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Abstract

Application programs and runtime systems are increasingly using events (sometimes called interrupts or

exceptions) to optimize program performance. As event frequency rises, the overhead associated with event

handling becomes a larg,,er part of total program execution time. This high overhead arises from the synchronous

approach to handling events which many modem architectures employ. We explore the deficiencies of the

synchronous method and present an alternative - asynchronous event handling. We describe the MIT M-

Machine's implementation of asynchronous event handling, and discuss the role of architecture in simplifying and

supporting such mechanisms.
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CHAPTER1 Introduction

Over time the overhead of handling an event in hardware, measured in instructions,

has increased as pipelines have gotten deeper and wider, and the machine state has

expanded. With this high overhead, many potential applications for events are cur-

rently ruled out as being prohibitively expensive. For example, today parallel

threads synchronize with one another and with message arrival by polling (spin

locks). Significant savings would result if event handling were inexpensive enough

to replace polling for such applications.

The high overhead of today's event systems stems from the synchronous

approach to event handling in; which the current thread is stopped at the instruction

causing the event, subsequent instructions in the pipeline are cancelled, and a con-

text switch is made to an event handler. Handling events asynchronously, in a sepa-

rate hardware thread that runs in parallel with the executing process, eliminates

much of the overhead of event handling. No instructions are cancelled, there is no

context switch, and the thread causing the event may continue to issue instructions.

This gives a small performance improvement for existing applications, and, more
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Introduction

importantly, makes hardware event handling feasible for high frequency events

such as off-node cache misses, message reception, and thread synchronization.

1.1 Thesis Overview

This thesis examines the design, implementation and trade-offs of asynchronous

event handling as an alternative to the traditional synchronous method.

Chapter 2 begins by defining the key terminology used throughout this thesis.

Chapter 3 then delves into the history and background of events and their handling

mechanisms. It outlines a few possible uses of events and motivates the need for

fast event handling.

Chapter 4 begins the analysis and comparison of synchronous and asynchro-

nous event handling. It pesents a simple analytical model for the two event han-

dling classes, and investigates the variables which affect each. Using the models

presented, the chapter goes on to forecast the cost of event handling as the relevant

variables in the models are varied and as current architectural trends continue.

Chapters and 6 describe one specific implementation of asynchronous event

handling, and evaluate it over a number of criteria. Chapter begins by outlining

the overall architecture of the MIT M-Machine and then delves into a detailed

description of its event subsystem. Chapter 6 continues the study of the M-

Machine's by presenting performance data for its event subsystem, and by discuss-

ing how the architectural features of the M-Machine affect the data presented.

Finally, Chapter 7 concludes this thesis by evaluating our findings and by dis-

cussing future work.

14 Asynchronous Event Handling



CHAPTER 2

This chapter presents the basic terminology used throughout this thesis. It begins by

defining what an event is and how one is generated. The chapter goes on to discuss

the two main classifications of event handling mechanisms, and finally concludes

by discussing the terminology used throughout this thesis for analyzing the perfor-

mance of different event handling mechanisms.

2.1 Events

An event is the occurrence of a condition that requires software intervention to

complete. The arrival of a message, a thread reaching a barrier, and a TB-miss are

all examples of events. An internal event is caused by an instruction of an execut-

ing program, e.g., a TB-miss while an external event is caused by some other

computer or physical process, e.g., a message aiving or input queue filling. We

call the instruction causing an internal event thefaulting instruction and its thread

thefaulting thread.

Asynchronous Event Handling 15
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Definitions

Step 1: User code execution. Step 2 Event detected. Prepare Step 3 Run event handler.
to service event (context switch).

---- Event Handler Code

User Code

FU

Step 4 Return from event Step 5: Continue with user
handler (context switch). code.

Figure 1: Switch-like representations of the five steps involved in handling an event synchronously.
Initially, the user code instruction stream is executed on the functional units (FU). After an event is
detected, a context switch is made to the event handler instruction stream. After all of the handler
instructions are executed, another context switch to the user code resumes execution of the user code
from the faulting instruction.

2.2 Event Handling Mechanisms

With synchronous event handling, the faulting thread is rolled-back to just before

the faulting instruction, any instructions already in flight are cancelled, and a jump

is performed to an event handler. When the event handler completes execution, a

jump is performed back to the faulting thread, resuming execution with the faulting

instruction. In this case, the handler is exactly synchronized with the faulting

thread. All of the handler instructions are run after the instruction just before the

faulting instruction and before the faulting instruction itself. Figure I shows graph-

ical depictions of the different steps involved in synchronous event handling.

With asynchronous event handling, the faulting thread is not halted, but rather

allowed to continue execution until it needs the result of the faulting instruction.

Instead of 'umping to an event handler, the handler is run on a separate thread. The

handler completes the operation performed by the faulting instruction so there is no

16 Asynchronous Event Handling



Step 1: User code execution. Step 2 Run event handier Step 3 Return from handier.
in parallel with user code.

- Event Handler Code

- User Code

Figure 2 Switch-like representations of the three steps involved in handling an event asynchronously.
Initially, the functional units U) dedicated for event handling are idle, while the user code instruc-
tion stream executes on those Us dedicated for user code. When an event is detected, the event han-
dling Us simply execute the event handler code; the separate sets of Us allow both the handler and
the user code to execute in parallel. Finally, after the event is resolved, the event handier FUs are once
again idle.

need to rerun the instruction. If the instruction slack, the number of instructions

between the faulting instruction and the first instruction which uses its result, is

larger than the handling time, the faulting thread can continue executing without

ever being interrupted by the event. The handling is asynchronous with respect to

the faultin thread. Handler and faultino, thread instructions interleave execution9 C,

only synchronized by data dependency. An instruction cannot use the result of the

faulting instruction until it is produced by the handier. Figure 2 shows the different

stages of asynchronous event handling.

Asynchronous -,vent handling should not be confused with imprecise event

handling (often called imprecise exceptions). With imprecise event handling, the

exact identity of the faulting instruction is not known, only its general location.

With asynchronous event handling, on the other hand, the identity of the faulting

instruction is known exactly. The event is precise. The handier is merely run asyn-

chronously with respect to the faulting thread.

Asynchronous Event Handling 17
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2.3 Performance Evaluation

After an event is detected an event handler is dispatched. This handler deciphers

what transpired and calls the appropriate handler routine to resolve the event. We

define handler overhead as the time to initiate the event handler, jump to the han-

dler routine and execute it's first instruction, return from the handler routine, and

return from the event handler. This is different from the handler runtime which is

the time to execute all of the instructions in the handler routine. Handler cost is the

amount of time user code is stalled because of event handling. Since handler runt-

imes, vary with the event type (this is especially true for user level handlers) and are

usually independent of the handling mechanism used, we focus mainly on the han-

dler overhead and cost.

18 Asynchronous Event Handling



The recent development and success of distributed and parallel computers have sig-

nificantly changed the frequency and type of events generated by programs. The

need for communication in distributed systems and synchronization in multi-

threaded environments have drastically increased the frequency of internal events.

Unfortunately, the increase in event frequency has ot seen a commensurate

decrease in the cost (in processor cycles) to handle an event. In some cases, the cost

may actually have increased [10]! As event frequency rises with an increased (or

even constant) overhead per event, event handling becomes a larger part of total

program execution time and machine performance suffers.

3.1 Background

The main issue in event handling is how to quickly resolve an event once it is

detected. Various different approaches have been pursued and implemented by dif-

ferent machines. Most single processor, single threaded architectures, such as the

Asynchronous Event Handling 19
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Motivation and Background

PowerPC[6], use synchronous event handling. As we have seen, this approach may

incur a substantial cost. After it detects an event, the processor can spend poten-

tially tens of issue cycles waiting for earlier instructions to complete, cancelling

later instructions, and saving the current context. It must again repeat this on the

return from the handier.

The -Machine uses a variant of asynchronous event handling for inter-node

message reception[7]. Message arrival causes one of the message handler threads

(depending on the priority level of the message) to issue. Separate hardware context

for each thread allows fast switching from the user thread to the message handler

thread. However, long latency operations from the message handler are not masked

by operations from the other threads. All other events are handled synchronously.

The Tera uses a form of synchronous handling in which events are handled by

the faulting thread[8]. Extra event handler registers associated with each hardware

thread obviate the need for a full context switch, while round-robin issuing of

threads on each cycle masks operation latency. Since the Tera allows concurrent

execution of up to 128 threads, this method may suffer from a large event handler

execution time and lower latency per thread.

3.2 Examples and User-Level Events

Numerous application and systems programs will benefit from fast events. For

example, TB-misses, which are commonplace in most systems, will be resolved

faster. Software implementations of cache-coherence protocols will become more

practical. As the handler overhead is lowered, using events for more mundane and

routine tasks becomes reasonable. Fast event handling not only improves the perfor-

mance of internal events which are generated by the system for the proper execu-

tion of a proaram, but also make user-level events plausible. The ability to detect an

occurrence of a special situation in hardware and resolve it in software is an useful

20 Asynchronous Event Handling



function. Such user-level events can be utilized by programmers to optimize (or at

least improve) algorithms and improve program performance. The next few para-

graphs discuss two uses of user-level events.

Instruction set extension is a scheme used by some computer systems to allow

instructions which are not supported by hardware. Whenever such an unsupported

instruction is parsed, an event is generated. The event handler deciphers the type of

instruction and performs the appropriate action, effectively and transparently

extending the instruction set. Instruction set extension is used for such things as

maintaining backward binary compatibility, and constructing atomic instructions

from non-atomic ones. If the new instructions are popular, the event frequency can

be very large. The need for a fast handler in this situation is obvious.

Another application which may potentially benefit from fast events is garbage

collection. I I describes a method of concurrent garbage collection using events. In

this scheme, the collector runs concurrently with the mutator in a multi-threaded,

multi-processor environment. However, if the mutator accesses an object on an

unscanned partition, an event is signalled. The handler halts the mutator and asks

the collector to scan all of the objects on that partition. This technique allows the

collector to run concurrently with the mutator while not requiring that the mutator

access only objects already scanned. Since the mutator is stalled while the handler

runs, it is important that the total handler time be small. In this case, the handler

runtime is the time to run the collector on that partition.

This chapter has shown that fast events have many benefits and may poten-

tially improve program performance. Traditional systems will benefit from faster

resolution of events such as T1,13-misses. Parallel and distributed systems will offer

improved performance with faster communication and synchronization. Finally,

user-level events may indirectly affect program performance by allowing improved

algorithms.4__
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CHAPTER 4 Analytical Models

In this chapter, we present a simple model for analyzing event handling mecha-

nisms. We apply this model to both synchronous and asynchronous event handling,

and derive the variables which affect each.

Figure 3 shows timelines depicting our model for analyzing synchronous and

asynchronous event handling. The models assume that events are detected and are

handled in regular cycles. Each cycle consists of three main steps: user code execu-

tion, event detection by hardware (represented by a vertical arrow), and handler

execution.

The synchronous model is shown with a single thread on which both the user

code and the event handler execute sequentially. The asynchronous model consists

of two threads -- one user thread and one event thread. In this section, we use a sim-

plified model in which the event thread runs on a separate cluster from the user

thread. We remove this restriction when we discuss the M-Machine's implementa-

tion of asynchronous handling in Chapter .

In both of the models, after the event is detected by hardware, there is a time

Asynchronous Event Handling 23



Analytical Models

latency before handler instructions can begin executing. In the synchronous case,

the latency is due to the time needed to:

• stall user code,
• save the current state of the processor,
• cancel all outstanding instructions in the pipeline,
• create an environment to transfer control to the handler, and
• jump to the handler code.

In the asynchronous case, the latency is merely the time to fork a thread on which to

run the handler process. Since forking a thread may incur a large overhead, some

systems simply provide a dedicated event thread. In this case, the latency is the

time to issue the first instruction from the dedicated event thread.

In the next step, both mechanisms begin executing handler instructions. The

asynchronous handler runs in parallel with user code whereas in the synchronous

case, user code is stalled while the handler executes. It is important to note that

since the user code which is executed while the handler runs may also generate

events, asynchronous event handling mechanisms require a buffer in which to store

outstanding events for future handling.

After the event has been serviced, both handling mechanisms again incur a

delay. In the synchronous case, this time is used to:

• restore state of the machine,
• return from the handler, and
• re-start user code from the faulting instruction.

In the asynchronous case, the lag is merely the time to stall the handler thread and

complete the faulting instruction.

From analyzing the models in Figure 3 we can derive equations to estimate the

percentage of time user code execution is stalled because of event handling. This

value is simply the ratio of the total time spent in only event handling to the total

execution time of the program. Zero percent is ideal in which case the processor is

always busy executing user instructions.

24 Asynchronous Event Handling



ME---
userthread

-0-

M: total number of instructions in program
n: average number of instructions between events

dw.- pipeline depth pipeline width
a: total number of instructions in event handler
r., average instruction slack

S': asynchronous handler setup time (in cycles)
Ss: synchronous handler setup time (in cycles)
r': asynchronous handler restoration time (in cycles)
r': synchronous handler restoration time (in cycles)

Synchronous Event Handling:

A

z -�' 1� Ln B: MM. M.
,,Zs

Asynchronous Event Handling:

AL

eventthread rj '13 instr. cnt.

Figure 3: Timelines for the analytical models of synchronous and asynchronous event handling.
After executing n user code operations, the event is detected by hardware (marked by the vertical
arrow). After detection. both handling methods incur a delay while the handler is setup. The handler
then executes a total of a operations. Again, both handling methods incur a delay -- this time to return
from the handler. Finally, in the synchronous method, all of the instructions which were in flight when
the event was detected, and had to be cancelled, are re-issued.

In the synchronous model, the total event handling time is the time to handle

each event (the time after the vertical arrow) multiplied by iln number of events.

Since the net pipeline width is w, each of the instruction counts (n and a) is divided

by w. The latencies are in cycles and do not have to be scaled. Similarly, the total

execution time for the program is the time to execute n instructions of user code

and handle one event, all of which is multiplied by Vn (the number of times this

sequence occurs). The percentage overhead for synchronous event handling,
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denoted . . ply the quotient of the time spent in only event handling tosynch, IS SIM

the total program execution time:

m(a +S S+ dw
n w_ W)

Osynch = - -- X 100 (EQ 1)
m a n + ss + r� + dw)
n W W W

a+ ss+r�)w+dw
X 100n+a+ ss+rs)w+dw

The equation for percentage overhead in asynchronous event handling is simi-

lar to (EQ 1) except that the handler and instruction slack execution times may

overlap. Only if there is insufficient instruction slack does user code get halted.

Otherwise, user code is not stalled and the overhead is zero. As in (EQ 1), we must

scale all of the instruction counts (it, a and r) by the pipeline width, w. (EQ 2 pre-

sents the equation for the percentage of time user code is stalled because of asyn-

chronous event handling. The max function disallows negative event handling

overhead in the cases where the instruction slack, r, is larger than what is needed to

mask the handler execution time.

m X Ma'(0' S. ra + a r
n + r W W

0, X 100 (EO 2)
synch m (n a)- - +r +_

n+r wSa a W

max (0, ( (sa + r w a - r))
X 100

n+ (Sa+ra)w+a

Figures 4a and b show plots of Equations (EQ 1) and (EQ 2 as a function of

the number of user code instructions between events, and instruction slack. The

other variables are assigned the following average values:

26 Asynchronous Event Handling



d 8 pipeline stages
• 5 functional units

a 400 operations
• ss+rs 100 cycles

• sa+ra 8 cycles.

It is clear from the figure that synchronous event handling incurs a substantial

cost for programs with a high event frequency. The largest part of the cost stems

from the handler overhead, which in synchronous handling may be orders of mag-

nitude greater than that for asynchronous. In Figure 4c we assume that synchronous

handling incurs the same low overhead as that of asynchronous handling. Although

this lowers the cost by about fifteen percentage points, performance is still limited.

This is because in the synchronous case, the faulting thread must be stalled while

the handler runs. Figure 4d shows how serious the situation can become as the trend

in increasing the number of instructions in flight (by expanding the pipeline depth

and/or width) continues.

In the asynchronous case, the handler cost may actually be zero. If the amount

of available instruction slack is such that the faulting tread does not have to be

stalled, there is no cost associated with asynchronous event handling. If there exists

too much slack, the extraneous user instructions are executed after the event han-

dler returns and do not affect handler performance.

The past few years have seen application and systems programs using events to

manage routine and frequent tasks. For example, events are being used for software

instruction set extension, software cache coherence protocols[2], and garbage col-

lection[l]. The rise in event frequency requires fast, low overhead handling so as

not to degrade program performance. Our discussion in this section has shown that

asynchronous handling is more efficient than synchronous handling. However, the

exact speedup depends on the available instruction slack.
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Figure 4: Plots of the percentage of time user code execution is stalled because of event handling.
(a) and (b) show asynchronous and synchronous handling as a function of instruction slack and the
number of operations between events. (c) depicts the situation where synchronous handling has the
same setup and restoration latencies as that of asynchronous. (d) shows percentage of time user code
execution is stalled in synchronous hand-ling as a function of the number of instructions that were in
flight when the event was detected, and the number of operations between events.
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4.1 Instruction Slack

Sufficient instruction slack in a program is required to mask event handler latency.

By overlapping the execution of low latency user code instructions with the execu-

tion of the high latency event handler, we can effectively mask the total handler

time and improve program performance. In this section we investigate the existence

of instruction slack.



If we do not consider external events such as I/O device requests and program

terminating events such as arithmetic exceptions, memory references are one of the

largest sources of internal events, e.g. TB-miss events are commonplace in ost

systems. However, adequate slack for memory references does not directly imply

adequate slack for event handling. For example, servicing a cache miss in which

there exists a TB translation incurs substantially less overhead than a cache iss

with no translation entry. So, we must be careful to analyze theamount of available

slack, and not merely the existence of slack for memory references.

Researchers have investigated the existence of slack for memory operations.

Most of this work has been done in the context of compiler prefetching schemes.

Prefetch is a method of retrieving data, which is not resident in cache, before it is

actually needed so as to avoid a cache miss penalty[4]. The prefetch is usually initi-

ated after the memory address has been computed, and the data is placed into cache

before the memory operation queries the cache. Prefetch is only successful if while

the data is being retrieved from main memory, other instructions can be run to mask

the memory access latency. Clearly, the requirements to satisfy this condition are

exactly the same as those to mask the latency of asynchronous event handling.

In 5], Selvidge analyzes the SPEC benchmark suite for the existence and

amount of slack for memory operations. Since not all memory references result in a

cache miss, he develops a model to speculate on which memory references are bad

references (cause a cache miss) and which are good references (do not cause a

cache miss). Using this model and dynamic dataflow graph analysis, Selvidge con-

cludes that on average sufficient slack exists for bad references if code motion is

allowed across basic blocks.

Selvidge quantifies the amount of slack by choosing various slack amounts and

tallying the fraction of bad references around which that amount of slack exists. His

data shows that nearly 100% of all bad references exhibit atleast 250 operations of
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slack, and most exhibit substantially more. The maximum slack amount Selvidge

investigates is 512 operations. So, if the execution time of the event handler is less

than the execution time for this number of operations, we may be able to com-

pletely mask the handler time.
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CHAPTER 

In this chapter we discuss one implementation of asynchronous event handling. We

begin by describing the overall system architecture of the machine, and then delve

into the event subsystem.

5.1 Overview of the M-Machine

The M-Machine is an experimental multi-computer being developed to examine the

trade-offs involved in devoting an approximately equal percentage of chip area to

processing resources and to memory. It incorporates a collection of processing

nodes which are interconnected by a bidirectional 3-D mesh network. Each node

consists of a multi-ALU processor (MAP) chip and MegaBytes of memory. Each

MAP is comprised of four clusters, 128 KiloBytes of cache, an external memory

interface, and a network interface and router system[2].

The M-Machine is designed to extract and efficiently execute programs exhib-

iting varying levels of parallelism. It uses a variant of the Processor Coupling orig-

Asynchronous Event Handling 31
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M-Machine Implementation

map "I-OP
SrACKSUARZ m-OP 4

V - V-Thl-d A
V.V V
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4W 4W 406

Figure 5: V-Thread and H-Thread organization of the M-Machine.
During each issue cycle, the dynamic scheduler on each of the four clusters chooses a HThread from
the six possible V-Threads to issue. 'Me M-Machine's V- and HThread organization allows zero con-
text-switching overhead.

inally described in 3] to organize and control up to four distinct user processes and

two system processes on each node. In this framework, the compiler partitions and

statically schedules a single instruction stream into four horizontal threads (H-

Threads) to be executed on each of the four clusters. In order to exploit instruction

level parallelism, each H-Thread is a VL1W instruction stream consisting of one

integer operation, one memory operation and one floating-point operation) The M-

Machine also defines vertical threads (V-Threads) which are a collection of four H-

Threads from the same process. Up to four user and two system V-Threads may

exist on a MAP at any time. At each issue cycle, a dynamic scheduler resident on

each cluster of a MAP, chooses one H-7hread from the six possible V-Threads for

execution. This organization takes advantage of process level parallelism and

masks high latency instructions of one thread by executing instructions from other

threads during the lag. Figure summarizes the situation.

It is important to notice that in the M-Machine, the system threads do not run

on a separate execution unit from the user threads. Until now, our model of asyn-

1. Te memory functional unit on the cluster may also be used s another integer unit, if needed.
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chronous handlin- assumed two threads and two clusters. Given adequate instruc-

tion slack, this allowed us to achieve zero handler cost. This is not possible in the

M-Machine where different threads are interleaved over a common cluster. In this

situation, we can never achieve zero cost, but we can lessen it by issuing user

instructions during long latency handler operations. The M-Machine also provides

significant hardware support to allow faster handling of events. We discuss this

next.

5.2 M-Machine Event Subsystem

In the M-Machine, when an event is detected, hardware creates an event packet and

places it into an event queue. A dedicated event handler thread dequeues events

from the queue and sequentially resolves them. The handler then completes the

faulting instruction and stalls, ready to handle another event. In this section, we dis-

cuss each of these phases in more detail.

The event queue is physically located on cluster of the MAP. As shown in

Figure 6 event packets can only be added to the queue by the inter-cluster commu-

nication switch (C-switch), and they can only be delivered to the cluster execution

pipeline. As the queue nears full capacity, the queue controller asks each of the

clusters to stall all user threads so that no more events are generated. Only after the

queue occupancy drops below a low watermark are user threads allowed to con-

tinue.

A typical M-Machine event packet is shown in Figure 7 Each packet is at most

four words and contains all of the information required to handle the event. The

four lowest bits of the first word encode the event type. This field is used by the

event handler to dequeue the appropriate number of words from the queue. Fault-

ing Operation reveals the operation which caused the event and contains such

information as the op-code, issuing cluster and functional unit. The second word of
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Figure 6: The M-Machine's Event Queue Unit.
After an event is d,.ected. hardware creates an event packet and places it into the event queue via the
Inter-cluster Communication Switch. The event queue unit informs the dynamic scheduled on cluster
0 that an event is available for handling. The dynamic scheduled then issues the event handier thread
which reads the event packet from the queue. The event queue unit asserts the stall signal to notify the
clusters. that the queue is neafing full capacity. The clusters are responsible for stalling user code so
that no more events are generated.

the packet is a memory address for events which are caused by a memory reference.

For example, this may be the target memory address for a store operation which

TLB-missed. Operation Data is used by instructions which manipulate data. This

may be the value to write into memory for a store instruction. The final word

encodes the address for the memory-mapped target register for the operation.

As events are enqueued, cluster is notified of their availability. This immediately

awakens the event handier resident on the cluster 0 H-Thread of the event V-Thread

(one of the two system V-Threads). The handier removes the first word from the

queue by simply accessing the register which is mapped to the front of the queue.

After the event type is deciphered from the first word, the handier dequeues the
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wordO: Faulfing Operation -F �5-t TYP,
word]: Memory Address
word2: Operation Data
wordI Mmory-Mapped-Register Address for Operation Target Register

Figure 7 Typical M-Machine event packet.
The Faulting Operation field encodes ost of the original operation. Event 7�pe is used by the handler
to remove the appropriate number of words from the queue. The other fields are present only if they are
needed to handle the event and complete the faulting operation.

remaining .words in the packet and starts to resolve the event.

Since all of the information required to handle the event is present in the event

packet, the handler execution time is minimal. For example, a TB-miss handler

simply uses the virtual memory address (second word of the event packet) to query

the Page Table (PT), and makes a new virtual-to-physical translation entry in the

TLB. The handler then completes the faulting operation and, if needed, writes the

result into the memory-mapped-register address contained in the last word of the

event packet. If we assume the faulting operation is a load, this means the handler

fetches the requested data from memory and writes it into the target register. If

there are no more events in the queue, the handler thread sleeps.

Asynchronous Event Handling 35



M-Machine Implementation

Asynchronous Event Handling36



CHAPTER 6

In this chapter we evaluate the M-Machine's event handling subsystem on a num-

ber of criteria.

6.1 Event Frequency

The M-Machine's distributed, shared memory and cache-coherence protocol pro-

duce events frequently. Figure 8a shows event frequencies for three benchmarks

running on various configurations of the M-Machine. It is clear that event fre-

quency does not scale linearly with node count. In the single node configuration,

TLB-miss events are the most prevalent. As more nodes are utilized by a program,

the need for node-to-node communication and cache-coherence drastically propels

the event frequency upwards.

Figure 8b shows an estimate of event frequency as a function of the number of

M-Machine nodes used. The plot assumes a linear relationship between node count

and event frequency. Since the plot shows a constant marginal increase in fre-
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Figure 8: Event Frequency Statistics.
(a) Event frequencies for various programs on three different configurations of the M-Machine. (b A
conservative estimate of event frequency a a function of the number of M-Machine nodes used.

quency. it is a very conservative estimate. The rise in inter-node communication

may increase the event frequency per node linearly, but the aggregate frequency

may increase exponentially. Nonetheless, the plot shows a very high event fre-

quency. For the M-Machine, which is theoretically scalable to 64,000 nodes, the

ability to resolve events quickly and efficiently is a necessity.

6.2 Handier Latency

Although the presence of adequate instruction slack may lower the cost of asyn-

chronous event handling, program performance will nonetheless be limited by the

actual number of cycles needed to handle an event. As we saw in Chapter 4 this

cycle count is simply the sum of:

• the number of cycles required to start the event handier after the event is
detected by hardware,

• the number of cycles spent in the handier, and
• the number of cycles to return from the handler.

Table I shows the number of cycles needed to resolve an event on the M-Machine.

The data is based on an off-node memory write in which the remote block is resi-
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dent in the local cache but the local node does not have write permission. This

event is detected by the local cache and is called a block-status miss (BSM). The

data presented in Table I assume that all memory references in the handier cache

hit. If the event frequency is high, this is a reasonable assumption.

While the faulting operation is in the pipeline, it tries to execute a write to the

memory block in the cache. The cache recognizes that the local node does not have

write permission on that block and signals an event. The event is detected only 3

cycles after the operation was in the execute (EX) stage of the pipeline. Hardware

creates an event packet and places it into the event queue within 3 more cycles.

Assuming that the queue is empty, an event available signal is asserted by the queue

I cycle later. As soon as the queue asserts that an event is available, the event han-

dier thread is issued by the dynamic scheduler. The handler dequeues packets by

simply referencing the general-purpose register which is mapped to the front of the

queue. The handier thread is able to execute immediately after a packet is placed

into the queue because the handier merely stalls when no events are present; there

is no need for scheduling the thread when an event is infact available.

Thirty cycles after the first word of the event packet is removed from the

queue, the first instruction of the BSM handler routine is issued. Most of these

cycles are needed to reference a lookup table for the address of the BSM routine,

and to setup the stack before the procedure call. We estimate that this cycle count

can be reduced somewhat.

The cycle count for the BSM handler is misleadingly large currently due to the

use of an experimental compiler on the M-Machine. We estimate that the compiler

is generating approximately four times more code than necessary. The revised num-

ber of cycles spent in the BSM handler routine is approximately 200. Finally, nine

more cycles are needed to de-allocate the stack, return from the BSM handler rou-

tine, and prepare to handle the next event (or stall, if none are available).
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Cycle Description

0 Faulting operation in the EX pipeline stage.
3 Event detected by hardware.
6 Hardware enqueues first event packet.
7 Handler thread awakens,

Handler dequeues first word of event packet.
37 Handler setup completes,

BSM handler routine starts.
870 BSM handler routine finishes.
879 Handler finishes,

Handler stalls.
46 Round trip delivery of null handler.
833 Total BSM handler routine runtime.
879 Total event handler runtime.

Table 1: Relative number of cycles required for event handling on the M-Machine.
Handler setup time includes the time to dequeue the event packet from the queue and to jump to the
appropriate handler routine. The numbers shown are for a block-status miss (13SM) event. A BSM
event is caused when the local node tries to modify a piece of remote data for which it does not have
permission to do so. A BSM event is resolved by asking the home node of the data to give the local
node permission to modify the data. The data also assumes that all memory references cache hit.

6.3 Instruction Slack with Multi-Threading

For asynchronous event handling to be effective, the instruction stream must

exhibit considerable instruction slack. Although the compiler may, in some cases,

be able to expand the slack, it will not be able to do so in all cases. And in the cases

that it can lengthen the slack, it may not be able to expand it enough to obviate the

need to halt the faulting thread.

Because the M-Machine multiplexes four different user H-Threads over each

cluster it minimizes asynchronous event handling's dependence on instruction

slack. Since there is no context-switch overhead, instructions from other threads

(on that cluster) may be considered apart of the faulting thread's slack. The M-

Machine's dynamic scheduler further decouples asynchronous event handling from

instruction slack by its round-robin scheduling algorithm. If more than one user
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Figure 9 Multi-thread execution statistics.
Using multi-threading instead of instruction slack to mask operation latency while the event Landler
runs. User thread is the faulting thread. The other user threads have infinite slack.

thread is ready to issue on a cycle, the scheduler gives equal preference to each

thread. Thus, any long latency operations from the handler are masked by an equal

number (if available) of instructions from each of the active user threads. This

allows the cluster to be more fully utilized and increases throughput, although it

may also increase latency for the faulting thread. If latency is an issue, the M-

Machine allows setting priority levels for different user threads, e.g. a subset of the

user threads may be set to have the same priority as the event thread.

Figure 9 shows the effectiveness of using multi-threading to mask operation

latency while the event handler is running. The plot shows, as a percentage of the

total number of event handler cycles, the number of cycles in which user code and

handler instructions are issued. Of the 879 cycles the event handler took to execute,

only about 36% were spent in issuing handler instructions and the remaining 64%

were spent in issuing user instructions (evenly spread over the four user threads) to

mask long latency handler operations. The figure assumes that the faulting thread

has sufficient instruction slack and that three other user threads are also running.

With these assumptions, the processor reaches 100 percent utilization. That is, an

instruction is issued on each cycle.

Asynchronous Event Handling 41



M-Machine Experiments

' UU 100
' 90 90

80 80,I, -- . --

2..

,,, 2.6

0

2 lu - R '/U60 - '>� 77M -
Q 60 - Z.�

, 50 - - .2 50 -
8 - 12'= 40 - 40 -
0 18
N 30 - - * 30 -
Z 20 20 -
* lo 10 -- I

. 2.4

bb
i c22

>' .0
2

r: 72 Ila'R.c >
:3 4 1A

8 1.4

. i .

( - M 7 fisca - 0 t M -vf"A gal(6
'2

M Awnchranous vent 4andlinp
- - ____ .. .1 . .. 3 .4 03 .. .I O.. .4

Synchronous Event Handling Fraction of instructions executed that
are event handier instructions.

(a) (b)

Figure 0: Speedup from asynchronous event handling over synchronous event handling.
The graphs in (a) show that the event handler code does not exhibit enough parallelism to mask many
of the long latency operations. This results in 64% idle time for synchronous event handling. In asyn-
chronous event handling, since user code runs in parallel with the handler, user instructions can be
used to mask long latency handler instructions, thus achieving a % idle time. The plot in (b) show,
the program speedup fi-om asynchronous handling over synchronous handling, as event frequency
increases (and the handier runs more often).

6.4 Synchronous Event Handling

The last section showed that by concurrently executing user code instructions with

event handler instructions increases te efficiency of program execution. This was

because the event handier instructions lacked adequate parallelism to mask long

latency handler instructions. If the user code has enough instruction slack, user

code instructions can be executed in between long latency handler instructions so

that an instruction is issued in each cycle.

Multiplexing user and handler instructions are not permitted with synchronous

event handling. This restriction disallows filling long latency instruction slots while

the handler is running, and lowers the efficiency and performance of synchronous

handling. The graphs in Figure IOA show that while the handler is running, asyn-

chronous handling is potentially able to issue an instruction on each cycle and

achieves 100% utilization of resources and 0% idle cycles. Conversely, synchro-
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nous event handling is not able to issue an instruction on every cycle and achieves

only 36% utilization of resources and 64% idle cycle.

Figure 10b uses Amdahl's aw to plot the speedup from asynchronous event

handling over synchronous event handling. The following modified version of

Amdahl's Law is used:

speedupoveall (EO 3)
FractionAsynch

(I -Fraction Mynch) + -
SpeedUPAynch

Figure 10a shows that with asynchronous event handling only 36% of the total

event handling cycles are spent issuing handier instructions. Since synchronous

handling spends all of the total handler cycles issuing handler instructions (or wait-

ing for previous instructions to complete), the speedup achieved by asynchronous

I
handling over synchronous handling is: SpeedupAYc = 036 = 278. The fraction

of the overall program which can benefit from this speedup is merely the fraction of

event handler instructions to the total number of instructions in the program. Figure

10b varies the Fractioynch variable from 0.0 to .O. The overall speedup varies

from a minimum of zero to a maximum of 2.78. It is important to note that the data

presented in Figure 10b is conservative since it does not take into account the addi-

tional overhead that synchronous handling incurs from context switching and from

flushing the pipeline.

6.5 User Level Event Handling

The ability to detect the occurrence of a special situation in hardware and quickly

run an user level routine is an useful one. Chapter 3 discussed using user level

events for fast garbage collection and software instruction set extension. The pri-
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mary concern of user level event handling is one of security. A single, faulty user

level event handier routine can potentially deadlock the entire machine, and affect

all other users.

The M-Machine can provide user level event handling with very minor modifi-

cations to its runtime system. Currently, the event handler references a software

lookup table to locate the address of the appropriate handler routine. By simply

adding the ability for user threads to modify this table, the M-Machine can provide

user level event handling. User level handling will marginally increase the handier

overhead by approximately two cycles. With the M-Machine's target clock speed of

IOOMHz, we expect it will provide the fastest user level event handling of any

modern system that we know of.
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CHAPTER 7 Conclusion

Events are increasingly being used to optimize application program and runtime

system erformance. Fast events are important not only for parallel and distributed

processors in which inter-node communication and thread synchronization are

common, but also for more traditional processors where TB-misses and system

calls must be resolved quickly. Unfortunately, although systems are utilizing events

more frequently, they have not optimized handler performance. The situation only

worsens as user level events become more common.

This thesis examined event handling mechanisms and their relationship to pro-

gram performance. We introduced event handling models and sowed the substan-

tial overhead and cost of synchronous handling. More importantly, we

demonstrated the degradation of performance for programs running on machines

which use synchronous handling, as event frequency increases. To address these

deficiencies, we presented asynchronous event handling, which services events on a

separate thread in parallel with the faulting thread.

We then presented the M-Machine's implementation of asynchronous event
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Conclusion

handling. Its dedicated event thread and extensive hardware support for events pro-

vide low overhead and low cost event handling, without the inflexibility and chip

area trade-offs of purely hardware implementations. To the best of our knowledge,

we expect that the M-Machine will provide the fastest general event handling per-

formance of any modern system.
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APPENDIX A

The Event Queue (EQ) Unit serves to buffer all events (except local TLB misses) in

the MAP chip. It is logically located in cluster 0 but is physically located between

the first and second clusters. Figure I I shows the EQ within the MAP chip. As

events are placed into the EQ, they are resolved serially by the event handler run-

ning in the Event Thread Slot on cluster 0.

A.1 Operation of the Event Queue Unit

Events are exceptions which occur outside of the MAP cluster. Block-status misses

and memory-synchronizing faults are examples of M-Machine events. The M-

Machine provides a dedicated event handler which pops events from the EQ and

services them by concurrently multiplexing the handler code with non-event-

dependent user code. This method results in low-overhead, fast event handling

since it obviates the need to nullify instructions already in the pipeline and may not

require halting user code execution.
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The EQ accepts event packets from the C-Switch via burst-mode transfer and

buffers them in a IFO to be read out by the event handier. Each word is maintained

within the FO until an explicit pop pulse is given by the SZ stage to signal that

the word has been read. Attempts to execute a pop when the FIFO is empty are

ignored by the EQ. If the EX pipeline stage does not consume the event word on

that cycle it can have the word restored to the queue by asserting the undo signal.

undo must be asserted before the falling-edge of the cycle immediately following

the cycle in which pop was asserted.

When te number of words in the FIFO reaches a high watermark, the SZ

External
Memory

---------------- -- ----------
t I t i

Cache Cache Memory Cache Cache
Bank Bank Interface Bank 2 Bank 

T
M-Switch

C.-Switch

luster 0 Cluster I Cluster 2 C I

Network
Output Input

MAP ch

-------------- ---------
Ne

Figure I : The Event Queue Unit within the Multi-ALU Processor chip.
The controller module is located in cluster whereas the FIFO queue itself is located between clusters
0 and 3.
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stage on each cluster is notified. The EQ then relies on the SZ stage to stall all user

threads, so that no more events are generated, until more vacancy becomes avail-

able in the FIFO. This guarantees that the event queue is able to absorb all events

outstanding in the system at any time.

Event packets may be sent by the External Memory Interface (EMI) and by the

Configuration Space Controller. It is important to note that there is no explicit arbi-

tration for enqueuing entries into the EQ. Since an event may only be added to the

EQ through the C-Switch and since only one writer may access a given C-Switch

target at any time, all requests to write to the EQ are serialized at the C-Switch.

A.2 Event Queue Unit Interface

The event queue unit communicates with the C-Switch, the SZ stage of all clusters,

and the SZ/EX stage of cluster 0, as shown in Figure 12. The signals shown carry

the following meanings:

Interface with the C-Switch

csw-data-vi: C-switch data packet.The following signals are contained
within this packet.

- csw-tsiot: The destination thread slot must be 6 for the EQ to accept
packets.

- c sw-x f r-type: This value must be set to Queue to trigger the EQ into
accepting a burst-mode event packet from the C-Switch.

- csw-dav: The data available signal from the C-Switch.

Interface with the SZ pipeline stage

• event-av-vi: Asserted by the EQ when an event packet is available. It also
implies that the qdata lines (leading to the EX stage) will carry a valid word
before the next rising clock edge.

• wmark-2: Asserted by the EQ unit when the occupancy in the EQ buffer
reaches a high watermark. When this line is asserted, the SZ stage must not
issue any operations that may cause a new event.
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pop__y2 A pulse asserted by the SZ pipeline stage when it has read the value
from the front of the EQ.

Interface with the EX pipeline stage

• qdata-v2: Carries the data word from the front of the EQ buffer.
• undo-vi: Asserted by the EX stage to signal that the last event word was not

consumed and that it should be restored to the front of the queue.

The expected handshake sequences are ilustrated in Figure 13.

A.3 Architecture of the Event Queue Unit

As is shown in Figure 15, the EQ is comprised of two main blocks -- a FIFO queue

and a controller. The next two sections describe the datapath and control for the EQ

in more detail.

A
a

I

101 _X9 .

I III -1 �_ __j II

CLt 0 Cist I Cls;t 2 Clst 3
�� �Szl Sz Sz Sz

undo
gdata b EX

Figure 12: Top-level diagram of the MAP Event Queue (EQ) Unit.
The EQ communicates with the C-Switch, EX pipeline stage of cluster 0, and SZ pipeline stage of all
the clusters.
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Data from the C-Switch output port is presented to the EQ before the falling edge of the clock. The
data is written into the FIFO at the rising edge of the clock, and the event available signal is asserted
immediately thereafter. The first word is popped and consumed. The second word, however, is
popped but it is not consumed. This word is restored to the FIFO, and is again popped a cycle lter.

Event Queue Datapath

The EQ FO is simply a 192 entry, I-read port/1-write port register file. Each

entry consists of 65 bits of data and I memory synchronization bit. One-hot encod-

ing is used for both the read and write addresses. Reads from the register file are

combinational -- the data is placed onto the output bus a time delay after the read

address is given. Writes, however, are synchronized with the rising edge of the

clock. Data is written into the FIFO during the high period of every cycle. If no data

is to be written, a null address (all zeroes) must be given. Figure 14 shows the EQ

datapath interface.

Event Queue Control

The EQ control unit is composed of four submodules. These four control subrnod-

ules, together with the EQ datapath, are shown in Figure 15. The MAINCONTROL

submodule generates the event-av signal based on the current C-Switch packet

and from the contents of the FIFO. The QCOUNT subrnodule simply maintains the

number of event words in the FIFO and asserts the wmark signal when the count

exceeds that of the watermark register. The PROGREG submodule contains the

two registers watermark and qsize. Watermark is used to assert the wmark sig-
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into the queue, write-addr must contain a null address. Both the read and write addresses are
changed, if necessary, by the EQ control unit at the falling edge of c 1 k.

nal, while qsize is used for FIFO queue wrap-around calculations. The water-

mark register is programmable via the diag-chain, whereas the asize register is

hard-wired and is not changeable.The REGCONTROL subrnodule maintains the
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Figure 15: Top-level architecture of the MAP Event Queue Unit.
The dotted lines demarcate the datapath and control portions. The control portion also shows the four
submodules contained within it.
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read and write addresses, encodes them into a one-hot address, and passes them

onto the register file.
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