

- if sin$'>0
0's - 'a 2 (4.49)

- if sin$'<0
S2

Therefore AO = 0, if the degeneracy conditions are satisfied with - =2nn,

where n is an integer, and we have forward drop. If $ - $' = 2(n + 1)7, then AO = n

and we have backward drop. In this particular case it is possible to satisfy (4.46) even if

the resonators are not directly coupled t = 0 provided that I/Te = 1/T' .
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The design of the filter is simplified when each resonator also has a plane of symmetry

perpendicular to the waveguides. Then the distance 1 is equal to the distance between the

individual symmetry planes. In addition, the mode supported by each waveguide is sym-

metric or antisymmetric with respect to this individual symmetry plane. Thus, the phases

of the coupling coefficients K<, i = 1 ... 4, that were defined in (4.6) for the general reso-

nant system, satisfy:

01-02 = 03-04 = 0 (4.50)

for symmetric individual modes, and:

01-02 = 03-04 =+i (4.51)

for antisymmetric individual modes. Using (4.50) and (4.51) in (4.39) and substituting

the latter in the degeneracy conditions (4.46)-(4.47) we get:

1 1
t T - sin( l)T -I sin($'l) = 0 (4.52)

Te I e

cos(Bl) = cos($'l) = 0 (4.53)

These relations show that the choice of 1 depends on the symmetry of the individual

modes that make up the symmetric and antisymmetric modes of the total system. For

example, if re = r'e and P = P' then as we can see from equation (4.52), the resonance

frequencies are degenerate only if 1 = (n + 1/4)X for symmetric individual modes and

only if 1 = (n + 3/4)X for antisymmetric individual modes, where X = 27c/ P id the

guided wavelength.

In the above analysis the frequency dependence of f has been ignored. Strictly speak-

ing the degeneracy conditions can be exactly satisfied only at the resonant frequency and,

depending on the waveguide dispersion there is a deviation from these conditions away
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from resonance as the optical length of 1 changes. If we modify the coupling of modes

analysis to include a linear approximation for B of the form:

N(O) = $(Ow) + ((0- 00) (4.54)

where o is the group velocity, or for the effective index:

ne(X) = n(X)+ (X-X) (4.55)
xo

it turns out that the response at the throughput and receiver ports is not affected but the

reflection response is slightly modified. Specifically the reflection is zero at resonance and

very small but nonzero symmetrically around the resonance. This will be shown later in an

example.

As building blocks for this type of filter we can use a variety of standing wave resona-

tors, such as polygon resonators, photonic crystal microcavities, quarter-wave-shifted

DFB resonators etc., provided that their FSR and loss are within acceptable limits.

4.4 FDTD simulations

The concepts presented in the previous sections are now demonstrated with 2D FDTD

simulations.

4.4.1 Polygon resonators
Although high-Q standing-wave resonances can be achieved by grating-based cavities we

choose to consider high index-contrast cavities of polygon shape, due to their simplicity

and small size. In spite of the presence of corners such cavities can support high-Q modes

with the nulls of their electric field along the diagonals. We have investigated such resona-

tors by 2D FDTD simulations using the approach explained in Section 3.6. The structures

are viewed as infinite in the third dimension greatly simplifying the problem and the elec-

tric field polarization was taken perpendicular to the plane. Some representative examples
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in 3 + 1 index contrast are shown below:

a

a =3gm a =2.25gm a =0.88 gm
QO = 5300 Q0= 25000 QO= 42500

Figure 4.7: Examples of high-Q modes in polygon resonators. Electric field patterns and
Q's found by 2D FDTD for 3/1 index contrast

Next, we demonstrate the concepts presented in the theory by performing 2D FDTD

simulations on a system consisting of two high index-contrast waveguides and square res-

onators. The electric field polarization is chosen again perpendicular to the paper. The

computational domain is discretized into a uniform orthogonal mesh with a cell size of 20

nm. In the examples presented here we use waveguides and resonators with core index

n= 3 surrounded by air no = 1 . The waveguides are 0.26 pLm wide with effective index

n= 2.45022 at X = 1550 nm and the square resonators are 1.66p m each side with

radiation Q significantly lower than that of Figure 4.7. The resonance characteristics of the

uncoupled square resonator are summarized in Figure 4.8.
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Figure 4.8: Electric field and spectrum of the square resonator used in the numerical
examples.

In the following simulations we use a wideband source located at the bus waveguide,

with spectrum centered at X = 1550 nm, and the spatial profile of the fundamental

waveguide mode at the center wavelength. The frequency response is obtained by DFT as

explained in detail in section 3.5.

4.4.2 Single square resonator coupled with two waveguides
We start with a single square resonator placed symmetrically between two waveguides as

shown in Figure 4.9(a). The edge-to-edge separation between waveguide and resonator, g,

is varied between 0.2 and 0.26 gim. From the spectral response of this system we obtain

the resonant wavelength and the quality factors associated with loss Q0 and external cou-

pling Qe. Because the evanescent coupling is mainly determined by the overlap of expo-

nentially decaying fields in (2.54)-(2.55), we find that Qe varies roughly exponentially as

shown in the plot of Figure 4.9(b).
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ni = 3

11no = 1

a = 1.66 pm

w = 0.26 m

= I2 n IM

g

3bUU I

*FDTD

3000 - exp. fit

2500 -

2000-

-m I.kk (a)

100%.2 0.21 0.22 0.23 0.24 0.25
g (m)

(b)

Figure 4.9: (a) Schematic of a square resonator evanescently coupled between two
waveguides and (b) dependence of external Q on resonator-waveguide separation.

In Figure 4.10 we show the complete numerical results for g=0.24pm. From the elec-

tric field in (a) we can see that the cavity mode decays into the waveguides in all directions

as expected for a standing wave mode. In (b) we show the spectral response obtained by

FDTD and by CMT. For the latter we use (4.9)-(4.12) with X0 = 0 /2n = 1552 nm,

Qe = Q'e = 2240 (extracted from the numerical data using (3.45)) and Q= 3000. In

agreement with the theory presented in section 4.2 the output at all four ports is below

25%.

90

0.26

g )



input --

(a)

1540 1545 1550 1555

1540 1545 1550 1555

1560 1565 1570

1560 1565 15

- CMT fit -
X= 1552nm ,,, FDTD

= 0.133

-l '' ' ...--, , .. _ .. , , , .,................
1540 1545 1550 15

X (nm)

70

55 1560 1565 1570

Figure 4.10(a) Electric field amplitude distribution in a four-port system consisting of a
square resonator side-coupled to two waveguides. (b) Filter response calculated by FDTD
(dotted line) and fitted by CMT.
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4.4.3 Add/drop filter with a pair of square resonators
The next step is the implementation of a symmetric channel dropping filter with a pair of

squares identical to that of Figure 4.8, as shown in the schematic of Figure 4.11(a). Since

the electric field pattern of the individual resonator mode is antisymmetric with respect to

its vertical symmetry plane, the length of the waveguide section between the two square

centers must be I = (m + 3/4)X with X = X /n,(X)= 633.62nm. We choose m=3

as dictated by the dimensions of the structure so 1 = 2.376p m but due to the 20nm spatial

resolution in our simulations we use 1 = 2.36 or 2.38 g m. Having fixed 1 we vary the

separation g which determines Q,. It turns out that the best performance is achieved when

1 = 2.36gm and g = 0.24pm which corresponds to Q, = Q', = 2240. The filter

response obtained by CMT under the assumption of perfect degeneracy when we set

Qe = Q = 2240, Q0 = 3000 and X0 = 1552 nm in (4.22)-(4.26) is shown in Figure

4.1 1(b).The coupling can be conveniently expressed by Q,= WO/2g and for degenerate

resonant frequencies in this example it is Q. = Q,/2 = 1120. The expected received at

resonance dropped power is (1 + Qe/2Q0 )- 2 = 0.53 which corresponds to an insertion

loss of 2.75dB, and the throughput is [1 - (1 + Qe/2Q)-' ]2 = 0.074. The total quality

factor of the spectral response is Q = (1/Q, + 2/Q,)- 1 = 815.55 which corresponds

to a FHWM Af = 237 GHz or AX ~ 1.9 nm. This filter is too broad for realistic WDM

systems, and its insertion loss is high because the resonator loss is comparable with the

coupling to the waveguides. Better first-order responses can be obtained with low-loss res-

onators such as those of Figure 4.7; here the intend is to simply illustrate the ideas pre-

sented in the theory.
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Figure 4.11: (a) Schematic of a symmetric channel dropping filter consisting of two iden-
tical square resonators (b) Theoretical response found by CMT.
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The simulation results of Figure 4.12, suggest a deviation from the degeneracy condi-

tions since there is a non-negligible residual reflection and back-drop visible in the field

pattern in (a). In addition, the peak received power is slightly reduced and the throughput

on resonance slightly increased relative to the expected values. In Figure 4.12(b) the

numerical response has been approximated by CMT using (4.40)-(4.42) in (4.23)-(4.26).

We used 1 = 2.36p m, which already is l6nm smaller than needed for a n/4 -phase shift,

Q 's and X as above, and the remaining splitting of the resonance frequencies was best

matched by Ql = Qe/2 + 325 = 1445. Any remaining discrepancies may be due to

possibly different radiation losses for the symmetric and antisymmetric modes.

It is clear that this type of filter is very sensitive to fabrication errors as small as our

FDTD mesh resolution. This is true especially when the filters are implemented with con-

ventional high index-contrast waveguides and resonators, evanescently coupled to one

another, because of their high dispersion and the exponential dependence of the external

coupling on the distance between them. Photonic crystal add/drops have more degrees of

freedom for tuning the frequencies and the couplings [43],[44] and possibly better toler-

ance to fabrication errors [46].
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Figure 4.12: (a) Electric field amplitude distribution in a symmetric channel dropping fil-
ter using a pair of square resonators (b) Filter response calculated by FDTD and fitted by
CMT.
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4.5 High-order symmetric add/drop filters
The single-pole (Lorentzian) response which characterizes first-order resonant filters, can-

not satisfy the typical requirements for WDM systems, i.e. flat-top filter passbands and

less than -25dB crosstalk from adjacent channels. Such characteristics can be achieved by

high-order filters. Resonator-based filters have the advantage that their passband shape can

be custom designed, using multiply coupled resonators, to improve the response of a sin-

gle resonator. Moreover, the response outside of the resonant passband is free of sidelobes,

and the roll-off rate along the passband edge is governed by the number of mutually cou-

pled resonators. The passband shape depends sensitively on the relative interactions

among all resonators, and on their interactions with the waveguides. The coupling of

modes in time can be simply extended to the case of higher order filters resulting in con-

tinued fraction expressions that provide a one-to-one correspondence with standard filter

design parameters [34],[36],[48]. An equivalent circuit can thus be derived and a rough

layout of the structure can be based on handbook filter designs of circuit theory.

An N-th order symmetric add/drop filter of the type described in section 4.3 can be

implemented using N coupled pairs of identical resonators as shown in the schematic of

Figure 4.13. This filter is again conveniently described in terms of the symmetric and anti-

symmetric modes of the resonator pairs [48]. The degeneracy of these modes is required

for channel add/drop operation. For the outermost pairs this is ensured again by mutual

cancellation of the two coupling mechanisms: the mutual coupling between the resonators

and their coupling through the bus (for pair 1) and through the receiver (for pair N). The

For the i -th pair i = 2, ..., N - 1 , the degeneracy is ensured by placing the resonators far

apart so they do not interact.
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Figure 4.13: Schematic of an N-th order filter consisting of n pairs of identical standing
wave resonators

The CMT equations for the symmetric and anti-symmetric modes of each resonator

pair are:

+ Ks(s+1 + s+2 ) - jplsa2s

= (02sa2 s -jg 1 sa 2 s -j2sa3s

T IaNs+3 + S4) - Ap(N - 1)sa(N - 1)s
es)
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da1
= s- als

da2 s
2s

(4.56)

daNs
= (jO)Ns

(4.57)

(4.58)

S-2

S+2

9N- 1%



dala 1)a (459)
1a. 7 - a1a+Ka(S+1-s+2)11 l1aa2adt Tea

da
2 a

= IJW2aa2a ~ I laa2a ~ At2aa3a (4.60)

daNa . 1,daa = WJCNa - aNa + K a(S+3 - S+4) - h'(N - 1)aa(N - 1)a (4.61)
ea

where ais, aia represent the symmetric and anti-symmetric mode amplitudes, respec-

tively, of the i -th resonator pair normalized to unit energy. Likewise, Wis, a represent the

resonance frequency of the i -th resonator pair, 1/Tes, a' 1 T'es, a are the associated decay

rates and pLis, a is the coupling between the symmetric and anti-symmetric modes, respec-

tively of the i -th and i -th +1 resonator pair, real by power conservation. The symmetric

modes do not couple to the anti-symmetric modes and vice versa. The coupling coeffi-

cients Ks, a' I s, a have the form of equation (4.22). The outgoing waves are given by:

S_ = eIjpd(s+ 2 - K* sa ls + K*aala) (4.62)

S-2 = eId (s+1 K*sals - K* aala) (4.63)

S- 3 = ej'd (+4 - K SaNs + K *aaNa) (4.64)

S_4 = ej$'d (S+3 ~ K SaNs ~ K aaNa) (4.65)

In this section we assume for simplicity that the coupling coefficients are real and we

neglect the phase factors e-jp , e-jp'd .With excitation s+1 - e and

s+i = 0, i = 2, ... , 4 the mode amplitudes can be found as continued fractions from

(4.56)-(4.61):
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aNs, a =

a(N - 1)s, a

lJ'(N - 1)s, aa(N - 1)s, a
FNs, a

-JI(N - 2)s, aa(N - 2)s, a

F(N - 1)s, a

alsa Ks, aS+1

Fis, a

where Fis, a are continuous fractions defined recursively as:

1
FNs, a = j(w - ONs, a) +

es, a

F(N - 1)s, a = J(O W (N - 1)s, a)

2

+ 1(N - 1)s, a
FNs, a

F(N - 2)s, a =

Fis, a =s, a)

j(W - C0(N - 2)s, a) +

2
t(N - 2)s, a

F(N - 1)s, a

2

+ + 91s, a
Tes, a F2s, a

Solving for aNs, a we find:

aNs, a = fj(N - 1)s, a) (N - 2)saJ
FNs, a F (N - I)s, a

1

es, a S+1

1s, a
(4.70)

We substitute the expressions for ais, a in (4.62)-(4.65) and the use definitions of the

outputs R /S Ts 2/S DL -3 +1 DR s4 /S to get:
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(4.67)

(4.68)

(4.69)
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1 1R = - +
FIstes Flatea

T =1- 1 -
FsiTes FlaTea

DL - (N - 1)s j (N -2)sj
LFNs S)F(N - 1)s

(4.71)

(4.72)

(4.73)

DR - (N- 1)s [ (N - 2)sjRFNs S)(F(N - 1)s

LF2a Fla

1

Fes es

Fls

(4.74)

II - t(N -1)1a
FNa

~ 9(N - 2)a

F(N -1)a )
K tla L eaj

'' 2a) Fla

We next assume that the degeneracy of the resonant frequencies and decay rates for the

two sets of modes is achieved by proper design and that all the cavities are identical, i.e.

(0s (0. - o ,is = ia 0
i = 1,2, ... ,N (4.75)

(4.76)

The vertical couplings between the resonator pairs can also be made degenerate, i.e.

= ia 'i, i = , 2, ... , N - I (4.77)
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It can be shown that this is possible only if there is no cross-coupling between resona-

tors on either side of the symmetry plane that belong to different pairs. If (4.75)-(4.77)

hold then from (4.69) we have Fis = Fia=Fi, i = 1, 2, . . . , N and equations (4.71)-

(4.74) become:

R = DL = 0

2
T 1

DR =-2
-AJ(N - 1)

FN IC~F(N -2)

F(N -1)

N
The leading frequency term in the denominator is (j) (w - o)

quencies the transmission rolls off approximately as

RI N

as expected for an Nth-order filter. On resonance:

. Thus at high fre-

(4.81)

2 2
I2 4 1 1

2 2*'' 2 'c'
ji1 3  

1 N-I e e

2 2 2 ,
'2 4  'N-1Te
2 2*'' 2 t
1 3 N - 2

for N even

(4.82)

for N odd

From (4.82) we can see that complete transfer of the channel power from the bus to the

receiver is possible if

2 2
L2 4  1
2 2" * 2 e e
113 N - 1

for N even
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(4.78)

(4.79)

e e
F1

(4.80)

2
IDRI

(4.83)

F2

N



2 2 2
[2 4 PN-1 T

2-2.2 for N odd (4.84)

919 3  9N-2 e

Moreover, it is possible to shape the frequency response e.g. to get a flat-top passband,

by proper choice Of T,, T'e and pi, i = 1, ... , N - 1 . This task can get increasingly

tedious as the filter order increases unless we are somehow able to map the coupled reso-

nator system to a standard LC circuit. Then, the choice of design parameters is reduced to

looking up tabulated impedance values in a standard filter design handbook. The detailed

analysis can be found in [48]. Butterworth filter responses, characterized by maximally

flat tops are of particular interest. The general form of the response at the receiver of an

Nth order Butterworth filter is:

2 1

IDRI2 = 1 +A(wow 0 )2 N (4.85)

From this expression we find that in addition to (4.83)-(4.84) the following conditions

must be satisfied:

'Ce - 'e (4.86)

N - I
~, 2 1

9~i =2 (4.87)

i= 1 e

1 =N 2 = 9N - 1 ' N/2 -1 N/2+ I for N even (4.88)

1 =N 2 =N- I ''' (N - 1)/2 9(N + 1)/2 for N odd (4.89)
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2 T
e

3 pt =pt2 2 1

1 3 2

e

2 2= 3-+f2

1 3 4 2

4 e

R2 = -2Af

e

2 2 3-F

5 2e

R2 3 2+2Z2 ,e

Table 4.l1coupling coefficients for Butterworth filters

The coupling coefficients for flat-top response in the first few orders are shown in

Table 4.1. The respective flat-top responses at the drop and throughput ports for a lossless

filter with Qe = Q'e = 2000 are shown in Figure 4.14 where we can see that by increas-

ing the filter order the passband edges become steeper reducing the crosstalk from adja-

cent channels. This is more clearly shown in dB scale. For this particular example the

fourth-order filter leads to less than -25dB crosstalk 100GHz away from the center as

required for 100GHz channel spacing. By contrast, the corresponding first-order filter has

poor crosstalk performance even for 10 times the standard channel spacing.
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Figure 4.14: Example of drop response in dB calculated by CMT for different filter orders
with Qe = Q'e = 2000 and negligible loss.

FDTD simulation

A numerical example of a second order filter using the same square resonators as before, is

shown next. The filter is made up of four square cavities arranged in two pairs as shown in

the schematic of Figure 4.15(a). The distance between the cavities in each pair is kept the

same as in the first order filter to ensure that mutual coupling p and the waveguide section

length 1 remain the same. The additional design parameter is now the vertical distance 1'

which determines that vertical coupling g1 . Now each resonator pair is evanescently cou-

pled to only one waveguide therefore, twice the external coupling of the first order filter is

required to cancel out the mutual couplings. This is most closely approached by reducing

the resonator-square gap to g = 0.2p m. For this separation we have found Qe = 1185

(Figure 4.9(b)). We plug this value into equations (4.71)-(4.74) along with the parameters

of the first order filter, i.e. 1 = 2.36pm, X0 = 1552nm, Q0 = 3000, and

Q, = w0 /2g = 1445 which again deviates from the exact value required for degener-
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acy. For the vertical coupling we define Q = 1/2 and we set Q = Qe = 1185

as required for N = 2. The resulting CMT prediction for the filter response is shown in

Figure 4.15(b).

In the FDTD simulation the best response was obtained for 1' = 2.38 tm. The electric

field and the filter response are shown in Figure 4.16. The numerical data agree mostly

qualitatively with the CMT prediction with the greatest discrepancy in the received power,

which is higher by 20% than expected. This suggests that at least some of the composite

modes of the four squares have higher radiation Q's. The slight shift to longer resonant

wavelength may be due to the presence of more dielectric. Note that because we chose to

go from the first- to the second-order filter without changing I and g we had to reduce Qe
by almost half to satisfy the degeneracy conditions, thus broadening the filter. Obviously

for a narrower filter an entirely new design is required.

The difficulty of designing this type of filters using index guided structures as opposed

to photonic crystal was even more pronounced in the high-order filters. For example in

[45] much better responses were obtained when the same type of filter was implemented

using photonic crystal microcavities. On the other hand we have basically demonstrated

the validity of the theory.
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Figure 4.15: (a) Schematic of a second-order filter made up of square resonators (b) Filter
response predicted by CMT.
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4.6 Phase response and dispersion
In this section we focus our discussion on the receiver output (DR((o)). So far we have

been concerned with the amplitude response DR(o) and its desirable characteristics (i.e.

low insertion loss, flat-top passband and low crosstalk). Of great importance is also the

phase response which is determines the total time delay through the filter (first derivative

of the spectral phase) and pulse distortion due to dispersion (second and higher derivatives

of the spectral phase). This is more critical in dense WDM, where the spacing of the chan-

nels is typically <100 GHz, and high-bit rate systems. Specifically the dispersion of the fil-

ter sets limits to the maximum bit-rate and minimum channel spacing. An extensive

discussion of dispersion in WDM filters and their classification according to their phase

properties can be found in [49],[50]. Here we present the main points and examples based

on the analysis of [51].

Resonator-based add/drop filters fall in the category of minimum-phase filters (MPF).

In MPFs the amplitude response uniquely determines the phase response and vice versa,

through a linear transformation, known as the Hilbert transform (also known as Kramers-

Kronig relations). By contrast, in non-MPFs (such as WGRs and other MZI-based filters)

this transform cannot be applied and the phase can be shaped independently of the ampli-

tude. The main consequence of the unique relation between amplitude and phase in MPFs

is that squaring the amplitude response to meet the flat-top and roll-off requirements

comes at the price of increased phase distortion. In particular, it has been shown that the

phase response is related to the slope of the amplitude response: the phase is approxi-

mately linear with frequency when the amplitude in constant whereas when the amplitude

response changes radically (e.g., near the passband edges of a squared response), the

phase will change correspondingly going from the approximately linear phase to one con-

taining higher order terms leading to dispersion. This behavior can be avoided in non-

108



MPFs where the ideal amplitude response can be achieved while maintaining a linear

phase.

The system function H(s) of a MPF (in our filters H(s) = DR(s)) from which the fre-

quency response is obtained for s = jw, has poles and no zeros in the right half s-plane.

The presence of poles destroys the linearity of the spectral phase leading to dispersion.

The filters of this chapter have an all-pole response, the number of poles being equal to the

number of cavity pairs. Thus, increasing the number of cavities to steepen the amplitude

spectrum, leads to increased dispersion at the filter edges.

The group delay is given by:

Tg(AW) = $(Ao) (4.90)

where $(Ao) is the phase of the receiver response and Aw = w - O,

We illustrate the effects of quadratic dispersion of resonant CDFs to channels located

close to the passband edge. We assume that the data stream in the bus is made up of Gaus-

sian pulses with time dependence:

U(t) = exp ) 2 ] (4.91)

where ro is the half-width at the 1 /e 2 intensity point, related to the FWHM intensity

by TFWHM = 2Ji1_2T,. A good measure of the dispersion is the critical pulse width:

( 2  1/2

, (Aw) = )2$(Ao) (492)

If the initial pulse width of a transform-limited input Gaussian pulse is 1, = Tc the

pulse will emerge at the filter output broadened by a factor J2. For a transform-limited

Gaussian pulse passing through the filter, the quadratic dispersion-induced pulse broaden-

ing factor is given by [52]:
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+ = + - 1j (4.93)

From this relation, we see that rc should be made as small as possible and also that for

, > 2, the broadening is negligible (less than 3%). A small rc can be obtained by

reducing the sharpness of the band-edge i.e. using a lower-order filter, which is in conflict

with the requirement for a flat-top spectrum and low-crosstalk which is achieved by

increasing the filter order. A constraint on the minimum initial pulse width translates into

an upper limit for the bit rate B due to the relation B= q/TFWHM where q is the duty

cycle of the pulse train. For an initial pulse width t0  2 c we get an upper limit

B= q/( 4tc) for the allowed bit rate. Of course the limit that supersedes all these consid-

erations is that the initial pulse spectral bandwidth has to be smaller than the channel

bandwidth Af . For a transform-limited Gaussian pulse this can be written as [51]:

1
B< < Af (4.94)

T 0

In Figure 4.17 we show the amplitude response, the corresponding group delay, and

the critical FWHM pulse width for high-order resonant CDFs with the same parameters as

in Figure 4.14. In this example the filter with N = 3 does not meet the -25dB crosstalk

requirement for 100GHz channel-spacing, the filter with N = 4 is well within the this

requirement, while the filter with N = 5 would be better suited for denser channel-spac-

ing e.g. 50GHz. With a bit rate of 10Gb/s per channel achieved using pulses with initial

pulse width TFWHM = 25 ps (well within the limit set by (4.94)) and q = 25 % we find

from (4.93) that the maximum pulse broadening is about 1.1% for N = 3, 9.35% for

N = 4, 45% for N = 5 which is clearly unacceptable. This example clearly illustrates

the conflict between the different system requirements when resonant filters are used.
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Figure 4.17: (a) Amplitude response (b) group delay (c) critical FWHM pulse width for
high-order resonant filters with Q, = Q'e = 2000 and negligible loss.

The constraints imposed by the dispersion become stricter when we consider super-

Gaussian pulses with time-dependence:

U(t) = exp [ 2 m] (4.95)
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where m > 1 . For high m the pulse better approximate the almost square pulses of

NRZ systems. Now the critical pulse width is given by:

- 1 3-1/4
IF 2 2 32 1/2

T,(Aw) = m2 J(A ) (4.96)

IF(YM-) a(Ao))2

where F(x) is the Gamma function. It is well known that super-Gaussian pulses not

only broaden but also get distorted under the influence of quadratic dispersion [52] so now

the broadening factor (4.93) refers to the root-mean-square (rms) pulse width. For m = 1

(Gaussian pulse) the pre-factor in (4.96) is 1 while for m = 10 (very close to square

pulse) it is -2.

In summary, as the channels are more densely spaced in a WDM system, they come

closer to the filter band-edge, so the dispersion is higher, diverging as the band edge is

approached. Higher dispersion leads to longer critical input pulse-widths and thus lower

allowable bit rates. Reducing the critical pulse widths by using a lower order filter leads to

slower roll-off at the band edge and thus degradation in crosstalk and flat-top characteris-

tics. Therefore, the design of a high-order resonator-based filter calls for a compromise of

conflicting system requirements.
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Chapter 5

High density integrated optics

5.1 Introduction
The strong light confinement in high index-contrast structures allows the design of

waveguide components that can perform complex waveguide interconnections within a

small area. High-performance right-angle bends and waveguide crossings that rely on res-

onances have been demonstrated in the context of photonic bandgap structures [53],[54].

In this work, it is shown that by modifying the waveguide intersection regions into reso-

nant structures with symmetry, right angle bends, T-junctions and crossings with excellent

transmission characteristics are also possible using conventional single-mode high index-

contrast waveguides [67]. These structures are viewed as two-, three-, and four-port reso-

nant systems, respectively, connected to waveguides, and their behavior is explained using

coupling of modes in time. Although valid only for weak coupling, such a model can still

give an intuitive understanding of the operational principles. The basic idea relies on the

fact that a lossless resonator with proper symmetry gives zero reflection and complete

transmission on resonance. The presence of loss in the resonator causes reflection and

lowers the transmission peak. This non ideal response can be improved by optimizing the

coupling between the waveguide and the resonator modes. These theoretical predictions

are qualitatively verified by numerical simulations.

5.2 Sharp right angle bends

Waveguide bends are basic structures for optical interconnects and therefore very impor-

tant components in optical integrated circuits. Any abrupt directional change in dielectric

waveguides causes a rotation of the phase fronts of the propagating modes. This perturba-

tion causes mode conversion into unguided modes giving rise to radiation loss, mostly at
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the outer side of the corner. This happens because at some radius xR the exponential tail

of the unperturbed mode must travel faster than light in the cladding, in order to keep up

with the rest of the mode. Since this is impossible it is assumed that the light beyond XR

radiates into the cladding as shown in Figure 5.1 [7].

n2

n2 \

z

Figure 5.1: Radiation in a waveguide bend

Proposed methods for reducing the radiation loss in waveguide bends include decelerating

the phase-front inside the abrupt bend[55], accelerating the phase-front outside an abrupt

bend [56], adding a microprism in the bend region [57], replacing a bend with successive

bends of smaller angle[58] or using a corner reflector [59]. Most of these studies were

concerned with small-angle bends. For bends of larger angles corner reflectors have been

proposed. Low-loss round 90' -bends with small radius of curvature and wide angle split-

ters made of high index-contrast waveguides (Si/SiO2) have been reported in [60],[61].

Their performance relies on strong confinement in these waveguides.

In this section, we are concerned with ways to improve the performance of sharp

bends which may be easier to fabricate than round bends. The performance of sharp 900 -
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bends in high index-contrast single-mode waveguides is greatly enhanced by placing a

resonant cavity at the corner. A schematic of a simple waveguide bend is shown in Figure

5.2(a). The electric field in this bend and the transmission and reflection spectra are shown

in Figure 5.2(b) and (c), respectively. Due to mode mismatch at the corner a large fraction

of the power is lost to radiation or reflected backwards resulting in very poor transmission.

ni = 3.2

no= 1

w = 0.2 ptm

(a)

0.4

S0.3

20.2

0.1

(b)

1'00 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
X (nm)

(C)

Figure 5.2: (a) Schematic of a sharp 90 0-bend (b) electric field amplitude in the bend and
(c) transmission and reflection spectra.

To improve the transmission through the bend we modify the corner region into a cav-

ity as shown in the schematic:

symmetry plane '
s+ 2

cavity
N S-2

s.1 s+1

Figure 5.3: Schematic of a waveguide bend modified into a cavity.
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The idea is based on the operating principle of a symmetric resonator with two

ports[6]. At resonance, the transmission is complete with no reflection if the resonator is

lossless. If this idea is applied to index-guided structures, radiation loss is unavoidable

leading to nonzero reflection and reduced transmission. The effects of radiation can be

counteracted by making the external of the resonator very small. This is achieved by

strong coupling of the waveguide modes to the resonator mode. This concept is simply

explained using the coupling-of-modes in time approach presented in section 2.5.2.

Because this analysis is based on perturbation theory, it can only provide a qualitative pre-

diction in the case of strong coupling between the cavity and the waveguide modes. The

amplitude of the mode in the cavity is denoted by a, normalized to the energy in the

mode, the decay rates of the mode amplitude due to the coupling to the two waveguides

are 1/Tel and 1/T e2, respectively and the decay rate due to loss is 1 /To. The incoming

(outgoing) waves at the two ports are denoted by s+ 1(s 1) and s+2 (s- 2 ) and are normal-

ized to the waveguide mode power. The coupling between the incoming waves and the res-

onator modes.is given by the coefficients K1, K2 related to the decay rates by

K 2 e j 21 .Z-e 10 2 (5.1)
Te I e2

With inputs s+1 ~ e-j' and s+2 = 0 at steady state we have:

a = 1 (5.2)

j(wO - (0)+ -+ -+ -
TO Tel Te2

S_1 = -S +1+ K *a S-2 2*a (5.3)

Using (5.1)-(5.3) we get:
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. 1 1 1

- = R = (5.4)
s.1 1 1

t 0  'tel te2

2

2 - T eeTe2 (5.5)
s+1 j(-- e'0)1+ I + +

0  e1 e2

At o =coo the reflection is zero and the transmission maximized if

I/ =/el te2 + 1/'r. Thus, in symmetric, lossless system where

l/ter = 1/tel = 1 /'e' and 1 /, = 0 we have complete transmission at resonance.

The width of the frequency response is determined by /te* If loss is present then the

ratio t/e , = Qe/QO determines the peak transmission and minimum reflection as:

Qe 2

IR| 2 _ ) 12 1 (5.6)

( e )2 
/ g

1+ 2Q1+ 
)

A first attempt to apply this concept is an increase of the volume of dielectric at the

corner region to form a square resonator as shown in Figure 5.4(a). The electric field pat-

tern of the modified bend and the associated spectra, obtained by FDTD are shown in Fig-

ure 5.4(b),(c) respectively where we can see a marked reduction of the radiation loss

compared with the plain bend but still poor transmission.
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Figure 5.4: (a) Schematic of a modified bends (b) electric field and (c) associated trans-
mission and reflection spectra, obtained by FDTD.

According to our previous discussion and equation (5.6), a further improvement of the

performance is expected by increasing the coupling between the cavity and waveguide

mode relative to the coupling to radiation. This can be achieved by pushing the cavity

mode at the corner region inwards to get better mode matching, e.g. by making a cut as

shown in Figure 5.5(a) and simultaneously adding more dielectric. The best response is

obtained when the resulting structure is a quarter of an octagonal cavity (or any polygon

cavity with fourfold symmetry) with "radius" a defined in the schematic. The simulation

results in Figure 5.5(b) and (c) show that the radiation has been almost entirely suppressed

and the transmission is close to 99% with negligible reflection. We shall use the name

"High Transmission Cavity" (HTC) to describe this type of waveguide bends and other

interconnecting components based on the same principle.
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Figure 5.5: (a) Schematic of a bend modified into a quarter-octagon cavity (b),(c) Electric
field amplitude and corresponding transmission and reflection spectra obtained by FDTD.

It is interesting to compare the performance of the HTC bend with a curved bend and a

double bend of the same dimensions and in the same waveguides. In Figure 5.6 we can see

that the of the two types of bends the curve one comes closer to the performance of the

HTC bend than the double bend. However the performance if the HTC bend is still supe-

rior as this example illustrates.
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Figure 5.6: Electric field amplitude in (a) a curved bend and (b) a double bend (c) Com-
parison of the wavelength responses with that of a HTC bend of same dimensions

Next, we present further examples of this concept with different waveguide systems

and quarter-polygon cavities, summarized in the schematics of Figure 5.7.

U ni 3, 1.5

no =1

w = 0.25 ptm, 0.5 ptm

Figure 5.7: Schematic of HTC bends using quarter-polygons.

120

-HTC
- - round

double



We examine two systems:

* A 3 + 1 index-contrast system that uses waveguides with ni = 3 and w = 0.25gm.

The effective index of the fundamental mode in 2D is ne = 2.45 at X = 1550 nm.

- A 1.5 + 1 index-contrast system that uses waveguides with ni = 1.5 and

w = 0.5gm . The effective index of the fundamental mode in 2D is ne ~ 1.279 at

= 1550 nm.

The electric field is polarized perpendicular to the paper (Ez) in all cases except when

otherwise noted. We vary the radius a of the polygon in our FDTD simulations to get the

highest possible peak transmission as close to X = 1550 nm as our mesh resolution

(20nm) allows. A very good initial guess for the radius a can be obtained by assuming that

an integer number m of guided wavelengths Xg = X/n, fits in the polygon cavity with N

sides from which the HTC is derived, along the dashed line in Figure 5.8. In this initial

guess the effective index ne of the connecting waveguides is used for better matching

between resonator and waveguide mode. The effective index that corresponds to the mode

inside the polygon cavity turns out to be slightly smaller as the mode field is displaced

slightly outwards resembling a whispering gallery mode of a disk or ring cavity with the

difference that here we have standing wave modes.

F a

" N

Figure 5.8: Reference for equation (5.7)
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Referring to Figure 5.8 the estimated polygon radius is found from:

N2a sin -- =m MX9mX
2sl )-> a= (5.7)

ON 2 2Nsin(N)0N> 7

3 + 1 index contrast
Figure 5.9 shows the numerical results for examples of HTC bends and the associated

polygon resonators obtained by FDTD for the 3 + 1 index-contrast system. Having estab-

lished that the reflection is negligible in such bends, we show only the transmission plots,

zooming in at the peak. Due to the very strong coupling between the waveguide the and

HTC mode, which results in Qe Q0 as previously discussed, this peak is very close to 1

and very broad so it is not discernible in a scale from 0 to 1. Similarly high transmissions

can be obtained for different combinations of N and m.

As expected, the values for a that result in the best performance for given N and m

close to 1550nm, correspond to ne < 2.45, in (5.7).
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Figure 5.9: (a) Electric field amplitude in different HTCs, (b) the corresponding polygonic
resonators, and (c) respective transmission spectra
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A characteristic of such high index-contrast waveguide devices is their strong polariza-

tion dependence. We illustrate this with a simulation of the bend (a) in the orthogonal

polarization Hz (the magnetic field is polarized perpendicular to the figure plane). The

results are shown in Figure 5.10 There is a -12.5% difference in the transmission between

the two polarizations.

0.975

0.95-

-0.925--- E

c0.875

0.85 -

0.825

0.
1530 1535 1540 1545 1550 1555 1560 1565 1570

X (nm)

(a) (b)

Figure 5.10: Polarization dependence of the first HTC bend of Fig. 5.9: (a) magnetic field
(b) transmission response for the two polarizations.

An entirely new design is therefore needed in order to obtain a high performance HTC

in this polarization, but the best achievable performance in a given waveguide system is

expected to be lower compared with the Ez polarization.

1.5 + 1 index contrast
The HTC concept can be applied to a lower index-contrast as well if the cavity is made

large enough. Figure 5.11 shows the electric field and associated transmission spectrum

for a quarter-octagon bend with approximately twice the size of that in Figure 5.9(a), i.e.

scaled to the new index-contrast. Although the transmission is more than twice that

obtained by a plain sharp 900 bend in the same waveguide system, the transmission is still
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very poor with half the power being lost to radiation as seen in (a).

0.4-

0

0.3-
0.

0.2-- -- - -- "- - -- - - -

0.1-

130 1540 1550
X (nm)

(a)

1560 1570

(b)

Figure 5.11: (a) Electric field and (b) transmission response in a quarter-octagon bend for
1.5/1 index contrast

More than 90% transmission is achievable in this lower index-contrast system as well

using larger cavities derived from polygons with N=12 or 16. Two such examples are

shown in Figure 5.12.

125

modified
-- plainI

0.5-



a = 3.86 jim a = 4.96 gm

N = 16
m=26QO= 435

0.971530 1535 1540 1545 1550 1555 1560 1565 1570
X (nm)

Figure 5.12: Electric field amplitude in two
and respective transmission spectra

0

0
C

0.961

0.956'1530

= 975

1535 1540 1545 1550 1555 1560 1565 1570
X (nm)

different HTCs, the corresponding polygons

126

N = 12
m =20

C)

0

0~

C

0.9285



5.3 3D simulations and measurements of HTC bends

The 2D simulations presented so far served to illustrate the concept of the HTC bends and

to show the dependence of the performance on cavity size and shape, index contrast and

polarization. In a real 3D bend, part of the power may also leak into the substrate depend-

ing on the index-contrast. Obviously this is radiation loss cannot be seen in 2D simulations

since the variation in the vertical dimension is ignored. In general, 3D FDTD simulations

are extremely costly in time and memory for structures that extend by more than 1-2 pm in

each direction and/or are highly resonant. HTC bends in high index-contrast are very

small and have very broad transmission spectra, so a 3D analysis is possible.

In this section we perform 3D FDTD simulations for some of the bends that were fab-

ricated at Lincoln Labs by Paul Maki and designed and tested by Desmond Lim at MIT

[62]. We compare the numerical with the experimental data and with the results obtained

combining 2D FDTD and EIM as described in section 2.4. Two material systems were

used: polySi (ni = 3.48) and silicon nitride (ni = 2.4), both on SiO 2 substrate

(ns = 1.48) with air cladding (nc = 1 ). The SEM of one of the polySi bends is shown in

Figure 5.13 (a) and the model used as input in the FDTD simulations is shown in (b). The

polySi waveguides are single-mode, have dimensions w = 0.5p m and h = 0.2p m and

the preferred polarization of the electric field is in the plane of the bend system. The sili-

con nitride waveguides are single-mode, have dimensions w = 0.5pm and h = 0.8gm

and the preferred polarization of the electric field is along the longest dimension, that is

perpendicular to the plane of the bend.
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Figure 5.13: (a) SEM of HTC bend on polySi (from [62]) and (b) model used in 3D
FDTD simulations

HTC bends in polySi
Figure 5.14summarizes our calculations for this system with the dimensions used in the

fabrication. The best measurement was obtained for a = 1.08gm: The loss per turn found

to be 0.38dB/turn corresponding to -91.7% transmission. For a = 0.92gm the loss per turn
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was 0.63dB/turn corresponding to -86.5% transmission.
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Figure 5.14: FDTD simulation of a polySi HTC bend: (a) magnetic and (b) electric field
component along selected cross-sections for a = 1.08gm and (c),(d) transmission spectra
for a = 1.08gm and 0.92gm, respectively.
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In (a) and (b) we show the field patterns obtained by 3D FDTD, along characteristic

cross sections of the best HTC case a = 1.08 pt m. In the top view (Hz) we can see that the

field is well confined inside the cavity with one wavelength per side. The side views (EX

and Ey) confirm the fact that there is no power leaking into the substrate around the turn.

In Figure 5.13(c) the transmission responses obtained by 3D and 2D FDTD are shown in

comparison with the measurement. We note an excellent agreement between the numeri-

cal and experimental results as well as between the two simulation results. In (d) the same

calculation was performed for the case a = 0.92tm. Again the 3D simulation result is in

excellent agreement with the measurement but, surprisingly, the 2D simulation yields 5%

lower transmission. A possible reason for this discrepancy is that a second mode is sup-

ported by the equivalent slab waveguide obtained by EIM for use in the 2D simulation (see

discussion in Section 2.4).

We note that due to the high index-contrast and large aspect ratio (w/h) of the

waveguide cross-section especially at the bend region (-1/0.2), the use of the opposite

polarization results in very poor transmission, well under 80%, in agreement with the

result shown in Figure 5.10.

HTC bends in silicon nitride
We first show an example of the significant deterioration of the performance if, while

keeping all other design parameters the same as before, we lower the core index to

ni = 2.4. We examine the case with a = 1.08gm. In Figure 5.15(a) and (b) we can clearly

see that radiation is escaping both sideways and into the substrate, respectively. The latter

can only be seen by a 3D simulation. The transmission through the bend now is now in the

40-45% range which is almost 15% lower than the 2D prediction. This discrepancy is

expected since the 2D cannot capture the radiation escaping to the substrate.
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Figure 5.15: Example of a nitride bend with the design parameters of a polySi bend,
showing radiation escaping to substrate: (a) magnetic and (b) electric field components
along selected cross-sections and (c) transmission spectra obtained by 2D and 3D FDTD.

Figure 5.16 shows the numerical results for the HTC bends with silicon nitride

waveguides that were fabricated and tested at MIT. Now the polarization is orthogonal to
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that of the previous two cases. The radii these bends are the same as in the Si case, thus the

performance is not the best possible with this system since, as we have shown, a change in

the index and/or polarization requires an entirely new cavity design.
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Figure 5.16: FDTD simulation of a nitride HTC bend: (a) electric and (b) magnetic field
component along selected cross-sections for a=1 .08pm , (c) transmission spectra.
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We compare our numerical results with measurements for the case a = 1.08 ptm. The

measured loss for this bend was 0.76 dB/tum corresponding to a -84% transmission. The

field patterns from the 3D FDTD in (a) and (b) verify that with the new waveguide dimen-

sions and polarization, there is no visible leakage of the fields into the substrate in spite of

the lower index-contrast. The transmission spectra are shown in (c) and compared to the

measurement. The agreement between numerical and experimental data is fairly good

although this time the 3D FDTD simulation has underestimated the transmission by about

3.5%. A possible explanation is that, trying to keep the computational domain as small as

possible, the extent of the cross-section over which the transmitted power was calculated

(see section 3.5) was not sufficient to capture the entire waveguide mode.

It is interesting to note that, using the orthogonal (TE) polarization in the FDTD simu-

lations, the transmission is less than 3% lower than in the TM case corresponding to -1dB

loss. This is due not only to the lower index-contrast in the nitride system but also to the

fact that the aspect ratio (w/h) of the waveguide cross-section (0.5/0.8) especially at the

bend region (-1./0.8) is much closer to 1 than in the PoySi system.

5.4 T-splitters

A waveguide component useful for power splitting or combining is a T-splitter which is

essentially a Y-branch of 900 half angle. Most studies in the literature have been con-

cerned with the design of small-angle Y-branches that require large device lengths to

achieve a low-loss transition to the two arms. Index or height tapering have been used for

adiabatic mode evolution [63],[64], and integrated microprisms have been proposed for

phase-front compensation in a scheme analogous to that employed for loss reduction in

bends [65].
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The HTC concept can be extended to the T-splitter using cavities similar shapes. The

CMT in time formulation can also be applied to this case by treating the junction as a

three-port system shown in Figure 5.17. For the third port we add the definition of the

incoming (outgoing) waves s+3(s- 3), the decay rate 1/Te3 and the associated coupling

coefficient K3 = Te3

s+2  S+ 3

cavity .

S-2  
S-3

s.1 s+1

Figure 5.17: Schematic of a T-splitter as a three-port cavity.

With input s+1 - eflOt, s+ 2 = s+3 we have:

Kci
a = 1 y 1 1 1 s+ (5.8)

j(wO - W%) + -+ - + - + -

TO Tel Te2 Te3

The outgoing waves are given by:

S_1 = - s+ + Kf*a S-2 K 2*a s_3 =3*a (5.9)

From (5.8)and (5.9) we get:

.1 1 1 1
- j(0 - 0%) - -+-

0- R=T e e e (5.10)

s 1 1 1 1
S j(- )+-+-+-+-

0 o Tel te2 te3
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2

s-2  j(0 1 -0 2 ) te1te2
- TL = e I 2 (5.11)

S+1 j(W - 00 )+ - + I-+ -+-
To el Te2 Te3

2

s-2 1(01-03) ielte3
-- TR=e 1 1 1 1 (5.12)
S+1 j(W - 0) + -+--+-+-

o el Te2 Te3

From (5.10) we can see that in order to transfer all the input power into ports 2 and 3

without reflection at resonance, the decay rates must satisfy:

1 _ 1 1 1
- - + + (5.13)

Tel Te2 Te3 to

The ratio of the power at the two output ports is then ITL/TRI 2 = Te3 /Te2, therefore

if 1 /Te 2 = 1/e 3 the power is equally split between the two ports. In the case of negligi-

ble loss (1/t, = 0) the condition (5.13) is in agreement with scattering matrix theory:

That is, it is impossible to construct a lossless, reflectionless three-port system with three-

fold symmetry (1/Tel = l/Te2 = l/te 3 )-

In Figure 5.18 we show a typical example of a HTC junction compared with a plain T.

The schematic of the plain and modified junction of this example is shown in (a) and the

field patterns obtained by FDTD are shown in (b) and (c). The modified junction was

derived directly from the HTC bend of Figure 5.6 and its performance is similarly high.

The reflection is negligible and 99% of the input power is equally distributed between the

left and right outputs as shown in the transmission plot of Figure 5.18(d).
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Figure 5.18: (a) Schematic of a plain and a HTC T-junction, (b),(c) respective electric
field patterns and (d) transmission and reflection spectra obtained by FDTD.

Note that the performance of the HTC T-junction, in terms of reflection and radiation

loss, is not significantly deteriorated by perturbing the symmetry of the structure. Thus it

is possible to design junctions of different splitting ratios by moving the input waveguide

(port 1) off center by a distance d as shown in Figure 5.19(a). From the field pattern in (b)

we can see that a displacement d = 100nm, which is half the waveguide width, does not
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cause a significant increase in the radiation compared with the symmetric case. In (c) we

show the distribution of power between the two output ports when d is varied from 0 to

loonm

ni = 3.2 w = 0.2gm d 

0=1 a= 0.72 pm
d = 0-100nm

d

(a) 0.7
lO0nm

0.6580n I .................. ... LEFT PORT

60nm
0.6

0.55 -

C
05

L0.45 -

1.500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
S(nm)

Figure 5.19: (a) Schematic of an asymmetric HTC T-junction (b) electric field pattern
when the displacement is half the waveguide width and (c) distribution of the power in the
two output ports for different displacements.

5.5 Waveguide crossings
In dense optical integrated circuits, waveguides may often have to intersect one another to

ensure optimal placement of the various optical components on the chip and close interac-

tion between waveguides. Ideally the wave launched in one of the intersecting waveguides

must be fully transmitted forward without any power escaping sideways (crosstalk) and
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with negligible reflection and radiation loss. with negligible reflection and radiation loss.

Modification of the waveguide intersection for crosstalk reduction, has been employed

elsewhere, e.g. [66], but for shallow-angle crossings and with a penalty in throughput. The

crosstalk at right angle crossings is very small for weakly guided modes as in the case of

large low index-contrast waveguides because the k-vector of the mode is almost parallel to

the propagation axis. But for the high index-contrast sub micron waveguides considered

here, close to 10% of the mode power escapes sideways. This is due to the strong inclina-

tion of the k-vector of the strongly guided mode with respect to the propagation axis in

such waveguides.

It is possible to eliminate the unwanted crosstalk and direct all of the power forward by

modifying the intersection region into a cavity with fourfold symmetry. This idea was first

proposed and the operating principle explained in [54] in the context of photonic crystal

waveguides. The symmetry planes of the cavity must coincide with the waveguide axes

and only two degenerate modes must be supported in the frequency range of interest: One

mode with odd symmetry with respect to the horizontal waveguide axis and even symme-

try with respect to the vertical waveguide axis, and one mode with the opposite symme-

tries as illustrated in Figure 5.20. Under these conditions, each resonant mode will couple

to the mode of just one waveguide and will be orthogonal to the mode of the perpendicular

waveguide. Thus, with from one waveguide will leave the other waveguide unexcited lead-

ing to full transmission with zero reflection (for lossless cavity), and zero crosstalk.
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excited mode

unexcited mode

Figure 5.20: Schematic of waveguide crossing as cavity with fourfold symmetry

This idea can be explained using an alternative set of symmetric degenerate modes in a

coupling-of-modes- in-time formulation into symmetric modes can be used to explain the

idea with coupling of modes in time [67]. The cavity at the intersection is regarded as a

four-port system (Figure 5.21) that supports two modes at the same resonant frequency

o0 with amplitudes denoted by a and b.

S-2 S+2

symmetry planes

s+4  cavity s+3

s. 4  
s-3

s.1 s+1

Figure 5.21: Waveguide crossing seen as a four-port system
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Due to the fourfold symmetry, each mode can be made to couple equally into all four

ports with associated decay rates 1 /ta and I/Tb, respectively but with different phases

in the coupling coefficients:

Ka, i ejali Kb, i 1 =1, .. , 4 (5.14)
ab

For simplicity the cavity is assumed lossless. The inputs(outputs) at each port are

again denoted by s+i(s i = 1,..., 4. With input s+1 - e ,at steady state we have:

4+1,b= a,2a = s+ b 4 +1 (5.15)

j(o - W') + - M~O - C') + -
a Tb

and the outputs are given by (see section 2.5.2)

S-1 =-S+1 +Ka, 1*a+Kb, 1 *b s-3 = Ka, 3 *a + Kb, 3*b (5.16)

S- 2 =Ka, 2 *a+ Kb, 2 b -4= Ka, 4 *a + Kb, 4*b

From (5.14)-(5.16) we have:

2 2

S_- Ta T b- = R = -1 + (5.17)
S+1 j((O - 0)+ 4 j(CO - 0') + -

a b

2 2

- T = eJ(a,1- a,2) a + e (ob- b,2) Tb (5.18)
+1 M. -0) + - j(O - 0))+ -

Ta Tb

2 2

- 3X L = .e , - a, 3) T + e(0 , -±e, 3) b (5.19)
s-XL=e'a 4 +i4 (.9

+1 Awo - coo) + - j(0) -coo)+ -
a I
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2 2

-4 - Ra,4) a + e b,1 -b,4) Tb (5.20)
S+1 Rj(0) - 00) + - j(CO - coo)+ --

ab

The desired behavior is achieved if the two modes couple in phase into ports 1 and 2,

that is 6 a, 1 - 0 b, 1 = 0, Oa,2 -b, 2 = 0, and out of phase into ports 3 and 4, that is

Oa, 3 - Ob, 3 a, 4 - Ob, 4 = nT. Then (5.17)-(5.20) become:

2 2

R = -1 + + (5.21).4 + 4
j(O - 0)+ - j(O - o0)+ -

Ta Tb

2 2

T =e _(a, I - Oa, 2) a + (5.22)

j(CO - 0)0) + - j((O - coo) + -

2 2

XL = ea, I~0a, 3) a _ b (5.23)

M~O - coo) + - (CO - (00) + -
a Tb

2 2

XR = ei(0 a, 1 - Oa, 4) a 4 - b 4 (5.24)

A(O - coo) + - j((O - 0)0) + -
Ta Tb/

At o =wo the reflection and the crosstalk are zero and the incoming signal is fully

transmitted forward. If, in addition Ta = Tb = Te, the outputs at ports 3 and 4 remain

zero at all frequencies. Note that the set of degenerate modes in this analysis is made up of

the sum and the difference respectively of the modes in the analysis of [54].

Next, we illustrate this concept with FDTD simulations, starting with the behavior of a

plain waveguide intersection in a high index-contrast single-mode waveguide shown in
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Figure 5.22 As previously mentioned close to 10% of the power leaks sideways in either

direction as unwanted crosstalk and only -80% of the input power is transmitted forward.

* ni=3.2

D n = 1
w = 0.2 m

(a)

0.9-

0.8-

0.7- - transmission
- - reflection

0.6 - """ crosstalk
0
'1.5

0 0.4

0.3
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0.1

1%00 1510 1520 1530 1540 15501560 1570 15801590 1600
X (nm)

(c)

Figure 5.22: Waveguide intersection (a) schematic (b) electric field (c) transmission,
reflection and crosstalk spectra

The crosstalk can be drastically reduced by making appropriately spaced slots on the

arms of the cross as shown in the schematic of Figure 5.23(a) Adding dielectric at the cen-

ter as shown in Figure 5.23(b) offers an additional degree of freedom and better light con-

finement. As an initial guess, the spacing 1 of the slots away from the center is

approximately half a guided wavelength in the arms of the crossing. At the center, their

distance d is approximately a quarter guided wavelength longer. This structure can also be

viewed as a crossing between two quarter-wave-shifted periodic resonators or two ID

photonic crystal microcavities [54].
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Figure 5.23: Possible implementations of a cavity at the intersection.

The optimal design parameters deviate from the initial guess since the presence of the

slots reduces the average dielectric in the crossing waveguides thus increasing guided

wavelength and the distance 1. The addition of dielectric in the center, in Figure 5.23(b)

increases the effective index thus reducing the wavelength in the cavity and the distance d.

The best numerical results for this type of waveguide-crossing and the design parameters

are shown in Figure 5.24 for (a) one, (b) two and (c) three slots on each arm. The simula-

tions show that in case (a) the resonance frequency is more strongly affected by the size of

the square at the center. The width of the slots determines the coupling between cavity and

waveguides and in a smaller degree the resonance wavelength: Wider slots result in

weaker coupling and therefore narrower resonance while the resonance shifts to shorter

wavelengths due to the lowering of the average dielectric. Beyond a certain slot width of

about 100nm, however, the performance starts to deteriorate due to increased scattering

loss. Increasing the number of slots has similar effects, with a less significant increase in

radiation loss. An additional set of slots as in case (b) yields a narrower resonance, and

further reduction of the crosstalk. The peak transmission is also increased because the
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radiation loss is greatly reduced in the cavity. Further increase of the number of cuts, as in

(c), lowers the average dielectric and shifts the resonance to shorter wavelengths. More-

over, assuming same radiation loss as in (b), the weaker coupling leads to a slight decrease

of the peak transmission. The best combination of peak transmission, crosstalk and band-

width characteristics for this particular configuration is obtained with two slots. The peak

transmission for this case is 96% and the crosstalk less than 10-3. Similar results can be

obtained for the type of Figure 5.23(a) but with slightly increased reflection and radiation

loss.
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Figure 5.24: Electric field patterns in waveguide crossings with (a) 1 slot, (b) 2 slots, (c) 3
slots and (d) comparison of the respective spectra
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Chapter 6

Fiber-PIC coupling

6.1 Introduction
One of the characteristics of the passive devices presented so far is the fact that they are

based on single-mode high index-contrast waveguiding which enables the dense integra-

tion of many such devices on an optical chip. A major disadvantage of this approach, com-

pared with more conventional low index-contrast (such as silica based) integrated optics,

is the difficulty of coupling light to and from an optical fiber. Approximating the fiber

mode by a gaussian distribution (see section 2.6.3) the mode field diameter (MFD) of a

fiber is defined as the 1 /e 2 -diameter of the gaussian power distribution and is approxi-

mately 15% larger than the core diameter. For a single-mode fiber (SMF) with flat-end the

typical MFD is 8-10 ptm and the mode cross-section is ideally circular. A lensed fiber has

typical output beam diameter -50% of the typical MFD and -20 pm focal length [68]. A

high index-contrast waveguide has a fundamental mode in the submicron range and,

depending on the aspect ratio of the rectangular waveguide core, the mode cross-section is

strongly elliptical. This large mode-mismatch leads to very inefficient fiber-waveguide

coupling where most of the power is lost to radiation. The coupling loss between fibers of

different MFD, assuming that they are perfectly aligned, is [68]:

loss (dB) = -10log (MFD 4 MFD2 2 (6.1)

MFD2 + MFDJ

If we ignore the ellipticity of a waveguide mode and apply (6.1) to get an estimate for

the coupling between a fiber and waveguide with a 5-to-1 MFD ratio we find a 8.3 dB loss,
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that is less than 15% coupling efficiency. We illustrate this with a 2D numerical example

where a low-index wide waveguide (n = 1.05, w = 4 pxm and MFD-4.8 ptm) is butt-cou-

pled to a high-index narrow waveguide (n = 3, w = 0.25 pim) and the whole system is sur-

rounded by air (n=1). As Figure 6.1 shows most of the power is lost to radiation and only

17% of the power is coupled into the waveguide mode.

Most approaches to solving this problem, encountered in the literature, can be broadly

classified into to two types depending on whether the coupling scheme is on the fiber side

or on the chip side. In the first type of coupling the fiber tip is modified by tapering and/or

lensing to bring the MFD of the fiber mode closer to that of the integrated waveguide

[69],[70]. In the second type the core of the integrated waveguide is adiabatically tapered

so that the mode fields spreads out into the cladding to match the fiber mode size [71],[72].

Both types of coupling result in structures up to a few hundreds of pm long.

Mode conversion schemes that work entirely on the fiber side may lead to critical

alignment tolerances as the fiber mode size gets very small. Moreover there is still a mis-

match due to the different mode-shapes, that of the fiber being circular and that of the

waveguide being in general highly elliptical. For these reasons it is preferable to concen-

trate most or all the mode matching efforts on the chip-side. Better alignment tolerances

are thus obtained and we have the added advantage that one kind of fiber can be used to

couple light into different PICs.

In this chapter we present two basic ideas that allow efficient coupling within only a

few gm. For simplicity we assume that the fiber mode has a MFD of -5 gm coming from

a lensed SMF. Alternatively we can consider that the input mode field is coming from a

large low-index waveguide which may be viewed as an intermediate stage between the

fiber and the high index-contrast waveguide.
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Figure 6.1: Example of coupling from a low index-contrast wide waveguide to a high
index-contrast single mode waveguide (a) electric field (b) transmission and reflection
response.

6.2 Mode conversion with cascade of square resonators
The first approach is based on resonators. A cascade of high index-contrast square resona-

tors with gradually smaller dimensions are placed between the input fiber or large

waveguide and the target high index-contrast waveguide as shown in the schematic of Fig-

ure 6.2. The effect of the resonators is to concentrate the mode power in an area of gradu-

ally fewer wavelengths in size until the extend of the mode field in the resonator is close to

that of the narrow waveguide. The gaps between the squares affect the reflection and the

coupling between the squares and they have to be kept narrow enough to avoid excessive

scattering. In the examples presented below we have calculated not only the total transmit-

ted and reflected power but also the fraction of power that is coupled specifically into the

fundamental mode of the waveguide and of the fiber at X = 1550 nm. This value is

obtained using numerical mode overlaps as explained in Section 3.5 based on the theory of
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Section 2.3. This additional calculation is necessary in order to separate out the contribu-

tion of the radiation modes which inevitably enters the total power in such in-line arrange-

ments.

Wi
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ee
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gN
lg 9
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2 w=5pm (MFD)

gN 2= 0.25gm

U n=3

Ln=1.05
W2 Ln =1

W, = 4gm

W2= 0.25gm

0 0 0

Figure 6.2: Two possible arrangements for a cascade of resonators as a mode-matching
structure and a possible 3D implementation.
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In Figure 6.3 a cascade of four squares of high-index is used to improve the coupling effi-

ciency. The large mode has a gaussian profile closely approximating that of a lensed fiber

and is assumed to impinge on the coupling structure from free space. The narrow

waveguide is only 0.25 pm to ensure single-mode operation. The total power and trans-

mission and reflection as well as the fraction coupled into the fundamental modes at

X = 1550 nm are shown for both directions of coupling, the forward direction taken

from the fiber to the chip and the backward direction taken from the chip to the fiber. As

we can see in the spectral responses there is a strong wavelength dependence which is

expected since we rely on high-order resonances. There is a markedly improved coupling

efficiency in comparison with the example of Figure 6.1, with maximum power transfer of

about 75%. We note that the total power transfer from one side to the other is clearly lower

in the forward direction than in the backward direction, and almost the same as the power

transfer between the fundamental modes. However the coupling between the fundamental

modes is the same in both directions and this can be explained by scattering matrix theory:

We can view the total system as a multi-port system with ports 1 and 2 assigned to the fun-

damental modes of the fiber and the integrated waveguide, respectively and the rest of the

ports assigned to the higher order guided and/or radiation modes. Since the system is

reciprocal we have S12 = S21 but since it is not symmetric we expect Si I # S22. In this

example in the forward direction we have To = S21 , RO = S1, and in the backward

direction To = S12 , R 0 = S22 *
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Figure 6.3: Fiber-chip coupling using a cascade of squares surrounded by air, illustrated
in both propagation directions (a),(c) Electric field amplitudes (b),(d) corresponding spec-
tra.

Another example is shown in Figure 6.4 where this time the entire system of high-

index square resonators and waveguide is considered buried in a material with index n=1.5

e.g. SiO2 cladding. The resonator dimensions are the same as before except the first one

which is 125nm larger in each side. Also, in order to reduce the reflection the cascade is
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moved by 0.25 pm inside the n=1.5 area; this length is approximately X/4 for this index.

We have repeated the same calculations which show that the total power transfer is higher

out of the chip than into the chip while the coupling between the fundamental modes is the

same in both directions and only slightly lower than in the previous example. If the cas-

cade starts at the edge of the "chip" both Tt and To are 1-2% lower.
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Figure 64 Fiber-chip coupling using a cascade of squares surrounded by n = 1.5, illus-
trated in both propagation directions (a),(c) Electric field amplitudes (b),(d) corresponding
spectra.
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Finally, a cascade of squares is coupled to a large low-index waveguide which can be

considered as an intermediate stage on the chip between the fiber and the coupling struc-

ture. The coupling between the fiber and fundamental mode of this waveguide is about

99%. In Figure 6.5(a) and (b) the field pattern and the associated spectra are for the for-

ward direction. In (c) we show how drastically the spectrum changes for the different

arrangements of the gaps shown in the adjacent schematics, especially in the last case of

(c) where the spectra are almost inverted with the reflection up to almost 80% and the

transmission no more than 10%.

The use of a low-index wide waveguide on the chip, with its fundamental mode well

matched to the fiber mode, may offer an additional degree of freedom for impedance

matching, e.g. by making slots at proper spacings as was done in the waveguide crossing

of Chapter 5.

In spite of its simplicity the fiber-chip coupling scheme presented in this section has

certain clear disadvantages. None of the cases examined has resulted in more than 70-80%

coupling. There are no simple design rules and, due to the strong wavelength dependence,

the performance is very sensitive to the size and location of both the gaps and the resona-

tors.
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Figure 6.5: Coupling between a low-index wide waveguide and a high-index narrow
waveguide using a cascade of squares. (a) Electric field and (b) associated spectrum, (c)
dependence of the response on gap location.
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6.3 Mode conversion using dielectric planar lenses

Now we present an entirely different approach to the fiber-chip coupling problem, not

based on resonance. Since the mode of a fiber can be approximated by a gaussian beam we

can consider using gaussian optics to design lens-like structures that can bring the MFD of

the fiber down to that of the of the integrated waveguide mode. The analytical part of the

design can then be based on the well known transformation laws of gaussian beams using

ABCD matrices that were presented in section 2.6.2. A very good first guess for the design

parameters can be obtained with this method for known mode widths. Since Gaussian

optics are based on the paraxial approximation which in general does not hold in high

index-contrast, strongly guided structures, this method is only approximate and FDTD

simulations are still necessary for accurate modelling.

As we shall see in the examples of this section efficient coupling is achieved through

lensing within a distance of only -6pm. The schematic of Figure 6.6(a) shows the simplest

implementation of this idea. The lens-like structure is of the same index as the high index-

contrast waveguide and the system is surrounded by air. A layer of index

n2 = nin2 = 1.73 and thickness d = X/4n 2 = 0.22 gm on the propagation axis is

there for impedance matching at the location maximum intensity. The expected beam evo-

lution in Figure 6.6(b) shows that the beam diameter can be reduced to well under 1 gm

in less than 5 gm.
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Figure 6.6: (a) Schematic of a planar lens and (b) the expected beam waist and phase-
front radius evolution along the device obtained by the ABCD matrix formalism.

The FDTD calculation of the associated spectrum shows that 82% of the input power

is transferred from the fiber to the waveguide mode. The simulation is performed in both

propagation directions. As argued in the previous section, the coupling between the two

modes is equal in both directions whereas the total power is higher in the backward direc-

tion. This structure is far from optimal. The radius of curvature is very small and the

impedance matching layer greatly deviates from the right thickness away from the center.

Moreover as the almost plane wave fronts of the input beam impinge on a strongly curved

interface additional reflection is caused due to phase mismatch.
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Figure 6.7: (a),(c) Electric field amplitudes for forward and backward propagation in a
simple lens like coupler and (b),(d) associated spectra.

An improved version is shown in Figure 6.8 where both interfaces air/matching layer

and matching layer/ "lens" are curved the first with a slightly larger radius of curvature.

The effect of that is the smoother transition form flat to curved wavefronts and vice versa

and the thickness of the impedance matching layer stays approximately the same away

from the axis.
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Figure 6.8: (a) Schematic of a planar lens and (b) Expected beam waist and phase-front
radius evolution along the device obtained by the ABCD matrix formalism.

The theoretically expected behavior of the beam is very similar with the previous case.

The FDTD simulation results in Figure 6.9 show an improved performance in both direc-

tions and again verify the reciprocity of the coupling between individual modes.
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simple lens like coupler with curved impedance-matching layer and (b),(d) associated
spectra.

This design can be improved by making a gentler curve at the outer interface. The the-

oretical and numerical results for this case are shown in Figure 6.10
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Figure 6.10: (a) Schematic of a planar lens with impedance matching layer (b) Expected
beam waist and phase-front radius evolution along the device obtained by ABCD matrix
analysis (c) Electric field amplitude for forward propagation in a simple lens like coupler
(d) associated spectra.

Finally we consider the case of a coupler-waveguide system surrounded by n = 1.5

(e.g. SiO 2 cladding). We apply the same ideas as before regarding the choice of curvature,

161

C=nj = 3

n2 = 1.72

= 1

-- 3

Wi

(a)

Tto
Rtot

A T =.907

SR =4.2e-3

-



index and thickness of the different layers. One of the best responses was obtained when

we used more than one matching layers as shown in the schematic of Figure 6.11(a) with

refractive indices chosen to approximately satisfy n2 = jn 1 n 3, n 3 = n-n 4  and

n4 = n3n 5 and respective thicknesses approximately X/4n . Almost 92% transmission

was obtained with very low reflection into the fiber mode.

162



d, = 0.18 pim

d2 = 0.26 gm

d3= 0.30 gm

r 1 = 4.5 gm

r2 = 2.5 pm

w= 5gm (MFD)

W2= 0.28gm

LI

Wi

.. beam waist
- - beam radius

interface

I-

I-

I-

~%
- -

J# 4

- .4

-,

-,

-.

-4

0.- . . . . . .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
distance (jim)

(a) (b)

Al A
0.8

0.7

0.6

a0.5

C 0.4

0.3

0.2

0.1

1530 1535 1540 1545 1550
X (nm)

(d)

1555 1560 1565 1570

Figure 6.11: (a) Schematic of a planar lens with impedance matching layers (b) Expected
beam waist and phase-front radius evolution along the device obtained by the ABCD
matrix method (c) Electric field amplitude for forward propagation in a simple lens like
coupler (d) associated spectra.
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6.4 3D mode-conversion scheme
All the numerical examples presented so far were in two dimensions and addressed the

problem of lateral mode-size conversion while ignoring variations in the vertical dimen-

sion. The extension to three dimensions may be simpler for the cascade of square resona-

tors, i.e. if we replace the planar square cavities by cubic cavities, as was shown in the

schematic of Figure 6.2(c). The treatment of the vertical direction is not obvious in the

case of lensing. In theory the same scheme can work in 3D using a spherical or ellipsoidal

lens and the theoretical analysis can be performed separately for the two q-parameters of

an elliptical gaussian as discussed in sections 2.6.1-2. However, the fabrication of a struc-

ture with one or more interfaces with 3D curvature would be a very difficult task. A differ-

ent approach for vertical focussing must be used, which is suited for fabrication in the

vertical direction. According to our discussion of gaussian beam propagation in quadratic

index media in section 2.6.1, an obvious choice for vertical lensing would be a layered

structure with the index varying quadratically from layer to layer. The schematic of Figure

6.12 shows two possible ways of incorporating the graded index lensing structure in a 3D

coupler. In (a) we have two separate stages, a layered one for the vertical focussing fol-

lowed by a planar "lens" for the lateral focussing. In (b) the two stages are merged into

one coupler which combines layering along x and planar lensing along y. The arrangement

in Figure 6.12:(b) is preferable since the separation into two stages may introduce addi-

tional reflections and beam spreading in the orthogonal directions.

We illustrate the operation of such a coupler in a numerical example. The entire 3D

structure to be modeled extends over a volume of - 10 3pLm 3 which is prohibitive for a

full 3D FDTD simulation. On the other hand the BPM cannot accurately model the rapid

variations along the propagation direction. We therefore decompose the problem into the

xz-plane and the yz-plane and use the fact that the evolution of an elliptical Gaussian beam
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can be traced separately in the two dimensions. The propagation of the gaussian beam in

the layered medium is treated first and the associated effective index (see equation (2.93)

in 2.6.1) is used to link the two analyses. In greater detail the modeling is performed as

follows:

vertical mode conversion:
graded index layers

lateral mode conversion:
planar lens

in a single stage:

Figure 6.12: Combination of mechanisms for mode-size conversion: graded index in the
vertical dimension and planar lens in the lateral dimension
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Stage 1: graded index in the xz-plane
The layered structure has an index variation of the form

n 1 *lxi a
n(x, y) = 22 (6.2)

n |2x| > a

where, for continuity of the index distribution we use h = a/ 2(1 - n0 /ni) . The

length of the layered structure along z is equal to 7th/2 which half the period of variation

of the Gaussian beam width in the graded index region to ensure maximum beam width

narrowing in the x direction. We find analytically the expected variation of the beam width

along z and from it the variation of the associated effective index, given by:

n,(z) = ni I - ] (6.3)
(kong w(Z))21

Figure 6.13 summarizes our analysis of this stage with n1 = 2.5 and no = 1.5 and

a = 3.2pm. These particular index values were chosen such that the graded index is in

the range approximately achievable with silicon nitrides. The additional 0.22 gm thick,

n = 1.5 layer is for impedance matching (ideally its index should be = 1.58). The

waveguide also has index n = 2.5 and cladding no = 1.5. With h = 3.577gm the

focal length is nh/2 = f I = 5.62gm.

Stage 2: planar "lens" in the yz-plane
A planar lensing structure is constructed using a material with the index variation of (6.3)

and curved interfaces with radii chosen so that the beam is focused laterally in almost the

same distance nh/2. If a shorter focal distance is obtained through non-optimal choice of

lens curvature then, after having reached its minimum width, the beam will start spreading

again before coupling to the waveguide. Similarly if the focal distance is larger than nTh/2
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the beam will couple into the waveguide before reaching its minimum width. Both cases

would result in reduced coupling efficiency.
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Figure 6.13: (a) Schematic of a lensing structure in the yz-plane based on graded index
layers (b) Expected beam-width and phase-front radius evolution
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The analytical modeling of this stage is summarized in Figure 6.14 The 0.22 pm thick,

n = 1.5 layer serves again as a quarter-wave layer for impedance matching, (ideally this

index should be ,-/= 1.58). The particular radii of curvature are chosen to give a focal

length f 2 f f 1 as required for efficient coupling.
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Figure 6.14: (a) Schematic of a lensing structure in the xz-plane (b) Expected beam-width
and phase-front radius evolution
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FDTD simulations

The numerical results are shown Figure 6.15 for forward propagation and in Figure 6.16

for backward propagation. As expected the coupling between fundamental modes is the

same for both propagation directions due to reciprocity.
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Figure 6.15: (a),(b) Electric field and associated spectra for forward propagation in the yz-
plane and (c),(d) same in the xz-plane.
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Figure 6.16: (a),(b) Electric field and associated spectra for backward propagation in the
yz-plane and (c),(d) same in the xz-plane.

An estimate for the 3D coupling efficiency at 1550nm can be obtained as a product of

the mode-to-mode 2D couplings in each plane, that is 0.835 x 0.945 = 0.79 which corre-
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sponds to a coupling loss of about 1dB. Better coupling can be obtained with an optimized

design especially in the yz-plane (graded index) where the radiation loss seems to be the

main problem. In our example more than 15% of the input power was lost to radiation.

In conclusion lens-like fiber-PIC coupling schemes are easier to design, in comparison

with the resonator cascades, since Gaussian beam analysis gives us a very good descrip-

tion of the expected beam evolution, while FDTD simulations are necessary to evaluate

the transmission and rediation characteristics. Moreover these lens-like structures have a

much broader transmission response and are less sensitive to design parameters than the

resonant couplers. However their fabrication should be more challenging, especially since

they involve curved interfaces that may be susceptible to surface roughness.
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Chapter 7

Conclusions

In this thesis we have shown how certain concepts borrowed from physics, microwave

engineering and optics can be applied to the design of passive integrated optics, yielding

devices with very good performance. These concepts have general validity, but their suc-

cess in our devices is greatly aided by the strong light confinement in high index-contrast

structures which leads to low radiation loss and small device sizes, on the order of the

optical wavelength. These are desirable characteristics that enable the dense integration of

optical devices on a chip. An additional advantage towards this goal is offered by the fact

that some of the main high index-contrast systems are based on silicon for which there are

well established ULSI processing techniques.

The behavior of the structures presented here can be understood and qualitatively pre-

dicted by simple analytical methods such as CMT and Gaussian or ray optics. However

due to the complexity of these structures, numerical techniques are required for accurate

modeling and optimization. Our method of choice has been the FDTD which is a very

powerful tool for modelling arbitrarily shaped structures, with discontinuities in both the

propagation direction and the transverse direction and/or with resonant characteristics.

With our simulations we have verified the predictions of CMT analysis of resonant

add/drop filters that are based on symmetry and degeneracy of standing wave modes to

implement the function of a traveling wave resonator, e.g. a ring. These filters are very

compact with sizes on the order of the optical wavelength and their response can be tai-

lored to meet system specifications using multiple coupled resonators. The FDTD simula-

tions have revealed that, in general, the performance of such high index-contrast devices is
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very sensitive to small changes in their geometrical parameters, due to the high dispersion

of high index-contrast waveguides.and the high-Q resonances involved. The design of this

type of filters is thus very challenging, especially for higher orders, and their fabrication

would be even more so. The strict fabrication tolerances create the need for tunability of

these filters along with further improvement of fabrication and processing techniques.

FDTD simulations also showed that it is possible to achieve close to full transmission

through sharp bends, splitters and crossings within a very small area by modifying the

junction region into a low-Q cavity which we called high transmission cavity (HTC). The

HTC bends and splitters are extremely broadband due to their weak resonant character and

have better fabrication tolerance. The crossings have s stronger resonant character and are

therefore more narrowband and sensitive to design parameter variation. Such components

are essential for dense integration and optical interconnection of many different devices on

a PIC.

Perhaps the most important problem to be overcome for high index-contrast micropho-

tonics to be a viable technology, is the difficulty of coupling light from the optical fiber to

the PIC and vice-versa. The coupling schemes proposed in the last chapter can perform the

desired mode conversion within only a few microns (instead of several hundred microns in

common mode-size converters) and relatively small radiation loss as our 2D FDTD simu-

lations have shown. Using lensing mechanisms as opposed to resonant schemes has the

advantage of broadband operation and simpler design since we can obtain a very good

approximation through Gaussian and ray optics analysis. A combination of two focusing

mechanisms is required for mode-size conversion both vertically and laterally e.g. using

graded index and planar lensing, respectively. Our analysis and preliminary simulations

have shown that such a coupling structure is promising and may be realizable using exist-

ing material systems and fabrication techniques. The drawback of this scheme is that the
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layered structure in the vertical dimension must be sufficiently thick to capture the fiber

mode (5-10gm) and the waveguide is buried deep into the substrate so this structure may

not be very practical. It may thus be preferable to have the mode conversion take place

closer to the chip surface. For example, a grating coupler can be used to couple the fiber

light into the plane of the chip (shown in the schematic in Figure 7.1) followed by a lateral

mode-converter e.g. an integrated lens. A grating coupler designed for operation at normal

incidence [74] would enable vertical integration of fibers onto the chip which in turn may

allow a larger number of fibers to be coupled to the chip. In addition to coupling other

functions could be incorporated in the grating such as polarization splitting, [75]. The

main concern about this coupling scheme is that, in general, gratings are narrowband. It

may be possible however to broaden the wavelength range of operation by proper grating

tooth design [76].

light from fiber

o lateral
mode converter

Figure 7.1: Schematic of a grating coupler for coupling light from the fiber into the plane
of the chip

One of the main issues that have not been addressed in this work, is the strong polar-

ization dependence of high index-contrast devices. This is of great importance since, usu-

ally the incoming light from an optical fiber is randomly polarized. In general TE- and
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TM-like modes have very different propagation constants and degrees of confinement in

high index-contrast waveguides leading to different behaviors in waveguide based devices.

This is most important in resonant filters where the excitation of both polarizations in a

cavity will result in split resonance peaks and deterioration of the filter performance. The

design of polarization-insensitive high index-contrast structures is a very challenging if

not impossible task. The polarization dependence may be reduced by using wave guiding

structures with lower index-contrast and with cross-section aspect ratios close to 1, as was

briefly discussed at the end of section 5.3. However it may impossible to maintain this

condition throughout the various complex devices of a PIC.

A possible solution to this problem, which takes advantage of the very small real estate

taken up by high index-contrast structures, is the use of two sets of components each opti-

mized for one polarization as shown in the schematic of Figure 7.2(a). The system is pre-

ceded by a polarization splitter which separates the incoming, randomly polarized, light

into TE-like and TM-like polarization. The two orthogonally polarized outputs from the

two sets of devices are finally recombined and sent to the output fiber. This symmetric

arrangement allows bidirectional operation. Because certain types of devices may have

better performance for one of the two polarizations, an alternative solution would be to

have two identical sets of devices optimized for one, say, TE polarization as shown in Fig-

ure 7.2(b). The simplification of the device design, which is now done only once, comes at

a price, since we need two polarization rotators to convert the TM mode to TE after the

splitting and back before the recombination, respectively. The polarization splitters and

converters should ideally have small size, and most importantly low insertion loss and

very broadband operation in order to accommodate all the WDM channels.
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Figure 7.2: Schematic of a possible solution to the polarization-sensitivity problem using
two sets of devices (a) each set is optimized for one polarization and (b) two identical sets
optimized for one polarization

Polarization splitters can be based on waveguide coupler structures where the beat

length of the two polarizations is different or where two or more waveguides are optically

identical for one polarization and nonidentical for the other (see [77] and references

therein). Such schemes are usually characterized by strict fabrication tolerances, very long

lengths and narrow bandwidth which makes them unsuitable for WDM. An alternative

mechanism is based on the polarization-dependent properties of asymmetric Y-branches,
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where each arm favors a different polarization, and on the concept of mode evolution or

mode sorting, (e.g. [78], [79] and references therein). This type of splitter can be shorter,

with better fabrication tolerance and operation over a broad wavelength range.

Polarization converters using passive isotropic structures can be based on asymmetric

waveguides such as periodic asymmetric-loaded waveguides and angled facet waveguides,

or interaction between hybrid supermodes ([80] and references therein). These devices

usually involve some critical length (in general associated with narrow-band operation and

strict fabrication tolerances), and may require multiple segments and/or long lengths for

900 polarization rotation. An alternative scheme makes use of the polarization rotation that

occurs in small-radius bends in deeply etched waveguides [81]. As suggested in [82] the

device performance is strongly dependent on the geometrical characteristics of the bend-

ing waveguide; however its in essentially wavelength independent and thus suitable for

WDM applications.

Although the FDTD is a powerful tool for modelling arbitrarily shaped structures, we

cannot rely entirely on it for analyzing systems of varying complexity and many wave-

lengths long: The the main drawback of FDTD is the enormous time and memory require-

ment when solving optically long and/or highly resonant structures. This is especially true

when the PML boundary conditions are used, since all the fields are split into two compo-

nents as discussed in Chapter 2. Thus it is essentially impossible to model any 3D struc-

ture that is larger than few gm in each direction and we have been mostly limited to 2D

simulations where the third direction is taken into account by EIM. The accuracy of this

approach is greater for high aspect ratios and when there is little radiation in the vertical

direction. This was verified for the HTC bends which, due to their small size and weak

resonant character were best suited for 3D FDTD simulations. Their fabrication and test-

ing at MIT offered the opportunity to compare the 3D FDTD data with experimental as
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well as with 2D FDTD results and find them in very good agreement. Even non-optimized

HTC bends had well under 1dB loss, of which a negligible amount was due to radiation

into the substrate. The allowable size of the computational domain that can be simulated in

3D can be almost doubled if we replace the PML boundary conditions with less costly

ABCs e.g. [16],[17]. The trade-off is an increase of the spurious reflections from the com-

putational border by orders of magnitude compared to the PML but this may be afforded

for systems that do not radiate much into the surrounding space. For optically long struc-

tures it may be necessary to combine the FDTD with different numerical and/or analytical

methods e.g. BPM, CMT, etc., which can analyze long structures with adiabatic transi-

tions very effectively, thus limiting the use of FDTD to the more complex parts of the sys-

tem [83].
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