
Small-Depth Counting Networks and Related
Topics

by

Michael Richard Klugerman

B.S. Mathematics and Computer Science

Yale University (1986)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1994

(Massachusetts Institute of Technology 1994. All rights reserved.

In n I

Author , .v... Y.. .
-,.,t~n4p tment of Mathematics

/ June 15, 1994

Certified by ,/.
... , .. o.r Dhomson Leighton

Professor of Applied Mathematics
Thesis Supervisor

Accepted by
David Vogan

Chairman, Departmental Graduate Committee

OF TECHNiOLtY

NOV 01 1994 ScTemo

L13P.Ais

Small-Depth Counting Networks and Related Topics

by

Michael Richard Klugerman

B.S. Mathematics and Computer Science

Yale University (1986)

Submitted to the Department of Mathematics

on June 15, 1994, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Abstract
In [5], Aspnes, Herlihy, and Shavit generalized the notion of a sorting network by
introducing a class of so called "counting" networks and establishing an O(lg2 n)
upper bound on the depth complexity of such networks. Their work was motivated
by a number of practical applications arising in the domain of asynchronous shared
memory machines. In this thesis, we continue the analysis of counting networks and
produce a number of new upper bounds on their depths. Our results are predicated
on the rich combinatorial structure which counting networks possess. In particular,
we present a simple explicit construction of an O(lg n lg lg n)-depth counting network,
a randomized construction of an O(lg n)-depth network (which works with extremely
high probability), and we present an existential proof of a deterministic O(lg n)-depth
network. The latter result matches the trivial Q(lgn)-depth lower bound to within
a constant factor. Our main result is a uniform polynomial-time construction of an
O(lg n)-depth counting network which depends heavily on the existential result, but
makes use of extractor functions introduced in [25]. Using the extractor, we construct
regular high degree bipartite graphs with extremely strong expansion properties. We
believe this result is of independent interest.

Thesis Supervisor: Frank Thomson Leighton

Title: Professor of Applied Mathematics

_ ___� _ � �_

Acknowledgments

There are many people I would like to thank for giving me their friendship and support

during my stay at MIT. Among others, these include people from the vast ultimate

community in the Boston area and the theory of computation group here at MIT.

I would especially like to thank Tom Leighton, Mauricio Karchmer, and Michel

Goemans who served on my committee but more importantly were friends who helped

me in my technical development and who were generous with their time and their

support. Greg Plaxton, with whom I did a good deal of my thesis work, was equally

supportive, helpful and brilliant.

My officemates Steven Ponzio and Drew Sutherland are friends who were instru-

mental in helping me maintain the right balance between sanity and insanity during

my hours spent at the lab and for that I am very thankful.

Be Hubbard has been a great source of motherly love for the five years I have

spent here. Her smile has brightened even the darkest days. Thanks, Be.

I thank my mother, father, and sister for making this possible and encouraging

me to make the most of myself.

Most of all, I thank Kristin Wulfsberg. She has helped me in too many ways to

enumerate. No one could ask for a better friend.

Contents

1 Introduction

2 Basic lemmas

2.1 Asynchronous vs. Synchronous Balancing Networks

2.2 Relationships between sorting, smoothing, and counting

3 Impossibility Results and Lower Bounds

3.1 Testing a counting network

3.2 Restriction on number of input wires

3.3 An Q(lg n)-depth lower bound on smoothing and counting

4 Simple Counting Networks

4.1 A Bitonic Counter

4.2 A Periodic Counter

4.3 A deterministic 2-smoother .

4.3.1 Ladder networks.

4.3.2 Sorting networks.

4.3.3 Construction of the 2-smoother . .

4.4 An O(lg n lg lg n)-depth counting network .

4.4.1 Construction

4.4.2 Analysis

4.4.3 Correctness

4.5 An arbitrary fan-out counting network . .

7

9

17

17

18

22

22

24

26

27

.27

. 30

. 31

, 32
. 32

. 33

.............. . ..37

.............. . ..37

. 38

. 39

.............. . .. 40

5 An optimal depth counting network 44

5.1 Building blocks 44

5.1.1 The butterfly balancing network 44

5.1.2 Pairing networks 46

5.2 A random construction 48

5.3 An optimal existence result 56

5.4 A deterministic k-smoother 58

5.5 A polynomial-time construction 64

5.5.1 Construction of the bipartite graph with the extractor property 71

5.6 Smoothing to within O(lglg n) 79

6 Other directions 81

6.1 Other modifications and analysis of the counting network model . . . 81

6.2 Other approaches to counting 85

7 Conclusions 87

Chapter 1

Introduction

One of the fundamental tools used in parallel computation is the shared counter

[13, 15, 17, 28]. A shared counter permits several processors to request and increment

the value of a shared variable. If a counter's value begins at 0 and r requests are made

by various processors, a shared counter returns r distinct values between 0 and r - 1

inclusive to the requesting processors. Thus, each request is fulfilled with a distinct

value and precisely the first r values are returned, leaving no unused values.

One solution to the problem of implementing a shared counter is to use a sin-

gle shared Fetch-and-Increment variable which is incremented each time a processor

makes a request. Because a large number of processors may be attempting to ac-

cess this single variable at the same time, this can lead to high memory contention.

In order to avoid this sequential bottleneck, Aspnes, Herlihy, and Shavit [5] intro-

duced the concept of a "counting network", and they showed that such networks

can be simulated efficiently on an asynchronous shared memory machine as a means

of implementing shared counters. By significantly reducing the memory contention,

counting networks allow for a much higher degree of concurrency. More specifically,

a number of shared variables are used to implement a single counter in such a way

that a processor incrementing the counter need only access a small number of memory

locations and not all processors making requests access the same set of variables, thus

providing fast response time and high throughput.

The elementary building block of a counting network is a balancer which is a 2-

9

input, 2-output device similar to a comparator. Whereas a comparator receives a

number along each input wire and outputs them in sorted order, a balancer receives

multiple anonymous tokens along both input wires in an asynchronous fashion and

sends the tokens alternately to the upper and lower output wires. Thus, if a total of

m tokens are received by the two input wires of a particular balancer, that balancer

emits [m/21 tokens via the top output wire and Lm/2J tokens via the bottom output

wire (see Figure 1-1). A balancer is in its initial state if the next token it outputs will

leave the balancer along its top output wire. Thus, a balancer is. in its initial state if

an even number of tokens have passed through it.

Sequence of Sequence of Number of Number of
tokens input tokens output tokens input tokens output

65310 0246 Xo -

42 135 xi --

Yo -L2 ' 1
-I Ytl=L ~2

Figure 1-1: A balancer.

A balancing network is an acyclic circuit made up of balancers, just as a com-

parator network is an acyclic circuit made up of comparators. Similarly, a counting

network is a balancing network with additional properties in the same way that a

sorting network [3, 6, 9, 23] is a comparator network with additional properties. An

n-input balancing network has n input wires and n output wires. We say that such a

network has width n. In the remainder of this thesis we will refer to the input (resp.,

output) wires as x0, ... , xn-1 (resp., yo,..., Yn-l). We also use these values to denote

the number of tokens input (resp. output) on these wires.

Each token enters the network through some input wire and then passes through

one or more balancers before arriving at an output wire. Figure 1-2 is an example of

a balancing network.

We now define two special types of balancing networks that guarantee certain

properties concerning the nature of the output.

10

__ �

320

4

651

03 04 04

2 - 15 115

15 2 26

46 36 13

04

15

26

3

Figure 1-2: A sequential execution of a counting (balancing) network. Tokens are
labelled with distinct numbers.

An n-input balancing network k-smooths if for any input sequence, yi - yjil k,

0 i < j < n. The output of such a network is said to be smoothed to within k.

An n-input network is a smoothing network if it 1-smooths. The output of such a

network is said to have a smoothed shape.

An n-input counting network is a balancing network such that for any input se-

quence, 1 y - yj > 0, 0 < i < j < n. Note that a counting network is a restricted

form of smoothing network. The output of such a network is said to have a counted

shape.

In our constructions we will find it useful to consider balancing networks that

count certain restricted classes of input sequences. An input sequence x, .· , xn- is

k-smoothed if xi - xj < k, 0 i < j < n. A k-smoother is a balancing network that

smooths any k-smoothed input sequence. A k-counter is a balancing network that

counts any k-smoothed input sequence.

It is obvious from the definition of a counting network that assigning the value

in + j to the ith token (counting from 0) output from wire j (counting from 0) of

a counting network gives the tokens distinct integer values ranging from 0 to p - 1

where p is the total number of tokens input to the network. Thus, the tokens are said

to be "counted". Figure 1-2 shows a sequence of tokens passing through a counting

network. Note that the output has a counted shape.

Counting networks are implemented in software, rather than in hardware. Specif-

ically, each balancer in a network is represented by three memory locations. Because

11

each balancer on the network generally outputs to two other balancers, the first two

memory locations are used to identify the locations of the two following balancers.

The third location is used to specify the state of the balancer indicating to which

of the two balancers the next token will be sent. This last location is represented

with a single bit that acts as a toggle mechanism. As each token passes through a

balancer the state of the toggle bit is flipped. The exceptions to this representation

are the balancers with output wires which are output wires of the network. These

balancers have a location specifying the number of tokens which have left along the

output wire and the number of the wire so that the value assigned to the token can

easily be computed.

In the shared memory model, a processor wishing to increment a counter begins

with the address of a balancer at depth 1 of a counting network. The processor then

moves the token through the network obtaining the value of the toggle bit and flipping

the bit by using a Test&Set operation. By obtaining the value of the toggle bit, the

processor obtains the address of the next balancer in the network that the token

is to pass through. The processor repeats this process until the token is "output"

on an output wire. At this point the processor obtains the value of the counter by

determining the height of the output wire from the top (say j) and the number of

tokens that have previously been output along this wire (say i). The value of the

counter is then in + j where the network is an n-input n-output network.

Additional uses of counting networks, as well as other practical issues such as

implementation and simulations of counting networks are discussed in [5] and [18].

In [5], the authors describe a number of data structures which are of great impor-

tance to parallel and distributed computing which may be implemented with the use

of counting networks. In particular, they discuss producer/consumer buffers, and

synchronization barriers.

In a producer/consumer buffer, processors are producing tasks which need to be

acted upon while others are taking these tasks and performing the work that needs

to be done. The producer/consumer buffer deals with the problem of distributing the

tasks so that the processors looking for work to do can find it quickly. In essence, it

12

is a problem in load balancing.

In the case of barrier synchronization, processors are performing tasks in an asyn-

chronous environment. However, when processors reach a certain point in their com-

putation, they are required to wait for other processors to reach a certain point before

continuing to their next phase. Counting networks provide a data structure which

allows this synchronization to take place efficiently.

Two useful measures of the complexity of a balancing network, and thus a counting

network, are its size and depth. The size of a balancing network is the number of

balancers in the network. The depth of a balancing network is the maximum number

of balancers a token may be required to pass through when moving from an input

wire to an output wire. More formally, we first define the depth of each balancer and

wire in the network. The input wires of a balancing network have depth 0. Given

this, and because a balancing network is required to be acyclic, the following pair of

rules can be used to determine the depth of all balancers and all remaining wires in

the network: (i) the depth of a balancer is 1 greater than the maximum depth of its

two input wires, and (ii) the depth of an output wire of a given balancer is equal to

the depth of that balancer. The depth of a balancing network may then be defined

as the maximum depth of any output wire in the network. Because the depth of

the network is the maximum number of balancers that a token may have to travel

through to leave the network depth is a lower bound on the latency of such a network.

In this thesis, we focus on several constructions of counting networks with small

depth. Though small depth is important for practical reasons, the focus in this

thesis is on the combinatorial nature of these networks. These networks have a rich

mathematical structure which we explore in order to obtain our results.

In the original paper on counting networks, Aspnes, Herlihy, and Shavit [5] provide

two O(lg2 n)-depth families of n-input counting networks by proving that the balanc-

ing network isomorphic to Batcher's bitonic sorting network [6, 9, 23] and isomorphic

to the balanced periodic sorting network of Dowd, Perl, Rudolph, and Saks [10] are

counting networks.

In [22] Klugerman presents an O(lg n lg lg n)-depth counting network construction.

13

We present this construction in this thesis. This result has great simplicity and

displays some of the concepts used in later constructions.

The main result in this thesis is Klugerman's uniform polynomial-time construc-

tion of an O(lgn)-depth counting network. A slightly weaker result presented by

Klugerman and Plaxton in [21] provides an existential proof for such a network. Our

result answers the question posed in [5], which asks whether such an optimal-depth

counting network exists. The technique used in order to obtain the existential result

involves constructing a set of networks A* such that for any fixed input sequence I,

if a network Jf is chosen uniformly at random from JAf*, then N will count I with

extremely high probability. "Good" networks are then chosen non-uniformly from N/*

and are used to construct a deterministic counting network with logarithmic depth.

A similar technique has recently been used by Ajtai, Koml6s and Szemeredi [8] to im-

prove the constant factor in their O(lgn)-depth sorting network, and by Plaxton [26]

in order to obtain a 2 0(/19) lg n-depth sorting network from an O(lg n)-depth ran-

dom sorting network [24] that sorts with extremely high probability. This existential

result is presented in this thesis and is built upon in order to obtain the uniform

polynomial-time construction.

The other result in [21] is an explicit construction of a counting network of depth

O(clg* lgn) (for some positive constant c). However, this construction is superseded

by the constructive proof for an O(lg n)-depth network presented in this thesis which

uses many aspects of the existential proof, but makes use of extractors constructed

in [25]. These extractors are functions which extract a great deal of randomness

from a source with limited randomness by using a small number of truly random

bits. These extractors have been used to show that randomized space(S(n)) using

only poly(S(n)) random bits can be simulated deterministically in space(S(n)), for

S(n) lgn [25]. In addition, the extractor function has been used to construct

high degree expanders in polynomial-time [29]. Using techniques similar to those

found in [29], we construct regular, high degree bipartite graphs with the expansion

properties necessary to obtain an O(lgn)-depth counting network. In essence, this

bipartite expander graph allows us to find the desired network in KJ* deterministically

14

�

in polynomial-time. We believe that the bipartite graph constructed is of independent

interest.

Discussions in this thesis include relationships between sorting and counting. As

we discuss in Chapter 2, the ability to count depends, in part, on the ability to

sort. The O(lg n)-depth and O(lg n lg lg n)-depth constructions both make use of the

O(lg n)-depth AKS sorting network construction [3]. Unfortunately, the constant in

the Big-Oh of the AKS construction is extremely large. As a result, the constants

in the counting network constructions are quite large, as well. With the dependence

of counting on sorting, one cannot hope to build an O(lg n)-depth counting network

with small constants without an improvement in the construction of sorting net-

works. However, smoothing networks, which are somewhat weaker, are not so clearly

dependent on sorting. There is hope that these weaker networks can be constructed

without depending so heavily on sorting. This thesis begins to address the question

of how much an O(lg n)-depth network can smooth its input without using such pow-

erful sorting tools as AKS. We present a network which O(lg lg n)-smooths any input.

This construction is based on the construction of the optimal-depth counting network

but does not use the AKS sorting network as a subroutine. Though this network has

weaker properties than either a counting network or a smoothing network, it may

provide insight into future constructions.

In addition to constructions of counting networks using 2-input 2-output bal-

ancers, we discuss constructions of counting networks with balancers having more

inputs and outputs. This model was introduced by Aharonson and Attiya [1]. In [1],

the authors discuss limitations on the number of input and output wires a counting

network may have in this generalized model. In independent work, Klugerman [22]

shows that any counting networks comprised of 2-input 2-output balancers must con-

tain 2k input and output wires for some integer k. The approaches used in [22] and

[1] are similar and are described in this thesis.

The remainder of this thesis is organized as follows: In Chapter 2, we provide

lemmas about balancing and counting networks that will be of use in later chapters.

In Chapter 3, we discuss negative results and lower bounds pertaining to counting

15

networks. Chapter 4 contains constructions of simple small-depth counting networks.

Sections 4.1 and 4.2 describe the O(lg2 n)-depth counting networks presented in [5].

In Section 4.3 we describe the 2-smoother, a tool used to aid in the construction of the

small-depth counting networks described in Section 4.4 and Chapter 5. Section 4.4

contains the construction and analysis of our O(lg n lg lg n)-depth counting network.

Section 4.5 contains the construction of a network for general n under a more general

counting network model. Chapter 5 contains the main results in this thesis, namely

the construction of an optimal-depth counting network. Section 5.1 contains more

tools used in these constructions. In Section 5.2, we present the O(lg n)-depth random

counting network. In Section 5.3, we use the random network to construct a non-

uniform deterministic counting network. In Section 5.4 we present the construction of

a k-smoother, which is used in Section 5.5. In Section 5.5 we transform the existential

proof into a uniform polynomial-time constructive proof. In Section 5.6 we described

a small-depth balancing network which smooths all wires to within O(lg lg n) of one

another without making use of the AKS balancing network. In Chapter 6 we discuss

modifications that have been made to the counting network model and other potential

solutions to the problem of shared counting. Finally, in Chapter 7 we offer some

concluding remarks.

16

Chapter 2

Basic lemmas

In this section we present some elementary lemmas about balancing networks that

will be useful in later proofs.

2.1 Asynchronous vs. Synchronous Balancing Net-

works

The first lemma shows that given a specific balancing network and an input sequence

xo,..., xn_l to this network, the output sequence yo,..., Yn-l is well-defined. This is

a simple extension of the serialization lemma given in [5].

Lemma 2.1.1 The order in which tokens pass through the network does not affect

the number of tokens output on each wire.

Proof: We prove the claim by induction on the depth of the network. If the depth

is 0, then each output wire corresponds to a single input wire and the result is im-

mediate. Now assume that the claim holds for balancing networks of depth k, k > 0,

and consider any maximum-depth balancer x in a network of depth k + 1. By the

induction hypothesis, the number of tokens arriving along each input wire of x is

well-defined. Applying the definition of a balancer, we see that the number of tokens

received by each of the two outputs of x is also well-defined. ·

17

Since we are only concerned with the number of tokens output per wire from the

network and not the specific ordering of the tokens, as a result of Lemma 2.1.1, we

can choose the order in which we wish tokens to traverse a network when we analyze

the properties of a specific network. Note that there is no guarantee, that the ith

token input to the network will be output on the "ith" wire.

2.2 Relationships between sorting, smoothing, and

counting

The following lemma is stated in [5] and is very useful in our constructions. Given the

O(lgn)-depth AKS sorting network result [3], this lemma shows that the problem of

constructing a small-depth counting network can be reduced to that of constructing

a small-depth smoothing network.

Lemma 2.2.1 A sorting network (with comparators replaced by balancers) when ap-

plied to the output of a smoothing network, produces a counting network.

Proof: As a consequence of Lemma 2.1.1, we can analyze the output of such a

network for a particular input sequence by permitting all tokens to pass through

the smoothing network before entering the sorting network. For a particular input

sequence, suppose z or z + 1 tokens are output from each wire of the smoothing

network. We then pass z tokens from each output wire of the smoothing network

entirely through the sorting network. When all nz of these tokens are output from

the network, it is easily shown by induction on the depth of the balancers that there

will be z tokens output per wire from all the balancers at any depth k and that these

balancers will be in their initial state. All that remains is to pass the remaining 0 or

1 tokens per wire from the smoothing network through the sorting network. When

inputs are restricted to 0 or 1 tokens, the balancers act just as comparators would,

yielding an output which is counted. ·

18

___ _

Next, we examine the relationships between counting, smoothing and sorting net-

works. In this thesis, we make use of sorting networks by replacing the comparators

with balancers. We then say that the network with comparators and the network

with balancers are isomorphic to each other.

Lemma 2.2.2 Every counting network is isomorphic to some sorting network.

Proof: By the 0-1 sorting lemma, it suffices to prove that the resulting network

sorts any sequence of zeros and ones.

It is clear from inspection that a balancer acts just as a comparator would on

the input of zero or one tokens along its input wires. But if the original network

is a counting network, then any sequence of 0-1 tokens at the input will result in a

sorted sequence of 0-1 tokens at the output. Therefore, this will also be true in the

comparison network. ·

Lemma 2.2.2 states that any counting network is at least as powerful as a sorting

network. In out constructions of O(lgn)-depth counting networks, the constants

involved in the Big-Oh are quite large due to the use of the O(lg n)-depth AKS sorting

network. However, Lemma 2.2.2 states that one cannot hope to construct an O(lg n)-

depth counting network with small constants until improvements in constructions of

sorting networks are done.

The next lemma shows that, in fact, counting networks are strictly stronger than

counting networks.

Lemma 2.2.3 A sorting network is not necessarily isomorphic to a smoothing (or

counting) network.

Proof: Consider the following n-input sorting network. Connect wires x0 and x1

with a balancer. Next, connect xl to x2. Continue this process until Xn_2 is connected

to xn-_. These n- 1 balancers represent a single state of the sorting network. Repeat

the stage n - 1 times. After the ith stage, the ith largest number is guaranteed to

be in the ith wire, so the network sorts. When the network is viewed as a balancing

network and n- i tokens are input to wire xi, then yi = xi for all 0 < i < n (no

19

10

9

8

7

6

10

9

8

7

6

Figure 2-1: A sorter is not necessarily isomorphic to a smoother.

smoothing occurs). We provide an example for n = 5 (see Figure 2-1). Indeed, if 10,

9, 8, 7 and 6 tokens enter from top to bottom, then 10, 9, 8, 7 and 6 tokens will be

output from the network and no smoothing will occur. ·

Our understanding of the relationship between counting networks and sorting net-

works far exceeds our understanding of the relationship between smoothing networks

and a sorting network. Perhaps, there is no strong connection. What is true is that

one does not necessarily imply the other.

Lemma 2.2.4 All smoothing networks are not necessarily isomorphic to a sorting

network.

Proof: Consider the network illustrated in fig. 2-2. This network is a smoothing

network. Indeed, for any set of inputs, the tokens leaving the upper (resp. lower)

counting network have a counted shape. The n/2 balancers as the end of the network

superpose the upper counted shape with the reverse of the lower counted shape. This

results in a smoothed shape.

On the other hand, this network is not a sorting network. Treating this network

as a comparison network we see that, if the largest element is input on the lower half,

it will leave on the top wire of the lower half after going through the lower sorting

network and, after going through the rightmost balancer, it will leave the network on

the bottom wire of the upper half, rather than the top wire, where it belongs. ·

20

__ __

Figure 2-2: A smoother is not necessarily isomorphic to a sorter,

21

Chapter 3

Impossibility Results and Lower

Bounds

3.1 Testing a counting network

We begin by addressing the issue of how to test a network to see if, in fact, it is a

counting network. This section provides an attempt to provide a lemma similar to

the 0-1 sorting lemma for sorting networks [23]. In [5], the authors provide a method

for testing a network by testing the network with a large number of tokens.

Theorem 3.1.1 [5] A balancing network with b balancers is a counting network if

it counts for all possible inputs of up to 3 x 2 b tokens.

Because b will be at least Q(n lg n), the number of inputs which need to be tested

is 2 2(n2 Ign) We improve this theorem by making the number of tokens required to test

the network exponential in the depth of the network rather than in the size of the

network:

Theorem 3.1.2 [22] A balancing network with depth d is a smoothing (counting)

network iff it smooths (counts) on all possible inputs of up to 2d tokens per wire.

Because the depth of a network will typically be O(lgc n) this means that the

number of tests which need to be performed is 2(n lgc n), a significant improvement

over 2Q(n2 lg n)

22

To prove theorem 3.1.2, we need the following lemma:

Lemma 3.1.1 If 2d tokens are input to any single input wire of a balancing network

of depth d, all the balancers in the network remain in their initial state.

Proof: We show that if a multiple of 2 k tokens are input on a single input wire

of a network, then wires at depth D will receive a multiple of 2
k - D tokens and the

balancers at depth D will be in their initial state at quiescence. Our result then

immediately follows for k = d and D = d.

Base case: D = 0 is immediate.

Inductive step: Assume the hypothesis is true for wires of depth < D. Consider a

balancer which has as its output a wire of depth D. By induction, this balancer

receives a multiple of 2 k - (D -1) tokens on each of its input wires. Thus, a multiple

of 2
k - D tokens must be output along both of its output wires. Since the same

number of tokens leave each output of a balancer, the balancer remains in its

initial state.

Theorem 3.1.3 If 2d tokens are input into any single input wire of a depth d smooth-

ing network, the same number of tokens are output on each wire.

Proof: Suppose not. Consider the input wire for which when 2d tokens are input

to that wire, the network outputs a different number of tokens on two output wires.

By the preceding lemma, the balancers are in their initial state after all tokens leave

the network. Using Lemma 2.1.1 we can input another 2 d tokens into the same input

wire. Since the balancers were in their initial states, the gap between the two output

wires will double. As a result, the network cannot possibly be a smoothing network.

We now return to the proof of theorem 3.1.2.

Proof: Our test is sufficient due to the fact that after 2d tokens are input to a

wire, all balancers are left in their initial state. Suppose the network counts for

23

all inputs with at most 2d tokens per wire. Consider any input with more than 2d

tokens on some input wires. Suppose the ith input wire has more than 2d tokens. By

Lemma 2.1.1 the order with which we input the tokens does not affect the number

of tokens per output wire. Input the first 2d tokens into wire i. We have tested the

network to make sure that this input is counted. By Theorem 3.1.3, the network

outputs precisely the same number of tokens on each output wire. By Lemma 3.1.1

the balancers remain in their initial state. We repeat the process of inputting sets of

2d tokens into individual input wires until no more than 2d tokens per wire remain

on each of these wires. At this point we know the remaining input will be counted

by the test we performed. ·

Note that this testing algorithm requires O(size x 2nd) time.

In [7], a testing algorithm with the same asymptotic testing time is presented.

The techniques used in that paper use combinatorial and linear algebra techniques.

3.2 Restriction on number of input wires

In what follows, we show that only counting networks having a number of input wires

equal to some integer power of 2 are constructible. This result was independently

proved by Klugerman [22] and Aharonson and Attiya [1].

Theorem 3.2.1 The width of a balancing network must be a power of two in order

to be a smoothing network.

Proof: Consider a balancing network of depth d and width n. By Theorem 3.1.3,

the number of tokens output per wire when 2d tokens are input into a single wire is

p = 2d/n. Since p is an integer, the result follows. ·

In [1], the authors introduce a more general model of balancer networks they

call arbitrary fan-out networks. Rather than restricting the balancers to be 2-input

2-output devices, they allow balancers of variable size.

Definition 3.2.1 A b-balancer, is a b-input, b-output device, which outputs the ith

token received on the i mod b wire.

24

Thus, if a total of k tokens enter a b-balancer, then k/bl tokens are output on

the top k mod b wires and Lk/bJ tokens are output on the bottom k - (k mod b)

wires (see Figure 3-1). In their paper, the authors consider the case where a network

is constructed from balancers of sizes taken from a set of integers B. They prove the

following impossibility result:

Input Output

2-

8-

:- 6

- 6

6

6
l b

Figure 3-1: A 5-balancer

Theorem 3.2.2 If there exists a prime factor of n, p, such that p b for all b E B,

then there is no acyclic smoothing network with fan-out n over B.

Note that Theorem 3.2.1 is simply a special case of this theorem where B = 2).

We will now provide a proof which is similar in spirit to that provided in [1] but which

concentrates on the depth of networks rather than the size. As a result, this proof

follows the proof of Theorem 3.2.1 quite closely and thus provides a means for testing

networks with arbitrary fan-out.

Proof: (of Theorem 3.2.2). Consider an arbitrary fan-out network of depth d

with balancers of sizes chosen from the set B. We enter (bisB bi)d tokens into an

arbitrary input wire of this network. We can easily show that the number of tokens

output on any wire in the network of depth D is divisible by (b,de bi)d- and that

the balancers remain in their initial state. This is easily proved by induction on the

depth of the network in precisely the same manner as was done in Lemma 3.1.1. By

the same reasoning as the proof of Theorem 3.1.3, if the shape output by this network

25

is counted, then the number of tokens per wire must be the same among all wires.

But this means n (bieB bi)d, leading immediately to the result. i

Thus, one can test such a network by making sure that the network smooths (or

counts) when up to fibieB bi tokens are entered into each input wire.

3.3 An Q(lg n)-depth lower bound on smoothing

and counting

Thus far we have not shown any lower bound on the depth of a smoothing network

since there is no clear relationship between smoothing and sorting.

Lemma 3.3.1 A smoothing network on n inputs has Q2(lg n)-depth.

Proof: Each output has to depend on all inputs (otherwise, we could increase the

number of inputs at a given wire by an arbitrary large amount without increasing the

number of outputs at a given wire.) However, at depth d, a wire depends on at most

2 d inputs. ·

This is true of 2-smoothers as well.

Lemma 3.3.2 A 2-smoother on n inputs has Q(lgn)-depth.

Proof: Again each input depends on every other input. Suppose not. Then there

are two inputs which are independent of one another. Input 2 tokens along one of

these wires and 0 tokens along the other. Input 1 token on the remaining wires.

Because these two wires have no effect on one another, the wire with 2 tokens and

the one with 0 cannot be smoothed. ·

26

Chapter 4

Simple Counting Networks

4.1 A Bitonic Counter

In the original paper introducing counting networks [5], the authors present two small-

depth counting networks, the bitonic counting network and the periodic counting

network. From a practical perspective these networks are the most efficient counting

networks to implement (for any reasonable value of n). In addition, the networks are

quite simple and again show the close relationship between sorting and counting.

We now construct the bitonic counting network of depth lg n(lgn + 1). This

counter is isomorphic to the bitonic sorting network [6, 9, 23], also known as the

even-odd or Batcher sorting network. Because of the simplicity of the network we

provide both a construction and a proof that the network is a counting network.

The bitonic counting network is constructed in two phases, each of which is re-

cursive (see also Figure 4-1).

Phase 1: Recursively apply n/2-input bitonic counting networks to both the top n/2

input wires and the bottom n/2 input wires.

Phase 2: Apply a n-input merger to the output of Phase 1.

The n-input merger is designed to input two counted sequences x, x1,..., xn/2-1

and x'O,x, .. ., xn/2_ and output a counted shape. The merger is constructed recur-

sively as follows (see also Figure 4-1):

27

n/2-input
bitonic
counting
network

n/2-input
bitonic
counting
network

n-input
merger

.o

A

: ^~~~X

Yo

Yn-3

Yn-2

Y,-

Figure 4-1: To the left: a bitonic counter on n inputs. To the right: a bitonic merger
on n inputs.

Phase 1: Apply a n/2-input merger to the odd-indexed subsequence xl, x 3 ,... , Xn/2-1

and the even-indexed subsequence ,x,... ,x, 2_2. Similarly, apply a n/2-

input merger to the even-indexed subsequence of x and the odd-indexed subse-

quence of x'.

Phase 2: Apply a depth one level of balancers. The ith balancer from the top re-

ceives, as input, the ith output wire of both mergers from Phase 1.

If S(n) and M(n) are respectively the depth of the counting and merging network,

we have M(n) = M(n/2) + 1 = lgn and S(n) = S(n/2) + M(n) = S(n/2) + lg n =

2 lgn(lgn + 1).

Lemma 4.1.1 If two counted shapes are input to a merger, then the output will be

counted.

Proof: The two input sequences to each of the mergers in Phase 1 are each counted

sequences. So, by induction, the shape output from each merger is counted. To prove

that this merger actually merges, we note that

k/2-1 k/2-1

E x2i+1 = [S/21 and E X2i= LS/2],
i=O i=O

28

.=~~
0

je,

je,

je,

- -

-

-'I

V2

-LI E F

L . , _
It}

~~i
iii _ _lF_ -IT

Figure 4-2: A bitonic counter on 8 inputs.

where S = Ek= xi. Therefore, if we denote by z0, Z1, z , Zk-l and zo), zl,..., zl_1 the

outputs of the top and bottom merger (k = n/2), we have

k-1 k-1
Z z' = [S/21 + LS'/2j and zi = S/2J + [S'/21,
i=O i=O

(4.1)

where S' = Ek-1 x'. Eq. 4.1 shows that the sum of the sequences z and z' differs by

at most one. Since z and z' have the counted shape by induction on the size of the

merger, this implies that z and z' have the same values for all but at most one index

i, and they differ at this index by at most one value. The ith balancer in Phase 2

ensures that the final shape is counted.

Theorem 4.1.1 The bitonic counting network is a counting network.

Proof: By induction Phase 1 of the construction outputs two counted shapes. By

definition of the merger, the final output is counted.

Fig. 4-2 illustrates a bitonic counter on 8 inputs.

29

- w a i lwb 0 i lw

i

4.2 A Periodic Counter

The second counting network that the authors of [5] describe is known as the periodic

counting network. This network is isomorphic to the network described by Dowd,

Perl, Rudolph, and Saks [10]. In this construction, a depth lg n block is repeated lg n

times producing a lg2 n-depth network. In this section we provide a description of

the construction and refer the reader to [5] for a proof of its correctness.

One of the basic building blocks for this construction is the ladder balancing

network. In later sections we examine this object more closely, but for now, we

simply define it.

Definition 4.2.1 For any positive integer n,

1 balancing network constructed by connecting

i < n (as indicated in Figure 4-3).

a 2n-input ladder network is a depth

xi to X2n-1-i with a balancer, for 0 <

7

Figure 4-3: An 8-input ladder.

We use the ladder to

ure 4-4):

define a 2n-input block recursively as follows (see also Fig-

Phase 1: Apply a n-input ladder to all input wires.

Phase 2: Apply n/2-input blocks to both the top n/2 wires and the bottom n/2

wires.

30

- h- lm

1

____4

-

I

n-input
ladder

n/2-input
block

0

Figure 4-4: On left: a n-input block. On right: an 8-input block.

A n-input periodic counting network is then formed by repeating an n-input block

lg n times (see also Figure 4-5).

i 4 i i i i i 4 -q i·

I I - 1I

i I - t I -TI

,~~ ~~~~~~~~~~~~~ I , 11,1
_ F = b I I F 1 I F 1I I

Figure 4-5: An 8-input periodic counting network.

4.3 A deterministic 2-smoother

In this section, we present an explicit construction of a n-input 2-smoother, where n is

any positive integer. The 2-smoother is used in the next section in the O(lg n g lg n)-

31

n/2-input
block

-
_I w-

4 0 4 0

I I

0

I - 0

1

9

.

w

. l .-

I0

0

.

depth counting network construction and in the optimal-depth construction of Chap-

ter 5. Our construction makes use of two primitives as subroutines: ladder networks

and sorting networks.

4.3.1 Ladder networks

Recall the definition of a ladder from Section 4.2.

The power of the ladder stems from the following lemma:

Lemma 4.3.1 If a counted shape is input to the top n wires of a 2n-input ladder, and

another counted shape is input to the bottom n wires, then the output of the ladder is

smoothed.

Proof: There exist integers no and k0o such that no of the top n inputs receive k0o

tokens each, and the remaining n - no top inputs receive k0o + 1 tokens each. Let n1

and kl be defined similarly for the bottom inputs. If no > n - n1 , then every output

of the ladder will receive at least Lo+l and at most [ko+l+l] = [k 2k + 1 tokens.

If no < n - n1, then every output of the ladder will receive at least [ko+l+l and at

most k+kl+2] = [ko+kl+1l + 1 tokens. In either case, the output is smoothed. ·

4.3.2 Sorting networks

We also make use of n-input sorting networks in our counting network constructions.

Any sorting network may be used at these locations by replacing the comparators with

balancers. To obtain small depth we use the O(lg n)-depth AKS sorting network [3].

We refer to the AKS network with balancers as the AKS balancing network.

As we discussed in Chapter 2, when the sorting network is applied to the end of

a smoothing network, the resulting network becomes a counting network. We make

use of this property in this section. In addition, the sorting network provides another

useful property:

32

Lemma 4.3.2 If at most k (resp. at least 0) tokens are input into any input wire of

a sorting network (with comparators replaced by balancers) and nk (resp. no) input-

wires receive k (resp. 0) tokens, then all output-wires containing k (resp. 0) tokens

will reside in the top nk (resp. bottom no) wires.

Proof: We provide a proof by contradiction. Consider an input sequence I for

which the property above does not hold. We compare the output from the network

with comparators with the output from the network with balancers. Suppose without

loss of generality, that an output wire outputs k tokens from the balancing network

while it outputs a number smaller than k from the sorting network. Find a balancer

b in the network of minimum depth where one of its output wires, say w output k

tokens, but the corresponding comparator outputs less than the number k on wire w.

There are 3 cases to consider:

1. Both inputs to b were less than k. This case cannot happen because both

outputs of b would be less than k.

2. Exactly one input to b is less than k. At most one of b's output wires will contain

k tokens and it will be the "larger" output wire. Since b is minimum depth, the

corresponding comparator will also receive a k as input, so it is guaranteed to

output k on this wire.

3. Both inputs to b contain k tokens. The comparator will receive a k on both its

input wires (by minimal depth of b) and so will output k on both its output

wires.

So there can be no minimal depth balancer b with the stated property. a

4.3.3 Construction of the 2-smoother

Here we consider the case of constructing a k-smoother with k = 2. Later we will

consider more general k. To simplify the analysis of our constructions we note that

we can simply analyze the network for input wires receiving at most k tokens. If the

33

network smooths all such possible inputs, then the network smooths all inputs that

are smoothed to within k.

Lemma 4.3.3 A network that smooths any input sequence with no more than k to-

kens per wire is a k-smoother.

Proof: Suppose that a given n-input network Jf smooths every input sequence with

no more than k tokens per wire, and let a k-smoothed input sequence be input to

/. There exists some integer a such that a < xi a + k, for 0 < i < n. Using

Lemma 2.1.1, we begin by passing all but a tokens from each input wire through the

network. By our assumption, a smoothed shape will be produced at the output. Next,

we pass the remaining a tokens from each input wire through the network. By a sim-

ple induction on the depth of network A, we find that each output wire will receive an

additional a tokens as a result of this pass. Hence, the final shape will be smoothed.

We now provide a construction for a 2n-input 2-smoother. The 3 phase construc-

tion (see also Figure 4-6) defined below produces an O(lg n)-depth network.

Phase 1: Apply a 2n-input sorting network to the 2n input wires.

Phase 2: Apply a n-input sorting network to the top n wires and another n-input

sorting network to the bottom n wires.

Phase 3: Apply a ladder to all 2n wires.

By lemma 4.3.3, it is sufficient to prove that our network counts when each xi is

drawn from 0, 1, 2}, for 0 < i < n. Fixing a particular input sequence of this type,

let no, nj, and n 2 denote the number of wires receiving 0, 1, and 2 tokens, respectively.

Lemma 4.3.4 After applying the first phase of the construction (i.e., a 2n-input sort-

ing network), all wires containing 2 tokens are located in the top n 2 wires. Similarly,

all wires containing 0 tokens are located in the bottom no wires.

34

Phase 2

Figure 4-6: A 2n-input 2-smoother.

Proof: Immediate from lemma 4.3.2. ·

We now complete the proof that the network described in this section is a 2-

smoother by considering two cases.

Case (i): no < n and n2 < n.

As a result of Lemma 4.3.4, the inputs to each of the two n-input sorting net-

works in Phase 2 will be smoothed, so the outputs from each of these networks

will have a counted shape (Lemma 2.2.1). The two counted shapes are then

passed through a ladder, which produces a smoothed output (Lemma 4.3.1).

Case (ii): no > n or n2 > n.

Without loss of generality it may be assumed that n2 = n + k for some k > 0.

Arguing as in the proof of Lemma 4.3.4, the output of the first 2n-input sorting

network consists of no - m O's, m lo0's, nl l's, m 12's, and n2 - m 2's for some

nonnegative integer m. Furthermore, the top n wires receive only 2's and 12's,

so the output of the top n wires is smoothed and at least n - m of these wires

receives a 2. At the same time, at most n - k - m < n- m of the bottom n wires

receive a 0. Thus, after applying the two n-input sorting networks, the output

of the top n wires will be counted and each of the top n - m wires will receive

a 2 (Lemma 2.2.1). Furthermore, every 0 must appear on one of the bottom

35

Phase Phase 3

n - m wires (Lemma 4.3.4). Hence, when the ladder is applied, all existing O's

will be paired with 2's, leaving a smoothed output consisting of 's and 2's. ·

To obtain an O(lg n)-depth 2-smoother with 2n+1 (an odd number of) input wires,

we apply the three phases described abov to the top 2n wires and then perform the

following three additional phases (see also Figure 4-7).

Phase 4: Apply a 2n-input sorting network to the wires from Phase 3.

Phase 5: Apply a balancer to the bottom output wire of Phase 4 and the wire w

which has not yet been connected to a balancer.

Phase 6: Apply a balancer to the top output wire of Phase 4 and the low output

from the balancer in Phase 5.

Phase 4 Phases 5 & 6

· 2n-input _ 2n-input
· 2-smoother · sorting

network * network

I· I I· I I ·~~~~~1
· II I

Figure 4-7: A 2n + 1-input 2-smoother.

Lemma 4.3.5 The six phase network described

network.

above is a 2n + 1-input 2-smoother

Proof: The first three phases smooth 2n of the wires. Suppose these 2n wires each

contain either a or a + 1 tokens at the end of Phase 3. Phase 4 counts these wires by

Lemma 2.2.1. Let the number of tokens on these counted wires be either a or a + 1.

We consider all possible numbers of tokens on wire w upon entering Phase 5.

36

,,

w contains a or a + 1 tokens: all wires are already smoothed.

w contains a + 2 tokens: then the balancer in Phase 5 smooths all the wires.

w contains a- tokens: Phase 5 will output a- 1 tokens on the wire connected

to a balancer in Phase 6. This balancer will ensure that all wires are smoothed.

w contains a - 2 tokens: This is only possible if all other wires contains a tokens.

Thus the balancer in Phase 5 will complete the smoothing.

Theorem 4.3.1 There exists an explicitly constructible family of O(lgn)-depth, n-

input 2-smoothers. ·

4.4 An O(lg n lg lg n)-depth counting network

We now present an O(lgnlglgn)-depth counting network construction for all n =

2 d, d a positive integer. We make use of the 2-smoother balancing network from

Section 4.3. This construction is interesting because it improves on the (lg2 n)-depth

constructions using a very simple approach (given the existence of the AKS balancing

network). The O(lg n)-depth construction which is described in a later section is far

more complex. In addition, this construction is easily generalizable to the case of

arbitrary fan-out balancers described in Section 3.2. This more general network is

described in Section 4.5 below.

4.4.1 Construction

The counting network consists of a smoothing network followed by the AKS balancing

network. The smoothing network consists of 3 phases (see also Figure 4-8), the first

two of which are recursive:

Phase 1:

Assign the n input wires to distinct elements of a r x c grid, where r = 2r 2 1

37

and c = 2L 2
. Recursively apply a smoothing network to each of the rows of

this grid.

Phase 2:

Recursively apply a smoothing network to each of the columns. Note: it is not

important which input wire is associated with which element of the grid.

Phase 3: Apply a 2-smoother to the outputs of Phase 2.

-- Phase 1 --- Phase 2 -- om-- Phase 3 Phase 4----

Figure 4-8: An O(lg n lg lg n)-depth counting network

4.4.2 Analysis

Let Dc(n) be the depth of the counting network on n input wires. Let Ds(n) be the

depth of the smoothing network on n input wires. Then,

38

Ds(n) = Ds(2'[) + Ds(2L 2.) + O(lgIn)

< 2Ds(2n) + O(ln)

= O(lgnlglgn)

Therefore, Dc(n) = Ds(n) + O(lg n) = O(lg n lg lg n).

4.4.3 Correctness

We now show that after Phase 2 the input is 2-smoothed.

Lemma 4.4.1 If a total of k tokens enter a smoothing network with n wires, when

the network reaches a quiescent state, each wire will contain either [kj or LkJ tokens.

Proof: Immediate from the definition of a smoothing network. o

Lemma 4.4.2 After Phase 2, the difference between the number of tokens on any

pair of wires is at most 2.

Proof: Consider the r x c grid of wires defined in Phase 1. There exist ri, 1 < i < r

such that after the rows are smoothed, either ri or ri + 1 tokens are output from

each wire in row i. Let R = Zi.l ri. Let Cj denote the number of tokens in column

j after the rows are smoothed. Then R < Cj < R + r, for all 1 < j < c. As a

result, the average number of tokens per wire in one column is within one of the

average number of tokens per wire in any other column. Thus, after the columns are

smoothed, lemma 4.4.1 yields the proof.

Lemma 4.4.3 After Phase 3 the output is smoothed.

Proof: Immediate from Lemma 4.4.2 and the definition of a 2-smoother.

Theorem 4.4.1 The exist polynomial-time constructible O(lgnlglgn)-depth count-

ing networks.

39

Proof: We apply the AKS sorting network to all the wires output from the 2-

smoother described above and by Lemma 2.2.1 this network becomes a 2-counter.

4.5 An arbitrary fan-out counting network

Consider a counting network with n inputs and n outputs where n is no longer a

power of 2. Instead, n = plp 2 . Pk where each of the pi are distinct primes. Let

the set of balancer sizes available to construct the network be {P,P2, ' ,Pk} (see

Section 3.2).

In this section we show how to construct such a network using precisely the same

technique as shown in Section 4.4. In [7], the authors present a small depth construc-

tion of width p2k with balancers of size 2, p} and they construct a network of width

pqk with balancers of size p, q}. In this section we address the more general problem.

Theorem 4.5.1 If balancers of sizes {P1,P2, '' ,Pk} are available. Then an n-input

n-output counting network can be constructed where n = ppl p 2 ' ' pk .

Proof: The construction is recursive. In the base case, n = pi a prime. Here a

pl-balancer can be applied. In the more general case, n = m x where m and

are positive integers greater than 1. Many such factorings may be possible. One can

choose that which will minimize the depth of the network using dynamic programming

techniques. We treat the n input wires of the network as a m by I grid. First we build

smoothing networks on the rows of this grid (m-input m-output smoothers, and then

we apply a smoothing network to each of the columns (-input 1-output smoothers).

By Lemma 4.4.2, the output will be 2-smoothed.

We are now left to construct an n-input n-output 2-smoother from balancers of

size {P1,P2,''', Pk) To do this we mimick the construction of Section 4.3. If n is

even, then pi = 2 for some i and the construction is identical to that of Section 4.3.

If n is odd then we require a small-depth sorting network which makes use of p-

comparators rather than comparators. The p-comparator has p inputs and p outputs

40

and it sorts the p inputs. In [8], Chvatal presents a construction of such a network

with depth O(logp n). We will refer to this network as the pAKS sorting network.

When the p-comparators are replaced with p-balancers, the network becomes the

pAKS balancing network.

The pAKS balancing network holds similar properties to the AKS balancer net-

work in that it counts a smoothed input (for the same reasons as offered in Lemma 2.2.1)

and it possesses the same properties with respect to Lemma 4.3.2 by the same reason-

ing offered in the proofs of these lemma. In the first phase of the 2-counter we apply

the pAKS network to all n wires. In the second phase of the 2-counter we apply the

pAKS network to the top (n - 1)/2-wires and also to the bottom (n - 1)/2 wires. This

leaves one wire which has not yet been involved. However, this middle wire wm need

not be balanced with any other wire as we now argue. Assume without loss of gener-

ality that 0,1 and 2 tokens are input per wire to the network. If wm contains 1 token

after the initial pAKS network, then when all other wires are smoothed, the entire

network is clearly smoothed. If wm contains a 0, then by Lemma 4.3.2 there are more

than n/2 O's in the network. But this means that once the wires are all smoothed, O's

will still remain. Thus smoothing the other wires will result in a smoothed network.

By a symmetric argument, wm need not be smoothed if it contains 2 tokens.

After the (n - 1)/2-input pAKS networks we are left to perform the same function

as the ladder on n- 1 wires (all wires excluding win). Because 2-balancers are not

available we will modify the original ladder construction by replacing the 2-balancers

with p-balancers for some p. Note that the original ladder simply smooths pairs of

wires. By doing this, the ladder (as proved before) smooths the entire input. We

partition the balancers of the ladder into blocks of (p + 1)/2 balancers. Note that

because of issues of divisibility, one block may contain fewer balancers. We now

offer a construction which smooths the wires in each block. We replace each block

of balancers with 2 p-balancers. The first p-balancer connects the same inputs and

outputs as the (p+1)/2 2-balancers leaving out the bottom most of these input output

wires. The second p-balancer connects the same inputs and outputs as the (p + 1)/2

2-balancers except for the second wire from the top (see Figure 4-9). This smooths

41

the full-sized blocks. Note that it is not critical that the second wire from the top

was left out of the second balancers. The wires which must be included are the top

most and bottom most wire from the first p-balancer and the bottom wire which has

not yet been smoothed. In addition, the remaining p- 3 input wires should be taken

from the same block.

The block that contains fewer than (p + 1)/2 balancers is replaced with a single

p-balancer. This p balancer uses the same input and output wires as those in the

block. Because there may be fewer than p wires in this block the remaining wires are

chosen arbitrarily from wires taken from the full-sized blocks. This stage occurs after

the full-sized block have been smoothed.

Lemma 4.5.1 The above construction performs the same function as a ladder in the

original 2-smoother construction.

Proof: The input to the ladder is 2-smoothed. Let us assume that there are a, a+ 1,

or a+2 tokens per wire. Because the ladder smooths the entire input, each block must

contain an average number of token which lie between a and a + 1 or a + 1 and a + 2.

Note that all block will be in the same on of these two cases. Thus we need only show

that each block is smoothed. After the first p-balancer is applied to the top p wires of

a block, all wires but the bottom wire in the block are smoothed. These p wires now

contain either a and a + 1 tokens per wire or a + 1 and a + 2 tokens per wire. In the

former case, if the bottom wire contains a or a + 1 tokens then the block is smoothed.

If the bottom wire contains a + 2 tokens then the second p-balancer ensures that this

wire is paired with a wire containing a tokens, thus averaging both wires so that each

contains a + 1 tokens. In the latter case, if the bottom wire contains a + 1 or a + 2

tokens then again the block has been smoothed. Otherwise, the bottom wire contains

a tokens. The second p-balancer pairs up this wire with a wire containing a + 2 tokens

again averaging the two so they each contains a + 1 tokens. Finally, the small block

is smoothed with a single p-balancer. Suppose the full-sized blocks produce a or a + 1

tokens per wire. Then the average number of wires in the small block are between a

and a + 1 tokens per wire, as well. Thus including wires which have a or a + 1 tokens

42

per wire in the p-balancer will not effect the smoothing of the small block. a

Figure 4-9: Converting ladder with 2-balancers to pladder with 5-balancers.

One way to select m and I (though it may not be optimal) above is to consider

the total exponent a = a cl. Choose m = plpp2 p and 1 = p"' 2 p such

that ai = 3i + yji and Ep3i = [a/21 and E yi = La/2]. This leads to the recurrence:

D(o) = D([a/2]) + D(La/2J) + O(lgn)

= O(lgnlglgn)

when a < lg n which it always is.

43

--- I

7

--- I

0-- i i

i

1---e i i

Chapter 5

An optimal depth counting

network

This chapter contains our main result. Namely, the uniform polynomial-time con-

struction of an O(lg n)-depth counting network. There are a number of steps involved

in this construction. Tools such as the ladder of Section 4.2 and the 2-smoother in-

Section 4.3 are used. We begin by describing and analyzing some other useful tools.

5.1 Building blocks

5.1.1 The butterfly balancing network

Definition 5.1.1 A 2k-input butterfly balancing network, where k is a nonnegative

integer, may be defined recursively as follows. If k = O, then it is a single wire. If

k > O, then it is constructed from two 2k-1-input butterfly balancing networks and an

additional level of 2 k-1 balancers as indicated in Figure 5-1.

Note that a 2k-input butterfly balancing network has depth k.

Lemma 5.1.1 Consider a 2k-input butterfly balancing network. Let i and j denote

two k-bit integers that differ in a single bit position, with i < j. Then for any input

sequence, either yi = yj or yi = yj + 1.

44

Xn2-2

Xn/2-1

Xn/2

Xn/2+

-2
A -

n/2-input
butterfly
balancing
network .

= 0
n/2-input
butterfly
balancing
network

- I.

yl

Yn 2 -2
Yn12 -1

Ynl2
Yn/2 +1

Yn-2
Ye-I

Figure 5-1: An n-input butterfly balancing network where n = 2 .

Proof: We prove the claim by induction on k. If k = 0, there is nothing to prove.

Now assume that the claim holds for k < d, > 1, and consider the case k = d. If i

and j differ in bit position d, then the result is immediate since outputs i and j are

connected to the same depth d balancer. Thus, we may assume that i and j differ in

some bit position a, 0 < a < d. Let i' (resp., j') denote the integer having the same

binary representation as i (resp., j), except in bit position d. Note that outputs yi

and yi, (resp., yj and yj,) represent the two outputs of some balancer bo (resp., bl) at

depth d. Let a total of ro (resp., r) tokens be received by balancer bo (resp., b). By

the induction hypothesis, rl < ro < r1+2. If i < i', then yi = ro/21 and yj = r1/21,

so that either yi = yj or yi = yj + 1. The case i > i' is similar. ·

Lemma 5.1.1 shows that the output sequence from a butterfly balancing network

has a hypercube-like structure.

We use the expression bin(i, k) to denote the k-bit binary representation of the

integer i, for 0 < i < 2
k. When yi is mapped to node bin(i, k) of a 2k-node hypercube,

the output wire containing the most tokens corresponds to Ok (i.e., yo) while the

output wire with the fewest tokens corresponds to ik (i.e., Y2k 1-). Furthermore, if

one considers a sequence of outputs {yjo=2k_l, yjl,... , yjk-, Y jk==o} corresponding to a

chain in the hypercube (when viewed as a Boolean lattice) beginning with the node

1 k and ending with the node 0 k, then 0 < yj+, - yji < 1, 0 < i < k.

45

Corollary 5.1.1.1 For any input sequence to the 2k-input butterfly balancing net-

work, and any pair of output wires i and j, we have lYi - yjl < k.

Proof: An immediate consequence of Lemma 5.1.1, along with the fact that k bits

are used to describe the address of each wire. ·

In our "randomized" construction of Section 5.2, we will prove that after the

tokens pass through a particular stage of the network containing a butterfly balancing

network, with high probability all of the output wires corresponding to nodes in the

"middle" levels of the hypercube (i.e., those with a large number of both O's and l's

in the binary representation of their addresses), will contain very close to u tokens

where gu is the average number of tokens per input wire. Let G denote the set of

output wires of a 2k-input butterfly balancing network whose addresses have binary

representations containing at least ak O's and ack l's, 0 < < 1/2. We say that

G is the set of a-good wires while those not in G are o-bad. The a-good wires are

considered the "middle" levels of the hypercube.

5.1.2 Pairing networks

The pairing network is useful both in the proof of the existence of an O(lgn)-depth

counting network and in the construction of a k-smoother of Section 5.4 with an odd

number of input wires.

Definition 5.1.2 An (m, n, k)-pairing network, for nonnegative integers m, n, and k

satisfying n > m2k, is an n-input, depth-k balancing network constructed as follows.

Upon entry to the network, m wires have been designated as bad inputs while the

remaining n - m wires have been designated as good inputs. Similarly, the outputs

of the network will be partitioned into a set of m2k bad outputs, and n - m2k good

outputs. If k = 0, the network consists of n wires, and the bad (resp., good) outputs

simply correspond to the bad (resp., good) inputs. If k > 0, the desired network AV

consists of an (m, n, k-1)-pairing network A' (note that n > m2k implies n > m2k - 1)

followed by an additional level of m2k-1 balancers pairing (in an arbitrary fashion)

46

each of the bad outputs of a' with a good output of a'. The bad outputs of f are

exactly the m2k outputs of this set of m2 k - 1 balancers (see also Figure 5-2).

r -- I I -
I level0 I I level I

bad bad I bad

bad bad bad
badgood bad bad
goodbad

ood g ood bad
good badood
good bad
g goo d bad

ood
good od bad
good good --- good
good good good

Figure 5-2: A (2, 10, 2)-pairing network.

The following lemma shows that a pairing network can be used to smooth the bad

inputs using the good inputs:

Lemma 5.1.2 If the input sequence to an (m, n, d)-pairing network Jf is such that

for some pair of integers a < b, every good (resp., bad) input receives between a and

b (resp., a - 2 k and b + 2 k) tokens (for some k > d), then every good (resp., bad)

output receives between a and b (resp., a - 2
k - d and b + 2

k - d) tokens.

Proof: The good output wires are not connected to balancers so they will clearly

output between a and b tokens. With respect to the bad output wires, we will now

argue that no bad output receives more than b + 2 k - d tokens; a symmetric argument

may be used show that no bad output receives fewer than a - 2
k- d tokens. In fact,

we will prove the following stronger claim: No wire at depth i receives more than

b + 2
k - i tokens, 0 < i < k. This claim may be proven by induction on i. The base

case, i = 0, is immediate. For the induction step, note that every wire at depth i + 1,

O < i < k, is an output of a balancer that received at most b + 2k - i tokens (by the

induction hypothesis) on one input and at most b tokens on the other input (since

one of the inputs must be good). Each of the outputs of such a balancer will receive

at most [(2b + 2 k-i)/ 2] = b + 2
k - i - 1 tokens, as required. ·

47

Corollary 5.1.2.1 If the input sequence to an (m, n, d)-pairing network X is such

that for some pair of integers a < b, every good (resp., bad) input receives between a

and b (resp., a - 2 d and b + 2d) tokens, then every good (resp., bad) output receives

between a and b (resp., a - 1 and b + 1) tokens.

5.2 A random construction

We now present the first major construction leading to our main result. We make use

of the networks defined in the previous section to construct a "random" network.

Definition 5.2.1 Given a set of balancing networks and an associated probability

distribution, the random network obtained by sampling from the set is referred to as

a random balancing network.

We will be particularly interested in random balancing networks that count any

input sequence with high probability. Such a network will be referred to as a random

counting network, and a lower bound on the associated probability of success (the

minimum over all input sequences of the probability that the random network counts

the sequence) will be explicitly stated.

In this section, we present an O(d)-depth family of 2d-input random counting

networks that count with probability at least 1 -2 -2 d where ao is any constant such

that < < . Since the depth of the network is independent of o, we will choose

c close to . Throughout this section, fix a choice of < , let ao = (+)/2,

let d denote an arbitrary nonnegative integer, let d' = [v-l1, and let Jf* denote the

2d-input random counting network to be constructed.

In order to define Af*, we need to provide a set of 2d-input balancing networks

and an associated probability distribution. This set of networks will consist of (2 d)!

networks that are identical in every respect except for a permutation of the wires

that is applied at one point in the construction. The probability distribution will be

uniform over this set of networks. Thus, letting Sd denote the set of (2 d)! permutations

on 2 d objects, the networks of the set JA* are in one-to-one correspondence with the

48

I- ^I -- - - _ ---_--I--__ - �---- -t

elements of Sd. In particular, for each permutation r in Sd, we will construct the

balancing network Nf of JV* by applying the following procedure (see also Figure 5-

3).

Phase 1: Apply a butterfly balancing network to all 2d input wires.

Phase 2: Let Ai denote the set of 2d' wires X , (j), i2d < j < (i + 1)2 d', O < i < 2d- d .

Apply a 2d'-input bitonic counting network [5] to each Ai.

Phase 3: Apply a butterfly balancing network to all 2d wires.

Phase 4: Let B denote the set of 0-bad outputs of Phase 3. Apply a (B, 2d, lg d)-

pairing network, mapping the wires of B to the bad inputs of the pairing net-

work.

Phase 5: Apply a butterfly balancing network to all 2d wires.

Phase 6: For the remainder of the construction, we refer to B (resp., G) as the set

of o-bad (resp., cao-good) outputs of Phase 5. Apply a 2-counter to G.

Phase 7: Partition the outputs of the 2-counter of Phase 6 into two equal-sized sets

Go and G1, placing the top IG1/2 outputs in Go and the bottom G1/2 outputs

in G1. Apply a (IBI, IBI + Gol, 2)-pairing network to BUGo, mapping the wires

of B to the bad inputs of the pairing network.

Phase 8: Let B' denote the set of 4 BI bad outputs of the pairing network of Phase 7.

Apply a (B', B' l + IG1 , 2)-pairing network to B' U G1, mapping the wires of

B' to the bad inputs of the pairing network.

Phase 9: Apply a 2-counter to all 2d wires.

Lemma 5.2.1 The output of Phase 1 is d-smoothed.

Proof: Immediate from Corollary 5.1.1.1.

49

P 1Phase 2 - Phase 3

permutation
t applied to
all 2 d wires

Phase 6

2 d -input
counting
network

(IBI, d, Ig d)
pairing
network

1 2 ' -input
. counting b
_ network b

.·

2d-input
butterfly
balancing
network

2 ' -input
counting
network

Phase 7 Phase 8

(IBl,IBI+IGol,2)-
pairing network

(IB'I, IB'I+IGI, 2)-
pairing network

Figure 5-3: The balancing network A/M,.

50

2 -input
butterfly
balancing
network

Phase 5 Phase 9

2d-input
butterfly
balancing
network

2-counter
on wires
from G

2 -input
2-counter

Phase 1 Phase 4

s . d

. X

We are left to prove that the remainder of the network is a d-counter with high

probability. By Lemma 4.3.3, we can assume that the number of tokens per wire is

between 0 and d after Phase 1.

Definition 5.2.2 Let I denote an input sequence containing a total of 2 d tokens

for some real value pa, let ,' = L- + 2 J, and focus on the 2 d outputs of Phase 2 when

input sequence I is applied to network A. Let a (resp., b) denote the number of these

wires receiving strictly more (resp., fewer) than i' + 1 (resp., ' - 1) tokens. The pair

(I, .At) is defined to be ao-nice if and only if max{a, b}) 2
°

0 d .

In the next portion of our proof we obtain a Chernoff-like bound for sampling

without replacement. We use martingales for this purpose.

Definition 5.2.3 A martingale is a sequence of random variables X0 ,... ,Xm such

that

E [Xi+l I Xi] = Xi,

O<i<m.

We will make use of the following variant of Azuma's Inequality [4] in the analysis

of Phase 2:

Theorem 5.2.1 Let Xo = c and let Xo,..., Xm be a martingale with

IXi+l - Xil < U,

O < i < m. Then

Pr(Xm -c > AUV/-F) < e - A2 /2

for all A > O. ·

The following lemma represents a straightforward application of Azuma's Inequal-

ity.

51

Lemma 5.2.2 Let Q be an arbitrary set of N numbers with mean u drawn from

the real interval [0, U]. Let the random variable S denote the sum of m elements

{ql,..., q} chosen uniformly without replacement from Q. Then for all A > 0,

Pr(S > AUv/m + m/) < e- 2/2

Proof: Let XO = E [S] and for 1 < i < m let

Xi = E [S I ql,..., qi] .

The Xi's form a martingale. Furthermore,

,Xi+l - Xi

E [X q,...,qi+l]-E[X ql,...,qi]

N-i- (NI - El<k<iqk)
< U

since 0 < (N-m)/(N-i-1) < 1, 0 < qi+1 < U, and 0 < (NM--El<k<i qk)/(N-i) <

U. In addition, X = m and S = Xm. By Theorem 5.2.1,

Pr(S - m > AUv/) < e- 2/2 (5.1)

for all A > 0. A

The following lemma represents the crux of the random construction. It shows

that a great deal of "global" smoothing can be accomplished by smoothing small sets

of wires in parallel.

Lemma 5.2.3 Let I be any input sequence to Jr, where r is chosen uniformly at

random from Sd. Then with probability at least 1 - 2-2 d, the pair (I, Af ,) is oo-nice.

52

Proof: Suppose that input sequence I contains i,2d tokens and let /' = [L + .

The set Ai (refer to Phase 2) is defined to be high-bad (resp., low-bad) if the total

number of tokens received by Ai exceeds 2 d' (t' + 1) (resp., is less than 2 d' (,' - 1)),

for 0 < i < 2d -d . We will show that with probability at least 1- 2 , at most 2 ad

of the Ai's are high-bad. A symmetric result holds for the number of low-bad Ai's.

Thus, at the end of Phase 2, 2ad 2 rd'l = o(no) wires will contain more (resp., fewer)

than tL' + 1 (resp., ' - 1) tokens, proving the lemma. Let X denote the event that a

particular set of r L2adJ of the Ai's are all high-bad. We have

Pr(at least r of the Ai's are high-bad)
2d-d'

< (2rd') Pr(X)

< 2d Pr(X).

Next we show that Pr(X) = 2-w(d)r, yielding the result. Let S be the total number

of tokens on a particular set of r2d' wires. Then Pr(S > r2d'(I ' + 1)) > Pr(X). S

is the sum of values sampled without replacement, so Lemma 5.2.2 can be applied.

In this case, A = , U = d, m = r2d, and N = 2
d . So the probability bound in2U'

Lemma 5.2.2 becomes

Pr(S > r2d (/' + 1)) < Pr(S > r2d' (+ 2))
2

8r2
d

2-w(d)r,

as desired. ·

For the remainder of this section, we assume that I is a particular input sequence

with p2d tokens and that Af, is a particular network in Af* such that the pair (I, A 1,)

is ao-nice. We also set jL' = [L' +]J.

53

Lemma 5.2.4 If I is input to A/, then at any level after Phase 3, at most d2ad+d'+l

wires will receive more than !u' + 1 (resp., fewer than /' - 1) tokens.

Proof: Before Phase 3, we know that at most 2 d+d'+ l wires received more than

,u' + 1 tokens. Since each of these wires receives at most d tokens, they can contribute

tokens to at most d2 ad + d'+ l wires at any given level of the network. Thus, at any level

after Phase 3 there will be at most d2ad+d'+ l1 wires with more than ' + 1 tokens. An

analogous argument yields the upper bound for the number of wires with fewer than

' -1 tokens. ·

Lemma 5.2.5 If I is input to J.V, then every so-good output of Phase 3 will receive

/' - 1, ,/', or /U' + 1 tokens.

Proof: By Lemma 5.2.4, at most d2 d+d' +1 outputs of Phase 3 contain more than

,u' + I tokens. Now consider the hypercube-like structure of the wires after Phase 3

(Lemma 5.1.1). Recall that bin(i, k) denotes the k-bit binary representation of the

integer i, for 0 < i < 2
k . A wire Xi where bin(i, d) has at least aod l's cannot receive

more than ' + 1 tokens. Suppose one such wire did. Then all wires corresponding to

the subcube with dimension at least od defined by fixing all the 0 bits in bin(i, d) and

allowing the others to vary would have more than ' + 1 tokens. But there are more

than d2
" d+d'+l1 such wires, a contradiction. The argument above can be repeated to

show that a wire Xi where bin(i, d) has at least sod O's cannot have fewer than /'- 1

tokens. This proves the lemma. ·

We must ensure that enough good wires are input to the pairing networks in J.A

so that all of the bad wires can be matched. Since no pairing network in AJ, has

depth greater than lg d, the following lemma provides the necessary lower bound on

the number of good wires by providing an upper bound on the number of bad wires:

Lemma 5.2.6 The number of ao-bad wires in .f is o(2d)

54

I

Proof: We have

lao-bad wiresl = 2 ()d
O<i<od d

= 2 d(H(ao)+o(1))

= 0(2 cd),

where H denotes the entropy function, and c is a constant with c < 1 since ao < . e

Lemma 5.2.7 If I is input to .V, then every output wire of Phase will receive

between i' - 2 and 1L' + 2 tokens. Furthermore, o(2 °od) of these outputs will receive

exactly ' - 2 (resp., [t' + 2) tokens.

Proof: The claim that all wires will contain between '- 2 and t' + 2 tokens follows

immediately from Corollary 5.1.2.1 with a = ' '- 1, b = t' + 1, and k = lgd. By

Lemma 5.2.4, the number of outputs of Phase 4 that receive exactly ' - 2 (resp.,

'LI + 2) tokens is at most d2d+d' +1 = o(2°od). ·

Lemma 5.2.8 If I is input to A", then after Phase 5, each ao-good wire will contain

I'- 1, ,I', or It' + 1 tokens and each ao-bad wire will have between >'- 2 and ' + 2

tokens.

Proof: Before Phase 5, the maximum number of tokens per wire is /t' + 2 while the

minimum number is '- 2. As a result, for the remainder of the network, the number

of wires containing /' + 2 (similarly ' - 2) tokens cannot increase. The butterfly in

Phase 5 restructures the wires in the form of a hypercube (Lemma 5.1.1). After this

phase, there will be o(2a ° d) wires with either M' - 2 or /t' + 2 tokens. Arguing as in

the proof of Lemma 5.2.5, each ao-good wire will receive IL' - 1, /t', or /t' + 1 tokens.

Lemma 5.2.9 If I is input to A,r then after Phase 6, the good wires will have a

counted shape in which each wire contains either ' - 1 or I' tokens, or contains It'

or g' + 1 tokens.

55

Proof: Immediate from Lemma 5.2.8 and the definition of a 2-counter.

Lemma 5.2.10 If I is input to A, then the output of Phase 8 is 2-smoothed.

Proof: Since the good wires have a counted shape, either Go or G1 is homogeneous

(i.e., all wires in the set receive the same number of tokens). Assume without loss of

generality that the good wires from Phase 6 contain either ' or g' + 1 tokens. We

consider two cases:

Go is homogeneous: If each wire in Go receives 1u' + 1 tokens, then by Corol-

lary 5.1.2.1, every output of Phase 7 will receive between ,u' and /u' + 2. If

each wire in Go receives ' tokens, then by the same reasoning every output of

Phase 7 will receive between u' - I1 and ,u' + 1 tokens.

G1 is homogeneous: After Phase 7, only the wires in B' can receive either ' - 2

or ,u' + 2 tokens. Arguing as in the case where Go is homogeneous, the output

of Phase 8 will be 2-smoothed.

Lemma 5.2.11 If I is input to NT, then the output of Phase 9 will have a counted

shape. ·

Theorem 5.2.2 For any input sequence I, the O(d)-depth random counting network

A* will count I with probability at least 1 - 2- 2 d.

5.3 An optimal existence result

In this section, we establish the existence of O(lgn)-depth counting networks. Our

networks are non-uniform in that we do not know of any polynomial-time procedure

for generating the network with n inputs. However, our results can easily be extended

to provide a randomized algorithm that, given n, produces an O(lg n)-depth counting

network in polynomial-time with extremely high probability.

56

.

Our deterministic network is constructed recursively using the random counting

network of Section 5.2 as a building block. Our approach is to recursively construct

deterministic counting networks over small sets of input wires and then to "merge"

the outputs of these networks via a larger random counting network. In order to

achieve a small depth of recursion, it is desirable to partition the n inputs into a large

number of small sets. The granularity of the recursive partition will be determined

in such a way that the total number of possible inputs to the larger network will be

small relative to the probability with which the network succeeds (i.e., small relative

to the reciprocal of the probability of failure). As a result, we will be able to argue

that some fixed choice for the larger network will be guaranteed to produce a counted

output.

]Lemma 5.3.1 If the number of tokens input to each wire of a 2d-input counting

network is no more than 1, then the number of possible output shapes is at most

12 d + 1. ·

Lemma 5.3.2 Consider a 2d-input balancing network made up of 2d- Ld j disjoint

'2-IdlJ-input counting networks, 0 < i < 1. If the number of tokens received by each

input wire of I/ is no more than d, then the number of possible output shapes is at

most (d2d + 1)2
'-LPdJ < 2d2d- L di(l+o(l))

Proof: By Lemma 5.3.1, each 2dJ-input network can produce at most d2L1d1 + 1 <

d'2d + 1 possible output shapes. Since A contains 2
d- LPdJ such networks, the result

follows. ·

-Lemma 5.3.3 Let < < 1, and let S denote any fixed set of at most 2d2d- L dJ (l +1(1))

possible input sequences of length 2
d . Then there exists a 2d-input balancing network

of depth O(d) that counts every shape in the set S.

Proof: In Section 5.2, we constructed a set /* of 2d-input balancing networks

with the property that any fixed input sequence is counted by at least a 1 - 2-2 d

fraction of the networks in Af*, where a is any constant such that 0 < a < . If

57

2d2d-LdJ(l+°(1))2- 2 "d < 1, then at least one of the networks in A* must count every

input sequence in the set S. The desired inequality is satisfied for P > I - oe (e.g.,

3 = 1- ao/2), and d sufficiently large. ·

Theorem 5.3.1 There exists a 2d-input counting network of depth O(d).

Proof: Consider the following recursive construction. First, apply a 2d-input but-

terfly balancing network. This yields a d-smoothed shape, and we can assume without

loss of generality that each output wire receives a number of tokens between 0 and

d, inclusive. Second, partition the butterfly outputs into 2
d - LPdj sets of size 2 L3d] ,

< p < 1, and count each of these sets recursively. Finally, feed the outputs of these

networks into a 2d-input network A/ of depth O(d) that counts every input sequence

that it could possibly receive from the smaller counting networks. The existence of

network Ar is guaranteed by Lemmas 5.3.2 and 5.3.3. Note that it is not necessary

to include Phase 1 of the construction of A/. This butterfly network is not needed

because the butterfly applied at the beginning of this existential construction per-

forms the same function function, namely, making sure all wires are within d of one

another. Let D(d) denote the depth of such a 2d-input network. Then

D(d) = D(Ldj) + O(d)

= (d).

5.4 A deterministic k-smoother

In this section, we continue the analysis of Section 4.3 by presenting an explicit

construction of a n-input k-smoother, where n is any positive integer and k is a

positive integer with 2 lgkl < n - 1. When n is a power of 2, our construction works

for all k. When k is a constant, our construction yields an O(lg n)-depth network.

The network is recursive and consists of the following five phases (see also Figure 5-

4): If the network has 2n + 1 input wires (an odd number) then we apply these first

58

5 phases to all but one of these wires and include an additional two phases discussed

at the end of this section. If the network has 2n input wires then these first 5 phases

are sufficient to smooth.

Phase 1: Apply a 2n input sorting network to the 2n-input wires.

Phase 2: Recursively apply an n-input k-1-smoother to the top n wires and another

n-input k - 1-smoother to the bottom n wires.

Phase 3: Apply an n-input sorting network to the top n wires and another n-input

sorting network to the bottom n wires.

Phase 4: Apply a ladder to all 2n wires.

Phase 5: Apply a n-input [k+1-smoother to all 2n wires.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Figure 5-4: A 2n-input k-smoother.

The base case in the recursion is the 2-smoother constructed in Section 4.3.

If 2n + 1 input wires are involved then we perform 2 additional phases which are

described later in this section.

We begin by proving that our construction produces a 2n-input k-smoother.

By lemma 4.3.3, it is sufficient to prove that our network counts when each xi is

drawn from [0, k], for 0 < i < n. Fixing a particular input sequence of this type, let

n0o and nk denote the number of wires receiving 0 and k tokens, respectively.

59

· n-input - n-inputa .i; I k- -smoother . sorting . . .
network network 2n-input

. 2n-input _ - _ 2n-input k+
._sorting *.. ladder -smoother

,* network *
n-input n-input network* . k-l-smoother . sorting
network * network

.~* __

Lemma 5.4.1 After applying Phase 1 of the construction (i.e., a 2n-input sorting

network), all wires containing k tokens are located in the top nk wires. Similarly, all

wires containing 0 tokens are located in the bottom no wires.

Proof: Immediate from lemma 4.3.2.

Lemma 5.4.2 After Phase 2 either the wires from the top k-l-smoother are smoothed

or those from the bottom k - 1-smoother are smoothed.

Proof: If nk > n then none of the wires entering the top k - 1-smoother will contain

0 tokens (Lemma 5.4.1). As a result, wires entering the top k - 1-smoother will be

k - 1-smoothed. Similarly, if nk < n then none of the wires entering the bottom

k - 1-smoother will contain k tokens, so the input to the k - 1-smoother will be k - 1

smoothed. ·

Lemma 5.4.3 After Phase 3, either

1. The wires from the top sorting network are counted and there is a number np,

with 0 < np, n such that the top np output-wires from the bottom sorting

network contain no 0 's and the bottom n - np output-wires contain no k 's or

2. The wires from the bottom sorting network are counted and there is a number

n,, with 0 < np n such that the top np output-wires from the top sorting

network contain no 0 's and the bottom n - np output-wires contain no k 's.

Proof: If the top k - 1-smoother smooths its input in Phase 2, then the top

sorting network will count its input by Lemma 2.2.1. The bottom sorting network

will separate the wires containing k tokens from those containing 0 tokens as described

above due to Lemma 4.3.2. We have shown that when the top k- 1-smoother smooths,

case 1 in the lemma holds. By a symmetric argument, when the bottom k-1-smoother

smooths, case 2 in the lemma holds.

Lemma 5.4.4 After Phase 4, all 2n wires are [k+1] -smoothed.

60

Proof: Assume without loss of generality that the upper sorting network from

Phase 3 is counted. Suppose these wires contain either a or a + 1 tokens each. Let

n,a be the number of wires in this portion of the network containing exactly a tokens.

Recall the integer np from Lemma 5.4.3. There are two cases to consider (see also

Figure 5-5).

n,, > np: In this case no wires containing k tokens will be paired with wires containing

a + 1 tokens by the ladder. So at most [k+a] tokens and at least [a+_| tokens

are output on any wire from Phase 4. As a result, all wires are smoothed to

within [k+al - L[J < [k+11

'na < np: In this case no wires containing 0

a tokens by the ladder. So at most

are output on any wire from Phase

within [-a-1 -[a+
1J < [k+l].

tokens will be paired with wires containing

[k+a+l tokens and at least La+1J tokens

4. As a result, all wires are smoothed to

.

- a+l
- a+l

- 0

- a+l
- a+l

a- a- a

- a
- a

a

- a

Top n input-wir
to ladder

most [a+ k
2

least L2i

least La+ .

most a+k]

Figure 5-5: Case na np

Lemma 5.4.5 The output of Phase 5 is smoothed.

61

0o-o
At

-o

n *_k

- k
es Bottom n input-wires Outputs after

to ladder (reversed) ladder

*s represent numbers between I and k-1

Proof: Immediate from the definition of a [k+1]-smoother. ·

We now consider k-smoothers with 2n + 1 wires. In this case, we first apply a

2n-input k-smoother to the top 2n-input wires and then add the following 2 phases

(see also Figure 5-6):

Phase 6: Apply

has not yet

wires.

a (1, 2[lg k , [lg kl)-pairing network. The bad wire is the wire which

been smoothed. The good wires are any subset of the remaining 2n

Phase 7: Apply a 2-smoother to all 2n + 1 wires.

Phase 6 Phase 7

Figure 5-6: A 2n + 1-input k-smoother.

Lemma 5.4.6 After Phase 6 the input is 2-smoothed.

Proof: Immediate from definition of a pairing network.

Lemma 5.4.7 After Phase 7 all 2n + 1 wires are smoothed.

Proof: Immediate from definition of a 2-smoother.

Theorem 5.4.1 There exists an explicitly constructible family of O(klgk lgn)-depth,

n-input k-smoothers for 2[1g k < n - 1. For k constant, this depth is O(lgn).

62

.

.

]Proof: Our construction is recursive and has depth

depth(k, n) = depth(k-1, ln/2j) + depth (2 ,n + O(lgk) + O(lgn)

= O(klg k l g n)

The construction above is sufficient for our needs in the construction of our

O(lg n)-depth counting network. We next show that a k-smoother can be built for any

n. Though the following construction has large depth, it answers the open question

asked in [1]: Can a counting network be constructed for n-inputs when the input is

k-smoothed. Note that the depth of a network has to be at least lg k, independently

of n. This is because by Theorem 3.1.2 a 2d-smoother is a smoothing network where

d is the depth of the network. But by Theorem 3.2.1, there is no such network if n is

not a power of 2. Thus k must be at least 2 d yielding this result.

Theorem 5.4.2 There exists an explicitly constructible family of n-input k-smoothers.

Proof: The construction uses the following idea: we construct a balancing network

such that if the input is not smoothed, two wires which differ by at least 2 will

be connected by a balancer. We repeat this balancing network enough times to

ensure that the input has been smoothed. To see that a limited number of balancing

networks are required to ensure that the input is smoothed, we consider the variance

of the input after each phase. Let x be the average number of tokens per wire for

a given input I. The variance is then E(xi -)= 2 x2 - ny2. Since the input is

k-smoothed this function can be no more than nk2. We now show that if the input

is not smoothed, then a single phase will reduce the variance by at least 2. Thus, at

most nk 2/2 phases are required to smooth. Suppose xi and xj tokens pass through a

balancer. Let us consider how the variance is affected. The total change in variance

2 2_ 2 xi -2 2 22is L ± p 1- xI _ xj. When-- x: x i Xjven,[x + 2 xi 2 -j2 =2'-x 2

63

_ (Xi -Xj) 2

2

So for xi + xj even, the variance is nonincreasing. Also, if xi differs from xj, they will

differ by at least 2, so the variance will decrease by at least this amount. We now

consider the case when xi + xj is odd.

XLi + j 2- x + Xj _ XZji + X zX - - 2 2

1ji2x3 1 2 [xiXii] 2 2 2 2 (x.+x2+1) (Xi+X 1)2
(xi - xj)2 1

2 2

Because xi + xj is odd, xi and xj differ by at least one. So the variance again is

nonincreasing. When xi differs from xj by at least 2, then they differ by at least 3.

In this case, the variance is reduced by at least 4.

A simple example of a phase which ensures that wires differing by at least two

will be connected by a balancer (if there are such wires) is the following: apply a

sorting network to all n wires with the comparators replaced with balancers. Then

add apply a balancer which connects the top wire to the bottom wire. If the sorting

network balances two wires which differ by at least two, then the phase has done its

job. If not the wire containing the greatest number of packets will be on top and the

wire with the fewest will be on the bottom. This is because the balancers will mimick

comparators in this case. Thus the output of the sorting network will be sorted. The

final balancer is then guaranteed to balance wires which differ by at least two unless

the input is already smoothed. ·

5.5 A polynomial-time construction

In this section, we present a uniform polynomial-time construction of an O(lgn)-

depth counting network. This construction is derived from the existential proof in

the previous section. In the last section, we showed the existence of a permutation

mapping the output wires from the 2L(1-)dJ-input counting networks to the input

wires of the 2d'-input bitonic networks which causes the average number of tokens

64

output from "most" of the bitonic counters to be extremely close to the overall average

number of tokens per wire. In this section, we compute, in uniform polynomial-time,

a permutation II which has nearly this desired property and then correct for its

shortcomings.

We construct a permutation H which has the desired properties when we make

a simplifying assumption about the outputs of the 2l(1-')dJ-input counting networks.

Namely, we assume that rather than outputting a counted shape, the networks output

a uniform shape (i.e., each network outputs the same number of tokens on each of its

wires). This assumption is not correct but we show that the output is not affected

significantly when the assumption is removed. We then show that with a slight

modification to the network in the existential proof, the simplifying assumption is

not necessary.

The existential proof is a recursive construction which makes use of the randomized

construction in Section 5.2. The construction of the counting network in this section

is recursive, as well, and makes use of nearly the same construction as in Section 5.2.

As a result, we will reuse analysis from Section 5.2 to prove our results. As in the

existential proof, we do not use Phase 1 in Section 5.2. Instead, we make use of

Phases 2 through 8 and we use our deterministic permutation H which is described

later in this section in place of the random permutation.

Because we apply a butterfly network followed by the recursive counting networks,

we may assume that the input I to the "random" part of the network contains between

0 and d tokens per wire and under our simplifying assumption we may assume that

each set of 2 L(1l-)dJ wires contains the same number of tokens. Under the properties

of II described below, Lemma 5.2.3 holds not only with high probability, but with

certainty. Since Lemma 5.2.3 directly implies Lemma 5.2.10, we can conclude that

the shape output from Phase 8 is 2-smoothed.

We now show that if we eliminate the simplifying assumption and allow the recur-

sive counters to output counted shapes, rather than uniform shapes, then at the end

of Phase 8 the output is 3-smoothed. Here we make use of Lemma 2.1.1. Suppose the

ith recursive counting network inputs xi or xi + 1 tokens per wire into Phase 2. Then

65

we first pass xi tokens per wire through Phase 2 until they leave Phase 8. By our

analysis, the shape output will be 2-smoothed. We now have at most 1 token per wire

left which must pass from Phase 2 through Phase 8. When these tokens leave Phase 8

they can increase the final output shape by at most 1 token per wire. Thus, after

all tokens have left Phase 8, the shape will be 3-smoothed. In Section 5.4 we have

constructed an O(lgn)-depth 3-smoother. Thus, rather than applying a 2-smoother

in Phase 9 as we did in the randomized construction, we apply a 3-smoother.

We are now left to define the deterministic permutation II and show that it has the

desired properties. To construct II we construct a regular bipartite graph G = U x V

representing the permutation (see Figure 5-7). Each node in U corresponds to one

of the recursive counting networks while each node in V corresponds to a bitonic

counter. Each edge in the graph represents a wire connecting an output-wire from

a particular recursive counter to an input-wire of a particular bitonic counter. Note

that the bipartite graph does not specify which output-wire of the recursive counter

corresponds to which edge connected to the appropriate node of U. But the number of

tokens on each of these wires is the same and so this decision may be made arbitrarily

under the simplifying assumption because this decision does not affect the number of

tokens entering a bitonic network. In other words, no matter what connections are

made, the network will still perform its function.

The bipartite graph that we construct is based directly on work done by Noam

Nisan and David Zuckerman in [25]. We begin the discussion of the properties of II by

defining the notion of quasi-randomness, an (, -y)-extractor, and the (, y)-extractor

property for a bipartite graph:

Definition 5.5.1 [25] A probability distribution D on a set S is quasi-random within

e if for all X C S, ID(X) - IXI/lSII < . Here D(X) denotes the probability of the

set X according to distribution D.

Definition 5.5.2 [25] Let E: (0, 1}r x 0O, 1)t - ({0, 1}s. E is called a (y, e)-extractor

if for every A C {O, 1)r, such that IAI > 2 , the distribution of E(x, y) o y induced by

choosing x uniformly in A and y uniformly in {(, l)t is quasi- random (on {0, 1)} x

66

U

Recursive counting Bitonic counting Bipartite graph G
networks networks

Figure 5-7: Correspondence between permutation II and bipartite graph.

{0, 1 t) within e.

Definition 5.5.3 A bipartite graph G on U x V has the (, y)-extractor property if

for all A C V with IAI > y, the distribution of U induced by choosing the edges

emanating from A uniformly is quasi-random on U within e (see Figure 5-8).

We construct a graph G corresponding to the permutation which has the (, y)-

extractor property for appropriate e and y. We begin by introducing some notation

to simplify the analysis. Recall that ,p is the average number of tokens per wire. The

objective of the remainder of this section is to show that if a bipartite graph with

the (, y)-extractor property is used to define I for appropriate values of e and y,

then almost all the bitonic networks receive an average of close to /t tokens per wire

under our simplifying assumption. The first several lemmas address the distribution

of edges leading from a set A C V to a set U.

For A C V and u E U we let dA(u) denote the number of edges connecting u to

the set A. We let dA denote the average number of edges connecting a node in U to

the set A. For B C U we let dB denote the average number of edges connecting a

node in V to the set B.

67

V

U

Al1Žy

Figure 5-8: Bipartite graph with extractor property

Lemma 5.5.1 Consider a bipartite graph G on U x V with the (e, "y)-extractor prop-

erty. Choose A C V with Al > y. Let f E (0, 1]. Let X C U be the set of nodes in U

such that for x E X, dA(x) > (1 + e/f)dA. Let Y C U be the set of nodes in U such

that for y E Y, dA(y) < (1 - e/f)dA. Then IXI < flUI and IYI < flUl.

Proof: We prove the lemma for the set X. The proof for the set Y is symmetric.

Suppose IXI > fUI. Choose an edge e uniformly among those emanating from A.

Pr[e has an edge in X] = ZXEX dA(x)

ZuEU dA(u)

> IXldA(1 + /f)

UldA

lUI fl ul
IXI

Jul

However, this means that G cannot have the (e, -y)-extractor property, a contradiction.

Corollary 5.5.1.1 Consider a bipartite graph G on U x V with the (,)-extractor

property. Choose A C V with AI > y. Let X C U be the set of nodes in U such that

68

V

for x E X, dA(X,) > (1 + V)dA. Let Y C U be the set of nodes in U such that for

y E Y, dA(y) < (1 - V/)dA. Then IXI < v/IU and Y < IU[.

Proof: ImmedLiate from Lemma 5.5.1 with f = v. E

Lemma 5.5.2 If A C V and Al > y then no more than a 3e- 2 fraction of

edges emanating from A have endpoints in X or Y where X and Y are defined in the

previous corollary.

Proof: The number of edges emanating from A is UldA. At least (IUI - X -

Y)dA(l - VfI) of these edges do not have endpoints in X or Y by Corollary 5.5.1.1.

So the total number of edges leading from A to X or Y is at most

dA - (U -IX- YX)dA(1 - V/) < U dA(1 - (1 - 2)(1 -))

= IUdA(3V - 26)

- (# of edges connected to A)(3f/ - 2e)

We now consider the number of tokens entering each of the bitonic counting net-

works when the permutation H is defined by a bipartite graph with the (, y)-extractor

property.

Lemma 5.5.3 Let G = U x V be a bipartite graph with the (e, ,y)-extractor property.

Furthermore, suppose G is used to define the permutation H. So IVI = 2d-d . Consider

A C V with AI > y. Let ft be the average number of tokens per wire in the network

and let ,u' be the average number of tokens per wire entering the bitonic counting

networks represented by A. Then t - 2Ed < I' < t + 4Vfid.

Proof: Let t,, denote the number of tokens output on each wire of the recursive

counting netwo:rk represented by u E U in the graph under the simplifying assump-

tion. Let X and Y be defined as in Corollary 5.5.1.1. The number of tokens received

69

by the bitonic counting network represented by A is

dA()tu = dA E tu + E (dA()- dA)tu
uCU uCU uEU

= dA E tu + E (dA(U)-dA)tu + (dA(U) - dA)tu
uEU uEXUY uEU\{xuY}

If this total were dA Eueu tu, then the average number of tokens per wire entering A

would be as desired. So the remaining terms in the sum are the "error" terms. We

bound each of these terms. By Lemma 5.5.2, EueXuy(dA(u)-dA) < (3\/-- 2e)dA IU

and since tu < d,

E (dA(u) - dA)tu < (3vS)dAjUd
uEXUY

Also, by using Corollary 5.5.1.1 and the fact that dA(u)- dA > -dA we obtain the

lower bound

E (dA(u)-dA)tU > E(dA(u)-dA)tu
uEXUY uEY

> -dAIU vd

To bound the last sum in the "error" term, we note that by the definition of X

and Y, IdA(u) - dAI < dAVI for u C U \ {X U Y}. So, Eu\{xuy}(dA(u) - dA)tul <

dAIUI vd.

Thus,

dA E tu - 2dAIUl/d < dA E tu + error term < dA E tu + 4dAUlVd
uEU uEU uEU

Since dAIUI is the total number of edges entering A, our bounds are met. ·

We now select parameters for the regular bipartite graph G = U x V. UI = 2 (d)

and V = 2 dd' for somd' ' = i]. What is required for the size of UI is that it

be sufficiently small to make construction of the permutation possible in polynomial-

time. A more precise specification for UI is given in the next section where the

70

I - -

construction of the permutation is described. These values correspond to those used

in the section containing the existential proof of the O(lg n)-depth counting network.

The values for y and e so that H has the desired properties are as follows: IX I+ Y_ <

2 y is the number of bitonic counting networks that may receive far too many or far to

few tokens where X and Y are defined in Corollary 5.5.1.1. So we choose -y = 2 Lad-1

where 0 < a < 1/2. By choosing e = 64d2 , we are assured that the average number of

tokens per wire in the remaining 2 d-d' - 2y bitonic counting networks is at most 1/2

from the overall average since the average will be off by at most 4xfId = 1/2. Thus,

the output of the bitonic networks is ao-nice as defined in Section 5.2.

5.5.1 Construction of the bipartite graph with the extractor

property

'We are now left to show that we can construct a regular bipartite graph G = U x V

with the appropriate extractor property in polynomial-time. We draw upon the work

of [25] and [29]. Recall definitions 5.5.1, 5.5.2, and 5.5.3.

The authors show that in polynomial-time it is possible to construct an extractor

with the following properties:

]Lemma 5.5.4 For any parameter y = y(r) and = (r) with 1/r < y < 1/2 and

2- • e • 1/r, there exists an easily computable (and explicitly given) (e, /y)-extractor

EF {: 0, 1 x {O. lt {0, 1}s, where t = O(lg-1 lg2 r/-y2) and s = Q(y2 r/lg y-1).

In [29], the authors use the extractor above to generate a bipartite graph. From

this bipartite graph they then construct a graph with high degree and extremely

strong expansion properties. The initial bipartite graph they construct is the first

step in our construction, as well.

The extractor defines a very natural mapping to a bipartite graph U x V. Given

an (e, y)-extractor, we create 2 nodes we call V labeled with each element of {0, 1}r,

and 2 nodes we call U labeled with each element of {0, 1}S. The function E defines

the edge set in the graph: there is an edge between a node v V and a node u U

iff 3e E 0, l} t such that E(v,e) = u. As the authors note in [29] as t becomes

71

larger or s becomes smaller, the construction of the extractor becomes easier. One

can increase t by increasing the multiplicity of edges in the graph. One can decrease

s by partitioning the nodes in U into blocks of the same size and treating each block

as a single node. In both of the operations, the graph retains the same extractor

properties.

This construction produces a bipartite graph G with the (, 2r7)-extractor prop-

erty. For the appropriate choices of r, s, t, e, and y, this construction nearly meets the

criteria for our bipartite extractor. However, it is lacking in one important respect.

Though the nodes of V are regular (each node has degree 2 t), the nodes of U are not.

We describe the algorithm for modifying the graph to correct this problem and then

provide the analysis to prove correctness. Our construction is described for arbitrary

e and /y. At the end of the section we describe the particular values of these variables

which allow the permutation H to have the necessary properties.

We define d(B) to be the average degree of nodes in the set B. In the step by

step process we generate graphs Gi = Ui x Vi in Step i.

Step 1: Construct a bipartite graph G1 from the extractor function as described

above. G1 has the (, y)-extractor property for some and y. The number of

nodes in U1 and V1 will be even for the purposes of our construction and the

degrees of nodes in V1 will be powers of 2 as well.

Step 2: Remove nodes from U1 with degrees significantly greater (smaller) than the

average degree. Specifically, remove nodes with degree more than (1 + 4e)d(U1)

or less than (1 - 4)d(U1). If fewer than half the nodes have been removed,

arbitrarily remove nodes until half remain. The resulting graph is G2.

Step 3: Make V3 as close to regular as possible (up to divisibility) by moving end-

points of edges from nodes of V2 with too high a degree to those with too low

a degree until degrees of all nodes of V2 are within 1 of one another. This can

be done in an arbitrary manner. The resulting graph is G3.

Step 4: Let dmax(U3) be the maximum degree of any node in U3. So dmax(U3) <

[(1 + 4e)d(U1)J. Add edges to nodes in U3 until all nodes have degree [(1 + 4e)d(U1).

72

The endpoints of these edges in V3 are constructed to keep the nodes of V3 as

regular as possible. The resulting graph is G 4.

Step 5: Remove edges maintaining regularity of U4 and ensuring that all nodes of

V4 have degrees within 2 of one another until degree per node of U5 is d(Ul).

Degrees of nodes of V5 will be d(V 1)/2-1, d(V1)/2, or d(VI)/2+ 1. The resulting

graph is G5.

Step 6: Make V5 regular. The desired degree of the nodes of V6 is d(V1)/2. Some

nodes will have degree d(V 1)-1 and the same number will have degree d(V1) + 1.

Move the endpoint of an edge connected to the node of high degree to one of

low degree. Repeat until V6 is regular.

We now analyze the algorithm and show that G6 has the desired properties main-

tains strong extractor properties and is regular.

-Lemma 5.5.5 U2 = U1l/2.

Proof: We need only show that not too many nodes have degrees far from the

average. This is immediate from Lemma 5.5.1 with f = 1/4.

For the remainder of this section we assume e a constant nonzero amount less

than 1/4. This will be the case for the construction of the permutation.

Lemma 5.5.6 G2 has the (0(e), 7y)-extractor property.

Proof: Consider graph G1. Choose a set A C V1 with AI > y. Choose X C U2.

Let Ex be the number of edges entering X from A. Since G1 has the (e, -y)-extractor

property, we know that u1X - < - < I- + e. Now consider the graph G2.
lull - lUuld(U) - lil

'There are still Ex edges leading from A to X but the total number of edges leading

into U2 denoted by Eu2 is bounded by ull (1- 4)d(Ul) < Eu2 < LI1(1 + 4e)d(U1).

'Thus the probability an edge chosen uniformly out of A strikes X in G2 is bounded

above by

Ex < lull
2d(U)(-)2 -1-4[Ux d(U1)(1 -4,e)/2 - 4E

73

Xl
IV l

+
4EXl 26

1-4e 1 -4e

The probability is bounded below by

IUld(U1)(1 + 4e)/2
1 +lull

= X 4E'I

JU21 1 + 4e

= 1XI_ - 0(e).

We now show that removing nodes from U1 does not have a detrimental effect on

the degree of nodes in V2.

Lemma 5.5.7 Let M be the nodes of V2 with degree greater than (1/2 + e)d(Vi). Let

m be the nodes of V2 with degree less than (1/2-)d(Vi). Then IMI < y and Iml < y

(see Figure 5-9).

U V

Low degree
nodes B l

X is nodes with
close to the average
degree in U -

High degree
nodes a

* The set m:
Too few edges lead to X

Most nodes
have roughly expected
number of edges leading
to X

The set M:
Too many edges lead to X

Figure 5-9: Most nodes in V have roughly half original degree after Step 2.

74

2E
1 +4e

- I* (E).
I U21

Proof: Let A C V1 be the set with AlI = y and the largest number of edges going

to X = U2 in G1. In G1, the probability that an edge leading from A strikes X is no

more than 1/2 + e. Since all nodes of V1 have degree d(Vi), at most y(1/2 + e)d(Vi)

edges lead from A to X. Therefore there cannot be 7 nodes in M. By a symmetric

argument the same holds for m. ·

For the remainder of this section we assume that (1/2 -) Ed(v) < 1. Again in

our construction of our permutation this bound will hold.

Lemma 5.5.8 (1/2 -)d(Vi) - 1 < d(V2) < (1/2 + e)d(Vi) + 1

Proof: We prove the upper bound. The lower bound is analogous. At most y nodes

of V2 have degree greater than (1/2 +)d(Vi). In addition, these -y nodes can have

degree at most d(V1). Thus the average number of edges per node in V2 is at most

(1/2+e)d(Vl)(IVll-y)+d(Vl)7 < (1/2 + e)d(Vi) + 1

At this point in the construction, the graph still has the desired extractor property.

In addition, the nodes of U2 and V2 are nearly regular. To make V2 regular, we perform

the following algorithm:

Let IEl be the number of edges in G 2. When there is a node x E V2 with degree

greater than IEI/lV2 1, there is another node y E V2 with degree less than LIEI/lV2 1J.

Move an edge with endpoint equal to x so that this endpoint is now y. After repeating

this process a polynomial number of times, the new graph G3 will be regular (up to

divisibility). We now examine how this algorithm affects the extractor property.

Lemma 5.5.9 G3 has the (0(e) + O(1/k), k'y)-extractor property for any k with k >

3.

Proof: Consider a set A C V3 with IAl > ky.

In the worst case, the 2-y nodes from M and m defined in Lemma 5.5.7 are con-

tained in A and they either direct all their edges to X or direct none of their edges

to X. These edges account for at most a 2/(k - 2) fraction of the edges leading from

A so they affect the probability that an edge from A strikes X by at most O(1/k).

Each of the remaining (k - 2)y nodes in A have their edge sets changed only slightly

75

in the the transformation from G2 to G3. In G2, these nodes begin with between

(1/2 -)d(Vi) - 1 edges and (1/2 + e)d(Vi) + 1 edges. In G3 they are in this range

as well. Thus the edges removed from or added to a node change its edge set by a

factor of at most (1/2+E)d(V)+1 = 1 + 0(e). As a result, in the transformation from

G2 to G3, these (k - 2)y nodes can change (in terms of G2 and G3) the probability

that an edge from A strikes X by an additive factor of at most O(e). This yields the

result.

We now consider the extractor property of G 4.

Lemma 5.5.10 G4 has the (0(e) + O(1/k), k-y)-extractor property.

Proof: The minimum degree of any node in U3 is (1 - 4e)d(Ul). So adding edges

increases the number of edges by a factor of at most (1+4E)d(u)J - 1 + O(E). Thus,
(1-4e)d(Ui)

the degrees of the nodes of V3 increase by at most this factor, as well. This means

that for any set A C V4, the fraction of edges leading to a set X C U4 increases or

decreases by an additive amount of at most O(e). ·

We now go into more detail in describing and analyzing Step 5. To remove the

appropriate edges, we solve a max-flow problem using the Edmonds-Karp polynomial-

time algorithm [12]. We begin with graph G4 and form a directed graph from it.

From the construction all the nodes of U4 have degree dstart(U4) = (1 + 4e)d(Ul)J

and all the nodes of V4 have degree either Ldstart(V4)J or [dstart(V4)1 where dstart(V4) =

Iv4 1 dstart(U4). At the end of Step 5 the graph will have nodes U5 with degrees equal to

dend(U 4) = d(U1) and V5 with degrees equal to dend(V 4) - 1, dend(V 4), or dend(V 4) + 1,

where

dend(V4) = IU4(Ul)
IV41

lull/2I'1 d(Ul)

= d(V)/2.

We define the following max-flow problem: Direct all edges in G4 toward V4 . Set

the lower capacity to 0 and the upper capacity to 1. Add a source node s. Direct

76

an edge from s to every node in U4. Each of these edges will have capacity exactly

dend(U4). Add a sink node t. Direct an edge from each node in V4 to t. Each of

these edges will have lower capacity dend(V4) - 1 and upper capacity dend(V4) + 1. (see

Figure 5-10).

U4 V4

s/, -

t'

N\\ \k

min capacity max capacity

d,.d(U 4) d d(U 4)

0 1

dnd(V4) - d nd(V4)+l

Figure 5-10: Flow problem defined in Step 5.

We first note that we can find a noninteger solution to this problem. We show the

existence of a feasible solution by allowing flow dend(V4)/dstart(V4) along each edge in

the nodes leading from U4 to V4. This clearly satisfies the constraints of the edges in

G4. In addition, the degree of nodes in U4 is dstart(U4), so the flow along edges from

s to nodes in U will be

dend(V4)
dstart(U4) dendV4)

dstart(V4)
I U4end(V4)

I V4

= d(U1)

= dend(U4)

as desired. Lastly, we consider the flow along edges leading from V4 to t. All nodes in

77

- - - -

.-

. :. t

. . .00

V4 have degree either Ldstat(V4)J or rd,tart(V4)1. Thus flow along each edge to t will be

in the range between d..d(V4) d._,,(V4)in the range between dsta rt(V4 4) and datand(4) dtart(V 4)]. But these values

are between ded(V 4) - 1 anddend(V4) + 1, as required. By the Integrality Theorem

in [14], because the problem has a fractional solution, we know the problem has an

integral solution and, in fact, it can be found in polynomial-time. When the edges

with positive flow in the integer solution are kept, G5 is formed.

Lemma 5.5.11 G5 has the (0(e) + 0(1/k), ky)-extractor property.

Proof: This proof is similar to the proof of Lemma 5.5.10. However, instead of

adding edges we are removing them. All nodes of U4 have degree [(1 + 4e)d(U). In

this step their degrees are reduced to d(U1). So the degrees are reduced by a factor

of 1 + O(e). Similarly, the degrees of the nodes in V4 are also reduced by a factor

of 1 + O(e). In the worst case, the edges eliminated from some set A C V4 were all

directed to some set X C U4 or they were all directed away from X. This changes

the probability of an edge from A hitting X by at most an additive factor of O(e).

Lastly we show that Step 6 does not destroy the extractor property.

Lemma 5.5.12 G6 has the (O(1/d(V)) + 0(e) + O(1/k), k-y)-extractor property.

Proof: G5 has the (O(e) + O(1/k), ky)-extractor property. Consider a set A C V6

with AI > ky and a set X C U6. In transforming G5 to G6, each node of A changes

by at most one edge, which is at most a 1/(d(V) - 1) fraction of its edges. ·

We now construct the required regular bipartite graph corresponding to the per-

mutation I. Recall that UI = 2
n (d), jVI = 2 d- d', and G6 must have the (641 2, 2 Lad]-l) -

extractor property.

Given these parameters, we will construct an irregular bipartite graph G1 with

lull = 2UI, Vl[I = VI, and it will have the (l/d 3 ,2L1d-1/d 3)- extractor property.

After converting this graph to a regular graph G6, the graph will have the desired

number of nodes and edges and have the (O(1/d3), 2ad-l)-extractor property which

is slightly stronger than necessary. Note that to achieve this result, we use k = d3

during the analysis (Lemma 5.5.9).

78

__ _·

In terms of the Nisan/Zuckerman extractor, we therefore have r = d-d', s = (d),

1; = 1 + d', e = 1/d3 , y = a + o(1).

These values meet the criteria of Lemma 5.5.4. Namely, since a < 1/2, <

1/2. Also, e D 1/r3/2 < 1/r. To see that t is sufficiently large we note that

Ig -1 lg2 r/y 2 = O(lg3 d) = o(t) And finally, we set s = Q(d) sufficiently small so

that s < O(y 2 r/' lgy -1) as defined in Lemma 5.5.4.

5.6 Smoothing to within O(lg lg n)

The construction in the previous section smooths the input and is an O(lgn)-depth

network. However, the constant involved in the Big-Oh notation is large due to

the presence of the AKS balancing network. In this section we show that when the

AKS balancing network is removed from the construction above, what is left is a

network which O(glgn)-smooths. The butterfly balancing network constructed in

Section 5.1.1 is lg n-depth and lg n-smooths. The hope is that this new construction

will shed some light on possible approaches to constructing an O(lg n)-depth network

which O(1)-smooths but does not depend on sorting so heavily that the use of the

AKS balancing network is required.

The construction above makes use of the AKS balancing network in one portion of

the network. Namely, in the section which requires a 3-smoother to finish the smooth-

ing. We now examine the construction above without the use of the 3-smoother.

Theorem 5.6.1 When the construction in Section 5.5 is made without the 3-smoother

phase, the network 0 (lg lg n) -smooths.

Proof: This is a proof by induction. The construction in Section 5.5 is recursive.

'We show that at the ith level of recursion, the network 3i-smooths. Since there are

O(lglg n) levels of recursion, this completes the proof.

Base Case: This is the first level of recursion. We know that the input is smoothed

to within 3 when the 3-smoother in the construction of the previous section is

reached.

79

Inductive Step: By the inductive hypothesis after the ith level of recursion, the

network 3i-smooths. We examine the i + 1lt level. This consists of level i

networks input to the final stage network. Let each of the level i networks be

labelled from 1 to j. Let the mth such network output between Xm and xm + 3i

tokens. We invoke Theorem 2.1.1 which allows us to pass the tokens through

the network in any desired order. First we allow Xm tokens on each wire from

the mth level i network to pass through the final stage. By our analysis in the

previous section, upon reaching the 3-smoother in that construction, this input

is 3-smoothed. There are now at most 3i tokens per wire left to enter the final

stage. As a result, these tokens can increase the smoothed property by at most

3i. Thus, the output is 3 + 3i-smoothed as desired.

80

I _ _

Chapter 6

Other directions

6.1 Other modifications and analysis of the count-

ing network model

The emphasis of our work on counting networks involved finding a network of min-

imrnum depth for the given number of input/output wires. This result is of practical

significance because the latency before a request is fulfilled is lower bounded by the

depth (maximum number of balancers a token may have to pass through to get from

an input wire to an output wire). However, contention in the network also plays a

major role in determining delays for a request to be fulfilled. If several tokens enter a

balancer at the same time, they are required to leave one at a time. This produces a

sequential bottleneck. In [11], Dwork and Herlihy broach this subject by introducing

a model for measuring contention in distributed systems to help evaluate the latency

expected in various algorithms including counting network implementations. In their

model, the contention of an algorithm is measured by counting the worst case number

of stalls the algorithm may suffer in a given run. A stall occurs whenever a proces-

sor is delayed because it attempted to access the same memory location as another

processor. For example, if k processors attempt to access the same memory location

simultaneously, the algorithm will suffer k - 1 stalls during that step because only

one of the processors will be successful in accessing the location.

81

In the case of data structures, such as counting networks, the authors define

the amortized contention to be the worst case contention divided by the number of

requests made to the object. Thus, this value measures the average contention per

request. Because this is a worst case measure, an adversary is involved. With respect

to counting networks, this adversary has control over how many tokens enter each

input wire and the order with which the tokens pass through the network.

The authors show that the amortized contention of a bitonic counting network

with n-inputs and n-outputs which is implemented using p processors is O(lg2 n)

as the number of tokens input to the network approaches infinity. They do this by

showing that balancers at depth i for any i can have amortized contention at most

O(p/n). Because there are lg 2 n levels, the result follows. They also note that if the

same number of tokens are input to each wire of the network then this amortized

contention bound can be met. For the case p = n, the amortized contention is

equivalent to the depth of the network (up to constant factors) and so the depth

plays as significant a role in latency as the amortized contention.

In [2], Aiello, Venkatesan, and Yung continue this contention analysis, obtaining

bounds on other counting networks and on the bitonic network. Namely, they show

bounds on the number of tokens which must enter the bitonic network before the

E(P lg 2 n) bound in [11] holds. They also examine the butterfly balancing network

described in Section 5.1. They show that when a sufficient number of tokens have

entered such an n-input n-output butterfly network which is implemented on a p

processor machine, its amortized contention is lgn(4P + lgn + 1). They then use

the property of the butterfly, namely that it lg n-smooths, to show that any network

which begins with the butterfly balancing network has amortized contention O((d +

lg n)(+ lgn)) where d is the depth of the network, when sufficiently many tokens

enter the network. Because our O(lgn)-depth counting network is preceded by a

butterfly balancing network, for p = Q(n lgn) our network has optimal amortized

contention.

In addition to their analysis of amortized contention in counting networks, the

authors in [2] examine a number of variants of counting networks. In one variant,

82

the authors allow dispersers and combiners in addition to balancers to be used to

construct the network. A disperser is a 1-input 2-output balancer, while a combiner

is a 2-input 1-output objects which outputs the tokens entering it on its single output

wire (see Figure 6-1). From these objects, the authors construct a simple O(lgn)-

depth network using tools presented earlier in this thesis. They begin with an n-input

butterfly balancing network. They then use lglg n levels of dispersers to distribute

each output wire of the butterfly balancing network among lg n wires. Note that this

increases the width of the network from n to n lg n. These dispersers have the affect

of 2-smoothing the n lg n wires. The 2-smoother from Section 5.4 is used to smooth

this input. Next, the AKS balancing network is applied to count the input. And

finally, lg lg n levels of combiners are used to bring the width of the network back to

n (wires which are the same height, modulo n, are combined to form a single output

wire).

Input Output Input Output

3 3

5 5 -
2 2

Disperser Combiner

Figure 6-1: A disperser and a combiner.

In addition to deterministic constructions, the authors also consider balancers

which begin in a random state. Known as r-balancers, these objects act as regular

balancers, but output their first token along the top wire with probability 1/2 and

along the bottom wire with probability 1/2. Using r-balancers, the objective is to

construct a small-depth balancing network which counts any input with high proba-

bility. The authors construct a lg n + O(lg2 lg n)-depth network which 2-smooths any

input with 1- superpoly(n) probability. What is so nice about this result is the small

constant in the O(lgn)-depth network. The means by which they achieve this result

is to begin with the first lg n - c lg lg n levels of the butterfly balancing network with

r-balancers rather than balancers where c is some constant. By using only the first

83

ig n - c Ig lg n levels of the butterfly, 2n/ lgc n lgc n/2-input butterflies have been

cut off from the end of the complete butterfly. Instead, each of these sub-butterflies

is replaced with a lgc n/2-input bitonic counter where the balancers used are deter-

ministic. The use of the randomized balancers in the initial levels of the butterfly

ensure that the number of tokens enter each bitonic counter is roughly the same, with

high probability. This is shown using induction on depth and Hoeffding's Inequality

[20]. The bitonic counters then count their respective shapes resulting in a nearly

smoothed shape.

In addition to discussions of randomized balancers and issues of contention, in [2]

the authors discuss constructions involving expanders and models involving tokens

with weights. We will not delve into these subjects in this thesis, however.

In [1], Aharonson and Attiya present impossibility results which we discussed in

Section 3.2. Because their result shows that a counting network with n inputs cannot

be constructed from 2-balancers if n is not a power of 2, the authors address the issue

of constructing a network with n output wires where n is not a power of 2 by designing

a slightly modified model of counting networks. The new model allows output wires

to feed back into the input wires. They construct the desired network by beginning

with a counting network with 2rig nl input and output wires and then feeding 2rignl -n

wires back into the original input wires (see Figure 6-2). The authors argue that if

a finite number of tokens enter such a network that they exit the network within a

finite period of time. This is apparent from the fact that a token recycled through

the system is no different than a newly entered token and the fact that 2[lgnl = O(n).

In [19], Herlihy, Shavit and Waarts introduce the notion of a linearizable counting

network. Such a network ensures that if a token has left the counting network and

has been assigned a value i and at some later time another token enters the network

and then exits with the value j. Then i < j always. With the standard notion of

a counting network, one 'cannot hope to create a linearizable counting network. So

again, with some modifications to the model, the authors are able to construct such

a network.

84

2 rgnl- input

counting network

_4 _ - NoZ
_~~~~~d _4 as _ _ =

n output wires

Figure 6-2: n output counting network where n is not a power of 2.

6.2 Other approaches to counting

In addition to the single variable Fetch&Add and counting network solutions to shared

counting in a distributed system, other promising software approaches have been

offered to solve this problem. Two of the more notable are diffracting trees and

software combining trees.

In [27], Shavit and Zemach recently introduced a model called the diffracting tree

model. This model uses objects very much like the dispersers defined above. However

the initial state of the object is set to output the first token on the top wire with

probability 1/2 and output it on the bottom wire with probability 1/2. We will call

these objects r-dispersers. A big gain in their model with respect to reducing latency

is the particular implementation they use in software. They note that if two tokens

enter a r-disperser then the toggle bit need not be flipped but may remain in its

initial state. The two tokens may simply exit along different wires. Their approach

is to reduce the number of times toggle bits need to be flipped. For each balancer,

an array is kept. When a token enters a r-disperser it chooses an element of this

array uniformly at random and hopes that there is another token waiting in the same

element, as well. If so, the two tokens can continue without having to change the

toggle bit by leaving along each output wire. Otherwise, a token waits at the element

of the array for a designated period of time before the processor responsible for the

85

token attempts to flip the toggle bit. The authors show, in [27], that experimentally

the diffracting tree performs quite well.

In [16] Goodman, Vernon, Woest use a binary tree data structure to implement

a shared counter. The data structure is what they call a software combining tree.

The processors reside at the leaves of the binary tree and at any time a processor

can perform a fetch and add request by sending the request up the tree. The values

requested are added up the tree until the root is reached where the current value of

the counter is stored. If a requests were made in the left subtree under the root,

b were made in the right subtree and c is the initial value of the counter, then the

root, which holds the current counter value, updates its value to c + a + b, it passes

the values c to the left subtree and c + a to the right subtree. The values continue

down in a recursive fashion until the leaves receive their updated values. In [18],

the authors show that software combining tree and counting networks are similar in

their efficiency, though when contention becomes high the counting network tends to

outperform the software combining tree.

86

Chapter 7

Conclusions

This thesis has made substantial progress towards improving our understanding of the

depth complexity of counting networks. In Chapter 5, we established the existence of

an optimal O(lgn)-depth counting networks and presented an uniform polynomial-

time construction for such a network.

The Big-Oh depth bound for our optimal-depth counting network construction

hides an unrealistically large multiplicative constant, largely due to the fact that the

AKS sorting network is used as a subroutine. Of course, we cannot hope to improve

this constant without also improving the sorting constant, since every counting net-

work corresponds to a sorting network with the same depth/topology (by replacing

each balancer with a comparator). With regard to the construction of smoothing net-

works, however, the situation is not so clear. In view of the fact that every smoothing

network produced thus far has incorporated a "sorting" network as a primary com-

ponent, it would be interesting to either bound the depth complexity of sorting by a

small constant times the depth complexity of smoothing, or to construct a small-depth

smoothing network that makes no use of sorting networks. In Section 5.6 we con-

structed an O(lg n)-depth balancing network which O(lg lg n)-smooths. This network

does not incorporate AKS and so has more reasonable constants. This construction

may be a step toward constructing a smoothing network without the use of AKS.

We have shown impossibility results showing restrictions on the possible widths

of a counting network. Namely, that a counting network must have 2 k input and

87

output wires for some positive integer k. We also considered more general networks

introduced in [1] and reviewed similar restrictions found in that paper. In Section 4.5

we constructed networks of width n from balancers of size {Pl,P2,'" ,Pk } where

n = pl lp"2 . pk . This in some sense establishes the "tightness" of the impossibility

result in [1]. The analysis of these impossibility results also leads to a method of

testing balancing networks to determine if they are, in fact, smoothing or counting

networks. This test is made in the same spirit as the 0-1 sorting lemma test for

sorting networks, though the balancing network version is far weaker.

88

I .

Bibliography

[1] E. Aharonson and H. Attiya. Counting networks with arbitrary fan-out. In

Proceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms, pages

104-113, January 1992.

[2] W. Aiello, 1t. Venkatesan, and M. Yung. Asynchronous low latency counting and

smoothing networks. Unpublished manuscript, 1993.

[3] M. Ajtai, J. Koml6s, and E. Szemer6di. An O(nlogn) sorting network. Combi-

natorica, 3:1-19, 1983.

[4] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience, New

York, NY, 1992.

[5] J. Aspnes, M.P. Herlihy, and N. Shavit. Counting networks and multi-processor

coordination. In Proceedings of the 23rd Annual Symposium on Theory of Com-

puting, pages 348-358, May 1991.

[6] K. E. Batcher. Sorting networks and their applications. In Proceedings of the

AFIPS Spring Joint Computer Conference, vol. 32, pages 307-314, 1968.

[7] C. Busch and M. Mavronicolas. A combinatorial treatment of balancing net-

works. In Proceedings of the 13th ACM Symposium on Principles of Distributed

Computation, 1994. To appear.

[8] V. Chvital. Lecture notes on the new AKS sorting network. Technical Report

92-29, DI\IACS Center for Discrete Mathematics and Theoretical Computer

Science, June 1992.

89

[9] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT

Press, Cambridge, MA, 1990.

[10] M. Dowd, Y. Perl, M. Saks, and L. Rudolph. The balanced sorting network.

Technical Report DCS-TR-127, Department of Computer Science, Rutgers Uni-

versity, June 1983.

[11] C. Dwork and M. Herlihy. Contention in shared memory algorithms. In Proceed-

ings of the 25th ACM Symposium on Theory of Computing, pages 174-183, May

1993.

[12] J. Edmonds and R. Karp. Theoretical improvements in the algorithmic efficiency

for network flow problems. Journal of the ACM, 19:248-264, 1972.

[13] C.S. Ellis and T.J. Olson. Algorithms for parallel memory allocation. Journal

of Parallel Programming, 17:303-345, 1988.

[14] L.R. Jr. Ford and D. R. Fulkerson. Flows in Networks. Princeton University

Press, 1962.

[15] E. Freudenthal and A. Gottlieb. Process coordination with fetch-and-increment.

In Proceedings of the 4th International Conference on Architecture Support for

Programming Languages and Operating Systems, April 1991.

[16] J.R. Goodman, M.K. Vernon, and P.J. Woest. Efficient synchronization prim-

itives for large-scale cache-coherent multiprocessors. In Proceedings of the 3rd

ASPLOS, pages 64-75, April 1989.

[17] A. Gottlieb, B.D. Lubachevsky, and L. Rudolph. Basic techniques for the efficient

coordination of very large numbers of cooperating sequential processors. ACM

Transactions on Programming Languages and Systems, 5:164-189, 1983.

[18] M.P. Herlihy, B. Lim, and N. Shavit. Low contention load balancing on large-

scale multiprocessors. In Proceedings of the 3rd Annual ACM Symposium on

Parallel Algorithms and Architectures, July 1992.

90

[19] M.P. Herlihy, N. Shavit, and O. Waarts. Linearizable counting networks. In

Proceedings of the 32nd Annual Symposium on Foundations of Computer Science,

pages 526-535, October 1991.

[20] W. Hoeffding. Probability inequalities for sums of bounded random variables.

Am. Statist. Assoc. J., 58:13-30, 1963.

[21] M. Klugerman and C. G. Plaxton. Small-depth counting networks. In Proceedings

of the 24th Annual ACM Symposium on Theory of Computing, pages 417-428,

May 1992.

122] M.R. Klugerman. Lecture 17: Counting networks. In F.T. Leighton, C.E. Leis-

erson, and N. Kahale, editors, Research Seminar Series 15: Advanced Parallel

and VLSI Computation, pages 153-161. MIT Press, 1991.

123] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley,

Reading, MA, 1973.

[24] F. T. Leighton and C. G. Plaxton. A (fairly) simple circuit that (usually) sorts.

In Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer

Science, pages 264-274, October 1990.

125] N. Nisan and D. Zuckerman. More deterministic simulation in logspace. In

Proceedings of the 25th ACM Symposium on Theory of Computing, pages 235-

244, May 1993.

126] C. G. Plaxton. A hypercubic sorting network with nearly logarithmic depth.

May 1992.

127] N. Shavit and A. Zemach. Diffracting trees. In Proceedings of the 5th Annual

ACM Symposium on Parallel Algorithms and Architectures, July 1994. To ap-

pear.

1'28] H.S. Stone. Database applications of the fetch-and-add instruction. IEEE Trans-

actions on Computers, C-33:604-612, 1984.

91

[29] A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound:

Explicit construction and applications. In Proceedings of the 25th ACM Sympo-

sium on Theory of Computing, pages 245-251, May 1993.

92 .. : f

