
The Single Airport Static Stochastic Ground
Holding Problem

by

Ryan M. Rikfin

B.S., Massachusetts Institute of Technology (1994)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1998

© Massachusetts Institute of Technology 1998. All rights reserved.

Author .. ge...v..eg a-. nd Computer Science 
Engitieering and Computer ScienceDepar'ment of Electrical

January 15, 1998

Certified b) .................................. .................
Amedeo R. Odoni

T. Wilson Professor of Aeronautics and Astronautics
and of Civil and Environmental Engineering

Thesis Supervisor

Accepted by

JUN I ot8

Robert M. Freund
Seley Professor of Operations Research

Cordirector, Operations Research Center

LIBRARIES



The Single Airport Static Stochastic Ground Holding

Problem

by

Ryan M. Rikfin

Submitted to the Department of Electrical Engineering and Computer Science
on January 10, 1998, in partial fulfillment of the

requirements for the degree of
Master of Science in Operations Research

Abstract
We discuss methods for formulating and solving the single airport static stochastic
ground holding problem in air traffic flow management. We begin by exploring a
seminal model of Richetta and Odoni. We define a new model, the Static Stochas-
tic model, that represents a substantial simplification of the Richetta model. We
introduce a new model, the Maximum Air Delay model, which solves a closely re-
lated problem. We prove that the linear programming relaxations of both the Static
Stochastic and Maximum Air Delay models are guaranteed to yield integer solution
to their respective problems. We also consider an extension of the Static Stochastic
model that explicitly penalizes wasted capacity.
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Chapter 1

Intro duction

In air traffic flow management (ATFM), large amounts of costs and congestion are

incurred due to uncertainty of future landing capacity over a several hour time horizon.

Ground holding is one of the basic methods of lowering these costs. The idea is simple:

it is preferable to have a flight wait on the ground at its point of origin than to have

it circle the airport at its destination, unable to land. Therefore, if it is known with

certainty, or at least with high probability, that a flight will be unable to land due to

lack of capacity, it may be advantageous to hold the flight on the ground at its point

of origin. Ground holding saves fuel costs and increases safety margins by relieving

airborne congestion.

The FAA introduced a ground holding strategy in the early 1980's. For each

possibly capacitated airport, the FAA generated an estimate, or forecast, of capacity

over the next few hours. The FAA then treated this forecast as a deterministic

profile of future landing capacity, and groundheld exactly enough airplanes such that

if capacity materialized as planned, there would be no air holds (planes forced to wait

in the air at their destination due to lack of landing capacity). The software used to

implement this functionality for the FAA is known as Grover Jack. Throughout this

thesis, this policy will be known as the deterministic ground holding policy.

The essential problems with the deterministic ground holding policy are that a

forecast of future capacity is generated in an ad hoc manner, and that this forecast

is then treated as exactly correct. In other words, once the forecast is made, the

5



stochastic nature of future capacity is ignored.

An additional problem with the deterministic policy is that if the FAA's forecast of

capacity is not equal to the expected values of future capacity, the deterministic policy

will introduce a systematic bias in ground holding. This appears to be the case in

practice: the FAA's capacity forecasts seem to be overly conservative, corresponding

more closely to worst-case scenarios than expected-case scenarios, leading to a large

number of ground holds which are, from the airlines' point of view, unnecessary, and

therefore to a large amount of wasted capacity.

In this thesis, we look at static stochastic models for the single-airport ground

holding problem: stochastic, in that they explicitly take into account the stochastic

nature of future capacity, and static, in that they require all decisions over a given

time horizon to be made in advance. In Chapter 2, we look at previous work on this

problem. In Chapter 3, we define the problem more precisely, and in Chapter 4, we

examine a particular model, developed by Richetta and Odoni. In Chapter 5, we

introduce the Static Stochastic model, which represents a substantial simplification

of the Richetta and Odoni model. In Chapter 6, we prove that the constraint matrix

associated with the Static Stochastic Model is totally unimodular, indicating that

applying the ellipsoid method to this model yields a polynomial-time algorithm for

this problem. In Chapter 7, we explore two simple extensions of the Static Stochastic

model, involving new types of constraints. In Chapter 8, we see how adding one

of these new types of constraints and deleting a portion of the Static Stochastic

Model yields a model for a closely related, and possibly more applicable, model. In

Chapter 9, we explore a more complicated extension, involving a new type of objective

function that explicitly penalizes "wasted" capacity. In Chapter 10, we present several

examples and attempt to gain insight into the workings of the models. Finally, in

Chapter 11, we draw conclusions and discuss directions for future work.
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Chapter 2

Literature Review

The seminal paper on the static stochastic ground holding problem is "Solving Opti-

mally the Static Ground-Holding Policy Problem in Air Traffic Control," by Richetta

and Odoni [RO93b]. This paper deals with stochasticity by assuming that a proba-

bilistic distribution of "scenarios", or possible realizations of capacity, is known. By

treating arrivals as flows rather than as individual flights, and making use of the fact

that empirically, the linear programming relaxation always yields integer solutions,

the model defined in this paper is practically solvable for reasonable problem sizes.

An earlier paper which assumes that the airport i capacitated for only a single

time period is [ARJ87]. Mina Sheel, in her Masters' Thesis at the MIT Operations

Research Center [She94], performs an empirical analysis of the model developed by

Richetta and Odoni. In [RO93a], Richetta and Odoni introduce a dynamic version

of the problem, in which additional decisions may be made as partial information on

the capacity realization becomes available.

A large body of work exists on deterministic versions of the ground-holding prob-

lem. Good examples include the PhD theses of Terrab [Ter90] and Vranas [Vra92b],

papers by Vranas [Vra92a], Vranas and Bertsimas [BV95], Vranas, Bertsimas and

Odoni [VB094], and Bertsimas and Stock [BSar]; this list is by no means exhaustive.
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Chapter 3

Description of the Problem

The static stochastic single-airport ground holding problem assumes that a single

capacitated airport exists, and that travel times are deterministic and known in

advance; the only element of uncertainty is the arrival capacity at the destination

airport. An instance of the static stochastic single-airport ground holding problem

(SSGHP) with T E Z+ time periods, Q E Z+ scenarios and F E Z+ flights consists

of a vector S E TIIFI of scheduled arrival times, Q arrival capacity scenarios Mq,t,

1 < q Q, 1 < t T, a probability vector Pq over the scenarios, c, the cost of

ground holding a single plane for one time period, and Ca > cg, the cost of one period

of air delay for a single plane. (If cg < ca, it is always optimal to allow all planes

to take off as scheduled.) The objective is to generate a sequence S* E IT + lIIF of

actual arrival times that minimizes the sum of the expected air and ground holding

costs, subject to the constraint that no airplane may arrive early: each airplane's

actual arrival time may not be before its originally scheduled arrival time. Note that

the arrival time of a flight is defined to be the time it arrives in the airspace of the

arrival airport, not necessarily the time it actually lands. We also assume that the

landing capacity at time T + 1 is IF[, i.e., that all planes will be able to land by time

T+1.
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Chapter 4

The Richetta Model

Richetta made some important simplifications to the problem that allowed him to

solve it to optimality. The crucial idea was the attempt to treat planes arriving at

the capacitated airport as a flow rather than as individual planes. More specifically,

we can aggregate the originally scheduled arrivals at each time period t into a vector

of demands Dt, 1 t < T, where Dt = If E F : Ff = t. Once we have done this,

we can formulate the problem using decision variables Xi,j, i < j, where Xi,j is the

number of planes originally scheduled to arrive at time i that we reschedule to arrive

at time j. We define variables Wq,t, 1 < q Q, 1 < t < T, where Wq,t is the number

of planes experiencing airborne delay at time period t under scenario q.

In his original formulation, Richetta used slightly super-linear ground holding

costs (i.e., it is slightly more than twice as expensive to ground hold planes for two

periods than for one), in order to avoid solutions where some planes are ground held

for a very long time while other planes land immediately. We observe that this is not

necessary if we agree that for i < j, all planes originally scheduled to land at time i

must land before all planes originally scheduled to land at time j. We therefore use

a linear ground holding cost function, with the understanding that we can recover a

solution that satisfies the above constraint by post-processing.

This yields the following integer programming model:
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T T+1 Q T
min E E cg(j - i)xi,j + Ca( Z Pq £ Wq,i) (4.1)

i=1 j=i+ q=1 i=1
T+1
E Xi,j = Di i= 1,...,T (4.2)

i
wq,i - W,i-_l - E Xji- Sq,i =-Mq,i -t = 1,...,T + 1

j=1
q= 1,..., Q

(Wq,o = Wq,T+1 = 0) (4.3)
T+1 T

Sq,i Mq,i q=, .. ,Q (4.4)
i=1 i=1

Xi,j E Z+, Wq,t e Z+, Sq,t E Z+ (4.5)

In the above integer program, the objective function (1) is the sum of the (fixed)

ground costs and the (expected) air delay costs. We can define the problem in terms

of a single cost parameter r because multiplying both ca and cg by a positive scalar

does not affect the optimality of any given solution; we express the model in terms

of two parameters, ca and Cg, for clarity. Constraint set (2) stipulates that all planes

scheduled to arrive at time i must arrive between time i and time T + 1, inclusive.

Constraint set (3) sets the air delays Wq,t for each scenario - in words, this constraint

set states that during a given time period, under a given scenario, the number of planes

being air held is at least as large as the number of planes being air held from the

previous time period, plus any new planes that arrive during that time period, minus

the capacity at that time period under that scenario. Constraint set (4) is an artifact

of the way in which Richetta posed the deterministic version of this problem as a

network flow problem; in this formulation, it is redundant.

The key feature of this model is that by treating arrivals to the airport as a flow,

we are able to avoid associating variables with individual flights. This greatly reduces

the size of the problem, making solution to optimality plausible for reasonable prob-

lem sizes. Additionally, empirically, Richetta observed that the linear programming

relaxation of the model always yielded integer solutions. He conjectured that that

the constraint matrix of his model was unimodular, but did not prove or disprove his
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conjecture.

Performing several simple experiments, Richetta compared his model to both the

deterministic policy, and a passive policy of allowing all planes to take off and arrive

in the destination airport's airspace as scheduled. Note that the passive policy has

the property that it minimizes the total amount of delay. Richetta found that in

his experiments, his static stochastic model performed extremely well, in some cases

generating solutions with only slighly more total delay than the passive model, and

far lower costs.
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Chapter 5

The Static Stochastic Model

Once we observe that under a first-come first-served (FCFS) discipline, we can recover

large amounts of structural information via post-processing, we see that it is possible

to simplify the problem substantially. We derive a new model, with decision variables

At, 1 < t < T, where At is simply the number of planes we allow to arrive in the

airspace of the capacitated airport at time t. If we can derive an optimal solution for

this model, we can recover arrival times for the individual flights by post-processing,

using the assumption of an FCFS discipline. This assumption is quite reasonable and

natural, as it corresponds precisely to current FAA policy, as well as to our intuition

about fairness. We now have the following model:

min Et cGt + EQ= Z:l CapqWq,t (5.1)

tjt1 At < tJ-1 Dt j = 1,.,T (5.2)

ET 1T+1 At = ET+' Dt (5.3)

Wq,t - Wq,t- - At > -Mq,t t=,., T

q=1,...,Q

(TVq,o = 0) (5.4)

j + tj =l At = IDt j = 1, .. T (5.5)

At E Z+, Wq,t E Z+, Gt E + (5.6)
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Here, the objective function (1) is again the sum of the (fixed) ground costs and the

(expected) air delay costs; instead of presenting the ground delay costs explicitly in

terms of the decision variables, we choose to define auxiliary variables Gt in constraint

set (5). This constraint set is redundant - we could have substituted the At into the

ground delay portion of the objective function, eliminating the Gt variables from the

model, but we include them for clarity. Constraint set (2) stipulates that no plane

may arrive before it is originally scheduled to do so, while constraint set (3) stipulates

that all planes must arrive by time T + 1. Constraint set (4) sets the air delays Wq,t

for each scenario.

This model achieves solutions equivalent to those found by the Richetta model,

but represents a substantial improvement in terms of model size and simplicity. The

following table compares the number of rows, columns, and non-zero elements in the

constraint matrices of the two models, given Q scenarios and T time periods, after

both models have been rephrased entirely in terms of equality constraints:

Rows

Columns

Non-Zero Elements

Richetta Model

QT+ 2Q+ T

(T+1)(T+2) + Q(2T + 1)

(T + 1)((Q + 1)(T+2) + 4Q) - 2Q-2,+ 4)-2

Static Stochastic Model

QT + 2T + 1

2QT + 3T-Q + 1
T2 + 4T+4QT - Q+ 1

For example, if we have ten scenarios and thirty-two time periods, corresponding

to an eight hour time horizon, the Richetta model has 372 rows, 1178 columns, and

7411 non-zero elements, while the Static Stochastic model has 385 rows, 727 columns,

and only 2423 non-zero elements. The number of non-zero elements is probably the

most important measure of the size of a model, because the models are solved as

linear programming relaxations, and CPLEX stores a sparse representation of the

model matrices. Indeed, we observe empirically that unless the problem is so small

that CPLEX startup times dominate the running time, the Static Stochastic model

does solve problems of this form approximately three times faster than the Richetta
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model. More importantly, the Static Stochastic model, by using a simpler form of

decision variables, makes the model simpler and easier to understand.
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Chapter 6

Unimodularity of the Static

Stochastic Model

In this chapter, we prove that the constraint matrix associated with the Static

Stochastic model is totally unimodular. All general results about totally unimod-

ular matrices used in this chapter can be found in Nemhauser and Wolsey [NW88].

We will use the following characterization of totally unimodular matrices:

Theorem 1 An m x n matrix is totally unimodular if and only if for every subset of

the rows S C N there exists a partition of S into two subsets Si and S2 such that

aij- )E aij 1, j = 1,..., N
iES1 iES2

We will show that such a partition exists for the constraint matrix of the Static

Stochastic model. Additionally, we will need the following result:

Definition 2 An m x n 0 - 1 matrix A is an interval matrix if the 1 's in each row

appear consecutively.

Theorem 3 Interval matrices are totally unimodular.

In order to see concretely the form of the constraint matrix, we include the matrix

for the case t = 4, q = 3:

15



Looking back to our model, we first have T + 1 constraints involving only the

At; these are the constraints stipulating that no plane may arrive early, and that

all planes must arrive by time T + 1. We then have Q sets of T constraints each

relating the At and the Wq,t. We call these constraints the air-holding constraints.

These are the constraints that assign the V4Vqt, the air delays; in our model, they are

greater than or equal to constraints. We could rewrite them as less than or equal

to constraints without affecting the total unimodularity of the matrix by multiplying

these constraints by -1; it will be clear that this does not affect the proof. The final

T constraints are the redundant constraints that set the ground holding variables,

Gt.

We now show, given a subset of the rows S C N that we can partition S into S1

and S2 in a manner that satisfies Theorem 1. We first note that since each Gt appears

only once, those columns of the matrix will never violate the constraints of Theorem

1, and may consider only the At and the Wq,t columns.
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1, and may consider only the At and the Wq,t columns.

We now examine the Wq,t columns. Consider a single set of T air-holding con-

straints, corresponding to a particular scenario q E Q. If our set S contains two

adjacent rows from this set, either they must both be placed in SI or both be placed

in S2; otherwise we will generate a +2 or a -2 in some column corresponding to a Wq,t.

This argument extends obviously to more than two adjacent air-holding constraints

corresponding to the same scenario. This prompts the following definition:

Definition 4 Given a subset S of the rows of A, we define a maxset M to be a

maximal set of adjacent rows of air-holding constraints corresponding to the same

scenario q E Q. Additionally, we define functions tstart(M) and tend(M), which, given

a maxset M, return, respectively, the start and end times that that maxset covers.

The maxset is a useful concept because maxsets are precisely the groupings of the

air-holding constraints that need to be placed in the same subset of our partition of

S in order to ensure that the sum in every Wq,t column is 0, 1, or -1. Any partition

which respects maxsets will satisfy the requirements of Theorem 1 as far as the Wq,t

are concerned.

We complete our proof with the following construction. Given a subset S of the

rows of A, we construct a new auxiliary matrix A' with T+1 columns. For each row in

S which does not correspond to an air-holding constraint, we put the portion of that

row corresponding to the At directly into 4'. Additionally, for each maxset M C S

of the air-holding constraints, A' contains a single row with a 1 in the i'th column if

tstart(M) < i < tend(M), and a 0 in the i'th column otherwise. By construction, A'

is an interval matrix, and by Theorem 3 it is totally unimodular. Therefore, there

exists a partition of the rows of A' into two subsets satisfying Theorem 1: let S

and S2 be such a partition. Given such a partition, we can construct a partion of S

into S 1 and S2 that also satisfies Theorem 1. For a row of A' that corresponds to

a row of S, place that row in S1 if the corresponding row of A' is in S', otherwise

place it in S2. For a row of A' corresponding to a maxset M in S, place all rows

of M in S1 if the corresponding row of A' is in S2, otherwise place all rows of M in
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S2; the change of sign accounts for the fact that the At variables are negated in the

air-holding constraints.

Each At variable is added and subtracted the same number of times in Sl and

S2 as it is in Sl and S2, therefore, S 1 and S2 satisfy Theorem 1 as far as the At are

concerned. Furthermore, this partitioning respects maxsets, so clearly none of the

Wq,t can cause Theorem 1 to be violated. We conclude that the constraint matrix A

is totally unimodular.

Because the constraint matrix is totally unimodular, linear programming relax-

ations of this problem are guaranteed to yield integral solutions. Because there are

only a polynomial number of constraints, the ellipsoid algorithm (or any polyno-

mial time linear programming algorithm) yields a polynomial time algorithm for the

single-airport static stochastic ground holding problem.

We note in passing that the Richetta model constraint matrix is not totally uni-

modular as written, but if the redundant constraint set is omitted, the matrix becomes

totally unimodular; this can be proven by a method similar to the proof of total uni-

modularity for the Static Stochastic model constraint matrix above, with the addition

of a step in which the columns are reordered.
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Chapter 7

Simple Extensions of the Static

Stochastic Model

We discuss two simple extensions to the Static Stochastic Model that increase its

expressive power. These extensions were made to the Richetta model in [RO93b].

Suppose, due to safety considerations, that we wish to limit the amount of airborne

delay at the capacitated destination airport. For instance, imagine we wish to insist

that all planes that have arrived by time t must be able to land by time t + 3. This

is easily modeled, thanks to our FCFS assumption. We simply add constraints of the

form:

t+3

Wq,t < E M,i
i=t+l

Now, assume that we wish to limit the amount of ground delay any plane experi-

ences to k time periods. Because of our FCFS assumption, this amounts to insisting

that all planes originally scheduled to arrive by time t must be allowed to arrive by

time t + k. This can be achieved by adding constraints of the form:

t+k t

EAi > EDi
i=1 i=1

We observe that adding either or both of these forms of constraints do not affect
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the total unimodularity of the Static Stochastic model. In the first case, we are adding

a row with a single non-zero entry, in the second case, we are adding an "interval"

row; a row containing only O's and l's, whose 's all occur consecutively. Therefore,

the proof of total unimodularity given in the previous chapter extends directly to

handle both these cases. We also observe that we can include arbitrarily strong forms

of either type of constraint independently without making the problem infeasible: in

the first' instance, a schedule that ground holds all arrivals until time T+ 1 will always

be feasible, and in the second case, a schedule that allows no ground holds will always

be feasible. However, if we include constraints of both forms simultaneously, we may

make the problem infeasible.
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Chapter 8

The Maximum Air Delay Model

By adding the first types of "extension" constraint given above, and deleting the

portion of the objective function corresponding to the air delay costs, we generate a

new model with several interesting properties, the Maximum Air Delay model:

min t1=l Gt

t=1 At < E=1 Dt

ET+1 At = T+1 Dt
,t=l - t=l

Wq,t - Wq,t-_ - At > -Mq,t t= 1,...,T
q= 1,..., Q

(Wq, = 0)

j = ,...,T

t= 1,...,T
q=1,...Q

Gj + E= 1 At

Wq,t <

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)= = Dt

Lq,t

(8.6)

(8.7)At E Z+, Wq,t E Z+, Gt E Z+

This model contains all tile constraints of the Static Stochastic model, so every fea-

sible solution of the Maximum Air Delay model is also feasible in the St ic Stochastic

model. The additional constraints, constraint set (6), stipulate that no more than
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Lq,t planes can be held in the air at period t under scenario q. By setting Lq,t to be

the Et+k+ Mq,t', we guarantee that all planes airheld at time t under scenario q will

be able to land by time t + k. In other words, we can easily use constraint set (6) to

make guarantees on the amount of time any given plane can be airheld.

When compared to the Static Stochastic model, the Maximum Air Delay model

has several interesting features. Most importantly, it solves a different, but closely

related problem. Whereas the Static Stochastic model finds the schedule with the

lowest expected costs, the Maximum Air Delay model essentially seeks to minimize

the amount of ground delay subject to safety constraints.

The Maximum Air Delay model is essentially a worst-case model, as opposed

to the Static Stochastic model which is more of an expected case model. In fact,

given two scenarios, one of which has higher capacity at every time period, and the

assumption that we use constraint set (6) in such a way as to enforce an identical

maximum air hold length for any given plane, it is easily seen that the scenario with

the higher capacity can be deleted from the model.

We next note that the scenario probabilities do not appear in the Maximum Air

Delay model. This is a, consequence of the model being a worst case rather than an

expected case model, and should be considered simultaneously a strength and a weak-

ness of the model. On the positive side, this model is not sensitive to errors in scenario

probability measurement, since these probabilities need not be measured. In other

words, while the performance of the Static Stochastic model can be degraded sub-

stantially by inaccurate probabilistic measurements, the Maximum Air Delay model,

by virtue of its simplicity, is immune to this implementation difficulty. On the nega-

tive side, perhaps the relative probabilities of the scenarios are of use in determining

the correct schedule, and by throwing these probabilities away, we are impeding our

ability to determine optimal schedules.

Finally, we see that because we have deleted the second term from our objective

function, this model does not require c and ca, the relative costs of ground and

airborne delay. In the context of air traffic control, this should be considered a crucial

advantage. One of the primary arguments against the Static Stochastic model is that
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the relative costs of air and ground holding are different for different airlines, and that

the FAA has no right to set arrival rates based on a single such value. The Maximum

Air Delay model avoids this pitfall. In fact, the Maximum Air Delay model was

designed as an attempt to addres the perceived (political) problems with the Static

Stochastic model. Under this model, the FAA restricts arrival rates based only on

its operational and safety concerns (the Lq,t), without having to assign relative costs

to air and ground delays. This model could easily be used to set maximum allowable

arrival rates, with the individual airlines deciding the actual arrival rates amongst

themselves in a collaborative decision making framework.

We note in passing that by the arguments in the previous chapter, the constraint

matrix associated with the Maximum Air Delay model is totally unimodular, and

that the linear programming relaxation of this model is therefore guaranteed to yield

integer solutions.
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Chapter 9

The Static Stochastic Model with

Waste Penalties

In this chapter, we develop a more sophisticated extension to the Static Stochastic

model. One problem that airlines have had with the current deterministic ground

holding policy has been a feeling that the policy is overly conservative: that a large

number of delays were being taken on the ground, when planes could have been

arriving and successfully landing. We consider a model in which we penalize this

waste explicitly.

We introduce new penalty variables, Pq,t, the "waste" penalty at time t under

scenario q. We also introduce a new model parameter, c, the cost associated with

"wasting" one unit of capacity. We wish to penalize only situations in which we are

ground holding planes that could be landing. If we are ground holding planes, but

those planes would not have been able to land, we assess no penalty; similarly, if

there is excess capacity, but all planes have arrived, we assess no penalty. For this

reason, we agree that Pq,t should be the minimum of the number of planes being

ground held at time t, and the excess, or slack, capacity at time t under scenario

q. Introducing slack variables to turn our air holding assignment inequalities into

equalities, we derive the following model:
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T Q T
min cGt + Z E pq(caWq,t + cwPq,t) (9.1)

t=1 q=1 t1

i J
E At < E Dt j = 1, .. , T (9.2)t=l t=l

T+1 T+1
E At= E Dt (9.3)t=1 t=l

Wq,t - Wq,t_ - At- Sq,t =- Mq,t t = 1, ... , T

q= 1,..., Q

(Wq,o = Wq,t = 0) (9.4)

Gj + At = E Dt j = 1,.,T (9.5)t=l t=l
Pq,t = min(Gt, Sq,t) q = 1,..., Q

t= l,.. ,T (9.6)

Wq,tO OR q,t =0 q= 1,...,QWqt=OORSqt=

t= 1,...,T (9.7)

At E Z+, Wq,t E Z+, Gt E Z+, Sq,t E Z+ (9.8)

We see that we have added the penalty term to our objective function. Constraint

sets (2) and (3) remain unchanged, and the only change to constraint set (4) is that

we explicitly represent the slack variables. Constraint set (5) remains unchanged.

Constraint set (6) is new, and represents the assignment of the penalty values. Note

that constraint set (6) is shorthand; strictly speaking, minimums are not part of the

language of integer programming. Each statement of the form (5) can be written as

four constraints, and requires the introduction of 0-1 variables:

Pq,t -Gt < 0

Pq,t - Sq,t < 

Pq,t - Gt + WXq,t > 0

Pq,t - Sq,t - Xq,t > -W

Xq,t E O, 1
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where w is large in terms of the problem data; in our implementation, we set w =

t=1 Dt, which is clearly an upper bound on both Sq,t and Gt. Constraint set (7) is also

shorthand, and needs to be expanded into two disjunctive constraints, each involving

a new 0-1 variable. Constraint set (7) is necessary in order to avoid situations where,

under extremely high penalty costs, the system "decides" to force arriving planes

to take air holds under certain scenarios, even though capacity exists to allow those

planes to land immediately, in order to avoid waste penalties at later times. Without

waste penalties, under the assumption that air holds were costlier than groundholds,

the system always automatically minimized the Sq,t, the number of air holds taken.

With waste penalties this is not necessarily the case.

Looked at from a different perspective, constraint set (7) gives us further insight

into both the original and extended models. We notice that the Static Stochastic

(and Richetta) models, as specified, model situations where once the decisions (the

At or the Xij, respectively) are taken, the scenario is realized, and the future is

known at that time. This is unrealistic, but is not a problem in the original Static

Stochastic model; we are already acting in the manner that is most advantageous once

the scenario is realized, because the ability to force planes to wait in the air when

there is capacity available to land that plane is of no value. However, this ability

does exist, and under the extended model without constraint set (7), it could be of

value. Constraint set (7) eliminates this option, forcing us to land as many planes as

possible.

The constraint matrix for the extended model is clearly not totally unimodular;

the expansion of the minimization terms involves large numbers w. Indeed, the linear

programming relaxation of this model does not yield integer solutions on test prob-

lems, and for even moderate sized instances, the problem is intractable under the

current formulation.

In the next chapter, we provide some examples and begin an analysis of the model

with waste penalties.
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Chapter 10

Examples and Analysis

In this chapter we present several examples and analyses that will give us further

insight into the static stochastic algorithm, both with and without waste penalties.

We begin by presenting an elementary result that will greatly simply further analyses.

Definition 5 Given an instance S of SSGHP, the upper envelope of S is the sequence

U E Z+T satisfying Ut = maxqEQ Mq,t, 1 < t < Q, and the lower envelope is the

sequence L E Z+ satisfying Li = minqEQ Mq,i, 1 < t < T.

Lemma 6 Given an instance of SSGHP, and an optimal schedule A*, A < Ut for

all 1 < t < T.

PRooF:Assume At is strictly greater than Ut for some t. Defining d = At - Ut,

consider the new schedule A' constructed by setting A t = Ut, At+1 = A* i + d, and

At, = A t, for all other t'. Under all possible scenarios, this schedule will have d

additional ground holds and d fewer air holds at period t, and the same number of air

and ground holds for all t' $ t. Since ca > cg, C(A') = C(A*) -d * (ca - cg) < C(A*),

contradicting our assumption that A* was optimal. o

The intuition behind this proof is straightforward. During any period for which

Ai > Ui, some number of planes are guaranteed to experience air delay. By ground

holding these planes for one period, we obtain a new schedule which is guaranteed to

be of lower cost.
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This lemma is simple and intuitive, but extremely useful. It's value lies in allowing

us to easily bound the number of "plausible" schedules we need to consider when

looking at a given problem. In particular, we need only consider those schedules for

which At _ Ut for 1 t < T.

10.1 Static Stochastic vs. Deterministic

In this chapter, we give some simple examples to illustrate the weaknesses in the

deterministic algorithm currently in use, and how the static stochastic algorithm

corrects these weaknesses. Recall from Chapter 1 that the deterministic algorithm

operates by picking the most probable scenario, and ground holding enough planes

such that capacity limits will exactly be met if that scenario occurs. There are two

closely intertwined, but conceptually different, errors in this approach. The first is

that the distribution of future capacity is ignored. In some sense, the deterministic

algorithm focuses on the mode of the distribution rather than the distribution itself.

The second is that the relative costs of air holding and ground holding are ignored.

The static stochastic algorithm fixes both these problems; indeed, it is difficult to see

how to address one of these concerns without addressing the other.

This approach is admittedly conceptually ingenuous. It is not the case that the

FAA receives a probabilistic capacity forecast, broken up into scenarios, and then

chooses to use only the most probable scenario. The FAA receives only a single

forecast. However, it does seem at least plausible to assume that the forecast the

FAA receives corresponds to the most likely scenario. In practice, there is also some

evidence that the FAA is biased towards overly conservative forecasts; we ignore that

issue in this analysis.

We begin by considering an example consisting of two scenarios and two time

periods. (When we say that an example consists of T time periods, we mean there

are T possibly capacitated time periods, and that any planes that are either ground

held or air held at time T will land at time T + 1.) Under the first scenario, which

occurs with probability .6, the capacity is 0 at times 1 and 2. Under the second
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scenario, which occurs with probability .4, the capacity is 1 at times 1 and 2. The

demand is 1 during both time periods, By Lemma 6, Ut = 1 for 1 < t < 2, so we need

only consider the four schedules that have zero or one arrival during times one and

two. The following table lists these four schedules, as well as the number of ground

holds and the expected number of air holds incurred under each schedule:

For this problem, the first scenario, that of no capacity at times one and two, has

probability .6, so the deterministic algorithm will choose schedule 1. Note that the

deterministic algorithm is not dependent on the cost parameters c and c, since it

does not use them in any way. The static stochastic algorithm, which is dependent

on these cost parameters, will make different decisions depending on the parameter

values. If ca > 1.6cg, then schedule 1 is optimal, and the static stochastic and de-

terministic algorithms give the same result. If, however, c, < 1.6cg, then schedule 4

becomes optimal; the static stochastic algorithm finds this optimal schedule, but the

deterministic one does not. In particular, if cg = 100 and ca = 150, the deterministic

algorithm will suggest schedule 1, with an expected cost of 300, and the static stochas-

tic algorithm will suggest schedule 4, with an expected cost of 270. (If ca = 1.6c9,

then all four schedules are optimal; in this case, the deterministic algorithm does

produce an optimal schedule.) This example illustrates the basic problems with the

deterministic algorithm: ignoring the distribution of capacity, concentrating only on

the most likely scenario, and ignoring the cost information in the problem.

It is not even necessary to have two time periods. Consider a single time period,

three scenario problem. The three possible capacities are 0, 1, and 2, with respective

probabilities .4, .3, and .3. The demand is 2. Under the deterministic algorithm, the
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Schedule Arrivals Ground Expected
Number t=1 t=2 Holds Air Holds

1 0 0 3 0.0
2 0 1 2 0.6
3 1 0 1 1.2

4 1 1 0 1.8



most likely outcome is a capacity of 0, and both planes are ground held until time 1,

incurring two ground holds and no air holds. This schedule will be optimal only if

Cn >c 5c. Now consider schedules where we allow one or two planes to land at time

0. If we allow one plane to land, we incur one ground hold, and expect to incur .4

air holds; this schedule is optimal whenever ocg < c C< Cg. If we allow both planes

to land, we incur no ground holds, and expect to incur 1.1 air holds; this schedule is

optimal if ca < 1Cg. In all cases, the static stochastic algorithm finds the optimal

solution, since it explicitly takes into account the distribution over the scenarios. This

example again shows that the deterministic algorithm can easily produce non-optimal

results.

In each of the above two examples, the schedule selected by the deterministic

algorithm is optimal for some choice of the cost parameters c and ca. This is not

necessarily the case in general; it is easy to construct example problems such that the

schedule selected by the deterministic algorithm is never optimal. We briefly discuss

some properties of optimal schedules that will allow us to demonstrate the above

result.

Perhaps the easiest method of showing that a given schedule is never optimal (i.e.,

is optimal for no choice of the cost parameters c and ca) is to enumerate all feasible

schedules, and to explicitly determine which schedule is optimal for each value of the

ratio r = a. (see Chapter 4 for a discussion of why we need consider only this ratio,Cg

rather than all possible values of both parameters). This is exactly the method we

have used for the last two examples. However, for large problems, this is completely

impractical: for a problem with thirty-two time periods and up to forty planes landing

each time period, we would have to individually consider as many as 4032 schedules.

Fortunately, this isn't necessary.

We begin by fixing c = 1, so that by considering c,, we are considering r. Assume

we have a schedule A, a vector representing the number of arrivals at each time period

1 through T. If, for each value of the ratio r, we are able to produce a schedule A r

such that A r has cost lower than A for cost ratio r, then schedule A can never be

optimal. In particular, if any set of schedules satisfies this requirement, the optimal
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schedules will satisfy it. Put differently, an alternate method for testing whether a

schedule can ever be optimal is as follows: solve the SSGHP to optimality for all

possible values of the cost parameter r. Because the SSGHP can be solved as an LP,

sensitivity analysis allows us to do this reasonably effectively. By doing so, we obtain

a function f(r), representing the cost of the optimal solution as a function of the cost

ratio r. If f(r) lies below fA(r), the cost of schedule A as a function of r, for all r,

then A can never be optimal.

It is worth taking a moment to investigate the shapes f(r) and fA(r). fA(r) is

simply a straight line. Its slope is the number of air holds under schedule A, and its

x-intercept is the number of ground holds under schedule A. (Since we stipulate that

ca > cg, we only consider cost ratios of 1 or higher; fA(r)'s value at 1 is the number of

ground holds plus the number of air holds under schedule A.) f(r), the optimal cost

as a function of r is a piecewise linear convex nondecreasing function over r. This can

be seen intuitively in several ways, and is not difficult to prove formally. One way of

looking at it is that every feasible schedule A' has an associated function fA,(r); for

any given r, the optimal schedule is that A' for which fA,(r) is minimal. Each fA,(r)

is linear and nondecreasing, and there are a finite number of feasible schedules. The

result follows.

We are now ready to construct a problem with the property that the schedule

selected by the deterministic algorithm is not optimal for any choice of the cost ratio

r. The problem has four scenarios and seven time periods. Demand at each time

period is one. The following table lists the four scenarios and their probabilities:

These four scenarios have a regular structure. In each scenario, capacity is zero
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Scenario Scenario Capacity
Number Probability t=1 t=2 t=3 t=4 t=5 t=6 t=7

1 .4 0 0 0 0 1 1 1
2 .2 1 0 0 0 0 1 1

3 .2 1 1 0 0 0 0 1

4 .2 1 1 1 0 0 010



during a block of four consecutive time periods, and is one during the remaining three

periods. This corresponds to an "uncertainty in time" sort of scenario: we might know

that capacity is going to drop, for how long, and by how much, but not know when

that drop is going to begin. In this particular case, since the first scenario has the

highest probability, .4, the deterministic algorithm will select as optimal a schedule

that rnmtchcs it exactly, with no planes landing during the first four time periods,

and one plane each landing during the final three periods. However, this schedule is

never optimal, as we now show. The schedule in question incurs 22 ground holds,

and expects to inctur 2.8 air holds.

The following table lists the schedules which are optimal over some range of values

of the ratio r, the ranges over which they are optimal, the number of ground holds and

air holds incrrred by each, and f(r) over the ranges, in both symbolic and numeric

form, assuming that c = 1:

The study of this example yields many insights into the structure of optimal so-

lutions to SSGHP. First, note that as the cost ratio r increases, air holding becomes

more expensive relative to ground holding, and the number of air holds in the op-

timal solution decreases. As a result of this, f(r) is nondecreasing, and its slope is

nonincreasing. Eventually, for r > 5, air holds become so expensive that it is cheaper

simply to ground hold enough planes so that no air holds are incurred. For r > 5,

f(r) has slope 0. These properties are true for every instance of SSGHP: f(r) is non-

decreasing, its slope is nonincreasing, and there exists an r' such that f(r) = f(r')

for r > r'. In rough terms, raising the cost ratio r by one unit generally makes the

problem more expensive, each additional unit by which we raise the cost ratio gen-
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Optilal Arrivals Ground Expected f(7')
Range 1 2 3 4 5 6 7 Holds Air Holds Symbolic Numeric

1 < r < 1 1 1 0 0 0 0 10 7.2 10 + 7.2r 17.2-19.6
< < < 1 0 0 0 0 1 14 4.2 10 + 4.2r 19.6-24.5

A < r- - 1 0 0 0 0 0 1 20 1.8 20 + 1.87r 24.5-27.875
< 0 < 5 0 0 0 0 0 1 27 .2 27 +.27 27.875 - 28
r>5 0 0 0 0 0 0 0 28 0 28 28



erally has less effect than previous unit raises, and eventually, additional cost ratio

raises have no effect, because we choose not to air hold any planes.

Note that we may not have found all optimal solutions to the problem. In par-

ticular, at the points where two line segments meet (r E , 35, 5}), there may be

additional solutions that are optimal only for that particular value of r. However,

we have found f(r) for all r, and for each r, we do have at least one schedule A for

which fA(r) = f(r) (two at each of the boundary points), so we may ignore these

extra optimal schedules.

By looking at the chart, we can easily see that the schedule selected by the deter-

ministic method, with 22 ground holds and 2.8 expected air holds, is never optimal;

it lies above f(r) everywhere. In particular, the schedule with 20 ground holds and

1.8 expected air holds dominates the deterministic schedule: because it has fewer

air holds and fewer ground holds, we always prefer it to the deterministic schedule

regardless of r. In fact, in this case, we could have produced that particular schedule

as a quick proof that the deterministic schedule was optimal. It is possible for a given

schedule to be nonoptimal without another schedule that dominates it in the above

sense existing. If we can produce a dominating schedule, we do not even need to show

that the dominating schedule is itself optimal for any value of r, it immediately acts

as a proof that the schedule in question is never optimal. However, we have not been

able to find a systematic way to produce a dominating schedule in general. On the

other hand, the method of computing f(r) over the entire range of r is guaranteed to

decide whether or not a given schedule can ever be optimal.

10.2 Static Stochastic With and Without Penal-

ties

In this chapter, we begin to explore the properties of the static stochastic algorithm

with waste penalties, and compare its behavior to the algorithm without waste penal-

ties. The model with waste penalties is much more complicated, and therefore this
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is really the beginnings of an analysis; more work remains to be done. Nevertheless,

this simple exploration gives us several insights into the workings of the model.

We note in passing that Lemma 6 applies to the model with waste penalties: if

At > Ut for some t, then, by delaying a plane from time t to t + 1, we trade one

ground hold for one air hold, and we do not affect the number of waste penalties.

We still have at least Ut planes arriving at time t, so no waste penalties can occur at

that time period, and, since the excess plane was guaranteed to be air held until time

t + 1, we still have just as many planes trying to land at time t + 1.

We begin with an example consisting of two time periods and two scenarios of equal

probability. The demand is 1 at each time period. Under the first scenario, there is

capacity 1 at each time period, and under the second scenario, there is capacity 0 at

each time period. For reasons discussed above, there are only four plausible schedules

for this problem; for each schedule, we list the expected number of ground holds, air

holds, and waste penalties incurred by each schedule, and the expected cost of each

schedule if C9 = 1, Ca = 2.5 and c = .75. In all cases, any excess planes arrive and

land at time t = 3:

If we are solving the problem using the original model, there is no cost associated

with the waste penalties; i.e., w = 0. In this case, Schedule 4 is optimal if ca < 2cg,

and Schedule 1 is optimal if ca > 2c. If ca = 2cg, all four schedules are optimal. If,

instead, we solve this problem under the model with waste penalty extensions with

the cost parameters given above, then schedule 2 is the unique optimum; indeed, if

cg = 1, and ca = 2.5, then schedule 2 is the unique optimum whenever .5 < c, < 1.

In this simple example, we see that it is possible for a schedule which is only optimal

34

Schedule Arrivals Ground Expected Expected Waste Cost
Number t=1 t=2 Holds Air Holds Penalties

1 0 0 3 0.0 1.0 3.750
2 0 1 2 0.5 0.5 3.625
3 1 0 1 1.0 0.5 3.875
4 1 1 0 1.5 0 3.750______________________________________________ £__________________________________________________I



for a single cost value under the original model, and even then is only one of several

optima, to become the unique optimum over a range of values under the model with

waste penalties.

A natural question to ask about the waste penalty extension of the Static Stochas-

tic model is whether it ever produces schedules that are qualitatively different than

those produced by the original model. In particular, does there exist an instance

of SSGHP, and an assignment of the cost parameters, ca, cg, and c, such that the

extended model produces a schedule At with the property that there is no assignment

of the cost parameters ca and c that will cause the original model to produce this

same schedule? We answer this question in the affirmative, with an example.

We consider an example consisting of four time periods and two scenarios of

unequal probability. The demand is 1 at each time period. Under the first scenario,

capacity is 0 during the first three time periods and 1 during the fourth period (as a

vector, the scenario is 0, 1,1, 1}); this scenario occurs with probability .75. Under

the second scenario, which occurs with probability .25, capacity is 1 during the first

period and 0 during the other three periods {1, 0, 0, 0).

We need only consider the 16 schedules that have 0 or 1 arrival each during times

one through four, with all remaining arrivals at time five; no other schedule can

possibly be optinlal. In the following table, we list the 16 schedules, the expected

number of ground holds, air holds, and waste penalties incurred by each schedule,

and the expected cost of each schedule if cg = 1, ca = 18.9 and c = 10. In all cases,

any excess planes arrive and land at time t = 5:
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Using the cost parameters specified above, the

with arrival vector 0, 0, 1, 1 and an optimal cost of

can never be optimal for this instance of SSGHP if

optimal schedule is schedule 4,

31.175. However, this schedule

waste penalties are not used. If

we are not using waste penalties, then the only costs considered are ground holding

and air holding costs. Comparing schedule 4 with schedule 9 ({1, 0, 0, 0), we see that

these two schedules have the same number of expected air holds, but that schedule

9 has fewer ground holds; schedule 9 dominates schedule 4. Therefore, if we consider

an identical instance of SSGHP without waste penalties, schedule 9 will always have

lower expected costs than schedule 4.

The above example indicates that it is theoretically possible for the model with

waste penalties to yield optimal schedules that are never yielded by the original model.

In other words, the model with waste penalties is a stricly more expressive model,

since this model with c, = 0 yields the original model, but there exist examples, such

as the one above, such that no setting of the parameters Ca and c will cause the

original model to yield the same solution as the model with waste penalties. Whether

this difference is of practical importance is, however, an open question. The above

example was difficult to find, and should be considered unrealistic because of the
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Schedule I Arrivals Ground Expected Expected Waste Cost
Number t=1 t=2 t=3 t=4 Holds Air Holds Penalties

1 0 0 0 0 10 0.00 2.50 35.000
2 0 0 0 1 9 0.25 1.75 31.225
3 0 0 1 0 8 0.50 1.75 34.950
4 0 0 1 1 7 0.75 1.00 31.175
5 0 1 0 0 7 0.75 1.75 38.675
6 0 1 0 1 6 1.00 1.00 34.900
7 0 1 1 0 5 1.25 1.00 38.625
8 0 1 1 1 4 1.50 0.25 34.850
9 1 0 0 0 6 0.75 1.50 35.175
10 1 0 0 1 5 1.00 0.75 31.400
11 1 0 1 0 4 1.25 0.75 35.125
12 1 0 1 1 3 1.50 0.00 31.350
13 1 1 0 0 3 2.25 0.75 53.025
14 1 1 0 1 2 2.50 0.00 49.250

15 i 1 1 0 1 3.50 0.00 67.150
16 1 1 1 1 0 4.50 0.00 85.050



example was difficult to find, and should be considered unrealistic because of the

large value of a, 18.9. The value of S is unknown in practice, and likely varies with
Cg Cg

the particular example being considered, but is almost certainly no higher than 5.

Additionally, the cost difference involved was very small.

We have looked at several more complicated examples that were derived from real

world data. In all of these examples, the optimal schedules generated by the model

with waste penalties were always generated by the model without waste penalties for

at least a single value of the cost parameters. These "real world" examples therefore

correspond much more closely to the first example above rather than the second.

It is an interesting thought exercise to consider what happens when we increase

either ca or c,,, while holding the other two parameters constant. As we increase

ca, air holding becomes more expensive, and we begin to favor schedules with more

ground holds and fewer air holds. If we increase ca far enough, air holds will become

so expensive that we will choose a schedule with no air holds whatsoever. If we

increase c,,, then waste penalties become more expensive, and we attempt to avoid

them. Waste penalties are caused by too few planes arriving, so we will attempt

to avoid them by ground holding fewer planes, increasing the number of air holds.

Specifically, the expected number of air holds is an increasing function of the number

of planes arriving at each time period, and the number of ground holds and the

expected number of waste penalties is a decreasing function of the number of planes

arriving at each time period. However, although the number of ground holds and the

number of waste penalties incurred by a schedule are highly correlated, the problem

has a complicated enough structure that it is in some cases possible to take a schedule

and add arrivals to some time periods and remove arrivals from others such that the

total number of ground holds is increased but the expected number of waste penalties

is decreased. It is this property that allows examples like the one above to exist.

We have demonstrated that the model with waste penalties can generate optimal

solutions that are never generated by the model without waste penalties. In order

to get it to generate truly different solutions, it appears that specially constructed

examples are needed. On the other hand, regardless of whether the solutions gener-
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ated are truly different, the model may be of value if it paints a more realistic and

accurate picture of the costs involved. Currently, the model without waste penalties

seems more useful. It is easier to understand, and is computationally tractable. The

model with waste penalties is more powerful, but it is unclear that this extra power

is useful in practice, and the model is intractable for even moderate problem sizes.

10.3 The Maximum Air Delay Model

The Maximum Air Delay model, as described in Chapter 8, takes a very different

approach to the ground holding problem. Under this model, we attempt to minimize

the number of ground holds subject to constraints on how long any given plane may

be delayed in the air. In this chapter, we analyze this model under the reasonable

assumption that these maximum delay constraints will be identical for all planes under

all scenarios. More specifically, we consider the model as attempting to minimize the

total number of plane-periods of ground delay, subject to the constraint that no plane

will be held in the air for more than L time periods under any scenario. We accomplish

this by setting Lq,t = t=L+l Mq,t, for all q and t (letting M,t be arbitrarily large for

t > T).

We begin by examining the behavior of the Maximum Air Delay model under

"extreme" settings of the parameter L. We first consider L = 0. This amounts to a

strict requirement that no plane experience air delay under any scenario. Therefore,

the "optimal" schedule will correspond to an optimal "most conservative" one, in

which just enough planes are ground held to guarantee no air delays. At the other

end of the spectrum, as L gets very large, the system will be able to tolerate larger

and larger air delays for any given plane. In particular, we may consider a schedule in

which no plane is ground delayed. Define L* to be the maximum number of periods

of air delay any plane experiences under this schedule. By setting Lq,t t+L; Mq,t

for all q and t, we guarantee that this schedule will be feasible, and, since its cost in

the Maximum Air Delay model is zero, it is clearly optimal.

Although the Maximum Air Delay model may be viewed as having q times t
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control parameters (the Lq,t), it is more intuitive, and more relevant to its possible

use, to view it as having a single parameter L, and agreeing that the Lq,t will be

used to implement this parameter, as described above. Under this discipline, we note

that the Maximum Air Delay model experiences the same sorts of extreme effects

as the Static Stochastic model. A Maximum Air Delay of 0 (L = 0) corresponds to

infinitely high air delay costs under the Static Stochastic model, and in both cases,

the schedule with no air holds and the fewest possible ground holds given no air holds

is produced. What is the structure of this schedule A*? Necessarily, A* < Mq,t for all

t and all q; otherwise, there exists a scenario under which air delays would occur, and

the schedule would be infeasible. But clearly, this condition is sufficient as well; the

condition ensures that all planes will be able to land during the period they arrive,

under any scenario. We conclude that the optimal schedule for the Maximum Air

Delay model with L = 0, or the Static Stochastic model with arbitrarily large costs,

is the schedule where At = min(minqEQ Mq,t, Dt + Gtl 1) for all t; at each time period,

the number of planes arriving is the minimum of the capacity at that time period

under any scenario and the "demand" at that time period, where demand is adjusted

upward by the number of planes ground held from the previous period.

Similarly, an infinite maximum air delay corresponds to a cost ratio of 1 or smaller

under the Static Stochastic model. In both cases, a schedule with no ground delays is

optimal. We see that the "extreme" behavior of the two models is identical. However,

the behavior of the two models in intermediate cases is quite different, as we show

below.

We note in passing that Lemma 6 does not apply to the Maximum Air Delay

model. The proof of this !smma rested on the idea that air delays are always more

expensive than ground delays, and that planes that were guaranteed to be delayed in

the air were better off being delayed on the ground. The Maximum Air Delay model

penalizes only ground delays, not air delays. Indeed, it is easy to make up examples in

which the optimal schedule under the Maximum Air Delay model in which A > Ut

for some t; a trivial such example is a one scenario, one period example in which

capacity is zero, demand is one, and L1,1 = 1. The optimal schedule will be AT = 1,
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with an associated cost of zero. As a result of the inapplicability of this lemma, the

approach pursued above, where we enumerate all "plausible" scenarios in order to

exhaustively show the optimality of a given schedule under given cost parameters, is

inappropriate. Instead, we take a higher-level approach, where we specify an example

problem, solve the Maximum Air Delay model, and observe the results.

Unfortunately, there is some flexibility in the specification of the Maximum Air

Delay model. This flexibility relates to the need to "project" capacity for t > T,

in order to determine whether ground holds are necessary at some time t' > T - L,

where L is the maximum allowable air delay. The Static Stochastic model assumes

that the capacity at time T + 1 is large enough to allow all planes to land. This is

the approach we take with the Maximum Delay Model as well, for the purposes of

this analysis. In practice, it may be more reasonable to project, for each scenario,

the capacity at time t - 1 into the future; this may in turn lead to some planes not

arriving at all. This issue is not dealt with in this analysis, but is an important avenue

of further investigation.

We now revisit the first example we studied for the Static Stochastic model. This

example consists of two time periods and two scenarios. The first scenario occurs

with probability .6, and has capacity zero at both time periods. The second scenario

has probability .4, with capacity one at both time periods. Demand is one during

each time period. Of course, under the Maximum Air Delay model, the probabilities

themselves are irrelevant; only the scenarios matter. The following table lists the

optimal schedule as a function of L, the maximum air delay:

We immediately note that even for such a simple example, if the maximum air

delay, L, is one, we obtain an optimal schedule that is never optimal under the Static
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Maximum Arrivals Ground Expected
Air Delay t=1 t=2 Holds Air Holds

0 0 0 3 0

1 0 2 1 1.2

2 1 1 0 1.8



Stochastic model. This is an effect of our decision to allow all planes to land at time

T + 1. Under such a model, all planes will arrive by time T - L, as they cannot

possibly be delayed for more than L periods. It is for this reason that we may, in

practice, choose to formulate the model in an alternative way (see discussion above).

We at this point note another important feature of the Maximum Air Delay model.

Suppose there exist two different scenarios, q and q2, such that Mql,t < Mq2,t for all

t. Then we remove scenario q2 from the model. Clearly, if no planes are air held for

more than L periods under scenario ql, no planes can be air held under scenario q2,

where capacity is larger for every time period. Therefore, we may remove all such

"dominated" schedules from our model. In the example above, the schedule with

capacity one in both time periods is such a schedule. A different interpretation of

this phenomenon is that the Maximum Air Delay model is essentially a "worst case"

model (see Chapter 8).

We turn now to the second example from Chapter 10.1, where there are four

scenarios and seven time periods, a block of four consecutive periods of capacity zero,

and capacity one during the remaining periods. We note in passing that no scenario

dominates any other here, so no scenario may be removed from the model. The

following table lists the optimal schedule as a function of L, the maximum air delay:

The "staircase" phenomenon at the right-hand side of the table is again an artifact

of the fact that if all planes are allowed to land at time T+ 1, no planes will be ground

held after time T - L. Ignoring that effect, we see that increasing L from zero to three

does not allow planes to arrive during the early time periods, but suddenly, when we

increase L to four, all planes may land as scheduled. Intuitively, this is because there
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Maximum Arrivals Ground
Air Delay t=l t=2 t=3 t=4 t=5 t=6 t=7 Holds

0 0 0 0 0 0 0 0 28

1 0 0 0 0 0 0 7 21

2 0 0 0 0 0 6 1 15

3 0 0 0 0 5 1 1 10

4 1 1 1 1 1 1 1 1 0



are only four periods of zero arrivals; if L is four, any given plane may, no matter

when in this zero capacity block it happens to arrive, "wait out" the zero capacity

periods without violating the maximum air delay constraints.

This analysis of the Maximum Air Delay model is highly preliminary; additional

examples should yield further insights into the workings of the model.
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Chapter 11

Conclusions and Future Work

In this thesis, we have defined a model which represents a substantial simplification

of Richetta's model. We have proved that the matrix induced by this model is totally

unimodular, guaranteeing that the linear programming relaxation of this model will

yield integer solutions. We have also defined an extension to this model that explicitly

penalizes wasted capacity, and argued that this extension does add power to the

model.

On the complexity theoretic front, the total unimodularity of the constraint matrix

indicates that the static stochastic ground holding problem is solvable in polynomial

time. It may be worthwhile to search for an explicit polynomial time algorithm,

rather than relying on polynomial time LP solvers; this may yield faster algorithms,

and, more importantly, deeper insights into the problem structure. Additionally, it is

unclear how difficult the problem becomes when we allow waste penalties. Possibly,

the problem is still polynomial, and a better model would reveal this; possibly the

problem becomes NP-complete. It would be worthwhile, both from a theoretical and

a practical standpoint, to explore this question.

More importantly, the work to date all assumes that a completely accurate dis-

tribution of probability scenarios is available. This assumption is very optimistic.

Currently, no probabilistic forecasts whatsoever are available; even if some proba-

bilistic information were given, it would be unrealistic to assume that it was entirely

accurate. Ideally, the models should be extended to perform as well as possible using
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only partially specified probabilistic information - obviously, the model's perfor-

mance would depend on the accuracy of the information available. At the very least,

it should be possible to derive bounds about how well the current models perform if

the forecasts they are given are only partially accurate.

Additionally, the models presented in this thesis require an unrealistically high

level of aggregation. If the models could be extended to include different cost struc-

tures at different times and for different planes without too much increase in solution

times, this would represent a substantial improvement; this is a promising direction

for future investigations.

Finally, a deeper investigation is required into the practical, operational concerns

of both the FAA and the airlines, in an attempt to find a model that will improve ca-

pacity while being politically satisfactory to all parties. The Static Stochastic model

has the advantage that it takcs advantage of the information provided by relative

scenario probabilities; assuming it is acceptable to specify cg and ca, the model finds

optimal solutions. On the other hand, this dependency on relative costs may be a po-

litically fatal flaw, necessitating the use of a model that avoids these constraints such

as the Maximum Air Delay model. It may be possible to develop compromise models

- a simple example would be a variant of the Maximum Air Delay model that threw

away all scenarios with probabilities below a certain threshold, thereby stopping the

performance of the Maximum Air Delay model from being dominated by extremely

low probability events. More generally, looking for ways to combine improving ca-

pacity through stochastic optimization techniques with modern collaborative decision

making support tools will be an important area of future research.
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