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Degree of Master of Science in Mechanical Engineering

Abstract

Cardiovascular health is currently assessed by a collection of hemodynamic
parameters many of which can only be measured by invasive methods often requiring
hospitalization. A non-invasive approach of evaluating some of these parameters, such as
systemic vascular resistance (SVR), maximum left ventricular elasticity (ELV), end
diastolic volume (VED), cardiac output and others, has been established. The method has
three components: (1) a distributed model of the human cardiovascular system (Ozawa)
to generate a solution library that spans the anticipated range of parameter values, (2) a
method for establishing the multi-dimensional relationship between features computed
from the arterial blood pressure and/or flow traces (e.g., mean arterial pressure, pulse
amplitude, mean flow velocity) and the critical hemodynamic parameters, and (3) a
parameter estimation method that provides the best fit between measured and computed
data. Sensitivity analyses are used to determine the critical parameters that must be
allowed to vary, and those that can be assumed to be constant in the model. Given the
brachial pressure and velocity profiles (which can be measured non-invasively), this
method can estimate SVR with an error of less than 3%, and ELv and VED with less than
10% errors.

Measurements on healthy volunteers and patients were conducted in Brigham and
Women's Hospital, Boston, MA. Carotid, brachial and radial pressures were measured
by tonometry and velocities at corresponding locations were measured by ultrasound.
Reasonable agreement is found between the measured pressure and velocity curves and
the reconstructed ones. Invasive measurements of hemodynamic parameters are
available for two of the patients, which are compared to predictions to evaluate the
performance of parameter estimation routines.

Thesis Supervisor: Roger D. Kamm, Ph.D.

Title: Professor of Mechanical Engineering and the Division of Bioengineering and
Environmental Health
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1. Model- based Noninvasive Assessment of Cardiovascular Health

Abstract

Cardiovascular health is currently assessed by a collection of hemodynamic
parameters many of which can only be measured by invasive methods often requiring
hospitalization. A non-invasive approach of evaluating some of these parameters, such as
systemic vascular resistance (SVR), maximum left ventricular elasticity (ELV), end
diastolic volume (VED), cardiac output and others, has been established. The method has
three components: (1) a distributed model of the human cardiovascular system (Ozawa)
to generate a solution library that spans the anticipated range of parameter values, (2) a
method for establishing the multi-dimensional relationship between features computed
from the arterial blood pressure and/or flow traces (e.g., mean arterial pressure, pulse
amplitude, mean flow velocity) and the critical hemodynamic parameters, and (3) a
parameter estimation method that provides the best fit between measured and computed
data. Sensitivity analyses are used to determine the critical parameters that must be
allowed to vary, and those that can be assumed to be constant in the model. Given the
brachial pressure and velocity profiles (which can be measured non-invasively), this
method can estimate SVR with an error of less than 3%, and ELV and VED with less than
10% errors. Extensive simulations were performed to test the ability of the approach to
predict changes of SVR and ELv using computer-generated data.

Keywords: Parameter estimation, feature extraction, computational model, sensitivity
analysis, hemodynamic parameters
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Introduction

In patients suffering from a variety of cardiac diseases, the cardiovascular state is

typically assessed by the measurement of hemodynamic parameters such as HR (Heart

Rate), SVR (Systemic Vascular Resistance), ELV (Left Ventricle Elasticity), VED (End

Diastolic Volume), VES (End Systolic Volume), PED (End Diastolic Pressure), C.O.

(Cardiac Output), S.V. (Stroke Volume), EF (Ejection Fraction = S.V./VED), and CI

(Cardiac Index) 1,2,3,4,,6 Many of these parameters must be measured invasively and can

therefore only be monitored in the hospital. For example, SVR is an important parameter

used clinically to adjust vasodilatory medication 7. It is usually calculated by (PMA -

PA)/C.O., where PMA and PRA are Mean Arterial Pressure and mean Right Atrial Pressure

(approximated by central venous pressure), respectively. Of these at least two, C.O. and

PRA, must be measured invasively.

However, the rising need for home health monitoring systems or systems capable

of continuous patient assessment has led to recent efforts to develop reliable, noninvasive

methods to estimate these parameters.

Noninvasive cardiovascular assessment in the home is currently limited primarily

to the simple measurements of blood pressure and heart rate. The potential exists to

monitor the ECG as well, but few devices are capable either of continuous monitoring or

of data interpretation beyond the obvious. Yet, even these simple measures contain

additional useful diagnostic information that could be gleaned from the data by

subsequent analysis. Few studies have explored this possibility for obtaining more

comprehensive, and more useful, information concerning the cardiovascular state of the

individual.

Continuous measurement of blood pressure is now a reality with the recent

development of systems that can be worn, either on the wrist or even the finger 8,9

Miniaturized sensors and on-board electronics enable the device to convert the measured

signal to a form more easily transmitted to a central computer for further processing and

analysis. The processing of this information is designed to extract all the useful

information contained in the signal. In the case of the blood pressure pulse, clinicians

have known and made use of the fact that various aspects of the waveform contain

information about the state of the heart or the peripheral vascular network. For example,
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the maximum rate of pressure rise at the beginning of systole is indicative of the strength

of cardiac contraction while the rate of decay of pressure during end diastole is a measure

of peripheral vascular resistance; both of these are important parameters used in

cardiovascular diagnoses.

Inference of cardiac parameters from peripheral measurements, however, is

complicated by the changes in pulse shape that occur as the pressure wave propagates

through the intervening arterial tree. Others have sought to overcome this problem by

establishing the transfer function that relates changes in pulse shape at the aortic root to

changes at a peripheral measurement site 1. This method suffers, though, from the need

for periodic calibration requiring arterial catheterization. An alternative approach,

presented in this paper, involves the use of a comprehensive model of the entire arterial

system and left heart. This computational model is used to create a solution library

consisting of an extensive collection of peripheral pressure and/or flow traces, each

corresponding to a different set of system parameters, covering the entire range of

possible parameter values. The solution library is further condensed by a two-step

process. First, each curve is represented by some small number of features (feature

extraction). These features are selected so that they describe the shape and magnitude of

the pressure waveform, and correspond to the set of critical parameters, those we seek to

predict by our parameter estimation technique. Second, the dependence of each feature

on the critical parameters is viewed as an N-dimensional surface and is mathematically

represented by a surrogate function. The surrogate function itself is represented by a set

of coefficients that are stored for later use in the parameter estimation procedure.

Parameter estimation begins with the measurement of arterial pressure by one of

several non-invasive methods. The measured trace is processed in the identical manner

as the computed waveforms to extract the features. An initial seed is chosen (a particular

point in parameter-space) and a measure of the relative error between the features

calculated from the measurement and the features corresponding to the initial seed point.

Beginning at this point, a minimization routine is used to march down the error surface to

eventually identify the point in parameter-space having the smallest error and therefore

corresponding to the set of parameters that most closely match those of the subject from

whom the measurements are taken.
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In this way, the values of the critical parameters are estimated. In METHODS, it

will be discussed how these critical parameters are selected from all the hemodynamic

parameters specified in the computational model. Although these parameters are only a

small subset of the ones measured clinically, many other parameters can be calculated by

inputting the estimated critical parameters into the model.

Methods

Model Theory

The distributed cardiovascular model of Ozawa, et al 11,12 is used to generate the

solution library. This model consists of a distributed arterial system and boundary

conditions to simulate the left ventricle, bifurcations, and peripheral vessels. The arterial

system contains thirty main arterial segments. The proximal and distal boundary

conditions for the arterial system are, respectively, the left ventricle and the lumped

parameter windkessel model for the smaller branching peripheral vessels. Given specific

hemodynamic parameter values, the one-dimensional fluid dynamic equations can be

solved numerically to obtain estimates for blood pressure, flow velocity and cross-

sectional area at each location in the arterial tree as a function of time. Details about the

modeling theory and computational methods are described in Ozawa, et al "',. Only

changes to the model are presented here.

Modified Left Ventricle Wall Elastance Curve

In the cardiovascular model, the left ventricle is approximated by a chamber with

an entrance (mitral) and an exit (aortic) valve, whose compliance changes as a function of

time, thus driving flow. Ozawa et al. assumed the ventricular wall elastance E(t) to be a

pure half-sinusoid, whose duration as a fraction of the entire cardiac cycle was denoted as

Q. Since the shape of the ventricular contraction curve strongly influences the arterial

pulse profile, we have utilized the results of Senzaki, et al who provide a more accurate

form for E(t) 13. Their study showed that the mean normalized elastance curves En(Tn)

(where En = E(t)/Emax, and T, = t/Tsystoie) were remarkably similar over a wide range of

patients in varying degrees of cardiovascular health as given in Figure 1.
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Averaged Normalized Elastance Curve

0.8-

0.8
EN

0.4-

0.2

0 05 1 15 2 25 3

TN

Fig. 1: Averaged normalized elastance curve

Identification of the Parameter Set

In its current form, the model requires the specification of over 200 parameters.

While the number of parameters in parameter estimation routines should be a reasonably

small value to achieve computational efficiency, it is necessary to make certain

simplifying assumptions. Obviously, the validity of these assumptions will need to be

further evaluated.

One of the most important assumptions is that of geometric self-similarity. We

assume that the branching pattern of the larger vessels in the arterial system is self-similar

in terms of the length of each segment, the distribution of branches, and branching

angles. Therefore, the arterial tree geometry (i.e. lengths, cross-sectional areas at a

reference pressure, artery wall thickness) can be expressed in terms of a single length

scale (e.g. subject height) along with a large number of dimensionless ratios. In addition

to geometrical similarity, we assume structural similarity in the sense that the normalized

distribution of wall thickness and arterial elasticity is similar in all individuals.

Consequently, arterial elastance is characterized by a single parameter, the Young's

modulus at one specified location, and this single parameter is allowed to vary between

subjects. This assumption has important implications in the application of the parameter

12
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estimation technique. For example, its accuracy will likely be adversely affected in

patients with arterial stenosis in the vicinity of the site of pressure and/or velocity

measurement.

Self-similarity is also assumed in the distribution of cardiac output. Although the

overall level of systemic vascular resistance is allowed to vary, the relative resistance of

one peripheral vascular bed to another is held constant.

Together with the parameters associated with calculations of both the left and

right ventricles and the lumped model of venous and pulmonary circulation, which can be

found in the fluid dynamic equations of the cardiovascular model "'1, the final parameter

set identified for this work has 21 parameters in total. Table 1 lists the nominal values

and ranges of these parameters, which were estimated based on available data.

Table 1 List of model parameters, nominal, maximum and minimum values

# Name Nominal Value Minimum Maximum
Value Value

1 Heart Rate 72BPM 40 160
2 Left Ventricle Emax 6000dyn/cmA5 300 15000
3 Left Ventricle Emin 133dyn/cmA5 50 500
4 Left Ventricle 0-Pressure Vol 15ml 0 100
5 End Diastolic Volume 120ml 30 400
6 Right Ventricle Emin 133dyn/cmA5 50 500
7 Right Ventricle 0-Press Vol 15ml 0 100
8 Transthoracic Pressure (-)5 mmHg -20 0
9 Sinus of Valsalva Csinus 0.00005cmA5/dyn 1.OOE-05 3.OOE-04
10 Venous Pressure 8mmHg 0 30
11 Venous Cv 0.075cmA5/dyn 0.01 0.1
12 Venous Rv 13.3dyn-sec/cmA5 1.00 100.00
13 Pulmonary Rro 4 dyn-sec/cm^5 1.00 10.00
14 Pulmonary Cpa 0.0032cmA5/dyn 1.OOE-03 1.OOE-02
15 Pulmonary Rpa 106.7 dyn-sec/cmA5 10 500
16 Pulmonary Cpv 6.30E-03 1.OOE-03 1.OOE-02
17 Pulmonary Rpv 13.3 dyn-sec/cmA5 1 100
18 Blood Viscosity 0.04cp 0.01 0.10
19 Length Scale 1.00 0.5 1.5
20 Artery Wall Stiffness E 1.00 0.50 2.00
21 Systemic Vascular Resistance 1000dyn-sec/cmA5 300 3500

13
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Parameter Reduction

The complete set of hemodynamic parameters (table 1) that reflect the unique

state of a given patient still contains many more parameters than can reasonably be

predicted and must therefore be substantially reduced. Two schemes for parameter

reduction are used here: Dimensional Analysis and Sensitivity Analysis.

Dimensional Analysis: This approach reduces the number of parameters by taking

advantage of non-dimensionalization, and by using a subset of the total parameters to

define dimensionless parameters from the remaining subset. We chose to use the density

of blood, a characteristic length (the length between distal points of brachial and radial

artery), and the Young's Modulus of the arterial wall to non-dimensionalize all remaining

parameters. By this means, the dimension of the parameter space (number of independent

parameters) is decreased by two.

Initial Sensitivity Analysis: To reduce the number of parameters further, the

relative contribution of each is assessed in terms of its morphological and quantitative

effects on the model output. For this purpose, each parameter was varied in turn over its

dimensionless scale from the nominal value (in Table 1) to ±10% of the total operating

range, while holding all other parameters constant. A root mean square error function

was then defined so that the deviation of each new run with its single adjusted parameter

could be compared with the solution using the nominal value (standard case). Denoting

the data set of length n taken from the aortic root pressure/velocity of the standard case as

Pm', and comparing it with a set of calculated data p, taken from the same location,

where both share the same time axis, then the error may be written as:

1,, =0 (pei-p|,,)2  (1)
np

where

Pm = 2 and pc = {pp , '" (2), (3)

and the mean of the standard set is indicated by the over bar. Additionally, both curves
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were made dimensionless so that the pressure/velocity values were normalized in both

curves by the minimum and maximum values from the standard case, as shown in

equations 4 and 5.

p,-min(p )
PM = M , (4)

"' max(p,, )- min(p,)

p - min(p,)
PC = 1 (5)

max(pm)- min(p,,)

where pm is the dimensional standard case, and pC is the dimensional test case to be

compared against.

Additional values for errors at other locations can be calculated by repeating the

analysis. These locations are determined by taking into consideration the methods

available to the clinician to non-invasively measure both pressure (using a tonometer) and

velocity (using Doppler ultrasound) in a patient. These locations include the carotid

arteries (both pressure and velocity), the brachial artery (velocity), the radial artery

(pressure), the femoral artery (velocity), and the tibial artery (velocity). By taking the

average deviation from all of the measurement locations and aortic root, a single

composite ranking of the error as a function of parameter deviation taken at the eight

locations can be constructed and summarized in table 2.

Based on table 2, a reduced parameter set can be defined. The parameters

contributing to large RMS errors are: venous pressure, length scale, heart rate, systemic

vascular resistance, left ventricle Emi, right ventricle Emin, arterial wall stiffness E, left

ventricle Emax and end diastolic volume (VED). Since for purpose of parameter

estimation, one is only interested in parameters that have direct effects on the arterial

waveforms generated by the model, we decided to eliminate the venous and pulmonary

circulations from the simulation (thus eliminating right ventricle Emin), replacing them

with VED and Pv. The parameter set can be further simplified by assuming that venous

pressure varies little in comparison to the large amplitude pressure changes seen in the

arterial system. Thus, variations in venous pressure can be neglected. Additional

15



simplifications can be made if one assumes that the only effect that left ventricular Emin

has on the arterial system is in determining the final steady state diastolic volume of the

left ventricle. Therefore, this parameter can be condensed into the parameter VED.

Table 2. Results of initial sensitivity analysis

Parameter # Parameter Name Mean RMS Error

10 Venous Pressure 1.70

19 Length Scale 1.19
1 Heart Rate 1.10

21 Systemic Vascular Resistance 1.05

3 Left Ventricle Emin 0.91
6 Right Ventricle Emil 0.84

20 Artery Wall Stiffness E 0.40

2 Left Ventricle Emax 0.36

5 End Diastolic Volume 0.21

12 Venous Rv 0.20

15 Pulmonary Rpa 0.18
9 Sinus of Valsalva Cjiu, 0.18
17 Pulmonary Rpv 0.18
14 Pulmonary Cpa 0.17
16 Pulmonary Cpv 0.17
8 Transthoracic Pressure 0.17

4 Left Ventricle 0-Pressure Vol 0.17
13 Pulmonary Rro 0.17
7 Right Ventricle 0-Press Vol 0.17
11 Venous Cv 0.17
18 Blood Viscosity 0.15

Using this initial sensitivity analysis, four parameters are recognized as having

relatively large effects on model outputs, in addition to the two parameters used to non-

dimensionalize other parameters, length scale and arterial wall stiffness E. They are

Heart Rate (HR), Peak Left Ventricle Elasticity (EL), End Diastolic Volume (VED), and

Systemic Vascular Resistance (SVR).

Table 3 gives the ranges of the four parameters varied over which the calculations

are conducted.

16



Table 3. Ranges of four parameters

Parameters HR ELV (dyn/cm') VED SVR
(/min) (ml) (PRU)

Minimum 40 300 30 0.225

Maximum 160 15000 400 2.625

The initial sensitivity analysis completed prior to generating a solution library

from the model helped to identify the parameters that needed to be systematically varied

in the library. Another sensitivity analysis was conducted to evaluate the effects of all

parameters on parameter estimation accuracy after the library and the parameter

estimation routines have been established, which will be discussed in RESULTS and

DISCUSSION.

Parameter Estimation Scheme

Extensive work in parameter estimation has been done in the field of engineering

and the application of "surrogates" to describe the behavior of a system, as a function of

its parameters, is well established. We use techniques similar to those developed by

Yesilyurt and Patera 14. A solution library is first constructed with the cardiovascular

model consisting of a collection of hemodynamic parameters (model inputs) and pressure,

velocity traces (model outputs) at each node of the arterial network. An N-dimensional

interpolation routine is used to generate the surrogates that describe the relationship of

the model output to the inputs. Next, an objective function obj is defined to give an

indication of the "error" between the output of the model for a given parameter set and

the actual patient data:

obj = 1(0 )2 (6)
H= fm

wherefe is the feature of model output andfmn is the feature from the actual patient data.

Given measured patient pressure and/or velocity data at any location of the

17



arterial tree, using the surrogate, the "best fit" can be located and the corresponding

estimated patient hemodynamic parameters associated with the point of minimum "error"

can be reached.

1. Feature Selection

Features are defined to quantitatively characterize pressure and velocity profiles.

One assumes that each pulse is specific to each given set of parameter values, and that the

features selected are adequate to uniquely specify one pulse. Thus, feature selection is

crucial to the accuracy of parameter estimations. Over the course of this study, different

methods for feature extraction have been compared, such as wavelet analysis, Fourier

transform, etc. Ultimately, we found that the features typically used by clinicians yielded

the most accurate parameter estimations. These offer the added advantage that they are

familiar to the clinician and more likely to gain acceptance in clinical practice. As a

matter of convenience in measurement, parameter estimations were made using pressure

and velocity profiles in the carotid, brachial and radial arteries.. Errors of parameter

estimations for model-generated pressure and/or velocity using different combinations of

all extracted features are compared, and the optimal set of features for our purpose is

taken as the set that gives the least estimation error. As will be shown below, the optimal

feature set is: [ PmeN/Vmean (dp/dt)max Pmean AP(= Pmax - Pmin) ]. When only pressure

data is available, the parameter estimation scheme can also give small errors when using

feature set [(dp/dt)max Pmean AP Pmax Detailed discussions will be given in RESULTS.

Figure 2 defines these features.

18
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Figure 2 Feature selections

2. Shepard Interpolation Method

As mentioned above, the solution library generated from the model contains a

collection of peripheral pressure and velocity traces, each corresponding to a different set

of system parameter values. Since the range of possible parameter values is broad, while

only sparse points in the space can be generated and stored in the library (because of

computational limitations), we employ an interpolation method to describe the

relationship between parameters and features.

Shepard quadratic interpolation is used here because it minimizes storage

requirements and is easily generalized for multidimensional interpolation. The original

detailed presentations of this method were given by Franke and Nielson and Renka for

the two- and three-dimensional cases 15,16 Given that we have a dataset D which

contains N input-output pairs:

D = {(p,, f),...,(pNf (7)

Where pj andf are parameters and features, respectively, j=1 ...N

and
f1 = F(pj) (8)

P, =(p ,---, p )(9)
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where n is the total number of parameters in p. Thus, an interpolation function of the

following form can be defined:

N

FP(P)=E W (P)Qk(P) (10)
k=1

where Qk(p) are quadratic nodal functions acting as local approximations to F(p) of the

form:

n nfn

Q( (11)
i=1 j=1 m=1

where:

l(j,m;n)= m + (n - j+ p) (12)
p=1

and c/ are coefficients that minimize:

Z i(Pk)[ (Zck(p' + -f ] (13)
=1 i=1 j=1 m=1

iek

Wk(p) are weighting functions defined based on the distance between points Pk and p.

The Shepard routine is implemented to determine coefficients for the surrogate

using library points generated by the model. Thus, a set of parameters may be sent to the

surrogate, which then returns a single value (the corresponding feature) based upon

interpolation between the library points. This process is repeated for each defined

feature. In application, given a set of pressure and velocity curves, initial parameter

values are input to the surrogate, generating a set of feature values, which are compared

with the real feature values extracted from the curves (the numbers of parameters and

features are not necessarily the same). Then, a minimization algorithm is employed to

minimize the objective function (equation 6) that is defined based on the difference

between the estimated features and the real features. When this minimization routine

converges, the optimal parameter values are determined.
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3. Minimization Routine

The Nelder-Mead Simplex Method, a direct search method 17 available as a

MATLAB function, was used to minimization the objective function. Its advantages are

that derivatives of the fitting function (dependent variable) need not be calculated and

that it is insensitive to small local perturbations.

Results and Discussion

Parameter Estimation Errors

1. Parameter estimation errors using 2 feature sets

The first step in performance evaluation is to compute model generated pressure

and velocity profiles, estimate their corresponding parameters and compare predictions

with the original values used in the model simulation. The parameter estimation error (E)

is defined as the following:

E= P -(PPet 2 + P (14)

Figure 3 depicts the parameter estimation errors using two different feature sets

that give small estimation errors as mentioned in feature selection. Feature set 1 is

composed of features from both pressure and velocity profiles and feature set 2 comes

from pressure curve only. Note that only three parameters are estimated, since Heart Rate

(HR) can be easily measured.

As can be seen from the figure, feature set 1 gives the smallest estimation errors

for model-generated data in the brachial artery. Errors for brachial artery waveforms

using feature set 2 are slightly higher. These results indicate that both pressure and

velocity are needed to achieve lower estimation errors. Parameter estimations for radial

artery pressure and velocity have somewhat larger errors than estimations from the

brachial artery (Fig. 3-b). Of the three parameters estimated, the error for SVR is always

the smallest.

In the following discussions, only estimation results using brachial pressure
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and/or velocity are presented.

2. Number of features

As mentioned above, the number of features and parameters are not necessarily

the same and from the scheme of parameter estimation, it can be seen that the fewer the

features, the faster the parameter estimation process proceeds. However, the features

must be adequate to identify changes of parameters. For example, if only 3 features are

used, parameter estimation errors will increase as shown in Figure 4.

In this figure, feature set 3 contains the same three features as feature set 1,

without (dp/dt)max, feature set 4 contains the same three features as feature set 2 without

Pmax. Feature set 5 will be discussed later. It can be seen that the errors using feature sets

3 and 4 are larger than those using feature sets 1 and 2, respectively. (Note, however, that

errors using feature set 4 are only slightly larger than those using feature set 2 suggesting

that Pmax is a redundant feature. Given Pmean and AP, one can not calculate Pmax since Pmax

can always be changed by changing the shape of the curve while keeping Pmean and AP

constant.). Other calculations show that using five features or more fails to reduce

parameter estimation errors, perhaps because the relationship becomes overspecified.

Therefore, in this paper, feature sets 1 and 2 are considered optimal within the range of

those tested.

3. Effects of (dp/dt).,

In the selection of features, we also need to consider our ability to obtain accurate

estimates in the clinical setting. Current measurement methods provide a means of

determining, Pmean , AP, Pmax with reasonable accuracy. However, (dp/dt)max may be

subject to greater errors since the pressure curve used in estimation is usually the mean of

several cycles to reduce the non-invasive measurement disturbance. If the measurement

is adequate to give consistent cycles so that one of these cycles can be used directly in

feature extraction, this problem will not exist.

Parameter estimation errors using feature sets that do not contain (dp/dt)max are

evaluated, as shown in figure 4, using feature sets 3 and 5. In feature set 5, a new feature,

Tpeak* (the ratio of time needed for pressure curve to reach the peak and the period, i.e.
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Tpeak/T) replaces (dp/dt)max in feature set 4. It can be seen that parameter estimation

errors increase when (dp/dt)max is not used. This is not surprising since, (dp/dt)ma is an

important feature related to the strength of cardiac contraction. Thus, in measurement of

pressure curves, it is desirable that the instrument have an adequate frequency response to

capture (dp/dt)max and efforts should be made to ensure consistent cycles so that

(dp/dt)max can be relatively accurately calculated.

4. Fixing VED

In parameter estimations, ELv usually has the largest estimated errors. We found

that it is difficult to discriminate the effects of VED from those of ELV, due to the fact that

they both appear only in the equation for ventricular function. Moreover, VED can be

measured by the cardiologist using standard ultrasound methods. Therefore, it is

reasonable if taking VED as a known parameter and as an input to parameter estimations

in the conditions that it can be measured accurately and it remains constant during a

specific period. Figure 5 shows the estimation errors when VED is specified. The errors

for ELv are significantly reduced (to less than 10% for both feature sets) in this way.

Paramter Estiriation Errors Parameter Estimation Errors
(Brachi Ae) (Radial Artery)

20 20

15 - 0-115 --
N Feature Seti

E Feature Setl U 0 0 Feature Set2
0

0 Feature Set2 9

94 5- CL 5-

0 0
ELv VED SVR ELv VED SVR

Figure 3. Parameter estimation errors

(Feature Setl: Pmean/Vmean (dp/dt)max Pmean AP

Feature Set2: (dp/dt)max Pmean AP P.,x)
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Reconstruction and calculation of additional system parameters

Parameters in addition to those determined from parameter estimation can be

calculated by performing a reconstruction, that is, using the estimated parameter values as

inputs to the cardiovascular model to do simulation. In addition, this provides more

opportunity for validation of the method. Figure 6 gives a sample comparison of two such

sets of curves showing excellent agreement. The parameter values and estimation errors

using the original brachial pressure and velocity are listed in Table 4.

When performing a reconstruction, other variables such as Cardiac Output (C.O.)

and cardiac stroke volume (SV) can be calculated using the model. Since neither C.O.

nor SV are required input parameters of the model, they can not be estimated using

parameter estimation routines. However, given a set of patient's pressure and/or velocity

curves, both can be calculated through the reconstruction procedure using the estimated

parameter values of this patient. For example, in the reconstruction demonstrated in

figure 6, the calculated C.O. is 5.36 1/min and SV is 67.35 ml.

Sensitivity Analysis

1. Method

As mentioned in METHODS, before setting up the solution library, an initial

sensitivity analysis was performed for all parameters to compare their effects on model

outputs. As a result of that analysis, only four parameters are allowed to change, all other

parameters being fixed in generating solution library. Now we conduct a sensitivity

analysis for the formerly fixed parameters to examine the effect that uncertainty in their

values has on parameter estimations. Table 5 lists the five fixed model parameters that

exert significant influence on parameter estimation based on preliminary analysis (other

model-fixed parameters listed in table 1 have little influence on parameter estimation).

Their nominal values and the possible ranges were estimated from available data.
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Figure 6. Reconstruction Example

Table 4. The parameter estimation errors

HR ELV VED SVR
(/min) (dyn/cmA5) (ml) (dyn/cmA5.sec)

Real Value 80.0 7500.0 120 1200

Esti 80 6618.1 126.866 1202.3
Error 11.53% 3.19% 0.20%
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Table 5. Fixed model parameters

Pv Vo Pth Csin, Blood
(mmHg) (ml) (mmnHg) (cmA5/dyn) Viscosity

(cp)
Nominal 5.0 15 -5 0.00005 0.04
Minimum 0 0 -20 1.OOE-05 0.01
Maximum 30 100 0 3.OOE-04 0.10

To analyze their sensitivity, simulations were done with each

(minor parameter) varied from the standard value by ±10% and

parameters (ELy, VED, SVR) unchanged. The difference of estimated

values between the case where no minor parameters are changed (base

with variation is then calculated, as,

"fixed" parameter

with the critical

critical parameter

case) and the case

S.. = ap (15)

where aJ1,,,, is the difference between estimated dimensionless critical parameter value

of a base case and the corresponding estimated parameter in the case with variation,

aPf is the change of minor parameters (± 10%).

2. Results

Figure 7 presents the results for the sensitivity of the three critical parameters to

all five minor parameters using feature sets 1 and 2. Note that when this ratio is near

zero, the change of the minor parameter has little effect on parameter estimation and the

errors resulting from holding it constant are insignificant. To evaluate the overall

performance, we did not assume VED to be known, but rather, estimated it.
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(a) Feature Set 1

(b) Feature Set 2

Figure 7. Sensitivity analysis for 6 fixed parameters.

From these results, the following conclusions can be drawn. (1). Feature set 1

leads to predictions that are less sensitive to variations in the 5 parameters, though the

sensitivity of feature set 2 is not much larger. Since in practice these 5 parameters likely

vary for different persons, feature set 1 may turn out to be more effective in clinical

applications. However, since feature set 2 only needs pressure measurement, it is more

convenient to use especially when velocity measurements are not obtainable under some

circumstances. (2). Ventricular volume at zero pressure (Vo) exerts a relatively large
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effect on ELv and VED- More work is needed to establish its value and take its effect into

account. (3). None of the 5 parameters exert much effect on SVR. This is encouraging

since SVR is one of the most desirable parameters from a clinical perspective.

3. Results when VF- is known

As an example for sensitivity analysis when VED is taken as known, figure 8 gives

the results using feature set 1. Much smaller sensitivities are achieved, which shows the

advantage in parameter estimation when VED is known.

Sensitivity Analysis (Feature Set 1)

1

0.8
g~ EPV

e 0.6 0 V0
* Pth

0.4- 0 C.imU* Csinus;

0.2-_

ELV VED SVR

Figure 8. Sensitivity analysis with VED known

Prediction of Change of SVR

In practice, there may be many factors, such as measurement inaccuracy, person

to person variability, etc., affecting the accuracy of final parameter estimation results. On

the other hand, the amount of change in SVR is often of greater interest to clinicians than

its absolute value. In these cases, although the absolute estimated parameter values may

not be accurate, our approach can still be used if it can predict changes in SVR

accurately. To test the ability of predicting changes in SVR, we performed simulations

with SVR varied ±10% and with all other parameters fixed, and compared parameter

estimation results with the known change in SVR. That is, we evaluated the ratio:
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epestimate (16)
tpreal

If this ratio equals unity, the change of SVR is captured perfectly. From the

estimation results in Table 6, it can be seen that the mean ratio is very near unity with

small standard deviations, especially for feature set 1. The ability of parameter

estimation in predicting changes of SVR seems promising.

Table 6. Prediction of change of SVR

ASVR ASVR Mean of Standard

/ real (-10%) (+10%) 10% cases Deviation

Feature Setl 1.0034 1.0131 1.0082 0.0293

Feature Set2 0.9981 0.8990 0.9485 0.2759

(Feature Setl: PmeanNmean (dp/dt)max Pmean AP

Feature Set2: (dp/dt)max Pmean deltaP Prmx)

Prediction of change of ELV

Similar calculations were performed to predict changes of ELv (Table 7) with the

result that, though the values are near unity, the standard deviations are rather large for

both feature sets. This approach is less able to predict changes of ELv accurately as

compared to SVR. Table 8 shows the prediction performance when VED is taken as

known. Smaller standard deviations are achieved with the mean values near 1.

Therefore, to predict ELv, it is better to measure VED and using it as input to parameter

estimation.
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Table 7 Prediction change of ELv

eP AELv AELV Mean of ± Standard
est

real (-10%) (+10%) 10% cases Deviation

Feature Setl 1.2125 0.9341 1.0733 0.6563

Feature Set2 1.3904 0.7734 1.0819 0.7675

Table 8 Fix VED, prediction change of ELv

AELv AELV Mean of ± Standard

/ real (-10%) (+10%) 10% cases Deviation

Feature Set 3 1.3502 0.9057 1.1280 0.3454

Feature Set 4 1.2983 0.8604 1.0794 0.3580

Conclusion

Hemodynamic parameter estimation based on non-invasive measurements in

peripheral arteries is feasible with errors of < 10% when estimating SVR, ELv and VED

from computer generated brachial pressure and velocity data. Although most of the

parameters used in the cardiovascular model are fixed, this scheme holds promise in the

real setting since the fixed minor parameters have a relatively small effect on parameter

estimation according to the sensitivity analysis. These errors can be reduced even further

if VED is known.

In estimating using measured pressure and velocity, the parameter estimation

accuracy will be largely related to accuracy of non-invasive measurement of P and V. As

long as relatively precise measurement is assured, the above parameter estimation scheme

should work well on providing hemodynamic parameter values non-invasively.

For the application of the parameter estimation scheme in continuous health

monitoring in hospitals or homes, the major issue would be the calculation speed of this

method, provided that pressure and velocity profiles can be obtained real-time. The
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parameter estimation process generally needs one to two minutes, while the calculation of

C.O. and S.V. takes three to five minutes using the cardiovascular model. Therefore, the

current parameter estimation approach is applicable in the health monitoring where a

five-minute or longer period is acceptable in between two estimations.
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Appendix 1A

Feature Extraction Methods

Feature extraction is an important step in parameter estimation. Features selected

should be functions of the parameters and should be as independent of each other as

possible. Since the minimized objective function is based on the difference of

interpolated features and patient trace features, it requires that each feature have a

relatively large sensitivity to changes of parameters. In addition, there should be no local

maximum or minimum points in the ideal multi-dimensional space constructed by

assuming each feature as a function of the parameters.

Feature selection needs extensive work since each possible combination of

features should be evaluated by computing its related parameter estimation errors.

Several feature extraction methods are presented and compared in this appendix.

Wavelet Transform

1. Basic theorv

Wavelet transforms are integral transforms using integration kernels called

wavelets. These transforms enable the study of non-stationary process (or signals) in that

they have good localization properties both in time and frequency. Since the physiologic

signal is non-stationary and the human cardiovascular system is nonlinear, this is a

promising approach for feature extraction.

The wavelet transform is defined in a similar manner as Fourier transform.

However instead of using the harmonics e w', it uses wavelet bases. Wavelet transform

decomposes a signal f(t) onto a family of wavelet bases, and the weighting coefficients,

Ws [f(t)], represent the amplitudes at given location t and frequency s. The process of

wavelet transform goes essentially as follows. Sets of "wavelets" are combined to

approximate a signal and each element in the set is a scaled (dilated or compressed) and

translated (shifted) version of the basic (mother) wavelet. To obtain the appropriate

weight of each element, the signal is projected onto each element. The result of each

projection is a scalar number (real or complex) called wavelet coefficient or weighting
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coefficient. Thus a signal is transformed to a combination of wavelets with different

weights. Compared to the Fourier transform, F(o), which depends only on frequency,

the wavelet transform is a time frequency function which describes the information off(t)

in various time windows and frequency bands. As a result, the wavelet transform is

capable of capturing non-stationary information such as frequency variation and

magnitude undulation, whereas the Fourier transform cannot.

2. Applications and evaluations

Wavelet transform is used widely in image processing and signal processing and

there are many generated methods suitable for different applications. Two kinds of

approaches to wavelet transform were tried on the pressure profiles and velocity curves:

the Discrete Wavelet Transform (DWT), and the Wavelet Packet Method.

(a). Discrete Wavelet Transform

In DWT method that has multi-resolution structures, the signal is first split into

low- and high-frequency components in the first level. The first low-frequency sub-band,

containing most of the energy, is sub-sampled and again decomposed into low- and high-

frequency sub-bands. This process can be continued into K levels. Fig. IA. 1 illustrates

the multi-resolution decomposition structure with 3 levels. The coarsest signal is the one

labeled LLL. Thus, a progression occurs from coarser to finer signal representation as

high frequency "detail" is added at each level. The signal can therefore be approximately

represented by different resolutions at each level of the tree.

LLL

LLH
Low Pass FilterH -+

Signal H |

High Pass Filter H

Fig. 1A. 1 Multi-resolution Structure for 3 levels
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Figure 1A.2 is the result of multi-resolution decomposition of a model-generated

brachial pressure curve. Three decomposition levels were performed and "db3" wavelet

basis was used. The second sub-plot of the figure contains all the coefficients obtained

from DWT. "Approximated coefficients of level 3" correspond to level LLL in Fig.

1A.1. "Detailed coefficients level 3" correspond to level LLH in Fig. 1A.1, and "Det.

Coeff. Level 2", "Detail Coeff. Level 1" correspond to level LH and H respectively. The

advantage of wavelet transform - precise reconstruction - is demonstrated by the curve in

the 3 rd subplot of Figure IA.2, which is reconstruction using all the coefficients of

different level. This reconstructed curve is exactly the same as the original one if put into

the same plot.
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Fig. 1 A.2 Multi-resolution decomposition example
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Figure IA.3 is the reconstruction result using each set of coefficient. The 2 "d, 3 rd

4 th 5 th subplots are the corresponding reconstruction of decomposition coefficients A3,

D3, D2, Dl respectively. Note that the reconstruction of approximated coefficients of

level 3 (A3) is very similar to the original signal. This makes it useful since only a

limited number of features can be selected in parameter estimation and these features

should contain as much information of the original signal as possible. This is discussed

further below.
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Fig. 1 A.3 Reconstruction Results
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(b). Wavelet Packet Method

In the Wavelet Packet method, at each level, both the low- and high-frequency

sub-bands are decomposed again, so the original signal f(t) is decomposed into small

number of large packets at lower resolution and large number of small packets at higher

resolutions. On the jth resolution, there are a total of 2' packets. Signal reconstruction

can be performed either by using the packets with the same size on the same resolution,

or by using the packets with different sizes on different resolutions. Each wavelet packet

represents certain signal information in a specific time-frequency window. Figure 1A.4

shows an example of wavelet packet transform. To do the transform, the original

brachial pressure curve was shifted so that it has a mean value of zero. It can be seen that

the reconstructed signal with all packets of level 6 is precisely the same with the original

signal. The reconstructed signal with only 4 packets (who have largest amplitudes) of

level 6 captures general information too (such as maximum, minimum values), but lost

some of the details.

It shows that not all the packets in one level contain information, especially at

higher resolutions, the coefficients of many packets are essentially zero. In feature

extraction, the proposed method is to use the wavelet packets that contain large amounts

of information as the features, called feature packets.

The DWT and wavelet packet methods are effective to analyze non-stationary and

non-linear signals; they provide both frequency and time localized coefficients.

However, in further study it proved not to be beneficial to employ those approaches in

our work since it is difficult to extract 3 or 4 features from the detailed information they

provide. In DWT, at each level, the wavelet representation always has the same number

of data as the signal f(t), each representation has a time and frequency scale, so after

DWT, we obtained three times as much data as in the original signal. Although in the

Wavelet Packet method, most of the packets are zero, even one nonzero feature packet

contains much more information than can be expressed in 3 or 4 coefficients. We tried to

use the first 3 or 4 largest coefficients as features, but all details were lost, which gives

rise to large errors for parameter estimation.
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The errors of parameter estimation using these two wavelets analysis are shown in

Table 1A. 1, together with that of other feature extraction methods that will be discussed

in the following parts.
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Table IA. 1 Errors of parameter estimation using different feature sets.

(34 random points generated from model, estimated from pressure curve of

carotid artery. ELV: Maximum value of left ventricle elasticity

VED: End Diastolic Volume, SVR: Systemic Vascular Resistance.)

(Noting these results were generated using a previous solution library

with smaller parameter space than that of being used now.)

Fourier Transform

In some respects, the Fourier transform can be considered a special form of a

wavelet transform since it uses harmonics e iw as the "mother wavelet". Figure lA.5

gives the FFT power spectral density and the reconstruction results using the coefficients

of the dominant harmonics. The errors for parameter estimation using FFT are also listed

in Table 1A. 1. It is clear that they are not as small as those using waveform

characteristics (discussed next). In addition, signals encountered in application are non-

linear and non-stationary. As a result, this method was not viewed to be optimally suited

to the current application.

Features from waveform characteristics

This led us to return to our previous approach using those features that physicians

typically apply in their diagnosis of a patient. These may include mean pressure, peak

systolic dP/dt, the slope of the pressure upstroke during early systole, and the systolic

ejection period, or the time during the cardiac cycle that the left ventricle is actively

contracting, the dP/dt of the pressure during diastole, etc.
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Features\parameters ELV VED SVR

Wavelet Packet 42.0281 25.0410 32.1791

DWT 38.9784 28.0963 12.2098

FFT 31.8283 10.4340 2.5975

Waveform features 14.3867 6.2326 3.5520



Feature Evaluation

Ideally, the features should be independent of each other, adequate to specify a

unique waveform, and each individually should be a monotonic function of the N

parameters being estimated. However, in practice, the multi-dimensional relation

between features and parameters makes it difficult to define an applicable criterion to

evaluate the features. Many different combinations of feature sets were tried to do

parameter estimations and the corresponding errors were compared. In this way, the

performance of different features can be evaluated. Another way is to draw three-

dimensional figures to show the relation of each feature to two parameters, which can

give a direct impression how effectively the features can behave in estimation. This

method was used at the beginning of the project when the computational model needed a

longer time to finish and when much less points were contained in the solution library.

The features considered include: mean pressure (Pmean), difference between maximum

and minimum pressure (AP), peak systolic slope (dPdtmax), mean dP/dt during diastole

(dPdtdias), the time to reach peak pressure (Tmax), the time to dicrotic notch, pressure at

2nd peak, maximum velocity, mean velocity, etc. The smallest set of errors in parameter

estimation using four of those waveform features is listed in table 1A. 1.

Figure lA.6 is an example of evaluation of feature 1 (Pmean/Vmean) with initial

dimensionless values of parameters as 0.2 0.4 0.5 0.6 0.7 respectively (noting it was

generated using the old library mentioned above). It can be seen that many of these plots

are not monotonic relations. For example, the last subplot is for feature 1 and parameters

4 and 5 (other parameters are fixed at their initial values), if parameter estimation is done

near these values, larger errors will be resulted because of the non-monotonic feature of

the surface. The ideal case is that all these 3D curves have shapes similar to the first

subplot in Figure IA.6.

From such evaluations, the best performing features are: (dPdtmax), (Pmean), (AP),

while the worst performing ones are: (Tmax) and dPdtdias-

One-dimensional curves of feature and parameters can also be drawn to evaluate

the linearity and sensitivity of the relationship. Figure lA.7 is one of such plots. The

initial values for the parameters are: 0.2 0.4 0.5 0.6 0.5 respectively. It can be seen that

none of the features is sensitive to parameter 4 (systolic period). Therefore, it is difficult
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to estimate this parameter using the listed features near the corresponding initial

parameter values. For other parameters, there is at least one feature with relatively large

sensitivity and linearity, which provide for a good assessment. Since the relationships of

features and parameters are multi-dimensional in nature, different combinations of initial

parameter values should be evaluated to judge the overall performance of a feature.
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Fig. 1A.6 The 3D relationship of Feature1 (Pmean/Vmean) to parameters

(1. HR; 2. ELy; 3. VED; 4. Systolic Period; 5. SVR)
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Fig. 1 A.7 ID feature-parameters relation (Non-dimensionalized)

(Features 1 2 3 4 are Pmean/Vmean, dPdtmnax, Pmean, deltaP respectively)

(Parmeters 1 2 3 4 5 are HR ELV VED Systolic Period SVR respectively)
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Discussion

Many different features have been evaluated and compared. The conclusion is

that waveform characteristic features are among the best ones for our research objectives,

for example, dPdtmax, Pmean and AP. They can give fairly small errors in parameter

estimation of model-generated points.

However, it can not be guaranteed that these same features are good for measured

pressure and velocity curves since it must depend on the applicability of the model

assumptions and the limitations in measurement techniques.

Parameter estimation for measured pressure and velocity profiles will be

discussed more intensively in later chapters.
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Appendix lB

Generation of Solution Library and Comparison of Models

Generation of solution library

As stated in the main part of the thesis, only sparse points can be saved into the

solution library because of computational efficiency, while the more points presented, the

more accurate are the interpolations. Thus, a compromise must be made between

computation efficiency and interpolation accuracy.

Currently, the main program of the cardiovascular model written in C takes 5-10

minutes to finish simulation of 10 heart cycles for each given set of parameters. Note

that this length of time depends on the value of Heart Rate (HR) for the specific run. The

higher heart rate, the fewer computational points in one cycle and the less time it takes.

Table. lB. 1 gives the hemodynamic parameter scopes, the number of values used

to generate solution library, and correspondingly, the steps between neighboring

parameter values. After filtering the unreasonable parameter combinations using the

lumped CV model, 2351 points are saved in the current solution library.

Table lB. 1. Hemodynamic parameter values in the solution library

HR ELv VED SVR
Maximum Value 40 /min 300 dyn/cmA5 30 ml 300 dyn-sec/cmA5
Minimum Value 160 /min 15000 dyn/cmA5 400 ml 3500 dyn-sec/cmA5
Number of Grids 6 7 16 16

Value Steps 24 /min 980 dyn/cmA5 24.67 ml 533.3 dyn-sec/cmA5

Model discussion and comparison

An important issue needed to discuss is about the parameter i used in the model,

as in equation (IB.I)

Ptm = Ptm(A )+ 77 * - (IB.1)
at
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The primary function of q is damping instabilities in the model. There is no

evidence that suggests viscoelastic response is essential for capturing true physiological

behavior in numerical models. Hence, the numerical value of 'n is not critical provided

its value does not influence the result (K. Bottom).

For different hemodynamic parameters used in the model, 71 should have different

values to ensure computational stability. For example, figure lB. 1 shows the results of

aortic root pressures using different values of Tj (using the model modified by Karen

Bottom). This model will be referred to as model II, while the original model by Edwin

Ozawa will be referred as model I, and the new elastance model will be named model

III).

I '~j*

0.1 0.2 0.3 0.4 0.

Time (sec)

5 0.6 0.7 0.8 0.9

Fig. 1B.1 Effects of i on aortic root pressure curves

In the figure, different curves were generated using same input parameters list in

Table 1B.2.
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Table lB.2. Parameter values for all curves in Figure BI

Parameters HR ELV VED SVR

Values 70 /min 4500 dyn/cmA5 150 ml 1300 dyn-sec/cmA5

In Figure 1B.1, the solid red line (the upper solid line) can be generated using 11

values ranging from 205 to 155, i.e. the value of q doesn't affect the results as long as it

is in this range. However, when rj is as high as 205 or larger, numerical instabilities will

occur and the pressure curve is distorted as shown. When t is lower than 155 but higher

than 80, no instabilities in calculation, but the pressure values decreases as i decreases.

When r reaches 80, instabilities occur again and oscillations can be seen in the pressure

curve.

When generating a library, it is inefficient to adjust the value of i by trying the

different values for each point by the user since there is over two thousand points. A

uniform rule for value of q must be employed and it is better that the program can find a

proper r automatically.

Since the problem of rj arises when model I was improved into model II, the

results of the new model can always be compared to those of the previous model.

Assuming that model I gives reliable results, the right value of q to use can be decided

using outputs of model I as reference.

Figure 1B.2 is a comparison of different model outputs using same parameters in

Table 1B.2. It can be seen that the curve of model II with q = 205-155 is similar to the

curve obtained from model I. Together with Figure 1B.1, it is obvious that when 11 is

smaller than 155, the pressure curve would become more different from the assumed

reference curve (that of model I).

Therefore, a criterion for value of ti can be decided - the largest value of rj with

which there is no instability in calculation should be the desired value. The program is

easily adapted to identify the value of q automatically in this way.

50



110

105-

100-

95-
P

(mmHg)
90 --

85-

80-

75

70

85
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sec)

Figure 1B.2. Comparison of different model outputs

(solid line: aortic root pressure from model I

+ + line: aortic root pressure from model II, il = 205-155

** line: aortic root pressure from model III)

It should also be noted that by adjusting the value of q, the program takes more

time to finish. If the proper 1 value is fairly small, this problem is significant since the

value of 1 can only start from a high value (270, usually) to encompass all possibilities

for library points.

In addition, figure lB.I is generated using model II, but the same rule about

adjusting 1 is also applicable to model III.
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Figure 1B.2 shows that model III gives a slightly lower pressure than the other

two models. This is acceptable since model III is using different elastance theory for left

ventricle and it is not unreasonable if the pressure changes from the old models. The

most important thing is that this new model can enable more accurate parameter

estimation for measured data, which will be shown in Chapter 2.

Further Comparison of Different Model Outputs

To further compare and evaluate the 3 models, their frequency responses were

calculated. Numerous studies have been performed to characterize the frequency

response of the arterial system. The most often used method is to define the input

impedance of the system as the amplitude modulus, which is the ratio of pressure

amplitude and the flow rate amplitude, as a function of frequency. The pressure and flow

rate signals are transformed by Fourier decomposition.

Using the same parameters as listed in Table 1B.2, the aortic root pressure and

flow rate traces are calculated respectively. After FFT (Fast Fourier Transform), the

input impedances (Modulus and phases) were obtained. Figure 1B.3, 1B.4, 1B.5 are the

results. Figure 1 B.6 is a well-accepted result measured by Nichols, who recorded aortic

blood flow and pressure invasively of normal subjects. The top panel of Figure B6 shows

the modulus falls from its initial value to a minimum at 4Hz and rises again thereafter.

The curve in the lower panel reaches a minimum negative value, indicating that flow is

leading pressure, and then crosses over to become positive at approximately 3Hz.

Comparing Figure 1B.6 to the other 3 figures, the model-based curves have similar

shapes to that in 1B.6. In fact, in measurements, the impedance is affected by many

factors, such as the peripheral resistance and the smooth muscle tone of the systemic

arteries, and one individual's impedance may change frequently during a day.

Thus, we conclude that input impedance curve used in the new model does not

adversely affect the results.
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Model I Aortic root impedance -- Modulus
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frequency (Hz)

Model I Aortic root impedance -- Phase
2

1

-1

-21
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frequency (Hz)

Fig. 1B.3. Calculated aortic root impedance for model I
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Model 11 Aortic root impedance -- Modulus

-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
frequency (Hz)

Model II Aortic root impedance -- Phase

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
frequency (Hz)

Fig. lB.4. Calculated aortic root impedance for model II
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Model Ill Aortic root impedance -- Modulus
2000

I 1500 -

1000 --CO)
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0
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frequency (Hz)
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Fig. I B.M5. Calculated aortic root impedance for model III
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Fig. 1B.6 The input impedance of human arterial

system measured by Nichols et al. 1977
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Appendix IC

Additional Calculation Results

In addition to the results presented in Chapter 1, there are a few other calculations

done to evaluate parameter estimation scheme.

Sensitivity Analysis Results

Figure 1 C. 1 is the sensitivity analysis results using feature set 4 when VED is

taken as known. Recall that feature set 4 was got from 2 by omitting Pmax. Compare this

result with that in figure 7(2) (where parameter errors using feature set 2 was

demonstrated), the sensitivity of Vo is reduced, but other parameters' sensitivities are

increased to various extents. Using VED as a known variable should make the parameter

estimation more accurate. Therefore, it can be inferred that feature set 4 is actually

sensitive to these parameters, while feature set 2, with Pmax added, is less sensitive to the

minor parameters. When estimating measured pressure curves to get patient's

hemodynamic parameters, it will be better to use feature set 2 instead of feature set 4,

even if VED is known from measurements.

Sensitivity Analysis (Feature Set 4)

0.8 --
* Py

0.6 N--- - MVo
0 Pth

0.4 - Csinu

0.2_

0
ELV VED SVR

Figure 1 C. 1 Sensitivity analysis with VED known

(Feature Set 4: (dp/dt)max Pmean AP)
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Prediction of Changes of SVR

Table 1 C. 1 is the results of predicting changes of SVR when VED is taken as

known. The results are not of much difference from those when estimating VED shown in

Table 5. Hence, in predicting changes of SVR, it is not necessary to measure VED first.

Table 1 C. 1 Predicting change of SVR when fixing VED

0 pest/8 Preal ASVR ASVR Mean of± Standard

(-10%) (+10%) 10% cases Deviation

Feature Set 3 1.2016 0.9940 1.0078 0.0437

Feature Set 4 0.9067 0.8540 0.8804 0.3133

Table 1 C.2 shows the results of predicting changes of SVR when the values of

minor parameters are randomized in their respective ranges. The standard deviations

using both feature sets are larger than 0.3. Table 1 C.3 lists the values of the randomized

parameters.

Table 1 C.2 Prediction change of SVR with minor parameters randomized

apest/aPreal ASVR ASVR Mean of ± Standard

(-10%) (+10%) 10% cases Deviation

Feature Setl 1.2171 1.0437 1.1304 0.3382

Feature Set2 1.1696 1.0432 1.1064 0.5313

From table 1C.3, it can be seen that randomized parameter values distribute

widely in their corresponding ranges. In reality, one person seldom has all these

parameters changed simultaneously. Thus, the standard deviations in table 1C.2 can be

seen as the maximum values when estimating patient's hemodynamic parameters.
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Table 1 C.3 Random parameters for prediction changes of SVR

Pv Vo Pth Csinus Blood
(mmHg) (ml) (mmHg) (cmA5/dyn) Viscosity

(cp)
Nominal 5.0 15 -5 0.00005 0.04

Rand. Setl 14.352688 46.177960 -24.424558 0.000098 0.036898
Rand. Set2 7.065009 10.240424 -8.649476 0.000144 0.052134

Rand. Set3 8.372989 56.414761 -12.662600 0.000051 0.049181

Rand. Set4 0.305479 49.785712 -14.797428 0.000187 0.038186
Rand. Set5 4.055304 13.248116 -10.565534 0.000064 0.023937
Rand. Set6 1.157826 23.524542 -4.982227 0.000015 0.020741

Rand. Set7 12.308647 52.795802 -2.084987 0.000151 0.022734
Rand. Set8 19.002586 15.409234 -10.484198 0.000104 0.060869

Table 1 C.4 is the corresponding estimation results when fixing VED. The standard

deviations are reduced slightly, but the overall results are approximately the same with

those in table 1 C.2. Measuring VED is not necessary when predicting changes of SVR.

Table 1C.4 Prediction change of SVR

With VED known and minor parameters randomized

OP ASVR ASVR Mean of Standard
est

/ real (-10%) (+10%) 10% cases Deviation

Feature Set 3 0.9206 0.8831 0.9018 0.3298

Feature Set 4 0.8846 0.9261 0.9053 0.4760

Prediction of Changes of ELV

Table 1 C.5 is the results of predicting changes of ELv when the minor parameters

are randomized. The standard deviations are larger than 0.5. While in table 1C.6, the

calculation was done by assuming VED was given, the standard deviations are decreased

by about 0.2 each. These results are consistent with those in table 6 and 7 of Chapter 1.
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The conclusion is that when predicting changes of ELV, the estimation is more accurate if

measuring VED first and take it as input to parameter estimation routines.

Table 1C.7 gives the randomized parameter values. Again, the errors shown in

table 1C.5 and table 1C.6 can be seen as the maximum errors in reality.

Table 1 C.5 Predict change of ELV

With minor parameters randomized

CP AELV AELV Mean of Standard
est

/ real (-10%) (+10%) 10% cases Deviation

Feature Setl 0.7711 1.2456 1.0084 0.6663

Feature Set2 0.8422 1.3079 1.0750 0.5662

Table 1C.6 Predict change of ELV

With VED known and minor parameters randomized

cP AELV AELV Mean of ± Standard

/ real (-10%) (+10%) 10% cases Deviation

Feature Set 3 0.7125 0.8943 0.8034 0.4020

Feature Set 4 0.7215 0.8886 0.8050 0.3756
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Table 1C.7 Random parameters for prediction changes of ELv

Pv VO P0  Csinus Blood
(mmHg) (ml) (mmHg) (cmA5/dyn) Viscosity

(cp)
Nominal 5 15 -5 0.00005 0.04

Rand. Setl 14.0548 36.43808 -14.8032 0.000143 0.04647
Rand. Set2 4.055304 13.24812 -10.56553 6.41E-05 0.023937
Rand. Set3 19.59494 18.09648 -19.93788 0.000177 0.052656
Rand. Set4 16.76237 1.309301 -8.499276 8.42E-05 0.057696
Rand. Set5 13.20455 22.79804 -18.94064 7.7E-05 0.041818
Rand. Set6 13.95797 25.22487 -3.733024 0.000173 0.04499

Rand. Set7 9.931049 59.98461 -4.756556 0.000134 0.056959

Parameter Estimation Errors

With the minor parameters randomized, simulations can be done and the pressure

and velocity curves can be used to do parameter estimation. Since the estimations are

obtained using the solution library in which all minor parameters are fixed, the estimation

errors must be higher than those presented in chapter 1.

Figure 1C.2 gives the estimation errors when the minor parameters were

randomized as listed in table IC.3. It can be seen that all errors are less than 20% and the

errors for SVR is much larger than those shown in chapter 1. As mentioned above, these

parameter errors can be seen as the largest ones our method will have in estimating with

measured pressure and/or velocity.
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2. Measurement System and

Hemodynamic Parameter Estimation of Measured Data

Abstract

The non-invasive hemodynamic parameter estimation method presented in the
section of Noninvasive Assessment of Cardiovascular Health is applied to estimate SVR
(Systemic Vascular Resistance), ELV (maximum Elasticity of Left Ventricle), VED (End
Diastolic Volume), and to calculate C.O. (Cardiac Output) and S.V (Stroke Volume).
Measurements on healthy volunteers and patients were conducted in Brigham and
Women's Hospital, Boston, MA. Carotid, brachial and radial pressures were measured
by tonometry and velocities at corresponding locations were measured by ultrasound.
Three heart failure patients and nine volunteers were studied. Parameter estimation
results using feature sets 1 (Pniean/Vmean (dp/dt)max Pmean deltaP) and 2 ((dp/dt)max Pmean
deltaP Pmax) are presented, together with pressure and velocity waveforms reconstructed
by inputting estimated parameters back to the CV model. Reasonable agreement is found
between the measured pressure and velocity curves and the reconstructed ones. Invasive
measurements of hemodynamic parameters are available for two of the patients, which
are compared to predictions to evaluate the performance of parameter estimation routines.

Key words:
non-invasive, parameter estimation, pressure measurement, velocity measurement
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Introduction

The application of the noninvasive hemodynamic parameter estimation method

presented in chapter 1 of this thesis is demonstrated here providing a preliminary

assessment of the method using real rather than computer-generated data. Measurements

on volunteers and patients were made in collaboration with Drs. Richard Lee and Nancy

Sweitzer in Brigham and Women's Hospital, Boston, MA.

In order to perform parameter estimation, carotid, brachial and radial pressure and

velocity, EKG (at the same time when each pressure is measured), characteristic length

(the length between measured locations on brachial and radial arteries) and brachial cuff

blood pressure all must be measured. Subject's age, sex, height and weight may also be

saved for reference. With the measured pressure and EKG, the subject's reference wave

speed (aortic root wave speed at Pref = 100 mmHg) and heart rate can be calculated. The

above information is sufficient to do parameter estimations. Measurement and estimation

results of 12 adult subjects (9 volunteers, 3 patients) will be presented in the following

sections.

In addition, it is preferred to measure subject's VED non-invasively using

ultrasound, either to compare with the estimated value or to do more accurate estimation

of ELv and SVR by taking VED as known. When the subject is a catheterized patient, the

invasively measured hemodynamic data, such as SVR, C.O., should be recorded

whenever possible to allow comparison and evaluation of the method. Among the

subjects studied, VED was measured on two of them, and SVR, C.O. were measured

invasively on two of the patients.

This paper describes the parameter estimation methods that are separated into the

following topics: (1) Measurement hardware and software. (2). Pressure and velocity

data processing. (3). Parameter estimation results and evaluation. (4). Discussion of

parameter estimation scheme applied in measured data
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Measuring System

In order to perform parameter estimation, arterial pressure and blood flow

velocity in one of the peripheral arteries must be measured. Various methods can be used

to obtain these measures as described next.

Pressure Measurement

Many non-invasive methods exist to monitor pressures in the peripheral arteries.

Table 2.1 gives a brief list and introduction of some of the more popular ones

Table 2.1 Pressure measurement methods

Method Description

Auscultatory Method Based on Korotkoff sound (first described in 1905),

measures systolic and diastolic pressure, estimates mean

Oscillometric Method Based on oscillations resulting from the coupling of the

occlusive cuff to the artery, measures mean, estimates

systolic and diastolic

Plethysmography Measures the volumetric change associated with arterial

distension since volumetric change causes change in the

electrical impedance of the measured site

Tonometry Using an array of sensors measuring pressure required to

maintain the flattened shape of artery when external

pressure is applied. Continuous waveform can be measured.

Selection of a pressure measuring device that can give reliable continuous traces

is crucial to parameter estimation. A Millar tonometer was chosen because, unlike some

of the other methods, it can give continuous pressure profiles similar to catheter

measurement. Figure 1 gives a view of the pencil-like probe of this tonometer (SPT-301,

Millar Instruments Inc., Houston, TX).
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Figure 1 Millar Tonometer

Measurement of arterial pressure using the Millar tonometer is based on the

principle of applanation tonometry, as is commonly used in the measurement of intra-

ocular pressure 2. When one flattens or applanates (Figure 2) the curved surface of a

pressure-containing structure, the pressure difference across the vessel wall is eliminated

and the sensor registers the true intra-arterial pressure 3. The wall flattening is important

since force from the intra-arterial pressure needs to be evenly distributed to the force-

sensing area without distortion from circumferential stresses inherent in a curved wall 4.

With applanation achieved, the circumferential forces are rendered normal to the

direction of the probe and hence balance to zero. If flattening is not achieved, no

consistent signal is obtained. Excessive flattening produces a high amplitude excursion

signal 5' 6.

Sensor

Arteryi

Bone

Figure 2 Diagram of applanation tonometry process
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Tonometry has several limitations. First, it is sensitive to sensor position and

angle, contributing to reduced inter- and intra- operator reproducibility. Secondly, since

the pressure registered by a tonometer is related to the applanation force applied to the

probe, tonometry requires calibration via an initial blood pressure measurement obtained

by an independent technique. Thirdly, a tonometer can only be used on superficial

arteries supported by a rigid bony structure in order to provide a contact force between

the skin and the sensor area equal to the intra-arterial pressure.

Another important concern with tonometry is that the applied external force

distorts the artery wall and may also change the contours of the pressure trace. However,

distortion of the arterial wall is required in tonometry since it measures the normal

contact stress that is equal to the instantaneous intraluminal pressure when the artery wall

is optimally flattened 5, 6. Driscoll et al studied the influence of recording force on

arterial pressure pulses and showed that mean arterial pressure pulse contours remained

stable until the force applied at the brachial arterial site exceeded approximately 60% (or

4.28±0.46 N) of the largest brachial force used 5. Also, it was found that the larger the

applied force, the smaller the measured pulse pressure. Therefore, in clinical studies,

proper flattening of the arterial wall is determined empirically, i.e. by obtaining a

consistent and large amplitude signal 47.

The Millar tonometer used in the present studies (FDIC proved, MIKRO-TIP

Pressure Transducer, together with Model TCB-500 control unit) uses piezoelectric

transducers to detect artery wall deflection transmitted through the skin. It converts

pressure to DC voltage with a measurement range of 0 to +300mmHg (0 to 40kPa),

sensitivity of 5ptV/V/ mmHg (nominal, 37.6pV/V/kPa) and natural frequency of

35kHz.

Velocity Measurement

Velocity profiles are measured using Doppler Ultrasound. The Doppler effect is a

shift in the observed frequency of a radiated acoustic wave when there is relative

movement between the source of radiation and the observer. The Doppler shift (the

difference between the observed and the transmitted frequency) is proportional to the

velocity of the scatterer 8. In medical Doppler ultrasound the scatterer (e.g. red blood
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cell) is often moving at an angle to the transmitter and receiver beams as illustrated in

Figure 3. The Doppler shift frequency is given by:

fd -
- 2Vf 0 cos(9 cos( / 2)

C
(1)

where

V = Scatterer velocity

fo = Transmitted frequency

c = Speed of ultrasound

0 = Angle between the bisector of the transmitter and receiver beams and the

direction of movement.

6 = Angle between the transmitter and receiver beams.

The negative sign indicates that the Doppler shift is negative (transmitted

frequency shifted to a lower frequency) if the direction of movement is in the

conventionally positive direction (away from the transducer).

Since the angle (6) between the beams is usually sufficiently small so that

cos(6/2) is close to 1.0, the above equation is often simplified to:

fd 2Vf 0 cos(9)
C

-6/2
6/2 Tran

Reflected

(2)

smitted

Velocity

Figure 3 Mechanism for velocity measurement
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In the studies presented in this paper, velocity data were obtained by the use of

Hewlett-Packard Sonos 2000 echocardiography machine with a 7.5 MHz linear array

transducer probe. In each patient, the artery of interest is identified using M-mode

ultrasound with color Doppler overlay 9. Once the transducer is positioned over the

artery, PW (Pulse Wave) Doppler measurements are obtained over several cycles, which

can be recorded or transmitted to a data acquisition system. Data are processed offline

using a laptop computer. Figure 4 is the typical HP Echo machine used in the

experiments.

(a) (b)

Figure 4 Velocity measuring system

(a). HP Echo machine. (b). A typical probe.

69



Figure 5 Pressure data acquisition

Data acquisition system

A Macintosh Powerbook G3 equipped with a data acquisition card (DAQCard-

516, National Instrument Corp. Austin, TX) and related accessories are used. The signal

from the pressure transducer is ported to the computer through DAQCard, the National

Instrument DAQ software, and LabVIEW software, converting analog signals into digital

ones that are then saved in a readable plain text format. Velocity related information

(Doppler sound signal) is ported through the computer's "sound in" port and collected

using Ultra-Recorder software. Figure 5 is demonstration of the data acquisition system

when measuring radial pressure.

Data processing

Pressure

1. Averaging the measured data

The Millar tonometer measures pressure continuously and data are stored in real

time. Usually, more than 10 relatively stable cycles are saved. When processing

pressure data, it can often be found that no two cycles are precisely the same, or obvious

differences, in terms of amplitudes, shape of contours, etc, exist among the assumed
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stable cycles. In these cases, a mean cycle of more than 10 cycles is taken. Figure 6 is an

example of the pressure data measured. 13 cycles were taken in this example.

Figure 6 Example of pressure measured

(Brachial pressure of a volunteer.

Blue: 13 individual measurements; red: average of all 13 cycles)

2. Calibration

Note in Figure 6, the "pressure" is actually voltage values obtained directly from

the Millar tonometer before calibration. With the assumption that the contour of the

pressure trace is unchanged by the application of external force, the measured voltage can

be converted into pressure with brachial systolic and diastolic pressure measured using

the auscultatory method. For the measurements of Figure 6, auscultation indicated the

blood pressure to be 132/84 mmHg, the mean pressure trace can be linearly scaled so that

it has maximum and minimum values of 132, 84 mmHg, respectively.

For locations other than the brachial artery, e.g. radial or carotid, no convenient

auscultatory device is generally available. To calibrate pressures at these locations, a

mean pressure and a scale factor are needed. Mean pressure is estimated to be the same

at the brachial and radial arteries. For the scale factor, the nominal one specified by

Millar can be used. Outputs from Millar tonometer is pre-amplied through the TCB-500

control box, which has an internal calibration circuit to provide an electrical zero as well
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as 20 and 100 mmHg calibration signals. It is given that the pressure output signal from

the control box is nominally 0.2V/100mmHg. This scale factor can be used for

calibration.

However, this nominal scale factor is only applicable when the optimal

applanation of the artery is achieved. Our clinical studies showed that when external

force increases, the measured absolute pressure values will go up, while the pulse

pressure (Pmax - Pmin) measured will go down, as shown in Figure 7. In this figure,

during the measurements of radial pressure, the external force applied to hold the

tonometer was increased three times. It can be seen that the absolute pressure value goes

up and the pulse pressure goes down as the force is increased.

0.

0.35 1-

0.3 -

0.25 k

0.2

0.15'
0

Radial Pressure (Volt)

5 10 15 20 25

Time (sec)

Figure 7 Effects of external force on pressure measurement

If the same scale factor is used for all cycles in figure 7, different pressure values

will be resulted for cycles with different external forces applied. As discussed in
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PRESSURE MEASUREMENT, optimal applanation should be the one that gives the

largest amplitude pressure. The nominal scale factor can not be used when optimal

applanation is not reached in measurement.

Another possible way to calculate the scale factor for locations other than the

brachial artery is by assuming that the value of scale factor for brachial artery applies to

all other locations, although it is different from the nominal one specified by the

instrument. As an example, for the brachial measurement demonstrated in figure 6, the

measured pulse pressure using ascultation is (132-84) = 48 mmHg. The "pulse voltage",

as shown in the figure, is (0.36-0.28) = 0.08V approximately. Therefore, a scale factor of

(0.08/48) * 100 = 0.167 V/100mmHg can be calculated, which is different from the

nominal one and it can be inferred that excessive applanation was reached because of

large external force. In our clinical study, the calculated scale factor for brachial pressure

is usually less than 0.2 V/100mmHg and varies in the range of 0.05 to 0.2 V/100mmHg.

There are two reasons that optimal applanation is difficult to achieve for the brachial

artery. (1). Brachial artery lies deeper in the tissue than radial or femoral arteries where

tonometry is usually used. (2). The presence of the biceps brachii muscle makes it

difficult to be applanated against the humerus bone (as shown in figure 2, a bone is

needed to support the applanated artery).

This assumption that the same scale factor for brachial artery can be applied to

other arteries breaks down when different external forces are applied at different

measurement locations. This is often the case since there is no sensor in the tonometer to

measure external force and the operator can hardly ensure that the external forces applied

on different arteries are consistent. In our clinical study, we found it necessary to apply

higher forces on the brachial artery than on radial artery presumably because the brachial

artery lies deeper in the tissue than radial. When the external force on the brachial artery

is larger than that on other arteries, the scale factor calculated using brachial pressure data

would be small. If a smaller factor is used to calibrate pressure, unrealistically high pulse

pressures will be predicted.

To summarize, neither of these methods for determining the calibration can be

applied reliably. The specified nominal scale factor of 0.2V/mmHg is only applicable

when the applanation is correct and the external force is within a certain range, while the
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calculated factor from brachial pressure data can be only applied to other locations when

external forces are consistent. Therefore, to calibrate pressures at radial or carotid artery

accurately, either optimal applanation or measurement of external force is required.

The technique for optimal applanation can only be gained through practice.

Studies showed that after 4 to 6 weeks' use of the tomometer, intra-observer variability

was 4.5% and inter-observer variability was 11.6% in measuring radial pulse waveforms
4in adult humans

It is possible to improve the measurement accuracy by designing a micro-

manipulator as presented by Kelly et al 4 to ensure accurate and consistent placement of

the tonometer on arteries. Alternatively, a sensor and feedback system may be

incorporated into the probe so that the applanation force that yields maximal pulse

pressure can be automatically determined 5' 6

At present, for most patient or volunteer cases presented in this paper, only the

brachial measurements are being used to do parameter estimation because of inaccurate

calibration of radial or carotid pressure. The brachial pressures were calibrated using the

systolic and diastolic pressures measured by auscultatory method.

Velocity

1. General data processing

As mentioned before, velocity is measured by Doppler ultrasound. After the

measurement, data processing is completed offline. First, FFT analysis is performed on

the acoustic signal (frequency shift) stored in the computer. Then, after filtering noise,

eliminating aliasing and late diastole discontinuity, equation (2) (repeated below) is used

to calculate the desired velocity.

fd 2Vf0 cos(9) (2)
C

The known variables are the emitted frequency, f0 , acoustic speed in tissue c

(1540 m/sec) and angle 0. In our experiments, f0 = 5.5MHz and 0 = 600. Hence,

velocity can be calculated once fd is known.
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Figure 8 is an example of the original acoustic signal after FFT and Figure 9 is the

corresponding velocity obtained from this signal after eliminating noise (note that there is

aliasing in the frequency spectrum, which will be discussed in the next session).

Figure 8 Frequency spectrum
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Figure 9 Velocity profile (Red curve is the mean trace)
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2. Noise elimination

Three methods are included in the program to correct for or remove noise from

the velocity data: aliasing correction, wall artifact correction and late diastole correction.

(a). Correction for Aliasing

A problem that is peculiar to pulsed Doppler instruments is that of aliasing. The

pulsed system inherently has a pulse repetition frequency (PRF) that determines how high

a Doppler frequency the pulse system can detect; signals need to be sampled at least

twice per cycle of their highest frequency component in order to unambiguously resolve

that component. This means that the highest Doppler shift frequency that the pulsed

Doppler instrument can measure is equal to half of the pulse repetition frequency of the

instrument. The inability of a pulsed Doppler system to detect high-frequency Doppler

shifts is known as "aliasing" 8. If Doppler frequencies above this limit are present, they

will be displayed as spurious frequencies equal to the Doppler shift minus the pulse

repetition rate. They will appear within the limits of plus and minus half the pulse

repetition frequency and changed in sign. Figure 8 shows an example of aliasing.

To eliminate aliasing, the program unwraps the data - the user indicates the

region that has aliased and the velocities are corrected in the data array. Figure 10 is the

counterpart of Figure 8 after correcting for aliasing.

(b) Wall artifacts correction

This procedure is designed to eliminate the velocity signal from the vessel wall

that is of low-frequency, but can be prominent, especially in systole, and corrupt the

measurements of blood velocity. The user identifies this region and the program can

filter out low velocities, as illustrated in Figure 11.
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Figure 10 Corrected Aliasing
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Figure 11: Wall velocity effect (Doppler frequency)
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(c). Late diastole correction

In late diastole, since there is little flow, a weak and sporadic velocity waveform

is often seen and the noise usually overwhelms desired velocity data. The program

identifies the late diastole region and the data are set to zero so that other noise is

eliminated.

The above three methods for noise reduction address the major obstacles to

obtaining velocity by Doppler. There are however still some factors. For example, there

is usually some background noise in the acoustic signal that is inevitable because the

quality of the instrument is not perfect. Such noise can be easily eliminated by filtering

out the low frequency components.

Measurement/Calculation of C and L

As mentioned in chapter 1, to reduce the number of significant parameters, the

method of non-dimensionalization was used. Three parameters were selected as basic

variables to non-dimensionalize other parameters. They are aortic root wave speed C at

reference pressure 100 mmHg, characteristic length L (the length between distal ends of

radial and brachial arteries) and blood density p. p is assumed to be constant and equal to

1.06 g/cm3, while Co and L may vary from subject to subject and must be

measured/calculated. Obviously, L can be measured directly using externally visible

anatomical landmarks, but aortic root wave speed poses a more difficult problem.

To estimate C0, measurements from which the mean wave speed between carotid

and radial artery at normal arterial pressure can be calculated were first obtained. Since

the patient is lying still and the time a set of measurements needs is not long (typically 30

minutes), one can assume that the patient's EKG doesn't change, so that it can be used as

a timing tool. That is, both EKG and pressure traces are measured on the carotid and

radial arteries. The time difference between EKG and the starting of systole on pressure

trace can be measured from the curves for both the carotid and radial data. (In EKG, P

wave represents depolarization of the atria and QRS complex represents depolarization of

the ventricular muscle cells . However, any point on EKG can be used as long as it is

consistent for carotid and radial EKGs). Denoting this time difference as Atcarotid and
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Atradial respectively, together with the difference between travel distance from the heart to

carotid artery and that from the heart to radial artery, the mean wave speed (Cmean)

traveling between these two artery can be calculated:

Cmean = (Atradial - Atcarotid)/ AL carotidradial (3)

Figure 12 and Figure 13 are examples of the measured EKG and pressure at

carotid and radial respectively. In the studies presented in this paper, a kind of "0-1" type

EKG connector was used, which means that the measured EKG does not have the usual

shape, but only zero (when EKG voltage is 0) or a non-zero constant (in the cases of

figure 12 & 13, it is 0.55) (when voltage is not 0), which is adequate and convenient for

our timing purpose.

50 100 150 200 250 300 350

Time (ms)

400

Figure 12 Carotid pressure and EKG

0 50 100 150 200 250 300 350
Time (ms)

Figure 13 Radial pressure and EKG

From these figures, it can be seen that Atradial is larger than Atcarotid.

After obtaining Cmean, a relationship of CO at aortic root (Prep = 100 mmHg) and

Cmean must be used to calculate Co. In the case of the model, this relationship could be

determined precisely, based on the expressions used for the distribution of wave speed

through the arterial network and the dependence of wave speed on transmural pressure in

the computational model. However, in the application of this method to real subjects, the
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relationship is unknown and is likely to vary from subject to subject. For this reason, an

empirical approach was needed that was independent of the computational model. For

library points generated from the computational model, C. = constant = 462 cm/sec.

Considering the fact that changes in wave speed are related to arterial pressure changes
", a relationship of (Cmean/Co) and (P/Pref) may be found, where P can be the

brachial/radial mean pressure, systole pressure or diastole pressure. This is an

assumption that needs to be tested further.

Compared to other combinations, brachial diastolic pressure (Pdias,bra/100) and

(Cmean / 462) for library points exhibit a nearly linear relationship. Figure 14 shows the

distribution of 2351 library points on these two variables. Blue dots represent individual

library points and the red curve is the 6-degree polynomial fit of the distribution. From

this figure, we obtain the relationship of Co and Pdias,bra as the following:

Co = Cen /(-2.4292*(P)6 +10.5840*(P) 5 -17.5862*(P 0 )4 +13.8310 *(PO)3

- 4.9651*(P 0 ) 2 +1.2423*(PO)' + 0.5491)

(4)

Where Po represents (Pdias,bra/100).

To test this formula, it was used to calculate CO of all the library points and

compare the results to the known value 462cm/sec. Figure 15 plots the calculated C.

value of each point.
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Figure 14 Relationship Of (Pdias,bra/100) and (Cmean / 462) for 2351 library points.
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Figure 15 Calculated Co for library points.

(Mean value: 463.64cm/sec, Standard Deviation: 33.73cm/sec)
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From figure 15, it can be seen that C. for most of the library points calculated in

this way lie in the range 463.64 ± 33.73 cm/sec. This is acceptable for our purpose since

the measurements of At and calculation of Cmean can have a relative error larger than this.

However, if the measurements are improved in the future, this calculation of C. will take

a more significant part in the errors of parameter estimation*.

Measurement of VED, SVR and CO

For the purpose of evaluating the parameter estimation accuracy, VED was

measured non-invasively using ultrasound in some subjects studied. Estimations with

VED as a known variable can be done additionally. It represents another potential piece of

information that can be used to refine the parameter estimation procedure.

C.O. and SVR for catheterized patients were recorded to compare with estimated

values. For the patients in this study, cardiac outputs were measured using the Fick

method, which uses arterial and mixed venous saturations to determine oxygen

extraction, under an assumed basal metabolic rate of 125 m10 2/min/m2. SVR is a

calculated value using the equation:

SVR = (Pm - PA)IC.O. (4)

Where P, is Mean Arterial Pressure, P, is Right Atrial Pressure, both of which

are measured by indwelling catheters, and C.O. is Cardiac Output.

Feature Selection for Measured Data

Feature selection discussed in previous chapters pertains to model-generated

pressure and velocity profiles. If the model were perfect, those discussions would apply

to measured data as well. However, due to numerous simplifying assumptions made in

the course of model development, and in the inaccuracies noted above in the

measurement techniques and/or data processing, the model-based evaluation of parameter

* The relatively small number of points that lie far from the mean were likely cases for which the program
incorrectly identified the start of systole.
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estimation performance may not be directly applicable to real measurements. In

particular, the feature sets found to have the lowest parameter estimation errors for

model-generated data may not be optimal when applied to real subject data. Therefore,

different feature sets are considered for each set of measurement to compare their

performance.

In the following, 12 sets of measured data will be presented, and the parameter

estimation results are presented using feature set 1 (Pmean/Vmean (dp/dt)max Pmean deltaP) (if

both pressure and velocity were measured) and feature set 2 ((dp/dt)max Pmean deltaP Pmax)

(pressure only). Details will be presented in RESULTS and DISCUSSION.

Results

Measurements were obtained on 12 adult subjects (3 patients, 9 volunteers).

Table 2 lists the available data of all the subjects for reference. Parameter estimations

used brachial artery pressure and/or velocity. Because of the problem in calibration of

radial pressure mentioned before, it is not recommended to use radial data to do

parameter estimation. Velocity profiles are not provided for all subjects since some of

the original Doppler data are of poor quality and did not give realistic velocities.

Table 2 Subject data

Patient Height (cm) Weight (lb) Sex Age Health Status
#281 180 160 M 32 Healthy
#512 183 188 M 37 Healthy
#y11 168 125 F 29 Healthy
#hl1 183 185 M 39 Healthy
#471 183 250 M 36 Healthy
#472 178 138 M 33 Healthy
#h22 158 110 F 24 Healthy

#4201 183 187 M 38 Healthy
#sa418 N/A 110 M 56 Heart failure patient
#mc417 N/A N/A M 60 Heart failure patient

#671 190.5 110 M 30 Heart failure patient
#730 170 180 M 42 Healthy
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Tables 3 through 38 contain subject information and parameter values estimated

using both feature sets 1 and 2. The objective function in these tables is the one to be

minimized in parameter estimation routine. It is defined as:

(1-/)2 (5)

Where n is the number of features used in estimation, f, is the estimated feature

value, and fm is the measured feature value.

For all 12 cases below, objective functions obtained from estimations using

feature set 1 are much larger than those from using feature set 2. The significance of

objective function will be mentioned in DISCUSSION. Reconstruction was done for

each parameter estimation using feature set 2, and the reconstructed P, V curves are

drawn to compare with the measured ones (Figures 16 through 29). Cardiac Output

(C.O.) and Stroke Volume (S.V.) values (calculated from reconstruction) are also listed.

Note that the values listed in Tables 31 for subject 671 is the mean value based on

3 measurements right after the pressure and velocity measurements were finished. The

original values are 227, 281, 283 ml. For subject 730, only one measure was performed,

the value was 192ml, as listed in table 35.
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Table 3 Measured data of male subject 281

(Healthy volunteer)

Height (cm) Weight (Pound) Char. Length (cm)* BP (mmHg)

180 160 27 108/66

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm 2) (ml)

57.44 440.05 3.63x10 6  N/A

*Char. Length is the length between measurement location on brachial and radial arteries,

usually it is the distance of the distal points.

Table 4 Estimated and calculated parameters of subject 281

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.0039

ELV VED SVR C.O. S.V.

(dyn/cm5 ) (ml) (dyn/cm 5.sec) (1/min) (ml)

5081.76 156.85 1162.85 5.49 77.26

Table 5 Estimated and calculated parameters of subject 281

(Feature Set 1: Pmean/Vmean (dp/dt)max Pmean deltaP)

Objective function = 0.3707

ELV VED SVR C.O. S.V.

(dyn/cm) (ml) (dyn/cm 5.sec) (1/min) (ml)

8304.15 104.52 2313.29 N/A N/A
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Table 6 Measured data of male subject 512

(Healthy volunteer)

Height (cm) Weight (Pound) Char. Length (cm) BP (mmHg)

183 188 30 132/82

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm 2) (ml)

56.7 490 4.5x 106 N/A

Table 7 Estimated and calculated parameters of subject 512

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.0087

ELV VED SVR C.O. S.V.

(dyn/cm5 ) (ml) (dyn/cm5 .sec) (1/min) (ml)

3752.66 222.36 1117.5 7.06 101.3

Table 8 Estimated and calculated parameters of subject 512

(Feature Set 1: Pmean/Vmean (dp/dt)max Pmean deltaP)

Objective function = 0.4184

ELv VED SVR C.O. S.V.

(dyn/cm5) (ml) (dyn/cm5 .sec) (1/min) (ml)

7504.12 139.35 2162.77 N/A N/A

87



.-. reconstructed, - measured

U

U

0n

50

40

30

20

10

0

A
in
i !

* ,.s ! n
~ !ii
I 'i
i I' j

-i 1
I

I -'
i .4,
I

.4'

125

120

S 115
E
E110

105

U

a100

s
90

85

140

3130

E
E 120

r 110
p

100
U

-o90

0 0.5 1 1.5

onl

0 0.5 1.5

70

(U s
u60

b 50

-40
0
> 30

20

10

Figure 17 Reconstruction of subject 512

88

-lu 0 0.5 1 1.5

A n

p
-I
it
ii

ii 1ji II II

!I ~ it

Ii ~ ~

II ~ ~ g -

- ~I Ij .44.
II *i
ii ,

- ii
p

0.5 1.5

- 50

40
U

- 30
0

20

10
U

0 I

0

140

130

E 120
E

110

100

so

80

70

I-
-1

in
i !
- II -

~r._,"

*4

.4.
.4'

N,

I'
i-I
I I
I'
i i
I i

%
' '.4
II
I

Li
ii
U

0.5 1.5

'.4.
I

I j
Ii
I I
I -

i~ '.4

i

4.,.

'-I
I

1~
I

'1

0 ( 0.5 ' 1.5

Ian

L

-

-

-

-

1

1

4 1 1



Table 9 Measured data of female subject yl 1

(Healthy volunteer)

Height (cm) Weight (Pound) Char. Length (cm) BP (mmHg)

168 125 27 104/76

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm 2) (ml)

63.8 510.6 4.89x106 N/A

Table 10 Estimated and calculated parameters of subject yl 1

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.1217

ELV VED SVR C.O. S.V.

(dyn/cm5 ) (ml) (dyn/cm 5.sec) (1/min) (ml)

6723.09 76.47 2812.19 2.19 34.68

Table 11 Estimated and calculated parameters of subject ylI

(Feature Set 1: Pmean/Vmean (dp/dt)max Pmean deltaP)

Objective function = 0.2471

ELV VED SVR C.O. S.V.

(dyn/cm5 ) (ml) (dyn/cm 5.sec) (1/min) (ml)

5360.89 83.4 2260.6 N/A N/A
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Table 12 Measured data of male subject h 1I

(Healthy volunteer)

Height (cm) Weight (Pound) Char. Length (cm) BP (mmHg)

183 185 27 124/82

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm 2) (ml)

77.0 586.7 6.45x 106 N/A

Table 13 Estimated and calculated parameters of subject h 1I

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.0305

ELV VED SVR C.O. S.V.

(dyn/cm5) (ml) (dyn/cm 5.sec) (1/min) (ml)

5411.1 107.63 2030.91 3.60 50.22

(Brachial velocity is not available for this subject, so parameter

estimations using feature set 1 couldn't be performed.)
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Table 14 Measured data of male subject 471

(Healthy volunteer)

Height (cm) Weight (Pound) Char. Length (cm) BP (mmHg)

183 250 28 126/72

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm 2) (ml)

62 592 6.57x10 6 N/A

Table 15 Estimated and calculated parameters of subject 471

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.0330

ELv VED SVR C.O. S.V.

(dyn/cm5) (ml) (dyn/cm 5.sec) (1/min) (ml)

3899.0 166.38 1228.0 5.46 87.85

Table 16 Estimated and calculated parameters of subject 471

(Feature Set 1: PmeanNmean (dp/dt)max Pmean deltaP)

Objective function = 0.3298

ELV VED SVR C.O. S.V.

(dyn/cm5 ) (ml) (dyn/cm 5.sec) (1/min) (ml)

10714.2 87.78 2813.41 N/A N/A
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Table 17 Measured data of male subject 472

(Healthy volunteer)

Height (cm) Weight (Pound) Char. Length (cm) BP (mmHg)

178 138 25 122/72

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm2) (ml)

80 473 4.19x106 N/A

Table 18 Estimated and calculated parameters of subject 472

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.0490

ELV VED SVR C.O. S.V.

(dyn/cm5) (ml) (dyn/cm 5.sec) (1/min) (ml)

3012.8 205.9 1297.4 5.65 70.38

Table 19 Estimated and calculated parameters of subject 472

(Feature Set 1: Pmean/Vmean (dp/dt)max Pmean deltaP)

Objective function = 0.3175

ELV VED SVR C.O. S.V.

(dyn/cm5 ) (ml) (dyn/cm 5 .sec) (1/min) (ml)

11966.4 72.81 2991.65 N/A N/A
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Table 20 Measured data of female subject h22

(Healthy volunteer)

Height (cm) Weight (Pound) Char. Length (cm) BP (mmHg)

158 110 22.5 116/78

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm 2) (ml)

62 497 4.63x10 6 N/A

Table 21 Estimated and calculated parameters of subject 472

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.0055

ELV VED SVR C.O. S.V.

(dyn/cm5 ) (ml) (dyn/cm 5 .sec) (1/min) (ml)

7436.0 78.3 2929.9 2.47 39.86

(Brachial velocity is not available for this subject, so parameter

estimations using feature set 1 couldn't be performed.)
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Table 22 Measured data of male subject 4201

(Healthy volunteer)

Height (cm) Weight (Pound) Char. Length (cm) BP (mmHg)

183 187 33 132/84

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm 2) (ml)

61 590 6.52x10 6 N/A

Table 23 Estimated and calculated parameters of subject 4201

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.0115

ELV VED SVR C.O. S.V.

(dyn/cm5 ) (ml) (dyn/cm .sec) (1/min) (ml)

3455.5 209.1 1181.6 6.44 105.55

Table 24 Estimated and calculated parameters of subject 4201

(Feature Set 1: Pmean/Vmean (dp/dt)max Pmean deltaP)

Objective function = 0.5559

ELV VED SVR C.O. S.V.

(dyn/cm5 ) (ml) (dyn/cm 5.sec) (1/min) (ml)

6150.13 146.27 2151.5 N/A N/A
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Table 25 Measured data of male subject sa418 (56 yo)

(Heart failure patient)

Height (cm) Weight (Pound) Char. Length (cm) BP (mmHg)

N/A 110 27 92/65

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm2 ) (ml)

76 443 3.68x10 6 N/A

Table 26 Estimated and calculated parameters of subject sa418

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.0600

ELv VED SVR C.O. S.V.

(dyn/cm5 ) (ml) (dyn/cm .sec) (1/min) (ml)

943.1 255.0 2134.3 2.55 36.62

(Brachial velocity is not available for this subject, so parameter

estimations using feature set 1 couldn't be performed.)

Table 27 Measured hemo-data of subject sa418

(The pressure and velocity measurement was taken at -2.3OPM)

101

C.O. SVR

(1/min) (dyn/cm5.sec)

12:30PM 4.4 1096

4:00PM 2.4 1975

8:30PM 3.4 1349
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Table 28 Measured data of male subject mc417 (60 yo)

(Heart failure patient)

Height (cm) Weight (Pound) Char. Length (cm) BP (mmHg)

N/A N//A 25 99/64

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm 2) (ml)

69.4 403 3.04x106 N/A

Table 29 Estimated and calculated parameters of subject mc417

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.0092

ELV VED SVR C.O. S.V.

(dyn/cm5) (ml) (dyn/cm 5.sec) (1/min) (ml)

3267.9 150.9 1417.3 4.23 60.92

(Brachial velocity is not available for this subject, so parameter

estimations using feature set 1 couldn't be performed.)

Table 30 Measured hemo-data of subject mc417

(The pressure and velocity measurement was taken at -2.30PM)

103

C.O. SVR

(1/min) (dyn/cm5.sec)

12:30PM 4.2 1104

7:00PM 3.7 1219
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Table 31 Measured data of male subject 671

(Heart failure patient)

Height (cm) Weight (Pound) Char. Length (cm) BP (mmHg)

190.5 110 28 102/74

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm 2) (ml)

101 472.54 4.1846x10 6 254

Table 32 Estimated and calculated parameters of subject 671

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.0318

ELV VED SVR C.O. S.V.

(dyn/cm) (ml) (dyn/cm5.sec) (1/min) (ml)

1024.6 323.7 1520.8 4.16 41.06

Table 33 Estimated and calculated parameters of subject 671

(Feature Set 1: Pmean/Vmean (dp/dt)max Pmean deltaP)

Objective function = 0.6339

ELv VED SVR C.O. S.V.

(dyn/cm5) (ml) (dyn/cm5.sec) (1/min) (ml)

2334.3 166.98 2394.25 N/A N/A
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Table 34 Estimated and calculated parameters of subject 671

(Feature Set 3: (dp/dt)max Pmean deltaP)

(VED as known)

Objective function = 0.0318

ELV VED SVR C.O. S.V.

(dyn/cms) (ml) (dyn/cm5.sec) (1/min) (ml)

1371.5 254.0 1537.9 4.13 40.8
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Table 35 Measured data of male subject 730

(Healthy volunteer)

Height (cm) Weight (Pound) Char. Length (cm) BP (mmHg)

156 180 27 118/72

HR Wave Speed Young's Modulus VED

(/min) (cm/sec) (dyn/cm2) (ml)

60.0 489 4.4812x10 6 192

Table 36 Estimated and calculated parameters of subject 730

(Feature Set 2: (dp/dt)max Pmean deltaP Pmax)

Objective function = 0.0238

ELv VED SVR C.O. S.V.

(dyn/cm5) (ml) (dyn/cm 5.sec) (1/min) (ml)

2643.8 201.8 1373.9 5.11 85.03

Table 37 Estimated and calculated parameters of subject 730

(Feature Set 1: Pmean/Vmean (dp/dt)max Pmean deltaP)

Objective function = 0.6011

ELv VED SVR C.O. S.V.

(dyn/cm') (ml) (dyn/cm 5.sec) (1/min) (ml)

7030.66 102.85 2664.58 N/A N/A
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Table 38 Estimated and calculated parameters of subject 730

(Feature Set 3: (dp/dt)max Pmean deltaP)

(VED as known)

Objective function = 0.0146

ELv VED SVR C.O. S.V.

(dyn/cm5 ) (ml) (dyn/cm 5.sec) (1/min) (ml)

2843.2 192.0 1432.3 4.99 83.11
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Discussion

Comparison of the Feature Sets

The accuracy of parameter estimation in human subjects can be assessed by a

variety of methods. Although a direct comparison of the predicted parameter values to an

accurate, possibly invasive, measurement is the most effective evaluation, this is not

often possible. Alternatively, since the objective function provides a measure of the error

between the measured and predicted waveforms, its value is one indicator of the degree

of agreement. Parameter estimation results in tables 3 to 38 show that feature set 2

usually gives smaller objective functions than feature set 1. Most of the objective

functions using this feature set are less than 0.1, while those using feature set I are larger

than 0.3. The value of the objective function that the estimation reached can be a

necessary measure of accuracy of parameter estimation, but it is not sufficient since it is

possible that multiple combinations of parameters might yield the same features.

Additionally, because the relation of features and parameters is non-linear and may have

multiple minima, the search process may wind up some point far from the real parameter

values in the feature-parameters space. Still, it seems reasonable that a smaller objective

function represents a closer fit, and experience indicates that a correct estimation should

have an objective function with a value less than 0.1.

It therefore follows that feature set 2 generally provides a better estimate from the

measured data since the objective functions obtained using this set (based solely on

pressure data) are smaller than those using feature set 1 (based on both pressure and

velocity waveforms). This contradicts the findings presented in chapter 1, where it was

found that feature set 1 produced smaller errors in parameter estimation of model-

generated pressure and velocity curves. There are several possible explanations for this

inconsistency. One is that noise in the measured acoustic signal affects data processing

process and compromises the accuracy of velocity data. This problem is quite obvious in

some cases producing velocity data that are clearly unreasonable. Another reason may be

that the velocity calculated by the computational model is not realistic, i.e. it is not

consistent with the realistic velocity of human with the same hemodynamic parameters.

Measured velocities were found to be consistently higher than the calculated values,

lending some credence to this hypothesis.
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Meanwhile, if it proves correct that pressure-related features alone (feature set 2)

can yield fairly accurate estimates of the subject's parameters, it would simplify the

measuring and data processing procedures required by the parameter estimation routine

since velocity measurement would not be necessary.

Evaluation of Parameter Estimation Accuracy

To evaluate the accuracy of the estimated parameters, the most direct method is to

compare them with the clinically measured values. Among the parameters estimated or

calculated with our approach, VED can be measured non-invasively using ultrasound, SVR

and C.O. are generally measured invasively in hospitals, while ELV is not used in usual

diagnosis and can only be measured in specific research labs in hospitals. Below we

discuss cases in which several of these comparisons were made.

Cases with V measured

Among the 12 subjects presented in this paper, we have measured values for VED
for only 2, subject 671 and 730. For subject 671, the mean measured VED is 254ml (three

measures were taken: 227, 281, 283ml, as mentioned in RESULTS), while our estimated

value is 324ml using feature set 2 (Table 2.32). For subject 730, the measured VED is

192ml, while our estimated value is 202ml using feature set 2 (Table 2.36). Both values

are within acceptable limits.

When the parameter estimation procedure was repeated for these two subjects

with VED specified, the estimated results are very similar to the original estimations (when

VED is estimated), which shows that taking VED as known is of little advantage indicating

that the first estimation is sufficiently accurate. However, in chapter 1, figure 5 does

show that when V ED is known, the parameter estimations will be more accurate.

Therefore, for these two measured cases, it may be a coincidence that it doesn't improve

much with VED known. More comparisons should be made to study the effect of VED in

estimation.

Cases with SVR and C.O. measured

Three heart failure patients were presented, subjects sa418, mc417 and 671. For

the former two, C.O. and SVR were measured invasively.
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For subject sa418, estimated SVR is 2134 dyn/cm'.sec and the calculated C.O. is

2.55 1/min, compared to values of 1975 dyn/cm'.sec (relative error: (2134.3-

1975)/1975*100% = 8.07%) and 2.4 1/min (relative error: 5.8 1%) respectively, measured

at 4:00PM. Since the pressure and velocity measurements were made at about 2:30PM, it

is not clear what the actual values of SVR and C.O. were at that time, but the estimated

results are promising. In addition, ELV was estimated to be 943.1 dyn/cm', a low value

consistent with the patient's condition.

For subject mc417, estimated SVR is 1417.3 dyn/cm'.sec and calculated C.O. is

4.23 1/min. These compare favorably with the values of 1104 dyn/cm'.sec (relative error:

28.4%) (or 1219 dyn/cm'.sec, relative error: 16.3%, measured at 7:00PM) and 4.2 1/min

(relative error: 0.71%) respectively, measured at 12:30PM. Again, it should be noted that

the pressure and velocity measurements were made at about 2:30PM, so that the values of

SVR and C.O. at the precise time of waveform measurement are unknown. The

estimated value of ELV for mc417 is 3267.9 dyn/cm', a little bit higher for this patient, but

still lower than healthy values.

Estimation Evaluation for Volunteers

For volunteers who are not catheterized, invasive measurements of hemodynamic

data were not available. Estimation accuracy was assessed in three ways (1). by

comparing estimated values to normal ranges for healthy subjects, (2). by inspecting the

objective function and (3). by comparing the reconstructed pressure and velocity curves

with the measured one.

Normal values for VED in healthy male subjects should be in the range of 110 to

200ml depending on size and physical condition 12. For females, this value will be

smaller. For ELV and SVR, the empirical normal ranges (coming from our clinical study)

are 3800 ~ 6500 dyn/cm' and 1000 ~ 2000 dyn/cm'-sec respectively. From the tables

about estimation results on volunteers, it can be seen that most of the estimated parameter

values for volunteers are in or near the normal ranges.

The objective functions for most estimations using feature set 2 are less than 0.1.

As for the comparison of reconstructed and measured curves, no criterion for judgement

exists. However, that the agreement appears reasonable, at least for brachial pressures

(the one used for parameter estimation). When comparing the reconstructed and
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measured profiles, note that because of measurement and data processing limitations, the

velocity data for some of the cases were unreliable, and the amplitudes of radial or

carotid pressures are not accurate because of calibration problems.

Significance of the Feature (dp/dt)

In other results not presented here using an early version of the CV model in

which the time-dependence of left ventricular elasticity was approximated by a half

sinusoid, we found (dp/dt). to be an unreliable feature despite the fact that it proved

useful in estimating model-generated data. In the current model, a new elasticity relation

was employed for the left ventricle as mentioned in Chapter 1. This elastance curve was

obtained from extensive experiments on patients and is likely to be a more accurate

model for left ventricular elasticity. Using the current model and its generated solution

library, we found that the use of (dp/dt). improves the accuracy of parameter estimation

on measured data. One reason feature set 2 including (dp/dt). performs quite well is

because it reflects the contractility of the left ventricle. If the latter is modeled

accurately, the measured (dp/dt). is consistent with the ones in the library, so that it can

be useful in characterizing the pressure curve. This strongly suggests that the current

left-ventricle-elasticity model is more appropriate than the former one.

In summary, the accuracy of parameter estimation for measured data critically

depends on the accuracy of pressure and velocity measurement. In this section, all

parameter estimation results are based exclusively on brachial data because we

experienced pressure calibration problems at other measuring locations. Estimation using

brachial pressure only (feature set 2) appears to give the most accurate results. In spite of

the problems existing in measurement and the model, the current parameter estimation

scheme looks promising in estimation of both volunteer data and patient data.
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Appendix 2A

Graphical User Interface for CV Modeling and Parameter Estimation

To make the simulation and estimation programs easy to use by those who are not

familiar with the model theory and the inner structure of the software, we designed a set

of Graphical User Interface (GUI) in collaboration with Mr. Stanley Liang during his

brief stay in Prof. Kamm's group. These programs were written in MATLAB under

UNIX platform. It makes the whole software package friendly for users.

The interface consists of two parts: one is model simulation, the other is

parameter estimation. The first one, as shown in Figure 2A. 1, is to do simulations using

the model by specifying the four input parameters: HR, ELv, VED, SVR. The outputs of

simulations are pressure and velocity curves at any location of the cardiovascular system.

The second interface - parameter estimation interface, as shown in Figure 2A.2, can be

used to input the measured pressure and/or velocity curves and to do parameter

estimation using the model-generated library. The estimated parameter values will be

listed in the interface and the user can choose to do simulation using the first interface to

compare the measured pressure and velocity curves and the model reconstructed ones. In

this way, the accuracy of parameter estimation can be evaluated and other desired

parameters, such as Cardiac Output, can be calculated using the model.

No details about the GUI programming will be included in this thesis, only the

guide for using this interface will be presented below.
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Figure 2A. 1 GUI of Model Simulation
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Figure 2A.2 GUI of Parameter Estimation

(Curves in the subplots are measured ones.

Carotid velocity was not measured for this subject.)
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Guide for Using the CV Modeling and Parameter Estimation Software

a. Model Simulation

1. Run gui.m file and select "simulation", the Networks window will appear.

2. Specify parameter values for HR, ELV, VED, SVR.

3. Push 'Run' button. If the parameter values specified are not physiologically

reasonable, the program can not finish and it will tell the user to change the values.

4. Generally, it will take 3-8 minutes to finish a run in Dec Alpha workstation.

5. After it finishes, the user can save the parameters and output data file into one file,

push 'save' button on top of the window. Each big dot on the arterial tree represents a

point on the artery that can be selected. Pressure and/or Velocity and/or area as a

function of time can be plotted. After selecting all the points the user wants to

display, push 'finish', the curves will be shown in separate windows. Choosing

'compare', curves of different locations can be displayed in one window to compare

their differences.

Notes: there will be warning messages like the following when running the model,

cycle 2

WARN- velocity approaching c, element 1, node 6

WARNING II - velocity exceeding c, element 1

These are normal messages. They are showing that the program is adjusting one

of the parameter qi for computational stability and finally when it reaches stable, these

warning messages will disappear.

After the program is finished, it gives C.O. (Cardiac Output) SV (Stroke Volume)

values. Discard EDP and P4 since they have no practical meanings here.
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b. Parameter Estiamtion (P. f.)

1. Run gui.m file and select "Estimation", the parameter estimation interface appears. In

this interface, the user needs to input patient data first. Some of the data are necessary

for calculations, such as: HR (Heart Rate), Char (Character length -- the length from

the elbow to the end of radial artery, 22.9 cm in the model), Co (wave speed). Other

data are just for reference. (The parameter Omega was once used as an input to the

estimations, but now it is not needed, however, when using the current GUI, this item

should be filled with any value between 0 and 1. Revision of the GUI is needed to

update).

After inputting patient information, the user can save them to a file, and load them

later.

2. Next step, choose the pressure and velocity files, and the side (left or right arms) on

which measurements were done. Push "Ok", the P, V profiles will be plotted in the

window.

3. Now, ready to choose "Parameter Estimation", after this is done, the estimated

parameter values will appear in the window. 3-6 minutes are needed for it to finish.

4. After parameter estimation, Simulation can also be done using the estimated

parameter values to generate the pressure, velocity and area curves at any artery of

this person. This procedure is called "Reconstruction" for convenience.

Notes: The programs for parameter estimation are mainly in "outputs" directory. The

current version of estimation uses features from brachial pressure only, but can be easily

modified to use both pressure and velocity features.

For patient parameter estimation, we are using brachial pressure/velocity, current

package only has qshep*, c-out*, modsout* files for this location. To get these files for

other locations, run "libindex*" file manually, this procedure is not included in GUI.

In this package, a set of patient measurement data is provided. To use it, 'load'

'demol' file for patient information, and load pressure file: 'demopre281bracali', and

velocity file: 'demovel281bradata' and use location 2 to do parameter estimation.
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An important issue is that the simulation is currently designed for Co=462cm/sec,

Leng=22.9cm only, so if after parameter estimation, the user want to see "reconstruction"

results, the P, V curves from model simulation should be converted to "realistic" values

by using:

Prea=P/462/462*Co*Co

Vreal=V/462*Co

Only Preal and Veal can be compared with the measured P and V. Further

improvement is needed on the GUI and related programs to include this function.
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3. Conclusions and Future Work

Hemodynamic parameters such as SVR and ELV are often resources used by

physicians for diagnosis and to adjust treatment plans. These parameters are usually

measured and/or further calculated invasively is inconvenient and often cause discomfort.

A non-invasive hemodynamic parameter estimation method has been developed and

tested. Parameter estimation errors for model-generated pressure and velocity curves are

less than 10% for ELV, VED, and less than 3% for SVR using brachial pressure. 12

subjects have been studied in hospital to preliminarily test the method. As presented in

part 2, promising results have been achieved on estimating the measured brachial

pressure profiles.

However, there is still much opportunity to refine the cardiovascular model and to

improve the parameter estimation accuracy on measured data.

Problems existing in the CV model

The current model uses a new elastance curve E*(t) for left ventricle as mentioned

in part 1. This curve was got from experiments on patients, and the relation for E(t) and

pressure of left ventricle was assumed as shown in equation 3.1, where there is no

viscoelastic term.

PLV = E(t) x (VLvVO) (3.1)

and E(t) = E *(t) x ELV

In previous models, the expression including a viscoelastic term is:

PLV = E(t ) x (VLvV ) + (I-a '( % 32)

When incorporating the new E*(t) curve into the CV model, however, the

viscoelastic term in the previous model was not changed in a manner consistent with
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equation 3.1. In this way, the meaning of ELV is the same as in the previous model and

the model output is similar to that of previous ones, as shown in Figure B2. In changing

the elastance model by deleting viscoelastic terms, the meaning of ELv must be changed

too. For example, if with viscoelastic term, a value of 4500 dyn/cm5 of ELv is viewed as

normal, without visco-term, the normal value should be lower than 4500. Otherwise, the

generated pressures will be very large since the damping is left out, as shown in Figure

3.1.

From figure 3.1, not only the amplitude of the 4 th curve changed from the

previous models, but also the shape of the profile changed greatly. Therefore, further

work should be done to study how to incorporate the relation of equation 3.1 into the CV

model. Other modifications may also be necessary.

Another problem existing in the current model concerns the radial velocity. The

simulated velocity (often with a peak of around 20 cm/sec) seems to be smaller than our

measured ones. Although there is not a reliable reference for radial velocity values, we

suspect that to the peak values should be in the range of 40-60 cm/sec for normal

subjects, based on our own measurements.

In addition, to solve the problem of instability in the current model, two small

elements located in the aortic arch were added near the aortic artery to make calculations

more stable. However, the addition of these two elements were found to introduce new

oscillations in the carotid pressure and velocity (while having no obvious results on

brachial and radial ones), as can be see in figures 2.18 through 2.31. Further study is

needed to identify the source of these oscillations and, if determined to be artificial, to

eliminate them.
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Figure 3.1 Comparison of model outputs

(Curves 1 to 3 are the same curves shown in figure B2 generating

from 3 models, the 3rd one is the one used in this thesis. Curve 4 is the

pressure curve when using the same value of ELV in the elastance model

without viscoelastic term, shown in equation 3.1)
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Problems in measurement and data processing

Although the Millar tonometer yields a continuous pressure trace, the acquisition

of stable ones requires considerable practice. As mentioned in part 2, the measured

pressure depends on the external force applied, the direction of the probe, etc. Any

deviation from the optimal applanation position will result in errors in measured pressure.

What's more, the tonormeter is incapable of measuring absolute pressure values with

precision in our experience. We emphasized in part 2 that because of the inaccurate

calibration, carotid and radial pressures are not reliable and should not be used in

parameter estimation. To solve this problem, either new equipment is needed or

improvement on the current tonometer is needed. For example, by making a mounting

and adding an external force sensor for this tonometer, the external force can be

controlled and the applanation position can be adjusted accordingly. In this way, errors

in calibration can be reduced and no any more strict requirement on the operator's

experience.

For velocity data, the original Doppler signal is often accompanied by

considerable noise, thus, the velocity measurement accuracy will heavily rely on and be

affected by data processing technique. This problem may be inevitable for non-invasive

measurement. However, careful study of the usage of ultrasound probes (or maybe by

using another probe) may help.

Since one of the ultimate objectives of this project is for automatic healthcare

monitoring at home, wearable pressure and velocity measuring probes will be needed and

real-time automatic data processing of pressure and velocity will be a major challenge

(note that the current data processing techniques need operator interference).

Additional parameter estimation errors are introduced due to uncertainty in the

measurement location. We have assumed that the pressure and velocity measurements

are made at the distal ends of the brachial and radial artery and the mid-point of carotid

artery. However, in reality, the locations can be easily different from distal ends, since

no one can detect for sure where the distal point is. For pressure, this may be not a

serious problem, since calculations show that pressures of other points near the distal end
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are very similar to that of the distal end. However, for velocities, significant differences

might arise. Velocity increases gradually away from the distal end and approaching the

mid-point of the artery (the point of largest velocity amplitude). A difference of 5-10

cm/sec may be found between mid and distal velocities. Whenever possible, efforts

should be made to ensure that pressure and velocity measurement for each artery are done

at approximately the same location in one test, and this location should be near distal

point.

In summary, although the current parameter estimation method gives encouraging

results in estimating both model-generated and measured data, both the CV model and

the measurement process could be improved. Further work, both numerical and

experimental is needed to evaluate the entire approach further, including evaluation of

parameter estimation accuracy and the ability to predict changes in all critical

hemodynamic variables.
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