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ABSTRACT

Stablility criterion for a4 hydraulic poppet valve
have been analysed and experimentally vepified.

The analysis were based on the linearized equations.
and on this basis a stability criterion for stable
operation of a hydraulic poppet valve as a function of
valve position and upstream geometry was formulated.

The validity of the equations developed were checked

against an experimental model 1n the laboratory.
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NOMENCLATURE

Symbol Description and Unit
A irea, area of the line L (in<)
¢ soefficient of damoing (lbs-sec/in)
D diumeter of line L and nozzle dizsmeter (in)
P pogpet force (1lbs)
iy valve frequency (covs)
G valve nressure gain (1bs/in?>) |
K spring rate of external spring (1lbs/in)
Ky  poppet flow sensitivity with displacement (in®/sec)

Ko  poppet flow sensitivity with oressure (in°/lbs-sec)
1SS .
K3 upstream orifice flow sensitivity with pressure (in’/lns—set

Ky poppet downstream flow sensitivity wlth pressure
-
(in-/1ibs-sec)

Ke downstream orifice flow sencitlvity with pressure
B
(in°/1bs-sec)

L length of line (in)

M ass of poppet (lbs-sec?/in)

P fluid pressure, als0 pressure immediately upstreum
of the poppet valve

~ 1 ‘ : o .3

8 flow rate through the poovpet (in”/sec)

T time for wave to travel the length of llne L (sec)

2
gb system upstream volume (in“)
volume (in3)
v fluid velocity (in/sec)

X valve disvlacement (in)
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Nomenclature continued. :
Symbol Descrigtion und Unift

-

poppet cone nulf ngle (degr.)
/

phise lag between either vressure und force (degr.)
4

>
51 Lo .
lbs-sec”™/in

v 0O /R
-
e
;...4
[OX
£
[¢]
o]
]
).J.
ct
DS

/'
VD . .

R= - Reynolds no. (0)
Av ) o

O = . nondimensional valve displacement
Av . . ) -

k’: - nondimensional valve displucement

valve time constant (sec)

N

L) vilve frequency (rad/sec)

A incrementul chinge of =« variuble

D = SE- differential operator

n

RN
Subsceripts:

0 mean or time :iverage conditlon of a4 viariable
S supvnly condition

v vaiive - ref., to poppet valve

u upstream condition

R return condition

1 and 2 refers to sections 1 und 2 (adjacent)
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Part I Introduction, Conclusions and Recommendations

1.10 Introduction

A) Description

A poppet valve is a seating type valve where the

valve member, ooppet, nas a relative motion perpendicular

-

to 1ts seat. A schematic of a poppet valve is shown in

Figure 1-1. The design principle 1is simple in that

ot

the fluid forces on the poppet are balanced by an
externally applied force, usually a spring force, =und

fluid is ailowed to escane.

S

This type of device has extended use in high per-
formance hydraulic systems as regulators, relief valves or
hydraulic amplifiers.

Mz jor advantages with the poppet type valve is 1ifs ease
of manufacture, low leakage znd insensitivity to dirt.
The major proolems arise in dynamic stablility. The valve
member itself is basically a mass spring system with little
or no external damping and therefore oscillatory. Any

additional fluid forces in onase with the valve velocity

Ty

will lead to rapid unstable oscillations.

type not only degrades the valve

D

Oscillations of thi

&}

verformance, but when sustained will destroy the valve.
The purpose of this investigation is to determine
the cause of this instability and show limits of stable

overation where they exist,



Qs Supply flow
Q- Load flow
Q - Relief or poppet flow

R- System pressure

POPPET VALVE.

FIGURE 1-1



2} Background

™ . . .
»

Previous investigatlon on stabllity of hydraulic
valves has been done mostly on sliding and ciston

type valvesg,

.1

Lee and Blackburn (Reference 1)~ have shown that
transient valve forces may cause instubllity. Static
stability of poppret valves was investigated by Stone
(Ref,#E) and dynamic studles on pneumatic flarpertype
valves huve been curried out. (Ref.#3,4 und 5) In-
vestigations by Ainsworth (Ref.#6) vointed out that the
fluid delivery line interacts with a valve to cause 1in-
stabllity, an investigation extended to the poppet valve
by Funk (Ref.#7).

The resulf here ig that the critical frequency in
the system 1s the first harmonic of the delivery line
higher thsn the natural frecquency of the valve.

in interesting derivation by Frgidenreich (Ref.#8)
shows that a spring loaded relief valve regulating a
constant flow 1s stabilized by the fransient forces
created due to the change in volume by the poppet motion,
but will become unstable due to elusticity of the oil.

In this investigation the stabillity of the valve
itself will studied, rather han‘st@bility due to inter-

action with other z2lements of 2 system as this is one step

Number refers to 1ist of references lLisrted In Appendix =.



further removed.

ons will been made as to the particular
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configuration to be studied, and an analysis will oe
made indicating the system characteristics and stability

depending on the physical characteristics.

The model to be studied will include the effects

iy

of fluld inertia and compressibility, and compared with
experimental results.
The analysis is presented 1n Part II and the

experimental results in Part III of this thesis.

1.20 Conclusion

By

This investigation has lead to a better understanding
of the basic problem of popvet valve stability.

The ma jor fluid forces acting on the poppet valve
are due to the fluid opressure. These pressure forces
have components in the direction of the velocity and
may stabillize or unstabilize the valve. It has been
shown that the fluid elasticity contributes an unstabilizing
force in the direction of the valve velocity and acts as
a negative damping, where as the inertia forces associated
with fluid acceleration have stabilizing components opposing
the valve velocity and hence dcts as positive damping.

The effect of fluid =lasticity was by far the largest



factor in the cause of instability.

The stabllizing component due to lnertia is alsg
decreused dus to frictional losses 1in the fluid flow.

The system unalysls was made by linearizing fthe
nonlinear differential =squations zind predictions were
m:de with respect to system performance.

A 1imit for stable vilve operation was derived
and the experimental results verified the validity of
the equations.

This study was only concerned with the condition
upstream of the valve, but extension of the analysis

to include the downstream effects are possible.

1.30 Recommendations

Based on this investigation the following recom-
mendations are made. They are categorized in the two
groups, Experimentul and Design Analysis.

A. Experimental

Further data could be needed to extend the theory
to some of the models not considered here,.

A more important study cain be made on the stability
due to the downstream fluid momentum effects. Studies
reluted to the pressure distribution and flow ovuattern

around the porppet when confined in 3 narrow downstream



o}

chamber will be important, and gualitative information
is lacking.

B. Design Analysis

The nonlinear equations that describe this system
can easily ve studied on a analog computer. A study
on the nonlinear characteristics could give more accurate
information on valve stapblility, esvecially in the region
of small valve openings or large disturbances.

A computer aided design would also reveal information
not now available to the designer in the form of graphs
and diagrams relating system stability and valve per-

formance as function of the physical parameters.

Part II. Analysis

2.00 Introduction

The main task of this analysis is to conceive a
meaningful mathematical model and define the problem. By
breaking the system down into basic components and investigat-
ing each, it is hoped to galin insight to the nature of the
stability.

The basic components are then combined and the overall

system stability studied.

2.10 Model and System Description

n

4 general schematic of the system is shown on Figure

2-1a, It 1is comprised of a constant uostream pressure



Ps, an ugstream restriction Au, a delivery line L, and
the system volume Y, terminated by the poppet valve. The
poppet valve ls described by the motion X and its correspond-

ing valve area Ay. The downstream conditions are assumed

§5]

constant and in the analysis Pgp 1s arbitrarily set to zero.

f
The fluid 1s characterized by its density L and elasticity
KB (psi). & system of this nature can be looked upon
as distributed or lumped parameter system.

The analysis here will based on the lumped parameter
model as this will yleld the most information.

The borderiine between the two cases 1s aporoached
when wave transmission due to valve motion becomes |

important. The time T for 2 wave to travel the distance

L is gilven by
"= /o <

and the particular time constant for the system may be

ot
g

given as t. Our criteria then becomes

—zt<<1 (

n

and for a line 1t will be shown later that t

,@_@." | | (3)

A

so that we have



where A 1s the line area und 7,5 ig the mean flow. We
sssume here that ecuation (3) is valid. From earlier
experiments (Ref.#9) it was established fhat the mu jor

o

d forces on the poppet were contributed by the pres-

-y

lu

Fe

sure forces. The Tirst task then becomes to calculate
these pressure forces, ind to make fthe analysis easier
two baslc models are first considered, and shown on
Figure 2-1 b and c.

Compressible Model

Tnertial effects are a

W

sumed neglligiblie and the
syvstem is described by theorifice Au, the poppret valve Av s
system volume ¥, and the fluid oropperties [O andﬁ .

Inertia Model

The volume'yg ig assumed small and the fluid 1is
incompressible. System 1is described by the line L,

orifice, valve and the fluid density Q@ .

The total system is then described by these combinations
in a combined model later, which will be the revpresentation
of the system as shown on Figure 2-1..

Before the actual analysis on the specific models are
cairried out, 4 general description of the forces ind

stabllity will be considered.
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2,20 Static Characteristics and Stebility

9]

tatic force 1s done by applying

(€3]

Evaluation of f%tne
the momentum squation fto the control volume shown on

Figure 2-2,

(R-RIA-F=p(l, Ay sine)lycosx ~ pl] A, ()

Relating the velocities to the z.agnation pressure and

use continuity equation for the contrcl volume gives:

F=‘~/‘Z!(/+525/r7.<)-—25.5/.020( (5)
Sz ¥ (6)

where the dimensionless valve displacement ic defined

only between

o< & </ (7)

™o variations of equation (%) exist, . 1f the system
employs an upstream orifice or not.
Without an upstream orifice, P, = Pg and for a flat

faced poppet (x=0)

F=RRrR>(I-8% ~(8)

The statlc force is seen to increase with displacement, so
the poppet must be restrained by an external spring of rate

K.



SYSTEM CONTROL VOLUME

FIGURE 2-2



K3 (2TTDRS (9)

to ensure statle stability.
For the case wnere the system have an upstream

orfice of area Av the flow continulty gives

£ / (10)

F / + &2
where
= _APv ‘ (11)
X_ Au

Substituted into (5) for aflat faced poppet this gives

F f .

Y &

-t
e
~—

where the assumption 1s made that &2 << Xg and
Fy = PsA. This result 1s plotted on Figure 2-2.
and since the force now decreases with displacement the
system is statically stable and with a hydraulic spring

rate

Figure 2-3 also shows the response to 4 slow slnusoidal

variation 1n the valve displacement.
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The response 1s seen to devend not only on the
operating displacement X5 but also on the amplitude
of the valve., Large amplitude represented by curve
to give = nonlinear outout where as curve
(2) gives a linear operation. Operation at small valve
neutral position will also give nonlinear operation
regardless of amplitude.

This analysis 1s most concerned with the linear
operation because by linearizing the differential
equations analytic solutions may be obtained, where as

grapnical or computer techniques must be employed in

the nonlinear case,

2.30 Dynamic Stability

In this section a general presentation of system
stability will be gilven. The system 1s assumed statically
stable and the major consilderation is given to linear

operation.

2.31 PForces on the Poppet

The momentum equation used on the control volume in

Figure 2-2 for the dynamic case yields:

('q -5, )A - F’E%(m‘/)cu "“IOVIAV@J“JIHK —pl{‘ﬁ, (1a)
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Eyquation (14) as written assumes that Pr is constant
everywhere downstream and fluid is carried across the

boundary only by the fluld jet. This leaves out the

Tt

complexity of the downstream {low pattern were turbulence
and vorticity in general complicates the nicture.
Considering a flat poovpet only and assuming that Vi< Vg
the momentum equation leaves only pressure force and
external force to balance the momentum change within

the control volume. The poppet momentum is easily
evaluated, but the momentum of the o0il is more complicated.
The assumption is made that this is small as previous
experiments indicates this. (See Ref. #9 for detailed
analysis). The momentum equation then reduces to the
simple form if P» is constant and arbitrarily setto

zero, and pressure immediately upstream of the valve is P

M is the poppet mass and F the external force.

This then shows that the major fluid force is the
pressure force acting on the poppet. The vressure P
can be derived analytically or determined experimentally as
functions of system parameters. Both methods are employed

here.,
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2,32 General 3tabliity Consideration

[y
ct

The force on the popps is described by equation

Cor the system shown on Figure 2-U4,

PA—-F-CxX—KX= My (15)

In 2 linearized form where the motion x 1s given about
gome polint xo we have

X = X5 +A8X

F=s Fo+ AF

P= Po+ AF where 1t 1s specified

that Fo = Ppi This gilves
(AP)H—KX-—C)Z—M}—F-‘-'O (17)

This equation is shown in the vector diagram on Figure 2-4
for a free vibration (F = 0).

Let us look at the physics of the system first.
With the fluid incompressible and inertia effects neglected
the fluid pressure behind the poppet P is gziven by the
instantaneous position of the poppet. For the free vibration
this is shown on Figure Z2-4 where x vibrates about Xy and
the oressure varies about the mean scressure p,, given by
curve 4, but opposite of the motion x, so it acts as a

spring force. The net work done by the fluid pressure on

the poppet 1Is here zero, as wnen the povpet moves inward from
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GENERALIZED SYSTEM RESPONSE

FIGURE. 2-4




B to D the mean pressure in pg and for the outward motion
D - F the mean oressure 1l again pg. The noppet nelther
gaine nor loses energy from this component of pressure.

irst the effect of inertia, and use the

($
O
o]
[4>]
*.J-
Q.
[}
"3
]

*

super position principle, as the lnertia effect will
modify the existing pressure.

As the valve moves outwards, the flow increases
and the resulting fluid acceleration further decreases the

pressure., On the inward motion the flow decreases and

the retardation of the flow increases the pressure further.

This gilves rise to the additional pressure <] shown in b
(on Figure 2-4) wnich has 1ts minimum at position A and
maximum at c¢. The total pressure 1s now given by D+ <)
(shown vectorially as (P A)" on Figure 2-4) but as p does
not contribute any net energy to the system, we need
only consider ;. When the poppet moves from B - D

the mean pressure 1ls greater than for the outward motion
from B - F so that the net work done by the poppet is
negative. The pressure Py depends on the velocity and
opposes 1it, so it acts as a positive damping in that the
fluild gzains energy from the motion, and stabilizes it.
The component in the direction of the velocity of (P A)'
on Figure 2-4 is then 0y
e

Next consider the effect of fluid compressibillity only.



Agalin, this added storage capacity modifies the original

ko

ressure shown in a. 4

fﬂ

the poppef moves outward from

A-C the flow exceeds the mean flow and the pressure
steadily drovs while on the inward motion the flow is

less then the mean and the pressure rises. The additional
pressure due to the compressibillty o, has 2 minimum at ¢

and maximum 4t A and ¥, so the totai pressure 1s now

T

+ D, (This is shown vectorially as (® A)' on Figure
2-4) Aguin we consider the work done by v, only. As the

o

ooppet moves from B - D now 1t seec a mean pressure less

Py 2nd for the outward motion is lurger than v, so the net

o)
work done by the fiuld on the is positive. Again the

pressure p, depends on and 1is in the direction of the

2
velocity. This 1is an unstable vibration, as once started
the fluid oumps energy into the system and the vibration
increases.

If the effects of compressibility and inertia are
combined it depends on the vectorial sum of the three
pressure forces 1if the resultant is to have a component
in phase or out of phase with the velocity.

Mathematically this will be expressed by equation (17)
combined with the equation for P = f(x) that will be
developed later. Agsume this function 1s of the form

of a general differential equation

a(g)=-4&0o)

N
Lo
e8]
S



Combined with equation (17) this gives

/

A (—’i) =- (19)
| X MO2+CD+ K +RED)

which when examined for stability gives the frequency equation
[MD*+CD+K+A&MD) ] x=0 (20)

where jw will be substituted for D.
Assume further that the general solution for (D) is

of the form:

2 , /

z (21)
A O*+ R D+ /
Substitﬁted into 2D it gives a general fourth order
vibration equation.
fHADY+ (MA+CA)D® + (M+CA, + kA, + 6AB, ) D
+(C+KA +6AB,)D +é<+6ﬂ)j}(=o (22)

The stabiliity of this equation 1s given by the Routh
criteria (See Appendix B-3) and will be discussed in

detall, ss the various forms of G(D) are developed.



2

Compressibllity

40
41

2 Dynamic Equation

In this section the analysis will be made of the

adooted model by considering the elastic oroperties
the fluid.

of
The system under consideration is shown in
Figure (2-5a)
The s

ystem consists of an upstream orifice (Au),

the volume V, and poppet valve (Ay) and assumes pg and
Op constant, density G) and compressibility Gs_
System egqn's:

' p(O.s"'Q)= 532'(();:@)
Qs= Au/FR-P)

Q= 4‘%//}%(?’—6%)

p=P°+ 73&ID

As is evlident, these equations are nonlinear by the

nature of the flow, so we are going to conslder their linearized
form.

We shall consider motions around a operating voint x
3 S o}
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of the povpet with corresponding flows and pressures
given by

o= 2{,)‘,‘ A X

O =- P, + ADete,

i

The above operations then takes the form (Ref. Appendix B-1)

As-Q-= %DP | (27)

Qs =-ks P (23)

Q=kix+har (29)

where the variables now denote changes from the mean,

and D is the linear differential overator d/dt and K.

and K3 are the flow sensitivity coefficients with respect
to oressure and ¥, the flow sensitivity with resnect to
valve position.

These equations solved for p vs. x give

(p) / - (30)

or: kz+ /[ﬁ(g 1,.Ags)]CD""/

‘5(2;3 = Cﬁc ' (

. O+ /

(A
e -~
-




P
a, = Ko+ Ke (32)
Oa s
c= 33)

PB(Ka+i<z) .

Equation (31) describes the desired pressure variation
with povpet nosition, and as expected it 1s a simple lag
with & time constant zb sroportional to the volume and
inversely proportional to the fluld elasticity. By
Introducing the valiues for Ky, K» and K3 as functions of

geometry (Ref. Aopendix 8=-]), we can further reduce equations

—
l \)
g
QJ
o]
[o)
o~
(A
(SV)
p—
<t
O

~ 2RTT y ,
&= 2872 [ L7/ (3)
ngz / /(J’z+)3/2 (32)

Introducing a system compliance z, given by

A /2 |
Z. = “/é):&‘i P | (35)

and the breuk fregquency f{, glven by the relations

Wz = | and w=2TF so

/
£ = 2772,



)
i

we hzve for equation (35)

£ 5 32
Ze X
ancd the function q§ plotted on Rigure o-o.

The minimum noint for é; ig glven by

ds
r =©

(38)
¥=.707

~

The point = .707 then rer

)

Lo

resents

the largest value of
t. and the minimum breakfrequency.

240

Stabllity

With the system transter function as given by (31)

we have for the frequency equation (22):

[MT D>+ (M+CR)D? +(T.+e)D+ (K+AG)fx=0 (3

First zacsume @ ® 0O, and from Appendix B, eguatlions 3B 25

6]

]

[$4]
]
0.
()

iy .
7 zive

U

a, >o
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Dimensionless lag_timeconstant

VS poppet valve opening.

FIGURE 2-G
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and Z¢ KM % Mt& (K“‘GH) o
&,L0

RBut the last atatement contradicts the inequality

s P s { 3\ o~ 3 p ) ~ -y ey 4 1 ~ I 2 e
given ny equation (40}, 30 we conclude tnat the system ig

Lorea

]

Cx onin

bode
¢

Q

unstable., This also agrees with the phys

because the iag lntroduced gilves a force component in the

]

direction of velocity.
Necessary damping for system stability ls given oy

(239) with K= 0

@
o

z =
C%,-.-Z—';-!-.": /:vg)-*l*me (41)

2,50 TInertia Model

2.51 Dynamical Equation

The fluid is nere conéidered incompressible and
with density /3 . The general system 1is shown in
Figure 2-5 and conslsts of a constant pressure supply
v, and & line of length L and area A ferminated by
the poppet valve. Again we cénsider the linearized

form:

System equations:

Line: P = —[%D* f_?hg_‘o]as (4

(A}

P

"




Valve:

Combine aind solve for p

5 (B)-

faczo‘ﬁl

2o+ )

A +PA K ([...P_Aﬁ_&’z_ Jo+ /)

PG Ky +A*

wnich can be reduced to the form

4(%)

2.0 +/

— s R —
—

2 Z0+/

where the guantities are defined by equation (44),

Substitutlon for K,,K, gives:

and

These equations aure nlotted on Figure 2-7 and 2-8

nondimensional

form.

—~
=
[ e
et

in 3

The lead freguency €. 1o croportional to the Line

length and

inverase 13

J

crovortional

o the pressure

2nad



- D

valve opening .
The vaive gain 1s glven by
p 2Rs770 § (49)
2 ~ SE+/
For a system with an upstream orifice included, the
cailculations are the same and shown in Appendix C-1.
The values for the time constant are changed by the
ratio of the urstream to downstream area.
2.52 Stability
with G(D) given by equation (45) we have for
the freaquency equation (22) with €= 0, i.e., no
external damping.
2
[MZD3+ 1D+ (KT+ GAT,)D +(K+6A)f x= O (50)
3
~
Stability is again given by C-36 and 37 and gives
K+G, R >0 (51)
o
and MG K+ AG,Z.) >M T (ARG +K)
which gives
. > 1
52
(- (52)
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From equation (43) we see that this system is always stable

=

As the above inequaiity always holds. This shows that
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acts as positive damping.

2,560 Combined Effects

The orevious two secticns showed the effect‘of
fluid elasticity and inertia conslidered separately.
These effects can be checked experimentally 1n a
laboratoratory experiment, but in a real model they
occur in combination.

In this section the model shown on Figure 2-la
(section 2.1) will be treated in a more general sense.
We are still concerned with the lumped parameter model
only, and frictionless flow.

Combining the effects of fluld inertia and elasticity

give rise to three basic configurations shown in Flgure

Model 2 1s the straight forward inertia and com-
pressibility effect combined with the pooppet valve.

Models b and ¢ are two variations of 2 with the introduction

of un upstream resistance. These tTwo models aprear ailke,
. i g G o o FL S Trry oy o - g e 2 A s
S Lae LrEanster uneunion ( Dynamic 2naracteristics ) ol
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pressure vs., displacement differ, The analysis for
c-2

these two cases are shown in the Avpendix (

pa—

Attention will now be focussed on model a.

2.61 Dynamic Egquation

The inertia comprecssibility model under consideration

7]

is model a of PFigure 2-9. The system consists of a

U

constant oressure source Do, With a dellvery line of
length L and crossection A connected to the volume
o and the poppet vaive. The downstream condition

are steady, o, assumed constant and arbitrarily set

R
to zero. The fluid has density f3 and elasticity /3
(psi). In this lumped parameter model all the volume is
lumped into,wg and the line L considered incompressible.

From the previous analysis we expect the system
stability to devend on the relative magnitude of the
lead (&;) and lag (T;) time constants from the line

and volume models respectively.

System Equations:

Line: P=- 25D+ 22, (53)

Volume: Qs— Q= %DD ‘ (54)

Valve: Q=KX+ K P (55)



R = G, Ky and K, are the valve flow coefflicients as

used »nreviously. By combining and eliminating the flow

A(B)=- KL8e S D+
X) =" Dok A %pm}o’(( )P +otak)o, , [ (50)
Q’--p/oao": /qz-v"ﬁQ
which can be written as

ZLO+/
- | A{E =-4 57)
’C) 3 A,0+~20+/ (

where the coefficients are defined by equation (56). By

introducing the values for coefficients using ¢t =LA/C and

£ -=;é%2 the equation reduces to
Gy= 28570 _ S (58)
3 A 52/
¢ 2 59)
f= 4L 5 |
5—2
A, = (ZI-*ZC.I)J:.*-/ (69)

These last equations with equation (57) give the desired

functions to lLook at the combined stubility equations.

2.52 Stability

The desired frequency equation is obtained by

substituting (57) into (22) and given below

[AHOY L AHD3 + HD*+ R&STLD + GAfX=0 (1)
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ju
T
3
b
[}
o
o
(o3
=~
(]
o

3s a first approximation.

The stability glven by B-325 1is

(/._ %) > %(_{2_53_/2) (52)

Before substituting we can see two cases here: when
the right hand side small or negli8ible, zand when 1t 1is
large. In order to investigate further we have for the

groups involved: in (62)

. D=4/

A [, GsA)_. - R 5l

57( )= S(3%+/) (o4
_ 2UsPs . (65)

~
On
()
N

L
(ZP)(E" R/(:si/)

Both and R are constants related to the conditions
upstream of the poppet. The two conditions now become
evident; as & =» 0 equation (63) becomes zero, but

equation (64) tends to infinity. The lnequality of

i

(A2) 1is then violated, so at very smal

4

displacements the

valve should be unstable. =Solving (62) gzives
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S[&%c+1] >R (4

-~
——

hut for small & this reduces o

& >e (63)

this becomes

X, 3 (28Ye%)(5%) (69)

with &= Z0%e

Equation (69) zives the stability limit for small

valve displacements. For stable operation x_. must be greater

o]
than the rignht hand side of (69).
The other two roots to this equation can be found by

using equation (67) for the condition R— 0 and § large.

< * JRLA .

4A
& (71)

This vields

or

I+
Qo
)

X, <

Equation (71) only makes sense for values of the
sgquare root less then unity as Xy +@rger than D/ does

\

not renresent a solution (or 5} Ly either}. Combining



(57) and (71) we have.

(S < % < G/BE o

—
Equation (72) then describes the desired

stabllity limit on displacement of the poppet valve.
If the external spring 1s included the stability

equation becomes:

‘ - -J- : e \°L 1} 2(;4'/)*/ -+ = 2
S5+ 8 LoD ZEIL [ >R {14p 8] (7

K pll
=N pﬁ,q (74)
4
7= ZBirD (75)

For & small, this becomes

2 -
S> (/*5)—??(64—/) (70)

Figure 2-10 shows the general trend of equation (76) as

a function of 7 s the nondimensional spring rate.

Figure 2-10 shows & tends to infinity at 7‘” when

the denommator of (75) vanishes, but of more interest would

be when S approaches unity, given by )Z'*
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p* = R—(I+5) (78)
RB(S+1/)
If then 7$ 7" 1 point of stable operation exists.

2.70 Downstream Effect

Downstream effects are connected with the possibility
of pressure variztions behind the popvet due to fluid
motion,

These are due to both fluid inertia and comopress-
ibliity, but also are strongly affected by the fluid
vorticity and turbulant mixing from the jet as 1t
leaves the poppet.

Previous linvestigators (Stone Ref#2) noted that
a porvet stable when exhausting into a "infinite”
downstream chamber would oscillaite when confined by a
circular tube, indicating that the change in flow
vattern caused by downstream effects and largly due to
fluid compressibility. A simplified analysis will show

the adverse effect that this may cause.

2.71 Downstream Compressibility

A simplified system is shown in Figure 2-11la where
it is assumed the upstream pressure p, 1s constant, the
downstream volume 1is 2 and the restriction is given by Ag,

2y scimilarity we know that the =quatlions are those of

) .

section 2.M0 so we can write down tne result

U

o~
&
e
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where

Ky o
62 /‘4’*,‘5 (80)

R
Cr = ,ég(uﬁv-*ﬁﬁr)

(81)

K& and K5 are the flow coefficients with respect to
cressure for valve and downstream restriction. The
dynamic equation in this case depends on the downstream
construction of the vopret as shown on Figure 2-11 b.

In this case we have

BRA+RB Aa - FR—Cx—-Kx=MX

which for linearized considerations yield, with equation

(79) substituted for p_:

For stability: (Ref. Appendix C)

Q Q: >Qs Qo o (83)

Qo> O (84)

i

Fode

)
v

sy g A R [l PRI - i .
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l<'é> dshi’th

—~~
0

AW H

St

or when substituted for Gp

b
N
A\
N|
V)
\\
S
+
~
P

where
Av |
A (87)
Figure 2-12 shows the behavior of equaticn 86, and for the
two values of K in a and b. The value of b is always

stable, wnile a has the unstable region given by the

intersection of the line with the curve defiined by

Eguation 8b.

Part IITI Experimental Results

oy

2,00 B-ckground

The experimental apparatus and test procedure
is briefly outlined in Appendix A-1. The experimental

results

m

re divided into three groups, Statlc Characteristics,
Dynamic Forces, and 3tability. 1In Appendix D are shown the
flow coefficients for the fixed orifices and the poppet

valve. These values are used in evaluating the results,

AlLl the results precented are for 2 flat coppet of

diameter d & , 750 inches and the

3. ;
T s ~
aLamernerr O}



line and the no

{ad

.10 Static Charac

~
-3(_).’-

S
ST A

zzle 1s D = ,125% inches.

.

eristics

ot

The gtatic force and pressure curves are shown in

Figures 3-1 and 2-2. Figure 2-1 represents the

force for constant upstream pressure. Figure 3-2

shows the force and upstream pressure when fixed

orifice Ay 1s introduced. The dashed curves renresent

the theory given by equation (12 and Figures 2-3 with the

response to a large input, slowly varying, sine wave. The

output is seen
pressures less

are largly due

to be nonlinear as expected with the opeak
than the theory vredicts. The discrevanciles

to the variations in flow coefficients,

especially that of the poppet valve. (Ref. Fig. D-2).

Again Figure 3-2 gives indications on the (low

frequency) output to be expected as function of valve mean

position.

3,20 Dynamic

aracteristics

In this secftion the validity of the equations

developed in sections 2-40 and 2.50 were checked out.

The poppet valve 1s excited sinusoidally and the force,

displacement and upstream pressure 1s recorded and com-

y

pared to the theory.
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Since the apparatus L1s frequency Llim

e

ted (overating

faer}

(=

range only Prom O-U45 eps) the magnitude of the uvpstream
geometry was magnified to create measurable iead znd
iag values for pressure and {orce,

The resuits from thilc part are shown in Figures

4. Results: )
The system tested 1s that shown on Figure 2-ib,

In the experimental set-up bothlfg and Ay are changable

as well as the mean valve position Xb (or xq). Figure

3-2 shows the phase lag ¢b between either force or

ressure with displacement as 2 function of system

e

volume., Figure 3-4 shows the effect of changing both

(2]

volume and valve mean operating postion. Figure 3-

1

-3 and

L«‘S
LAJ

shows a crossplot of data obtalned from Figure:
3-4 on a nondimensional basiz and iz to be compared with

the value of equation (37).

The results of Figure 3-5 follow the theory well.

The value used for is 250,000 osi, which is higl

when it i1s considered that the oll has air entrained

that will reduce this vaiue., 'The ceculizrity
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Experimental time lag vs poppet displacment.
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of this curve is obvious from equation (34) where ta

b

ig seen inversely oroportional to the sum of the flow

coefficlents with vressure. It can De geen that K

N
-~
[
ztarts at nfinity for small and decreaces, while K-
o 2

starts at zero and lncrease. The sum then gives for the
resultant equation a maximum for tc (or minimum for fc)
a2t ¥'= .707. The exverimental value here agreed well,
Since the excitation freauency of the popnet is

low, the 1lnertila force due Lo the soppet motion is
negligible and the fluid forces were measured directly
by the force gage. The result was, then, that the

Pluid forces were those caused by the fluild pressure and
in phase with the pressure. For the case of compresgsibility

this

e

s a simple lag. Figure 3-6 shows a summary of the
resultes and the force diagram shows the resultant onressure
force and that 1t has a component in the direction of the

velocity so that 1t 1s unstabllizing.

2,22 Inertia Effects

The inertia model tested was that given by Figure
2-% in the analysis, and the results are presented in
Figures 3-7 and 3-8. Figure 2-7 shows guantitatively the

variation of the phase lezd of pressure and force against



T

valve displacement and pressure. Figure 3-3 contains all
the data obtained for variation of the parameter, cross

plotted on a2 nondimensional form.

The agreement between the theory and model was
initially off by 20% at the most, but by including
frictional losses and entrance loss due to the constriction
a2t both the valve and source and, the theory and
exveriments agree well.

The experiment shows that the inertia force gives
rise to a phase lead and that this 1s reallzed resist in
short lines. Figure 2-9 shows a summary of the system
with the transfer function & (J&) substituted into the
dynamical equation and this shows that the ilnertia force
has « component proportional to the velocity, but opposing
it and thereby acts as positive damping, hence stabilizing
the valve,

The effect of friction can be lumped and considered

as a restriction (Ref. Appendix C-1) and reduces the time

lag predicted.

3.30 Stability

Stabilizing the porpet was done by applying a constant

force Py = DpRAR ind having tne poopel suspended by 2
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-3~
canfllevered gpring. The system damping is practicalily
zero when there 1s no hydraulic pressure applled,

The mean nosition of the povpet was stepwlise

changed and 2t each position 1t was plucked, TIf
the ensuing vibration died out, it was considered
stable. This method, even though 2rude, has a fair

degree of accuracy.

3.31 Simplified Models

A. Compressible Model This model was always found

unstable ag expected. The frecuency of oscilliation
was given by the combination of the hydraulic and

applied spring rates and the poppet mass.

B, Inertia Model This was found stable, but for

small displacement, it was unstable. The reason
here is that at =small displicements, the volume
interaction of the line becomes important and the
system aporoaches that of the combined effects re-

norted next.

2.32 Combined Effect

6]

The stabllity of wnat may be consildered 2 more

]
®
&3]
o
}-d
(6]

istic system was tested nere. The system is that

y

md
(\.

d in section 2.50, and shown on Figure 2-9a. Ih

<5
@
D



these tests the iine length L, vol umel}; and the

supoly nressure n. were varied

§.)

againet the valve
displacement. The results zre shown ln Flgures 3-10

A

3 . } ~ R ) S S o : o P I
through 12, Agaln Figurse 3-12 reprecents i cross oclob

5_4
O
ot
-

of Figures 32- and

The results are here comvared again to the theory
for eguations (68) and (69). The exveriment only checked
the stability for the lower 1imit, L.e. O=® 0. The
upper limit had no meaning here as the square root in
zguation (70) was always larger than unity. The system
was then stable for values larger than the exverimental
curves.

Within experimental error the experiment agreed

well with the theory, and it showed that the equations

definitely had validity. Two main factors contributed

ct
(@]
o
2y
D
Q.
j=3
=y
i

¢t
5

nce 1in e experimental results wilith the

\ﬂ

0,000

o]

theory; the value for /3 of 2 si is too high
and frictional effects decrease the effect of the lead
and raise the stability limit, as indicated by the

orevious experiments.

3.3C Downstream Zffects

A qualified analysis of thic was not made, but

3 B t S 3N o Y ‘- 3 2 P PERP N o
during the exvnerimental Investigation onselllations
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oceurred that were not explained by the theory.

For no external soring applled or very low rates,

the ooppret would Zo into slow oscililations,., These same
osclllautions occurred for luarger valve displacements or

large Mows when the vailve was restrained by a4 heavier spring.

This seems to tie in with the effect of downstream

§l

V)

compressibility as out lined in section 2.20. Since
the return line was fitted with a gate valve, the
frequency of osciliations could be changed by closing

the valve. The downstream piping consisted of elastic
o

hoses which reduced the effective compressibility of the

6]

system.



APPENDIX A:

Experimental Apparatus and Procedurse

The Apparatucs

An dpparatus wag designed and tested by Taft

Murra: Ref, [3‘ ag nart of a Masters Thesis projisct,
i P o 4

This same apraratus was used in this investigation
with some modifications.

The schematic of the apparatus is shown in Figure
4-1.

The avparatus consists of three majo nits:
the nozzle, the poppet and the drive assemblies.

The nozzle 1s a removable unit and can be
changed to cbnform to any upstream condition that
one would like to represent.

The poppet assembly includes the noopet and the
drive stem. The stem 1is housed in an air bearing to
reduce friction to a minimum.

A compensating chamber is provided, aprlying a
constant force by the aiir pressure DB’ to compeﬁsate
for the statiec hydraulic forces on the poppet. The
force gage 1s an integral part of the stem. This is
a semiconductor bridge-type gage with Qery nigh stiffness
and sencivity.

A linear, variable, differential transformer

(L.V.D.T.) nosition cickup is attached %o the stem,
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to monitor valve displacement.

The drive unit is a

i

inusoidel cam, provided by

<t

grinding the cam surface that holds the cam bearing eccentric
to the two main bearings. The cam displacement can

be varied by moving the cam bearing in any position

between the bearings marked (1) and (2) and is provortional
to the distance from bearing (1). Range of eccentricity
is ,001" to .007". The cam is driven by a2 variable
speed, electric motor with spéed range from 3.0 to 45
cycles per second.

The upstream pressure 1s measured by a pressure
transducer, mounted in the nozzle housing immediately
upstream of the nozzle.

The electronic instrumentation consists of com-
pensating networks, preamplifiers and a C.E.C recorder,
The output signal from each transducer 1s preampliified,
then sent through variable zain and damping compensator
network to be recordéd on the ballistic CEC Recorder.
Thiz gives three simultaneous traces of force, pressure
and displacement, and the phase and amplitude relation

can be deduced easily.

Calibration:

The calibration was performed as folliows.

The pressure sensitivity of the pressure t{ransducer



was ~checked against = dead welght tester for a o volt
input to the gage, and the gain set so a5 Lo give a
zalvanometer deflection of 500 psi/in.

The forece gage was callbrated by avplying a

»

b v01lts exeitation, thne
b

[ 9]
L]
e
c+
0}
iJ

known force of

i

output was adjusted to give deflection ol = Lbs/in.

The LVDT transducer was cnecked against a dial

f\')

indicator to yield a sensitivity of .00Z

galvanometer travel,
These callbrations were done it szach set of runs
as the output of all these transducers is proportional to

the excitation voltage.

2

Procedure for Obtaining P and F vs Xx.

The procedure here was sgtralgnt-forward. The
avparatus had crovigions for changing the upstream
“4Pameter° u,QﬂD\nxitfm valve displacement. The
uostream orifices were fixed, but changable.

For a gilven set of conditions the hydraullc test
stand was started along with the variable soceed motor.
Data was recorded at speed increments both for increasing
and decreasing speeds, and dwelling long enough at

each speed to a

(f)

sure "steady'" (uniform) conditions.
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I
i

Procedurs fTor Chezking stabili@x

To best the stavllity of the poppet valve, the
senuzoided drive wasg removed and a canfllevered spring
was attacned between the ¢nd of the poopet stem and

on= of the bearing supports. The snring rate can be

B

varied by changing the ratio of length to thickness of the
soring.,
The dynamic respvonse of the povpet and spring

was checked out znd the vopoet displuacement displayed

on an osgcillos

€]
('.)

one,

By pilucking the poppet, the natural frequency and
damping ~ould be determined.

The damping ratio of the system with no hydraulic
pressure on was from .03-.05, so the assumption made
in the theory that ¢ & 0 1s good. The natural frequency
compared well with that calculated.

To determine the stability for any given upstream
configuration, a constant force Fy was applied to the
coppet to compensate for the steady-state hydraulic
force by the constant air oressure b+

The poppet prosition was then changed through out
the range of interest each time it was plucked (fepresent—
ing a step input), and if the initial oscillation died

out, the system was stable; otherwise it was deemed



unstable, At times 1t was not even necessary to touc

the povpet to check iLts stability. Even though this

.

method seems crude, with 2 dit of feel for it, it

boby

yields consistent results.

It
B 2 e

n
ii
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APPENDIX B-1

Linearization Techniques

Orifice and Valve Flow Equations

Consider the flow through a variable orifice
in an incompressibleflow. The flow rate 2 (in3/se¢)

is then given by

Q=chv/3(p-R) (8-1)

where:
¢ = orifice flow coefficient
Ay = CoX orifice area (in<)
p = f{luid density
P; and ps are the upstream znd downstream fluild

pressures in (psi)

The linearized form of equation B-1 1s arrived a4t by
considering the small changes in flow around some
operating point given by the valve displacement Xq -
Since flow 1s a function of both pressure and area we

write the change in flow as

AQ = /K, AX + Ko AP (B-2)



_ME»

where Ky and K, are constants. These constants 1s
evaiuated as follows. Mathematical

the form.

Q=7£(X/P) (B-3)
and the total change in flow given by
= 2K 2Q
d&"‘ 2X de+ gpxdp (B-M)

By comparison with B-2 this gives:

K=22) (B-5)

= ?—Q (B"‘S)
Kz Bx)x

where K1 and Ko are evaluated at the operating proint.

An example of this technique will be given. Consider

the flow from i constant pressure source through fixed
orifice A,; and a valve (Ref. Figure 2-1) where the
constant pressure is p,, the intermediate pressure is

p and the exhaust pressure 1s arbitrarily set to zero.
From the continulty equations we get for the intermediate

oressure
P /
A |+ y?

T~
0
i
~J
~—



-t -

(¥4

= Y (2-3)

o

[ T SRV S O gy P , vy . O ,
The Llnearized flow for the upstream oriflce from

3 ‘" e
equation B-z 1

AQu= Ka& P (B-9)

From A-D we obtuin, by differentiaition,

;__C'Q“l/z//a =_..___.a_9._=——-@&—- a A
K== mp ~ Hap) ZRG-E) )

but ©the use of 3-7 giveco:

Do [ I+ & (B-11)

F3=~ Zml "¥=

Rauations 3B-9 und B-11 now describe the flow through the
fixed orifice 4t any operating roint of the valve,
For the v.riibie downstre.m valve the flow lis:
AQu= KX+ K28P

Egnation 3-5, uron differentisation, gives

W

rMJ

"
N

_ QKo o
/Z/"" X (~__3



APPENDIX  B-Z

Dynumics of 1 Line

The dynamical egquation of incompressibie, frictionlessg,

5]

Piow for . line will be develoned here. Conslder .

e O~1a. The two sections

-

shown in Figu

T
Ui

section of 4 pipe a

are spaced a differential length apart and tne properiies

Iy

24
J

ach section differ only by differential umounts.

IS

*

At e

By spolying Newton's equation of motlon we have,
PA - (p+dp) A+ )=o(A+ Lax F (3-15)
Dropning differentisls of higher order ylelds
d(pA) =,onj‘%/dx (B-16)

This 1s the differentiil equation of motion for a liine
of viriasle crossection.

For . line of constunt arex &4 and length L, equation

B-10 becomes, wtien intergrated,

P/—Pzﬁp JZ



DYNAMICS OF A LINE
FIGURE B -

Valve



PP - L . v 3 i < e ety PR S,
pyoznd o, oare the oresgure drops across the oige,

and V 1o the [low welocliy. QCubstituting the (low

7

rate, = V., In zouation B-17 glives:

]

L
l
et
L‘
p—

Teyyye, 4+ 1 o1 s [ T T r e R
HEguation B-1% 1s the hagliz diffevrentiu

b
U
Lo
=
o
<t
Jote
o}
o]
o]
3
&

-

TR ol . 1 -y T
tine of consiant area and lengtn L
% oy s PR T T S P R T T R, N - H
Thils sgquation will be used In %wo 2ases chown In
Figures B-1 b and =,
s E E 3 \ o b b o o c . .
in Figure B-! » 1z chown 2 constant oressurs sourne
connected to the line L and terminated by the valve., We

seek the relation between the flow and aressure unshream
of the valve (Sz2tion 2).
Fluld flow conditions are assumed uniform at ze~tions

! on

5.17-

3 relat

[

and 2, 50 by combining B-18 und Bernoull

from the reservoir, we have

z
Ps=lof+’§na‘

2
Ps—~= C5pa+ /-%%7;  (B-20)

wWhers Ci
- D= gE



oy S - e 2 ) K] :
Since eaquatlion B-20 is nonlinear, we will sonsider the
T o [P . 3 o, -t Y ¢ . o - -1 | T [, L] pgre ] 1

insarized form glven by the small perfurbation »f the

flow avround 94, the mean flow. By differentiat’

have .
~dp,= BEpER) + PS5 da
or, Lf the differential form lg dronped,

-5 -.-.-[%Z-'D-a-p—g%)a (B-21)

where On and 0O renresents the variation in the variabless.

on hetween

i.lo

Hguation 3-21 decribes the desired relat

restriz iono have been inserted. The relation for
pressure and flow will now be given by the flow equation
for the restriction and equation B-13 for the line.

a

Ascume we can write the flow through the restriction

as:
“ = Ko, (B-22)

, 2 . Co . e

where ? ‘-'-a—g , 48 shown in section B-1. Combined

witn BR-13 thigs yilelds



i R T QS T} - g} 4 1 P 3
B-773% ziver the relation we seek, This ic a more

5 ey 1 Y H 4 b . PR T e - o SR A - 5
genaeral one, in Lthat we have . not gpecified the

resrtriction o any great extent., K could be due to

the entrance 1035 associited with nipes, an orifice,

or aiso thought of as representing the frictional

fects in & pipe on & lumped basis. With the expression’
for K given by %the orifice flow (equation B-6) and by
letting the orifice urea go to the pipe area 4, we getb

~eguation B-21.,

APPENDIX B-3

Stability and Routh Criteria

ione for a fourth order

(=
ot

The stablility cond
differential equation will be derived here. A more
detailed derivation 1s found in Ref. #10 section 14,14)

The differential eguation ls:

ZQI{D‘/"' QD%+ @, 0*+ Q0+ OG}X"' o (B-24)

where

Procedure:

A o o Y de 1 g pal s
Ne seek the set of coiumns

i~
o
)
"

(o]



b,=- _aLg [a‘/ A, - Qs az] (B-25)

by= -a/;[aqo - Qy Q] (B-27)

V]
N

& =- "b{'[asbz - a,b,] (B-23)

The condition for s*tability 1s now that all the coefficients

in the first column are positive, lL.e.,,
b, >O . (3_29)
24 (B-30)

For condition B=29 this gives

B 'Sl',/a’% %%/ >0

(B-31)

A:4; > @, q,

(B-32)

For condition B-30:




Q3Q,Q,>Q3 G0 + Gy QF

Now, the necessary and sufficlent zconditions for

PP et e
stabllity are that the lnegualitles of 3B-3

v

Gl T
anda 55

They zan be rewritten 23

asaz - Ql/a, >'O

@y Q.- Ay ¥ Qs S2

Since we assume that all the coefficients are positive,

then the term

2

Qs & >o

ol

~ ey 'y . . - o) N ,o y
Thus, i1f =quation B-3&'1is satisfiled then B-32 is always

S 3 e ] — R ', )
satlsfled. Fquation B-32 is then redundant and the

PR . N ]
stability 'o only concerned with B-=38 or:

ngcZz" CZ«¢2,3’CE;;5%?

By simple reduction the stabliity of 2 third order




L T

w
o)

found oy setfing ay = 0,

Q. Q, > Azl

along with

o
§Ai
~3
R

CZa>>’CD (2-3

\PPENDIX B-4

g

Nonllinear Analog Computer Program

Compregsibility Effect

This sec*tion deals ovriefly with a computer-
program made for znalog (computer) study of non-linear system

ey o

discussed in section 2.4C. The system is shown 2-534 and

throuzh the upstream orifice

'

volume 1z Ve , the

compressibility (psi) and density @ . The {low

QD

A

i
D
)
3
Y

o

S

2
&
|
X
N—r
i
Y
)
o~
N—r
[
i



Q= gvﬁ(p_%) (B-40)

and
(- g
o= p¢,+ //5—-/3 (B-42)
By combination, the resulting differentizi equation is

obftalned.

_ﬁfi_/_“-gfq [ 2(p-2) — AuJE(R-P)= O (i)

In order to study this equation on the computer, we

bring it Iinto nondimensional form.

Define:

P A ,
z=8 ¢ y=v= % (43

Return pressure o, } small suech £h N /o 1
R pressure pp is small such that po /v g 1

-
-~

E juation then becomes

ng +y/z_— J1-Z =0 (B-4&)

where:

_ O B P
g-ﬁﬂu %é (B-45)

}_.4-

w - : H 1 P R R IS o gy ey BT s
Eguation is nondimensional oxcent for variables in

L. ~y Ls . - ot . * 7
2 ey { Y Sy e e R el A & vy o by o, 3 2 P o~ e -
Lime ., slhnce Tne con3dtant 4 a3s thne dimension »f time,



Y (B-45)
t= 7

A

whnersa iz the nondimensional time. Then 1t follows

ot
s

o

ot

A
d'é = ﬂd’é (3-47 J

which gives upon sunstitutlion

Z+ gz — 1z =0 (3-43)

, °o
whe pre -
Z=Z7

Rquation 11 gives the desired differential

equation we want to study. QZ is our input and 7 1is
the system response
The system in this case was driven sinusoldally,

but both steo, or ramp inputs response can be studled.

ince the analog computer compares voltages us

representing cystem variables, we must mike sure that

N

[ - IS R -y ~ - T Y e O | P
these signals have same scaling (or units) so as to he

nonsistent when compared. The nroblem ic analogous to thaf
or dimensional 2nziysis In mechanlcco.
The best example ls the term YPr-2 , znd tne Tirot

At

mestion sz, now Jdo you represent 17 From the 23

Lression

‘\i



we see that when 7 is unity or repre
unit of 27", the term iz zero. Let us rvepresent 7 by
e volts/"unit of 7". Substituting this we get
L —e =< O
le= 1 = e, volts/unit of 7 and are term thus
scaling =g, and 1iIs given in relation to the unit re-
presentation of 7. Simllar arguments hold for the
other terms.
the scaling for each term we 2an
is

By completing
the complete schematlc computer diugram as used
The square root

LAY

draw

on : Philbrick analog computer.

done on the K5-M units and integration and summation on
the K5-u units.

This is shown in Figure B-2.

This orogram was used on the computer to test out
the validity of data obtained both in linear and non-
linear operatvion of the poppet valve., The agreement

: results were
vuter use

between computer values and experimental
This substantiates the idea of the com

good.
in the stability analysis,.




ANALOG COMPUTOR PROGRAM
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-~ Eap § o ! BVIE A SO T T pme e o sy 3 ot
Inertia Model wWith Upctream Restricllon

5

" o . = e B Ty o o LYY e Yal 'y 2 B .

in cection Z.~C, the effect of flulid inertliz
o e . v e e e A . o . . B NPV e [ad
vas considered., The system ~onsldered —consicocd ol

P

4 o Yy S . -~ I | S S IV « -
conctant presiurs gouree, = 1ine and Th popnetl

T ey iy b o -2 oy oy - b e v P o 1 $o ..
Yailve . [ntroduction of an upstream orifice of areus
& 1 ry i 8 o - . RO PR $ A R SO Tl Tor e iy g
A, 1z conildered, au shown in FIjiro 2=-1., We aussume

A

o~ « .y o ISR - 2 P B X ial .1
o nronstant, with incomprsssibie [low.
w3

System zauvatlons

- RRs=- Kz P, (c-1)
O g L D
Line P_P’ - %Das ) ..)

(Re ference Appendix B-2)

Poupet Qs =K, X+ K, P (c-3)

o

e
e

or

wWne re

Ay deflined as In Appendix B-1. By

comcining

>

fColiowing toancsfer functlion iz obtulned.

D\ Kk [%‘%D'*‘/] ooy
X)= K;+K3[/Q_é_zso+-/] (o)

and Ke = KZ ks (5-7 )
ﬁ§:+1%3 '




o )'"‘64 Z,Zf,/ (o)

The values in equation C-0 are deflned by equatlion -4,

By subgeliftuti ind rearrangement thiz ylelds

e ()= (F) o0
where (5__-,- ﬂ‘/ﬁ » Y= 4‘73 und T = Jo

<
Zy=2z( /%,P) | (c-3)

ana finally:

= / + arz (c-9)

(WY

Eguation 13 ig tne desired exprecssion for stablility

P o

acecording to suuvation 52, section 2.52 and since thic

larger than unity, the syctem is stable.

iaa} - 2 2 4 b
The guin is given by

o

_ 2R / f ) Cot0)®
Gy= “a" (pr) )

*Rel, Plgure Z-1C Por simllarity of form.
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Combined Effects Zonfiguration

In this section, the two remaining confluzgrations
shown in ®igure 2-9, S-ction 2.560 will be considered.

Model b in Figure 2-6 1s considered first.

System Hguations:

Orifice » Qs=~-Ka P (c-11)

Line ’ P-R=- REDAs (2-12)

Volume QRs~ R= ..U_'.Dp (-13)

3

Valve R= KX+ E P (c-14)

Ry combining, the expression for p vs. X is on the form

_e . Z3D+/ (C-.15)
A(x)" 6”[:‘z:abz+(r¢+&,)o+/]

where
- L s
‘/ KZ"'KS (V—L.))

| LK. C oLk -
Za= PLKa D Z, = 6%5_5 (c-17)

Kz +KB



and
>4
- —L—— =10
%= Btk k) (6-22)
The expressions in eguations C-1b, C=17, and C0-12 are
.identicai with those of the previou. section and
equation C-19 is ldentical with egquation 34, Section
2,40, These equations arc more general in that if Ay ==
the 1ine area, this solution ih the unit represents the
solution in 3ectlon 2.50.

The stabllity of the system is related through
equation 52, 3ectlon 2.51.

Let us now consider the third basic configuration
shown on Figure 2-50, Section 2.50 as model C. The
basic assumntioné are again the same as with the
orevious model. The only change is that the compress-—

ibility and lnertia elements have been switched around.

Volume Qs-Q= "ﬁ"‘DQ : (c-21)
Line P-p= —[%4'0-* /%%PJQ (c-22)

Valve Q=K X+ Ka P (c-23)

1,

Ay



By combining and rearranging the following Ls obtained

/ - |
XEFD(F G e by Do) K20, =
PUE A% [0 SHE) B8]+ frivn -
which can more conveniently be written as

BaD*B,D+/ .
o ()= ~a; BaBE

v

wnere the coefficients are defined by equation 30.
Reriembering that:

7. SR A S
4R R RS R B

then ,
52.:-%%— | (c-25)
AL
Ze +Z. (c-27)
m 5, 4‘. 3 <
and E:' "f‘/
A, = OX¥*+/)Zz | (c-28)
2 (¢t 8r+/)
- S(vi+i) Z/ a \ Z -
he EEB MG Dnnref o

&= 2RsiD ¥ (0-30)
= T C-30)




Trhe 2nalysils has snown that the T znsfgw funztion
for any ayastem combination can be obtained and exoressed
a8 funcition of the bagic ilead and lag time constants
devending on tie complexity.

The Introduction of an ugstirssm orifice

e

n the
inertia model reduced the gystem time constants as
compared to the préceeding model and also reduced the
margin of stability, As the upstream orifice can be
considered as lumped system resistance, this then shows

‘that restance in general decrease the available system
damoing.

Introduction of an upstream orif

)
i
o)
@
’"’J'
s
(‘1‘
>

e combined

cage nad a4 similsr effect and also increased the complexity

Al

of the equations. For model e this lead to a differential

equation of higher order than the previous case. Even
though this model was the most generali the equations
are complicated to znalyse., Digital or analog computation

a4

seems the easi est way Lo general stapility conditilons in




#low Coefflicisnts and Constants

The following pages contaln the flow coeffizient

b

for the upstream orifices und the povpet valve for the

o . 0
case of A= 9(_)0 ind o

10N

W

pd

The hydraulic oi
on Figure D-U4,

The density used was assumed constunt as the
temperature during overation was held at approximately

100°F,

———

P - .80 x)0~7 /bs—&&z//ﬂy

ra)
v

e

which 1is based upon the assumption that the specif

es P,

0]

gravity is .35 at 100 degr

used is J-43 und its viscosity 1s given
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‘ON Spjoulay

00001 000§ - 000C
| 09
a_, v
and | &0- |
7 260'=d x A
9600 o
£90'=d © |
" ™ "
yﬂl 3 06"
01

m—

OU SPjOUASY SA  Jjo00 MO]] 90[jJ0 WD3IJSAf]

"9 }J902 M0)J 921J40)



‘'ON Spjouhoy

000§ 000C 0001 00§ 00C 00l ;
= :
m.i 4
a_ N
XA~ =~
S ¥
3
()
O a w .
5 5 =51 =19
n.vW.Im/.@/ b O
X= ~— 3
WA o U/ 0
~—A © /o
\ N Z

Joddod D] 0] OU SPJOUASY SA 7900 MO0] 4

01l



~H8e -

0005 0001

ON Spjouley

008 00!

0
q .
SO [
7
y
¢
0 o .
ol 9 oo 0| o© ’
X— O coo O A
509t/ — ;
0 |IV\_.||I 6
‘01

190d0d TDoTtoT J0] oW SPjoUASy SA Jja07 MojT

49 }J902 MO} 3)2Z0N




VISCOSITY VS. TEMPERATUR FOR
HYDRAULIC OIL ; UNIVIS J-43

100 | Temperatur; degr F
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FIGURE D-4

Kinematic viscosity ; Centipoises
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