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Abstract
This thesis studies sorting circuits, networks, and PRAM algorithms that are tolerant
to faults. We consider both worst-case and random fault models, although we mainly
focus on the more challenging problem of random faults. In the random fault model,
the circuit, network, or algorithm is required to sort all n-input permutations with
probability at least 1 -1 even if the result of each comparison is independently faultyn
with probability upper bounded by a fixed constant. In particular,

* we construct a passive-fault-tolerant sorting circuit with O(n log n log log n)
comparators, thereby answering an open question posed by Yao and Yao in
1985,

* we construct a reversal-fault-tolerant sorting network with O(n logl g 2 3 n) com-
parators, thereby answering an open question posed by Assaf and Upfal in 1990,

* we design an optimal O(log n)-step O(n)-processor deterministic EREW PRAM
fault-tolerant sorting algorithm, thereby answering an open question posed by
Feige, Peleg, Raghavan, and Upfal in 1990, and

* we prove a tight lower bound of Q(nlog 2 n) on the number of comparators
needed for any destructive-fault-tolerant sorting or merging network, thereby
answering an open question posed by Assaf and Upfal in 1990.

All the upper bound results are based on a new analysis of the AKS sorting
circuit, which is of interest in its own right. Previously, the AKS sorting circuit was
not believed to be fault-tolerant because the expansion properties that were believed
to be crucial for the performance of the circuit are destroyed by random faults. The
new analysis of the AKS sorting circuit uses a much weaker notion of expansion
that can be preserved in the presence of faults. All previous fault-tolerant sorting
circuits, networks, and parallel algorithms used O(log2 n) depth and/or (n log2 n)
comparisons to sort n numbers, and no nontrivial lower bounds were known.



Finally, we use simulation methods to construct practical circuits of small depth
that sort most permutations. Simulation results show that such circuits have depth
smaller than Batcher's classic circuits and that they are tolerant to a large number
of faults.

Thesis Supervisor: Tom Leighton

Title: Professor of Applied Mathematics
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Chapter 1

Introduction

1.1 Background and Previous Work

An n-input sorting circuit is a circuit that sorts any n input values. It consists of

n registers and a collection of comparators. Each register holds one of the items to

be sorted, and each comparator is a 2-input, 2-output device that outputs the two

input items in sorted order. The comparators are partioned into levels so that each

register is involved in at most one comparison in each level. The depth of a circuit is

defined to be the number of levels in the circuit, and the size of a circuit is defined to

be the number of comparators in the circuit. For example, a 4-input sorting circuit

with depth 5 and size 6 is shown in Figure 1-1.

The study of sorting circuits has intrigued and challenged computer scientists

for decades. They have also proved to be very useful for a variety of applications,

including circuit switching and packet routing [11]. In the past several years, issues

involving the fault-tolerance properties of sorting circuits have gained in importance

and attention [4, 6, 23, 24, 26]. In this thesis, we study the problem of constructing

sorting circuits that are tolerant to a potentially large number of faults.

The study of fault-tolerant sorting circuits was initiated by Yao and Yao [26] in

1985. In particular, Yao and Yao proposed a fault model in which a faulty comparator

simply outputs its two inputs without comparison (i.e., the items are output in the
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Figure 1-1: (a) A comparator. (b) A sorting circuit.

same order as they are input); we will refer to such a fault as a passive fault. They

defined an n-input fault-tolerant sorting circuit to be a circuit that remains a sorting

circuit with probability at least 1 - even if each comparator is independently faultyn

with probability upper bounded by a constant strictly less than 1. They observed

that any sorting circuit can be made into a passive-fault-tolerant sorting circuit if

each of the original comparators is replicated O(log n) times.l This immediately

yields a passive-fault-tolerant sorting circuit with O(log2 n) depth and O(n log2 n)

size. Whether or not there is an alternative approach to fault-tolerance that requires

fewer comparators has remained an interesting open question for several years. In

particular, Yao and Yao conjectured that w(n log n) comparators are needed to con-

struct a fault-tolerant sorting or merging circuit, but no proof of this conjecture has

yet been discovered. (An n-input merging circuit is a circuit that merges any pair of

n-item sorted lists to form a sorted list of n items.)

Since Yao and Yao, many researchers have studied fault-tolerant circuits, net-

works, and algorithms for sorting-related problems in various models. (See [4, 6, 7,

23, 24].) Despite all of these efforts, the O(log n)-gap between the trivial upper and

lower bounds has remained open for Yao and Yao's question for both sorting and

merging. One approach to narrowing the O(log n)-gap was investigated by Leighton,

'In this thesis, all logarithms are taken base 2 unless specified otherwise.
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Ma, and Plaxton [15], who constructed an O(n log n log log n) size circuit that sorts

any permutation with probability at least 1 1. However, this circuit does not yield

an answer to Yao and Yao's question because sorting any input permutation with

high probability is not sufficient to guarantee sorting all input permutations with

high probability, and hence it is not sufficient to guarantee that a faulty version of

the circuit will be a sorting circuit with high probability. In other words, for a ran-

domly generated fault pattern, there are likely to be some input permutations for

which the circuit of [15] fails to sort. (Formally, a fault pattern completely specifies

which comparators, if any, are faulty and how they fail. That is, a fault pattern of

a circuit contains all the information needed to specify the functionality of all the

comparators in the circuit.)

Since 1985, several other fault models have also been formulated for the study of

fault-tolerant sorting circuits [4, 15]. In the reversal fault model, a faulty comparator

outputs the two inputs in reversed order regardless of their input order. In the

destructive fault model, a faulty comparator can output the two inputs in reversed

order, and it can also lose one of its two input values and output the other input

value in both of the output registers (i.e., the result of a comparison between x

and y can be (f,g) where f, g can be any of {x,y,min(x,y),max(x,y)}). In order

to tolerate destructive and/or reversal faults, Assaf and Upfal [4] introduced a new

computational model for the study of the sorting problem. In their new model, more

than n registers are allowed to sort n items and replicators are used to copy the

item stored in one register to another register. We will call this model the sorting

network model to distinguish it from the classic sorting circuit model in which only

n registers are used to sort n inputs and no replicators are allowed. For example, a

2-input sorting network that is tolerant to any single reversal or destructive fault is

illustrated in Figure 1-2.

In [4], Assaf and Upfal described a general method for converting any sorting cir-

cuit into a reversal-fault-tolerant or destructive-fault-tolerant sorting network. In par-

ticular, given an n-input sorting circuit with depth d and size s, the fault-tolerant net-

work produced by the Assaf-Upfal transformation has depth O(d) and size O(s log n).

10
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Figure 1-2: (a) A replicator. (b) A 2-input sorting network that tolerates any single
reversal or destructive fault.

(Asymptotically, it makes no difference whether or not the replicators are counted to-

wards the size since an optimal network would make a copy of an item only if the

item were to be input to a comparator.) When used in conjunction with the AKS

sorting circuit [1], this provides a reversal-fault-tolerant or destructive-fault-tolerant

sorting network with O(n log2 n) size.2

The Assaf-Upfal method proceeds by making O(log n) copies of each item and re-

placing each comparator with O(log n) comparators, followed by a majority-enhancing

device that is constructed from expanders. As a consequence, the size of the resulting

network is increased by a O(log n) factor. Whether or not there is an alternative

approach to reversal-fault-tolerance or destructive-fault-tolerance that can avoid the

O(log n) factor blowup in size (even for the much simpler problem of merging) was

an interesting open question posed in [4].

The problem of sorting with faults has also been studied in the PRAM model

2In this thesis, as in [4], we will assume that the replicators are fault-free. This is not a particularly
unreasonable assumption since replicators can be hard-wired and they do not contain any logic
elements. In fact, some of our results can be extended to handle a model in which replicators are
also allowed to fail.
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of computation. In the PRAM model, it is assumed that faults only occur as in-

correct answers to comparison queries and that no item is lost in any comparison.

In particular, Feige, Peleg, Raghavan, and Upfal [7] designed a randomized fault-

tolerant sorting algorithm that uses O(logn) expected time on an O(n)-processor

CREW PRAM. They left open the question of whether or not there is a deterministic

fault-tolerant sorting algorithm that runs in o(log2 n) steps on O(n) processors.

1.2 Main Results

In this thesis, we develop a passive-fault-tolerant sorting circuit, a reversal-fault-

tolerant sorting network, and a fault-tolerant EREW PRAM sorting algorithm that

beat the O(nlog 2 n) barrier. We also prove a tight lower bound of Q(nlog2 n) on

the size of any destructive-fault-tolerant sorting network. These results partially or

wholly resolve the questions posed by Yao and Yao [26], Assaf and Upfal [4], and

Feige et al. [7]. In particular,

(i) we construct a passive-fault-tolerant sorting circuit with O(log n log log n) depth

and O(nlog n loglog n) size, which resolves the question posed by Yao and

Yao [26] to within an O(log log n) factor,

(ii) we construct a reversal-fault-tolerant sorting network with size O(n log1 0g 2 3 n),

which partially resolves the question of Assaf and Upfal [4] for reversal faults,

(iii) we design a fault-tolerant sorting algorithm that runs in O(log n) steps on an

0(n)-processor EREW PRAM, which resolves the question of Feige, et al. [7],

and

(iv) we prove a tight lower bound of Q(n log2 n) on the size of any destructive-fault-

tolerant sorting or merging network, which answers the question of Assaf and

Upfal [4] for destructive faults.

All of the upper bound results are based on some surprisingly strong fault-tolerance

properties of the AKS circuit [2]. These upper bound results are surprising because

12



the AKS circuit was not previously believed to be fault-tolerant. In particular, when

a constant fraction of the comparators in the AKS circuit fail to work, the expansion

property, which plays a central role in the functionality of the fault-free AKS sorting

circuit, is lost and it appears that the AKS circuit cannot sort at all. (This is perhaps

the main reason that people were unable to make progress on Yao and Yao's ques-

tion.) The novelty of our work is to show that some loose expansion properties, which

can be preserved even in the presence of faults, are sufficient to approximate-sort, and

that approximate-sorting can be combined with other methods to sort.

Although we mainly focus on the study of circuits, networks, and algorithms

that are tolerant to random faults, all of our techniques apply to worst-case faults.

Our results for worst-case faults include the first asymptotically nontrivial upper

bound on the depth of worst-case passive-fault-tolerant sorting circuits, a worst-

case reversal-fault-tolerant sorting network, and an optimal worst-case fault-tolerant

EREW PRAM algorithm for sorting. The techniques in the thesis can also be ap-

plied to other sorting-related problems. For example, we will construct a passive-

fault-tolerant selection circuit with the asymptotically optimal size of O(nlog n).

(Throughout the thesis, a selection circuit is defined to be a circuit that outputs

the median of its n inputs into a prespecified output register. 3 )

1.3 Some Remarks on the Models

Throughout the thesis, we use n to denote the number of input items and p < 1

to denote the upper bound on the failure probability for each comparator, unless

otherwise specified. A circuit, network, or algorithm for solving a problem Q is defined

to be (p, e)-fault-tolerant if it satisfies the following condition: when each comparator

or comparison is independently faulty with probability upper bounded by p, with

3Some researchers define a selection circuit to be a circuit that outputs the small half of its input
values to a prespecified set of output registers and outputs the large half of its input values to the
other registers. In the fault-free case, the asymptotic complexity of a selection circuit is independent
of which definition we use, according to Exercise 17 on page 239 of [10]. It turns out that our results
on selection circuits with passive faults also hold independent of the choice of definition.

13
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probability at least 1- e, a faulty version of the circuit, network, or algorithm remains

a circuit, network, or algorithm that solves Q on all possible input instances. When

we simply refer to a circuit, network, or algorithm as fault-tolerant, we mean that the

circuit, network, or algorithm is (p, l)-fault-tolerant for some constant p < 1. For

any constant c, all of our constructions can be made into constructions with success

probability at least 1 - with no more than a constant factor increase in size, but

we will be content to demonstrate success probability at least 1 - in most parts ofn

the thesis.

As an alternative, we could have defined the notion of (p, e)-fault-tolerance by as-

suming that p is exactly the failure probability of each comparator or comparison, as

opposed to an upper bound on such probability. In general, these two definitions are

not equivalent, and it is straightforward to show that any (p, e)-fault-tolerant circuit,

network, or algorithm defined in the preceding paragraph is also (p, e)-fault-tolerant

according to the alternative definition.4 Hence, to obtain the strongest possible re-

sults, we will use the definition of the preceding paragraph for all upper bound results,

which include all but Theorems 3.2.1, 3.2.2, and 4.2.1, and we will use the alternative

definition for all lower-bound results, which include Theorems 3.2.1, 3.2.2, and 4.2.1.

Finally, we point out that all of the comparators used in the constructions of our

circuits and networks move the small input to its "top" register and the large input

to its "bottom" register. Following the notation of Knuth [10], this means that all of

our circuits and networks are standard. All of our lower bounds are proved for the

general case, i.e., we do not assume that the circuit is standard in the lower bound

proofs. In the fault-free case, it has been proved that any non-standard sorting circuit

can be converted into a standard sorting circuit with the same depth and size (see

Exercise 16 on page 239 of [10]). However, we do not know if a similar result is true

when the circuit is subject to passive faults.

4 A detailed discussion of this phenomena in the context of Boolean circuits with noisy gates can
be found in [21].

14



1.4 Organization of the Thesis

The rest of the thesis is organized into chapters as follows. In Chapter 2, we prove

that the AKS circuit has certain useful fault-tolerance properties. In Chapter 3, we

use the AKS circuit to construct fault-tolerant sorting circuits, networks, and EREW

algorithms. In Chapter 4, we prove a lower bound on the size of any destructive-

fault-tolerant sorting network. In Chapter 5, we present some simulation results on

constructing small depth circuits that, either with or without faults, sort most input

permutations. We conclude in Chapter 6 with discussions on some future research

directions.

We remark that preliminary versions of the results in Chapters 2, 3, and 4 have

appeared in [13, 14, 15].

15



Chapter 2

The Analysis of a Modified AKS

Circuit

In this chapter, we show that the AKS circuit [2] has certain fault-tolerance properties

under both the passive and reversal fault models. These fault-tolerance properties

will be the cornerstone for most of the fault-tolerant sorting circuits, networks, and

algorithms in Chapter 3. We believe that our new analysis for the AKS circuit is of

separate interest in its own right.

The chapter is divided into three sections: Section 2.1 explains why the previ-

ously known analyses of the AKS circuit are not sufficient to establish the desired

fault-tolerance properties and highlights the major difficulties in the new analysis.

Section 2.2 contains a brief description of the AKS circuit and the relevant parameter

choices. Section 2.3 proves the main theorem of the chapter and its corollary.

2.1 The Need for a New Analysis of the AKS Cir-

cuit

The key component of the AKS circuit is the e-halver. An m-input circuit is called an

e-halver if, on any m distinct inputs, it outputs at most ek of the k smallest (largest)

inputs into the bottom (top) registers for any k < . For any constant e > 0, a

16



bounded-depth -halver can be built from an expander as follows. Take an - x 

d-regular (e, -)-bipartite expander with vertex sets A and B, where d is a constant

dependent on . (A bipartite x graph with vertex sets A and B is called an

(a, P)-expander if any k < am nodes in A (or B) are connected to at least /3k nodes

in B (or A). Explicit constructions of expanders can be found in [18].) Assign each

vertex in A to a register in the top half of the circuit, and assign each vertex in B

to a register in the bottom half of the circuit. Partition the edges of the expander

into d disjoint matchings. Assign a comparator between two registers at level i in the

halver if and only if the corresponding vertices are connected by an edge in the ith

matching of the expander.

To see why this construction yields an s-halver, we assume for the purposes of

contradiction that the circuit is not an -halver. Without loss of generality, we can

assume that there exist m distinct inputs and an integer k < such that strictly

more than k of the k smallest inputs are output into R, a set of strictly more than

ek registers in the bottom half of the circuit. Let R' be the set of registers in the

top half of the circuit that are connected to some registers in R. It is not hard to

show that all registers in R' contain outputs with rank at most k. Therefore, all the

IR + IR'l > IRI + eek = RI + (1 - e)k > k output items contained in either R or

R' have rank at most k. This is a contradiction.

It would be nice if the e-halver could tolerate random faults automatically or if the

e-halver could be made fault-tolerant with a o(log n) factor increase in the depth. (For

example, if this were possible, Yao and Yao's question would have an easy answer.) As

we have seen in the previous paragraph, however, the fact that IR' > (1-e)k is critical

to guarantee the e-halver property, and this fact in turn depends on the expansion

property of the expander. Unfortunately, the following observation indicates that

the expansion is lost in the presence of faulty comparators and that the cost of

achieving fault-tolerant expansion is very high. For example, if d = O(1) and each

comparator in the e-halver constructed above is independently faulty with constant

probability, then with high probability there exists a set of k = O(m) registers in

the bottom half of the circuit for which all associated comparators are faulty. Hence,

17



if the k smallest inputs are all input to these registers, then the inputs cannot be

moved to the top half of the circuit. This shows that the -halver itself cannot

withstand random faults. Moreover, even if we increase the depth of an e-halver by a

nonconstant o(log n) factor, any constant number of registers are connected to only

o(log n) comparators, and, with probability w(1), these registers are not connected

to any working comparators. (Using more careful arguments, we can actually show

that with probability approaching 1, there exists a set of w(1) registers that are not

connected to any working comparators.) Hence, if a constant number of the smallest

inputs are input into these registers, they cannot be reliably moved to the top half of

the halver.

Since expansion plays a central role for both the functionality and the correctness

proof of the AKS circuit, the loss of such expansion in the presence of faulty com-

parators is a fatal problem for all previously known analyses of the AKS circuit. In

fact, the loss of the expansion property even makes the approach of using the AKS

circuit to construct fault-tolerant sorting circuits seem to be hopeless. The novelty

of our work is to show that, even without guaranteeing "local" expansion at any sin-

gle expander, it is possible to enforce a certain "global" expansion property that is

sufficient to guarantee that the AKS circuit functions reasonably well.

2.2 The Description of a Modified AKS Circuit

In this section, we describe a modified AKS circuit that will be shown to possess

certain fault-tolerance properties. Our description consists of two parts. In the first

part, we briefly describe a modification of the AKS circuit described by Paterson

in [20]. We modify several parameter choices, and replace the so-called separators

of [20] by a new family of building blocks that we call partitioners. In the second

part, we further modify the AKS circuit into an -AKS circuit, where 1 is a parameter

to be specified later that will correspond to the amount of fault-tolerance attained by

the circuit.

We will be content with proving that certain parameter choices guarantee the

18



desired fault-tolerance properties. No attempt will be made to keep the involved

constants small. In particular, an extremely large constant (much larger than the

previously best known constant for the AKS circuit) is hidden behind the O-notation

for all of our circuits, networks, and algorithms.

For simplicity, we will not give a completely detailed description of the modified

AKS circuit. Instead, we will follow the description in [20] whenever possible. In

particular, we will use the same letters to denote the same quantities as in [20] unless

specified otherwise.

We will use the same AKS tree construction as in [20]. In particular, the circuit

works in stages starting from stage 1, and each stage consists of a constant number

of levels. We choose the same parameters associated with the AKS tree as in [20]:

43 1
A = 3, = - and A = . (2.1)

Also as in [20], we choose

1 36- (2.2)
36

Instead of using the parameters e and 6 as in [20], we use parameters q and a with

the relation
4oA 2

= 65 v(1- )) (2.3)

In a certain sense, our parameters ¢ and correspond to the parameters and 6

in [20]. We do not specify the choices of and ro here, but we will see in the next

section that a sufficiently large is good for our purposes. For now, we merely assume

that cr > 1. The parameters p and cr, like the parameters p and 6 in [20], have nothing

to do with the description of the circuit and will be used only in the analysis of the

circuit.

At each node of the AKS tree, a sorting-related device is applied. Separators were

used in [20], and near-sorting circuits were used in [1]. The separator is constructed

from a constant number of e-halvers. Informally, a separator is slightly more powerful

than a halver in the sense that a separator not only moves most of the inputs to

19



the correct half but also moves most of the "extreme" inputs close to the extreme

positions. Since, as discussed in Section 2.1, we cannot build e-halvers that are both

efficient and fault-tolerant, we cannot construct efficient and fault-tolerant separators

either.

In [20], -halvers and separators are defined in terms of their functionality. The

procedure given for building an e-halver from an expander, and for building a sep-

arator from s-halvers, represents only one of many possible constructions. In this

thesis, we will be interested in the specific constructions given in [1] and [20], but

these constructions will likely fail to have the properties needed to be e-halvers or

separators once faults are introduced. So, to avoid confusion, we define a -divider

with m inputs to be a circuit constructed by using an x d-regular bipartite

(¢,, +)-expander to connect the top half and the bottom half of the m registers in

the same fashion as we construct the e-halver in the previous section. An m-input

(X, 0)-partitioner is constructed by applying dividers in rounds: We first apply an

m-input +-divider to all m registers. Then, we apply an '-input +-divider to the top

m registers and another m-input -divider to the bottom ' registers. Next, we apply

an 4-input +-divider to the top 4 registers and another m4-input +-divider to the

bottom 4 registers (we do not do anything to the "middle" registers). We then

apply another 8--input +-divider to the top ' registers and another m -input -divider

to the bottom registers. We keep doing this until we have applied a divider to a

group with at most Am registers. Altogether, we apply the dividers for 1 + log[lJ

rounds. In the proof of Theorem 2.3.1, we will refer to the dividers applied in the ith

round of a partitioner as the ith round dividers.

Even though the construction of a partitioner (divider) is the same as the separator

(halver) construction used in [20], a partitioner (divider) is conceptually different from

a separator (halver) in that a separator (halver) is defined based on its input-output

behavior and a partitioner (divider) is explicitly constructed from bipartite expanders.

Of course, a fault-free partitioner (divider) is one type of separator (halver).

If we were only interested in passive-fault-tolerant sorting circuits, the modified

AKS circuit just described would be sufficient. However, to construct reversal-fault-
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tolerant circuits and networks, we need to further modify the AKS circuit into an

I-AKS circuit, as follows.

For any given integer I > 0, we use the following general technique to modify

any family of circuits into another family of circuits F" with parameter 1. In

general, an m-input circuit C' in F' is constructed from an '-input circuit C in F as

follows. For each i < , replace the ith register in C, r, by a group of 1 registers,

rij,...,ri,. This group will be referred to as a block corresponding to register ri.

Replace each comparator in C that connects registers ri and rj by a 21-input and 41-

depth odd-even transposition circuit that connects ri, ... , ri and rj,.. ., rj,. (The

reason for doing this can be found in Lemma 2.3.1 and the proofs of Lemma 2.3.2 and

Theorem 2.3.1.) Such a circuit C' in F' will be referred to as the circuit constructed

from C in 'F by applying 21-input and 41-depth odd-even transposition circuits. In

particular, an m-input I-AKS circuit is constructed from an -input modified AKS

circuit described earlier by applying 21-input and 41-depth odd-even transposition

circuits. For example, a 1-AKS circuit is the modified AKS circuit described earlier

with each of the comparators replicated 4 times. This technique is essential to obtain

reversal-fault-tolerance, and will be applied again to construct some other circuits

such as the circuits in Lemma 2.3.2.

Assume that an I-AKS circuit C' is constructed from a modified AKS circuit C by

applying 21-input and 41-depth odd-even transposition circuits. In the AKS tree for

C, each node contains a set of registers R. The -AKS tree for the I-AKS circuit C' is

constructed from the AKS tree for C with each register r E R replaced by the block

of registers corresponding to r during the construction of C' from C. The capacity of

an I-AKS tree node X for C' is defined to be the maximum number of registers (not

the maximum number of blocks) allowed to be contained in X, which is equal to 1

times the capacity of the corresponding AKS tree node for C.

Finally, we do not run the I-AKS circuit all the way to completion. Instead, we

stop an m-input circuit immediately before the first stage where the capacity of the

root for the I-AKS tree is strictly less than /-m. This guarantees that the capacity

of any node in the -AKS tree is at least /-m. For ease of reference, we call such a
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1
circuit a partial I-AKS circuit. Since we only need partial I-AKS circuits with I < ms

(see Theorem 2.3.1), we do not have to worry about the case where the capacity of a

certain node is too small (this was handled by Batcher's sorting circuit in [20]). We

do need to consider integer rounding problems, but this can be easily handled in the

same way as in [20], and we will not address this particular problem hereafter.

2.3 The Main Theorem

We start this section with some definitions to be used in the statement and proof of the

main theorem. As in [20], we assign each m-input I-AKS tree node a natural interval

as follows: the natural interval of the root is [1, m]; if the natural interval of a node

X is [, ], then the natural intervals of the left and right children of X are the left

and right halves of [, f], respectively. Intuitively, when a permutation of {1,..., m}

is input to the l-AKS circuit, the natural interval of a node represents the range of

numbers that the registers in the node "should" contain. The following concepts of

content, strangeness, and potential are all dependent on which permutation is input

to the circuit and which level (time) of the circuit we are interested in, but we do not

include the permutation or time as part of the notations since we will only focus on

a fixed input permutation in the proof of Theorem 2.3.1 and since the time will be

clear from the context whenever we use these concepts. We define c(r), the content

of a register r at time t, as the input contained in r at time t. We also define s(r),

the strangeness of c(r) (or of r at time t), to be the number of levels that c(r) needs

to move upward in the l-AKS tree from c(r)'s current node to the first node whose

natural interval contains c(r). Equivalently, we say that c(r) (or r at time t) is

s(r)-strange. Given any constant a > 1, we define the potential of a register r as:

a s(r ) - l if s(r) > 1
P(r) = o

0 otherwise.
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We define the potential of any set of registers R as:

P,(R) = E P(r)
rER

In particular, the potential of a node X in the l-AKS tree is

P(X) = E P (r)
rEX

As far as we know, potential functions have not been used in any previous analysis

of the AKS circuit. A similar potential function was used in [16] to prove certain fault-

tolerance properties of the multibutterfly circuit for routing. Unfortunately, our use of

the potential function here is much more complex than that in [16]. The next theorem

provides an upper bound on the number of strange items and as such is analogous to

inequality 2 in [20]. Recall that, as discussed in Section 2.2, the capacity of an l-AKS

tree node is the number of registers (not the number of blocks) in the node.

Theorem 2.3.1 Under both the passive and the reversal fault models, for any <

mr, if is a sufficiently large constant and p > 0 is less than a sufficiently small

constant, then a randomly faulty m-input partial -AKS circuit satisfies the following

inequality with probability at least 1 - p(11gm): For all input permutations and all

nodes X in the -AKS tree,

P, (X) < p cap(X). (2.4)

In the theorem, p is assumed to be less than a sufficiently small constant, say,

po. Constant po and the constant behind the O-notation in the theorem are both

dependent on 0 and a. Most importantly, however, p is not necessarily a constant even

though p is upper bounded by the constant po, and the constant behind the O-notation

of the theorem is independent of p. It should be mentioned that p will be quite small

in all of our applications of the theorem and its corollary (see Corollary 2.3.1).

To prove the theorem, we first need to prove a few lemmas. We define a circuit

AV (possibly containing faulty comparators) to be a A-approximate-sorting circuit if,

on all the possible input permutations, XK outputs every item to within A positions
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of its correct position.

Lemma 2.3.1 Under both the passive and the reversal fault models, for any constant

9 > O, when p is less than a sufficiently small constant (depending on 1), a randomly

faulty 21-input, 41-depth odd-even transposition circuit is a 91-approximate-sorting

circuit with probability at least 1- p(O.

Proof: We will only present the proof for reversal faults. The same proof is also

valid for passive faults. In fact, for passive faults, our proof technique can be used

to prove that the odd-even transposition circuit is indeed a (p, pe(l))-passive-fault-

tolerant sorting circuit rather than a (p, pe(l)-passive-fault-tolerant t9-approximate-

sorting circuit. Throughout the proof, we will assume that p is less than a sufficiently

small constant, depending on 9. We do not know if a similar result can be proved for
1p near 2

Let C be the odd-even transposition circuit described in Lemma 2.3.1, and let C'

be a randomly generated faulty version of C. By the 0-1 principle, we only need to

show that

Prob (3 0-1 sequence s such that C' does not 191-approximate-sort s) < pe()

Notice that the total number of possible 0-1 input sequences to C is at most 221.

Hence, when p is less than a sufficiently small constant, to prove the above inequality,

we only need to prove that for any fixed 0-1 input sequence s,

Prob(C' does not 9l-approximate-sort s) < p(0). (2.5)

In what follows, we will prove inequality 2.5 for a fixed s. Assuming that C'

does not 19l-approximate-sort s, we prove that the behavior of the comparators in

C' satisfies a certain condition that is only satisfied with probability upper bounded

by p(). Without loss of generality, we will assume that on input sequence s, C'

outputs a 0 at least 91 away from its correct position. (This assumption only affects

the probability bound in inequality 2.5 by at most a factor of 2.)
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Let k be the number of Os in sequence s. From the top to the bottom, we label

all of the 21 registers in C by rl, r2,..., r21. We focus on the positions of the Os at

each level of C' as the Os and Is move forward through C'. As the Os move forward

through C', they gradually move upward in the s. In particular, a 0 in ri that is

correctly compared to a 1 in ri-1 at level t will move to ri- 1. Intuitively, if most of

the comparators involved work correctly, Os will move upward as they move forward.

The problem in analyzing the movement of the Os, however, is that they can block

each other's upward movement. In particular, if one 0 moves the wrong way, it can

cause a ripple effect much like a multicar collision on a highway. In the process of

generating C' from C, each of the comparators in C can be faulty with probability

up to p. Hence, there are likely to be many such collisions. In addition to slowing

things down, such collisions also introduce dependence issues in the analysis of the

probabilistic movement of the Os.

In order to get around these difficulties, we model the moves made by the Os with

a k x 41 matrix A = (aij) of random biased coins. In particular, a,j = H with

probability at least l- p and a,j = T with probability at most p. The coin at a,j will

be used to determine whether or not the comparator entered by the ith 0 at level j is

faulty. (We number the Os, starting at 1, from the top to the bottom at the outset,

and we never alter the relative order of the Os in C'.) Note that if two Os enter the

same comparator, the two associated coin flips could conflict in determining whether

or not the comparator is faulty. However, we can assume that comparisons between

two Os are resolved according to the initial ordering of the Os; we do not need to

refer to the coin flips in such a case. Note that matrix A completely determines the

behavior of C' on the fixed s.

If at level t the ith 0 is compared to a 1 above, then the 0 moves upward one

position if and only if ai,t = H. If at level t the ith 0 is compared to a 1 below, then

the 0 moves downward if and only if ai,t = T. If at level t the ith 0 is compared to a 0

above (i.e., if it is blocked from above by the (i - 1)th 0), then the ith 0 stays in the

same register, and we change the value of ai,t to Z without checking to see whether

ait = H. If at level t the ith 0 is compared to a 0 below (i.e., if it is blocked from
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below by the (i + 1)th 0), then the ith 0 stays in the same register and we change the

value of ai,t to Z' without checking to see whether ai,t = H.

After these modifications, matrix A now contains some Zs and Z's. Call the new

matrix A* = (aij). Note that A* completely determines the functionality of C' on the

fixed s and vice versa. This fact makes it possible for us to prove inequality 2.5 by

analyzing A*.

Define tk to be the last level where the kth 0 was blocked by the (k - 1)th 0. In

other words, tk is the maximum integer such that a*ktk = Z. Next, define tk-1 to be

the last level where the (k - 1)th 0 was blocked by the (k - 2)th 0 strictly before level

tk. In other words, tk-1 is the largest integer such that tk-1 < tk and a_l,tk_ = Z.

Proceeding in a similar fashion, for j = k - 2, k - 3,..., 2, define tj to be the largest

integer such that tj < tj+l and a,tj = Z. (It may be that a t - Z for all t < tj+,

in which case we set tj = tj_l = ... = tl = O.) If t 2 = 0, let tl = 0; if t 2 > 0, let tl

be the largest integer such that t < t2 and the first 0 is located at rl immediately

before level tl (if the first 0 never reaches rl strictly before level t 2 then set tl = 0).

Let S denote the string of coins

al,tl+lal,tl+2 .. al,t2_la2,t2+la2,t2+2 .. a2,t3-1 .. ak,tk+lak,tk+2 .. ak,41-

Let nH denote the number of heads in S and nT denote the number of tails in S. It

is easy to see that S contains 41- k - tl + 1 coins, which implies that

nT + nH = 41 - tl - k + 1. (2.6)

Roughly speaking, the number of upward moves of the kth 0 is given by nT - nH.

However, this bound is not accurate because of boundary effects (i.e., caused by the

Os piling up against rl). To be more precise, we analyze the movement of the Os by

considering two cases.

Case 1: tj > 0 for all j such that 1 < j < k. In this case, the first 0 is received

at r immediately before level t. On the other hand, the total number of downward
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moves corresponding to S is at most nT. Hence, at the end of C', the kth 0 is at

most nT positions away from rk. By our assumption that a 0 is output to at least V9l

away from its correct position, the kth 0 must be output to at least 91 away from its

correct position rk. Hence,

nT > 91.

Case 2: tj = 0 for some j such that 1 < j < k. By definition,

t = 0. (2.7)

In this case, when analyzing the upward moves of Os corresponding to S, there is

no boundary effect to consider. Therefore, the number of upward moves is given by

nH- nT. Since the kth 0 can initially be at most 21- k positions away from rk, and

since the kth 0 is output to at least I91 away from its correct position rk, we conclude

that

21- k - nH + nT > V2l.

Adding this inequality to equation 2.6 and using equation 2.7, we obtain that

nT > 2 > 91

where we have assumed that 9 < 2 since there is nothing to prove for 9 > 2.

In both Case 1 and Case 2, we have proven that

nT > 91. (2.8)

We next show that for a random matrix A, the probability that A* contains a sequence

S such that inequality 2.8 holds is at most pO().

Let us define aij to be next to a,, in A if and only if: (i) i is equal to u or u + 1,

and (ii) j is equal to v or v + 1. According to the construction of S, the second

element of S is next to the first element of S in A, the third element of S is next to

the second element of S in A, and so on. Hence, when the location of the ith element
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of S is given in A, there are at most 3 ways for the (i + 1)th element in S to be

located in A. In addition, the number of ways that the first element of S is located

in A is upper bounded by k 41 < 21 41 < 812. On the other hand, ISI < 41. Hence,

the number of ways for choosing the location of S in A is at most

812 34 1. (2.9)

By a standard Chernoff bound argument, when the location of S in A is given, the

probability that inequality 2.8 holds is at most

P93(1) (2.10)

for p less than a sufficiently small constant (depending on i9). Multiplying the bounds

of inequalities 2.9 and 2.10 and setting p to less than a sufficiently small constant, we

find inequality 2.8 holds with probability at most p(). This completes the proof of

inequality 2.5 as well as the proof of Lemma 2.3.1. 

In the next lemma, the circuit V is the parallel union of s disjoint circuits,

A/,..., A,. Each Ai is constructed from a -divider by replacing each register with

a block of I registers and each comparator with a 21-input 41-depth odd-even trans-

position circuit. By definition, each of the +-dividers is constructed from a d-regular

bipartite expander, and thus has depth d, which is a constant depending in . Hence,

the depth of each A/i and the depth of Al' are 4dl. A block or a register will be called

a bottom (top) block or register in iJV if it is at the bottom (top) half of some X/i. For

a set of bottom (top) registers R, we use N(R) to denote the set of top (bottom) reg-

isters that are connected to at least one register in R by some odd-even transposition

circuit. In the next lemma, ni denotes the number of inputs to M, and n denotes the

number of inputs to .

Lemma 2.3.2 Let R be a fixed set of bottom (resp., top) registers and b be the number

of blocks that contain at least one register in R. Under both the passive and the reversal

fault models, when is large enough, a randomly faulty version of A/' has the following
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property with probability at least 1 - pe(bl+lRI): On all input permutations such that

each Ali contains at most 49ni inputs with rank at most k < 49n (resp., at least

k > lj5n), if every register in R contains an output with rank at most k (resp., at

least k), then at least IRI registers in N(R) contain outputs with rank at most k

(resp., at least k).

Note that in the 1 - p(bl+lRI) lower bound for the success probability claimed in

the lemma, we could omit the IRI term without affecting the meaning of the lemma

since bl > RI. However, we have chosen to include the term RI for ease of future

applications.

Proof of Lemma 2.3.2: The two claims of the lemma are symmetric, and so we

consider only the case where R is a set of bottom registers. We make use of the 0-1

principle. Suppose that each comparator is randomly set to be faulty (with probability

p or less) ahead of time. We will show that with probability at least 1 - pC(bl), the

resulting circuit has the following property: On all 0-1 input sequences with exactly

k Os such that each Ji contains at most ni O-inputs, if all of the registers in R

contain a O-output, then at least IRI registers in N(R) contain a -output.

Let

0 1 (2.11)
do

We focus on the bottom blocks containing at least one register in R. We say that such

a block is dense if it contains strictly more than dOl registers in R; we say that such

a block is sparse if it contains at least one but at most dOl registers in R. Note that

when dOl < 1, there exists no sparse block. Let bil be the number of dense blocks in

Xi, and let bi2 be the number of sparse blocks in A;i. We call a top (bottom) block B'

a neighboring block of a bottom (top) block B if there is an odd-even transposition

circuit connecting B and B' in K. Note that each block has exactly d neighboring

blocks because each of the corresponding +-dividers has depth d. We call a block B

good if all of the (no more than d + d2) odd-even transposition circuits associated with

B or associated with any of the d neighboring blocks of B are 01-approximate-sorting

circuits. Let bl be the number of good dense blocks in Ai, and b2 be the number of
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good sparse blocks in AMi.

When a good block B is connected to a top block B' by a 01-approximate-sorting

circuit M, the correctness of the following two simple observations is straightforward:

Observation 1. At most 1 Os can be moved from B' to B through M.

Observation 2. If B contains at least one 0 at the end of M, then B' contains at

least (1 - 0)1 Os at the end of M.

The goal of our proof of Lemma 2.3.2 is to find a large number of Os in N(R)

in comparison with the number of Os in R. This goal will be achieved as follows.

From observation 1 above, each good dense block contains Os throughout the circuit.

Therefore, we can hope to use the expansion property of the -divider to find many

Os in the neighboring blocks of a good dense block. From observation 2, for each

good sparse block, its unique neighboring block at the end of A/ contains many Os,

compared with the number of Os contained in the sparse block. In particular, we

prove the lemma by considering the following two cases.

Case 1: El<i<s bil > ¢ El<i<s bi2.

By Lemma 2.3.1, each dense block is good with probability at least 1 - (d +

d2)pO( ) = 1 - pe(l) provided that p is less than a sufficiently small constant (particu-

larly, we can assume p to be small compared with d + d2). A standard application of

the Chernoff bound now implies that when p is less than a sufficiently small constant,

the following inequality holds with probability at least 1 - p ( E~<<sbl):

> E bil. (2.12)
1<i<s <i<s

By the assumption of Case 1, we have Zl1<i< bil > Ej<<s (bj + bi 2) 

Hence, inequality 2.12 holds with probability at least 1 - pO(bl) = 1 pe(bl+lRI) (where

the constant behind the -notation is allowed to depend on ~, d, and 0). In what

follows, we need only show that at least JRIJ registers in N(R) contain a 0 whenever

inequality 2.12 holds.
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Consider any good dense block Bil in Ai. Since Bil contains more O-outputs than

could possibly come from its d neighboring blocks through the d 1-approximate-

sorting circuits, Bil must have contained Os throughout all the levels of Mi. Hence,

by observation 2, each neighboring block of Bil must contain at least (1 - O)l Os right

after being compared with Bil. Moreover, by observation 1, each of these neighboring

blocks of B 1i contains at least (1 - d)l Os at the end of JF since they may lose at

most (d - 1)01 Os through the later d - 1 or fewer 01-approximate-sorting circuits.

Now, assume for the purposes of contradiction that bl > 21(+1) for some i. Then,

we can choose 2(1) good dense blocks in Mi. By the expansion property of the

+-divider, these blocks have at least 4 neighboring blocks in the top half of i.

By the discussion of the preceding paragraph, each of these neighboring blocks has

at least (1 - 0d)l O-outputs at the end of Es. Thus, the number of O-outputs of /i is

at least

(1 - d) = nn (2.13)
21(5 + 1) (1 - d) = 2( + 1) (2.13)

where we have used equality 2.11. When is large enough, the quantity in equa-

tion 2.13 is strictly larger than 4-ni, which is larger than the number of O-inputs to

ei. This is a contradiction. Hence, we conclude that for all i

bl ni (2.14)
bi < 21( + 1 (2.14)

By inequality 2.14 and the fact that each Ai is constructed from a (d, 1)-

expander, all of the l<i<s bil good dense blocks have at least El<j<s b'n neighboring

blocks of top registers in N(R). By the argument used for deriving inequality 2.13,

we know that the number of Os contained in these El<i<s bil top blocks of registers

in N(R) is at least

/ l<i<s bl1(1 - d)l

= ( -1) El<j<s bill (by equality 2.11)

k> 2(- _1) El<i<s bi1l (by inequality 2.12)
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> 3 (- 1) E l<i<(bill -+ b )

= -( - 1) El<i<8 (bll + bi2d0l)

> 1 IRI

> I IRI4 '"

(by the assumption of Case 1)

(by equality 2.11)

(by the definitions of bil and bi2)

(for 0 sufficiently large).

Case 2: E1<i<s bil < El<i<s bi2.

By Lemma 2.3.1 and a standard Chernoff bound argument, we know that the

following inequality holds with probability at least 1 - p (< ~< b12 ) = 1 - pe(bl+lRI)

provided that p is sufficiently small:

(2.15)< bi2 > < bi2
l<i<s l <i<s

Next, we show that at least 4 IRI registers in N(R) contain a 0 provided that inequal-

ity 2.15 holds.

By observation 2, for each good sparse block, its unique neighboring block at the

end of V contains at least (1 - 0)1 Os. Moreover, since the dividers are constructed

from d-regular bipartite expanders, different blocks have different neighboring blocks

at the end of A/. Hence, the number of O-outputs contained in N(R) is at least

El<i<s b 2(1 - 0)1

> El<i<S bi2(1 - 0)1

> El<i<(bi2 + bilql)

= (1-3)0 l1 <i<s(bill + bi2dO1)

> T 3RI

41"

(by inequality 2.15)

(by the assumption of Case 2)

(by equality 2.11)

(by the definitions of bil and bi2)

(for 0 sufficiently large).

Lemma 2.3.3 Let b(l) < ... < b•i() be a subsequence of a positive non-decreasing
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sequence bl < ... bp. Then, there exists an integer s > such that

1
bi(j) > E bj.

1<js 1ji(s)

Proof: Take the minimum s such that

i(s) 8 (s - P (2.16)

(Such an s exists because s = 4e satisfies inequality 2.16.) By the minimality of s,4

i(t) > 8 (t- ) (2.17)
8

for all t such that +1 t < s -1. By the monotonicity of the sequence bl < ... < bp

and inequality 2.17,
1

bi(t) > - bj (2.18)
8(t- --1)<j<8(t- P-)

for all t such that +1 t < s-1. By inequality 2.16, we have i(s)-8 (s-- -1) < 8.

Hence,
1

bi(,) > - bj. (2.19)
8 8(s--l)<j<i(s)

Adding inequality 2.19 with inequalities 2.18 (i.e., for all t), we obtain

1

bi(j) > E bj,
~< j<_s l <j<i(s)

which is actually stronger than the claimed inequality. ·

Proof of Theorem 2.3.1: We focus on a particular faulty partial l-AKS circuit

that violates inequality 2.4 on a particular input permutation H, and we prove that

the faulty circuit has certain properties that can be satisfied by a randomly generated

faulty partial -AKS circuit with probability at most p(logm).

We choose the first stage t during which inequality 2.4 is not satisfied at a certain
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node X. By the minimality of t, we have

P (Y) < cap(Y) (2.20)

for any -AKS tree node Y before stage t. Let Yi denote the number of i-strange

items in node Y. Then, the potential function at node Y can be written as

P (Y) = y Z k-1= Ykk - 1. (2.21)
k>l rEY, s(r)=k k>l

Therefore, inequality 2.20 can be rewritten as

i>1

Thus,

E Yi/' i- < cap(Y)
i>j

for all j > 1. Since a > 1, the previous inequality implies that

< (2.22)
cap(Y) ) (2.22)

for all j > 1. Inequality 2.22 gives an upper bound on the ratio of the number of

items at node Y with strangeness j or more to the capacity of Y, and it will be useful

when we upper bound the number of strange items inductively. (It is analogous to

inequality 2 in [20].)

On the other hand, by the assumption that Pa(X) > pL cap(X) and equation 2.21,

E Xkak-l > /I cap(X),
k>l

where Xk denotes the number of k-strange items in X. Therefore, there exists an

integer k > 1 such that

Xk > 2) (cap(X). (2.23)
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We choose the minimum k that satisfies inequality 2.23 and analyze how these Xk k-

strange items are misplaced into X. By doing so, we derive some necessary properties

on the faulty l-AKS circuit. Then, we prove that such properties can be satisfied with

probability at most p(logm). We will consider two cases: k = 1 and k > 1. The case

k = 1 is the hard case in [20] and proceeds without much additional work once we

have Lemma 2.3.2. Unfortunately, the case k > 1 requires much more work than its

fault-free counterpart in [20].

Case 1: k =l.

At the beginning of the first stage, all items are either at the root or the cold

storage, and nothing is strange. Hence, our choice of t guarantees t > 2. We trace

back how the X1 -strange items at node X are moved into X from P, C, and C',

the parent and two children of X respectively. It is easy to see that

X1 = I{i: i is 1-strange in X, and i comes from C or C'}[

+ I{i: i is -strange in X, and i comes from P}. (2.24)

Since a -strange item in X is 2-strange in either C or C', we can upper bound

the first term of equation 2.24 by C2 + C2, where C2 and C2 denote the number of

2-strange items in C and C' respectively. By inequality 2.22, we have

1
C2 < -/ cap(C)

and
1

C2 <- I cap(C').

Hence, the first term of equation 2.24 is at most

1 1 2 A-1 cap(C) + -,cap(C') =- /cap(X)- (2.25)
o ra

In what follows, we will use Paterson's argument aided by Lemma 2.3.2 to upper

bound the second term of equation 2.24. This is fairly complicated because we have
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to deal with items that become strange for the first time (in other words, some items

may not be strange in P but may be strange in X). An item can be misplaced into

X due to one of the following two reasons: (1) the first round divider at P may not

divide all the items into the correct halves; (2) P may contain too many items that

want to go to X's sibling, X'.

We assume that the number of items that are misplaced into X due to the first

reason (i.e., those that are output into the wrong half by the first round divider at

P) is equal to

CIPI < ( 2 A cap(X). (2.26)

Here, we use JIP, the number of registers in P, instead of cap(P) since P may not be

full and we will apply Lemma 2.3.2 where P1, instead of cap(P), will be a parameter.

We next upper bound the number of items that are misplaced into X due to the

second reason (i.e., those that want to go to X' from P but will be forced into X due

to capacity constraint). Let V be the set of all items of strangeness 0 with respect

to X' (some of these items may not be located in node X). Following the notions of

Paterson, the "natural" positions for V correspond to the subtree rooted at X' plus

one half of P, one-eighth of P's grandparent, and so on. (We can assume an infinite

chain of ancestors for this argument. Also, note that the levels of the l-AKS tree are

alternatively empty and full and that X' is empty at stage t - 1.) Ideally, if all items

in V are in V's "natural" positions, then P cannot contain too many items that want

to go to X'. In reality, some of the items in V may not be in G's "natural" positions.

In such a case, some of G's "natural" positions must be occupied by items not in V.

In particular, it is not hard to see that the number of items that belong to V but will

be forced into X due to capacity constraint is equal to the number of items that are

not in V but are occupying V's "natural" positions not in P. We next upper bound

the former quantity by giving an upper bound for the latter quantity.

Clearly, an item not in V is 2 or more strange in a child of X', 4 or more strange

in a greatgrandchild of X', and so on. Since inequality 2.22 holds before we find the
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first violation of inequality 2.4 at stage t, a child of X' can contain at most

Pu (I)A cap(X)

items not in V, a greatgrandchild of X' can contain at most

,(P1 A cap(X)

items not in V, and so on. Hence, the total number of items not in V but occupying

V's "natural" positions (strictly) below X' is thus upper bounded by

2 (-) cap(X)

2,tA cap(X)
oav( - 4(A)2)-

±8(a)
A 3

- cap(X)
A 5

v
cap(X) +...

(2.27)

On the other hand, V's "natural" positions strictly above P may be fully occupied

by items not in V, but the number of such positions is at most

cap(X)
23 vA 3

cap(X)
25 vA 5

cap(X) cap(X)
27 vA7 v(8A 3 - 2A)'

(2.28)

By the argument of the preceding paragraph, the number of items in P that want to

go to X' but will be forced into X due to capacity constraint is upper bounded by

the the sum of the quantities in equations 2.27 and 2.28:

2iA cap(X)
vo(1 - 4A-)

+ cap(X)
v(8A 3 - 2A)'

Now, adding the quantities in equations 2.25, 2.26, and 2.29, we obtain an upper

bound for X1 in equation 2.24:

2iA cap(X)
c0V

2,uA cap(X)
vt(1-4 )

cap(X)
v(8A 3 - 2A)

+ cap(X)
2Av

(We remark that a corresponding formula in [20] contains a term of caup(x) whichvAI

37

(2.29)

+ 32y -:



does not appear in our formula. Such a difference occurs since we count the number

of items with strangeness exactly 1 whereas Paterson counted the number of items

with strangeness at least 1.) By inequality 2.23,

t cap(X)
2

Combining the last two inequalities, we obtain

2A 2#A 1 ( #2 oA + 2A + 1 + (2.30)
v vor(1 - 42 v(8A3 - 2A) 2vA 2

Hence,

4A2 1 -- 4A2 1
+ 1 _ A21 ) 4A2 1 (2.31)

By choosing q sufficiently large, we can ensure that

4_A_2 1 1

1_4/A2 ) 576

By equations 2.1 and 2.2 and inequality 2.31,

43 1 1 4

576 576 35 100'

By the choice of ( in inequality 2.26, the preceding inequality implies that the

partitioner at P outputs at least -4iPI of the items into the wrong half. Hence,

at the end of the first round divider at P, at least 4I1P] items are output into the

wrong half. Without loss of generality, we assume that at the end of the first round

divider, at least i41PI items that belong to the top half are output to the bottom

half. Among the 4T PI or more items that belong to the top half but are output to

the bottom half, at most P have ranks greater than 49IPI, and all of the other

at least IPI - 1 PI > 1PI items have ranks 409IPI or less. Let us define a pair

(P, R) to be bad if R is a set of bottom registers at the end of the first round divider

at P such that IRI = jp and R contains output items with ranks 0I1PI or less at

the end of the first round divider at P. The above arguments show that the faulty
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partial I-AKS circuit violating inequality 2.4 on input permutation H has a bad pair

(P, R). So to complete our analysis of Case 1, we need only show that the probability

there exists a bad pair is at most p(llogm)

For any fixed pair (P,R) such that IRI = P, by Lemma 2.3.2 with s = 1,
100'

k = lPI, and 5 sufficiently large so that IRI + IRI > k,

Prob((P, R) is bad) < pE(IRI) =p(Il)P. (2.32)

Hence,

Prob(3 a bad pair (P, R))

< EPE RCP Prob((P,R) isbad)
IRI= 

_< Ep ( o)pE) ] (by inequality 2.32)
100

< Ep 21PIp9(0PI) (since (v) < 2')

< Eppe(lPI) (for p sufficiently small)

< O(m log m)pe(lPI), (2.33)

where the last inequality holds because there are at most O(mlogm) I-AKS tree

nodes. On the other hand, since priority is given to the upward movement of registers

in any -AKS tree node and since X is not empty at stage t, P contains at least

A cap(P) registers at stage t - 1. Therefore, IPI A cap(P) > Ax/' (since any node

in the -AKS tree for the partial -AKS circuit has capacity at least V/i). Hence,

O(m log m) pO(lPI) < O(m log )p(AX i) < pO(llogm), (2.34)

where the last inequality holds due to the assumption that < m and the fact that

A is a constant. Combining inequalities 2.33 and 2.34 completes the proof for Case 1.

Case 2: k> 1.

This case is much more complicated than the preceding one. The source of the

difficulty is that all previously known analyses of the AKS circuit rely on the expansion
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property for arbitrarily small sets of registers and, as discussed in Section 2.1, such

an expansion property cannot be preserved with high probability in the presence of

faults. To get around this problem, we will trace back k- 1 stages to see how the Xk

k-strange items in X are eventually moved into X. Strange items can come either

from below or above in the tree. In the former case, the items would be more strange

one stage earlier, and we can apply inequality 2.22. In the latter case, if a good

number of the comparators associated with the items work correctly, we will get a

certain expansion property. Our hope is to show that even under the loss of the local

expansion property for possibly many small sets of registers, globally, the probability

that the circuit can lose the expansion property in very many places is relatively

small.

Since we have k-strange items in the -AKS tree at the beginning of stage t, we

have t > k + 1 (otherwise all the nodes with depth more than k in the l-AKS tree

would be empty at stage t and no item could be k-strange). In what follows, we will

trace backward k- 1 stages and see how these Xk k-strange items are misplaced into

X. We will inductively define a sequence of sets Rt,..., Rt-k+l such that each Rt-_

is a set of registers at the beginning of stage t - i with strangeness at least k - i.

For ease of notation, let c(R) be the set of all the items contained in R for any set of

registers R, and let

rt-i= Rt-il. (2.35)

Base step: Take Rt as the set of all Xk registers at the beginning of stage t that

are k-strange in X. By definition, all the registers in Rt have strangeness at least k.

Inductive step: Assuming that Rt-i has been defined for some 0 < i < k - 1, we

now define Rt-i-1. For each register r in an -AKS tree node X, c(r) may come from

either the parent of X or a child of X. In the former case, we say that c(r) comes

from above; in the latter case, we say that c(r) comes from below. Let

{ items in c(Rt_,) that come from above})
at _i e 

rt-i

where rti is defined in equation 2.35. Given Rt_-i, a set of registers with strangeness
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at least k - i at the beginning of stage t - i, we construct a set of registers Rt-_-1 at

the beginning of stage t - i - 1 as follows.

Case (a): at-i < (at most half of the items in Rt-i come from above). We simply

choose Rt-i-1 as the set of all the rt-i registers at the beginning of stage t - i - 1

that contain an item in c(Rt_i).

Case (b): t- > (more than half of the items in Rt-i come from above).

We focus on the at-irt-i items in c(Rt-i) that come from above. By the induction

hypothesis, each of these at-irti items is at least (k - i)-strange in a register of Rt-i.

Hence, each is either too small or too large for the node that it currently resides in.

Without loss of generality, we assume that more than half of the items are too small

for the nodes that they currently reside in. Let rank(i) be the maximum of these

small items, and let c(r) be any one of these small items. Let W be the AKS-tree

node that contains c(r) at stage t - i - 1. By the choice of c(r), c(r) is moved from

W to a son of W from stage t - i - 1 to stage t - i. Hence, at the end of stage

t - i - 1, c(r) cannot possibly be located in the uppermost or lowermost -fraction

of the partitioner at W. This means that, at the end of stage t - i - 1, c(r) is at

one of the following four regions of the partitioner at W: (1) the bottom half; (2) the

second ; (3) the second ; (4) the second '1(= ).

If W is a leaf of the -AKS tree at stage t - i - 1, it is possible that W is only

partially full. In such a case, since priority is given to upward movement of registers

in W, at the end of stage t - i - 1, c(r) cannot possibly be located in the left most

Acap(W) (as opposed to TlWI where WI denotes the number of registers in W)

registers in W.

We choose the smallest h < 4 such that at least at-irt-i of these items are from

the hth region (recall that we have assumed that at least aCt-irt-i of the items from

above are too small). We trace back where these cat_-irt-i or more items are located

at the end of the hth round dividers of the corresponding partitioners. Let Ut-i be

the set of registers containing these items at the end of the hth round dividers. Let

u't_ be the number of registers in N(Ut_i) that contain an item less than or equal to

rank(i) (the meaning of N(R), where R denotes a set of registers in a set of dividers,
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can be found immediately before Lemma 2.3.2). Note that such registers are at least

(k - i - 1)-strange. If u'_i > rt_i, let Rti-_l be any set of registers at the beginning
of stage t- i -1 that contain min{, L t-i}rt.i of the U items. 'If < r

Tt--- Ut- i e .I U't-i < rt- ,

then we abandon everything that has been established in Case (b) and simply use the

method of Case (a) to choose Rt-1_l. By the discussion of the preceding paragraph,

we can easily check the correctness of the following claim.

Claim 2.3.1 Suppose that D is the hth round divider at an AKS tree node W and

D contains at least one register in Ut-i. Then D is a divider with strictly more than

Acap(W) registers.

By the induction hypothesis, the items in c(Rt-_) are at least (k - i)-strange in

the registers in Rt-i. Since each register in Rt-i-_ is at most one level higher in the

l-AKS tree than its corresponding register in Rt_i, all of the registers in Rt-i- 1 are

at least (k - i -1)-strange. This finishes our inductive construction of Rt-1_l from

Rt_-.

For 0 < i < k - 2, let

qt-i- rt--1 (2.36)rt-i

Claim 2.3.2 For 0 < i < k - 2, t_- is an integer in [1, ].

Proof: Straightforward from equation 2.36 and the construction of Rt-_i_ from Rt-i.

For 0 < i < k - 2, the strangeness of any item in Rt--1_ is at least its strangeness

in Rt-i minus 1. So by counting all of the elements from above or below, we have

Pa(Rt-i-_l) > t-ia-l Pa(Rt-i)

for all i, 0 < i < k - 2. If t-i < , then, by the fact that the elements from below

should be one more strange in Rti-_l than in Rt-i,

R ) > Pa(Rt-i)
2
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for all i such that 0 < i < k - 2 and t-i < . From the preceding pair of inequalities,

we have

Pa (Rtk+l,) Pa(Rt) 1 ()
O<i<k<-2, tOt-i> 1

> tIcap(X) -II ti (2.37)
o<i<k-2, et-i<1 O<i<k-2, at-i>,

Since we start from a set of registers in node X and we move at most one level

upward and one level downward in the -AKS tree when constructing Rt-i-1 from

Rt-i, Rt-k+l is located within k - 1 levels from X. Therefore, the total capacity of

all nodes that can possibly contain registers in Rt-k+l is upper bounded by

cap(X) -(k- l) [(2A)k- 1 + (2A) k- 2 +... + A + 1 + A-1' ... + A (k 2) + A- (k- )]

1
< cap(X) (2A 1 (2.38)

2A

By inequality 2.38 and the fact that inequality 2.4 is not yet violated at stage t - k+ 1,

P,(Rt-k+l) < cap(X) (2AI 1 (2.39)
2A

Combining inequalities 2.37 and 2.39, we get

H (I le)2 H (kt (V 1~< , (2.40)
_ _ k2, 'ti< 2O<i<k-2, et-i> ½ ) 12

Hence,

n - < 14A - 1 1 (2.41)
O<i<k-2, at-i> 2A

where = {i 0 < i< k - 2, at- > }1 and y ={i : 0 < i < k-2, t-i < }1

From equality 2.3, the fact t-i > 1 (see Claim 2.3.2), and inequality 2.41, we obtain

( 4oA)2z ( H __ 4A5l 1 _ __ 2Al1
v 6(1 - 6 O -A- 1 2A(2.42)2A 65 A O<i<k-2, at-i>½V 
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where z = I{i : 0 < i < k - 2, at-i > , bt-i > }1. Let 3 be a constant such that

4A 4(1A = 71,i. (2.43)

From inequality 2.42 and the fact that k > 2,

,(P+1)2z < (x-y)+(k-1)

Therefore,

z f(< ) (2.44)
2(1 + A)

By simple calculus, we have

VI/(> - (k
2(1 + )2J kV-) -

y)->, 
V.

Thus, f(/,) is monotonically increasing. According to equation 2.43, we can enforce

1 < by letting a be large. Therefore, by inequality 2.44,

(k - 1) + x - y

3

- y k -1< +
2 4

for ca sufficiently large. Thus,

I{i : i < k - 2, at-i >

x-y
2

t<}1
2 65

k -1

4 '

where the last equality holds since x + y = k - 1 by definition. Recall that for any i

such that 0 i < k - 2 and at-i > , we have used Ut-i as an intermediate group

of registers in constructing Rt-i-1 from Rt-i (see page 41). We define Ut-i to be bad

if at-i > and )t-i < -. Inequality 2.45 implies that the number of bad Ut-i is at

least k-14Let i(1) < i(q) be the increasing sequence of all integers i such that i 

Let i1) < ... < i(q) be the increasing sequence of all integers i such that 0 < i <

44

x-z > x- (2.45)

- 1 - ( -
I II I 1 I _

1 -2
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k -2 and Ut-j is bad. We have q > (k - 1). Applying Lemma 2.3.3 to the sequences

rt < rt-i _ ... < rt-(k-2) and rt-i(1) < rt-i(2) < ... < rt-i(q),

we know that there exists an integer s > k1 such that

1

rt() > E rt-j. (2.46)
l<j _<s O<j<i(s)

We will finish our analysis of Case 2 by proving that the probability there exists

such a sequence of bad sets (which will be referred to as a bad sequence hereafter)

Ut-_i(),..., Ut-i(s) is small. For 1 < j < s, let Bj be the set of blocks that contain at

least one register in Ut-i(j), uj = Ut-i(j)l, and bj = IBjI, i.e., the number of blocks

that contain at least one register in Ut-i(j).

Claim 2.3.3 For a given sequence Ut-i(l), Ut-i(2),..., Ut-i(s),

Prob (Ut-i(l), Ut-i(2), . . , Uti(s) is a bad sequence) < pe(l<j< 8 bj)

Proof: If Ut-i(j) is bad, then Ot-i(j) < by definition. Hence

Urtti(j) < 6 (2.47)

rt-i(j) / 65'

where u'_i(j) is defined in the construction of Rt-i(j)_l from Rt-i(j) (see page 41). For

a sufficiently large choice of the constant (so that + 1 < ), inequality 2.47

implies

u't-'(J < ---~. (2.48)
rti(j) 64

According to our inductive construction of Rt-i(j)_l from Rt-i(j) and the fact at-i(j) >

2 (since Ut-i(j) is assumed to be bad), we have IUt-i(j)j > at_(j)rt-(j) 1

Therefore, inequality 2.48 implies

(2.49)
Ut-_i(j)l 4
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Note that inequality 2.22 holds at stage t - i(j) and that all of the items in Ut-i(j) are

at least 1-strange. Hence, by Claim 2.3.1 and the fact/2 < 0.49, Ut-i(j) satisfies the

condition on R in Lemma 2.3.2. Thus, by applying Lemma 2.3.2 to all of the dividers

associated with Ut_i(j), the probability that inequality 2.49 holds is at most p(lbj).

Hence, we have

Prob(Ut_i(j) is bad ) < p(lbj).

The claim now follows from the independence of the Ut-i(j)'s, 1 < j < s. ·

In the next few claims, we upper bound the number of possible ways of choos-

ing the sequence Ut_i(),..., Ut-i(s) and show that even after this number is taken

into account, the probability that a faulty -AKS circuit contains a bad sequence

Ut-i(), ..., Ut-i(s) is very small.

Claim 2.3.4 For fixed k, the number of ways for choosing the sequence rt, rt 1,...,

rt-k+l is at most mq k- 1.

Proof: The number of ways for choosing rt is at most m. By Claim 2.3.2, when rt-i

is given, the number of ways for choosing rt-i-1 is at most . Overall, the number of

ways for choosing rt, rt-1,... , rt-k+l is at most ma k- 1. ·

Claim 2.3.5 When cap(X) and rt are both given, the number of ways for choosing

Rt is at most

O(V- log m)(cap(X))\ rt )
Proof: Since the partial l-AKS circuit is run for O(log m) stages and the -AKS tree

has at most (m/ cap(root)) < +/ nonempty nodes at each stage, the total number

of ways for choosing node X is upper bounded by

O(v/- log m).

When X is given, the number of ways for choosing Rt, a set of registers contained in

X, is at most
(cap(X)rrtJ
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Multiplying the quantities in the last two formulae, we obtain the desired upper

bound. ·

Claim 2.3.6 When the sequence rt-i(1),... , rt-i(s) is given, the number of ways for

choosing the sequence bl,..., bs is at most

° (1 ri(j)

Proof: This is because bj < rt-i(j) for each 1 < j < s. 

Claim 2.3.7 If Rt and the sequences rt, rt-1 , . . , rt-i(s)+l,rt-i(s), i(1), i(2), ... i(s),

and bl,..., b are given, then the number of ways for choosing the sequence B 1,..., B,

is at most

2°(Ei<ji<l bj).

Proof: Let Bt-i be the set of blocks that contain at least one register in Rt-i for

i = 0, 1, 2,..., i(s) + 1. We first upper bound the number the possible sequences

Bt, Bt-1, . . ., Bti(s)-.

(Note that by the choice of s immediately before inequality 2.46, i(s) < k - 2 and

hence Bti(,)-l is well defined.) Clearly, Be is fixed when Rt is given. We next count

the number of ways for choosing Btil when Bt_- is given. Each block in Bt_-i- is

connected by a (t - i - 1)th stage partitioner to some block in Bti. Since each block

is connected to at most d blocks by a divider, it is connected to at most d4 blocks by

a partitioner. On the other hand, there are at most rt-i blocks in Bti. Therefore,

when Bti is given, the number of ways for choosing Bt-i- 1 is at most

rti) rti < _ < 2O(rt-) , for i=0,1,...,i(s) (2.50)
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where the constant behind the O-notation is dependent on and d but not dependent

on p.

On the other hand, Bj corresponds to Ut-i(j), and Bti( j )_l corresponds to Rt-E(j)_l.

Moreover, by the description of Ut-i on page 41, Rt-i(j)_l and Ut-i(j) correspond to the

same stage of the AKS tree. Hence, Bj and Bt-i(j)-_ correspond to registers within

the same stage. Therefore, by an argument similar to the preceding paragraph, we

know that when Bt-i(j)_l is given, the number of ways for choosing Bj is at most

2°(t-iU) -1) = 20(rt-i(j)), for j = 1, 2, ... , s, (2.51)

where we have used Claim 2.3.2. Multiplying all the quantities (i.e., for i = 1, 2,..., i(s))

in inequality 2.50 with all the quantities (i.e., for j = 1, 2,.. ., s) in equation 2.51, we

obtain an upper bound on the number of ways to choose the sequence B1, B2, .. ., Bs

under the assumption of the claim:

20(Eo<ji(s) -). 20(E <j<, rt-i(j))

= 2°(E-<j<r t-i( j)) (by inequality 2.46)

= 2 °(Zl<j< ' bj) (since rt-i(j) < bj ).

Claim 2.3.8 If the sequence B 1,... , B is given, then the probability there exists a

bad sequence Ut-i(l),..., Uti(s) is at most

O( _<j< I bj) (2.52)

Proof: For each j such that 1 < j < s, there are bj blocks of size in Bj. Hence,

when Bj is given, the number of ways for selecting the elements in Ut-i(j) is at most

2
bj . Thus, the number of ways for selecting the sequence Ut_i(1),..., Ut_i(s) is upper

bounded by
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Therefore,

Prob(3 a bad sequence Ut-i(1),..., Ut-(,) B 1 ,..., B, are all given)

< 2E<j <s 'I bj Prob(a fixed sequence Ut-_(l),..., Uti(s) is bad)

< 2E_<j<_ Ibj p e(E <j <Z I bj )

< p(l < j<l I bj)

where the second inequality follows by Claim 2.3.3, and the last inequality holds for

p sufficiently small. ·

Claim 2.3.9 Let cap(X), k, and sequences rt,..., rt-k+l and i(1),...,i(s) be given.

Then

Prob(3 a bad sequence Ut-_(l),..., Ut-i(,)) < P(logm)

Proof: Claims 2.3.5 to 2.3.8 imply that for given cap(X), k, and sequences rt, ... , rt-k+l

and i(1),.. , i(s),

Prob(3 a bad sequence Ut-i(l),..., Ut-i(s))

< O(i\ log m) P()) (II rt-i(j)) 2 (<< 8 lb)s1b 3)

< O(v- logm)(cap(X ))pl(El<j<lbi)\rt/ (2.53)

where the last inequality follows since I bj > rt-i(j) and p can be chosen sufficiently

small.

To prove the claim, we need to show that the quantity in equation 2.53 is at most

pO(llogm) Since s > k1 and I bj > rt_(j) > rt for each j such that 1 < j < s, it
suffices to show that, for p sufficintly small,
suffices to show that, for p sufficiently small,

O(v log l) (Cap(X)e) 
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We do this by proving

Pap(X) k-1 < p(llogm) (2.54)
\ rt

Let Co be a constant such that

COlo1gm+l 1)Cologm /

We establish inequality 2.54 by considering the following two cases.

Case (a): k - 1 < Co log m.

By inequality 2.23 and the fact that cap(X) > v/-, we have

zlk xk-1 zlXCOlogm+l1 OClog M

rt = Xk> ( ) cap(X) > (1 )CO'O m+l (1 )C = m4.
2 2 01

Thus, rt+l > m4 > logm since I < m8. Therefore, in order to show inequality 2.54,

we need only show that for p sufficiently small,

cap(X) epk- < p().
r t

For sufficiently small p, the last inequality follows since k > 2 and, by inequality 2.23,
cap(X) _ cap(X) < 2 2o)k-1

rt Xt - '

Case (b): k- 1 > Cologm.

As argued in [20], at any stage in the l-AKS tree, there exists a level L (which

might be full or partially full) such that all the levels strictly below L are empty and

all the levels strictly above L are alternately full (i.e., either all the nodes at the even

levels strictly above L are full or all the nodes at the odd levels strictly above L are

full). This immediately implies that each nonempty node has capacity at most O(m).

Hence, by the fact that node X is not empty at stage t, we know cap(X) = O(m).

Therefore, for p sufficiently small,

cap(X) epk-1 < O(m)epcologm < p(logm)
rt
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establishing inequality 2.54. ·

Continuing with the proof of Theorem 2.3.1, the number of choices for k is at

most

O(log m),

and (as argued in Case (b) of Claim 2.3.9) the number of ways for choosing cap(X)

is at most

O(m).

By Claim 2.3.4, when k is given, the number of choices for the sequence rt, . . ., rt-k+

is at most

mg k- 1 < O(m)20(logm) = 2 0(logm)

Furthermore, when k is given, the number of choices for the sequence i(1),... ,i(s) is

at most

El (k - 1) < 2 k-1 < 20(logm)
8--

since k < s < k - 1 and i(1) < i(2) <.. < i(s). Therefore, the number of choices

for k, cap(X), and the sequences rt,.. .,rt-k+l and i(1), ... , i(s) is at most

O(log m) O(m) 2 0(logm) . 2 0(l°gm) = 2 0(l°gm)

Multiplying the above number with the quantity in Claim 2.3.9, we obtain the desired

upper bound for the probability that a bad sequence Ut-i(l),..., Ut-i(s) exists. This

completes our consideration of Case 2, as well as the inductive step for proving the

theorem. ·

Corollary 2.3.1 Let I = 1 - 1 and X be the set of all output registers of an8log6

m-input partial -AKS circuit (where < m8) with and a being sufficiently large

constants. Under both the passive and the reversal fault models, there exists a fixed

partition of X into disjoint sets {S, X,...,X,} where mi = O(m'l-), SI = O(m4),

and IXll = ... = IXTl = 0(m3) such that when p is less than a sufficiently small
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constant, a randomly faulty I-AKS circuit has the following property with probability

at least 1 - p®(llogm): On all input permutations, the items in Xi are smaller than the

items in Xj for 1 i < j < m.

Proof: We prove the corollary by exhibiting a fixed partition of X with the necessary

properties. Assume that at the last stage of the partial I-AKS circuit, the I-AKS tree

has depth d (i.e., nodes at level d are nonempty and nodes strictly below d are all

empty). If we were to run the -AKS circuit for another stage, then the root of the

I-AKS tree would have capacity less than \/-m. Hence, the capacity of the root at the

last stage of the I-AKS tree is at most v. Therefore, at the last stage of the partial

I-AKS circuit, the total capacity of all the nonempty nodes and the cold storage in

the -AKS tree is at most

+ *2A + ... + V (2A) d - + + + +
V V v v2A v(2A) 2 v(2A) 3 ...

(2A)d \

2A- 1 v
< 6d\m (2.55)

where the last inequality follows from equation 2.1. On the other hand, according

to [20], either all the nodes at the even levels strictly above level d are full or all the

nodes at the odd levels strictly above level d are full. Hence, by the fact cap(root) >

v/m, the number of registers in the -AKS tree is at least

2A + 1 (/ + / 2A + . . . + / (2A) d - 2 )

(2A)d-1 1
(2A + 1)(2A - 1)

> 6d-3M. (2.56)

Combining inequalities 2.55 and 2.56 with the fact that there are actually m registers

in the -AKS tree (including the cold storage), we find that

/E 6
d- 3 < m < 6d/-m,
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and hence

log6 < d < log6
4 +I + 3. (2.57)

Let S be the set of output registers at the top [d] levels of the -AKS tree.

Consider the L[dth level of the -AKS tree (the root is assumed to be at level 1).

Label all the 2L4J-1 nodes at this level from left to right with 1,..., mI, where

m = 2L'J-1 = (ml-l). (2.58)

(Here, we have used inequality 2.57.) For i < mr, let Ti be the set of registers contained

in the tree rooted at the node labeled by i. Let

Xi = Ti-S.

The sets S and Xi, 1 < i < m, completely determine the partition X = S U X1 U ... U X,

and we only need to show that the partition has the claimed property.

By calculations similar to that for equation 2.55 and by inequality 2.57, we have

ISI < 6rv/- = O(m4). (2.59)

Ixil > IT I-ISl
> -ISI -IS

> Q(mO) (by equation 2.58 and inequality 2.59).

On the other hand, by equation 2.58,

IXil < - = O(mn).
nz

Thus,

Ix I = (m),
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as claimed.

It remains to prove that with probability at least 1 - pO(llogm), on all input per-

mutations,

xi < xj for any pair of items xi E Xi and xj E Xj where i < j.

By Theorem 2.3.1, we need only to show that the above relationship holds provided

inequality 2.4 is true. Assume for the purposes of contradiction that for a permutation

H and some i < j, there exist items xi in Xi and xj in Xj such that xi > xj. Then,

either xi is not in the natural interval for the root of Ti or xj is not in the natural

interval for the root of Tj. Without loss of generality, we assume that item xi is not

in the natural interval for the root of Ti. Then, xi is at least -strange since xi is at

least [] - [ > away from the root of Ti. Let ri be the register that contains xi.

By the definition of the potential function together with inequality 2.57,

P (ri) > Cd1 f 6/;_ (2.60)

On the other hand, by inequality 2.4,

P,(ri) < P,(Xi) < cap(Xi) < m. (2.61)

Inequalities 2.60 and 2.61 now yield a contradiction for a sufficiently large choice of

the constant a. ·
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Chapter 3

Constructions of Fault-Tolerant

Sorting Circuits, Networks, and

EREW Algorithms

In this chapter, we use the fault-tolerance of the -AKS circuit to construct passive-

fault-tolerant sorting circuits, reversal-fault-tolerant sorting networks, and EREW

fault-tolerant sorting algorithms. Despite many complicated technical details, we

construct all the circuits, networks, and algorithms in the following fashion. We first

use a partial l-AKS circuit to move all but O(n ) special items to within O(n) of

the correct positions, where < 1 is the constant in Corollary 2.3.1. Then, we use

an approximate-insertion circuit to be described soon to insert the special items close

to their correct positions. After these two steps, all items are within O(no) of the

correct position, for some constant a < 1, and we can complete the sort recursively.

We remark that we will only use 1-AKS circuits except in the constructions for reversal

faults, where we do need l-AKS circuits with 1> 1.

The remainder of the chapter is organized into sections as follows. Section 3.1

contains a passive-fault-tolerant sorting circuit. Section 3.2 contains our results for

reversal-fault-tolerant approximate-sorting circuits and reversal-fault-tolerant sorting

networks. Section 3.3 contains an optimal EREW PRAM fault-tolerant sorting algo-
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rithm. We conclude in Section 3.4 by extending all the results to worst-case faults.

3.1 Passive-Fault-Tolerant Circuits

In this section, we use the fault-tolerance of the 1-AKS circuit to construct cir-

cuits that are tolerant to passive faults. The most important result of this section

is the construction of a passive-fault-tolerant sorting circuit with O(log n log logn)

depth. Since a circuit contains at most comparators at each level, our circuit has

O(nlognloglogn) size. This provides the first nontrivial upper bound for sorting

circuits that tolerate random passive faults, and answers the open question posed by

Yao and Yao [26] up to an O(log log n) factor.

In [26], Yao and Yao conjectured that any passive-fault-tolerant sorting or merging

circuit has w(n log n) size. As an interesting application of our technique for sorting,

we prove a tight bound of O(n log n) on the size of passive-fault-tolerant selection

circuits. (See page 13 for the definition of a selection circuit and the comments

therein.) This result would imply a separation of the complexities for merging and

selection if Yao and Yao's conjecture is correct. To the best of our knowledge, no

such separation result is currently known for merging and selection.

Theorem 3.1.1 There exists an explicit construction of a passive-fault-tolerant sort-

ing circuit with O(log n log log n) depth.

We first prove two lemmas before proving Theorem 3.1.1. An (m + 1)-input circuit

C is defined to be a A-approximate-insertion circuit if C outputs every item to within

A of the correct position provided that the input sequence consists of a sorted list of

m items plus another "unknown" item to be input to a given register.

Lemma 3.1.1 For any p less than a sufficiently small constant, there exists an ex-

plicit construction of an (m + 1)-input (p, pO(l°gm))-passive-fault-tolerant m7-approx-

imate-insertion circuit with O(log m) depth.

Proof: As mentioned in the introduction, unless specified otherwise, all the circuits

constructed in the thesis are standard. So we will prove the lemma by explicitly
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constructing a standard circuit with the claimed properties. We will first construct

a circuit that receives the unknown item at the top register. A circuit that receives

the unknown item at the bottom register can be constructed in an entirely symmetric

fashion. We then use these two circuits to construct a circuit that solves the gen-

eral approximate-insertion problem where the unknown item is input to an arbitrary

register in a general position.
6

In what follows, we describe an m7-approximate-insertion circuit C that receives

the unknown item at the top register. By the definition of approximate-insertion, the

input list consists of a sorted list, L, of length m, and an unknown item, x, which will

be input to the top register of C according to our assumption. Let t = log ml. Rather

than solving the given approximate-insertion problem "directly", we first partition the

m items of the sorted list L into r = Lmj contiguous group of size s = 2
t- Lt/6J, except

for the last group, which has m - (r - )s items. Clearly, the last group contains at

least s and strictly less than 2s items. To construct circuit C, it is useful to think

of all of the items in any one group as being indistinguishable. Conceptually, we

now solve an insertion problem with only r + 1 inputs (one for each group, plus the

unknown item x), and we only need to move x into the group that x belongs to. This

is because each group contains at most 2s items and the maximum distance between

any pair of items in any single group is at most 2s < 2 . 2 6t] < 4 . 2 [ogm < m6 for

sufficiently large m.

We call a register clean at level i if it is not the top register and if it has not been

compared with any other register strictly before level i; we call a register unclean

at level i otherwise. Intuitively, a register that is clean at level i has zero chance to

contain x at level i; and a register that is unclean at level i has non-zero chance to

contain x. We also assign an index to each of the m registers as follows: (1) assign

index 0 to the top register; (2) for each j such that 1 < j < r- 1, assign index j to all

the registers whose inputs are taken from the jth group, which contains items with

ranks between (j - 1)s +1 and js in list L; (3) assign index r to registers whose inputs

are taken from the last group, which contains items with ranks between (r - 1)s + 1

and m in list L. Circuit C will have 5 log r depth and the following properties: for
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each i such that 1 < i < 5 log r, (1) every comparator at level i has its MIN input to

be unclean at level i and its MAX input to be clean at level i, and (2) each register

that is unclean at level i is compared with a register with a larger index that is clean

at level i. Since C has 5 log r depth, the total number of clean registers required in

the whole process is

Z 2i-1 = 251ogr _ 1 =r5-1 < ( < s,
1<i<5 log r

which is smaller than or equal to the number of items contained in any of the groups.

Hence, we cannot possibly run out of clean registers in any group.

Given these restrictions, we can complete the description of circuit C by specifying

the unique comparator at the first level and by specifying for each register y that is

output from level i - 1, the index of the register against which y will be compared at

level i. In particular, C is inductively constructed as follows. The unique comparator

at the first level connects input x and a register with index 1, which is certainly clean

at level 1. The second level of C will have two comparators. The MIN output of the

comparator at the first level is fed into the MIN input of a comparator whose MAX

input takes a register with index 1 that is clean at level 2; The MAX output of the

comparator at the first level is fed into the MIN input of a comparator whose MAX

input takes a register with index 1 + 2 = 3 that is clean at level 2. In general, for each

comparator at level i- 1 that connects two inputs with indices j and j + h, the MAX

output (which certainly has index j + h) is fed into the MIN input of a comparator

at level i whose MAX input has index min{j + h + 2h, r} = min{j + 3h, r}; the MIN

output (which certainly has index j) is fed into a comparator at level i whose MAX

input has index j + max{ [hJ, 1}. This completes the description of circuit C.

We next show that circuit C has the claimed property. By the 0-1 principle,

a circuit is a A-approximate-insertion circuit if it A-approximate-sorts every in-

put sequence of the form 01Y or 10l1Y . (For example, 101 denotes the sequence

(1 0,..., 0, 1,...,1).) Clearly, a standard circuit always sorts input sequences of the
X Y

form 01y (which is already sorted). Hence, to show that C has the claimed property,
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we only need to prove that with probability at least 1 -_p(logm), a randomly generated
6

faulty version of C outputs an m7-approximate-sorted list on all input sequences of

the form 10llY. Moreover, since there are only m - 1 sequences of the form 0l1 u, for

p sufficiently small, it suffices to show that on any fixed input sequence s of the form

101, with probability at least 1 - p(1ogm), a randomly generated faulty version of
6

C produces an m7-approximate-sorted list.

In what follows, we will focus on a particular input sequence s of the form 101

and a particular random faulty version, C', of C. We need to show that with probabil-

ity at least 1- pO(Ogm), C' outputs an m7-approximate-sorted list on input sequence s.

We make a special mark on the 1 input to the top register, and we assume without loss

of generality that the marked 1 will always be output to the MIN register when being

compared with another 1. In addition, at each level, we mark the unique comparator

that receives the marked 1 as one of its two input items. Clearly, the movement of the

marked 1 is completely determined by the functionality of the marked comparators

in C' (it has nothing to do with the functionality of other comparators). Let w be the

index of the group that x belongs to. To prove that C' m7-approximate-sorts s with

high probability, it suffices to show that the marked 1 will be successfully moved to

a register with index w with high probability.

When p is less than a sufficiently small constant, by a standard Chernoff bound

argument, with probability at most 1 - pO(logr) = 1 - p®(logm), at most logr of the

5 log r marked comparators are faulty. In what follows, we will show that if at most

logr marked comparators are faulty, then the marked 1 will be successfully moved to a
3

register with index w. Given s and C', we observe how the marked 1 moves within C'.

For each i = 1, 2,..., 5 log r, let di be the nonnegative integer such that the marked

1 is contained in a register with index w - di immediately before level i; let hi be the

integer such that the other input register to the unique marked comparator at level

i has index w - di + hi. Note that according to our construction of C, hi > 1, for

i = 1,2,..., 5 log r. We next prove that the marked 1 will be moved to the correct

group of registers at the end of C' by showing that d5logr = 0. For any nonnegative

integer k, we define b(k) to be the number of bits in the binary representation of k
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(assume b(O) = O). Define a potential function F as follows:

F(i) = 3b(d,) + b(d) - b(hi)J.

Claim 3.1.1 () F(i + 1) < F(i) + 1; (2) F(i + 1) < F(i)- 1 when di > 1 and the

mnarked comparator at level i is correct.

By the inequalities zxj - y] < Ix - y and x + yl < Ixj + YIl,

F(i + 1) - F(i) < 3 (b(di+l) - b(di)) + b(di+l) - b(di)l + b(hi+l) - b(hi)l. (3.1)

HTence, the first inequality in the claim follows from the fact that

b(di+l) < b(di) (3.2)

and

b(h+l) < b(hi) + 1. (3.3)

Assuming that the marked comparator at level i is correct and that d > 1, we

next prove

F(i + 1) < F(i) - 1. (3.4)

When b(d+l) b(di), inequalities 3.1 and 3.3 immediately imply inequality 3.4.

Hence, by inequality 3.2, we only need to check inequality 3.4 under the assumption

that

b(di+l) = b(di). (3.5)

Given equality 3.5 and the assumption that the marked comparator at level i is

correct, it must be that b(hi) A b(di). There are two cases to consider.

Case 1: b(hl) > b(di). In this case, the marked 1 will be output to the MIN

output of the marked comparator at level i. Hence, hi+l1 = max{ [Li, 1 } - Lhi since
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b(hi) > b(di) > 1 implies hi > 2. Hence,

b(hi+l) = b(hi)- 1.

This, together with the assumption of Case 1 and equality 3.5, implies that

F(i + 1) - F(i) = (b(hi+) - b(di+l)) - (b(hi) - b(di)) = b(hi+l) - b(hi) = -1.

Case 2: b(hi) < b(di). In this case, the marked 1 will be output to the MAX

output of the marked comparator at level i. Hence, either hi+1 = 2hi or the marked

1 will be compared against a register with the largest index, r, at level i + 1. In the

former case, we have

b(hi+l) = b(hi) + 1. (3.6)

In the latter case, hi+l > di+, which implies b(hi+l) > b(di+l) = b(di) > b(hi) (where

we have used equality 3.5 and the assumption of Case 2). Again, inequality 3.6 holds

(note that b(hi+l) < b(hi) + 1 clearly holds). Using equalities 3.5 and 3.6 and the

assumption of Case 2, we have

F(i + 1) - F(i) = (b(d,) - b(h) - 1) - (b(d,) - b(hi)) = -1.

This proves inequality 3.4 and concludes the proof of Claim 3.1.1.

By Claim 3.1.1, we know that before di becomes 0, each correct marked comparator

decreases the potential function by at least 1, and each faulty marked comparator

increases the potential function by at most 1. Since we have assumed that at most

logr among all the 5 log r marked comparators are faulty, the potential decreases by
3

at least 14 log r -= 13 log r unless di = 0 for some i < 5 log r. Since the initial

potential is F(0) < 3logrJ + ILlogrJ - < < 4 logr, this means that F(51 ogr) must

be negative unless di = 0 for some i < 5 log r. Therefore, di = 0 for some i < 5 log r,

which means that at a certain level, the marked 1 is moved into a register with index

w. Since we only have passive faults, once the marked 1 is moved into the register
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with index w, it will stay there until the end of C'. This proves that C has the claimed

property.
6

By using an entirely symmetric construction, we can construct an m7-approximate-

insertion circuit that receives the unknown item at the bottom register. The same

argument can be used to prove that the circuit does have the desired property.

To construct an approximate-insertion circuit that receives the unknown item

at an arbitrary position, we use the following simple technique to increase the suc-

cess probability of each comparator, as suggested in [26]. If we apply I consecutive

comparators, each of which fails to work with probability upper bounded by , to

two registers, then the probability that the items contained in the two registers are

unsorted after these consecutive comparators is at most pl. The I consecutive com-

parators can be viewed as a comparator whose failure probability is at most pl. This

technique will be used in many other passive-fault-tolerant circuit constructions, and

will be referred to as the replication technique. For example, by using the replication

technique, the approximate-insertion circuit that receives the unknown item at the

top or bottom register can be made into an O(l log m)-depth (p, pe(l°g"))-passive-

fault-tolerant m7 -approximate-insertion circuit that receives the unknown item at the

top or bottom register.

In general, when the unknown item has to be input to a given register r in a

general position, we can construct the desired circuit by applying a circuit to all of

the registers above and including r. followed by another circuit to all of the registers

below and including r.. In one of the two circuits, we may have to use the replication

technique to achieve the desired success probability if the number of inputs to that

circuit is not large enough. ·

Lemma 3.1.2 For any p less than a sufficiently small constant, there exists an ex-

plicit construction of an m-input (p, p(10gm))-passive-fault-tolerant m"-approximate-

sorting circuit with O(log m) depth, where a < 1 is a fixed constant.

Proof: We construct the claimed circuit as follows. First, we apply a partial 1-

AKS circuit to all m inputs. Let X = SUX 1 U...UXjX, be the partition of the
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output registers of the partial 1-AKS circuit as specified in Corollary 2.3.1, where

m = O(ml-), IS1 = O(m), and IX1l = Ix21 = ... = = e(m).

For i < and j < lXII, let xij be the jth register in Xi, and let Yj = {xjj 1 <

i < m}. According to Corollary 2.3.1, with probability at least 1 - p (ogm), the

item contained in xkj is smaller than that contained in xl for any k < I, and Yj

thus contains a sorted list for j < IX1I. For j < SI, let sj be the jth register

in S. In parallel, we apply the ( + 1)-input mh7-approximate-insertion circuit of

Lemma 3.1.1 to {sj} U Yj for each 1 < j < IS1. By Lemma 3.1.1, with probability at

least 1 - SI p() = 1 - po(10gm), all of the items in {sj} U Yj are at most n7 away

from the correct positions within {sj} U Yj for all j < S5. Since distance one within

Yj corresponds to distance at most XIl within Ul<j<lxl Y = U,<j<,j Xi, distance

one within {sj}UYj corresponds to distance at most IX1i + ISI = O(mO) in the
6

whole circuit. Thus, distance m7 within {sj} U Yj corresponds to distance of at most

meO(mO) = O(m(-)+) < ma (where a can be any constant strictly less than 1

and strictly greater than (1 - ) + 3) in the whole circuit. d

Proof of Theorem 3.1.1: To construct our passive-fault-tolerant sorting circuit

with O(log n log log n) depth, we will repeatedly apply the approximate-sorting circuit

of Lemma 3.1.2. In order to apply Lemma 3.1.2, we need to ensure that the failure

probability for each comparator is upper bounded by a sufficiently small constant.

This can be achieved by using the replication technique described on page 62. In

particular, for any p and , we can construct a circuit that simulates a comparator

whose failure probability is at most e simply by replicating [log, el times a comparator

whose failure probability is at most p. The circuit thus constructed will be referred

to as a (p, c)-enforced comparator hereafter. In order to apply Lemma 3.1.2, we need

only set e to a sufficiently small constant, which in turn leads to only constant factor

replication. Then, we can build the whole circuit from these (p, e)-enforced compara-

tors. By applying this replication technique, the size and the depth of the whole

circuit are both increased by only a constant factor. Ignoring this constant factor, we

will assume that all of the comparators in our construction have a sufficiently small

p and that Lemma 3.1.2 can be applied.
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Let ac be the constant in Lemma 3.1.2. Our circuit consists of O(log log n) rounds.

The ith round circuit has O(log n) depth, and it outputs a Ai-approximate-sorted

list with probability at least 1 - 2 provided that the list produced by the (i - 1)th

round circuit is Ai_l-approximate-sorted, where Ai is a parameter determined by the

following recurrence

Ai = (4Ai- 1)', for i > 2, (3.7)

with the boundary condition

A1 = n'. (3.8)

The reason that we need to upper bound the failure probability of each round by 2

instead of is that we will have O(log log n) rounds and we will upper bound then

overall failure probability by O( 1 log log n) < for n sufficiently large.

Recurrence 3.7 can be rewritten as

aAi = (aAi_l)=,

where a = (4) 1- . Solving this recurrence, we find

A, = O(nai). (3.9)

In the first round of our circuit, we apply the na-approximate-sorting circuit of

Lemma 3.1.2 to all n inputs. In particular, we use the replication technique to make

the failure probability of each comparator sufficiently small so that the term pE(logn)

in Lemma 3.1.2 is smaller than 1-. Lemma 3.1.2 implies that, with probability at

least 1 - , the outputs of the first round form a Al-approximate-sorted list. The

depth for the first round is O(log n).

For i > 2, we construct the ith round of the circuit so that with probability at

least 1 - ~1, the outputs of the ith round form a A/-approximate-sorted list provided

that the outputs from the (i - 1)th round form a Ail-approximate-sorted list. At the

beginning of the ith round, we group all the output registers from the (i - 1)th round

as follows. For 1 < k < 2n1 , let Xk be the set of registers in positions (k-1)2Ai_l+ 1
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to k2Ai_l. In parallel, we apply an approximate-sorting circuit of Lemma 3.1.2 to

X1 U X2, another approximate-sorting circuit of Lemma 3.1.2 to X 3 U X 4, and so on.

Then, in parallel, we apply an approximate-sorting circuit of Lemma 3.1.2 to X2 U X3,

another approximate-sorting circuit of Lemma 3.1.2 to X4 U X5, and so on. We need

the second set of approximate-sorting circuits to bring items across the boundaries of

the first set of approximate-sorting circuits.

To analyze the behavior of the ith round circuit, we will make use the 0-1 principle.

For any 0-1 sequence s = (l,S2,...,Sm), we define the dirty window of s to be a

subsequence of s of the form (si,si+l,...,sj) such that (1) si = 1, (2) sj = 0, (3)

Sk = 0 for all k < i, and (4) Sk = 1 for all k > j. In other words, the dirty window of

s is the shortest subsequence of s such that every item strictly before the subsequence

is 0 and every item strictly after the subsequence is 1. Intuitively, the dirty window

of a 0-1 sequence s is the part of s that we need to work on in order to sort s.

We next use the 0-1 principle to prove that if all of the constituent approximate-

sorting circuits in the ith round work correctly as (4Ai_l)a-approximate-sorting cir-

cuits and if the list produced by the (i - 1)th round is Ai_l-approximate-sorted, then

the ith round circuit produces a Ai-approximate-sorted list. Suppose that we only

have 0-1 inputs and that the list produced by the (i-l1)th round is Ai_l-approximate-

sorted. Then, the list input to the ith round contains a dirty window of size 2Ai_1

or less. This dirty window must be fully contained in one of the approximate-circuits

involved in the ith round. (Recall that we have two sets of (4Ai_l)-input approximate-

sorting circuits in the ith round, where the second set is offset from the first by 2Ai_.

Also note that passive faults cannot increase the size of the dirty window.) Hence,

after the two sets of approximate-sorting circuits in the ith round, the output list is

(4Ai_l)a-approximate-sorted, i.e., it is Ai-approximate-sorted.

In order to make sure that with sufficiently high probability, all of the constituent

approximate-sorting circuits in the ith round work correctly, we need to do some

careful calculations. In the above construction, if we simply apply the approximate-

sorting circuits of Lemma 3.1.2 as in the first round, then the failure probability for

each of the approximate-sorting circuits is 1 = 1,, which is too large in
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comparison with the goal of . To overcome this difficulty, we need to use the repli-

cation technique again. In particular, we construct the approximate-sorting circuits

from (p, e)-enforced comparators where satisfies

(e(log(4A i-
1)) < - 3, (3.10)

and where the constant behind the -notation is the same as that in Lemma 3.1.2.

By doing so, each of the approximate-sorting circuits fails with probability at most

3. Hence, the probability that all of the constituent approximate-sorting circuits in

the ith round are good is at least 1- . To construct the (p, e)-enforced comparators,

we replicate each of the original comparators

3log n log n

logo = o log(4Ai_1) - log n /

times (where we have used equation 3.9). This replication results in an O ( log nci 1

blowup in the original O(log(4Ai_ 1))-depth construction. Hence, the total depth of

the ith round is

O(log(4A_))O (log ,_i = O log 0lon ,_ = O(log n).

We repeatedly apply the above construction until every item is moved to within

a constant number of positions of the correct position, i.e., we use i rounds such

that Ai = 0(1), which is equivalent to nc' = O(1) or i = O(loglogn) according to

equation 3.9. Note that we should not apply the above construction all the way to the

end to sort every item precisely to the correct position since we have only established

the fault-tolerance properties of the -AKS circuit for large m. When every item is

within a constant number of positions of the correct position, we can combine the

replication technique with any constant depth and constant size sorting circuit with

a constant number of inputs to achieve exact sorting. This costs O(log n) additional

depth. Overall, we have O(log log n) rounds each of which has O(log n) depth and
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works with probability at least 1 - 1 . Therefore, the total depth is O(log n log log n)

and the failure probability is at most O(log log n) < - for n sufficiently large. ·

As we have pointed out in Section 1.3, the construction can be made (p, p )-

passive-fault-tolerant with only a constant factor increase in depth and size. In par-

ticular, the proof of Theorem 3.1.1 can easily be extended to establish the following

corollary.

Corollary 3.1.1 For any constants p < 1 and c, there exists an explicit construction

of a (p, n ) -passive-fault-tolerant sorting circuit with O(log n log log n) depth.

Theorem 3.1.2 There exists an explicit construction of a passive-fault-tolerant se-

lection circuit with asymptotically optimal size of O(n log n).

Proof: An ft(n log n) lower bound on the size of selection circuits was proved by

Alekseyev [3] even in the fault-free case (see also Theorem A on pages 234-235 of [10]).

In what follows, we give a passive-fault-tolerant construction with O(n log n) size.

Let a be the constant in Lemma 3.1.2, and let p < 1 be a constant upper

bound on the failure probability of each comparator. Take a (p, )-passive-fault-

tolerant n'-approximate-sorting circuit C1 as in Lemma 3.1.2. Take another (2n" +2)-

input (p, )-passive-fault-tolerant-sorting circuit C2 as in Corollary 3.1.1, e.g., we can

choose c = a in Corollary 3.1.1. Our passive-fault-tolerant selection circuit C consists

of Cl followed by C2 with the middle 2n" + 2 outputs of C1 being the inputs of C2.

Clearly, the size of C is O(n log n) + O(n' log n log log n) = O(n log n).

We next show that the circuit constructed is a (p, )-passive-fault-tolerant circuit

that outputs the median to the middle output register of C2. By the choice of C1 and

C2, the probability that C1 is an na-approximate-sorting circuit and that C2 is a sorting

circuit is at least 1 -2 > 1- . Hence, to show that C is a (p, )-passive-fault-

tolerant selection circuit, we need only prove that when C1 is an n-approximate-

sorting circuit and C2 is a sorting circuit, C always outputs the median input to

its middle output register. When C is an n-approximate-sorting circuit, by the

definition of approximate-sorting, the top n - na - 1 outputs of C1 all contain items
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smaller than the median input to C and the bottom 2 - n - 1 outputs of C1 all

contain items larger than the median input to C. Hence, the median input to C will

be the median among all of the inputs to C2. When C2 is indeed a sorting circuit, the

median input to C2 , which is identical to the median input to C, will be output to the

middle output register of C2, which is the same as the middle output register of C. ·

3.2 Reversal-Fault-Tolerant Circuits and Networks

In this section, we present our results for reversal faults. We consider both the circuit

model and the network model. In Subsection 3.2.1, we use the fault-tolerance of the

l-AKS circuit to construct a reversal-fault-tolerant O(log n)-approximate-sorting cir-

cuit (for p less than a sufficiently small constant) with O(n log n(log log n)2 ) size and

O(log2 n) depth. In addition, we present some general lower bounds for reversal-fault-

tolerant approximate-sorting circuits. In Subsection 3.2.2, we use the approximate-

sorting circuit of Subsection 3.2.1 to construct a reversal-fault-tolerant sorting net-

work (for p less than a sufficiently small constant) with O(nloglog23 n) size. This

provides the first o(nlog 2 n)-size reversal-fault-tolerant sorting network, and it an-

swers the open question posed by Assaf and Upfal [4]. In all the upper bound results

of this section (except Lemma 3.2.6), we will need the assumption that p is less than

a sufficiently small constant. Whether or not such an assumption is necessary is an

open question. Note that no assumption will be made on p in the lower bound results.

3.2.1 Approximate-Sorting Circuits

In this subsection, we study approximate-sorting circuits that are tolerant to reversal

faults. As defined on page 23, a A-approximate-sorting circuit is a circuit that outputs

every item to within A of its correct position on all input permutations.

In Theorem 3.2.1 below, we show that any reversal-fault-tolerant A-approximate-

sorting circuit has A = Q(log n). This lower bound leads us to focus our attention

on the study of reversal-fault-tolerant O(log n)-approximate-sorting circuits in the
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remainder of the subsection. We continue in Theorem 3.2.2 with an fl(log2 n) lower

bound on the depth of any reversal-fault-tolerant O(log n)-approximate-sorting cir-

cuit. The main result of this subsection is Theorem 3.2.3, where we construct a

reversal-fault-tolerant O(logn)-approximate-sorting circuit (for p less than a suffi-

ciently small constant) with O(n log n(loglog n)2 ) size and asymptotically optimal

depth of O(log2 n). The size of this circuit is of particular importance when we

further modify the circuit into a network with o(n log2 n) size in the next subsection.

Theorem 3.2.1 For any positive constant y < 1, there exists a positive constant c

depending on y7 such that for any n-input circuit, where n is sufficiently large (de-
ny

pending on p and -y), with probability at least 1- e log on some input permutation,

the circuit outputs some item to at least clog! n away from the correct position.
p

Proof: As pointed out in Section 1.3, to get the strongest possible result, p should be

interpreted as the failure probability of each comparator in the circuit, as opposed to

an upper bound on the failure probability. Throughout the proof, we further assume

that p < . This assumption does not affect the generality of the proof, since a

comparator failure probability of p can be viewed as failure probability of 1 - p if the

MIN/MAX output assignment is reversed. We first prove the following useful lemma.

Lemma 3.2.1 For any m-input circuit C', where m is sufficiently large (depending

on p), the probability that a randomly faulty version of C' is a A-approximate-sorting

circuit is at most 1 - p2 +l1 for < 1-i

The lemma states that in the reversal fault model, there is an inherent limitation

on the success probability that can be achieved by any approximate-sorting circuit.

The lemma also expresses a tradeoff between the accuracy of approximation and the

degree of reliability that can be achieved by any circuit with reversal faults. Such a

tradeoff will be used to prove Theorem 3.2.1.

For ease of notation, we next define the notion of a register segment. As described

in Section 1.1, the comparators in a circuit are partitioned into disjoint levels. We

assume that the comparators nearest to the inputs are at level 1. Also, we assume
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that the inputs to a circuit are provided at level 0 and the outputs are produced at

level d + 1, where d denotes the depth of the circuit. A register segment is defined to

be the part of a register between two consecutive levels. Note that each level is used

to partition all of the registers into corresponding register segments, even in those

cases where the number of comparators in the level is less than half of the number of

the registers. Hence, an m-input d-depth circuit contains (d + 1)m register segments,

regardless of its size.

We next prove Lemma 3.2.1. Since the lemma is concerned with the functionality

of C', and not the depth of C', we may assume without loss of generality that C'

contains only one comparator at each level. From the top to the bottom, we label all of

the registers in C' by rl, r2, . . ., rm. Let ri,j be the register segment of ri between levels

j and j + 1 for j = 0, 1, 2,..., d, where d denotes the depth of C'. For i = 1, 2,..., m

and j = 0, 1,..., d, define Pi,j to be the probability that 1 is contained in rj when a

uniformly chosen permutation of {1, 2,.. ., m} is fed into a randomly faulty version

of C'.

For any index set I C {1, 2,... , m} such that II < m, consider the inequality

P,3 < 1 - p1'. P(3.11)
iEI

It is easy to see that Lemma 3.2.1 follows from inequality 3.11 with j = d and

III = 2 + 1. We now prove inequality 3.11 by induction on j.

Base case: j = 0. On a uniformly chosen input permutation of {1, 2,..., m}, each

input register segment contains 1 with probability -. Hence, we need to verify that

LI < 1 - pilI for any I such that III < m. It suffices to show that

f(x) =1 - -- > 0 (3.12)

for 0 < x < m- 1. Clearly, f'(x) = -px loge p - and f'(x) = 0 has a unique root

in [0, m - 1], when m is large. Moreover, for m sufficiently large (depending on p),

f'(0) > 0 and f'(m - 1) < 0. Hence, inequality 3.12 follows from: (i) f(0) = 0 and
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(ii) f(m- 1) = i - p m- l1 = i - pm-l > 0 for m sufficiently large (depending

on p).

Inductive step. Assuming that inequality 3.11 holds up to j -1, we next prove that

inequality 3.11 holds for j. By our assumption on C', there is only one comparator

at level j in C'. Assume that this comparator connects two registers ri, and ri2.

Clearly, if I contains both i and i2 or if I contains neither i nor i2, then EiEI Pi,j =

EiI Pij-1 and the correctness of inequality 3.11 for j follows from the induction

hypothesis. Hence, we can assume without loss of generality that i E I and i2 I.

Let I' = I - {il}. By the definition of reversal faults and the fact that p < ,

EiEI Pi,j < iEI' Pi,j-1 + (1 - p) (Pil,j-1 + Pi2,j-1)

< Ei, I'Pi,j-l + (1 - p) (1 - EiE P,J-1)

= P EiI Pi,j-1 + 1-p

< p (1 _ pli) + 1 - p (by the induction hypothesis)

= 1- pl.

This concludes the inductive proof of inequality 3.11, as well as the proof of Lemma 3.2.1.

In what follows, let

m = -7 log n + 1, (3.13)
3 p

and

i= t~m2~ -2 ~(3.14)

We next consider an arbitrary n-input circuit C, and prove the theorem by showing

that the probability a randomly faulty version of C is a A-approximate-sorting circuit
nT

is at most e 'og.

Roughly speaking, we will use Lemma 3.2.1 to prove Theorem 3.2.1 as follows.

Consider an input sequence consisting of m groups of size m such that all of the items

in the ith group are smaller than all of the items in the jth group for i < j. If there

is no comparator between items in different groups (intuitively, such comparisons

provide no additional information), then each of the groups will be sorted by -m m
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independent smaller circuits. By Lemma 3.2.1, the probability that all of these groups

will be A-approximate-sorted is upper bounded by

-n -n

(1 p2a+)m-) = (1 - )- < ) e

for n sufficiently large depending on p and y. To deal with the dependence problem

caused by comparisons between items in different groups, it will be convenient to

introduce some notations.

Suppose we are given a fault pattern F. (The definition of a fault pattern is given

on page 10.) We use C(F) to denote the faulty version of C in which the (correct or

faulty) behavior of each comparator is determined according to F. Let

7r = 2,...,2...I - 1,... I 1
m m

m

We define a comparator of C(F) to be a crossing comparator if it compares two distinct

items when C(F) is executed on input sequence 7r. We use Cross(F) to denote the

set of all crossing comparators of C(F). From the top to the bottom, we label the

n registers by r, r2 ,..., r,. We next describe a procedure to decompose C(F) into

[ ] smaller circuits, C(F) 1 ,...,C(F) 1n. For i = 1,..., F , we construct C(F)i by

applying the following 4-step procedure: (i) input r to C(F) and observe how the

input items move within C(F); (ii) include all register segments (at all levels) of C

that receive the item i; (iii) include all comparators for which both inputs receive

the item i; (iv) for any crossing comparator that causes the item i to move from

ru,j to rv,j+l for some j and u ~ v, directly connect r,j and r, j +l in C(F)i. Due

to the direct connections introduced in step (iv), C(F)i may contain some "twisted"

registers, and look abnormal. However, these abnormalities will not prevent us from

applying Lemma 3.2.1 to C(F)i. (As a matter of fact, we can construct a circuit that

looks "normal" and that is equivalent to C(F)i, but we do not need this fact to apply

Lemma 3.2.1.)
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We next use a conditional probabilistic argument to show that for a random

fault pattern F, with the probability claimed in Theorem 3.2.1, C(F) is not a A-

approximate-sorting circuit. In particular, we will organize all of the fault patterns

into groups and prove that for a randomly generated fault pattern F within each

group, with the claimed probability, C(F) is not a A-approximate-sorting circuit.

We organize all of the fault patterns into groups according to Cross(F), as fol-

lows. For any two fault patterns F and F', we put F and F' in the same group if

and only if Cross(F) = Cross(F'). Within each group thus constructed, we choose an

arbitrary fault pattern as a representative of that group. Then, we list all of the rep-

resentatives as F1, F2,..., Ft for some t. To prove the theorem, we only need to show

that for each s < t, for a randomly generated F such that Cross(F) = Cross(F8 ),
-n'

the probability that C(F) is a A-approximate-sorting circuit is at most e'°"g. The

reason such a conditional probability is easier to analyze is as follows: By defini-

tions, the information of F on Cross(F) completely determines the decomposition

of C(F) into C(F) 1,C(F) 2,...,C(F) r 1. Hence, full information of F on Cross(F)

completely determines the constructions of C(F)l,C(F) 2 ,... ,C(F) r[l (although not

the functionality of these circuits), and will allow us to apply Lemma 3.2.1 on the

[ independent smaller circuits C(F) 1,C(F) 2,... ,C(F)L 

Now, for each s < t, we have

Prob (C(F) is a A-approximate-sorting circuit I Cross(F) = Cross(F,))

< Prob (C(F)i is a A-approximate-sorting circuit Vi < [L] j Cross(F) = Cross(Fs))

= YI<i< L Prob (C(F)i is a A-approximate-sorting circuit)

(since the behaviors of C(F)i's are mutually independent)

_< (1 - pm-1) LJ (by Lemma 3.2.1 and equation 3.14)

< (i1-n ) Lmj (by equation 3.13)

•< (e n )Lmj(by the inequality 1- x < e)

<e log (for n sufficiently large, depending on p and )< elog-- (for n sufficiently large, depending on p and ).
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This completes the proof of Theorem 3.2.1. ·

When p is a constant, the preceding theorem has the following immediate corollary,

where the constant c depends on p.

Corollary 3.2.1 There exists a constant c such that there exists no reversal-fault-

tolerant (clog n)-approximate-sorting circuit.

Theorem 3.2.2 For any positive constants c, p, and y < 1, any (p, n-c)-reversal-

fault-tolerant ny-approximate-sorting circuit has Q(log2 n) depth.

Proof: As pointed out in Section 1.3, to get the strongest possible result, p should

be interpreted as the failure probability of each comparator in the circuit, as opposed

to an upper bound on the failure probability. In fact, if p were interpreted as such

an upper bound, the correctness of Theorem 3.2.2 would follow from Theorem 3.4.3

with k = O(log n).

In what follows, we assume

< - (3.15)
2

Let

A = log4 -(21)] - 1, (3.16)

and

p= [logp2e . (3.17)

The correctness of Theorem 3.2.1 follows from the next lemma with e = n- c and

A = nY.

Lemma 3.2.2 Any (p, )-reversal-fault-tolerant A-approximate-insertion circuit has

depth strictly greater than Au.

We now prove Lemma 3.2.2. Consider an arbitrary circuit C that is a (p, e)-

reversal-fault-tolerant A-approximate-insertion circuit, and apply one of the two in-

put permutations (1,2,...,n) and (n,1,2,...,n- 1), each with probability , to a

randomly faulty version of C. In such a setting, the item contained in each register
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segment is a random variable depending on the random input permutation and the

random faults assigned to C. (Recall that, as defined on page 70, a register segment

is the part of a register between two consecutive levels in the circuit.)

For each register segment x, let X denote the random variable corresponding to

the item received by that register segment, and let label(x) in [1, n] be chosen to

satisfy
1

Prob(X > label(x)) > 

and

Prob(X < label(x)) > -

Note that label(x) always exists but may not be unique.

Define a register segment y to be a descendant of a register segment x if the item

received by x could subsequently enter y in some faulty or non-faulty version of C.

Also, define the descendant set D(x, i) of x to be the set of all descendants of x

between levels i and i + 1.

For any i such that 0 < i < A, and for any pair of numbers, rl and r2, such that

n-1
r2 - rl >-- > 2A,

4 i

we make the following pair of definitions. First, a register segment x between levels

i#u and i + 1 is defined to be (rl, r 2)-bad if and only if x receives an item less than

or equal to r with probability at least e, and receives an item greater than or equal

to r2 with probability at least . Second, a descendant set D(x, ip) is defined to be

(rl, r2)-bad if and only if one of the following two conditions holds:

(i) x receives an item less than or equal to rl with probability at least e, and the

label of every register segment in D(x, i) is greater than or equal to r2, or

(ii) x receives an item greater than or equal to r2 with probability at least e, and

the label of every register segment in D(x, i) is less than or equal to rl.

Claim 3.2.1 No output register segment of C can be (rl,r 2)-bad. Furthermore, if C
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has depth A#, then C cannot contain an (rl, r2)-bad descendant set D(x, Ai) for any

register segment x.

The first part of the claim is straightforward since C is a (p, e)-reversal-fault-tolerant

A-approximate-insertion circuit. Now consider the second part of the claim. Assume

for the purposes of contradiction that C has depth of Au and contains an (rl, r2 )-

bad descendant set D(x, A#y) for some x. Without loss of generality, we can assume

that the first condition in the definition of a descendant set holds (the other case

can be handled by an entirely symmetric argument). Under this assumption, with

probability at least e, x receives an item less than or equal to rl. This item will

eventually enter some register segment in D(x, A/). On the other hand, every register

segment in D(x, Art) receives an item greater than or equal to r2 with probability at

least > e. Hence, as required by the insertion problem, every register segment y

in D(x, A/i) is assigned an output rank greater than or equal to r 2 - A. But if any

register segment in D(x, Al,) receives an item less than or equal to rl, then C will fail

since (r2 - A) - rl > A. This proves the claim.

Claim 3.2.2 For any i such that 0 < i < A, the circuit C contains either an (rl, r2)-

bad register segment between levels i and i + 1 or an (rl, r2)-bad descendant set

D(x, il) for some register segment x.

We prove the claim by induction on i. For the base case, i = 0, note that the top

input register segment x receives 1 with probability > e, and n with probability

1 > e. Thus, x is (1, n)-bad.

Now assume that the lemma holds for i = j, 0 < j < A, and consider the induction

step, i = j + 1. Let s = 4J '

We first argue that if there is a register segment x between levels j and j + 1,

and a register segment y belonging to D(x, (j+1)t), such that Ilabel(y)-label(x)l > 4,

then y is either (label(x), label(y))-bad or (label(y), label(x))-bad. To see this, assume

without loss of generality that label(y) - label(x) > (the case where label(x)-

label(y) > can be handled by an entirely symmetric argument). Note that y receives

an item less than or equal to label(x) with probability at least , which is at least e
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by equation 3.17. Furthermore, y receives an item greater than or equal to label(y)

with probability at least > . Hence, y is (label(x), label(y))-bad, since

s n-1 n-i
label(y)- label(x) > 4 > 4A > 2A (3.18)

by equation 3.16.

By the argument of the preceding paragraph, we now have the additional assump-

tion that for every register segment x between levels ju and ju + 1, and every register

segment y belonging to D(x, (j + 1)#), Ilabel(y)- label(x)J < . Proceeding with the

induction step, there are two cases to consider.

Case 1: There is an (ri, r2)-bad register segment x at level ju. Let S denote the

set of labels associated with the register segments in D(x, (j + 1)1 ). By our additional

assumption, every pair of labels in S differ by strictly less than . On the other hand,

r2l >- i ,1 = s. Hence, either every label in S exceeds rl by at least , or r2 exceeds

every label in S by at least 4' Therefore, D(x, (j + 1)Iu) is either (ri, rl + 4)-bad or

(r2 - , r2)-bad since > 2A by equation 3.18.

Case 2: There is an (rl,r 2 )-bad descendant set D(x,jl). We will assume that

the first condition in the definition of an (rl, r2)-bad descendant set is satisfied; the

other case can be handled by an entirely symmetric argument. Each register segment

z in D(x, (j + 1)#) is a descendant of some register segment y in D(x,j4u). By our

additional assumption, label(y) - label(z) < 4. Furthermore, by the first condition in

the definition of an (rl, r2)-bad descendant set, label(y) > r2. Hence, label(z) > r2- 4,

and D(x, (j + 1),u) is (rl, r 2 - 4)-bad. This concludes the inductive step for the proof

of Claim 3.2.2.

Finally, it is immediate that any circuit of depth d (not necessarily a multiple of

,) can be viewed as a circuit of depth [d] ,u with the same behavior. Hence, the

correctness of Lemma 3.2.2 follows from Claims 3.2.1 and 3.2.2. This completes the

proof of Theorem 3.2.2. 

We remark that, as indicated in the proof, the Q(log2 n) depth lower bound in The-

orem 3.2.2 actually holds for the much simplier problem of n'-approximate-insertion.
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Theorem 3.2.3 For any p less than a sufficiently small constant, there exists an

explicit construction of a reversal-fault-tolerant O(log n)-approximate-sorting circuit

with (log2 n) depth and O(n log n(log log n)2) size.

To prove Theorem 3.2.3, we first prove a few useful lemmas.

Lemma 3.2.3 For any p less than a sufficiently small constant and for I > log ,

there exists an explicit construction of an m-input (p, pe()-reversal-fault-tolerant 1-

approximate-insertion circuit with O(llog m) depth and O(ml) size.

Proof: Without loss of generality, we assume that both m and I are integral powers

of 2. From the top to the bottom, we label all the registers by rl,...,r, and

we assume that the unique unknown item is input to a particular register r. For

1 < i < log m, let Ri = {rj j r x mod ~}. Our circuit consists of log m rounds.

In the ith round, we group all the registers in Ri from the top to the bottom into

groups Xi,l,Xi, 2 ,... ,Xi, 2 i so that each of the groups contains I registers. First, in

parallel, we apply a set of 21-input and 41-depth odd-even transposition circuits to

Xi,1 U Xi, 2, Xi,3 Uxi, 4, and so on. Second, in parallel, we apply another set of 21-input

and 41-depth odd-even transposition circuits to Xi,2 U Xi, 3, Xi, 4 U Xi,5, and so on.

Since each Ri contains 2 groups of the form Xi,j, the total number of odd-even

transposition circuits in the ith round is at most

2 2i-1 2i.

Hence, the total number of odd-even transposition circuits used in the entire circuit

is at most

2 i < 21+1log 2m (3.19)
l<i<log M

Since each of the odd-even transposition circuits has size of 0(12), the size of the

entire circuit is 0(l12) = O(ml). Also, since we have log m rounds each of which

consists of two sets of 0(l)-depth odd-even transposition circuits, the depth of the

entire circuit is 0(1 log m).
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By Lemma 2.3.1 with 0 = each of the odd-even transposition circuits used32'

in the entire circuit is an 3-approximate-sorting circuit with probability at least

1 - p(1) = 1 - pe(1). Hence, by inequality 3.19, the probability that all of the

constituent odd-even transposition circuits are 32-approximate-sorting circuits is at

least

1-O ( ) pe(l) 1 - pe,

where we have used the fact that p is sufficiently small and I > log m.

Thus, to prove the lemma, it remains to show that the circuit thus constructed is

an I-approximate-insertion circuit when all of the constituent odd-even transposition

circuits are 32--approximate-sorting circuits. Assuming that all of the constituent odd-

even transposition circuits are -- approximate-sorting circuits, we prove by induction

on i that the items of Ri form an -approximate-sorted list after the ith round. (This

suffices to prove that our circuit is an -approximate-insertion circuit since Rlog 

contains all of the m registers.)

The base case i = 1 is trivial, since the first round actually consists of a single

3-approximate-sorting circuit. Assuming that the items from the (i - )th round

form an I-approximate-sorted list, we show that the items from the ith round form

an -approximate-sorted list. By the 0-1 principle, we need only consider the case

where the inputs are Os or Is. Recall that, as defined on page 65, the dirty window

of a 0-1 sequence s is the shortest subsequence of s such that every item strictly

before the subsequence is 0 and every item strictly after the subsequence is 1. Since

the sequence from the (i - )th round is assumed to be I-approximate-sorted, the

input sequence to the ith round is clearly an -approximate-sorted list and has a dirty

window of size I or less. There are two cases to consider.

Case 1: The dirty window of the sequence input to the ith round is fully contained

in a circuit that belongs to the first set of 32-approximate-sorting circuits in the ith

round. In this case, the size of the dirty window will be decreased to 21 or less by

the first set of i-approximate-sorting circuits in the ith round. Then, the second

set of i1-approximate-sorting circuits may increase the size of the dirty window by32-rlllllr-O UIj lU I1 ly IILU UI JU UI IU rllv v
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at most an additive term of .2 (Note that this is different from the case of passive

faults, which cannot increase the size of a dirty window.) Hence, the final output

sequence from the ith round has a dirty window of size at most 1l = , and is

8-approximate-sorted.

Case 2: The dirty window of the sequence input to the ith round is not fully

contained in any of the circuits in the first set of -approximate-sorting circuits in

the ith round. In this case, the first set of 1-approximate-sorting circuits in the ith

round may increase the size of the dirty window by an additive term of 21. Hence,

the sequence input to the second set of -approximate-sorting circuits has a dirty

window of size at most + 21 = 1. By the assumption of Case 2 and the fact that

the boundaries of the first set of 1-approximate-sorting circuits are the centers of the
9'second set of 21-input -approximate-sorting circuits, this dirty window of size or

less is fully contained in a circuit that belongs to the second set of -approximate-

sorting circuits. Hence, the final output sequence produced by the second set of

3-approximate-sorting circuits in the ith round has a dirty window of size at most

21, and is thus L-approximate-sorted. ·

1-/SLemma 3.2.4 For I < m 2 (where P is the constant specified in Corollary 2.3.1)

and for any p less than a sufficiently small constant, there is a constant a < 1 such

that there exists an explicit construction of an m-input (p, pe(ll°gm))-reversal-fault-

tolerant m'-approximate-sorting circuit with O( log2 m) depth and O(ml log m) size.

Proof: We use a similar technique as in the proof of Lemma 3.1.2. First, we apply

the partial -AKS circuit of Theorem 2.3.1. Then, we apply a set of (p, pe(llogm))_

reversal-fault-tolerant ( log m)-approximate-insertion circuits of Lemma 3.2.3 in a

fashion similar to that in the proof of Lemma 3.1.2. The assumption I < m 

implies I < mg, which makes it possible to apply Corollary 2.3.1 in the first step. In

the second step, we can argue that every item is output to within O(1 log m)O(mO) of

the correct position. The assumption I < m guarantees that every output item is

within O(1 log m)e(m,) < m of the correct position for any a > +. In particular,

the constant a in this lemma is different from that of Lemma 3.1.2.
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By Theorem 2.3.1 and Lemma 3.2.3, the depth of the entire circuit is 0(1 log m) +

0(1 llogrmlog lim) = O(1 log2 m), and the size of the entire circuit O(ml log m) +

O(ml log m) = O(ml log m). ·

Lemma 3.2.5 For any p less than a sufficiently small constant and I > clog m, where

c is a sufficiently large constant, there exists an explicit construction of an m-input

(p, pe())-reversal-fault-tolerant -approximate-sorting circuit with O(llog2 m) depth

and O(ml log2 m) size.

Proof: Our construction is similar to Batcher's odd-even merge sort. We first

construct a (p, pe(l))-reversal-fault-tolerant circuit that -approximate-merges two 1-

approximate-sorted lists. Given two t-item lists L 1 and L 2, define Lia and L2 to

consist of the even-index elements of L1 and L2 (resp.), and define L 1, and L 2 to

consist of odd-index elements of L1 and L 2 (resp.). If L 1 and L 2 are I-approximate-

sorted, then so are L1,, L2,, L1,, and L2,. Next, recursively 1-approximate-merge

Ll, with L 2, to form L,, and L 13 with L 2a to form L. By definition, L, and

L are -approximate-sorted. Next, shuffle Lo with L: to form a list L' that is 21-

approximate-sorted. Finally, partition L' into contiguous blocks consisting of 161

items each, and apply a 161-input and 321-depth odd-even transposition circuit as de-

scribed in Lemma 2.3.1 (with 09 = 31) to each block. Finish up by repartitioning the

resulting list into contiguous blocks of size 161 so that the boundaries of the earlier

blocks fall in the centers of the current blocks, and then applying a 161-input and

321-depth odd-even transposition circuit to each of the blocks.

By an argument similar to that for Lemma 3.2.3, we can show that if all of the odd-

even transposition circuits involved in the entire approximate-merging circuit work

correctly as -approximate-sorting circuits, then the entire circuit works correctly as

an I-approximate-merging circuit. By Lemma 2.3.1 with t9 = 3, the probability that

a particular odd-even transposition circuit is not an -approximate-sorting circuit

is at most p(). On the other hand, the total number of odd-even transposition

circuits involved in the entire circuit is upper bounded by a polynomial in m. Hence,

the probability that all of the odd-even transposition circuits function correctly as
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I-approximate-sorting circuits is at least 1 - poly(m) · pO( = 1 - pO() when p is

sufficiently small and I > clog m for a sufficiently large constant c.

The depth of the -approximate-merging circuit thus constructed is determined

by the following recurrence

M(t) = M ) + 0(1)

with the boundary condition M(t) = 0(1) for 1 < t < , where M(t) stands for the

depth of a circuit for -approximate-merging two t-item lists. Solving the recurrence,

we find that our circuit has depth of M(t) = 0(1 log t).

Given the approximate-merging circuit thus constructed, we can construct the

claimed -approximate-sorting circuit by partitioning the m items to be sorted into

two subset of 2 items each, I-approximate-sorting the subsets recursively, and then

I-approximate-merging them. This technique leads to the following recurrence for the

depth of the -approximate-sorting circuit

with the boundary condition D(m) = 0(1) for 1 < m < 1. Solving the recurrence,

we find that D(m) = 0(1 log2 m). Since each level of the circuit contains at most 2

comparators, the size of the circuit is O(ml log2 m). ·

Proof of Theorem 3.2.3: We construct the circuit in a fashion similar to that

of Theorem 3.1.1. In O(loglogn) rounds, we repeatedly apply the approximate-

sorting circuit of Lemma 3.2.4 with some appropriately chosen value of 1. The ith

round consists of two sets of approximate-sorting circuits where the boundaries of the

second set of circuits fall in the centers of the first set of circuits. Our hope is that

with probability at least 1 - , the ith round outputs every item to within O(n )

of the correct position (where a is the constant specified in Lemma 3.2.4) provided

that each of the outputs from the (i - 1)th round is O(nc'-') within the correct

position. The detailed parameter choices on how to apply the approximate-sorting
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circuits in each of the rounds are similar to those in the proofs of Theorem 3.1.1 and

Lemma 3.2.3, and the detailed argument in Lemmas 3.2.3 can be applied to show

that our circuit does have the desired property provided that all of the constituent

approximate-sorting circuits function correctly.

In the proof of Theorem 3.1.1, we have used the replication technique to guarantee

a success probability of at least 1- 1 in each round. For reversal faults, however, if we

replicate a comparator many times, then the outcome will be completely determined

by the behavior of the last comparator. Thus, we need a new method to replace

the replication technique. Lemma 2.3.1 will essentially play a role similar to that of

the replication technique. Note that we have assumed p to be sufficiently small in

both Lemma 2.3.1 and Theorem 2.3.1. Hence, we can prove the current theorem only

under the assumption that p is less than a sufficiently small constant.

Returning to the construction of the reversal-fault-tolerant O(log n)-approximate-

sorting circuit, let li be the parameter choice of 1 in Lemma 3.2.4 for the ith round,

in which we need circuits with O(na' ) items each. We will choose li = O(,'_ 'log l)

so that

O(li log n'i- ) = log l n3 , (3.20)p

where the constant behind the O-notation is the same as that of Lemma 3.2.4. This

guarantees that the failure probability for the ith round is at most np °(l log'- ) < 12.

By Lemma 3.2.4 and equation 3.20, the depth and the size for the ith round are

0 (li log2 n -i 1 ) = O (log n log n'i') (3.21)

and

0 (nli log n'-) = (n log n), (3.22)

respectively. In order to apply Lemma 3.2.4, we need to stop this procedure immedi-

ately before round i if i satisfies the following equation:

= 0 (e 1) , (3.23)
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where is the constant specified in Corollary 2.3.1. Let io be the smallest i that satis-

fies equation 3.23. Simple calculations show that li, = O(log n), nc'°- ' = O(logd - n),

and io = (loglogn). This means that every item has been moved to within

O(ncat-l) = O(log- n) of the correct position at the end of the (io - 1)th round.
2

Given the O(log l- n)-approximate-sorted list, we apply the O(log n)-approximate-
2

sorting circuits of Lemma 3.2.5 with I = O(log n) to contiguous blocks of O(log - n)

items twice where the boundaries of the second set of circuits fall in the centers of

the first set of circuits. (Detailed parameter choices are similar to those in the proof

of Lemma 3.2.3.) The depth and size of this final round are O(log n(log log n)2 ) and

O(n log n(log log n)2 ), respectively.

Now, by expressions 3.21 and 3.21, the depth the entire circuit is

O (logn(loglogn)2) + E 0 (lognlog ni) = O (log2 n) ,
1<i<io

and the size of the entire circuit is

0 (n log n(log log n)2) + Z 0 (n log n) = 0 (n log n(log log n)2).
1<i<io

If we are only interested in a circuit with O(log2 n) depth and do not particularly

care about its size, there is a much simpler construction that does not depend on

Theorem 2.3.1. In fact, the proof technique of Lemma 2.3.2 enables us to construct

an m-input (p, 2 )-reversal-fault-tolerant e-halver with O(log n) depth for any positive

constant and m = Q(log n). Replacing each of the e-halvers in the AKS circuit by a

reversal-fault-tolerant -halver constructed in this manner, we can get a reversal-fault-

tolerant O(log n)-approximate-sorting circuit with O(log2 n) depth relatively easily.

Since the fault-tolerance of the l-AKS circuit is very difficult to prove, the existence of

the simpler construction with the asymptotically optimal depth is worth mentioning.

Nevertheless, we need the fault-tolerance of the l-AKS circuit to achieve the better

size bound, which is crucial for the next subsection.
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3.2.2 Sorting Networks

In this subsection, we use the reversal-fault-tolerant O(log n)-approximate-sorting cir-

cuit designed in the preceding subsection to construct a reversal-fault-tolerant sorting

network of O(n loglg2
3 n) size (for p less than a sufficiently small constant). This is

the first reversal-fault-tolerant sorting network of o(n log2 n) size, and it answers the

open question posed by Assaf and Upfal [4]. As in [4], we will assume that the

replicators are fault-free. This is not a particularly unreasonable assumption since

replicators can be hard-wired and they do not contain any logic elements.

Theorem 3.2.4 For any p less than a sufficiently small constant, there exists an

explicit construction of a reversal-fault-tolerant sorting network with O(nlog l
0

g2 3 n)

size.

The next lemma addresses how to use a network to compute a certain majority-

like function. (As for the sorting problem, the network consists of comparators,

which is subject to reversal faults, and replicators; but unlike in a sorting network,

the computation result is output to only one of the many registers in the network.)

In particular, we are interested in a network that computes the majority function

correctly provided that a large fraction (much larger than ) of the inputs are all Os

or all Is. Formally, for any constant r E (, 1), we define an r-MAJORITY function

with n inputs to be a Boolean function that outputs 1 if more than rn of the inputs

are all Is and that outputs 0 if more than rn of the inputs are all Os. (We do not care

how the function behaves if neither the number of Os nor the number of Is exceeds

rn.)

Lemma 3.2.6 ([9]) For some constant r E (, 1) and for any constant p < 2'

there exists an explicit construction of a (p, c)-reversal-fault-tolerant network with

O ((logp e)lo1 2 3) size that computes the r-MAJORITY function of O(logp e) inputs.

Proof: See [9]. ·

Proof of Theorem 3.2.4: Our network consists of two parts. The first part

is a reversal-fault-tolerant O(log n)-approximate-sorting circuit described in Theo-
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rem 3.2.3. This part has size of O(n log n(log n log n)2 ). (We actually need the circuit

to be (p, )-fault-tolerant instead of (p, 1)-fault-tolerant. This requirement can be

satisfied since the circuit of Theorem 3.2.3 is actually (p, O(12 n))-fault-tolerant.) At

the end of this part, with probability at least 1 - , every item is within O(log n)

of the correct position. Note that we do not need any replicators nor more than n

registers in this part.

The second part of our network moves all of the items to the correct positions

with probability at least 1- , provided that each of the inputs to this part is

at most O(logn) away from the correct position. To construct the second part, it

suffices to construct an O(log n)-input (p, 1 )-reversal-fault-tolerant sorting network

with O(log nlogl0g23 n) size, since we can finish the second part by applying such

networks to contiguous blocks of O(log n) items twice, where the boundaries of the

second set of networks fall in the centers of the first set of networks.

Such an O(log n)-input (p, 1 )-reversal-fault-tolerant sorting network can be con-

structed by using the Assaf-Upfal method [4] with some modifications. Let C be

an O(log n)-input sorting circuit with O(log log n) depth (e.g., let C be an AKS cir-

cuit with O(log n) inputs). Replace each original register ri by a block of registers

R = {ri, ri2, .. , ri, where s = O(log n). Also, replace each comparator between ri

and rj by s comparators that connect rik and rjk for each k < s. After each set of com-

parators that correspond to a single level in C, apply the expander-like construction

of the so-called majority preserver designed in [4] to each of the blocks. For any fixed

constant r < 1, by carefully choosing the parameters involved in the majority pre-

servers, we can use the argument of [4] to show that with probability at least 1- 122

for all i, more than rs of the items contained in Ri are the same as that contained in

ri in the fault-free case. The details of the construction and its proof of correctness

can be found in [4]. We complete the O(log n)-input (p, 1 )-reversal-fault-tolerant

sorting network by applying (in parallel) the s-input (p, )-reversal-fault-tolerant

r-MAJORITY network of Lemma 3.2.6 to each of the O(log n) blocks of the form Ri.

.
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3.3 An Optimal EREW Fault-Tolerant Sorting Al-

gorithm

In this section, we present our fault-tolerant sorting algorithm for the EREW PRAM

model. In the PRAM model, as pointed out in Section 1.1, we will assume that faults

only occur as incorrect answers to comparison queries and that no item is lost in any

comparison. In all of the upper bound results in this section, we assume that the

fault probability of each comparison is upper bounded by a constant strictly less than

. Note that when the fault probability is equal to , we cannot obtain any useful

information from a comparison.

The main result in this section is a fault-tolerant EREW PRAM algorithm for

sorting that runs in the optimal O(log n) time on n processors. This answers an open

question posed by Feige, Peleg, Raghavan, and Upfal [7]. The only previously known

o(log2 n) time fault-tolerant PRAM sorting algorithm on n processors is a randomized

algorithm [7].

Theorem 3.3.1 There exists an explicit deterministic fault-tolerant EREW PRAM

sorting algorithm with O(log n) running time on n processors.

The following lemma is due to Feige, Peleg, Raghavan, and Upfal [7].

Lemma 3.3.1 ([7]) There exists an explicit deterministic (p, pO(l0gm))-fault-tolerant

EREW PRAM algorithm that selects the maximum of m items in O(log m) time on

m processors.

Proof: See Theorem 20 of [7]. 

Proof of Theorem 3.3.1: We use the approach of Theorem 3.1.1, with modifi-

cations to achieve the claimed e(log n) running time (recall that the depth bound in

Theorem 3.1.1 is O(log n log log n)).

For any constant , by simple majority vote, we easily have a comparison scheme

of 0(1) running time that yields the correct answer with probability at least 1 - c.
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In our algorithm, we first use the PRAM to simulate the partial 1-AKS circuit. In

order to apply Corollary 2.3.1, we need to make sure that the fault probability of

each comparison is upper bounded by a sufficiently small constant. This can be

achieved by the majority-vote scheme, which only causes a constant slowdown. By

Corollary 2.3.1, all of the outputs from the PRAM simulation of the partial 1-AKS

circuit can be partitioned as X = S U X1 U... U XT such that all the items in Xi are

smaller than all the items in Xj for i < j, where = O(nl-P).

In the proof of Theorem 3.1.1, we went on to use the approximate-insertion circuit

of Lemma 3.1.1. Here, in order to achieve the claimed running time, we need a better

insertion scheme so that we will not have to deal with the boundary problem that

occurred in the proof of Theorem 3.1.1. In particular, we use the following non-

oblivious strategy. In parallel, we apply the selection algorithm of Lemma 3.3.1 to

Xi for each i < n. Let Mi be the maximum item in Xi as reported by the selection

algorithm. We use all n processors to sort the set

P= S U {M1,M2, ...,M}.

Since we have n processors and P contains at most n + ISI = O(n4) items, we can

sort P with probability at least 1 - 1 by simulating the m-input, O(log m)-time, and

O(m log m)-register (p, p°(l°gm))-destructive-fault-tolerant sorting network designed

in [4] with m = n + ISI.

Based on the sorted order of P, we can derive the approximately correct position

for each item in S. In particular, we can partition X as

x= U 
1<i<fi

where Yi = Xi U {s E S I Mi1 < s < Mi} for i < n, and Y = X U {s E S s >

Mn_l } (Mo is assumed to be -oo). It is easy to see that

o(n'3) = XlI < Yi| < ISI + X1] < O(n4) + O(n3) = e(n/), (3.24)
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where is the constant specified in Corollary 2.3.1. For i < j, all items in Y are

smaller than all items in Yj provided that the simulation of the partial 1-AKS circuit

and the sorting of P are both done correctly. Note that this output order is "cleaner"

than that obtained after the first round of the circuit of Theorem 3.1.1: in the present

case, we have no boundary problems to cope with.

To sort the items within Yi recursively, we have used in Theorem 3.1.1 a more

and more intensive application of the replication technique for smaller and smaller

set of items in order to guarantee that each of the O(loglogn) rounds works with

probability at least 1- 1 , instead of 1- o'. To achieve the O(log n) running

time, here we use an adaptive approach to avoid the O(log log n) running time blowup

caused by this replication technique.

In parallel, we apply a (p, il)-fault-tolerant EREW sorting algorithm to Y for

each i < n. A standard Chernoff bound argument shows that the number of unsorted

groups of the form Yi is at most n i + n4 with probability at least 1 - e 2. By

inequality 3.24, this means that with probability at most 1 - 1, the number of

unsorted groups of the form Yi is at most O(n4).

We now detect which groups of the form Yi remain unsorted. For each i in parallel,

we first assume that the order for Yi reported by the recursive sorting algorithm is

correct. Then, we check the correctness of the order by repeatedly comparing adjacent

items O(log n) times. With probability at least 1 - we will detect all of the O(n)

unsorted groups. The total number of items contained in such unsorted groups is at

most O(n ) = (1)+3) = O(n)+) = (n4 ). Since we have n processors to sort the

O(n3 +4) unsorted numbers, we can proceed by simulating the m-input, O(logm)-

time, and O(m log m)-register (p, p( ogm))-destructive-fault-tolerant sorting network

designed in [4] with m = O(n4 ), which succeeds with probability at least 1 - 2 

It is easy to see that the failure probability of the whole algorithm is O(1) < 1

Furthermore, this construction leads to the recurrence

T(n) = O(log n) + T (O(nO)),
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where T(m) denotes the time of the optimal (p, )-fault-tolerant EREW sorting

algorithm on m processors. Solving this recurrence, we find that T(n) = O(log n). m

3.4 Worst-Case Fault-Tolerance

In this section, we extend our results for random faults to construct worst-case fault-

tolerant sorting circuits, networks, and algorithms. All previous work on worst-case

faults seems to have focused on passive faults [23, 24, 26]. We are not aware of

any previous work on sorting networks that are tolerant to worst-case reversal or

destructive faults or PRAM sorting algorithms that are tolerant to worst-case faults.

We define a circuit, network, or algorithm to be k-fault-tolerant if the circuit, network,

or algorithm remains a sorting circuit, network, or algorithm even if any k or fewer

comparators (or comparisons in the case of an algorithm) are faulty.

Throughout this section, we will use the following simple scheme to construct k-

fault-tolerant circuits, networks, and algorithms: Take a (p, e)-fault-tolerant circuit,

network, or algorithm where = pk+l. Despite different technical details for different

fault and computation models, our hope is that such a circuit, network, or algorithm

will be able to tolerate up to k worst-case faults. This is formally proved in the next

lemma, where Q should be interpreted as a sorting related problem.

Lemma 3.4.1 Let A be a circuit, network, or algorithm for solving a certain problem

Q. If A is (p, e)-fault-tolerant, then A is k-fault-tolerant for k = logP e - 1.

Proof: Assume for the purposes of contradiction that A4 is not k-fault-tolerant.

Then, there exists a set S of k or fewer comparators (or comparisons if A is an

algorithm) such that if all the comparators (or comparisons) in S are faulty and all

of the other comparators (or comparisons) not in S are correct then the resulting

faulty version of A fails to solve the problem Q. On the other hand, if we set each

comparator (or comparison) in S be faulty with probability p and each comparator

(or comparison) not in S be faulty with probability 0, then A fails to solve Q with

probability plS = = plogpf-1 > e. This contradicts the assumption that A is
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(p, e)-fault-tolerant. ·

The remainder of this section is organized into four subsections. The first three

subsections contain results for passive faults, reversal faults, and EREW PRAM al-

gorithms, respectively. We conclude in the last subsection by pointing out that all

of the results in this section can be proved independent of the fault-tolerance of the

/-AKS circuit that is proved in Theorem 2.3.1.

3.4.1 Results for Passive Faults

In this subsection, we construct a k-passive-fault-tolerant sorting circuit with nontriv-

ial depth. Although the tight bound on the size of worst-case passive-fault-tolerant

sorting circuits was derived by Yao and Yao [26] in 1985, our result provides the

first asymptotically nontrivial upper bound on the depth, and is itself asymptotically

optimal over a large range of k.

Theorem 3.4.1 There exists an explicit construction of a k-passive-fault-tolerant

sorting circuit with O(log n + k log kook ) depth.

There is a trivial lower bound of Q(log n + k) on the depth of k-passive-fault-

tolerant sorting circuits. The Q(log n) lower bound follows from the trivial Q(log n)

lower bound for the fault-free case. In order for a circuit to tolerate k passive-

faults, each register r in the circuit must be connected to at least k + 1 comparators.

(Otherwise, all of the comparators associated with r could be faulty, and the circuit

would fail if the item input to r should not be output to r.) This implies an (k)

lower bound on the depth. Combining the Q(k) and Q(log n) lower bounds, we have

proved the Q(log n + k) lower bound on the depth. Therefore, the upper bound of

Theorem 3.4.1 is actually tight when k = 0(lol-") or k = Q(na) for any constant

oa.

In fact, when k = O(log n), by taking the circuit of Theorem 3.1.1 and applying

Lemma 3.4.1 with p set to a constant, we immediately get a k-passive-fault-tolerant

sorting circuit with O((log n + k) log log n) depth. For larger k, we can construct a k-

passive-fault-tolerant sorting circuit with O((log n + k) log log n) depth by replicating
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each comparator of the O(log n)-passive-fault-tolerant sorting circuit Q(l g) times.

However, to achieve the better depth bound claimed in Theorem 3.4.1, we will use a

slightly different approach.

Lemma 3.4.2 For some constant a < 1, there exists an explicit construction of a k-

passive-fault-tolerant m-input m'-approximate-sorting circuit with depth O(log m+k).

Proof: An m-input (log m)-passive-fault-tolerant m'-approximate-sorting circuit can

be easily constructed by applying Lemmas 3.4.1 and 3.1.2. This proves the theorem

for the case k < log m. When k > log m, the claimed circuit can be constructed by

replicating each comparator of the (log m)-passive-fault-tolerant circuit [lom] times.

Lemma 3.4.3 There exists an explicit construction of an m-input O(m)-passive-

fault-tolerant sorting circuit with O(m) depth.

Proof: This follows from Lemmas 2.3.1 and 3.4.1. (Recall that as pointed in the

proof of Lemma 2.3.1, for passive faults, the circuit of Lemma 2.3.1 is actually a

(p, p(log m))-fault-tolerant circuit for sorting, as opposed to approximate-sorting.) ·

Proof of Theorem 3.4.1: We first apply the k-passive-fault-tolerant n-approx-

imate-sorting circuit of Lemma 3.4.2 to all n items. The outputs of this circuit form

an O(no)-approximate-sorted list. Then, we apply two sets of O(n")-input O(no2 )-

approximate-sorting circuits of Lemma 3.4.2 so that the boundaries of the second set

of circuits fall in the centers of the first set of circuits. We can repeat this construction

within smaller and smaller groups until the group size is no more than k, where we

can finish up by using the circuit of Lemma 3.4.3. Detailed parameter choices are

similar to those in the proof of Theorem 3.1.1. This construction leads to the following

formula on the depth D(n):

D(n) = O(k log n) + O(k + log n) + + O(k log n ) + O(k)
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where i is the smallest integer such that O(n') < k. This yields D(n) = O(log n +

k g lgn). 

3.4.2 Results for Reversal Faults

We begin this subsection by proving that A > k for any k-reversal-fault-tolerant

A-approximate-sorting circuit. Then, we prove a lower bound on the depth of any

k-reversal-fault-tolerant k-approximate-sorting circuit. We continue with a k-reversal-

fault-tolerant k-approximate-sorting circuit with nontrivial depth and size. The most

important result in this subsection is the construction of a k-reversal-fault-tolerant

k-approximate-sorting network with nontrivial size and depth.

Theorem 3.4.2 For any k < n, there is no k-reversal-fault-tolerant (k - 1)-approx-

imate-sorting circuit.

Proof: We focus on an arbitrary n-input circuit C and show that some faulty version

of C with at most k faults cannot (k - 1)-approximate-sort. Since the theorem is

concerned with the functionality of C, and not the depth of C, we can assume without

loss of generality that each level of C contains only one comparator. We use the notions

of fault patterns and register segments as defined on pages 10 and 70, respectively.

Also, we use C(F) to denote the faulty version of C specified by fault pattern F. From

the top to the bottom, we label the n registers of C by rl,r 2,... ,rn. Let ri,j denote

the register segment of ri between levels j and j + 1 for j = 0, 1,..., d, where d is the

depth of C.

In what follows, we assume that x is the item that is supposed to be output to

register r1 when a permutation of {1, 2,..., n} is input to C. Let

Ik (j) =i 3 a fault pattern F with k or fewer faults and a permutation r of 1
{1,2,..., n} such that ri,j contains x when 7r is input to C(F)

We next prove that

IIk(j) > k + 1 for k < n. (3.25)
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The fact that some faulty version of C does not (k - 1)-approximate-sort follows

from the preceding inequality with j = d, since x is supposed to be output to rl and

there are at most k registers within k - 1 of rl.

We prove inequality 3.25 by induction on j. The base case j = 0 is trivial, because

each of the n input register segments can contain item x.

Assuming that inequality 3.25 holds up to j- 1, we prove that inequality 3.25

holds for j. Assume

Ik(j- 1) = {il, i2,. is}

By the induction hypothesis, s > k + 1. Assume that the unique comparator at level

j connects registers r and r. Since the comparator between r and r is the only

comparator at level j, we have

Ik(j) 2 Ik(j - 1) - {u} or Ik(j) 2 Ik(j - 1) - {v}. (3.26)

There are three cases to consider.

Case 1: u Ik(j- 1) and v Ik(j- 1). In this case, Ik(j) 2 Ik(j -1), and

inequality 3.25 follows from the induction hypothesis.

Case 2: Exactly one of u and v is in Ik(j - 1). Without loss of generality, we

assume that u E Ik(j - 1) and v ¢ Ik(j - 1). Hence, on some input permutation,

we can force ru,j- to contain x by using up to k faults before and including level

j - 1. This will cause either r,j or r,,j to contain x. Hence, by relation 3.26, either

Ik(j) 2 Ik(j - 1) or Ik(j) Ik(j - 1) U {v} - {u}. In either case, inequality 3.25

holds for j.

Case 3: u E Ik(j-1) and v E Ik(j-1). In this case, Ik(j-1) D Ikl(j-1)U{u, v}.

Hence, if neither u nor v is in Ik-(_l - 1), then

Ik(j - 1)1 > Ik-l(j - 1) + 2 > k + 2,

where the second inequality follows from the induction hypothesis. This, together

with relation 3.26, implies that inequality 3.25 holds for j. Therefore, we only need
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to check the case where either u or v is in Ik-l(j - 1). Without loss of generality,

we assume that u E Ik-l(j - 1). Under this assumption, on some input permutation,

we can force r,jl to contain x by spending up to k- 1 faults before and including

level j - 1. Then, by setting the unique comparator at level j to be either faulty or

correct, we can force x to enter either r,j or rv,j, whichever we desire. This means

u Ik(j) and v E Ik(j). Hence, by relation 3.26, Ik(j) D Ik(j - 1), which together

with the induction hypothesis implies the correctness of inequality 3.25 for j. This

finishes the inductive proof of inequality 3.25 as well as the proof of Theorem 3.4.2.

Theorem 3.4.3 Any k-reversal-fault-tolerant k-approximate-sorting circuit has

Q(k log ) depth.

Proof: Let C be a k-reversal-fault-tolerant k-approximate-sorting circuit with depth

d. We will use the notion of register segments as defined on page 70. In particular,

let r(i, ) be the register segment of C that contains i between levels I and I + 1 when

the identity permutation (1,2, .. , n) is input to the non-faulty version of C. For

example, r(i, 0) is the ith input register segment. For ease of notation, we assume

r(i, l) = r(i, 0) for I < 0.

Claim 3.4.1 If circuit C contains at most k faults, then for any integers > 0 and

i E [1, n], r(i, d - lk) can only contain an item in [i - 21k, i + 21k].

We will prove the claim by induction on 1. For the base case where I = 0, the claim is

true since (the non-faulty) C should k-approximate-sort all permutations, including

the identity permutation. Assuming that the claim holds for I - 1, we now prove the

claim for 1.

Recall that as defined on page 75, a register segment y is a descendant of a register

segment x if and only if the item contained in x could subsequently enter y in some

faulty or non-faulty version of C. Also, following the notations defined on page 75,

we use D(x, j) to denote the set of descendants of x between levels j and j + 1. We
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next prove that

D (r(i, d - k),d - ( - 1)k) C {r(j, d - (I - 1)k) I j E [i - 2'-l1 k, i + 21-lk]}. (3.27)

Assume for the purposes of contradiction that the above inequality does not hold.

Then, there exists

j ~ [i- 2'- lk, i + 21- l k] (3.28)

such that r(j, d-(1 - 1)k) is a descendant of r(i, d- Ik). Hence, there is a path from

r(i, d - k) to r(j, d - (I - 1)k) that spans at most k levels in C. On the other hand,

r(i, d- k) receives i when the identity permutation is input to any version of C that is

fault-free in the first d- Ik levels. By forcing each of the k or fewer comparators along

the path from r(i, d- Ik) to r(j, d-(I - 1)k) to be faulty or correct, as appropriate,

we can force r(j, d - (I - 1)k) to receive i. However, by the induction hypothesis,

r(j, d - (I- 1)k) can only receive an item in [j- 21-1k, j + 21-1k] when C contains at

most k faults. Hence, we have i E [j - 21- 1k, j +2l -1 k], which contradicts relation 3.28.

This proves relation 3.27.

By relation 3.27, if, on any input permutation, r(i, d- Ik) receives an item j' when

C contains k or fewer faults, then j' is eventually moved from r(i, d- Ik) to a register

segment r(j, d- (I- 1)k) for some j E [i - 21-k, i + 2'1-k]. On the other hand, by the

induction hypothesis, r(j, d - (I- )k) can only receive items in [j - 2'- k,j + 2'- k]

when C contains at most k faults. Thus, j' [j - 21-1k,j + 21-l k] C [i - 2k, i + 2 k].

This finishes the inductive step for proving Claim 3.4.1.

By Claim 3.4.1 with I = [jl, we find that the input register segment r(1,0)

can only contain numbers in [1 - 2tk, 1 + 2'k]. On the other hand, the item input

to r(l,0) can be any number in [1,n]. Hence, we have 1 + 2k > n, which yields

= H[l > log m~. This completes the proof of Theorem 3.4.3. ·

We remark that the above proof can be extended to obtain the same lower bound

for the much simpler problem of k-approximate-insertion. This requires slightly more

efforts, and we will not prove this fact in the thesis.
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Theorem 3.4.4 There exists an explicit construction of a k-reversal-fault-tolerant k-

approximate-sorting circuit with O(k log n+k log2 k) depth and O(n(log n+k log log +

k log2 k)) size.

Lemma 3.4.4 There exists an explicit construction of an m-input k-reversal-fault-

tolerant k-approximate-insertion circuit with O(k log m) depth and O(mk) size.

Proof: By using the proof technique of Lemma 2.3.1, it is easy to prove that for any

constant c > 1, there exists a ck-input odd-even transposition circuit of O(k) depth

that is a k-reversal-fault-tolerant k-approximate-sorting circuit. Using this fact and

the argument for Lemma 3.2.3, it is easy to show that the circuit of Lemma 3.2.3 with

I = O(k) has the desired property. Note that the assumption I > log m in Lemma 3.2.3

was used only in the probabilistic analysis. Hence, the assumption is not necessary

when the circuit is subject to worst-case faults. In fact, for worst-case faults, all of

the odd-even transposition circuits involved in the analysis are k-approximate-sorting

circuits. ·

Lemma 3.4.5 For k < m 2 (where Z is the constant specified in Corollary 2.3.1),

there exists an explicit construction of an m-input k-reversal-fault-tolerant m'-approx-

imate-sorting circuit with O(k log r) depth and O(m(k + log m)) size where a < 1 is

a constant.

Proof: By Lemma 3.4.1 and Corollary 2.3.1, for some I = 0(max{ m 1}), an m-

input partial I-AKS circuit will move every item, except those in a set S with O(m4)

items, to within O(mO) of the correct position, even in the presence of up to k worst-

case reversal faults. This part has O(log m + k) depth and O(m(log m + k)) size. We

complete the claimed circuit by applying a set of k-approximate-insertion circuits of

Lemma 3.4.4 in a fashion similar to that of Lemma 3.1.2. This part has O(k log m)

depth and O(mk) size. ·

Lemma 3.4.6 There exists an explicit construction of an m-input k-reversal-fault-

tolerant k-approximate-sorting circuit with O(k log2 m) depth and O(mk log2 m) size.
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Proof: By using the argument for Lemma 3.2.5, it is not hard to show that the circuit

of Lemma 3.2.5 with = k is a k-reversal-fault-tolerant O(k)-approximate-sorting cir-

cuit with O(k log2 m) depth and O(mk log2 m) size. (The assumption I > clog m was

used in the probablistic argument for Lemma 3.2.5; such an assumption is not needed

for worst-case faults since we can actually argue that all of the constituent odd-even

transposition circuits are k-reversal-fault-tolerant.) Given the O(k)-approximate-

sorted list thus produced, we can finish up by applying an odd-even transposition

circuit of O(k) depth to the entire list. By the argument of Lemma 2.3.1, we can

show that after O(k) steps of the odd-even transposition circuit, every item is within

k of the correct position. -

Proof of Theorem 3.4.4: Given the circuit of Lemma 3.4.5, we can construct

the claimed circuit in a manner similar to that used in the proof of Theorem 3.2.3. In
2

particular, we repeatedly apply the circuit of Lemma 3.4.5 until m = kl-, at which

point we can directly apply the circuit of Lemma 3.4.6. The depth of the entire circuit

is at most

2
O(k log n) + O(k log n) + ... + O(k log n) + + O(k log k -) + O(k log2 k)

= O(k log n + k log 2 k).

The size of the entire circuit is at most

O(n(k + log n)) + O(n(k + log n)) + + O(n(k + log n)) + ... +
2

+0O(n(k + log kdl-)) + O(nk log2 k)

O(n(log n + k llogl + k log2 k))
log k

'Theorem 3.4.5 There exists an explicit construction of a k-reversal-fault-tolerant

.sorling network with O(n(log n + k log lognl + klog2 3)) size.log k Z.
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The definition of the r-MAJORITY function in the next lemma can be found on

page 85.

Lemma 3.4.7 ([9]) There exists an explicit construction of a k-reversal-fault-tolerant

network with O(k1 g23) size that computes the r-MAJORITYfunction with O(k) in-

puts for some constant r E (, 1).

Proof: See [9]. 

Proof of Theorem 3.4.5: We first apply the k-approximate-sorting circuit in The-

orem 3.4.4. Then, we use the Assaf-Upfal [4] technique followed by n r-MAJORITY

networks with O(k) inputs each, as described in Lemma 3.4.7, for some constant

r C (, 1). The details are similar to those in the proof of Theorem 3.2.4. 

3.4.3 An Optimal EREW k-Fault-Tolerant Sorting Algorithm

This section contains an optimal k-fault-tolerant EREW PRAM sorting algorithm.

Theorem 3.4.6 There exists an explicit EREW PRAM k-fault-tolerant sorting al-

gorithm that runs in asymptotically optimal 0(log n + k) time on n processors.

Proof: We first prove that any k-fault-tolerant PRAM sorting algorithm on n pro-

cessors runs in Q(log n + k) time. Since any sorting algorithm uses Q(n log n) com-

parisons, it is sufficient to prove a lower bound of Q(k). In the PRAM model, each

processor can only make c comparisons at each single step, where c is a constant.

Assume for the purposes of contradiction that a k-fault-tolerant sorting algorithm

runs in at most steps. Then there exists an output item x that is involved in k

or fewer comparisons. If these k or fewer comparisons for x are all faulty, then we

actually know nothing about the rank of x. This is a contradiction.

According to Lemma 3.4.1, a (log n)-fault-tolerant EREW sorting algorithm A

with O(log n) running time on n processors can be easily constructed from the algo-

rithm of Theorem 3.3.1. For k < logn, algorithm A satisfies all the claimed prop-

erties. For k > log n, we construct another algorithm 4' with the claimed property
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by simulating A, as follows. In A', we replace each comparison query of A by 2kl1

comparisons, and we use the majority of the answers as the final answer to that query.

In order to make an answer to a comparison query in A be incorrect, an adversary

would need to spend more than lok- faults for A'. With up to k faults for A', the

adversary can force at most k = log n incorrect comparison answers in A. Since
log n

A can tolerate up to log n faults, A' works correctly with up to k faults. Since we

simulate each comparison of A by 2 comparisons in A', the running time of A' is

O(-k) times the running time of A. Hence, algorithm A' runs in O(k) time. ·

3.4.4 Remarks

Thus far, all of our worst-case fault-tolerant constructions of circuits, networks, and

algorithms have been based on the corresponding constructions for random faults.

Since our results for random faults are dependent on the fault-tolerance properties of

the -AKS circuit proved in Theorem 2.3.1, our results for worst-case faults are also

dependent on Theorem 2.3.1.

Given the difficulty of proving Theorem 2.3.1, it is worth pointing out that all of

our results for worst-case faults can be proved independent of Theorem 2.3.1. For

this purpose, the replacement of Theorem 2.3.1 is a lemma that is essentially due

to Yao and Yao [26], who proved the lemma for passive faults. In what follows, we

define the Hamming distance D(x,y) of any two 0-1 sequences x,y E {0, 1}n to be

the number of positions where x and y differ. For any (possibly faulty) circuit C, we

use the notation C(x) to denote the 0-1 sequence that is output by C on input x. Yao

and Yao's lemma states that for any circuits C and C' where C' is a faulty version of

C with at most k passive or reversal faults, D(C(x),C'(x)) < 2k where x is any 0-1

sequence in {0, 1}n. Even though Yao and Yao considered passive faults only, their

proof can actually be extended to deal with reversal faults. Given Yao and Yao's

lemma, we can construct circuits, networks, and algorithms by an approach used

in [15]. In particular, we will need circuits that isolate extreme items into a small

group of registers. We can construct such circuits by adapting the fault-tolerant
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minimum-finding algorithm of [7] (see Lemma 3.3.1) or by adapting the passive-fault-

tolerant minimum-finding circuit of [6]. The details are not simple and are omitted

in this thesis.
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Chapter 4

Tight Lower Bounds on the Size of

Destructive-Fault-Tolerant Sorting

Networks

In this chapter, we prove a tight lower bound of Q(n log2 n) on the size of destructive-

fault-tolerant sorting networks. Somewhat surprisingly, we can show the same lower

bound even for the much simplier problem of merging. We also consider worst-

case destructive faults, and we prove a lower bound of (k+1)logn on the size of k-

destructive-fault-tolerant sorting or merging networks. This lower bound is tight for

k = O(log n). We also study the trade-off between the depth and width of destructive-

fault-tolerant sorting or merging networks. (The width of a network is defined to be

the number of registers in the network.) These results completely settle the open

questions posed by Assaf and Upfal [4] on the size and width of destructive-fault-

tolerant sorting networks.

The remainder of the chapter is organized into sections as follows. We start in

Section 4.1 by proving the Q(kn log n) lower bound on the size of k-destructive-fault-

tolerant sorting or merging networks. We then extend this result in Section 4.2 to

prove the Q(nlog 2 n) lower bound on the size of destructive-fault-tolerant sorting

or merging networks. The material in Section 4.2 represents the most difficult and
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important result of the chapter. In Section 4.3, we study the trade-off between the

depth and width of destructive-fault-tolerant sorting and merging networks.

4.1 Lower Bounds for Worst-Case Faults

In this section, we prove a lower bound on the size of merging and sorting networks

that are tolerant to worst-case faults.

Theorem 4.1.1 The size of any k-destructive-fault-tolerant merging (or sorting) net-

work is at least (k+l)nlogn
4

We will prove Theorem 4.1.1 by showing a lower bound for merging networks.

Without loss of generality, we will assume that n is an exact power of two. In what

follows, we will use M to denote a k-destructive-fault-tolerant merging network that

takes two sorted lists X = (xl < x2 < ... < xn/2) and Y = (l < Y2 _ '- -_ Yn/2) as

inputs and that outputs the merged list. Without loss of generality, this means that

M sorts lists of the form (l, Y1, X2, Y2,... ,Xn/2, Yn/2) where Xi < x2 < ... < xn/2

and yl < Y2 < ... < Yn/2-

To show that M must have (k+1)nlogn comparators, we need the following defini-4

tions and lemmas, some of which are extensions of those used by Floyd to prove that

a fault-free merging network needs Q(n log n) comparators (see Theorem F on pages

230-232 of [10]).

Given a merging network M with fault pattern F and a list of integer inputs

II = (r1, 2, .. , Trn) to M, we denote the content of a register r immediately after

level t by C(r,t). 1 For example, in the network of Figure 1-2, if we label all of

the registers from the top to the bottom by rl, r2, r3, and r4 , then C(r3, 1) = 0 and

C(r3, 2) = C(r3, 3) = 1. We define the history of M given F and II to be the collection

of register contents C(r, t) taken over all registers and all levels. The following lemma

1The concept of a content here is essentially the same as that defined on page 22, but our notation
for a content in this chapter is different from that used in Chapter 2. A formal definition of a fault
pattern can be found on page 10.
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shows how the history of a network computation can be influenced by a fault at a

single output of a comparator.

Lemma 4.1.1 Given any M, H, F, and F', let C(r, t) denote the content of register

r immediately after level t for M given F and H, and let C'(r, t) denote the content

of register r immediately after level t for M given F' and H. If F' is identical to F

except that one comparator C on level I with output registers p and q is modified in

F' so that C'(q. ) = C(q, ) and C'(p, 1) $ C(p, 1), then for all r and t

(1) if C(r, t) < C(p, ), then C'(r, t) < C(r, t),

(2) if C(r, t) > C(p, ), then C'(r, t) > C(r, t).

Proof: For simplicity, let s = C(p, ) and s' = C'(p, 1). We will only prove the lemma

for the case in which s' < s. The case in which s' > s can be proved similarly.

We will think of F' as the result of modifying C in F and prove some properties

must hold when such modification is made. The network can be divided into two

parts: the part before (and including) level 1 and the part after level 1. The former

part clearly remains unchanged after C is modified, and the latter part is changed

as if one input item to that part were modified. Hence, it suffices to show that the

following properties (a) and (b) hold when some input item is changed from s to some

s' < s but no comparator is modified.

(a) The content of each register segment2 whose content was less than s before

the modification is not increased.

(b) The content of each register segment whose content was greater than s before

the modification remains unchanged.

In a given history, if an input item is changed from s to s- 1 (but no comparator is

modified), then all the input items that are neither s nor s- 1 move in the network as

they did before. Hence, all the register segments containing neither s nor s- 1 before

the modification must contain the same value as before. All the register segments

containing s - 1 before the modification must contain s - 1, while some register

segments containing s before the modification may contain s - 1 now. This means

2 The definition of a register segment is given on page 70.
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that properties (a) and (b) hold when an input s is changed to s - 1. If the new

input item s - 1 (the one that was s before) is further changed to s - 2, then the only

new change in the history is that some register segments containing s - 1 before the

modification may contain s - 2 now. Overall, an input item has been changed from

s to s - 2 and properties (a) and (b) still hold. Since both s and s' are integers, this

process can be continued until an input has been changed from s to s'. During the

whole process, properties (a) and (b) are never violated. 

Consider the history of M on a particular 0-1 input sequence r. A crossing

comparator of M with respect to r is defined to be a comparator whose input contents

are {0, 1} (i.e., they are not both 0 or both 1).3 Mo(7r), a subnetwork of M with

respect to r, is constructed as follows. (The subscript 0 is used to denote that it is

the part of M that contains 0 on 7r.) Take all the register segments and replicators

that contain 0 and all the comparators with both inputs containing 0. Replace each

crossing comparator of Mo with respect to Xr by connecting directly its (unique) input

containing 0 and its (unique) output containing 0. Ml(,r) can be constructed in a

similar fashion. For example, when M and r are as shown in Figure 1-2, Mo(7r) and

M1(ir) are illustrated in Figure 4-1.

Unless specified otherwise, we will be particularly interested in the history of M

(when there are no faults) on the input sequence

(0, 0. .. ' 0, 1, 1.. . ) (4.1)
n/2 n/2

Therefore, when we talk about crossing comparators, Mo, and M 1 without speci-

fying 7r, 7r should be interpreted as the 0-1 permutation given in expression 4.1. In

particular, to construct Mo and M 1, we input the smallest items to the top half

of M and the largest items to the bottom half of M. Also, the smallest items

should be contained in Mo, and the largest items should be contained in M 1.

3 The concept of a crossing comparator defined here is similar to that defined on page 72. But
they are not identical in that they are defined with respect to different input sequences. We will
slightly change the notion of a crossing comparator again in the next section.
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The motivation for defining crossing comparators, Mo, and M 1 can be found in the

following lemmas.

Mo(r) Mi(x)

Figure 4-1: The decomposition of the network in Figure 1-2, with respect to the
input sequence therein, into Mo(7r) and Ml(7r). The sloping lines represent direct
connections that replace crossing comparators.

Lemma 4.1.2 If M is an n-input k-destructive-fault-tolerant merging network, then

both Mo and M 1 are -input k-destructive-fault-tolerant merging networks.

Proof: If we input to M any sequence

(X1,' Yl X2, 2, *X** n/47 Yn/4i ... +

n/2

such that xl < x2 < ... < xn/4 and Yl < Y2 < ... < Yn/4 and if none of the crossing

comparators of M are faulty, then, by the definition of Mo, the x's and y's should

move within Mo only, and M 1 has no impact on them. Hence, Mo must be a k-

destructive-fault-tolerant merging network. (Note that an adversary can put no faults

at crossing comparators and put up to k faults into Mo.) By a similar argument, we

can show M 1 is also a k-destructive-fault-tolerant merging network. 

Lemma 4.1.3 If M is a k-destructive-fault-tolerant merging network, then M must

have at least (k+l) crossing comparators.

Proof: We will focus on the history of M on input sequence

(1, +oo, 2, +oo,..., n/2, +oo).
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According to the definition of Mo, 1, 2,.. ., ' should all be output in the outputs of

Mo. In particular, 4 1,..., n should be moved from M 1 to Mo. By definition,4 '"'2

each crossing comparator has exactly one Mo-input and one Mi-input. (If an input

(output) of a comparator is in Mo, then we call it an Mo-input (output); if an input

(output) of a comparator is in M 1, then we call it an Mi-input (output).) Label

each crossing comparator by its M 1-input.

Assume for the purposes of contradiction that M contains less than (k+i)n crossing

comparators. Then, there exists an integer s, such that + 1 < s < and the total

number of crossing comparators labeled by s is at most k.

Let C1 be a crossing comparator labeled by s that is at the lowest level in M.

Since s cannot have moved into Mo without using a crossing comparator labeled by

s, we know that the Mo-input to C1 does not contain s. Moreover, since C1 is not

faulty in the fault-free network M, one of its outputs contains s and the other output

does not contain s. Hence, if we make C1 be faulty by forcing the Mo-input of C1 to

appear in both outputs of C1, this will have the effect of replacing the value of s in

one of the output registers with a value other than s, which is exactly the scenario

described by Lemma 4.1.1. In addition, C1 can no longer be used to move s from M 1

to Mo.

For any r and t, by Lemma 4.1.1, we know that if C(r, t) -$ s before C1 is made

faulty, then C(r, t) : s after C1 is made faulty. Hence, the number of working crossing

comparators labeled by s decreases by at least 1 when C1 is made faulty.

We next relabel crossing comparators based on the new history when C1 is faulty

and proceed inductively (i.e., we select the next crossing comparator labeled by s,

make it faulty, and so forth). The proceeding process terminates when there are no

longer any functioning crossing comparators labeled by s. This is accomplished by

making at most k crossing comparators faulty. Since there are no longer any crossing

comparators that can move s from M1 to Mo, the network does not successfully com-

plete the merge. Hence, we conclude that M has at least (k+l)n crossing comparators.4
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Proof of Theorem 4.1.1: For any fixed k, let S(n) denote the size of the smallest

n-input k-destructive-fault-tolerant merging network. From the definition of cross-

ing comparators, the construction of Mo and M 1 , and the fact that no crossing

comparator in M appears as a comparator in either Mo or M 1, we know that

size(M) > size(Mo) + size(M) + {crossing comparators in M}.

By Lemmas 4.1.2 and 4.1.3, this means that

S(n) > 2S ( + (k + l)n

for n > 4. Solving the recurrence, we find that

S(n) n .S(2) + (k + 1)nlog(n/2)
2 4

Since S(2) > k + 1, this means that S(n) > ( nlogn as claimed. 

To conclude this section, we point out that although our lower bound for worst-

case destructive faults is tight when k = O(logn), it can be improved when k is

very large, say, exponential in n. we refer the reader to the recent work of Kleitman,

Leighton, and Ma [9] for the recent work in this direction.

4.2 Lower Bounds for Random Faults

In this section, we prove a tight lower bound on the size of destructive-fault-tolerant

merging and sorting networks. As pointed out in Section 1.3, to get the strongest

possible result, p should be interpreted as the failure probability of each comparator

in the networks, as opposed to an upper bound on the failure probability. In fact, if

p were interpreted as such an upper bound, an Q(n log2 n) lower bound on the size

of destructive-fault-tolerant sorting or merging networks would directly follow from

Theorem 4.1.1 with k = O(log n).

By definition, there exist a fixed number of ways for a comparator to fail in the
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destructive fault model. When a destructive fault does occur at a comparator, we

will assume that each form of the failure appears equally likely. In other words, the

probability that a particular form of failure appears at a comparator is po = where

the constant ca denotes the total number of possible ways that a comparator can fail.

The following theorem is the main result of this chapter.

Theorem 4.2.1 The size of any (p, e)-destructive-fault-tolerant merging (or sorting)

network is

log + l ogn lolog + log log, l e 1 ) (4.2)
nlog41-1ogp.2)

This theorem gives a good lower bound for a large range of p and , and it does

not require either p or to be a constant. The most interesting case is that p is a

non-zero constant and e = p -. In this case, the theorem gives a lower bound

of £Q(n log2 n), which is tight [4]. Somewhat surprisingly, however, the theorem gives

the same Q(n log2 n) lower bound even when is not small. In particular, when p is

a non-zero constant, the theorem implies the Q(n log2 n) lower bound even for some

extremely small success probability like 1- e = e- n4 . Hence, even networks that have

a tiny chance of surviving the faults must have Ql(n log2 n) size.

In fact, we are going to show a lower bound of the form

1° 1 + og /n_ - log log , 1! -~ )(4.3)

( n log n log -o lo 1(43)

where po is the probability that a comparator suffers a particular form of destructive

failure. (One can easily check that lower bound 4.3 implies lower bound 4.2. The

term "1" in the denominator of expression 4.2 prevents the lower bound from going

to +oo when p goes to 1.) We will prove lower bound 4.3 by showing a lower bound

of
n log n log e

(4.4)
4 log po

and a lower bound of
n log n(log E/I - log log 1- (4.5)

4 log 
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When = (pol(n))' lower bound 4.5 is stronger, and when = (poly())

lower bound 4.4 is stronger.

As a direct application of the proof technique for worst-case faults, if the size of

M does not satisfy lower bound 4.4, then, for any faulty M, we can always produce

another faulty network that does not work correctly by forcing at most log,, e = log0

comparators to be faulty in a particular way. It is natural to ask if this property is

strong enough to show that there is a large fraction of faulty networks that do not

work correctly. This can be formulated as the following question. Let S be the set

of all sequences with fixed length 1, and So be a subset of S. (S will correspond to

all fault patterns for a network M, and So will correspond to those fault patterns

that keep M from being a merging network.) If the union of all the hamming balls

with origins in So and radius logp,0 covers S, can we prove ISl = ()? (e., if every

fault pattern is within logo e faults of a bad fault pattern, is the density of bad fault

patterns Q(c)?) Unfortunately, the answer to this question is in general "No". Hence,

to prove our lower bound, we need a better understanding of the structure of the bad

fault patterns.

Following the notation of Section 3.2, we use M(F) to denote the faulty version of

M in which the behavior of each comparator is determined according to fault pattern

F. In the proof, we will focus on a particular merging network M only. Hence, there

is a one-to-one correspondence between each fault pattern F and the faulty network

M(F). We call a fault pattern F good if M(F) functions correctly as a merging

network, and we call F bad otherwise. As in Section 4.1, we want to decompose

M into smaller networks and analyze the behavior of the comparators that connect

these small networks. However, unlike in Section 4.1, where we use the fault-free M

to define these concepts, we need to deal with different decompositions and different

sets of crossing comparators for different fault patterns. We will use the history of

M(F) on input sequence

(0 O., 0 , ... 1)

n/2 n/2

to redefine these concepts as follows. A crossing comparator of M (F) is defined to be
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a comparator whose input contents are {0, 1} (i.e., they are not both 0 or both 1). 4

M(F)o is constructed as follows. Take all the register segments and replicators that

contain 0 and all the comparators with both inputs containing 0. For each crossing

comparator with one output containing 0 and the other output containing 1, replace

it in M(F)o by connecting directly the (unique) input containing 0 to the (unique)

output containing 0. For each crossing comparator with both outputs containing 0

(because of a fault), replace it in M(F)o by a replicator that copies from the (unique)

input register containing 0 to the other (output) register. (We do not include anything

in M(F)o to represent crossing comparators with both outputs containing 1.) M(F) 1

can be constructed in a similar fashion.

Given M(F)o, we can construct M(F)oo and M(F) 01, and given M(F) 1 , we can

construct M(F)lo and M(F)11. Working recursively, we can construct M(F)i in a

similar way for any binary number i with less than log n bits.

For a fixed M, we can define a partial order on the set of all the comparators in

M by the following rule:

C - C2 if and only if depth(C1) < depth(C 2 ).

We can extend this partial order into a total order. It does not matter how we

extend, but we will stick to a fixed extension in the proof.

Proof of Theorem 4.2.1: We start by showing that for any (p, )-destructive-

fault-tolerant merging network M,

size(M) > nlog nlog (4.6)
4 log po

Assume for the purposes of contradiction that inequality 4.6 is not true for M. Then,

we will prove that

Prob(F is bad for M) > (4.7)

4 This should be compared with the definition of a crossing comparator given on page 105. Also,
see the footnote on that page.
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where F denotes a randomly generated fault pattern for M. We will prove inequal-

ity 4.7 by partitioning the space of all possible fault patterns into small groups and

then showing that, within each group, a bad fault pattern will be generated with

probability more than e.

Now we will do the most difficult part in the proof, which is to find an appropriate

partitioning of the space of the fault patterns. On any fault pattern F, we will use

the following 3-step procedure to choose a characteristic set of F, Char(F), based on

which we are going to define the partition.

Step 1. List all the M(F)i's as follows:

M(F), M(F)o, M(F)1, M (F)oo, M(F)ol, M(F)o, M (F),1,.... (4.8)

(For any binary numbers i and j with less than logn bits, we list M(F)i before

M(F)j if i has fewer bits than j, or if i and j have the same number of bits and

i < j.) Take the first network M(F)i in list 4.8 that has less than ni "g 0 crossing

comparators where ni = 2-) (where (i) is the length of i) is the total number of

input items to M(F)i. (Such i does exist since we have assumed that inequality 4.6

is not true.)

By definition, we know that ni > 2. In what follows, we will assume ni > 4. The

case when ni = 2 is easily handled as a special case (or it can be ignored by replacing

log n with log n - 1 in the lower bound).

Step 2. Compute the history of M(F)i on input

(1, +oo, 2, +oo,. .. , i, +oo,... , n/2, +oo),

and label each crossing comparator by its (unique) M(F)i1-input item. Let S(j) be

the set of the crossing comparators labeled by j. Go through the list

S (4 + 1),S (4 + 2 .. ,S (2)4 4 2/
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and choose the first set S(s) such that

Is(J)l < (s - )l (4.9)4 logpo'
4 +ljs

(Such s does exist, since, by the choice of i, M(F)i contains less than nilge crossing

comparators, and therefore s = 2 must satisfy inequality 4.9.) By the minimality of2

s, we can conclude the following:

Claim 4.2.1 IS(s)l < logs.

Step 3. We will continue to work on the history of M(F)i on input

(1, +oo, 2, +oo,. . ., i, +oo,..., n/2, +oo),

and we will choose a characteristic set for F, Char(F), from S(s). List all the com-

parators in S(s) as follows:

C1 q- C2 - ". - Ct (4.10)

where -< is the depth-respecting total order described earlier. We first put comparator

Cl into Char(F). Then, we modify the behavior of C1 (thereby making it faulty in

a particular way) so as to make Cl directly output its M(F)jo-input item to all its

M(F)io-outputs (if any), without changing any M(F)il-output of C1.

Before this modification, the M(F)i 1 -input of C1 contained s and the M(F)io-

input of C1 contained non-s, since s could not have moved into M(F)io without using

a comparator labeled by s. Moreover, if an M(F)io-output of C1 did not contain

s (which is the M(F)il-input content of C1), it had to contain the M(F)jo-input

content of C1. Therefore, this modification has the effect of changing some output

content of C1 from s to non-s. By Lemma 4.1.1, this modification cannot cause any

new crossing comparator to be labeled by s. Now C1 is no longer capable of moving

s from M(F)il to M(F)io. Then, we update the history accordingly. In the new

history, C2, C3,. .. , Ct are the only remaining comparators that might move s from

M(F)il to M(F)io. In this remaining part of list 4.10, we choose the first comparator
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labeled by s in the new history. We put this comparator into Char(F) and modify

its behavior as we did for Cr. We then update the history again and continue in this

fashion until all comparators in list 4.10 have been dealt with.

This completes the 3-step procedure and the construction of Char(F). The final

history, in which s is never moved into M(F) 0o, corresponds to another fault pattern,

and we will call this fault pattern F.

Lemma 4.2.1 For any fault pattern F, the following conditions hold: (1) Char(F) =

Char(F), (2) F is bad, and (3) Char(F) < log.

Proof: To prove (1), we use the 3-step procedure to determine Char(F) and to show

that it is the same as Char(F).

We first note that M(F) and M(F) have the same history on the input list

H =(0 .0,.
n/2 n/2

This is because the changes made in comparators to produce F from F do not affect

their performance on H. Hence, the structure of M (F)j is the same as the structure of

M(F)j for all j such that M(F)j should be listed before M(F)i in list 4.8 (although

the functionality of individual comparators may differ). In addition, the crossing

comparators for M(F)j are the same as the crossing comparators for M(F)j for all

j such that M(F)j should be listed before M(F)i in list 4.8. Hence, we select the

same value of i for M(F) in Step 1 as we do for M(F).

Next, we show that we pick the same value of s for M(F)i and M(F)i in Step 2.

From the construction of F, we know that F differs from F (at most) only in com-

parators that are labeled s in the history of M(F)i. More precisely, some outputs of

these comparators (i.e., the M(F)io-outputs) that contain s in the history of M(F)i

may contain non-s values in the history of M(F)i. By Lemma 4.1.1, the effect of

these changes is to make (possibly) some values that were s or less in the history of

M(F)i be smaller in the history of M(F)i, and to make (possibly) some values that

were s or greater in the history of M(F)i be larger in the history of M(F)i. Hence,
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the same value of s will be chosen in Step 2 for -F as for F. (The reason that we have

used the accumulative threshold in Step 2 instead of simply selecting the smallest

S(s) should now be apparent.)

According to the description of the 3-step procedure, we can see that the starting

history for F at the beginning of the 3-step procedure is the same as the final history

at the termination of Step 3 for F. (This can be shown inductively from the lowest

level to the highest level). Since the first two steps do not change any comparators, at

the beginning of Step 3 for F, we have all the comparators in Char(F) to start with.

As we move along in the history of M (F)i on input (1, +oo, 2, +oo,... , ni/2, +oo), we

will not make any real change on any comparator in Char(F), since, at the termination

of the 3-step procedure for F, all the comparators in Char(F) have already output

their Mio-inputs directly to their Mio-outputs. Furthermore, these comparators are

all labeled by s in the history for F. Therefore, we have to put all the comparators

in Char(F) into the characteristic set for F. Hence, Char(F) = Char(F), as claimed.

To prove (2), we assume for the purposes of contradiction that F is good. Then,

the proof technique of Lemma 4.1.2 implies that M(F) must function correctly as a

merging network. In particular it should work correctly on both input (,...,O,..., 1)

n/2 n/2

and input (1, +0, 2, +oo,... , ni/2, +oo). Hence, M(F)i must successfully move s

from M(F)il to M(F)o0 . However, in the history for F, no s can be moved from

M(F)il to M(F)o0 . This is a contradiction, which means that F is bad.

The correctness of (3) follows from Claim 4.2.1. ·

We are now ready to describe the partition of the space of fault patterns. We

group all the fault patterns by the following rule. We put F and F' in the same

group if and only if (1) Char(F) = Char(F'), and (2) the fault patterns F and F' are

identical on all the comparators not in Char(F).

For any group G, take a fault pattern F E G. By (1) in Lemma 4.2.1 and the

construction of F, we know that F E G. By (2) in Lemma 4.2.1, we know that F

is bad. By (1) and (3) in Lemma 4.2.1, we know that the probability that P occurs
log = times the probability that a fault pattern in G occurs. In

is greater than p0log 0 = e times the probability that a fault pattern in G occurs. In
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other words, if a fault pattern in G occurs, there is better than an chance that it is

F. Since this is true for all groups, we can thus conclude that the probability that a

random fault pattern is bad is greater than .

This completes the proof of lower bound 4.6. We next show that

log x -log log c 1
size(M) > nlogn g log -e (4.11)

4 log 1

We will divide the network into blocks of size n and "pump up" the failure prob-

ability by showing that most of the blocks must behave well in order for the overall

circuit to work. In particular, we will partition the space of fault patterns into groups

and use a conditional probabilistic argument.

For each fault pattern F, we can decompose M(F) into /E networks, such that

each of them has /iin inputs and is of the form

M (F)i

where i < is a binary number with log_ bits. By doing so, we have removed

many comparators from M. These removed comparators are crossing comparators

of many different networks that are larger than the networks with n inputs that

we are currently interested in. We use Cross(F) to denote the set of all these re-

moved crossing comparators. 5 We put F and F' in the same group if and only if

(1) Cross(F) = Cross(F'), and (2) F and F' are the same on all the comparators in

Cross(F).

If, within each group G, the probability that a fault pattern F E G is good is less

than 1- e, then a randomly generated fault pattern will be good with probability less

than 1 - . This is a contradiction to the fact that a randomly generated F is good

with probability at least 1 - . Therefore, there exists a group Go such that

Prob(F is good I F E Go) > 1- e.

5 The notation Cross(F) was used to denote a slightly different set of comparators on page 72.
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Proof of Theorem 4.3.1: The Column-Sort algorithm in [12] arranges all the

items in an r x s matrix where r > 2s2, and it consists of 8 phases. Phases 1, 3, 5,

7 sort each column of the matrix and phases 2, 4, 6, 8 permute the matrix in a fixed

manner. The only property of Column-Sort that we need here is the fact that if we

can sort all the columns of the matrix in T steps, then by applying Column-Sort we

can sort all the items in the matrix in O(T) steps.

Assaf and Upfal [4] have shown how to build a (p, y)-destructive-fault -

tolerant sorting network with width O(nlogn) and depth O(logn). Hence, for a

given w between n and n log n, we can use a network with width w and depth

O(log(logn)) = O(logn) to sort logn items first. (At the same time, we need to

keep all other items in some other registers. This can be done as long as we keep

enough, say, 2n, registers.) Then, keep this sorted list of lo items in some registers

and work on the next group of lo'n items, etc. We will have worked on all the groups

after 0 (wlgn) n = O (nl°gn) rounds. This finishes the first phase of Column-Sort with

depth O(l°g 2n). To implement the second phase of Column-Sort, we can hard-wire

in a permutation. Then, we finish the remaining phases in a similar way. The overall

depth is O(l g2 n).·

Theorem 4.3.2 For any n < w < nk and k = O(logn), there exists an explicit

construction of a k-destructive-fault-tolerant sorting network with width O(w) and

depth O(nklogn).

Proof of Theorem 4.3.2: In [4], Assaf and Upfal did not address the issue of

worst-case faults. However, by following their method, it is possible to construct

a k-destructive-fault-tolerant sorting network with width O(kn) and depth O(log n)

when k = O(log n). So we can use Column-Sort, as in the proof of Theorem 4.3.1, to

prove the theorem. ·
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Chapter 5

Simulation Results on

Constructing Small Depth Circuits

for Sorting Most Permutations

The problem of constructing small depth sorting circuits has been intensively studied

in the past several decades (see [10] for the early history of this problem and [22] for

the more recent progress). Despite many efforts, the 25-year-old logn(logn+) upper

bound on depth discovered by Batcher [5] remains the best known for problem sizes

encountered in practice,1 say, for n < 2100. In general, constructing small depth

sorting circuits has proved to be a hard problem. In fact, testing whether a given

circuit is a sorting circuit is co-NP complete (this was first proved by M. Rabin in [8]).

As a consequence, proving lower bounds on the depth of sorting circuits is also hard.

The best known asymptotic lower bounds and bounds for small n can be found in [25]

and [19], respectively.

In this chapter, we present empirical results for constructing small depth circuits

that sort most input permutations. The circuits in this chapter are different from

those in the other parts of the thesis:

'To be more precise, slightly better circuits are known for n < 16, and Batcher's result can be
slightly improved in general by interrupting Batcher's recursive procedure early and substituting
Batcher's original construction with the best circuit known for a small value of n. But such a
technique can only improve the depth of Batcher's circuit by a small additive constant.
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* The circuits in this chapter are not sorting circuits in a rigorous sense in that

an n-input circuit of this chapter will only sort most of the n! possible n-input

permutations, not necessarily all of them. That is, an n-input circuit in the

chapter is allowed to fail on a small fraction of all the n! n-input permutations.

We will refer to such circuits as circuits for sorting most permutations.2

* The functionality of the circuits in this chapter is only empirically tested, and

no theoretical analysis has yet been found. Consequently, no theorem will be

proved and only simulation results will be presented in this chapter.

Another way of viewing a circuit for sorting most permutations is that the circuit

sorts, with a certain high probability, an input permutation that is chosen uniformly

at random from the set of all n! permutations (i.e., each permutation is chosen with

probability ). As a consequence, with high probability, the circuit sorts any n

random values chosen uniformly from an arbitrary interval. In practice, such a circuit

can be used in the following fashion. Given any input sequence, we first run our

circuit on the input sequence. At the end of the circuit, it is fairly easy to check

whether the final outputs are sorted or not, by comparing pairs of neighbors. If the

outputs are sorted, we stop; otherwise, we scramble the output values and try again.

One may argue that the input permutations occurring in practice are unlikely to be

chosen uniformly at random. Fortunately, however, our simulation results show that

if a nonuniform distribution is assumed and known in advance, we can actually use

our method to construct a special-purpose circuit for sorting (with high probability)

inputs drawn according to the given distribution. Such special-purpose circuits have

depth even smaller than circuits for inputs drawn uniformly. So in the rest of the

chapter, we will not address this issue and will focus on constructing circuits for

sorting most permutations.

In this chapter, we present an algorithm that automatically generates circuits

2 The concept of sorting most permutations should not be confused with that of approximate-
sorting, defined on page 23. A A-approximate-sorting circuit brings every item to within A of its
correct position on all input permutations, whereas a circuit for sorting most permutations ezactly
sorts most of the n! permutations.
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for sorting most permutations. Empirical evaluation of the circuits thus constructed

shows that they sort 98% of the permutations with depth about 4 log n for n < 213.

These are the first set of circuits that substantially outperform Batcher's circuits

for problem sizes encountered in practice, though our circuits are allowed to fail

on a small fraction of the input permutations whereas Batcher's circuits sort all

permutations. We also construct small depth passive-fault-tolerant circuits that sort

most permutations. Empirically, such circuits have depth smaller than the depth of

Batcher's circuits, which are not by themselves fault-tolerant.

We do not know if the technique presented in this chapter can be modified to

construct small depth sorting circuits, i.e., circuits for sorting all permutations. There

are reasons for us to suspect that the smallest depth of a sorting circuit may be

considerably larger than that for sorting most permutations. Although our techniques

are clearly motivated by the theoretical work of Leighton and Plaxton [17], we cannot

prove in theory that our technique always leads to good circuits for sorting most

permutations, for either small n or large n. Developing a theory that supports our

empirical results is an interesting open question.

The remainder of the chapter is divided into two sections. The algorithm for

constructing the circuits is presented in Section 5.1, and the empirical results and

some figures of the circuits are presented in Section 5.2.

5.1 An Algorithm for Constructing the Circuits

For ease of notation, we will assume throughout the chapter that the registers in a

circuit are labeled as rl, r2,..., rn, from the top to the bottom.

Before presenting the algorithm for constructing the circuits, and in order to avoid

future ambiguity, we first make a clarification. Each of the circuits in the chapter

will have the property that there exists a permutation r such that, on most input

permutations, the ith smallest item is output to register r(i) for i = 1,2,... , n.

In other words, with a fixed permutation r- 1 applied to the output registers, the

circuit sorts most input permutations. In a typical sorting circuit, however, the ith
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smallest item should be output to the ith register ri, i.e., permutation r should be

the identity permutation. In general, a circuit C that on input set S outputs the

ith smallest item to r(i) can always be converted, by a technique similar to that for

solving Exercise 16 on page 239 of [10], into another circuit C' of the same depth that

on input set r'(S) outputs the ith smallest item to ri, where r' is a fixed permutation

and r'(S) = {ir'(a) I a e S}. In other words, we can always force the permutation

applied at the end of the circuit to be the identity permutation, without increasing

the depth of the circuit.3 We remark that it is not clear if the technique can be

applied to circuits with passive-faults (see the last paragraph in Section 1.3). Hence,

the passive-fault-tolerant circuits constructed in Subsection 5.1.5 each has a fixed

permutation attached at the end. We assume that such a permutation is hard-wired

into the circuit and does not affect the depth. So in the rest of the chapter, we will

be content with constructing circuits that, on most input permutations, output the

ith smallest item to r(i) for a fixed permutation r.

The remainder of the section is organized into subsections as follows. In Subsec-

tion 5.1.1, we give a brief overview of the methodology behind the algorithm. Some

important technical details are discussed in Subsections 5.1.2, 5.1.3, and 5.1.4, and

pseudocode for the algorithm is given in Subsection 5.1.4. In Subsection 5.1.5, we de-

scribe how to modify the algorithm to obtain passive-fault-tolerant circuits for sorting

most permutations.

5.1.1 Overview of the Algorithm

This subsection contains a high-level description of the algorithm for constructing

small depth circuits for sorting most permutations.

The algorithm has theoretical motivations from the circuits designed by Leighton

3 This will result in the use of non-standard comparators and a fixed permutation prepended to
the beginning of the circuit. Clearly, the fixed permutation at the beginning is not essential to the
success rate of the circuit and removal of the fixed permutation will only make the circuit sort a
different set (of the same size) of permutations. However, this permutation may not be removed
if the circuit is designed for a special set of permutations under a special distribution, which was
briefly discussed at the beginning of the chapter.
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and Plaxton [17]. Therefore, it is useful to have a little understanding of the Leighton-

Plaxton circuits before we present the algorithm.

Consider the following d-round butterfly tournament of n players for any n = 2d,

where d is a positive integer. Initially, the n players are ordered arbitrarily. In

the first round, the player at the ith position plays a match with the player at the

(i + )th position for i = 1, 2,..., . In the remaining d - 1 rounds, a (d - 1)-round

butterfly tournament is performed among all the winners, and another (d - 1)-

round butterfly tournament is performed among all the losers. Clearly, such a

tournament is only guaranteed to correctly identify the first and the last (i.e., the best

and worst) players. For example, the second player may end up with d possible win-

loss records. The novelty of the work by Leighton and Plaxton [17] is their proof that

such a tournament has a strong ranking property on average, although not necessarily

on all possible initial orders. In particular, if the players are placed in a random

order at the beginning, then with high probability, the ranks of most players can be

approximated to within n- based upon their win-loss records, where y is a constant

strictly less than 1. Such a tournament naturally corresponds to a circuit with matches

between players interpreted as comparators between corresponding registers. Using

the butterfly tournament in a recursive fashion, Leighton and Plaxton constructed a

high-probability sorting circuit with depth 7.44 log n.

Unfortunately, the Leighton-Plaxton circuit does not immediately yield a circuit

that outperforms Batcher's circuit for problem sizes encountered in practice. First, in

order to prove that their circuit has a nontrivial probability of success, they needed to

assume that n is sufficiently large. Second, they only provided an existence proof of

their circuit and no explicit construction of the circuit was found. In addition, there

are reasons to believe that their method does not yield the best possible constant.

(They seem to have abandoned some useful information when sorting smaller sets of

items in the recursive procedure.)

Despite the mathematical difficulties in the proof, the reason that the butterfly

tournament has a strong ranking property can be understood as follows. In the

tournament, two players meet in a match only if they have the same record so far.
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Therefore, such a match provides a lot of information about the ranks of the players.

(The reason that Leighton and Plaxton may have lost some useful information when

sorting smaller sets of items is that after the first log n rounds, each player has a

unique record and it is not clear what would be the best strategy to use afterwards.)

Motivated by the strong ranking property of the butterfly tournament, we con-

struct our circuit inductively as follows.

Initial Step. In the first level of the circuit, we arrange disjoint comparators

in an arbitrary fashion. For example, we can include comparators between r and

rn+l-i for i = 1,2,..., . On randomly chosen input permutations, it makes no

difference how to arrange the 2 disjoint comparators in the first level since all input

permutations are equally likely.

Inductive Step. Assuming that we have constructed the circuit for up to level I- 1

for some > 1, we next describe how to arrange comparators at the Ith level of the

circuit. Since we only want a small depth circuit and we do not particularly care

about the size of the circuit, we may include as many comparators as we can, under

the restriction that each register can only be connected to at most one comparator at

level 1. So we can assume that each register is connected to exactly one comparator

at level 1, i.e., no register will be left idle at level 1. Moreover, we may assume without

loss of generality that each comparator moves its small input value to its top register

and its large input value to its bottom register. Now, consider a complete graph, G,

with n vertices corresponding to the n registers of the circuit. Thus, each possible

comparator at level d of the circuit corresponds to an edge of G, and the set of 

comparators at level I corresponds to a perfect matching of G. Therefore, the question

of determining all the comparators at level I reduces to the problem of determining

a certain perfect matching of G. To find an appropriate matching, we will assign a

weight to each edge of G. In particular, the weight of the edge between registers ri

and rj will measure the amount of information obtainable by including a comparator

between ri and rj at level 1. To construct the lth level of the circuit, we will choose

a perfect matching of G with an approximately maximum weight under the chosen

weight assignment. In the context of ranking n players, our circuit corresponds to
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a tournament in which we proceed in a greedy fashion by arranging matches among

players in order to obtain an approximately maximum amount of information in each

round.

The preceding high-level description of our algorithm has not defined either the

weight assignment procedure or the method for finding the matching. These two

components of the algorithm will be described in the next two subsections.

In theory, when the weight assignment and the method to obtain an approximately

maximum weight perfect matching are both given, the resulting circuit is completely

determined. In reality, however, accurately computing the weight of a comparator is

a very difficult task, because our weight assignment corresponds to a certain proba-

bilistic measure of certain highly dependent random variables. Therefore, instead of

accurately computing these probablistic quantities by analytic means, we will esti-

mate their values via simulation techniques. In particular, to approximate the desired

probabilistic quantities for constructing the Ith level of the circuit, we feed a large

number of random permutations into our partial circuit with I - 1 levels and use the

outputs of the partial circuit to estimate the real random variables. In addition to

the inaccuracy of the weight computation, as we will see in the next subsection, there

are several weight assignments that all lead to good circuits. Given the uncertainties

inherent in our choice and calculation of the weights, it seems unnecessary to insist

on finding a maximum weight perfect matching in order to construct the th level

of the circuit. (In fact, even if we stick to a fixed weight assignment and if we can

compute the weight exactly, it is not clear whether a maximum weight perfect match-

ing will yield the best circuit.) Therefore, we will use a certain heuristic to find an

approximately maximum weight perfect matching. The detailed description of the

weight assignment and the heuristic for finding the matching are given in the next

two subsections.

Since we use a simulation technique to obtain the weight assignment, there are

certain uncertainties in the structure of our circuit. For example, the structure of the

Ith level of the circuit depends on which set of input permutations are used to obtain

the weight assignment. However, if we assume the weight can be accurately computed,
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and if we use a fixed algorithm to obtain the matching, then (for each n) the circuit

will be completely determined. (For example, in theory, we can feed in all the n!

possible permutations and use a fixed maximum weight perfect matching algorithm.)

Even under such assumptions, we do not know how to prove that our technique will

lead to a circuit with a reasonable depth and success probability. Developing a theory

that supports our empirical results is an interesting open question.

5.1.2 Weight Assignments

Following the notation of the preceding subsection, let G be the complete graph

used for constructing the Ith level of the circuit. In this subsection, we describe a

procedure for assigning a weight to each edge in G. Since each edge of G corresponds

to a unique possible comparator at level 1, it suffices to define the weight of each

possible comparator at level 1, which we do in the following.

Let C denote the partial circuit consisting of the - 1 levels constructed so far.

Consider an arbitrary pair of registers r. and ry in C, where x < y. Let Cx,y denote the

possible comparator between r and r at level 1. When a random input permutation

is fed into C, the items contained in r and r at the end of C are both random

variables. Let X and Y denote these two random variables at r and r, respectively.

If we include a comparator C,, at the end of C, then the items output to rx and r by

C,,y are also random variables. Let us denote these two random variables at r or ry

after C,.y by X' and Y', respectively. Intuitively, one would expect the distributions

of X' and Y' to be closer to threshold functions than those of X and Y. Our weight

assignment to comparator Cx,v, denoted by w,(x, y) where A is a parameter to be

chosen later, will measure how much comparator C,y can bring these distributions

closer to threshold functions.

As pointed out in Subsection 5.1.1, wx(x, y) will be empirically determined. In

particular, we feed T randomly chosen permutations to circuit C, with I - 1 levels.

For any i such that 1 < i < T, let xi be the value of random variable X for the ith

trial, i.e., xi is the item output by C at register r on the ith selected permutation.
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Define yi, xi, and yi similarly. Then, we define

w(x,y)= <iTxi<y i
i< iv

(Yi- i)') E (Xi - i )A .
1<i<T, yi<xi

(5.1)

Note that wA(x,y) = 0, for any A, if xi < yi for i = 1,2,...,T or if xi > yi for

i = 1, 2,..., T. This represents the fact that Cx,y has little value if the relationship

between the items contained in r and ry is already completely determined after the

first I - 1 levels of the circuit.

We now further explain the motivation behind the weight assignment of equa-

tion 5.1. First, by definition,

-·{···)=(l~i<Tl~i<T 0 T2 Ri : i > Xi}1 Ri : i < xi}l
wo(x, y) = E 1~ > E 1T Tl1< i<T, i <i<T, i <iT

When divided by T2, the preceding expression is clearly an empirical approximation

of

Prob(Y > X) Prob(Y < X). (5.2)

Second, by definition, x = min{xi, yi}

check that

yi- xi + yi- =

and

xi- yi + - xi =

Moreover,

and yi = max{xi, Yi}. Therefore, it is easy to

{

{

2(yi- xi)

0

2(xi - yi)

0

if Yi > xi

otherwise,

if xi > yi

otherwise.

(5.3)

(5.4)

xi + Yi = xi + yi.

Therefore,

E xi+ Ys
1<i<T 1<i<T

= E Xi+ E yi,
1<i<T 1<i<T
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and similarly

E x2i+ E yi2 = E Xi2+ E Y
Now, by s<i<T <i<T al<i<T cula<i<T

Now, by simple algebraic calculations,

(5.6)

wl(, y)

(l <i<T, i<yi(Yi -Xi)) (l <i<T, yi<xri (Xi -Yi))

(=l<iT Yi i )+Y- (l<i<T xi-Yi+Y14-xi) (by equations 5.3 and 5.4)

(l<i<T(yYi ))- (l<i<T(Yi -i))

4 (l<i<T(YI + X)) 2 - (l<i<T Yi) (l<i<T i)

(l<i<T(Yi + xi))2 + (EI<i<T Yi) (I<i<T i)

(l<i<T(Y + ))2 - (l1<i<T Y) (l<i<T Xi)

2 (<i<T( i +i)) + (Zl<i<T Yi) (l<i<T Xi) (by equation 5.5)

= ~ ((i<~_<~ y)2 + (>i<~<T x9)2 - (Zy<<T u,)2 - (X<,<T x,)2)2 ((El<i<T Y) + (El<i<T ()-l<i<T i) -(El<i<T i) )

-- ((l <i<T y)2 _ T El <i<T ((l <i<T X2 T l <i<T 2)

2 ((l<i<T yi) -T 1<i<T y )-2 ((l<i<T x) 2 -T l<i<T ) (by equation 5.6).

When multiplied by 2, the preceding right-hand side is clearly the empirical approx-

imation of

Var(Y) + Var(X) - Var(Y') - Var(X').

Now, to see why wo(x,y) and wl(x,y) are both good measures of the value of

comparator C,,, we only need to argue that the quantities in expressions 5.2 and 5.7

are both good measures of C,v,. Intuitively, the value of a comparator depends on the

amount of information obtainable by including it in the circuit. So the weight of C,,,

should be small if Prob(x > y) is close to 0 or 1, and it should be large if Prob(x > y)

is close to 1. The quantity in expression 5.2 measures how close Prob(x < y) is to ,

and therefore it is a good indicator of the value of C,y,. To see why the quantity in

expression 5.7 is also a good indicator for C,,, note that Var(X) + Var(Y) is actually

independent of comparator C,,y and that Var(X') + Var(Y') measures how close the
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distributions of X' and Y' are to threshold functions.

In fact, our simulations indicate that good circuits can be constructed by using

the weight assignment of either wo or wl. It is also interesting to observe that if

we use wo as the weight assignment and use a maximum weight perfect matching to

construct each level of the circuit, then, at least in theory, the first log n levels of the

circuit will be identical to Leighton and Plaxton's butterfly tournament. Intuitively,

by comparing items with the same history in the first log n levels of the butterfly

tournament, we ensure that each of the comparators has weight wo equal to , the

largest possible.

However, our best circuits have been obtained by the general weight assignment

wax with variable A. In particular, we set A to be an increasing function of 1, the index

of the current level to be constructed.

We next explain why increasing A with is perhaps a reasonable strategy. For

simplicity, let us consider an extreme case where x > yj and xi < yi for all i # j,
I < i < T. Intuitively, the only evidence that C,y may be a valuable comparator is

provided by the jth trial. (Without this evidence, it would look as if Prob(X < Y) = 1

and there would be no reason to compare rx and ry.) Now, how should we weight the

information provided by the jth trial? The fact that xj > yj shows that the behavior

of the jth input permutation in the partial circuit C is highly unusual, relative to

the other T - 1 input permutations. But more information is provided by the jth

permutation than the fact that xj > yj. For example, we may want to pay more

attention to a case where xj - yj = n - than to a case where xj - yj = 1, because

the former case is much more unusual and the latter case is somewhat more normal if

we want to declare that the item contained in r is smaller than that contained in ry.

Intuitively, the more unusual a permutation is, the more attention we need to pay to

it. On the other hand, according to equation 5.1, the larger A is, the more attention

we pay to the information provided by unusual permutations. When is small, we

may decide not to pay too much attention to unusual permutations because we still

have a chance to work on them in future levels of the circuit. But when I becomes

large, we may want to pay more attention to unusual permutations since we have
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fewer and fewer opportunities to deal with them. This heuristic argument explains

why it is reasonable to choose A as an increasing function of 1.

We conclude this subsection with remarks on some other possible methods of

weight assignments. As we have pointed out earlier in this subsection, fairly good

circuits can be constructed by using wo. This means that we can use expression 5.2,

which measures how close Prob(X > Y) is to . As a natural alternative, we may

use

min{Prob(X > Y), Prob(X < Y)}.

Our simulation shows that such a weight assignment does lead to good circuits, but

circuits thus constructed are not as good as those constructed by using expression 5.2.

As another alternative, the following approach may seem reasonable. To construct

the Ith level of the circuit, we rank all the registers according to the expected values

output to the registers after applying the circuit with - 1 levels. Then, at level

1, we compare pairs of registers with the nearest ranks. This approach has clear

motivation from Leighton and Plaxton's butterfly tournament, and the first log n

levels of a circuit thus constructed are identical to the butterfly tournament, at least

in theory. However, such a choice of weight does not yield good circuits for the

following reason. For a pair of registers with the nearest ranks, it is possible that the

item contained in one of the registers is always larger than that contained in the other

register. In such a case, a comparator between these two registers is meaningless.

In expression 5.7, the term Var(X)+Var(Y) is actually independent of comparator

C,,, and Var(X') + Var(Y') is the only term measuring how close the distributions

of X' and Y' are to threshold functions. Hence, at least in theory, using either

Var(X') + Var(Y') or expression 5.7 should lead to the same maximum weight perfect

matching. In our simulations, however, we use a certain greedy heuristic for an

approximately maximum weight perfect matching, and expression 5.7 turns out to

be superior since it tends to prevent the heuristic from running into the undesirable

phenomenon described in the preceding paragraph.
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5.1.3 A Matching Heuristic

As in the preceding subsection, we use G to denote the weighted complete graph used

for constructing the Ith level of the circuit. In this subsection, we describe how to

find a perfect matching of G with a large total weight.

There are several known algorithms for finding a maximum weight perfect match-

ing, but most of them are very complicated to implement and require a long running

time. It turns out that the running time of the matching algorithm will be the bottle-

neck of the simulation if we use a complicated matching algorithm. This is because

we will construct our circuit level by level and we need to solve a matching problem

in order to construct each level of the circuit. Moreover, if we insist on finding a max-

imum weight perfect matching precisely, we need to maintain a large weighted graph.

The graph is large enough that we will face a paging problem on a typical workstation

(e.g., a SPARC1 with 8Mb memory) for moderately large values of n (e.g., several

thousands). In addition to the technical difficulties to implement a maximum weight

perfect matching algorithm, as we have pointed out in Subsection 5.1.1, it seems

unnecessary to insist on finding a maximum weight perfect matching due to the un-

certainties inherent in our choice and calculation of the weights. Therefore, rather

than find a maximum weight perfect matching of G precisely, we use the following

heuristic to find a perfect matching with a relatively large weight.

At a high level, our heuristic consists of two major phases. The first phase runs in

n rounds. Within each round, the heaviest available edge is added to the matching.

The second phase of the heuristic rematches some edges to improve the total weight

of the matching. More precisely, the heuristic proceeds in three steps, as follows.

Step 1. Sort all of the edges of G according to their weights.

Step 2. Form a matching of G in rounds. In each round,

* we first include the heaviest edge in the list of remaining edges into the matching;

* assuming this edge has nodes x and y, we eliminate from consideration all edges

having an end point equal to either x or y.

Step 3. Repeat the following procedure until no pair of edges can be found to
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satisfy inequality 5.8. For each pair of edges (,y) and (x',y') in the matching,

replace (, y) and (x', y') with (x, x') and (y, y') if

wA(x, y) + wA(x', y') < wA(x, x') + wA(y, y'). (5.8)

This completes the description of our matching heuristic. It is straightforward to

argue that the heuristic eventually terminates by using the fact that each rematching

of a pair of edges in Step 3 increases the weight of the matching and there are only

a finite number of matchings in G. However, one might be concerned that we may

encounter too many rematchings in Step 3 and end up with a huge running time within

Step 3. If this were the case, then the advantage of using the heuristic rather than a

maximum weight perfect matching algorithm would be lost. In our simulations, we

prevent such a bad scenario from occurring by forcing the procedure to stop after a

certain number of rounds of rematchings. It appears that such an enforced stop is

not crucial in many cases since, as will be discussed in the next subsection, we only

consider a relatively small number of edges for the matching in order to avoid the

paging problem.

5.1.4 Putting Things Together

Thus far, we have described essentially all of the main features of our algorithm for

constructing circuits for sorting most permutations. In this subsection, we further

discuss some technical details. Pseudocode for the entire algorithm is given in Fig-

ure 5-1.

For simplicity, we continue to use C to denote the (I - 1)-level circuit constructed

so far. Let G be the weighted complete graph for constructing the Ith level of the

circuit, as described in Subsection 5.1.1, and let M be an n x n matrix that represents

G.

We begin our discussion by touching on space consideration. As we have seen so

far, an important step of our algorithm is to find a large weight perfect matching

in graph G. Unfortunately, when we run the algorithm on a typical workstation
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(e.g., a SPARC1 with 8Mb memory), we start having a paging problem to maintain

and access the matrix M, as n becomes several thousands. Furthermore, since M

is computed by information drawn from a large number of input permutations, our

access to M is so frequent that the time spent on the paging problem is too expensive

to pay.

To avoid the paging problem, we use the following trick. First, we rank all the

registers by 1,2,..., n, according to the expected values contained in the registers

after application of the circuit C.4 Then, we pretend that

wx(r,,ry) = 0 (5.9)

unless

Irank(r.) - rank(ry)I < w, (5.10)

where w is a parameter that is relatively small compared with n. In other words,

we assume that a comparator between r, and ry has non-zero weight only if inequal-

ity 5.10 is satisfied.

The rationale underlying the simplification made in equation 5.9 and inequal-

ity 5.10 is related to a theorem of Leighton and Plaxton [17], which states that the

(log n)-round butterfly tournament brings most of the items into a small window

around their correct position. According to this theorem, for relatively large 1, it is

of little interest to compare a pair of registers r and ry at level I unless they satisfy

inequality 5.10 for relatively small w. Of course, one might argue that, for small 1,

we are losing many valuable comparators by confining ourselves to matching registers

within small windows. Fortunately, the following observation indicates that for small

1, while losing many valuable choices of comparators, the number of possible com-

parators under investigation is perhaps large enough for us to construct a reasonably

good level of the circuit. For simplicity, consider the extreme case where = 1. Since

no comparisons have been made before level 1, all of the registers contain random

4As assumed in the beginning of this section, each register has a label, such as r. The rank of
a register is in general different from its label. For example, rank[r.] x for most x's.
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variables with the same distribution. So the ranks of the registers can be arbitrary,

i.e., it is solely dependent on which permutations we happen to choose as our samples

and what tie-breaking method we use in the ranking procedure. By eliminating all

the pairs of registers that do not satisfy inequality 5.10, we actually eliminate many

good choices of comparators. However, this does not mean that we are losing a great

amount of information available to us, since the remaining comparators are likely to

be as good as those eliminated.

If we make the assumption of equation 5.9 and inequality 5.10, then the only

nontrivial entries we need to maintain for matrix M will be those within w positions

of the diagonal, up to a fixed permutation based upon the ranks of the registers. This

will reduce the amount of memory needed for M from (1)n to w(2n-wu-1) (note that

M is symmetric and has 0 entries along the diagonal).

Not surprisingly, our simulations show that circuits constructed with large w tend

to be better than circuits constructed with small w. Intuitively, we are less restricted

when using larger w. Hence, to obtain circuits with good performance, we should set

w as large as can afford in terms of computational time and space.

We also need to determine at which level we should stop the algorithm. We can

reasonably predict the number of levels needed in an n-input circuit based on our

results obtained for constructing circuits with fewer inputs. In our simulation, we

construct a circuit with slightly more levels than the number thus predicted, and we

use simulation to find the best level at which to end the circuit. Of course, by using

more steps, we can always sort a larger percentage of input permutations. This fact

is reflected in Table 5.1.

When we come to construct the last few levels of the circuit, for most of the

permutations, most of the items are fairly close to their correct positions. But we

still want to include a few more levels simply because we want to sort a larger fraction

of the set of all n! permutations. On the other hand, since we only obtain information

from a random set of input permutations, as opposed to all n! permutations, we have

little chance to learn much information about unusual permutations. In fact, towards

the end of a circuit, the weight of most comparators is 0 or near 0. Hence, the
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construction of these levels may be fairly random, due to the use of many 0-weight

comparators. One way to get around this problem is to use more permutations, but

there is certainly a limit on this approach due to the constraints on our computational

power. Instead, we use the following two methods, which both appear to be helpful.

In the first method, near the end of a circuit, we repeatedly compare registers

with neighboring ranks as in odd-even transposition sort. That is, for sufficiently

large, we compare the register of rank 2i - 1 with the register of rank 2i for i < 

at levels {l + 2j: j > 01, and we compare the register of rank 2i with the register of

rank 2i + 1 for i < 2 at levels {I + 2j + 1: j > 0}. (Recall that a register is ranked

according to the expected value that it receives.)

In the second method, we construct a level I near the end of the circuit in several

rounds. In the first round, based on the weighted graph G, we include some com-

parators corresponding to a matching with a large total weight, but we do not insist

on using a perfect matching. In particular, if matching any unmatched nodes in G

would only cause us to include edges with 0 weight, we stop the current round. In

the next round, we intentionally remove a constant fraction of the comparators that

are randomly chosen within each level preceding level 1, and we compute another

weighted graph according to the partially damaged circuit.5 Now, based on the new

weighted graph, we can match more registers by using non-zero-weight edges. If all

the nodes are matched after this round, we stop; otherwise, we run another round

with a larger fraction of comparators removed. We continue in this fashion until all

registers are matched.

Our best simulation results are obtained by a combination of both methods. That

is, we construct the last few levels by the second method, and we construct the very

last few levels by the first method.

Finally, the pseudocode for the entire algorithm is given in Figure 5-1. The pa-

rameter w is chosen as large as possible given the space and time constraints on our

5 We remove the comparators only for the purpose of computing a new weighted graph for level 1.
When we start constructing level + 1 of the circuit, we start with the circuit where no comparator
has been removed. Of course, the final circuit output by the algorithm also has no comparator
removed.
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Input: n, a positive integral power of 2.

Output: An n-input circuit for sorting most permutations.

1. Let = 1.

2. Let C be the current (-1)-level partial circuit, and let C* be the circuit constructed
by attaching several levels of an odd-even transposition circuit to the end of C, in the
way described in this subsection. Test if C* can sort a sufficiently large percentage of
permutations. If yes, output C* and stop.

3. Rank all the registers in C by 1, 2,..., n according to the expected values contained
in the registers after applying C.

4. Construct a complete graph G with n vertices corresponding to the n registers of
C. For each edge (r, ry) of G, if Irank(rs) - rank(ry)I < w, assign a weight to the
edge by using equation 5.1; otherwise, assign zero weight to the edge.

5. Find a perfect matching of G by using the heuristic of Subsection 5.1.3. Construct
the Ith level of the circuit according to the matching.

6. Let I = I + 1, and go to Step 2.

Figure 5-1: An algorithm to construct a circuit for sorting most permutations.

computational power. In practice, this tends to mean that w is chosen sufficiently

small to avoid excessive paging and execution time.

5.1.5 Obtaining Passive-Fault-Tolerance

In this subsection, we modify the algorithm described in the previous subsections to

obtain an algorithm for constructing passive-fault-tolerant circuits for sorting most

permutations. We only consider passive faults in this chapter of the thesis.

In the algorithm for constructing fault-free circuits, we try to add comparators

that could yield as much information as possible within each level. In particular,

the "information gain" associated with a possible comparator is heuristically defined

by equation 5.1. When random faults are introduced, we would still like to follow

the same basic strategy. The only change is that we will measure the information

obtainable by a possible comparator in a slightly different way. We still use equa-

tion 5.1 to compute the weight of a possible comparator at level 1, but in order to

take into account that some of the comparators will be faulty, we intentionally set
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a constant fraction of the comparators, chosen at random, to be faulty within each

level preceding level 1.

To be more precise, suppose we want to construct a circuit that works with high

probability even if each gate is faulty with probability upper bounded by a constant

po. In order to assign weights to the edges of the complete graph for level , we

intentionally set POn randomly chosen comparators to be faulty at each level before

and including level I-1. Then, we compute the weight of each possible comparator at

level I by feeding a large number of input permutations to the faulty (I- 1)-level circuit

and by using equation 5.1. Finally, we find a matching by the heuristic described in

Subsection 5.1.3, and construct the Ith level accordingly.

The simulation results of two 1024-input circuits thus obtained are shown in Ta-

bles 5.2 and 5.3.

5.2 Empirical Results

This section contains our empirical results on circuits for sorting most permutations

that are constructed by the algorithms described in Section 5.1.

Table 5.1 contains our simulation results for fault-free circuits that sort most

permutations. In this table, db denotes the depth of Batcher's circuits, d denotes

the depth of our new circuits, and p denotes the success rate of our circuits on random

permutations. The values of d displayed in consecutive columns for the same n are

obtained essentially from the same circuit. For example, according to the entries for

n = 1024 (210) in the table, we have found a circuit, C1, of depth 38, and a circuit,

C2, of depth 39. The success rates of these circuits are 93% and 99%, respectively.

Actually, C1 is just a subcircuit of C2 with the last level removed. In other words, we

sort 6% more permutations by including the last level of C2 than by using C1 alone.

In our simulations, we have used thousands (or even hundreds, for small values of

n) of random "sample" permutations to compute the weights. That is, we choose T

to be several thousands in equation 5.1. To make the samples as random as possible,

we have used different sets of random permutations for constructing different levels
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of a circuit. Also, we have tested our circuits on thousands of randomly chosen

permutations. The random permutations for testing the success rate of a circuit are

generally different from those used during the construction of the circuit. This is very

important, because otherwise our circuits might only work well on a small fixed set

of permutations, rather than on most permutations.

Observe that our circuits outperform Batcher's circuits starting from the case

where n = 32 (26). Most importantly, for n < 213, our circuits sort more than 98%

of all permutations with about 4 log n depth.6 This is the first set of circuits that

outperform Batcher's circuits for problem sizes encountered in practice.

log n 6 7 8 9 10 11 12 13 14

db 21 28 36 45 55 66 78 91 105
dn 19 20 24 25 28 29 34 35 38 39 44 45 51 52 57 58 62 63

p .98 .99 .98 .99 .97 .99 .93 .99 .93 .99 .96 .99 .97 .98 .97 .98 .89 .91

Table 5.1: The depth of the new circuits, compared with Batcher's circuits.

Tables 5.2 and 5.3 contain results for two passive-fault-tolerant circuits with 1024

inputs. Table 5.2 shows the results on a circuit constructed with parameter po = 0.02,

and Table 5.3 shows the results for a circuit constructed with parameter po = 0.05.

(The definition of po can be found in Subsection 5.1.5.) In these tables, p denotes

the failure probability of each comparator in the circuit. The parameters in either

Table 5.2 or Table 5.3 are for the same circuit. For example, when p = 0, the

circuit of Table 5.2 sorts 95% of all permutations with 42 levels, and it sorts 4% more

permutations by using two more levels. Moreover, when p = 0.01, the same circuit

sorts 90% of all permutations with 44 levels, and it sorts 95% of all permutations

with 46 levels.

We remark that the success rates given in Tables 5.2 and 5.3 are not obtained by

testing a particular randomly faulty version of a circuit on many input permutations,

6 For n = 214, our circuit needs much more than 4log n levels to sort 91% of all permutations.
Even with slightly more levels, the circuit is unable to sort substantially more permutations. We
believe this is because we have to confine ourselves to match registers within a window that is too
small (in order to avoid excessive paging), and we expect that it is possible to construct a 214 -input
circuit with much smaller depth. In particular, the jump in the depth and the fall in the success
rate between n = 213 and n = 214 can perhaps be reduceed by using a larger window size w when
more computational power is available.

139



for such a statistical measure may be too dependent on the particular fault pattern and

hence could be very misleading. So instead, the success rates are obtained by running

many randomly faulty versions of a circuit on many random input permutations

(e.g., in our simulations, we run thousands of faulty circuits on thousands of input

permutations). In particular, we test a circuit C by a large number of instances. In

each instance, we feed a random permutation, say, 7r, into a randomly faulty version

of C, say, C(F). The success rate of C is the number of (C(F), r) pairs where C(F)

sorts 7r, divided by the total number of (C(F), 7r) pairs.

It is interesting to observe that both of the circuits are fairly robust: although

the circuits are constructed with parameter po, they perform very well for parameter

p < po. For example, with no faults, they sort a vast majority of all permutations.

Most importantly, the circuits have depth smaller than Batcher's circuits, which are

not by themselves fault-tolerant.

p 0 0.01 0.02
depth 42 44 44 46 50 52

success rate .95 .99 .90 .95 .91 .94

Table 5.2: A 210-input circuit constructed with po = 0.02.

P 0 0.02 0.05
depth 48 49 51 52 58 61

success rate .98 .99 .95 .98 .85 .88

Table 5.3: A 210 -input circuit constructed with po = 0.05.

Finally, we include a few computer-generated figures of our circuit and Batcher's

bitonic circuit with 64 inputs. In these figures, sloping lines are used to represent

registers. This should be compared with Figure 1-1, where registers are drawn by

straight lines only. We use the sloping lines to make sure that the ith smallest item is

output to the ith output register. Also, we draw a comparator in a way that is totally

different from Figure 1-1. In particular, we use a pair of crossing lines to represent a

comparator. We choose not to use a vertical line to represent a comparator (such as

in Figure 1-1) since many comparators would overlap each other if we chose to draw
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comparators by vertical lines when generating a figure on a computer. For example,

two possible comparators are shown in Figure 5-2.

(a) (b)

Figure 5-2: Each of the above figures depicts a comparator. In each of the figures,
the two bold lines represent the registers, and the two remaining lines represent the
comparator.

Figure 5-3 shows a 64-input circuit with depth 19 that sort 98% of all permu-

tations, as claimed in Table 5.1. The same circuit is shown again in Figure 5-4, in

which each comparator is shaded according to the frequency that it swaps its two

input values: the more frequently a comparator swaps its input values on random

permutations, the darker it appears in the picture.' Such a shaded picture gives us

good understanding of the functionality of the circuit on random permutations. For

example, towards the end of the circuit, more and more comparators appear to be

lightly shaded or disappear completely in the shaded picture. This corresponds to

the fact that near the end of the circuit, more and more permutations are sorted and

more and more comparators are left idle or nearly idle.

Lastly, for comparison with Figures 5-3 and 5-4 of our circuit, Batcher's bitonic

circuit with 64 inputs is shown in Figure 5-5 and 5-6.

7 The degree of shading of a comparator is not exactly proportional to the frequency that it swaps
its input values. If we were to draw the picture in such a way that the degree of shading were exactly
proportional to the frequency, then some comparators would not be visible if they only swap their
input values once or twice on the set of randomly chosen set of input permutations. Instead, we have
chosen to show all comparators that are not idle on the entire set of randomly chosen permutations.
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Figure 5-3: A picture of our circuit with 64 inputs.
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Figure 5-4: A shaded picture of our circuit with 64 inputs.
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Figure 5-5: A picture of Batcher's bitonic circuit with 64 inputs.
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Chapter 6

Conclusions

In this thesis, we have designed various types of fault-tolerant sorting circuits, net-

works, and EREW PRAM algorithms that break the O(n log2 n) barrier on the num-

ber of comparators or comparisons. In particular, our EREW PRAM algorithms have

achieved the asymptotically optimal running time on a linear number of processors.

Also, we have proved a tight lower bound of 9(n log2 n) on the size of destructive-

fault-tolerant sorting networks. All of the upper bound results are based on a new

analysis of the AKS circuit, which is of independent interest.

Since substantial progress has been made on the upper bounds on the size of

passive-fault-tolerant sorting circuits and reversal-fault-tolerant sorting networks, it

would be of great interest to prove some nontrivial lower bounds on the size of passive-

fault-tolerant-sorting circuits and reversal-fault-tolerant sorting networks.

For random passive faults, Yao and Yao [26] conjectured in 1985 that w(n log n)

size is required even for merging circuits. While to prove (or disprove) Yao and Yao's

long-standing conjecture still seems to be fairly hard, as an intermediate step, it

would be interesting to prove a w(log n) lower bound on the depth of passive-fault-

tolerant sorting circuits. In particular, we do not know if the much simpler problem

of insertion can be solved with an O(log n) depth circuit.

We conjecture that reversal-fault-tolerant sorting networks must have w(n log n)

size. Some of the techniques for attacking this problem may have been developed

in [9]. Moreover, in all our upper bound results for random reversal faults, we have
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assumed the failure probability of each comparator to be sufficiently small. It would

be interesting to know if these upper bounds still hold when the failure probability

of each comparator is near 1.

Finally, we have presented simulation results for constructing small depth circuits

that, either with or without faults, sort most permutations. Our circuits are the first

that outperform Batcher's circuits for problem sizes encountered in practice. It would

be very interesting to develop a theory to support our simulation results.
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