Examples of Solvable Quantum Groups and Their Representations
by

Calvin L. Roth

A.B. in German, University of Michigan, 1986
B.S.E. in Aerospace Engineering, University of Michigan, 1989
M.S. in Physics, University of Michigan, 1990
Submitted to the Department of Mathematicsin partial fulfillment of the requirements for the degree ofMaster of Science in Mathematics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1994
© Massachusetts Institute of Technology 1994. All rights reserved.
Author
\qquad
\qquad
Certified by

Examples of Solvable Quantum Groups and Their Representations

by

Calvin L. Roth
Submitted to the Department of Mathematics on May 6, 1994, in partial fulfillment of the requirements for the degree of Master of Science in Mathematics

Abstract

In this paper we first define a q-deformation of the universal enveloping algebra of the Heisenberg Lie algebra. We study this algebra and its finite-dimensional irreducible representations when $q=\varepsilon$, where ε is a primitive ℓ th root of 1 with ℓ odd.

For each element of the Weyl group of a finite-dimensional simple Lie algebra, there is a corresponding solvable quantum group. We find generators and relations for each of these algebras in the case of the Lie algebra $s l_{4}(\mathbb{C})$, and we also find the central elements. Setting $q=\varepsilon$, where ε is a primitive ℓ th root of 1 with ℓ odd, we then study the finite-dimensional irreducible representations of these algebras. It is shown that each representation has dimension either $1, \ell$, or ℓ^{2}, and that the dimension depends only on the central character.

Thesis Supervisor: Victor Kac
Title: Professor

Acknowledgments

I would like to thank my advisor, Professor Victor Kac, for his help and patience.

Contents

1 The Quantum Heisenberg Algebra 5
1.1 Definition and Basic Properties 5
1.2 Irreducible Representations of $\mathcal{H}_{\varepsilon}$ 7
1.3 Another Quantum Heisenberg Algebra 11
2 Quantum Groups Associated With $\mathcal{U}_{q}^{+}\left(s l_{4}(C)\right)$ 13
$2.1 \mathcal{U}_{q}\left(s l_{n}(C)\right)$ and \mathcal{U}^{w} 13
2.2 Preliminary Results on Irreducible $\mathcal{U}_{\varepsilon}^{w}$ Modules 15
$2.3 \mathcal{U}^{w}$ for $w=s_{1}, s_{1} s_{2}, s_{1} s_{2} s_{1}, s_{1} s_{2} s_{1} s_{3}, s_{1} s_{2} s_{1} s_{3} s_{2}$, and $s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}$ 16
2.4 Irreducible Representations of $\mathcal{U}_{\varepsilon}^{\omega}$ for $w=s_{1}, s_{1} s_{2}, s_{1} s_{2} s_{1}, s_{1} s_{2} s_{1} s_{3}$, $s_{1} s_{2} s_{1} s_{3} s_{2}$, and $s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}$ 18
$2.5 \mathcal{U}^{w}$ for $w=s_{1} s_{3}, s_{1} s_{3} s_{2}, s_{1} s_{3} s_{2} s_{1}$, and $s_{1} s_{3} s_{2} s_{1} s_{3}$ 28
2.6 Irreducible Representations of $\mathcal{U}_{\varepsilon}^{w}$ for $w=s_{1} s_{3}, s_{1} s_{3} s_{2}, s_{1} s_{3} s_{2} s_{1}$, and $s_{1} s_{3} s_{2} s_{1} s_{3}$ 29
$2.7 \mathcal{U}^{w}$ for $w=s_{2} s_{1} s_{3}$ and $s_{2} s_{1} s_{3} s_{2}$ 33
2.8 Irreducible Representations of $\mathcal{U}_{\varepsilon}^{w}$ for $w=s_{2} s_{1} s_{3}$ and $s_{2} s_{1} s_{3} s_{2}$ 34
$2.9 \mathcal{U}^{w}$ and Irreducible Representations of $\mathcal{U}_{\varepsilon}^{w}$ for $w=s_{1} s_{2} s_{3}$ 35
$2.10 \mathcal{U}^{w}$ for the Remaining Elements of the Weyl Group 36
2.11 A Final Word 37

Chapter 1

The Quantum Heisenberg Algebra

In this chapter we define the quantum Heisenberg algebra \mathcal{H}. which is a q-deformation of the the universal enveloping algebra of the Heisenberg Lie algebra. Setting $q=\varepsilon$, we obtain the algebra $\mathcal{H}_{\varepsilon}$. We examine the finite-dimensional irreducible representations of this algebra when ε is a primitive ℓ th root of 1 , with $\ell>2$.

1.1 Definition and Basic Properties

Definition 1.1 The quantum Heisenberg algebra \mathcal{H} is the associative algebra over the ring $\mathcal{A}=\mathbb{C}\left[q, q^{-1},\left(q-q^{-1}\right)^{-1}\right]$ with generators a, b, c and relations

$$
\begin{array}{r}
a b-q b a=c \\
a c-q^{-1} c a=0 \\
b c-q c b=0 \tag{1.3}
\end{array}
$$

We further define $\mathcal{H}_{\varepsilon}, \varepsilon \in \mathbb{C}, \varepsilon \neq 0,1$, or -1 , as the algebra $\mathcal{H} /(q-\varepsilon) \mathcal{H}$. We observe that \mathcal{H}_{1} is the universal enveloping algebra of the Heisenberg Lie algebra.

Proposition 1.2 (a) The elements $a^{i} b^{j} c^{k},(i, j, k) \in \mathbf{Z}_{+}^{3}$, form a basis of \mathcal{H} over \mathcal{A} and of $\mathcal{H}_{\varepsilon}$ over C .
(b) The algebras \mathcal{H} and $\mathcal{H}_{\varepsilon}$ have no zero divisors.

Proof: (a) The elements $a^{i} b^{j} c^{k}$ clearly span. To prove they are a basis, it suffices to show that the element $c b a$ reduces to the same element whether we begin by reducing $c b$ or $b a$ in the product. Checking, we have $(c b) a=\left(q^{-1} b c\right) a=q^{-1} b(c a)=b(a c)=$ $(b a) c=q^{-1}(a b-c) c=q^{-1} a b c-q^{-1} c^{2}$ and $c(b a)=q^{-1} c(a b-c)=q^{-1}(c a) b-q^{-1} c^{2}=$ $(a c) b-q^{-1} c^{2}=a(c b)-q^{-1} c^{2}=q^{-1} a b c-q^{-1} c^{2}$.
(b) To see that there are no zero divisors, we note that ($a^{i} b^{j} c^{k}+$ lower-degree terms $)\left(a^{r} b^{s} c^{t}+\right.$ lower-degree terms $)=q^{k r-j r-k s} a^{i+r} b^{j+s} c^{k+t}+$ lower degree terms $)$.

Proposition 1.3 The element $\left(q-q^{-1}\right) a b c-q^{-1} c^{2}$ generates the center \mathcal{Z} of \mathcal{H}.

Proof: It is easily checked that this element commutes with each of the generators a, b, and c. Let $z=\left(a^{i} b^{j} c^{k}+\right.$ lower-degree terms $)$ be central. Then $a^{i} b^{j} c^{k}$ must commute, modulo lower-degree terms, with each of the generators a, b, and c. This gives the condition that $i=j=k$. Then $z=\left(a^{m} b^{m} c^{m}+\right.$ lower-degree terms $)-$ $q^{(1 / 2) m(m-1)}\left[a b c-q^{-1}\left(q-q^{-1}\right)^{-1} c^{2}\right]^{m}$ is a central element of degree less than that of z. By induction on degree, the proof is complete.

Lemma 1.4 (a) In \mathcal{H}, for $m=1,2,3, \ldots$

$$
\begin{gather*}
a b^{m}=q^{m} b^{m} a+\left(q^{-(m-1)}+q^{-(m-3)}+\ldots+q^{m-3}+q^{m-1}\right) b^{m-1} c \tag{1.4}\\
a^{m} b=q^{m} b a^{m}+\left(1+q^{2}+\ldots+q^{2(m-2)}+q^{2(m-1)}\right) a^{m-1} c \tag{1.5}
\end{gather*}
$$

(b) in $\mathcal{H}_{\varepsilon}$, for $m=1,2,3, \ldots$

$$
\begin{gather*}
a b^{m}=\varepsilon^{m} b^{m} a+\varepsilon^{1-m}\left(\frac{1-\varepsilon^{2 m}}{1-\varepsilon^{2}}\right) b^{m-1} c \tag{1.6}\\
a^{m} b=\varepsilon^{m} b a^{m}+\left(\frac{1-\varepsilon^{2 m}}{1-\varepsilon^{2}}\right) a^{m-1} c \tag{1.7}
\end{gather*}
$$

Proof: (a) By induction on m. Part (b) follows from part (a), with $\varepsilon \neq 0,1$, or -1 .

Proposition 1.5 The center $\mathcal{Z}_{\varepsilon}$ of $\mathcal{H}_{\varepsilon}$, where ε is a primitive ℓ th root of 1 , is generated by $a^{\ell}, b^{\ell}, c^{\ell}$, and $\left(\varepsilon-\varepsilon^{-1}\right) a b c+\varepsilon^{-1} c^{2}$.

Proof: c^{ℓ} clearly commutes with a and b. a^{ℓ} commutes with c, and with b by the preceeding lemma. Likewise b^{ℓ} commutes with a and c. The element ($q-$ $\left.q^{-1}\right) a b c-q^{-1} c^{2}$ lies in the center \mathcal{Z} of \mathcal{H}, so $\left(\varepsilon-\varepsilon^{-1}\right) a b c+\varepsilon^{-1} c^{2}$ lies in $\mathcal{Z}_{\varepsilon}$. Let $z=\left(a^{i} b^{j} c^{k}+\right.$ lower-degree terms $)$ be central. Then $a^{i} b^{j} c^{k}$ must commute, modulo lower-degree terms, with each of the generators a, b, and c. This gives the condition that $i=j=k(\bmod \ell)$. Then $z=\left(a^{m+\ell r} b^{m+\ell s} c^{m+\ell t}+\right.$ lower-degree terms $)-$ $\varepsilon^{(1 / 2) m(m-1)} a^{\ell r} b^{\ell s} c^{\ell t}\left[a b c-\varepsilon^{-1}\left(\varepsilon-\varepsilon^{-1}\right)^{-1} c^{2}\right]^{m}$ is a central element of degree less than that of z. By induction on degree, the proof is complete.

1.2 Irreducible Representations of $\mathcal{H}_{\varepsilon}$

We now consider the finite-dimensional irreducible representations of $\mathcal{H}_{\varepsilon}$, where ε is a primitive ℓ th root of 1 , with $\ell>2$. Since $a^{\ell}, b^{\ell}, c^{\ell}$, and $\left(\varepsilon-\varepsilon^{-1}\right) a b c+\varepsilon^{-1} c^{2}$ are central elements of $\mathcal{H}_{\varepsilon}$, by Schur's Lemma they act as scalars $a^{\ell}=x, b^{\ell}=y, c^{\ell}=z$, and $\left(\varepsilon-\varepsilon^{-1}\right) a b c+\varepsilon^{-1} c^{2}=w$ in any finite-dimensional irreducible representation.

Proposition 1.6 The finite-dimensional irreducible representations of $\mathcal{H}_{\varepsilon}$, where ε is a primitive ℓ th root of 1 , have the following dimensions:

1 if $z=0$, and x or y is zero
$\ell / 2$ if $z \neq 0, x=0, y=0$, and ℓ is even
$\ell \quad$ if $z=0, x \neq 0$, and $y \neq 0$
if $z \neq 0$, and $x \neq 0$ or $y \neq 0$
if $z \neq 0, x=0, y=0$, and ℓ is odd
Proof: Let V be an irreducible $\mathcal{H}_{\varepsilon}$-module.
Case 1: Suppose that $z=c^{\ell}=0$ on V. Then, since c q-commutes (see definition 2.1) with a and b, it follows that $c=0$ on V (see the proof of lemma 2.2). Then V is an irreducible module over the generators a and b, which satisfy the relation $a b=\varepsilon b a$ on V.

1a) If $x=a^{\ell}=0$, then since a and b q-commute on V, it follows that $a=0$ on V. Then V is one dimensional, spanned by an eigenvector of b. Likewise, if $y=b^{\ell}=0$, then $\operatorname{dim} V=1$.

1b) If $x=a^{\ell} \neq 0$ and $y=b^{\ell} \neq 0$, let v be an eigenvector of a; $a v=\lambda v$, $\lambda \neq 0$. Then the vectors $v, b v, \ldots, b^{\ell-1} v$ are eigenvectors (these vectors are nonzero since $b^{\ell} \neq 0$) of a with distinct eigenvalues $\lambda, \varepsilon \lambda, \ldots, \varepsilon^{\ell-1} \lambda$, respectively. The space $\operatorname{span}\left(v, b v, \ldots, b^{\ell-1} v\right)$ is invariant under a and b (and c, since $c=0$ on V), so by irreduciblility is equal to V. Thus $\operatorname{dim} V=\ell$.

Case 2: $z=c^{\ell} \neq 0$, and $x=a^{\ell} \neq 0$ or $y=b^{\ell} \neq 0$. Suppose first that $x=a^{\ell} \neq 0$. V is also a module over the algebra with generators a and c and relation $c a=\varepsilon a c$. Let U be an irreducible submodule of V over this algebra. By the same reasoning as in case 1 b), we see that $\operatorname{dim} U=\ell$. Then from $\left(\varepsilon-\varepsilon^{-1}\right) a b c+\varepsilon^{-1} c^{2}=w$, we can solve for b , obtaining $b=\left[x z\left(\varepsilon-\varepsilon^{-1}\right)\right]^{-1} a^{\ell-1}\left[w-\varepsilon^{-1} c^{2}\right] c^{\ell-1}$. Thus U is invariant under b, so $V=U$ by irreducibility and $\operatorname{dim} V=\ell$. Similarly, if $y=b^{\ell} \neq 0$ we have $\operatorname{dim} V=\ell$.

Case 3: $z=c^{\ell} \neq 0, x=a^{\ell}=0$, and $y=b^{\ell}=0$. Let U be an irreducible submodule of V over the algebra with generators a and c and relation $c a=\varepsilon a c$. Since a q-commutes with c and $a^{\ell}=0$, it follows that $a=0$ on U (see lemma 2.2). Thus U is one dimensional, spanned by an eigenvector u of c : $c u=\lambda u$, with $\lambda \neq 0$ since $c^{\ell} \neq 0$. The space $\operatorname{span}\left(u, b u, \ldots, b^{\ell-1} u\right)$ is seen to be invariant under a, b, and c, so $V=\operatorname{span}\left(u, b u, \ldots, b^{\ell-1} u\right)$. We note further that $c b^{m} u=\varepsilon^{-m} \lambda u$, so the spaces $U, b U, \ldots, b^{\ell-1} U$ are eigenspaces of c with distinct eigenvalues. Thus $V=U \oplus b U \oplus \ldots \oplus b^{\ell-1} U$ (direct sum as vector spaces).

3a) Suppose ℓ is odd. Let m be the least positive integer such that $b^{m} u=0$. Applying equation 1.6 to u, we obtain

$$
\begin{equation*}
0=\lambda \varepsilon^{1-m}\left(\frac{1-\varepsilon^{2 m}}{1-\varepsilon^{2}}\right) b^{m-1} u \tag{1.8}
\end{equation*}
$$

Thus ℓ divides $2 m$. Since ℓ is odd, it follows that $\ell=m$. Thus each of the spaces in the sum $V=U \oplus b U \oplus \ldots \oplus b^{\ell-1} U$ is one dimensional, and $\operatorname{dim} V=\ell$.

3b) Suppose ℓ is even. Then, applying equation 1.6 to u with $m=\ell / 2$, we obtain

$$
\begin{equation*}
a b^{\ell / 2} u=0 \tag{1.9}
\end{equation*}
$$

For $m=\ell / 2+1, \ldots, \ell-1$ we have

$$
\begin{equation*}
a b^{m} u=\lambda \varepsilon^{1-m}\left(\frac{1-\varepsilon^{2 m}}{1-\varepsilon^{2}}\right) b^{m-1} u \tag{1.10}
\end{equation*}
$$

It follows that the space $\operatorname{span}\left(b^{\ell / 2} u, b^{\ell / 2+1} u, \ldots, b^{\ell-1} u\right)$ is invariant under a. It is also invariant under c, and invariant under b since $b^{\ell}=0$. Thus this is an invariant subspace of V. But it does not contain the vector u, because $V=U \oplus b U \oplus \ldots \oplus b^{\ell-1} U$ and $u \in U$. Thus by irreducibility, since this space is not equal to V, it must be 0 . Thus $V=U \oplus b U \oplus \ldots \oplus b^{\ell / 2-1} U$. Now let m be the least positive integer such that $b^{m} u=0$. By the same reasoning as in case 3 a, we see that ℓ divides $2 m$. Since $m \leq \ell / 2$, it follows that $m=\ell / 2$. Thus each of the spaces in the sum $V=U \oplus b U \oplus \ldots \oplus b^{\ell / 2-1} U$ has dimension one, so $\operatorname{dim} V=\ell / 2$.

We now consider only the case where ε is a primitive ℓ th root of 1 with ℓ odd.

Proposition 1.7 In any finite-dimensional irreducible representation of $\mathcal{H}_{\varepsilon}$, with ε a primitive lth root of 1 with ℓ odd, we have the relation

$$
\begin{equation*}
w^{\ell}=\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} x y z+z^{2} \tag{1.11}
\end{equation*}
$$

where $a^{\ell}=x, b^{\ell}=y, c^{\ell}=z$, and $\left(\varepsilon-\varepsilon^{-1}\right) a b c+\varepsilon^{-1} c^{2}=w$.

Proof: Case 1: If $z=0$, then $c=0$ so $w=0$, and the relation is satisfied trivially.
Case 2: $z \neq 0$, and $x=0$ or $y=0$. Suppose first that $a^{\ell}=x=0$. As in case 3 of Proposition 1.6, there is a vector u such that $a u=0$ and $c u=\lambda u$, where $\lambda^{\ell}=z$. We can rewrite the element $\left(\varepsilon-\varepsilon^{-1}\right) a b c+\varepsilon^{-1} c^{2}$ as $\left(\varepsilon^{2}-1\right) b a c+c^{2}$. Applying this element to u, we get $w u=\lambda^{2} u$. Thus $w=\lambda^{2}$, and raising this to the ℓ th power gives $w^{\ell}=z^{2}=\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} x y z+z^{2}$. If $b^{\ell}=0$ the proof is similar.

Case 3: $z \neq 0, x \neq 0$, and $y \neq 0$. We have seen that in this case the representation is ℓ dimensional. Also in this case, a, b, and c are diagonalizable. For example, letting v be an eigenvector of a with eigenvalue λ, the vectors $v, c v, \ldots, c^{\ell-1} v$ are a basis for the irreducible $\mathcal{H}_{\varepsilon}$-module V, and these are eigenvectors of a with eigenvalues
$\lambda, \lambda \varepsilon^{-1}, \ldots, \lambda \varepsilon^{-(\ell-1)}$. Thus the determinant of a is the product of these eigenvalues, which is x. Similarly, the determinants of b and c are y and z, respectively. We now take the determinant of the equation

$$
\begin{equation*}
w-\varepsilon^{-1} c^{2}=\left(\varepsilon-\varepsilon^{-1}\right) a b c \tag{1.12}
\end{equation*}
$$

The determinant of the right-hand side is $\left(\varepsilon-\varepsilon^{-1}\right)^{l} x y z$. The determinant of the left-hand side is

$$
\begin{equation*}
\prod_{j=0}^{\ell-1}\left(w-\varepsilon^{-1} \mu^{2} \varepsilon^{2 j}\right) \tag{1.13}
\end{equation*}
$$

where μ is an eigenvalue of c, so $\mu^{\ell}=z$. To compute this product we use the Gauss Binomial Formula

$$
\begin{equation*}
\prod_{j=0}^{m-1}\left(\alpha+q^{2 j} \beta\right)=\alpha^{m}+q^{m(m-1)} \beta^{m}+\sum_{j=1}^{m-1}\left(\frac{[m] \ldots[m-j+1]}{[j] \ldots[1])}\right) q^{j(m-1)} \alpha^{m-j} \beta^{j} \tag{1.14}
\end{equation*}
$$

where $[n]=\left(q^{n}-q^{-n}\right) /\left(q-q^{-1}\right)$, with $m=\ell, \alpha=w . \beta=-\varepsilon^{-1} \mu^{2}$, and $q=\varepsilon$. Noting that $[\ell]=0$, this gives $w^{\ell}+\left(-\mu^{2}\right)^{\ell}=w^{\ell}-z^{2}$.

Proposition 1.8 In $\mathcal{H}_{\varepsilon}$,
a)

$$
\begin{equation*}
\left[\left(\varepsilon-\varepsilon^{-1}\right) a b c+\varepsilon^{-1} c^{2}\right]^{\ell}=\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} a^{\ell} b^{\ell} c^{\ell}+\left(c^{\ell}\right)^{2} \tag{1.1.5}
\end{equation*}
$$

b)

$$
\begin{equation*}
\left[\left(\varepsilon-\varepsilon^{-1}\right) a b+\varepsilon^{-1} c\right]^{\ell}=\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} a^{\ell} b^{\ell}+c^{\ell} \tag{1.16}
\end{equation*}
$$

Proof:
a) $\mathcal{Z}_{\varepsilon}$ is a finitely generated commutative algebra. Thus, given any nonzero element z of $\mathcal{Z}_{\varepsilon}$, there is a finite-dimensional irreducible representation which maps z to a nonzero scalar. Also, since $\mathcal{H}_{\varepsilon}$ is a finitely-generated module over $\mathcal{Z}_{\varepsilon}$ (as a $\mathcal{Z}_{\varepsilon}-$ module, $\mathcal{H}_{\varepsilon}$ is generated by the monomials $a^{i} b^{j} c^{k}$ with $\left.i, j, k<\ell\right)$. the canonical map Spec $\mathcal{H}_{e} \rightarrow$ Spec $\mathcal{Z}_{\varepsilon}$ is surjective. [4] Thus there is a finite-dimensional irreducible
representation of $\mathcal{H}_{\varepsilon}$ which maps z to a nonzero scalar. Since we have shown that the element $\left[\left(\varepsilon-\varepsilon^{-1}\right) a b c+\varepsilon^{-1} c^{2}\right]^{\ell}-\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} a^{\ell} b^{\ell} c^{\ell}-\left(c^{\ell}\right)^{2}$ is mapped to zero in any finite-dimensional irreducible representation, it follows that this element must be zero in $\mathcal{H}_{\varepsilon}$.
b) Since c commutes with $\left[\left(\varepsilon-\varepsilon^{-1}\right) a b+\varepsilon^{-1} c\right]$, we have $\left[\left(\varepsilon-\varepsilon^{-1}\right) a b+\varepsilon^{-1} c\right]^{\ell} c^{\ell}=$ $\left[\left(\varepsilon-\varepsilon^{-1}\right) a b c+\varepsilon^{-1} c^{2}\right]^{\ell}=\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} a^{\ell} b^{\ell} c^{\ell}+\left(c^{\ell}\right)^{2}$. Now use the fact that $\mathcal{H}_{\varepsilon}$ has no zero divisors.

1.3 Another Quantum Heisenberg Algebra

Consider the algebra over the ring $\mathcal{A}=\mathbb{C}\left[q, q^{-1},\left(q-q^{-1}\right)^{-1}\right]$, with generators a_{i}, b_{i}, $(i=1,2)$ and c with relations

$$
\begin{gather*}
b_{1} b_{2}=b_{2} b_{1} \tag{1.17}\\
a_{1} a_{2}=a_{2} a_{1} \tag{1.18}\\
c a_{i}=q a_{i} c \tag{1.19}\\
b_{i} c=q c b_{i} \tag{1.20}\\
b_{i} a_{j}=q a_{j} b_{i} \quad \text { for } i \neq j \tag{1.21}\\
a_{i} b_{i}-q b_{i} a_{i}=c \tag{1.22}
\end{gather*}
$$

This is the algebra $\mathcal{U}^{s_{1} s_{3} s_{2} s_{1} s_{3}}$, which is examined in Chapter ${ }^{2}$, with the relabeling $E_{1} \rightarrow b_{1}, E_{3} \rightarrow b_{2}, E_{23} \rightarrow a_{1}, E_{12} \rightarrow a_{2}$, and $E_{123} \rightarrow q^{-1} c$. We find in Chapter 2 for this algebra that the element $\left[\left(q-q^{-1}\right) b_{1} a_{1}+c\right]\left[\left(q-q^{-1}\right) b_{2} a_{2}+c\right]$ generates the center. When $q=\varepsilon$ where ε is a primitive ℓ th root of 1 with ℓ odd, we find that the finite-dimensional irreducible representations have the following dimensions:
1 if $c^{\ell}=0, a_{1}^{\ell}=0$, and $a_{2}^{\ell}=0$
1 if $c^{\ell}=0, b_{1}^{\ell}=0$, and $b_{2}^{\ell}=0$
$\ell^{2} \quad$ if $c^{\ell} \neq 0$ and $\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} a_{1}^{\ell} b_{1}^{\ell}+c^{\ell} \neq 0$
$\ell^{2} \quad$ if $c^{\ell} \neq 0$ and $\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} a_{2}^{\ell} b_{2}^{\ell}+c^{\ell} \neq 0$
$\ell \quad$ in all other cases.

Chapter 2

Quantum Groups Associated

With $\mathcal{U}_{q}^{+}\left(s l_{4}(C)\right)$

Let W be the Weyl group of the finite-dimensional simple Lie algebra $s l_{n}(\mathbb{C})$. For each $w \in W$, there is a corresponding solvable quantum group \mathcal{U}^{w}. Each of these quantum groups is a subalgebra of $\mathcal{U}_{q}^{+}\left(s l_{n}(\mathbb{C})\right)$; when w is the longest element of W, we obtain $\mathcal{U}_{q}^{+}\left(s l_{n}(\mathbb{C})\right)$. In this chapter, we consider $s l_{4}(\mathbb{C})$ and give defining relations for \mathcal{U}^{w} for each $w \in W$. Then, letting $q=\varepsilon$, a primitive ℓ th root of 1 with ℓ odd, we obtain the algebras $\mathcal{U}_{\varepsilon}^{w}$. We study the finite-dimensional irreducible representations of these algebras, showing that they all have dimensions which are powers of ℓ. We also show that the dimensions depend only on the central character of the representation.

$2.1 \quad \mathcal{U}_{q}\left(s l_{n}(C)\right)$ and \mathcal{U}^{w}

Let $a_{i j}$ be the Cartan matrix of $s l_{n}(\mathbb{C})$. Quantum $s l_{n}(\mathbb{C})$, which we shall designate from this point on as \mathcal{U}, is the algebra over the ring $\mathcal{A}=\mathbb{C}\left[q, q^{-1},\left(q-q^{-1}\right)^{-1}\right]$ with generators $E_{i}, F_{i}, K_{i}, K_{-i}(i=1, \ldots, n-1)$ and relations

$$
\begin{align*}
& K_{i}^{\prime} K_{j}^{\prime}=K_{j}^{\prime} K_{i}, \quad K_{i}^{\prime} K_{-i}=K_{-i} K_{i}^{\prime}=1 \tag{2.1}\\
& K_{i}^{\prime} E_{j}=q^{a_{i}} E_{j} K_{i}^{\prime}, \quad K_{i}^{\prime} F_{j}=q^{-a_{i}} F_{j} K_{i} \tag{2.2}
\end{align*}
$$

$$
\begin{gather*}
E_{i} F_{j}-F_{j} E_{i}=\delta_{i j}\left(K_{i}^{\prime}-K_{i}^{-1}\right) /\left(q-q^{-1}\right) \tag{2.3}\\
E_{i}^{2} E_{j}-\left(q+q^{-1}\right) E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}=0 \quad \text { if } a_{i j}=-1 \tag{2.4}\\
E_{i} E_{j}-E_{j} E_{i}=0 \quad \text { if } a_{i j}=0 \tag{2.5}\\
F_{i}^{2} F_{j}-\left(q+q^{-1}\right) F_{i} F_{j} F_{i}+F_{j} F_{i}^{2}=0 \quad \text { if } a_{i j}=-1 \tag{2.6}\\
F_{i} F_{j}-F_{j} F_{i}=0 \quad \text { if } a_{i j}=0 . \tag{2.7}
\end{gather*}
$$

We have the following automorphisms $T_{i}(i=1, \ldots, n-1)$ of the algebra $\mathcal{U}[6]$:

$$
\begin{gather*}
T_{i} E_{i}=-F_{i} K_{i}^{\prime} \quad ; \quad T_{i} E_{j}=E_{j} \quad \text { if } a_{i j}=0 \tag{2.8}\\
T_{i} E_{j}=-E_{i} E_{j}+q^{-1} E_{j} E_{i} \text { if } a_{i j}=-1 \tag{2.9}\\
T_{i} F_{i}=-K_{i}^{-1} E_{i} ; T_{i} F_{j}=F_{j} \text { if } a_{i j}=0 \tag{2.10}\\
T_{i} F_{j}=-F_{j} F_{i}+q F_{i} F_{j} \quad \text { if } a_{i j}=-1 \tag{2.11}\\
T_{i} K_{j}=K_{j}^{\prime} K_{i}^{--a_{i j}} \tag{2.12}
\end{gather*}
$$

These automorphisms T_{i} satisfy the braid relations.
Let $w \in W$, and let $s_{i_{1}} \ldots s_{i_{m}}$ be a reduced expression for w in terms of simple reflections. Let $\beta_{1}=\alpha_{i_{1}}, \ldots, \beta_{m}=s_{i_{1}} \ldots s_{i_{m-1}}\left(\alpha_{i_{m}}\right)$. For $l=1 \ldots, m$, let $E_{\beta_{l}}=$ $T_{i_{1} \ldots} T_{i_{l-1}} E_{i_{l}}$ (these depend on the choice of reduced expression for w). For $k=$ $\left(k_{1}, \ldots, k_{m}\right) \in \mathbf{Z}_{+}^{m}$, let $E^{k}=E_{\beta_{1}}^{k_{1}} \ldots E_{\beta_{m}}^{k_{m}}$. These elements form a basis of \mathcal{U}^{w} over \mathcal{A} [3]. And for $i<j$ we have:

$$
\begin{equation*}
E_{\beta_{i}} E_{\beta_{j}}-q^{\left(\beta_{i} \mid \beta_{j}\right)} E_{\beta_{j}} E_{\beta_{i}}=\sum_{k \in \mathbf{Z}_{+}^{m}} c_{k} E^{k} \tag{2.13}
\end{equation*}
$$

where $c_{k} \in \mathbb{C}\left[q, q^{-1}\right]$ and $c_{k} \neq 0$ only when $k=\left(k_{1}, \ldots, k_{m}\right)$ is such that $k_{s}=0$ for $s \leq i$ and $s \geq j$ [5]. The algebra \mathcal{U}^{w} is generated by the elements $E_{B_{1}}, \ldots, E_{\beta_{m}}$ with defining relations 2.13. \mathcal{U}^{w} is independent of the choice of reduced expression for w [3].

Setting $q=\varepsilon$, we obtain the algebra \mathcal{U}_{s}^{w}. The elements $E_{\beta_{2}}^{\ell}(i=1, \ldots, m)$ are central in $\mathcal{U}_{\varepsilon}^{w}[3]$.

2.2 Preliminary Results on Irreducible $\mathcal{U}_{\varepsilon}^{w}$ Modules

Definition 2.1 Let x and y be elements of \mathcal{U}^{w} (respectively $\mathcal{U}_{\varepsilon}^{w}$). We shall say that x and $y q$ - commute if they satisfy $x y-q^{s} y x=0\left(\right.$ repectively $\left.x y-\varepsilon^{s} y x=0\right)$ for some $s \in \mathbf{Z}$.

The elements $E_{\beta_{i}}^{\ell}$ are central in the algebra $\mathcal{U}_{\varepsilon}^{w}$. Thus, by Schur's lemma, they act as scalars in any finite-dimensional irreducible representation of $\mathcal{U}_{\tilde{s}}^{w}$.

Lemma 2.2 Suppose $E_{\beta_{i}} q$-commutes with each of the generators E_{β}, of $\mathcal{U}_{\varepsilon}^{w}$. If $E_{\beta_{i}}^{\ell}=0$ on a finite-dimensional irreducible \mathcal{U}_{s}^{w}-module V, then $E_{\beta_{i}}=0$ on V.

Proof: Let $v \in V$ be an eigenvector of $E_{\beta_{i}}$. Then $E_{\beta_{i}} v=0$. By irreducibility, v generates V as a $\mathcal{U}_{\varepsilon}^{w}$ module. Thus any element of V may be written as a linear combination
 (for some $s \in \mathbf{Z}$). Thus $E_{\beta_{i}}=0$ on V.

Lemma 2.3 Let $s_{i_{1}} \ldots s_{i_{m-1}}$ be a reduced expression for w in terms of simple reflections, and let $s_{i_{1}} \ldots s_{i_{m}}$ be a reduced expression for \tilde{w}. Let V be a finite-dimensional irreducible module over the algebra $\mathcal{U}_{\varepsilon}^{\tilde{w}} . V$ is also a module over the algebra $\mathcal{U}_{\varepsilon}^{w}$. Let U be an irreducible submodule of V over the algebra $\mathcal{U}_{\varepsilon}^{w}$. Then $V=U \oplus E_{\beta_{m}} U \mp \ldots \oplus E_{\beta_{m}}^{k} U$ (direct sum as vector spaces) for some $0 \leq k \leq \ell-1$, where $\operatorname{dim} E_{\beta_{m}}^{j} U=\operatorname{dim} U$ for $j=0, \ldots, k$.

Proof: Let r be the smallest postive integer such that there exists $u \in U, u \neq 0$, satisfying $E_{\beta_{m}}^{r+1} \in U+E_{\beta_{m}} U+\ldots+E_{\beta_{m}}^{r} U$. We know that $r \leq \ell-1$, because $E_{\beta_{m}}^{\ell}$ acts as a scalar on V. The sum $U+E_{\beta_{m}} U+\ldots+E_{\beta_{m}}^{r} U$ is direct (by our choice of r).

From 2.13 it follows that for $i<m$ we have

$$
\begin{equation*}
E_{\beta_{i}} E_{\beta_{m}}^{k}=\varepsilon^{k\left(\beta_{i} \mid \beta_{m}\right)} E_{\beta_{m}}^{k} E_{\beta_{i}}+E_{\beta_{m}}^{k-1} f_{k-1}\left(E_{\beta_{1}}, \ldots, E_{\beta_{m-1}}\right)+\ldots+f_{0}\left(E_{\beta_{1}}, \ldots, E_{\beta_{m-1}}\right) \tag{2.14}
\end{equation*}
$$

where $f_{j}\left(E_{\beta_{1}}, \ldots, E_{\beta_{m-1}}\right)$ is a polynomial in $E_{\beta_{1}}, \ldots, E_{\beta_{m-1}}$. Applying 2.14 to a vector in U, we see that $U \oplus E_{\beta_{m}} U \oplus \ldots \oplus E_{\beta_{m}}^{r} U$ is invariant under $E_{\beta_{1}}, \ldots, E_{\beta_{m-1}}$. We also have by 2.13

$$
\begin{array}{r}
E_{\beta_{m}}^{r+1}\left(E_{\beta_{m-1}}^{k_{m-1}} \ldots E_{\beta_{1}}^{k_{1}}\right)=\varepsilon^{s}\left(E_{\beta_{m-1}}^{k_{m-1}} \ldots E_{\beta_{1}}^{k_{1}}\right) E_{\beta_{m}}^{r+1}+E_{\beta_{m}}^{r} g_{k_{m-1}}\left(E_{\beta_{1}}, \ldots, E_{\beta_{m-1}}\right)+\ldots \\
+g_{0}\left(E_{\beta_{1}}, \ldots, E_{\beta_{m-1}}\right) \tag{2.15}
\end{array}
$$

for some $s \in \mathbf{Z}$. By irreducibility of U over $\mathcal{U}_{\varepsilon}^{w}$, the element u generates U over $\mathcal{U}_{\varepsilon}^{w}$, and any element of U may be written as a linaear combination of terms each having the form $E_{\beta_{m-1}}^{k_{m-1}} \ldots E_{\beta_{1}}^{k_{1}} u$. Applying (2.15) to u, we see that the right-hand side of this equation lies in $U \oplus E_{\beta_{m}} U \oplus \ldots \oplus E_{\beta_{m}}^{r} U$. Thus $U \oplus E_{\beta_{m}} U \oplus \ldots \oplus E_{\beta_{m}}^{r} U$ is also invariant under $E_{\beta_{m}}$, and by irreducibility over the algebra $\mathcal{U}_{\varepsilon}^{\bar{w}}$, we have $V=$ $U \oplus E_{\beta_{m}} U \oplus \ldots \oplus E_{\beta_{m}}^{r} U$.

Finally, if $r=0$, the proof is complete. If $r>0$, consider the maps $E_{\beta_{m}}: E_{\beta_{m}}^{i-1} U \rightarrow$ $E_{\beta_{m}}^{i} U(i=1, \ldots, r)$. Suppose $E_{\beta_{m}}^{i} \tilde{u}=0$. Then by choice of $\mathrm{r}, \tilde{u}=0$ so $E_{\beta_{m}}^{i-1} \tilde{u}=0$. Thus the nullspace of each of these maps is 0 , which implies $\operatorname{dim} E_{\beta_{m}}^{i-1} U \leq \operatorname{dim} E_{\beta_{m}}^{i} U$, hence $\operatorname{dim} E_{\beta_{m}}^{i-1} U=\operatorname{dim} E_{\beta_{m}}^{i} U$.

$2.3 \mathcal{U}^{w}$ for $w=s_{1}, s_{1} s_{2}, s_{1} s_{2} s_{1}, s_{1} s_{2} s_{1} s_{3}, s_{1} s_{2} s_{1} s_{3} s_{2}$, and $s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}$

For $w=s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}$, we find that $\beta_{1}=\alpha_{1}, \beta_{2}=\alpha_{1}+\alpha_{2}, \beta_{3}=\alpha_{2}, \beta_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}$, $\beta_{5}=\alpha_{2}+\alpha_{3}$, and $\beta_{6}=\alpha_{3}$. We then find, using (2.8) through (2.12). that $E_{\beta_{1}}=E_{1}$, $E_{\beta_{2}}=-E_{1} E_{2}+q^{-1} E_{2} E_{1}, E_{\beta_{3}}=E_{2}, E_{\beta_{4}}=E_{1} E_{2} E_{3}-q^{-1} E_{2} E_{1} E_{3}-q^{-1} E_{3} E_{1} E_{2}+$ $q^{-2} E_{3} E_{2} E_{1}, E_{\beta_{5}}=-E_{2} E_{3}+q^{-1} E_{3} E_{2}$, and $E_{\beta_{6}}=E_{3}$. We shall write $E_{\beta_{2}}=E_{\alpha_{1}+\alpha_{2}}$
as E_{12}, etc. With some computation, we find the relations (2.13) are as follows:

$$
\begin{gather*}
E_{1} E_{12}=q E_{12} E_{1} \tag{2.16}\\
E_{1} E_{2}=q^{-1} E_{2} E_{1}-E_{12} \tag{2.17}\\
E_{12} E_{2}=q E_{2} E_{12} \tag{2.18}\\
E_{1} E_{123}=q E_{123} E_{1} \tag{2.19}\\
E_{12} E_{123}=q E_{123} E_{12} \tag{2.20}\\
E_{2} E_{123}=E_{123} E_{2} \tag{2.21}\\
E_{1} E_{23}=q^{-1} E_{23} E_{1}-E_{123} \tag{2.22}\\
E_{12} E_{23}=E_{23} E_{12}+\left(q-q^{-1}\right) E_{2} E_{123} \tag{2.23}\\
E_{2} E_{23}=q E_{23} E_{2} \tag{2.24}\\
E_{123} E_{23}=q E_{23} E_{123} \tag{2.25}\\
E_{1} E_{3}=E_{3} E_{1} \tag{2.26}\\
E_{12} E_{3}=q^{-1} E_{3} E_{12}-E_{123} \tag{2.27}\\
E_{2} E_{3}=q^{-1} E_{3} E_{2}-E_{23} \tag{2.28}\\
E_{123} E_{3}=q E_{3} E_{123} \tag{2.29}\\
E_{23} E_{3}=q E_{3} E_{23} \tag{2.30}
\end{gather*}
$$

$\mathcal{U}^{s_{1}}$ has the generator E_{1} (and no relations). $\mathcal{U}^{s_{1} s_{2}}$ has generators E_{1}, E_{12} with relation (2.16).
$\mathcal{U}^{s_{1} s_{2} s_{1}}$ has generators E_{1}, E_{12}, E_{2} with relations (2.16) through (2.18). In this algebra, we find that the element $E_{12}\left[\left(q-q^{-1}\right) E_{1} E_{2}+q E_{12}\right]$ is central (it is easily checked that it commutes with each of the generators).
$\mathcal{U}^{s_{1} s_{2} s_{1} s_{3}}$ has generators $E_{1}, E_{12}, E_{2}, E_{123}$ with relations (2.16) through (2.21).
$\mathcal{U}^{s_{1} s_{2} s_{1} s_{3} s_{2}}$ has generators $E_{1}, E_{12}, E_{2}, E_{123}, E_{23}$ with relations (2.16) through (2.25). We find that the element $E_{12} E_{23}-q E_{2} E_{123}$ is central in this algebra.
$\mathcal{U}^{s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}}$ (which is equal to $\mathcal{U}_{q}^{+}\left(s l_{4}(\mathbb{C})\right)$, because $s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}$ is the longest element of W for $\left.s l_{4}(\mathbb{C})\right)$ has generators $E_{1}, E_{12}, E_{2}, E_{123}, E_{23}, E_{3}$ with relations (2.16) through (2.30). The elements $E_{12} E_{23}-q E_{2} E_{123}$ and $\left(q-q^{-1}\right) E_{3}\left[\left(q-q^{-1}\right) E_{1} E_{2}+\right.$ $\left.q E_{12}\right] E_{123}+E_{123}\left[\left(q-q^{-1}\right) E_{1} E_{23}+q E_{123}\right]$ are central in this algebra.

2.4 Irreducible Representations of $\mathcal{U}_{\varepsilon}^{w}$ for $w=s_{1}$,

$$
s_{1} s_{2}, s_{1} s_{2} s_{1}, s_{1} s_{2} s_{1} s_{3}, s_{1} s_{2} s_{1} s_{3} s_{2}, \text { and } s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}
$$

We now let $q=\varepsilon$, where ε is a primitive ℓ th root of 1 (with ℓ odd in most cases). All representations considered will be finite-dimensional. Recall that if $s_{i_{1}} \ldots s_{i_{m}}$ is a reduced expression for w in terms of simple reflections, then the elements $E_{\beta_{i}}^{\rho}$ ($i=1, \ldots, m$) are central in $\mathcal{U}_{\varepsilon}^{w}$, so they act as scalars in any finite-dimensional representation.

Proposition 2.4 The finite-dimensional irreducible representations of $\mathcal{U}_{\varepsilon}^{s_{1}}$, where ε is a primitive ℓ th root of unity, are one dimensional.

Proof: Let V be an irreducible $\mathcal{U}_{\varepsilon}^{s_{1}}$-module. Since $\mathcal{U}_{\varepsilon}^{s_{1}}$ is generated by E_{1}, V is spanned by an eigenvector of E_{1}. So $\operatorname{dim} V=1$.

Proposition 2.5 The finite-dimensional irreducible representations of $\mathcal{U}_{\varepsilon}^{s_{1} s_{2}}$, where ε is a primitive ℓ th root of 1 , have the following dimensions:
$\ell \quad$ if $E_{1}^{\ell} \neq 0$ and $E_{12}^{\ell} \neq 0$
1 in all other cases.

Proof: Let V be an irreducible $\mathcal{U}_{s}^{s_{1} s_{2}}$-module. If $E_{1}^{\ell}=0$ on V, then $E_{1}=0$ on V by lemma 2.2. Then V is one-dimensional, spanned by an eigenvector of E_{12}. Similarly if $E_{12}^{\ell}=0$, then $\operatorname{dim} V=1$. If $E_{1}^{\ell} \neq 0$ and $E_{12}^{\ell} \neq 0$, let v be an eigenvector of E_{1}, with eigenvalue $\lambda(\lambda \neq 0)$. Then $\operatorname{span}\left(v, E_{12} v, \ldots, E_{12}^{\ell-1} v\right)$ is invariant under E_{1} and E_{12}, so this space is equal to $V . v, E_{12} v, \ldots, E_{12}^{\ell-1} v$ are eigenvectors of E_{1} with
eigenvalues $\lambda, \varepsilon \lambda, \ldots, \varepsilon^{\ell-1} \lambda$, respectively (each of these vectors is nonzero, because $E_{12}^{\ell} \neq 0$). Therefore these vectors are linearly independent and $\operatorname{dim} V=\ell$.

Proposition 2.6 The finite-dimensional irreducible representations of $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1}}$, where ε is a primitive ℓ th root of unity with ℓ odd, have dimensions

1 if $E_{12}^{\ell}=0$, and E_{1}^{ℓ} or E_{2}^{ℓ} is zero
$\ell \quad$ in all other cases

Proof: The algebra $\mathcal{U}^{s_{1} s_{2} s_{1}}$ is isomorphic to the quantum Heisenberg algebra \mathcal{H} discussed in Chapter 1, with the identification $E_{1} \rightarrow b, E_{12} \rightarrow q^{-1} c$, and $E_{2} \rightarrow a$. The element $E_{12}\left[\left(q-q^{-1}\right) E_{1} E_{2}+q E_{12}\right]$ is central in this algebra, corresponding to the element $q^{-2} c\left[\left(q-q^{-1}\right) a b+q^{-1} c\right]$ in \mathcal{H}. We also note from applying Proposition 1.8 to this case that $\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right]^{\ell}=\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell}$.

Proposition 2.7 The finite-dimensional irreducible representations of $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1} s_{3}}$, where ε is a primitive ℓ th root of unity with ℓ odd, have dimensions:

1 if $E_{123}^{\ell}=0, E_{12}^{\ell}=0$, and $E_{2}^{\ell}=0$
1 if $E_{12}^{\ell}=0$ and $E_{1}^{\ell}=0$
$\ell^{2} \quad$ if $E_{123}^{\ell} \neq 0, E_{12}^{\ell} \neq 0$, and $\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell} \neq 0$
$\ell \quad$ in all other cases

Proof: Let V be an irreducible $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1} s_{3}}$-module.
Case 1: $E_{123}^{\ell}=0$ on V. Since E_{123} q-commutes with E_{1}, E_{12}, and $E_{2}, E_{123}^{\ell}=0$ on V implies that $E_{123}=0$ on V. Thus, by lemma $2.3, V=U$ where U is an irreducible $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1}}$-module. So $\operatorname{dim} V=1$ or ℓ.

Case 2: $E_{123}^{\ell} \neq 0, E_{12}^{\ell}=0$, and $E_{1}^{\ell}=0$ on $V . E_{12}^{\ell}=0$ implies $E_{12}=0$. It then follows that E_{1} q-commutes with E_{2}, so $E_{1}^{\ell}=0$ implies $E_{1}=0$. We are thus left with the two generators E_{2} and E_{123}, which commute. V is spanned by a common eigenvector of these two generators, so $\operatorname{dim} V=1$.

Case 3: $E_{123}^{\ell} \neq 0, E_{12}^{\ell}=0$, and $E_{1}^{\ell} \neq 0$ on V. $E_{12}^{\ell}=0$ implies $E_{12}=0$. Let v be a common eigenvector of E_{2} and E_{123}, which commute. Then $E_{123} v=\lambda v$, with $\lambda \neq 0$. The space $\operatorname{span}\left(v, E_{1} v, \ldots, E_{1}^{\ell-1}\right)$ is invariant under E_{1}, E_{2}, and E_{123}, so
is equal to V. Furthermore, the vectors $v, E_{1} v, \ldots, E_{1}^{\ell-1}$ are all eigenvectors of E_{123} with distinct eigenvalues $\lambda, \varepsilon^{-1} \lambda, \ldots, \varepsilon^{-(\ell-1)} \lambda$, respectively (the vectors are all nonzero because $E_{1}^{\ell} \neq 0$). Thus $\operatorname{dim} V=\ell$.

Case 4: $E_{123}^{\ell} \neq 0$ and $E_{12}^{\ell} \neq 0$ on $V . V$ is a module over $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1}}$; let U be an irreducible submodule of V over $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1}} . E_{12}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right]$ is a central element of $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1}}$, so it acts as a scalar on U. Let $x=E_{12}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right]$. We see by checking directly that $x E_{123}=\varepsilon^{2} E_{123} x$. We consider the following two subcases.

Case 4a: $x=E_{12}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right]$ acts as a nonzero scalar α on U (thus $\left.\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell} \neq 0\right)$. We know that $V=U+E_{123} U+\ldots+E_{123}^{\ell-1} U$. The spaces $U, E_{123} U, \ldots, E_{123}^{\ell-1} U$ are eigenspaces of x with corresponding to eigenvalues $\alpha, \varepsilon^{2} \alpha, \ldots, \varepsilon^{\ell-1} \alpha, \varepsilon^{\ell+1} \alpha, \ldots, \varepsilon^{2 \ell-2} \alpha$; these eigenvalues are all distinct (because ℓ is odd). Thus $V=U \mp E_{123} U \mp \ldots \oplus E_{123}^{\ell-1} U$. Each of the spaces in the direct sum is nonzero and each has dimension equal to the dimension of U, because $E_{123}^{\ell} \neq 0$. Thus $\operatorname{dim} V=\ell \operatorname{dim} U$. From our previous results we know that $E_{12}^{\ell} \neq 0$ on U implies that $\operatorname{dim} U=\ell$. Therefore $\operatorname{dim} V=\ell^{2}$.

Case $4 \mathrm{~b}: x=E_{12}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right]=0$ on U (thus $\left.\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell}=0\right)$. Since $V=U+E_{123} U+\ldots+E_{123}^{\ell-1} U$ and $x E_{123}=\varepsilon^{2} E_{123} x$, it follows that $x=0$ on V. Since $E_{12}^{\ell} \neq 0, E_{12}$ is invertible so we have $\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}=0$ on V. Solving for E_{12}, we find that $E_{12}=\left(\varepsilon^{-2}-1\right) E_{1} E_{2}$. Substituting this into the relation $E_{1} E_{2}=\varepsilon^{-1} E_{2} E_{1}-E_{12}$, we find that $E_{1} E_{2}=\varepsilon E_{2} E_{1}$ on V. Thus we see that E_{1} and E_{2} q-commute with all generators. Thus $E_{1}^{\ell}=0$ would imply that $E_{1}=0$, which would further imply that $E_{12}=0$, contrary to assumption. Therefore $E_{1}^{\ell} \neq 0$, and likewise $E_{2}^{\ell} \neq 0$. Direct verification shows that the element $E_{123} E_{2}^{\ell-1}$ commutes with each of the generators E_{1}, E_{12}, E_{2}, and E_{123}. Thus this element is central and acts as a scalar α on $V . E_{2}$ acts as a scalar $c(c \neq 0)$ on V. Multiplying both sides of the equation $E_{123} E_{2}^{\ell-1}=\alpha$ on the right by E_{2}, we obtain $E_{123}=(\alpha / c) E_{2}$. Since we can express E_{12} and E_{123} in terms of E_{1} and E_{2}, V must be irreducible over the generators E_{1} and E_{2}, which satisfy $E_{1} E_{2}=\varepsilon E_{2} E_{1}$. Since $E_{1}^{\ell} \neq 0$ and $E_{2}^{\ell} \neq 0$, we have $\operatorname{dim} V=\ell$ (shown in the same way as when we let V be an irreducible $\mathcal{U}_{\varepsilon}^{s_{1} s_{2}}$-module).

Proposition 2.8 The finite-dimensional irreducible representations of $\mathcal{U}_{\mathrm{s}}^{s_{1} s_{2} s_{1} s_{3} s_{2}}$,
where ε is a primitive ℓ th root of unity with ℓ odd, have dimensions:
1 if $E_{123}^{\ell}=0, E_{12}^{\ell}=0$, and any two or three of $E_{1}^{\ell}, E_{2}^{\ell}, E_{23}^{\ell}$ are zero
$\ell^{2} \quad$ if $E_{123}^{\ell} \neq 0$ and $\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell} \neq 0$
$\ell \quad$ in all other cases

Proof: Let V be an irreducible $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1} s_{3} s_{2}}$-module. The element $E_{12} E_{23}-q E_{2} E_{123}$ commutes with the generators $E_{1}, E_{12}, E_{2}, E_{123}$, and E_{23} of the algebra $\mathcal{U}^{s_{1} s_{2} s_{1} s_{3} s_{2}}$, so is central. Thus $E_{12} E_{23}-\varepsilon E_{2} E_{123}$ acts as a scalar α on V.

Case 1: $E_{12}^{\ell} \neq 0$ on $V . E_{12}^{\ell}$ acts as a scalar $b(b \neq 0)$ on V. From $E_{12} E_{23}$ $\varepsilon E_{2} E_{123}=\alpha$, we may solve for $E_{23}: E_{23}=(1 / b)\left[\varepsilon E_{12}^{\ell-1} E_{2} E_{123}+\alpha E_{12}^{\ell-1}\right]$. Thus if U is an irreducible $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1} s_{3}}$-submodule of V, we see that U is E_{23}-invariant, so $U=V$. From previous results, we know that $\operatorname{dim} U=\ell$ or ℓ^{2} when $E_{12}^{\ell} \neq 0$ on U^{V}. Thus $\operatorname{dim} V=\ell$ or ℓ^{2}.

Case 2: $E_{12}^{\ell}=0$ and $E_{123}^{\ell}=0 . E_{123}$ q-commutes with all the generators, so $E_{123}^{\ell}=0$ implies $E_{123}=0$ on V. It then follows that E_{12} now q-commutes with all other generators in the representation, so $E_{12}^{\ell}=0$ implies $E_{12}=0$ on V. We are left with the generators E_{1}, E_{2}, and E_{23}, which satisfy the relations $E_{1} E_{2}=\varepsilon^{-1} E_{2} E_{1}$, $E_{1} E_{23}=\varepsilon^{-1} E_{23} E_{1}$, and $E_{2} E_{23}=\varepsilon E_{23} E_{2}$. We find that the elements $E_{1} E_{2} E_{23}^{\ell-1}$ and $E_{1}^{\ell-1} E_{2}^{\ell-1} E_{23}$ are central in the representation, so they act as scalars: $E_{1} E_{2} E_{23}^{\ell-1}=\beta$ and $E_{1}^{\ell-1} E_{2}^{\ell-1} E_{23}=\gamma$. Because E_{1}, E_{2}, and E_{23} all q-commute, if the ℓ th power of any of these generators is 0 , then the generator itself is zero. Thus if any two (or all three) of these generators have ℓ th powers equal to zero, then V will be one-dimensional, spanned by an eigenvector of the third generator. Now suppose any two (or all three) of these generators have ℓ th powers not equal to zero. Let U be an irreducible submodule of V over the algebra with those two generators and their relation. Then (as before) $\operatorname{dim} U=\ell$. But U is invariant under the third generator, because we can solve for the third generator in terms of the first two from $E_{1} E_{2} E_{23}^{\ell-1}=\beta$ or $E_{1}^{\ell-1} E_{2}^{\ell-1} E_{23}=\gamma$. Thus in this situation $\operatorname{dim} V=\ell$. So in this case we then have $\operatorname{dim} V=1$ or ℓ.

Case 3: $E_{12}^{\ell}=0, E_{123}^{\ell} \neq 0, E_{1}^{\ell}=0$. Let U be an irreducible $\mathcal{U}_{s}^{s_{1} s_{2} s_{1} s_{3}}$-submodule of V. We have seen that in the case $E_{12}^{\ell}=0, E_{123}^{\ell} \neq 0$, and $E_{1}^{\ell}=0$ on U, that U is
one-dimensional, spanned by a vector u which satisfies $E_{1} u=0, E_{12} u=0, E_{2} u=\lambda u$, and $E_{123} u=\mu u$, where $\mu \neq 0$ since $E_{123}^{\ell} \neq 0$. We have $V=U+E_{23} U^{r}+\ldots+E_{23}^{\ell-1} U$. $E_{123}\left(E_{23}^{m} u\right)=\mu \varepsilon^{m}\left(E_{23}^{m} u\right)$, and $\mu, \mu \varepsilon, \ldots, \mu \varepsilon^{\ell-1}$ are distinct, so $V=U \oplus E_{23} U \oplus \ldots \oplus$ $E_{23}^{\ell-1} U$. It remains to show that each of these summands is nonzero. If $E_{23}^{\ell} \neq 0$ this is clear. If $E_{23}^{\ell}=0$, we use the following formula, which is proven by induction on m ($m=1,2, \ldots$):

$$
\begin{equation*}
E_{1} E_{23}^{m}=\varepsilon^{-m} E_{23}^{m} E_{1}-\varepsilon^{1-m}\left(\frac{1-\varepsilon^{2 m}}{1-\varepsilon^{2}}\right) E_{23}^{m-1} E_{123} \tag{2.31}
\end{equation*}
$$

Let m be the least positive integer such that $E_{23}^{m} u=0$. Then, applying (2.31) to u, we obtain

$$
\begin{equation*}
0=-\varepsilon^{1-m}\left(\frac{1-\varepsilon^{2 m}}{1-\varepsilon^{2}}\right) \mu E_{23}^{m-1} u \tag{2.32}
\end{equation*}
$$

It follows that ℓ divides $2 m$, which implies that ℓ divides m, since ℓ is odd. Thus $\ell=m$, and $\operatorname{dim} V=\ell$ in this case.

Case 4: $E_{12}^{\ell}=0, E_{123}^{\ell} \neq 0, E_{1}^{\ell} \neq 0, E_{2}^{\ell}=0$ on V. Let U be an irreducible $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1} s_{3}}$-submodule of V. From previous results we know that $E_{12}^{\ell}=0$ implies $E_{12}=0$ on U. Now E_{2} q-commutes with the other generators in the representation U, so $E_{2}^{\ell}=0$ implies $E_{2}=0$ on U. Now a simple induction argument shows that $E_{12}\left(E_{23}^{m} U\right)=0$, so $E_{12}=0$ on V (since $\left.V=U+E_{23} U+\ldots+E_{23}^{\ell-1} U^{I}\right)$. From the relation $E_{12} E_{23}=E_{23} E_{12}+\left(\varepsilon-\varepsilon^{-1}\right) E_{2} E_{123}$, we now have $0=\left(\varepsilon-\varepsilon^{-1}\right) E_{2} E_{123}$ on V. Since $E_{123}^{\ell} \neq 0$, this implies that $E_{2}=0$ on V. Then V irreducible over the generators E_{1}, E_{123}, E_{23}, with relations $E_{1} E_{123}=\varepsilon E_{123} E_{1}, E_{1} E_{23}=\varepsilon^{-1} E_{23} E_{1}-E_{123}$, and $E_{123} E_{23}=\varepsilon E_{23} E_{123}$. Relabeling these generators $E_{1} \rightarrow E_{1}, E_{123} \rightarrow E_{12}$, and $E_{23} \rightarrow E_{2}$, we see that we have the algebra $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1}}$. Then from previous results (noting that $0 \neq E_{123}^{\ell} \rightarrow E_{12}^{\ell}$) we have $\operatorname{dim} V=\ell$.

Case 5: $E_{12}^{\ell}=0, E_{123}^{\ell} \neq 0, E_{1}^{\ell} \neq 0, E_{2}^{\ell} \neq 0$ on V. Let U be an irreducible $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1} s_{3}}$-submodule of V. From previous results we know that U has a basis given by ($u, E_{1} u, \ldots, E_{1}^{\ell-1}$), where u is a common eigenvector of E_{123} and $E_{2} ; E_{123} u=\lambda u$ $\left(\lambda \neq 0\right.$, since $\left.E_{123}^{\ell} \neq 0\right), E_{2} u=\mu u\left(\mu \neq 0\right.$, since $\left.E_{2}^{\ell} \neq 0\right)$. We also know that $E_{12}=0$ on $U . E_{2} E_{123}$ commutes with E_{1}, so we see that $E_{2} E_{123}=\mu \lambda$ on U.
$V=U+E_{23} U+\ldots+E_{23}^{\ell-1} U$, and $E_{2} E_{123}\left(E_{23}^{m} u\right)=\mu \lambda \varepsilon^{2 m}\left(E_{23}^{m} u\right)$ for any $u \in U$. Thus $U, E_{23} U, \ldots, E_{23}^{\ell-1} U$ are eigenspaces of $E_{2} E_{123}$ with respective eigenvalues $\mu \lambda, \mu \lambda \varepsilon^{2}$, $\ldots, \mu \lambda \varepsilon^{2 \ell-2}$ (distinct, since ℓ is odd). Thus $V=U \oplus E_{23} U \oplus \ldots \oplus E_{23}^{\ell-1} U$. If $E_{23}^{\ell} \neq 0$, then $\operatorname{dim} V=\ell \operatorname{dim} U=\ell^{2}$. If $E_{23}^{\ell}=0$, we use the following formula, which is proven by induction on $m(m=1,2, \ldots)$:

$$
\begin{equation*}
E_{12} E_{23}^{m}=E_{23}^{m} E_{12}+\left(\frac{\varepsilon^{2 m}-1}{\varepsilon}\right) E_{23}^{m-1} E_{2} E_{123} . \tag{2.33}
\end{equation*}
$$

Let $u \in U, u \neq 0$, and let m be the least positive integer such that $E_{23}^{m} u=0$. Applying (2.33) to u, we have

$$
\begin{equation*}
0=\mu \lambda\left(\frac{\varepsilon^{2 m}-1}{\varepsilon}\right) E_{23}^{m-1} u . \tag{2.34}
\end{equation*}
$$

It follows that ℓ divides $2 m$, which implies that ℓ divides m, since ℓ is odd. Thus $\ell=m$. It then follows that each space in the sum $V=U \oplus E_{23} I^{I} \ddagger \ldots E_{23}^{\ell-1} U$ has dimension equal to the dimension of U, and $\operatorname{dim} V=\ell \operatorname{dim} U=\ell^{2}$.

Proposition 2.9 The finite-dimensional irreducible representations of $\mathcal{U}_{s}^{s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}}$, where ε is a primitive ℓ th root of unity with ℓ odd, have dimensions:

$$
\begin{array}{ll}
1 & \text { if } E_{123}^{\ell}=0, E_{12}^{\ell}=0, E_{23}^{\ell}=0, \text { and } E_{2}^{\ell}=0 \\
1 & \text { if } E_{123}^{\ell}=0, E_{12}^{\ell}=0, E_{23}^{\ell}=0, E_{1}^{\ell}=0, \text { and } E_{3}^{\ell}=0 \\
\ell^{2} & \text { if } E_{123}^{\ell}=0, E_{12}^{\ell}=0, E_{1}^{\ell} \neq 0, E_{23}^{\ell} \neq 0, \text { and }\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{2}^{\ell} E_{3}^{\ell}+E_{23}^{\ell} \neq 0 \\
\ell^{2} & \text { if } E_{123}^{\ell}=0, E_{23}^{\ell}=0, E_{3}^{\ell} \neq 0, E_{12}^{\ell} \neq 0, \text { and }\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell} \neq 0 \\
\ell^{2} & \text { if } E_{123}^{\ell} \neq 0,\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell} \neq 0 \\
\ell^{2} & \text { if } E_{123}^{\ell} \neq 0,\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell}=0, \text { and }\left(\varepsilon-\varepsilon^{-1}\right) E_{3}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right] E_{123}+ \\
& E_{123}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{23}+\varepsilon E_{123}\right] \neq 0 \\
\ell^{2} & \text { if } E_{123}^{\ell} \neq 0,\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell}=0,\left(\varepsilon-\varepsilon^{-1}\right) E_{3}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right] E_{123}+ \\
& E_{123}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{23}+\varepsilon E_{123}\right]=0 . E_{1}^{\ell} \neq 0 . E_{23}^{\ell} \neq 0, \text { and }\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{2}^{\ell} E_{3}^{\ell}+E_{23}^{\ell} \neq 0
\end{array}
$$

$$
\ell \quad \text { in all other cases }
$$

Proof: Let V be an irreducible $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1} s_{3} s_{2} s_{1} \text {-module. }}$

Case 1: $E_{123}^{\ell}=0, E_{23}^{\ell}=0, E_{3}^{\ell}=0$. It then follows that $E_{123}=0, E_{23}=0$, and $E_{3}^{\ell}=0$ in the representation. We conclude then that V is an irreducible $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1}}$ module, so $\operatorname{dim} V=1$ or ℓ.

Case 2: $E_{123}^{\ell}=0, E_{23}^{\ell}=0, E_{3}^{\ell} \neq 0, E_{12}^{\ell}=0$. Then $E_{123}=0, E_{23}=0$, and $E_{12}=0$ on V. Thus V is an irreducible module over the algebra with generators E_{1}, E_{2}, and E_{3} with relations $E_{1} E_{2}=\varepsilon^{-1} E_{2} E_{1}, E_{1} E_{3}=E_{3} E_{1}$, and $E_{2} E_{3}=\varepsilon^{-1} E_{3} E_{2}$. Let v be a common eigenvector of E_{1} and E_{3}. If $E_{2}^{\ell}=0$, then $E_{2}=0$ and $\operatorname{dim} V=1$. If $E_{2}^{\ell} \neq 0$, then the vectors $\left(v, E_{2} v, \ldots, E_{2}^{\ell-1} v\right)$ form a basis for V (they are eigenvectors of E_{1} and E_{3}, with distinct eigenvalues as eigenvectors of E_{3}), so $\operatorname{dim} V=\ell$.

Case 3: $E_{123}^{\ell}=0, E_{23}^{\ell}=0, E_{3}^{\ell} \neq 0, E_{12}^{\ell} \neq 0$. Then $E_{123}=0$ and $E_{23}=0$ on V. Let U be an irreducible submodule of V over the algebra with generators E_{1}, E_{12}, E_{2} and their relations, i.e. $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1}}$. Since $E_{12}^{\ell} \neq 0$, we have $\operatorname{dim} U=\ell$. We know that the element $E_{12}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right]$ is central and acts as a scalar α on U. Let $x=E_{12}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right]$. We find that $x E_{3}=\varepsilon^{-2} E_{3} x$. using $E_{123}=0$ and $E_{23}=0$. We consider the following two subcases.

Case 3a: $x=E_{12}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right]$ acts as a nonzero scalar α on U (Thus $\left.\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell} \neq 0\right)$. Then $V=U+E_{3} U+\ldots+E_{3}^{\ell-1} U$, and since $x E_{3}=\varepsilon^{-2} E_{3} x$, we see that $U, E_{3} U, \ldots, E_{3}^{\ell-1} U$ are eigenspaces of x with eigenvalues $\alpha, \alpha \varepsilon^{-2}, \ldots$, $\alpha \varepsilon^{2 \ell-2}$ (distinct, since ℓ is odd). Furthermore, each of these spaces has dimension equal to the dimension of U, since $E_{3}^{\ell} \neq 0$. So $\operatorname{dim} V=\ell \operatorname{dim} U=\ell^{2}$.

Case 3b: $x=E_{12}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right]=0$ on U (Thus $\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell}=0$). Then since $V=U+E_{3} U+\ldots+E_{3}^{\ell-1} U$ and $x E_{3}=\varepsilon^{-2} E_{123} x$, it follows that $x=0$ on V. Since $E_{12}^{\ell} \neq 0$, this implies that $\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon \dot{E}_{12}\right]=0$ on V. As in case 4 b of Proposition 2.7, we find that $E_{12}=\left(\varepsilon^{-2}-1\right) E_{1} E_{2}$ and $E_{1} E_{2}=\varepsilon E_{2} E_{1}$ on V. Thus V is an irreducible module over the algebra with generators E_{1}, E_{2}, and E_{3} with relations $E_{1} E_{2}=\varepsilon E_{2} E_{1}, E_{1} E_{3}=E_{3} E_{1}$, and $E_{2} E_{3}=\varepsilon^{-1} E_{3} E_{2}$. We then find in the same manner as for case 2 of this proposition that $\operatorname{dim} V=\ell$.

Case 4: $E_{123}^{\ell}=0, E_{12}^{\ell}=0$ on V. It follows that $E_{123}=0, E_{12}=0$ on V. Now relabel the generators as follows: $E_{1} \rightarrow E_{3}, E_{2} \rightarrow E_{2}, E_{3} \rightarrow E_{1}$, and $E_{23} \rightarrow-\varepsilon^{-1} E_{12}$. Now we find that we have the same generators and relations as we have for $\mathcal{U}_{\varepsilon-1}^{s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}}$
when $E_{123}^{\ell}=0, E_{23}^{\ell}=0$ on $V \cdot \varepsilon^{-1}$ is also a primitive ℓ th root of 1 , so this is covered in cases 1 through 3 of this proposition. We conclude as in those cases that $\operatorname{dim} V=1$, ℓ, or ℓ^{2}. Note that the condition (i.e. whether or not it is zero) on the element $\left(\varepsilon^{-1}-\varepsilon\right)^{\ell} E_{1}^{\ell} E_{2}^{\ell}+E_{12}^{\ell}$ of $\mathcal{U}_{\varepsilon-1}^{s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}}$ becomes here the corresponding condition on the element $\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{2}^{\ell} E_{3}^{\ell}+E_{23}^{\ell}$.

Case 5: $E_{123}^{\ell}=0, E_{12}^{\ell} \neq 0, E_{23}^{\ell} \neq 0$, and $E_{1}^{\ell} \neq 0$ on $V . \quad E_{123}^{\ell}=0$ implies $E_{123}=0$ on V. The element $E_{12} E_{23}-\varepsilon E_{2} E_{123}=E_{12} E_{23}$ acts as a scalar α on V, so $E_{23}=(\alpha / b) E_{12}^{\ell-1}$ on V, where $b=E_{12}^{\ell}$. Let U be an irreducible submodule of V over the algebra with generators E_{1}, E_{12}, E_{23}, and E_{3} with their relations. Let u be a common eigenvector of E_{1} (with eigenvalue $\lambda \neq 0$ for E_{1}) and E_{3} (with eigenvalue μ), which commute. Then the space $\operatorname{span}\left(u, E_{12} u, \ldots, E_{12}^{\ell-1} u\right)$ is seen to be invariant under E_{1}, E_{12}, E_{23}, and E_{3}. Also, the vectors $u, E_{12} u, \ldots, E_{12}^{\ell-1} u$ are eigenvalues of E_{1} with distinct eigenvalues, since $E_{1}\left(E_{12}^{m} u\right)=\varepsilon^{m} \lambda\left(E_{12}^{m} u\right)$. Thus $U=\operatorname{span}\left(u . E_{12} u, \ldots, E_{12}^{\ell-1} u\right)$ and $\operatorname{dim} U=\ell$. Note also that $E_{3}\left(E_{12}^{m} u\right)=\varepsilon^{m} \mu\left(E_{12}^{m} u\right)$, so $E_{3}=(\mu / \lambda) E_{1}$ on U. $E_{12}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right]$ commutes with E_{1}, E_{12}, and E_{2}, and thus must also commute with E_{23} and E_{3}, since $E_{23}=(\alpha / b) E_{12}^{\ell-1}$ and $E_{3}=(\mu / \lambda) E_{1}$. Thus $E_{12}[(\varepsilon-$ $\left.\left.\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right]=\beta$ ($\beta=$ constant $)$ on U. Since $E_{12}^{\ell} \neq 0$ and $E_{1}^{\ell} \neq 0, E_{12}$ and E_{1} are invertible and we can solve for E_{2} in terms of β, E_{12} and E_{1}. Thus U is E_{2}-invariant, so $U=V$ and $\operatorname{dim} V=\ell$.

Case 6: $E_{123}^{\ell}=0, E_{12}^{\ell} \neq 0, E_{23}^{\ell} \neq 0$, and $E_{3}^{\ell} \neq 0$ on V. Relabeling $E_{1} \rightarrow E_{3}$, $E_{2} \rightarrow E_{2}, E_{3} \rightarrow E_{1}, E_{12} \rightarrow-\varepsilon^{-1} E_{23}$ and $E_{23} \rightarrow-\varepsilon^{-1} E_{12}$, we obtain the same algebra we had in case 5 , with ε^{-1} in place of ε. Since ε^{-1} is also a primitive ℓ th root of 1 , by case 5 we have $\operatorname{dim} V=\ell$.

Case 7: $E_{123}^{\ell}=0, E_{12}^{\ell} \neq 0, E_{23}^{\ell} \neq 0, E_{1}^{\ell}=0$, and $E_{3}^{\ell}=0$ on V. Then $E_{123}=0$ on V. Let U be an irreducible submodule of V over the algebra with generators E_{1}, E_{12}, E_{23}, and E_{3}. These generators all q-commute (since $E_{123}=0$ on V), so $E_{1}^{\ell}=0$ and $E_{3}^{\ell}=0$ on U imply $E_{1}=0$ and $E_{3}=0$ on U. Let u be an eigenvector of E_{12}; $E_{12} u=\lambda u, \lambda \neq 0$. As in case 5 , we have $E_{23}=(\alpha / b) E_{12}^{\ell-1}$ on V. where $b=E_{12}^{\ell}$. Thus u is also an eigenvector of E_{23}, so $\operatorname{dim} U=1$. Now $V=U+E_{2} U+\ldots+E_{2}^{\ell-1} U$, so $\operatorname{dim} V \leq \ell$. But V is also a module over the algebra with generators E_{1}, E_{12}, and
E_{2}, and we have seen that an irreducible module over this algebra with $E_{12}^{\ell} \neq 0$ has dimension equal to ℓ, thus $\operatorname{dim} V \geq \ell$. So $\operatorname{dim} V=\ell$.

We now consider the cases where $E_{123}^{\ell} \neq 0$. Direct verification shows that the element $\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}$ q-commutes with each of the generators E_{1}, E_{12}, E_{2}, E_{123}, and E_{23} (but not with E_{3}). Let $x=\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}$. Also recall that the element $\left(q-q^{-1}\right) E_{3}\left[\left(q-q^{-1}\right) E_{1} E_{2}+q E_{12}\right] E_{123}+E_{123}\left[\left(q-q^{-1}\right) E_{1} E_{23}+q E_{123}\right]$ is central in $\mathcal{U}^{s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}}$, so $\left(\varepsilon-\varepsilon^{-1}\right) E_{3}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right] E_{123}+E_{123}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{23}+\varepsilon E_{123}\right]$ acts as a scalar in a finite-dimensional irreducible representation of $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}}$. Let $y=\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{23}+\varepsilon E_{123}\right]$ and $z=\left(\varepsilon-\varepsilon^{-1}\right) E_{3}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{2}+\varepsilon E_{12}\right] E_{123}+E_{123}[(\varepsilon-$ $\left.\left.\varepsilon^{-1}\right) E_{1} E_{23}+\varepsilon E_{123}\right]$, so $z=\left(\varepsilon-\varepsilon^{-1}\right) E_{3} x E_{123}+E_{123} y . \quad z=\alpha$ for some scalar α on V. For the following cases, let U be an irreducible submodule of V over the algebra with generators $E_{1}, E_{12}, E_{2}, E_{123}$, and E_{23} with their relations. Since x q-commutes with each of the generators, x^{ℓ} is central in this algebra. By the same proof as in lemma 2.2, either $x=0$ on U or $x^{\ell} \neq 0$ on U^{V} (i.e. x is invertible on U^{\prime}). Also we have $x^{\ell}=\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2} \ell+E_{12}^{\ell}$, and likewise $y^{\ell}=\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{23} \ell+E_{123}^{\ell}$.

Case 8: $E_{123}^{\ell} \neq 0$ on $V, x^{\ell} \neq 0$ on U. In this case we may solve for E_{3} in terms of $E_{1}, E_{12}, E_{2}, E_{123}$, and E_{23} from the equation $\tilde{z}=\left(\varepsilon-\varepsilon^{-1}\right) E_{3} x E_{123}+E_{123} y=\alpha$. Thus U is E_{3}-invariant, so $V=U$ and $\operatorname{dim} U=\ell^{2}$ in this case.

Case 9: $E_{123}^{\ell} \neq 0$ on $V, x=0$ on U (thus $\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2} \ell+E_{12}^{\ell}=0$), and $z=\left(\varepsilon-\varepsilon^{-1}\right) E_{3} x E_{123}+E_{123} y=\alpha \neq 0$ on V. It follows that $E_{123} y=\alpha$ on U. $V=U+E_{3} U+\ldots+E_{3}^{\ell-1} U$, and we find that $\left(E_{123} y\right) E_{3}^{m}=\varepsilon^{2 m} E_{3}^{m}\left(E_{123} y\right)$, so the spaces in the sum are eigenspaces of $E_{123} y$ with distinct (since ℓ is odd) eigenvalues $\alpha, \alpha \varepsilon^{2}, \ldots, \alpha \varepsilon^{2 \ell-2}$. Thus $V=U \oplus E_{3} U \oplus \ldots \oplus E_{3}^{\ell-1} U$. If $E_{3}^{\prime} \neq 0$, we conclude that $\operatorname{dim} V=\ell \operatorname{dim} U$. If $E_{3}^{\ell}=0$, We use the following formula, which is proved by induction:

$$
\begin{equation*}
\left(E_{123} x\right) E_{3}^{m}=E_{3}^{m}\left(E_{123} x\right)-\left(\frac{1-\varepsilon^{m}}{1-\varepsilon}\right) E_{3}^{m-1}\left(E_{123} y\right) \tag{2.35}
\end{equation*}
$$

Let $u \in U, u \neq 0$. Let m be the least positive integer such that $E_{3}^{m} u=0$. Applying equation 2.35 to u, we obtain

$$
\begin{equation*}
0=\alpha\left(\frac{1-\varepsilon^{m}}{1-\varepsilon}\right) E_{3}^{m-1} u \tag{2.36}
\end{equation*}
$$

from which we conclude that $m=\ell$. Thus we again have $\operatorname{dim} V=\ell \operatorname{dim} U$. In this case we previously found that $\operatorname{dim} U=\ell$, so $\operatorname{dim} V=\ell^{2}$.

Case 10: $E_{123}^{\ell} \neq 0$ on $V, x=0$ on U (thus $\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{2} \ell+E_{12}^{\ell}=0$), and $z=\left(\varepsilon-\varepsilon^{-1}\right) E_{3} x E_{123}+E_{123} y=0$ on V. It follows that $E_{123} y=0$ on U, so $y=0$ on U. We find that $y E_{3}=\varepsilon E_{3} y$, and since $V=U+E_{3} U+\ldots+E_{3}^{\ell-1} U$ we conclude that $y=0$ on V. Equation 2.35 now becomes $\left(E_{123} x\right) E_{3}^{m}=E_{3}^{m}\left(E_{123} x\right)$, so we also see that $E_{123} x=0$ on V, hence $x=0$ on V. From $x=0$ we find that $E_{12}=\left(\varepsilon^{-2}-1\right) E_{1} E_{2}$ and $E_{1} E_{2}=\varepsilon E_{2} E_{1}$ on V. From $y=0$ we find that $E_{123}=\left(\varepsilon^{-2}-1\right) E_{1} E_{23}$ and $E_{1} E_{23}=\varepsilon E_{23} E_{1}$ on V. Also, $y^{\ell}=\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{23} \ell+E_{123}^{\ell}=0$; since we have assumed that $E_{123}^{\ell} \neq 0$, it follows that we must also have $E_{1}^{\ell} \neq 0$ and $E_{23}^{\ell} \neq 0 . V$ is thus an irreducible module over the generators E_{1}, E_{2}, E_{23}, and E_{3}, which satisfy the relations:

$$
\begin{align*}
E_{1} E_{2} & =\varepsilon E_{2} E_{1} \tag{2.37}\\
E_{1} E_{23} & =\varepsilon E_{23} E_{1} \tag{2.38}\\
E_{1} E_{3} & =E_{3} E_{1} \tag{2.39}\\
E_{2} E_{23} & =\varepsilon E_{23} E_{2} \tag{2.40}\\
E_{2} E_{3} & =\varepsilon^{-1} E_{3} E_{2}-E_{23} \tag{2.41}\\
E_{23} E_{3} & =\varepsilon E_{3} E_{23} \tag{2.42}
\end{align*}
$$

Let W be an irreducible submodule of V over the algebra with generators E_{2}, E_{23}, and E_{3}. This algebra is obviously isomorphic to $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1}}$, which was considered earlier. The element $E_{23}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{2} E_{3}+\varepsilon E_{23}\right]$ is central in this algebra, and so acts as a scalar β on W. Let $\tilde{x}=E_{23}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{2} E_{3}+\varepsilon E_{23}\right]$. We have $V=W+E_{1} W+\ldots+E_{1}^{\ell-1} W$. We now consider the following subcases:

Case 10a: $E_{1}^{\ell} \neq 0, E_{23}^{\ell} \neq 0$, and $\tilde{x}=E_{23}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{2} E_{3}+\varepsilon E_{23}\right] \neq 0$ on W (thus $\left.\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{2}^{\ell} E_{3}^{\ell}+E_{23}^{\ell} \neq 0$). We find that $\tilde{x} E_{1}=\varepsilon^{-2} E_{1} \tilde{x}$. Thus the spaces W, $E_{1} W, \ldots, E_{1}^{\ell-1} W$ are eigenspaces of \tilde{x} with distinct (since ℓ is odd) eigenvalues $\beta, \beta \varepsilon^{-2}$, $\ldots, \beta \varepsilon^{2 \ell-2}$. Since $E_{1}^{\ell} \neq 0$, we have $\operatorname{dim} V=\ell \operatorname{dim} W$. $\operatorname{dim} W=\ell$, since $E_{23}^{\ell} \neq 0$, so $\operatorname{dim} V=\ell^{2}$.

Case 10b: $E_{1}^{\ell} \neq 0, E_{23}^{\ell} \neq 0$, and $\tilde{x}=E_{23}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{2} E_{3}+\varepsilon E_{23}\right]=0$ on W. Then $\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{2} E_{3}+\varepsilon E_{23}\right]=0$ on W. We find that $\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{2} E_{3}+\varepsilon E_{23}\right] E_{1}=$ $\varepsilon^{-1} E_{1}\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{2} E_{3}+\varepsilon E_{23}\right]$. It then follows from $V=W+E_{1} W+\ldots+E_{1}^{\ell-1} W$ that $\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{2} E_{3}+\varepsilon E_{23}\right]=0$ on V. We then find that $E_{23}=\left(\varepsilon^{-2}-1\right) E_{2} E_{3}$ on V, and that $E_{2} E_{3}=\varepsilon E_{3} E_{2}$ on $V . V$ is then irreducible over the generators E_{1}, E_{2}, and E_{3}, which satisfy the relations $E_{1} E_{2}=\varepsilon E_{2} E_{1}, E_{1} E_{3}=E_{3} E_{1}$, and $E_{2} E_{3}=\varepsilon E_{3} E_{2}$. Since $\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{2}^{\ell} E_{3}^{\ell}+E_{23}^{\ell}=0$ and $E_{23}^{\ell} \neq 0$, we have $E_{2}^{\ell} \neq 0 . V$ then has dimension ℓ.

$2.5 \mathcal{U}^{w}$ for $w=s_{1} s_{3}, s_{1} s_{3} s_{2}, s_{1} s_{3} s_{2} s_{1}$, and $s_{1} s_{3} s_{2} s_{1} s_{3}$

For $w=s_{1} s_{3} s_{2} s_{1} s_{3}$, we find that $\beta_{1}=\alpha_{1}, \beta_{2}=\alpha_{3}, \beta_{3}=\alpha_{1}+\alpha_{2}+\alpha_{3}, \beta_{4}=\alpha_{2}+\alpha_{3}$, and $\beta_{5}=\alpha_{1}+\alpha_{2}$. We then find, using (2.8) through (2.12), that $E_{\beta_{1}}=E_{1}, E_{\beta_{2}}=$ $E_{3}, E_{\beta_{3}}=E_{123}=E_{3} E_{1} E_{2}-q^{-1} E_{3} E_{2} E_{1}-q^{-1} E_{1} E_{2} E_{3}+q^{-2} E_{2} E_{1} E_{3} . E_{\beta_{4}}=E_{23}=$ $-E_{3} E_{2}+q^{-1} E_{2} E_{3}, E_{\beta_{5}}=E_{12}=-E_{1} E_{2}+q^{-1} E_{2} E_{1}$. With some computation, we find the relations (2.13) are as follows:

$$
\begin{gather*}
E_{1} E_{3}=E_{3} E_{1} \tag{2.43}\\
E_{1} E_{123}=q E_{123} E_{1} \tag{2.44}\\
E_{3} E_{123}=q E_{123} E_{3} \tag{2.45}\\
E_{1} E_{23}=q^{-1} E_{23} E_{1}-E_{123} \tag{2.46}\\
E_{3} E_{23}=q E_{23} E_{3} \tag{2.47}\\
E_{123} E_{23}=q E_{23} E_{123} \tag{2.48}
\end{gather*}
$$

$$
\begin{gather*}
E_{1} E_{12}=q E_{12} E_{1} \tag{2.49}\\
E_{3} E_{12}=q^{-1} E_{12} E_{3}-E_{123} \tag{2.50}\\
E_{123} E_{12}=q E_{12} E_{123} \tag{2.51}\\
E_{23} E_{12}=E_{12} E_{23} \tag{2.52}
\end{gather*}
$$

$\mathcal{U}^{s_{1} s_{3}}$ has generators E_{1}, E_{3} with relation (2.43). $\mathcal{U}^{s_{1} s_{3} s_{2}}$ has generators E_{1}, E_{3}, E_{123} with relations (2.43) through (2.45). $\mathcal{U}^{s_{1} s_{3} s_{2} s_{1}}$ has generators E_{1}, E_{3}, E_{123}, and E_{23} with relations (2.43) through (2.48).
$\mathcal{U}^{s_{1} s_{3} s_{2} s_{1} s_{3}}$ has generators $E_{1}, E_{3}, E_{123}, E_{23}$, and E_{12} with relations (2.43) through (2.52). We find that the element $\left[\left(q-q^{-1}\right) E_{1} E_{23}+q E_{123}\right]\left[\left(q-q^{-1}\right) E_{3} E_{12}+q E_{123}\right]$ is central in this algebra.

2.6 Irreducible Representations of $\mathcal{U}_{\varepsilon}^{w}$ for $w=s_{1} s_{3}$, $s_{1} s_{3} s_{2}, s_{1} s_{3} s_{2} s_{1}$, and $s_{1} s_{3} s_{2} s_{1} s_{3}$

Proposition 2.10 The finite-dimensional irreducible representations of $\mathcal{U}_{\varepsilon}^{s_{1} s_{3}}$, where ε is a primitive tth root of unity, have dimension 1 .

Proof: Let V be an irreducible $\mathcal{U}_{\varepsilon}^{s_{1} s_{3}}$-module. E_{1} and E_{3} commute. so V is spanned by a common eigenvector of E_{1} and E_{3}.

Proposition 2.11 The finite-dimensional irreducible representations of $\mathcal{U}_{s}^{s_{1} s_{3} s_{2}}$, where ε is a primitive ℓ th root of unity, have dimensions:

1 if $E_{123}^{\ell}=0$
1 if $E_{1}^{\ell}=0$ and $E_{3}^{\ell}=0$
$\ell \quad$ in all other cases

Proof: Let V be an irreducible $\mathcal{U}_{\underset{1}{s_{1}} s_{3} s_{2}}$ module. If $E_{123}^{f}=0$. then $E_{123}=0$ and V is spanned by a common eigenvector of E_{1} and E_{3}. If $E_{1}^{\ell}=0$ and $E_{3}^{\ell}=0$, then $E_{1}=0$ and $E_{3}=0$ and V is spanned by an eigenvector of E_{123}. If $E_{123}^{\ell} \neq 0$ and
$E_{1}^{\ell} \neq 0$, let v be a common eigenvector of E_{1} and E_{3}. Then $\operatorname{span}\left(v, E_{123} v, \ldots, E_{123}^{\ell-1} v\right)$ is invariant under each of the three generators, and the vectors $v, E_{123} v, \ldots, E_{123}^{\ell-1} v$ are eigenvectors of E_{1} with distinct eigenvalues. Thus $\operatorname{dim} V=\ell$. Similarly, $\operatorname{dim} V=\ell$ if $E_{123}^{\ell} \neq 0$ and $E_{3}^{\ell} \neq 0$.

Proposition 2.12 The finite-dimensional irreducible representations of $\mathcal{U}_{\varepsilon}^{s_{1} s_{3} s_{2} s_{1}}$, where ε is a primitive ℓ th root of unity with ℓ odd, have dimensions:

1 if $E_{123}^{\ell}=0$ and $E_{23}^{\ell}=0$
1 if $E_{123}^{\ell}=0, E_{1}^{\ell}=0$, and $E_{3}^{\ell}=0$
$\ell^{2} \quad$ if $E_{3}^{\ell} \neq 0 . E_{123}^{\ell} \neq 0$. and $\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{23}^{\ell}+E_{123}^{\ell} \neq 0$
$\ell \quad$ in all other cases

Proof: If we relabel the generators $E_{1} \rightarrow E_{1}, E_{3} \rightarrow E_{3}, E_{123} \rightarrow E_{12}$, and $E_{23} \rightarrow$ E_{2}, we find that we have the same generators and relations as we had for $\mathcal{U}_{s}^{s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}}$ in the case where $E_{123}^{\ell}=0, E_{23}^{\ell}=0$. From these results we see that $\operatorname{dim} V=1, \ell$, or ℓ^{2}.

Proposition 2.13 The finite-dimensional irreducible representations of $\mathcal{U}_{\underset{\Sigma}{s_{1}} s_{3} s_{2} s_{1} s_{3}}$, where ε is a primitive ℓ th root of unity with ℓ odd, have dimensions:

$$
\begin{array}{ll}
1 & \text { if } E_{123}^{\ell}=0, E_{1}^{\ell}=0, \text { and } E_{3}^{\ell}=0 \\
1 & \text { if } E_{123}^{\ell}=0, E_{12}^{\ell}=0 . \text { and } E_{23}^{\ell}=0 \\
\ell^{2} & \text { if } E_{123}^{\ell} \neq 0 \text { and }\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{1}^{\ell} E_{23}^{\ell}+E_{123}^{\ell} \neq 0 \\
\ell^{2} & \text { if } E_{123}^{\ell} \neq 0 \text { and }\left(\varepsilon-\varepsilon^{-1}\right)^{\ell} E_{3}^{\ell} E_{12}^{\ell}+E_{123}^{\ell} \neq 0 \\
\ell & \text { in all other cases }
\end{array}
$$

 $\left.q E_{123}\right]\left[\left(q-q^{-1}\right) E_{3} E_{12}+q E_{123}\right]$ is central in $\mathcal{U}^{s_{1} s_{3} s_{2} s_{1} s_{3}}$, so letting [($\left.\varepsilon-\varepsilon^{-1}\right) E_{1} E_{23}+$ $\left.\varepsilon E_{123}\right]\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{3} E_{12}+\varepsilon E_{123}\right]$ acts as a scalar α on V. Let $x=\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{1} E_{23}+\varepsilon E_{123}\right]$, and let $y=\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{3} E_{12}+\varepsilon E_{123}\right]$, so $x y=\alpha$ on V. We also note that x and y each q-commute with each of the generators, so each is either 0 or invertible on V.

Case 1: $E_{123}^{\ell}=0$ on V. Then $E_{123}=0$ on V, and we are left with the generators
E_{1}, E_{3}, E_{23}, and E_{12}, which satisfy

$$
\begin{aligned}
E_{1} E_{3} & =E_{3} E_{1} \\
E_{1} E_{23} & =\varepsilon^{-1} E_{23} E_{1} \\
E_{1} E_{12} & =\varepsilon E_{12} E_{1} \\
E_{3} E_{23} & =\varepsilon E_{23} E_{3} \\
E_{3} E_{12} & =\varepsilon^{-1} E_{12} E_{3} \\
E_{12} E_{23} & =E_{23} E_{12}
\end{aligned}
$$

We find that $E_{1} E_{3}$ and $E_{23} E_{12}$ are central in the representation. If $E_{1}^{\ell}=0$ and $E_{3}^{\ell}=0$, then $E_{1}=0$ and $E_{3}=0$ on V, and V is one dimensional, spanned by a common eigenvector of E_{23} and E_{12}. Similarly, if $E_{23}^{\ell}=0$ and $E_{12}^{\ell}=0, \operatorname{dim} V=1$. In all other cases we find that $\operatorname{dim} V=\ell$. For example, if $E_{1}^{\ell} \neq 0$ and $E_{23}^{\prime} \neq 0$, let v be an common eigenvector of E_{1} and $E_{3} . E_{23} E_{12}=\beta$ on V, and since $E_{23}^{\ell} \neq 0$ we can solve for E_{12} in terms of E_{23} from this equation. Thus $\operatorname{span}\left(v, E_{23} v, \ldots, E_{23}^{\ell-1}\right)$ is invariant under each of the generators. Also the vectors $v, E_{23} v, \ldots, E_{23}^{\prime-1}$ are eigenvectors of E_{1} with distinct eigenvalues, so $\operatorname{dim} V=\ell$. The other cases are similar.

Case 2: $E_{123}^{\ell} \neq 0, x \neq 0$ on V, and $E_{3}^{\ell} \neq 0$. Let U be an irreducible submodule of V over the generators E_{1}, E_{3}, E_{123}, and E_{23}. From $x\left[\left(\varepsilon-\varepsilon^{-1}\right) E_{3} E_{12}+\varepsilon E_{123}\right]=\alpha$, and using the fact that x and E_{3} are invertible, we can solve for E_{12} in terms of the other generators. Thus U in E_{12}-invariant, and $V=U$. By previous considerations we know then that $\operatorname{dim} V=\ell$ or ℓ^{2}.

Case 3: $E_{123}^{\ell} \neq 0, x \neq 0$ on V, and $E_{12}^{\ell} \neq 0$. Relabeling $E_{1} \rightarrow E_{23}, E_{23} \rightarrow E_{1}$, $E_{12} \rightarrow E_{3}$, and $E_{123} \rightarrow-\varepsilon^{-1} E_{123}$, we obtain the same algebra as in case 2 , with ε^{-1} in place of ε. Thus by case 2 we have $\operatorname{dim} V=\ell$ or ℓ^{2}.

Case 4: $E_{123}^{\ell} \neq 0, x \neq 0$ on $V, E_{3}^{\ell}=0$, and $E_{12}^{\ell}=0$. Let U be an irreducible submodule of V over the algebra with generators E_{1}, E_{3}, E_{123}, and E_{23}. Since E_{3} q-commutes with each of these generators and $E_{3}^{\ell}=0, E_{3}=0$ on U. The remaining generators E_{1}, E_{123}, and E_{23} on U satisfy the same relations as the generators in $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{1}}$ (with $E_{1} \rightarrow E_{1}, E_{123} \rightarrow E_{12}$, and $E_{23} \rightarrow E_{2}$). Thus $\operatorname{dim} U^{I}=\ell$, since $E_{123}^{\ell} \neq 0$.

Also, the element $E_{123} x$ acts as a nonzero scalar on U. We find that $\left(E_{123} x\right) E_{12}=$ $\varepsilon^{2} E_{12}\left(E_{123} x\right)$, so the spaces $U, E_{12} U, \ldots, E_{12}^{\ell-1} U$ are eigenspaces of $E_{123} x$ with distinct eigenvalues (since ℓ is odd). Thus $V=U \oplus E_{12} U \oplus \ldots \oplus E_{12}^{\ell-1} U$. We shall show that each of the spaces in the sum is nonzero. For that we need the following formula, which is proved by induction on m :

$$
\begin{equation*}
E_{3} E_{12}^{m}=\varepsilon^{-m} E_{12}^{m} E_{3}-\varepsilon^{1-m}\left(\frac{1-\varepsilon^{2 m}}{1-\varepsilon^{2}}\right) E_{12}^{m-1} E_{123} \tag{2.53}
\end{equation*}
$$

Let u be an eigenvector of E_{123} in $U ; E_{123} u=\lambda u$ with $\lambda \neq 0$. Let m be the least positive integer such that $E_{12}^{m} u=0$. Applying 2.53 to u, we obtain:

$$
\begin{equation*}
0=-\lambda \varepsilon^{1-m}\left(\frac{1-\varepsilon^{2 m}}{1-\varepsilon^{2}}\right) E_{12}^{m-1} u \tag{2.54}
\end{equation*}
$$

It follows that $m=\ell$, since ℓ is odd. Thus each of the spaces in the sum $V=$ $U \oplus E_{12} U \oplus \ldots \boxplus E_{12}^{\ell-1} U$ is nonzero, and by lemma 2.3 this gives $\operatorname{dim} V=\ell \operatorname{dim} U$. Thus $\operatorname{dim} V=\ell^{2}$.

Case 5: $E_{123}^{\ell} \neq 0, y \neq 0$ on V. If we relabel the generators $E_{1} \rightarrow E_{3}, E_{3} \rightarrow E_{1}$, $E_{23} \rightarrow E_{12}, E_{12} \rightarrow E_{23}$, and $E_{123} \rightarrow E_{123}$, we find that we have not changed the relations. Thus this case is covered by cases 2,3 , and 4 .

Case 6: $E_{123}^{\ell} \neq 0, x=0$, and $y=0$ on V. Then $E_{123}=\left(\varepsilon^{-2}-1\right) E_{1} E_{23}$ and $E_{123}=\left(\varepsilon^{-2}-1\right) E_{3} E_{12}$. We then find that $E_{1} E_{23}=\varepsilon E_{23} E_{1}$ and $E_{3} E_{12}=\varepsilon E_{12} E_{3}$. Thus V is irreducible over the generators E_{1}, E_{3}, E_{23}, and E_{12}, which satisfy the relations

$$
\begin{aligned}
E_{1} E_{3} & =E_{3} E_{1} \\
E_{1} E_{23} & =\varepsilon E_{23} E_{1} \\
E_{1} E_{12} & =\varepsilon E_{12} E_{1} \\
E_{3} E_{12} & =\varepsilon E_{12} E_{3} \\
E_{3} E_{23} & =\varepsilon E_{23} E_{3} \\
E_{12} E_{23} & =E_{23} E_{12}
\end{aligned}
$$

Note that the ℓ th power of each of these generators must be nonzero. For example, if $E_{1}^{\ell}=0$, then $E_{1}=0$ on V, which would imply that $E_{123}=0$, a contradiction. We also find that $E_{23} E_{12}^{\ell-1}$ commutes with each of the generators, so is equal to a scalar β on V. Thus we can solve for E_{23} in terms of E_{12}. Let v be a common eigenvector of E_{1} and E_{3}. The space $\operatorname{span}\left(v, E_{12} v, \ldots, E_{12}^{\ell-1} v\right)$ is invariant under each of the generators, and the vectors $v, E_{12} v, \ldots, E_{12}^{\ell-1} v$ are eigenvectors of E_{1} with distinct eigenvalues. Thus $\operatorname{dim} V=\ell$.

2.7 \mathcal{U}^{w} for $w=s_{2} s_{1} s_{3}$ and $s_{2} s_{1} s_{3} s_{2}$

For $w=s_{2} s_{1} s_{3} s_{2}$, we find that $\beta_{1}=\alpha_{2}, \beta_{2}=\alpha_{1}+\alpha_{2}, \beta_{3}=\alpha_{2}+\alpha_{3}, \beta_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}$. We then find, using (2.8) through (2.12), that $E_{\beta_{1}}=E_{2}, E_{\beta_{2}}=E_{12}=-E_{2} E_{1}+$ $q^{-1} E_{1} E_{2}, E_{\beta_{3}}=E_{23}=-E_{2} E_{3}+q^{-1} E_{3} E_{2}, E_{\beta_{4}}=E_{123}=E_{2} E_{3} E_{1}-q^{-1} E_{3} E_{2} E_{1}-$ $q^{-1} E_{1} E_{2} E_{3}+q^{-2} E_{1} E_{3} E_{2}$. With some computation, we find the relations (2.13) are as follows:

$$
\begin{gather*}
E_{2} E_{12}=q E_{12} E_{2} \tag{2.55}\\
E_{2} E_{23}=q E_{23} E_{2} \tag{2.56}\\
E_{12} E_{23}=E_{23} E_{12} \tag{2.57}\\
E_{2} E_{123}=E_{123} E_{2}+\left(q-q^{-1}\right) E_{12} E_{23} \tag{2.58}\\
E_{12} E_{123}=q E_{123} E_{12} \tag{2.59}\\
E_{23} E_{123}=q E_{123} E_{23} \tag{2.60}
\end{gather*}
$$

$\mathcal{U}^{s_{2} s_{1} s_{3}}$ has generators E_{2}, E_{12}, and E_{23} with relations (2.55) through (2.57).
$\mathcal{U}^{s_{2} s_{1} s_{3} s_{2}}$ has generators E_{2}, E_{12}, E_{23}, and E_{123} with relations (2.55) through (2.60). We find that the element $E_{2} E_{123}-q E_{12} E_{23}$ is central in this algebra.

2.8 Irreducible Representations of $\mathcal{U}_{\underset{z}{w}}$ for $w=$

 $s_{2} s_{1} s_{3}$ and $s_{2} s_{1} s_{3} s_{2}$Proposition 2.14 The finite-dimensional irreducible representations of $\mathcal{U}_{\varepsilon}^{s_{2} s_{1} s_{3}}$, where ε is a primitive ℓ th root of unity, have dimensions:

```
1 if E E}=
1 if E E l2 = 0 and E E \ell =0
\ell in all other cases
```

Proof: Let V be an irreducible $\mathcal{U}_{\varepsilon}^{s_{2} s_{1} s_{3}}$-module. If $E_{2}^{\ell}=0$, then $E_{2}=0$ and V is spanned by a common eigenvector of E_{12} and E_{23}. If $E_{12}^{\prime}=0$ and $E_{23}^{\prime}=0$, then $E_{12}=0$ and $E_{23}=0$, and V is spanned by an eigenvector of E_{2}, so $\operatorname{dim} V=1$. If $E_{2}^{\ell} \neq 0$ and $E_{12}^{\ell} \neq 0$, then letting v be a common eigenvector of E_{12} and E_{23}, we find that $\operatorname{span}\left(v, E_{2} v, \ldots, E_{2}^{\ell-1} v\right)$ is invariant under each of the generators, and the vectors $v, E_{2} v, \ldots, E_{2}^{\ell-1} v$ are eigenvectors of E_{12} with distinct eigenvalues. Thus $\operatorname{dim} V=\ell$. Similarly, if $E_{2}^{\ell} \neq 0$ and $E_{23}^{\ell} \neq 0$, then $\operatorname{dim} V=\ell$.

Proposition 2.15 The finite-dimensional irreducible representations of $\mathcal{U}_{\mathbf{s}}^{s_{2} s_{1} s_{3} s_{2}}$, where ε is a primitive $\ell t h$ root of unity with ℓ odd, have dimensions:

1 if $E_{12}^{\ell}=0$ and $E_{23}^{\ell}=0$
1 if $E_{123}^{\ell}=0, E_{2}^{\ell}=0$. and $E 12^{\ell}$ or E_{23}^{ℓ} is zero
$\ell \quad$ in all other cases

Proof: Let V be an irreducible $\mathcal{U}_{\varepsilon}^{s_{2} s_{1} s_{3} s_{2}}$-module. The element $E_{2} E_{123}-q E_{12} E_{23}$ is central in $\mathcal{U}^{s_{2} s_{1} s_{3} s_{2}}$, so $E_{2} E_{123}-\varepsilon E_{12} E_{23}=\alpha$ for some scalar α on V.

Case 1: $E_{2}^{\ell} \neq 0$. Let U be an irreducible submodule of V over the generators E_{2}, E_{12}, and E_{23}. From previous results we know that $\operatorname{dim} U=1$ or ℓ. From $E_{2} E_{123}-$ $\varepsilon E_{12} E_{23}=\alpha$ we can solve for E_{123} in terms of the other generators. so L^{\top} is $E_{123^{-}}$ invariant and $U=V$.

Case 2: $E_{2}^{\ell}=0, E_{12}^{\ell}=0$, and $E_{23}^{\ell}=0$. Since E_{12} and E_{23} q-commute with the other generators, we have $E_{12}=0$, and $E_{23}=0$ on V. It then follows that E_{2}
q-commutes with E_{123}, so $E_{2}=0$. Thus V is spanned by an eigenvector of E_{123}, and $\operatorname{dim} V=1$.

Case 3: $E_{2}^{\ell}=0, E_{12}^{\ell} \neq 0$, and $E_{23}^{\ell}=0 . E_{23}^{\ell}=0$ implies $E_{23}=0$ on V. This implies that E_{2} q-commutes with the other generators, so $E_{2}=0$. We are left with the generators E_{12} and E_{123}, which satisfy $E_{123} E_{12}=\varepsilon^{-1} E_{12} E_{123}$. Since $E_{12}^{\ell} \neq 0$, $\operatorname{dim} V=\ell$ if $E_{123}^{\ell} \neq 0$ and $\operatorname{dim} V=1$ if $E_{123}^{\ell}=0$.

Case 4: $E_{2}^{\ell}=0, E_{12}^{\ell}=0$, and $E_{23}^{\ell} \neq 0$. By the same argument as in case 3 , we have $\operatorname{dim} V=\ell$ if $E_{123}^{\ell} \neq 0$ and $\operatorname{dim} V=1$ if $E_{123}^{\ell}=0$.

Case 5: $E_{2}^{\ell}=0, E_{12}^{\ell} \neq 0$, and $E_{23}^{\ell} \neq 0$. Let U be an irreducible submodule of V over the generators E_{2}, E_{12}, and E_{23}. Since E_{2} q-commutes with E_{12} and $E_{23}, E_{2}=0$ on U. Then U is spanned by a common eigenvector u of E_{12} and $E_{23} ; E_{12} u=\lambda u$ and $E_{23} u=\mu u$, where $\lambda \neq 0$ and $\mu \neq 0 . V=U+E_{123} U+\ldots+E_{123}^{\ell-1} U$, and the spaces in the sum are eigenspaces of E_{12} with distinct eigenvalues, so $V=U \oplus E_{123} U \oplus \ldots \boxplus E_{123}^{\ell-1} U$. If $E_{123}^{\ell} \neq 0$, it follows immediately that each of the spaces in the sum is nonzero, and $\operatorname{dim} V=\ell \operatorname{dim} U=\ell$. If $E_{123}^{\ell}=0$, we use the following formula, which is proven by induction on m :

$$
\begin{equation*}
E_{2} E_{123}^{m}=E_{123}^{m} E_{2}+\left(\varepsilon-\varepsilon^{-1}\right)\left(\frac{1-\varepsilon^{2 m}}{1-\varepsilon^{2}}\right) E_{123}^{m-1} E_{12} E_{23} \tag{2.61}
\end{equation*}
$$

Let m be the least positive integer such that $E_{123}^{m} u=0$. Applying equation 2.61 to u, we obtain:

$$
\begin{equation*}
0=\lambda \mu\left(\varepsilon-\varepsilon^{-1}\right)\left(\frac{1-\varepsilon^{2 m}}{1-\varepsilon^{2}}\right) E_{123}^{m-1} u \tag{2.62}
\end{equation*}
$$

We conclude that $\ell=m$, since ℓ is odd. Thus we again have $\operatorname{dim} V=\ell \operatorname{dim} U=\ell$.

2.9 \mathcal{U}^{w} and Irreducible Representations of $\mathcal{U}_{\varepsilon}^{w}$ for
 $$
w=s_{1} s_{2} s_{3}
$$

For $w=s_{1} s_{2} s_{3}$, we find that $\beta_{1}=\alpha_{1}, \beta_{2}=\alpha_{1}+\alpha_{2}, \beta_{3}=\alpha_{1}+\alpha_{2}+\alpha_{3}$. We then find, using (2.8) through (2.12), that $E_{\beta_{1}}=E_{1}, E_{\beta_{2}}=E_{12}=-E_{1} E_{2}+q^{-1} E_{2} E_{1}, E_{\beta_{3}}=$
$E_{123}=E_{1} E_{2} E_{3}-q^{-1} E_{2} E_{1} E_{3}-q^{-1} E_{3} E_{1} E_{2}+q^{-2} E_{3} E_{2} E_{1}$. With some computation, we find the relations (2.13) for $\mathcal{U}^{s_{1} s_{2} s_{3}}$ are as follows:

$$
\begin{gather*}
E_{1} E_{12}=q E_{12} E_{1} \tag{2.63}\\
E_{1} E_{123}=q E_{123} E_{1} \tag{2.64}\\
E_{12} E_{123}=q E_{123} E_{12} \tag{2.65}
\end{gather*}
$$

Proposition 2.16 The finite-dimensional irreducible representations of $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{3}}$, where ε is a primitive lth root of unity, have dimensions:

1 if any two or three of $E_{1}^{\ell}, E_{12}^{\ell}$, and E_{123}^{ℓ} are zero
$\ell \quad$ in all other cases
Proof: Let V be an irreducible $\mathcal{U}_{e}^{s_{1} s_{2} s_{3}}$-module. We find that $E_{1} E_{12}^{\ell-1} E_{123}$ and $E_{1}^{\ell-1} E_{12} E_{123}^{\ell-1}$ are central in $\mathcal{U}_{\varepsilon}^{s_{1} s_{2} s_{3}}$, so we have $E_{1} E_{12}^{\ell-1} E_{123}=\alpha$ and $E_{1}^{\ell-1} E_{12} E_{123}^{\ell-1}=\beta$ on V for some scalars α and β.

Case 1: Any two (or all three) of the ℓ th powers of the generators E_{1}, E_{12}, E_{123} are 0 . Then those two generators are 0 on V, and V is spanned by an eigenvector of the third generator. So $\operatorname{dim} V=1$.

Case 2: Any two (or all three) of the ℓ th powers of the generators E_{1}, E_{12}, E_{123} are nonzero. Suppose, for example, that $E_{1}^{\ell} \neq 0$ and $E_{12}^{\ell} \neq 0$. Let U be an irreducible submodule of V over the generators E_{1} and E_{12}. Then $\operatorname{dim} U=\ell$, and from $E_{1} E_{12}^{\ell-1} E_{123}=\alpha$ we can solve for E_{123} in terms of E_{1} and E_{12}, so U is E_{123} invariant and $V=U$, so $\operatorname{dim} V=\ell$. The other cases are similar.

$2.10 \mathcal{U}^{w}$ for the Remaining Elements of the Weyl Group

The remaining (nonidentity) elements of the Weyl Group for $s l_{4}(\mathbb{C})$ are $s_{2}, s_{3}, s_{2} s_{1}$, $s_{2} s_{3}, s_{3} s_{2}, s_{3} s_{2} s_{3}, s_{3} s_{2} s_{1}, s_{3} s_{2} s_{3} s_{1}, s_{3} s_{1} s_{2} s_{3}$, and $s_{3} s_{2} s_{3} s_{1} s_{2}$. Each of their algebras \mathcal{U}^{w} have the same (with a change of indices) generators and relations as algebras
already considered. For example, with the change of indices $1 \rightarrow 3,2 \rightarrow 2$, and $3 \rightarrow 1, \mathcal{U}^{s_{3} s_{2} s_{3} s_{1} s_{2}}$ has the same generators and relations as the algebra $\mathcal{U}^{s_{1} s_{2} s_{1} s_{3} s_{2}}$.

2.11 A Final Word

In the paper [3], a conjecture is made regarding the dimensions of the irreducible representations of solvable quantum groups. Namely, this conjecture states that the dimension should be $\ell^{(1 / 2) \text { dim }} \mathcal{O}_{\pi}$, where \mathcal{O}_{π} is the symplectic leaf containing the restriction of the central character of π to \mathcal{Z}_{0}. This conjecture has been shown by Kac to hold for the quantum Heisenberg algebra considered in Chapter 1. For the algebras of Chapter 2, this conjecture has not been checked but it does predict the possible dimensions of these representations correctly.

Bibliography

[1] C. De Concini, V. G. Kac, and C. Procesi, "Quantum Coadjoint Action", Journal of $A M S, 5$ 1992, pp. 151-190.
[2] C. De Concini and V. G. Kac, "Representations of Quantum Groups at Roots of 1", Progress in Math., 92, Birkhauser, 1990, pp. 471-506.
[3] C. De Concini, V. G. Kac, and C. Procesi, "Some Quantum Analogues of Solvable Lie Groups", preprint.
[4] C. De Concini, V. G. Kac, and C. Procesi, "Some Remarkable Degenerations of Quantum Groups", preprint, 1991.
[5] S. Z. Levendorskii, Ya. S. Soibelman, "Algebras of Functions on Compact Quantum Groups, Schubert Cells and Quantum Tori", Comm. Math. Physics, 139, 1991, pp. 141-170.
[6] G. Lusztig, "Quantum Groups at Roots of 1", Geom. Ded., 35, 1990. pp. 89-114.

