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Abstract

In this paper we first define a q-deformation of the universal enveloping algebra of the
Heisenberg Lie algebra. We study this algebra and its finite-dimensional irreducible
representations when ¢ = ¢, where ¢ is a primitive {th root of 1 with ¢ odd.

For each element of the Weyl group of a finite-dimensional simple Lie algebra,
there is a corresponding solvable quantum group. We find generators and relations
for each of these algebras in the case of the Lie algebra sly(C), and we also find the
central elements. Setting ¢ = ¢, where ¢ is a primitive ¢th root of 1 with ¢ odd,
we then study the finite-dimensional irreducible representations of these algebras.
It is shown that each representation has dimension either 1, ¢, or 2, and that the
dimension depends only on the central character.
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Chapter 1

The Quantum Heisenberg Algebra

In this chapter we define the quantum Heisenberg algebra H. which is a ¢g-deformation
of the the universal enveloping algebra of the Heisenberg Lie algebra. Setting ¢ = ¢, we
obtain the algebra H.. We examine the finite-dimensional irreducible representations

of this algebra when ¢ is a primitive ¢th root of 1, with ¢ > 2.

1.1 Definition and Basic Properties

Definition 1.1 The quantum Heisenberg algebra H is the associative algebra over

the ring A = Clq,¢7%, (¢ — ¢~1)~!] with generators a, b, ¢ and relations

ab—qba = ¢ (1.1)
ac—qlca = 0 (1.2)
bc—gqcb = 0 (1.3)

We further define H,, ¢ € C, ¢ # 0,1, or —1, as the algebra H/(¢ — c)H. We

observe that H; is the universal enveloping algebra of the Heisenberg Lie algebra.

Proposition 1.2 (a) The elements a'b'c ,(i,j,k) € I3, form a basis of H over A
and of H, over C.
(b) The algebras H and H,. have no zero divisors.




Proof: (a) The elements a'b’c* clearly span. To prove they are a basis, it suffices to -
show that the element cba reduces to the same element whether we begin by reducing
cb or ba in the product. Checking, we have (cb)a = (¢~ 'bc)a = ¢~ 'b(ca) = b(ac) =
(ba)c = ¢~ (ab—c)c = g 'abc — ¢~ 'c? and c(ba) = ¢ c(ab—¢) = g7 (ca)b— q7c? =
(ac)b—q'c* = a(cb) — ¢~ ¢ = g tabc — ¢~

(b) To see that there are no zero divisors, we note that (a't’c* + lower-degree

terms)(a"b°ct + lower-degree terms)= ¢*"~i"—*3qitrpitscktt 1 Jower degree terms).
g g
Proposition 1.3 The element (¢ — q~')abc — q~'c? generates the center Z of H.

Proof: It is easily checked that this element commutes with each of the generators
a, b, and c. Let z =(a'tc* + lower-degree terms) be central. Then a’¥’c* must
commute, modulo lower-degree terms, with each of the generators «, b, and ¢. This
gives the condition that : = j = k. Then z =(a™b™c™ + lower-degree terms) -
gV/Dmm=1gbe — g=1(q — ¢~1)""¢?]" is a central element of degree less than that of

z. By induction on degree, the proof is complete.

Lemma 1.4 (e¢) In H, form =1,2,3,...
abm — qmbma + (q—(m—l) +q—(m-—3) +... +qm—3 _I_qm—l)bm—lc (14)

a™b = q"ba™ + (14 ¢ + ... + ¢*"D 4 gm=Dygm-1e (1.5)

(b) in H,, form =1,2,3,...

— c2m
ab™ = c™bma + 7™ (11 _:2 ) e (1.6)
_ =2m
a™b=¢c"ba™ + (11 _iz ) a™ ¢ (1.7)

Proof: (a) By induction on m. Part (b) follows from part (a), with ¢ # 0,1, or —1.

Proposition 1.5 The center Z, of H., where ¢ is a primitive {th root of 1, is gen-

erated by a®, b%, ¢!, and (¢ — e )abc + ¢~ 1c2.



Proof: ¢! clearly commutes with a and b. a‘ commutes with ¢, and with & by
the preceeding lemma. Likewise 6 commutes with @ and c. The element (¢ —
g V)abc — q71¢? lies in the center Z of H, so (¢ — e~ ')abc + c7!¢? lies in Z,. Let
z =(a't’cF + lower-degree terms) be central. Then a't’c* must commute, modulo
lower-degree terms, with each of the generators a, b, and ¢. This gives the condi-
tion that ¢ = j = k (mod ¢). Then z =(a™*bm+ecm+% 4 lower-degree terms) -
e/m(m-1)gerpes ft{gpe — c=1(e — e71) 7 c?" is a central element of degree less than

that of z. By induction on degree, the proof is complete.

1.2 Irreducible Representations of H.

We now consider the finite-dimensional irreducible representations of H,, where ¢ is

a primitive ¢th root of 1, with £ > 2. Since d%, b*, ¢!, and (¢ — c7')abc + c~1c? are

central elements of H., by Schur’s Lemma they act as scalars a‘ = z, b* =y, ¢! = 2,

and (e — e 1)abc + ¢7'¢? = w in any finite-dimensional irreducible representation.

Proposition 1.6 The finite-dimensional irreducible representations of ‘H., where ¢
is a primitive £th root of 1, have the following dimensions:
1 ifz=0, and x ory is zero
/2 ifz#0,z2=0,y=0, and ¢ is even
¢ ifz=0,c#0, andy #0
ifz#0,andz#0o0ry #0
ifz#0,2=0,y=0, and € is odd

Proof: Let V be an irreducible H.-module.

Case 1: Suppose that z = ¢ = 0 on V. Then, since ¢ q-commutes (see definition
2.1) with a and b, it follows that ¢ = 0 on V (see the proof of lemma 2.2). Then V is
an irreducible module over the generators a and b, which satisfy the relation ab = cba

on V.

la) If z = a’ = 0, then since a and b q-commute on V/, it follows that « = 0 on V.
Then V is one dimensional, spanned by an eigenvector of b. Likewise, if y = b =0,

then dimV = 1.

-1




Ib) If z = a* # 0 and y = b° # 0, let v be an eigenvector of a; av = v,
A # 0. Then the vectors v,bv,...,b* v are eigenvectors (these vectors are nonzero
since b¢ # 0) of a with distinct eigenvalues A, €A, ...,e"1\, respectively. The space
span(v, bv, ..., 4*1v) is invariant under a and b (and ¢, since ¢ = 0 on V), so by
irreduciblility is equal to V. Thus dimV = ¢.

Case 2: z=c!#0, and z = a* # 0 or y = b* # 0. Suppose first that z = a’ # 0.
-V is also a module over the algebra with generators a and ¢ and relation ca = cac.
Let U be an irreducible submodule of V over this algebra. By the same reasoning as
in case 1b), we see that dimU = ¢. Then from (& — ¢~1)abc + ¢~'¢? = w, we can solve
for b, obtaining b = [vz(c — ¢71)]2a*[w — e71c?|c~!. Thus U is invariant under b,
so V = U by irreducibility and dimV = ¢. Similarly, if y = b* # 0 we have dimV = ¢.

Case 3: 2z =c* #0.z = a* =0, and y = b = 0. Let I/ be an irreducible
submodule of V over the algebra with generators a and ¢ and relation ca = cac.
Since a q-commutes with ¢ and a* = 0, it follows that ¢« = 0 on U (see lemma
2.2). Thus U is one dimensional, spanned by an eigenvector u of ¢; cu = Au, with
A # 0 since ¢! # 0. The space span(u,bu,...,b* 'u) is seen to be invariant under
a, b, and c, so V = span(u, bu, ..., b 'u). We note further that cb™u = =™ \u, so
the spaces U, bU, ... ,b°-'U are eigenspaces of ¢ with distinct eigenvalues. Thus
V=U&®bU®.. Db U (direct sum as vector spaces).

3a) Suppose ¢ is odd. Let m be the least positive integer such that b™u = 0.
Applying equation 1.6 to u, we obtain

0= Al (1 - Ezm) b1y (1.8)
- 1—¢2 '

Thus £ divides 2m. Since ¢ is odd, it follows that ¢ = m. Thus each of the spaces in
thesum V=U@bU & ...  b*"'U is one dimensional, and dimV = ¢.
3b) Suppose ¢ is even. Then, applying equation 1.6 to v with m = ¢/2, we obtain

ab’*u =0 (1.9)

oD



Form =/¢/2+1,...,¢ — 1 we have

__ =2m
ab™u = '™ (1 - ) "ty (1.10)

It follows that the space span(b%?u, b%?+1uy, ..., 5% 'u) is invariant under a. It is also
invariant under ¢, and invariant under b since ¥ = 0. Thus this is an invariant
subspace of V. But it does not contain the vector u, because V = U4 bU @ ... $ b*-U
and u € U. Thus by irreducibility, since this space is not equal to V, it must be
0. Thus V = U@ bU @ ... ® b*/?7'U. Now let m be the least positive integer
such that u = 0. By the same reasoning as in case 3a, we see that ¢ divides
2m. Since m < (/2, it follows that m = (/2. Thus each of the spaces in the sum

V=U®bU & ... b"/*~'U has dimension one, so dimV = £/2.
We now consider only the case where ¢ is a primitive (th root of 1 with ¢ odd.

Proposition 1.7 In any finite-dimensional irreducible representation of H., with ¢

a primitive Cth root of 1 with ¢ odd, we have the relation

w = (& — eV ayz + 22 (1.11)

-1,2

f=z, b=y, "=z, and (¢ —e Vabc+ e 'c? = w.

where a

Proof: Case 1: If z = 0, then ¢ = 0 so w = 0, and the relation is satisfied trivially.

Case 2: 2 # 0, and z = 0 or y = 0. Suppose first that a* = x = 0. As in case 3
of Proposition 1.6, there is a vector u such that au = 0 and cu = Au, where \* = z.
We can rewrite the element (¢ — e~ ')abc + c~1c? as (¢2 — 1)bac + ¢*. Applying this
element to u, we get wu = A?u. Thus w = )A?, and raising this to the ¢{th power gives
wl=22=(e— s'l)ea:yz + z2. If 8¢ = 0 the proof is similar.

Case 3: z # 0,2 # 0, and y # 0. We have seen that in this case the representation
is £ dimensional. Also in this case, a, b, and ¢ are diagonalizable. For example, letting

v be an eigenvector of a with eigenvalue A, the vectors v,cv,...,c*"!v are a basis

for the irreducible H,.-module V', and these are eigenvectors of a with eigenvalues




Mgt Ae~=1) Thus the determinant of a is the product of these eigenvalues,
which is z. Similarly, the determinants of b and ¢ are y and z, respectively. We now

take the determinant of the equation

w—e1c? = (e —eHabe (1.12)

The determinant of the right-hand side is (¢ — s‘l)ea:yz. The determinant of the
left-hand side is

-1
H(w — e lu2e¥), (1.13)
Jj=0

where y is an eigenvalue of ¢, so u = z. To compute this product we use the Gauss

Binomial Formula

Trﬁl(a+ q2jﬂ) = a™ +qm(m—l)ﬂm + mz—:l ([m][m—] + 1]) qj(m—l)am—ji,}j (1.14)
i=0 = 111D

1

where [n] = (¢"—¢™")/(¢—¢7 '), withm = {, a« = w. 8 = —c"14%, and ¢ = ¢. Noting

that [¢] = 0, this gives w! + (—p?) = w’ — z2.

Proposition 1.8 In H,,

a)
[(e = ¢ Habe + 5‘1c2]l =({e—- a’l)eaeb‘ce + (cf)2 (1.15)

b)
[(e — e Vab+ s = (¢ — ) alb! + ¢ (1.16)

Proof:

a) 2. is a finitely generated commutative algebra. Thus, given any nonzero ele-
ment z of Z,, there is a finite-dimensional irreducible representation which maps z
to a nonzero scalar. Also, since H, is a finitely-generated module over Z. (as a Z.-
module, H, is generated by the monomials a*b’c* with 7, j, k < ¢). the canonical map

Spec He — Spec Z. is surjective. [4] Thus there is a finite-dimensional irreducible
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representation of H, which maps z to a nonzero scalar. Since we have shown that
the element [(¢ — e~ 1)abc + 5‘1c2]e — (e - e'l)lalb!c" —(¢)? is mapped to zero in any
finite-dimensional irreducible representation, it follows that this element must be zero
in H,..

b) Since ¢ commutes with [(¢ — e=1)ab + e~1¢], we have [(e — e~V)ab + c~1¢]'ct =
[(e — e Vabe + e~1¢?" = (e — 1) alble! + (c*)®. Now use the fact that H, has no

zero divisors.

1.3 Another Quantum Heisenberg Algebra

Consider the algebra over the ring A = €[q, ¢!, (¢ — ¢71)~!], with generators a;, b;,

(: = 1,2) and ¢ with relations

brby = boby (1.17)

a1 = agay (1.18)

ca; = qa;c (1.19)

bic = qcb; (1.20)

bia; = qa;b; for 1 #£ 3 (1.21)
a;b; — qb;a; = ¢ (1.22)

This is the algebra {*1%2#2#1%3 | which is examined in Chapter 2, with the relabeling
E, — by, E3 — by, E33 — a3, E\3 — a3, and Ej23 — ¢~ 'c. We find in Chapter 2
for this algebra that the element [(¢ — ¢~')b1a; + c][(g¢ — ¢7!)b2a; + c] generates the
center. When ¢ = ¢ where ¢ is a primitive ¢th root of 1 with ¢ odd, we find that the
finite-dimensional irreducible representations have the following dimensions:
1 ifct=0,at=0,and af =0
1 if ¢ =0,b{=0,and b5 =0
2 ifct#0and (c—e ) albl+ct#0
2 ifct#0and (¢ - s'l)fagbg +ct#0

11




4

in all other cases.



Chapter 2

Quantum Groups Associated

With 1 (siy(C))

Let W be the Weyl group of the finite-dimensional simple Lie algebra s/,(C). For each
w € W, there is a corresponding solvable quantum group &*. Each of these quantum
groups is a subalgebra of LI;‘ (sl,(C)); when w is the longest element of W, we obtain
U (sl(C)). In this chapter, we consider sly(C) and give defining relations for U* for
each w € W. Then, letting q = ¢, a primitive ¢th root of 1 with ¢ odd, we obtain
the algebras U*. We study the finite-dimensional irreducible representations of these
algebras, showing that they all have dimensions which are powers of (. We also show

that the dimensions depend only on the central character of the representation.

2.1 Uy (sl,(C)) and U®

Let a;; be the Cartan matrix of s/,(C). Quantum sl,(€), which we shall designate
from this point on as U, is the algebra over the ring A = €[¢, ¢!, (¢ — ¢~")~!] with

generators E;, F;, K;, K_; (¢ =1,...,n — 1) and relations
N;K; = K;K;, K,K_j=K_;K;=1 (2.1)
I\','Ej = q“‘JEJ-I\’,- R I\’,'Fj =q ™ FjI\’,' (2.2)
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EF; - F;E; = 6;(K; - K[")/(g—q7") (2.3)

EE; —(¢+ ¢ )EE;E;+ E;E? =0  if a;; = —1 (2.4)
E.E;—E/E;=0 if a;;=0 (2.5)
F!F; —(q+ ¢ WFF;F,+ F;F} =0  if a;; = -1 (2.6)
FF;-F;F;=0 if a; =0. (2.7)

We have the following automorphisms T; (¢ = 1,...,n — 1) of the algebra U [6]:

TiE,' = —F,'I\’i 5 T,'Ej = E]‘ if a;; = 0 (28)
T,'Ej = —E,'Ej + q'lEjEi if a;; = —1 (2.9)
T.F,=-K'E; ; TF;=F; if a;=0 (2.10)
T.Fj = —F;F; + qFF; if a; = ~1 (2.11)
T,'I\’j = I\’jl{i—a” (212)

These automorphisms T; satisfy the braid relations.

Let w € W, and let s;,...s;,, be a reduced expression for w in terms of simple
reflections. Let 3y = o), ..., Bm = 8iy...8i,_,(ai,). For I = 1l....m, let Eg =
T;,...T;,_,E;, (these depend on the choice of reduced expression for w). For k =
(k1. km) € I, let EF = E};:Eg: These elements form a basis of U™ over A [3].

And for ¢ < j we have:

EpEp — ¢V Es Eg = 3~ o B, (2.13)

keZ7
where ¢, € Clq,q7'] and ¢; # 0 only when k = (ky,..., kn) is such that k; = 0 for
s <t and s > j [5]. The algebra U* is generated by the elements Ej3,, ...,Es,, with

defining relations 2.13. U* is independent of the choice of reduced expression for w

[3].

14



Setting ¢ = ¢, we obtain the algebra . The elements E5 (i = 1,...,m) are

central in U (3].

2.2 Preliminary Results on Irreducible i/ Mod-
ules

Definition 2.1 Let x and y be elements of UY (respectively UY). We shall say that
z and y q — commute if they satisfy zy — ¢*yx = 0 (repectively zy — e’yx = 0) for

somes € L.

The elements E} are central in the algebra {*. Thus, by Schur’s lemma, they

act as scalars in any finite-dimensional irreducible representation of I4.".

Lemma 2.2 Suppose Ej g¢-commutes with each of the generators Eg of UY. If

Ef. =0 on a finite-dimensional irreducible U -module V, then E5, =0 on V.

Proof: Let v € V be an eigenvector of Ej,. Then Ez v = 0. By irreducibility, v gener-
ates V as al{¥ module. Thus any element of ¥V may be written as a linear combination
of terms having the form Ef...E5mv. Then Eg Eft..Efrv = *ES5 . .EfnEgv = 0

(for some s € Z). Thus E3, =0on V.

Lemma 2.3 Let s;,...s;,,_, be a reduced expression for w in terms of simple reflec-
tions, and let s;,...s;, be a reduced expression for . Let V be a finite-dimensional
irreducible module over the algebra UZ. V is also a module over the algebra UY. Let U
be an irreducible submodule of V over the algebrald*. Then V = UBE;, U%..®E5 U
(direct sum as vector spaces) for some 0 < k < € — 1, where (l'imEémU = dimU for

j=0,...k

Proof: Let r be the smallest postive integer such that there exists u € U, u # 0,
satisfying E5t' € U+ Ep, U + ...+ Ej U. We know that r < ¢ — 1, because Ef _ acts

as a scalar on V. The sum U + Eg, U + ...+ E} U is direct (by our choice of r).

15




From 2.13 it follows that for : < m we have
Eg Ef = cHAlemIE: Eg + E5-1 fi 1(Epyyeoos Egpu_y )+ oot fo Epys os Epiy ), (2.14)

where f;(Eg,,..., Eg,_,) is a polynomial in Ejg,,..., Es,_,. Applying 2.14 to a vector
in U, we see that U @ Ep, U @ ... ® Ej U is invariant under Ep,, ..., E3,,_,. We also
have by 2.13

ESY(Efr—t . ER) = (B ER)ES + E5 gem-1(Epys ooy Egp_y) + oo

m=1
+90(Es3,,.... Es,,_,), (2.15)

for some s € Z. By irreducibility of U over U, the element u generates U over
UY, and any element of I/ may be written as a linaear combination of terms each
having the form E/;::: Eg:u Applying (2.15) to u, we see that the right-hand side
of this equation lies in U & Ep, U & ...® Ej U. Thus U D Eg, UD ... D E} U is
also invariant under Eg,,, and by irreducibility over the algebra U¥, we have V =
U Epg, U ...0 E; U.

Finally, if r = 0, the proof is complete. If » > 0, consider the maps Ej,, : EE;IU —
EgmU (: = 1,...,7). Suppose Efgm'ﬁ = 0. Then by choice of r, & = 0 so Eg;lﬁ = 0.
Thus the nullspace of each of these maps is 0, which implies clz'mE/g;lU < dimE} U,

hence dimEme1 U= dimEEm U.

2.3 UY for w = s;, 5182, 515251, S1525183, S1525183S9,
and s;5951535828

For w = 518281838251, we find that 8; = a1, F2 = a1 + g, 33 = ag, 34 = a1 + az + as,
Bs = az + a3, and B¢ = az. We then find, using (2.8) through (2.12). that Ej, = E,
Es, = —E\E; + ¢"YEyEy, Ep, = E,, Es, = EyEsEs — ¢ 'EyEV\E3 — ¢ 'E3E E, +
q iE3EyE,, Es, = —E3;E3 + ¢ 'E3E,, and Eg, = E;. We shall write Eg, = E,, 4a,

16



as Eyy, etc. With some computation, we find the relations (2.13) are as follows:

E\Ey; = qEEy

E\E, = ¢"'EyE, ~ Ey,
Ey2Ey = qE3Ey,
EyEvy3 = qErnsEn
Er2E123 = qEr23Eng
EqErgs = Erg3ky
Ey\Ey3 = "' Eg3sEy — Eya3
Ev2Ez3 = EysEra 4 (¢ — 7 ) Ey Eras
EqEy3 = qEnE,
Er23Ey3 = qEy3Eq2;
E\E3 = E3E,
EE; = ¢ E3Ey3 — Ens
EyE3 = ¢ E3E, — Ey3
Ei33E; = qE3E) 93

ExE; = q E3E;;

(2.16)

(2.17)

(2.18)

U* has the generator E, (and no relations). U2 has generators E;, Ej; with

relation (2.16).

U*1*?%1 has generators E,, E;2, E; with relations (2.16) through (2.18). In this

algebra, we find that the element E12[(¢ — ¢7')E1E; + ¢E12] is central (it is easily

checked that it commutes with each of the generators).

U219 has generators E;, Ey2, E,, Ej23 with relations (2.16) through (2.21).

17




U*1#2%1%3%2 has generators Ey, E), E;, Ei23, E3 with relations (2.16) through
(2.25). We find that the element E); E;3 — g E2E} 93 is central in this algebra.

U929 (which is equal to L(;'(sl4(C)), because s1898153525;1 is the longest
element of W for sly(C)) has generators E;, Eiz, E2, Ei23, Eo3, E3 with relations
(2.16) through (2.30). The elements E;;Eo3—qE2E 123 and (¢q—q~1)E3[(q—q~ ) E1Ey+
qE12)E123 + Er23[(q — ¢7') E1 Eg3 + qFh23] are central in this algebra.

2.4 Irreducible Representations of U’ for w = s,
5182, 515251, S1525153, S152515352, and $1525153528]

We now let ¢ = ¢, where ¢ is a primitive ¢th root of 1 (with € odd in most cases).
All representations considered will be finite-dimensional. Recall that if s;,...s;,, is
a reduced expression for w in terms of simple reflections, then the elements Ej
(z = 1,...,m) are central in U.’, so they act as scalars in any finite-dimensional

representation.

Proposition 2.4 The finite-dimensional irreducible representations of U', where ¢

is a primitive (th root of unity, are one dimensional.

Proof: Let V be an irreducible {?'*-module. Since U?* is generated by E;, V is

spanned by an eigenvector of E;. So dimV=1.

Proposition 2.5 The finite-dimensional irreducible representations of U*2, where
€ is a primitive {th root of 1, have the following dimensions:
¢ ifE!#0and Ef, #0

1 in all other cases.

Proof: Let V be an irreducible {***2-module. If Ef = 0 on V. then E; = 0
on V by lemma 2.2. Then V is one-dimensional, spanned by an eigenvector of Ej,.
Similarly if Ef, = 0, then dimV=1. If Ef # 0 and Ef, # 0, let v be an eigenvector
of E;, with eigenvalue A (A # 0). Then span(v, Eqv, ..., E{;'v) is invariant under E;

and Ej2, so this space is equal to V. v, Ejqv, ..., Ei7'v are eigenvectors of E; with
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eigenvalues A, ¢el,...,s“7 1A, respectively (each of these vectors is nonzero, because

Ef, # 0). Therefore these vectors are linearly independent and dimV = ¢.

Proposition 2.6 The finite-dimensional irreducible representations of U2 *2*' | where
€ is a primitive (th root of unity with ¢ odd, have dimensions
1 if Ef; = 0, and Ef or Ef is zero

14 in all other cases

Proof: The algebra ¢/***2°! is isomorphic to the quantum Heisenberg algebra H
discussed in Chapter 1, with the identification E; — b, E;3 — ¢~ ¢, and E; — a.
The element Ey3[(¢ — ¢~')E1E; + gEj3) is central in this algebra, corresponding to
the element ¢=%c[(¢ — ¢~ ')ab+ ¢~ 'c| in H. We also note from applying Proposition

1.8 to this case that [(¢ —c 1) E E; + EEw]Lv =(&— S—l)lEng + EY,.

Proposition 2.7 The finite-dimensional irreducible representations of U *2*1%2
where € is a primitive (th root of unity with ( odd, have dimensions:

1 if Bfp3 =0, Ef; =0, and E{ =0

1 if Ef; =0 and E{ =0

2 ifEfL, #£0, B4 #0, and (e — <) ELEL + B4, #0

V4 in all other cases

Proof: Let V' be an irreducible 2/**2****-module.

Case 1: Ef,; =0on V. Since Ej23 g-commutes with Ey, E,, and E;, Ef,3 = 0 on
V implies that E123 = 0 on V. Thus, by lemma 2.3, V = U where U is an irreducible
U**1.module. So dimV=1 or ¢.

Case 2: Ef)3 #0, Ef, =0, and Ef = 0on V. Ef, = 0 implies Ey; = 0. It then
follows that E; g-commutes with E;, so Ef = 0 implies £; = 0. We are thus left
with the two generators E; and Ej3, which commute. V is spanned by a common
eigenvector of these two generators, so dimV'=1.

Case 3: Efyy # 0, Ef, =0, and Ef # 0 on V. Ef, = 0 implies Ey; = 0. Let
v be a common eigenvector of F; and Ejz3, which commute. Then Ej3v = v,

with A # 0. The space span(v, Eyv, ..., E{™!) is invariant under E, E,, and FEj23. so
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is equal to V. Furthermore, the vectors v, E)v, ..., Ef'l are all eigenvectors of Fjy3
with distinct eigenvalues A, ¢ A,..., e~ ("1 )| respectively (the vectors are all nonzero
because Ef # 0). Thus dimV = ¢.

Case 4: Efy; # 0 and Ef; # 0 on V. V is a module over 42*2*1; let U be an
irreducible submodule of V over U1*2%1. F\,[(¢ —e~!)E  E;+¢Ey5] is a central element
of U1*2%1 50 it acts as a scalar on U. Let © = Ey3{(c — e 1) E1Ey + 2 E12). We see by
checking directly that @ Fy23 = ¢ Fy23z. We consider the following two subcases.

Case 4a: ¢ = Ey;[(e — e ')E1E2 + ¢Ey3] acts as a nonzero scalar a on U (thus

(e — e ))'ELEL + EY, # 0). We know that V = U + E13U + ... + E52U. The

I-’_ . . . .
spaces U, Ej53U. ... . Ei74U are eigenspaces of @ with corresponding to eigenvalues
7_ 4 « 'l_' . . . .
a, 2o, ..., ¢ la, sla. .., ¥ 7%a; these eigenvalues are all distinct (because ¢ is

odd). Thus V = U & E1330 & ... & Eiz3U. Each of the spaces in the direct sum is
nonzero and each has dimension equal to the dimension of I/, because Ef,, # 0. Thus
dimV = ¢dimU. From our previous results we know that E%, # 0 on U implies that
dimU = ¢. Therefore dimV = ¢2.

Case 4b: z = Ep[(s —c™Y)E1Ey;+<FEy2] = 0on U (thus (¢ 5‘1)€E{']E§+Ef2 =0).
Since V = U + Eyp3U 4+ ... + EiiU and xE153 = c2Ejgsz, it follows that © = 0 on
V. Since Efz # 0, E, is invertible so we have (¢ — ¢ ™ )E\ By + cE); = 0 on V.
Solving for Ey;, we find that Ej5 = (¢72 — 1)E1 E,. Substituting this into the relation
E\E, = 'Ey,E, — Ei,, we find that F1E, = cE,E; on V. Thus we see that E; and
E; q-commute with all generators. Thus Ef = 0 would imply that £, = 0, which
would further imply that E;; = 0, contrary to assumption. Therefore E} # 0. and
likewise Ef # 0. Direct verification shows that the element Ey53E5~" commutes with
each of the generators E), E}, E;. and Ej33. Thus this element is central and acts
as a scalar @ on V. FE, acts as a scalar ¢ (¢ # 0) on V. Multiplying both sides of the
equation E123E§‘1 = « on the right by F,, we obtain Fj33 = (a/c)E,. Since we can
express Ey; and E1o3 in terms of E7 and E5, V must be irreducible over the generators
F, and E,, which satisfy EyE, = ¢E,E;. Since Ef # 0 and E} # 0. we have dimV = ¢

(shown in the same way as when we let 1V be an irreducible ¢ *2-module).
Proposition 2.8 The finite-dimensional irreducible representations of US152°1%3%2
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where € is a primitive {th root of unity with ¢ odd, have dimensions:
1 if Ef;3 =0, Ef; = 0, and any two or three of Ef, E%, E%; are zero
2 ifEY #0 and (e — <) ELEL+ EL #0

¢ in all other cases

Proof: Let V be an irreducible U 1*2*1%3*2.module. The element E;3E3 — ¢E3Eq93
commutes with the generators E), E12, F2, Eia3, and Ea; of the algebra {f*1%25153%2
so is central. Thus E;F23 — ¢ E3F 23 acts as a scalar a on V.

Case 1: Ef, # 0 on V. Ef, acts as a scalar b (b # 0) on V. From E;;E;3 —
eE3F193 = a, we may solve for Ey3: Eo3 = (l/b)[sE'fEIEgEma + aEf;l], Thus if U
is an irreducible U?1*2°1*3-submodule of V', we see that U is Ej3-invariant, so U = V.
From previous results, we know that dim{/=(or ¢* when Ef, # 0 on I". Thus dimV=¢
or £2,

Case 2: Ef, = 0 and Ef,; = 0. Ej;3 q-commutes with all the generators, so
Ef,; = 0 implies Ey53 = 0 on V. It then follows that F;; now g-commutes with all
other generators in the representation, so Ef, = 0 implies E;2 = 0 on V. We are left
with the generators E;, E;, and Ej3, which satisfy the relations E1E; = 7' E, Ey,
E\E,3 = € 1Ey3E,, and EyEj3 = cEj3E;. We find that the elements £y E;E43' and
Ef"'Ef1E,3 are central in the representation, so they act as scalars: EyE,E5;! = 8
and Ef‘lEé‘lEge, = ~. Because E;, F,, and E,3 all q-commute, if the (th power of any
of these generators is 0, then the generator itself is zero. Thus if any two (or all three)
of these generators have ¢th powers equal to zero, then V will be one-dimensional,
spanned by an eigenvector of the third generator. Now suppose any two (or all
three) of these generators have {th powers not equal to zero. Let U/ be an irreducible
submodule of V over the algebra with those two generators and their relation. Then
(as before) dimU = ¢. But U is invariant under the third generator, hecause we
can solve for the third generator in terms of the first two from E) E2ESY = B or
E{'E{'Ey3 = 4. Thus in this situation dimV = ¢. So in this case we then have
dimV=1 or 4.

Case 3: Efy, =0, Efy3 # 0, Ef = 0. Let U be an irreducible *2*'**-submodule
of V. We have seen that in the case Ef, = 0, Ef,; # 0, and E{ = 0 on U, that U is
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one-dimensional, spanned by a vector u which satisfies Fyu = 0, Fyou = 0, Fyu = \u,
and Ejg3u = pu, where pu # 0 since Efy3 #£ 0. We have V = U + EplU + ... + EF'U.
Fr23(ERu) = pe™(ERu), and u, pe, ... , pe'~! are distinct, so V=U @ Ex3U & ... &
EL'U. It remains to show that each of these summands is nonzero. If ES; # 0 this

is clear. If E%; = 0, we use the following formula, which is proven by induction on m

(m=1,2,..):

1_€2m
1—¢2

ElE;':"; = E—mEgEl - €1~m ( ) Eg—1E123. (231)

Let m be the least positive integer such that Efiu = 0. Then, applying (2.31) to w,

we obtain

1— ~2m .
0=—ctm ( 1 Cﬂ ) LER  u. (2.32)

It follows that ¢ divides 2m, which implies that ¢ divides m, since ¢ is odd. Thus
¢ =m, and dimV = ¢ in this case.

Case 4: Ef; =0, Efp)3 # 0, Ef # 0, E = 0on V. Let U be an irreducible
Us*21% _submodule of V. From previous results we know that EY, = 0 implies
Ei; =0o0n U. Now E; g-commutes with the other generators in the representation
U, so Ef = 0 implies E; = 0 on U. Now a simple induction argument shows that
E12(ERU) =0, s0 Eya = 0 on V (since V = U + EgU + ... + E33'U). From the
relation Ej3FEy3 = EyErp + (¢ — ¢71)E3E)93, we now have 0 = (¢ — ¢7!)EyE 23 on
V. Since Ef,; # 0, this implies that E; = 0 on V. Then V irreducible over the
generators E;, E) 23, Es3, with relations E; Eyg3 = c¢E193Fy, E1FEy3 = ¢ ExEy — Ey23,
and Ey23F23 = c€Ej3FE 3. Relabeling these generators E; — E;. Ey93 — Eq, and
Ey; — E,, we see that we have the algebra #:*?*1. Then from previous results
(noting that 0 # Ef,; — EY{,) we have dimV = ¢.

Case 5: Ef; = 0, E{;3 # 0, E{ # 0, E{ # 0 on V. Let U/ be an irreducible
U215 submodule of V. From previous results we know that [ has a basis given
by (u, Fyu, ...,Ef‘l), where u is a common eigenvector of Ejp3 and Ej; Eisu = Au
(A # 0, since Efy; # 0), Equ = pu (u # 0, since Ef # 0). We also know that

Ei; = 0on U. E;F,;3 commutes with E;, so we see that E;F,3 = pA on U.

[SV]
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V =U+EpU+...+ E55'U, and EyEyg3(Efiu) = pAe®™(ERu) for any u € U. Thus
U, EyU, ... , E53'U are eigenspaces of EyEy53 with respective eigenvalues ul, pie?,

, pAe?-2 (distinct, since ¢ is odd). Thus V =U @ EpU & ... & E55'U. If Ef; #0,
then dimV = ¢dimU = ¢2. If E%; = 0, we use the following formula, which is proven

by induction on m (m =1,2,...):

€2m

-1
EnER = EREn + ( ) ER-VE,Eys. (2.33)

Let u € U, u # 0, and let m be the least positive integer such that Ejju = 0.
Applying (2.33) to u, we have

~2m __
0= pA (° - 1) ER'u. (2.34)

3

It follows that ¢ divides 2m, which implies that ¢ divides m, since ¢ is odd. Thus
¢ = m. It then follows that each space in the sum V = U & Epl’ % ... E5'U has

dimension equal to the dimension of U/, and dimV = ¢dim{’ = ¢2.

Proposition 2.9 The finite-dimensional irreducible representations of U2 25153281

where € is a primitive (th root of unity with ¢ odd, have dimensions:

1 ifEf;=0 El,=0,E5=0 and EE=0

1  ifEf;=0 Ef=0 Ef=0 Ef =0, and E£=0

¢ ifEL =0 E,=0 E' 40, E5#0, and (c — ™)' ELEL + By £ 0

¢ fEL, =0, EY =0, E£#0, E5 #0, and (e —e™ 1) ELEL + EL #0

£ ifEfy#0, (e~ ) E{E{ + B #0 ’

2 ifEL;#0, (e —e V) ELELHEL, =0, and (e—e~ V) Es|(e—e~1) Ey Ey+ € Eyg) Eyos+
Es5((e — E_I)E-lEzg +cFq23) #0

£ fEL #0, (e — ) ELEL+ EY =0, (€ — e V) Es[(e — 7V )ELEy + € Eyg) Eyaa+
Erss[(e —€ V) E1Eas+cE133) = 0. EL # 0. B # 0, and (s — e ™)' ELES+ Ely #£ 0

¢ in all other cases

Proof: Let V be an irreducible U;**2*1%:%2*1.module.




Case 1: Efy; = 0, Ef3 = 0, E{ = 0. It then follows that Eyp3 = 0, Ep = 0,
and Ef = 0 in the representation. We conclude then that V is an irreducible ¢/21*2*:.
module, so dimV =1 or £.

Case 2: Ef)3 =0, Ef; =0, E{#0, Ef, =0. Then Ey33 =0, E23 =0, and E;; =0
on V. Thus V is an irreducible module over the algebra with generators E;, E,, and
E3 with relations F\Ey; = ¢ 1FyE,, E1E3 = E3E,, and E;FE; = ¢ E3E,. Let v be a
common eigenvector of E; and F3. If Ef = 0, then E; = 0 and dimV = 1. If E: #0,
then the vectors (v, Ev, ..., E5~v) form a basis for V (they are eigenvectors of E;
and Ej3, with distinct eigenvalues as eigenvectors of F3), so dimV = ¢,

Case 3: Ef;;=0,FE%; =0, E£#0, E{, # 0. Then Ej33=0and Ey;3 =0on V.
Let U be an irreducible submodule of V' over the algebra with generators E,, Ei,, E,
and their relations, i.e. U*2*1. Since Ef, # 0, we have diml/ = . We know that
the element Ej;[(c — c~!)E 1 E; + cE)3) is central and acts as a scalar o on U. Let
t = Eyf(e — e7V)E\Ey + cEy;). We find that E3 = ¢~2Fsz, using Ej23 = 0 and
E,; = 0. We consider the following two subcases.

Case 3a: z = Ey3[(c — ¢71)ELE; + €Ey5] acts as a nonzero scalar o on U (Thus
(e — e V) ELELH EL, #0). ThenV = U+EsU+...+ES'U, and since v Es = =2 Esz,
we see that U, E3U, ... , E57'U are eigenspaces of = with eigenvalues a, ac~?, ...
, ae?-? (distinct, since ¢ is odd). Furthermore, each of these spaces has dimension
equal to the dimension of U, since Ef # 0. So dimV = ¢dimU = (2.

Case 3b: 2 = Eqp[(c—c™1)E1 Ey+¢Era) = 0on U (Thus (¢ — e1) EYEL+ EL, = 0).
Then since V = U + E3U + ... + E5'U and 2F5 = ¢~ %E 3z, it follows that z = 0
on V. Since Ef, # 0, this implies that [(s — ¢~1)E; Ey + cE] = 0 on V. As in case
4b of Proposition 2.7, we find that E;; = (¢72 — 1)E\E; and EVE; = cE,E; on V.
Thus V is an irreducible module over the algebra with generators F;, E,, and Ej;
with relations E)F; = ¢EyFE,, E\E3 = F3F;, and E;E3 = ¢~ E3E,. We then find in
the same manner as for case 2 of this proposition that dimV = ¢.

Case 4: Ef23 =0, Ef2 =0 on V. It follows that Fy;3 = 0, E12 = 0on V. Now
relabel the generators as follows: E; — E3, E; — E5, E3 — E;, and Ey3 — —c~ 1 Eys.

Now we find that we have the same generators and relations as we have for 2/;172°1 %21
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when Ef,; =0, E{; = 0on V. 7! is also a primitive £th root of 1, so this is covered in
cases 1 through 3 of this proposition. We conclude as in those cases that dimV =1,
¢, or 2. Note that the condition (i.e. whether or not it is zero) on the element
(67! — €)* ELEL + EX, of UP1$21%32%1 becomes here the corresponding condition on the
element (¢ — e~1)*ELEL + EL,.

Case 5: Ef,; =0, Ef; # 0, E53 # 0, and Ef # 0 on V. Ef,; = 0 implies
Ei23 = 0 on V. The element Ey3F23 — eE2E 93 = Ey2Fy3 acts as a scalar a on V,
so Ey3 = (a/b)E{;! on V, where b = Ef,. Let U be an irreducible submodule of V
over the algebra with generators E;, E13, E33, and E3 with their relations. Let u be a
common eigenvector of E; (with eigenvalue A # 0 for E;) and E3 (with eigenvalue p),
which commute. Then the space span(u, Ejou, ..., E31u) is seen to be invariant under
E,, E,2, E;3, and E3. Also, the vectors u, Ejju, ...,Ef;lu are eigenvalues of F; with
distinct eigenvalues, since Ey(Efu) = e™A(E%u). Thus U =span(u. Ejqu, ..., E{; 'u)
and dimU = {¢. Note also that E3(Eju) = e™u(Efu), so £3 = (u/A)Ey on U.
Er|(e — € Y)E1E; 4+ cEy;] commutes with Ey, Ey,, and E;, and thus must also
commute with F,3 and E3, since Fy3 = (a/b)E’f;1 and E3 = (u/))E;. Thus Ezf(e —
e~V E,Ey 4 cEy3] = 3 (f=constant) on U. Since Ef, # 0 and Ef # 0, Ey; and E; are
invertible and we can solve for F; in terms of 3. Ey2 and E;. Thus U is Ej-invariant,
so U =V and dimV = ¢.

Case 6: Efy3 =0, Ef; # 0, ES5 # 0, and E # 0 on V. Relabeling E; — Es,

E, » E,, E; — E,, Ey3 — —&~'Ey3 and E33 — —¢~1Ej3, we obtain the same algebra

-1 -1

we had in case 5, with ¢~' in place of ¢. Since ¢! is also a primitive ¢th root of 1,
by case 5 we have dimV = (.

Case T: Ef;3 =0, Ef, #0, E53 #0, Ef = 0, and Ef =0 on V. Then Ej33 =0
on V. Let U be an irreducible submodule of V over the algebra with generators E;,
Ei3, Ej3, and Ej3. These generators all g-commute (since Ejz3 = 0 on V), so E{ =0
and E{ = 0 on U imply E; = 0 and E3 = 0 on U. Let u be an eigenvector of Ej;
Epu = du, A # 0. As in case 5, we have Ey3 = (a/b)E{;' on V. where b = EX,.
Thus u is also an eigenvector of Eq3, so dimU =1. Now V = U + ERU +... + ESWU,

so dimV < £. But V is also a module over the algebra with generators E;, Ej2. and
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Ej, and we have seen that an irreducible module over this algebra with Ef, # 0 has

dimension equal to ¢, thus dimV > ¢. So dimV = ¢.

We now consider the cases where Ef,, # 0. Direct verification shows that the
element (¢ — ¢~')E1 E; 4+ ¢E12 q-commutes with each of the generators Ey, E,;, Es,
Ei23, and Ej3 (but not with E3). Let # = (¢ — ¢7')E\Ey + £ Ej5. Also recall that the
element (¢—¢ ") E3[(¢g— ¢~ ") E1 Ex + qEr2) Eros+ Er23[(g—q7') E1 E23+ g Eq23) is central
in Y1022193%2% 50 (e —e M) El(e —e ™) Ey By + € E1g) E1a3+ Eraa[(c — 7' ) E1 Eg3 + ¢ Ea3)
acts as a scalar in a finite-dimensional irreducible representation of 21521535291 et
y=[e—e ) E1Eyp+cEs]and z = (s =7 E3[(s — 7 ) By By + 2 By Evgs + Eqas(c —
e"YEEys + cE133], 50 = = (¢ — ¢71)E3xEy93 + E123y. = = o for some scalar a on
V. For the following cases, let U be an irreducible submodule of V' over the algebra
with generators Fy, Ey,, E3, Fj23, and Fp3 with their relations. Since @ ¢g-commutes

¢

with each of the generators. z° is central in this algebra. By the same proof as in

lemma 2.2, either 2 = 0 on U/ or 2* # 0 on U/ (i.e. x is invertible on [7). Also we have
2l = (e —e™V) E!Ey( + EY,. and likewise y* = (¢ — ¢1) E!Egsl + E .

Case 8: Ef,; #0on V, 2* # 0 on U. In this case we may solve for Ej in terms
of Ey, Ey2, E3, Fy3, and Ey3 from the equation z = (¢ — ¢ 1) E3a B3 + Eia3y = a.
Thus U is Es-invariant, so V = U and dimU = ¢? in this case.

Case 9: Efyy # 0on V, 2z = 0on U (thus (¢ —e 1) E'Eyl + E{, = 0), and
z = (¢ —e Y )EsxE13 + Ei3y = a # 0 on V. It follows that Ejpy = o on U.
V = U+ EsU + ... + ES'U, and we find that (E123y)EY = ¥ ET(Eja3y). so the
spaces in the sum are eigenspaces of Fjo3y with distinct (since ¢ is odd) eigenvalues
a, ag?, ..., ae? 2 Thus V = U EU S .3 EST'U. If Ej # 0, we conclude
that dimV = ¢dimU. If Ef = 0, We use the following formula, which is proved by

induction:
1 — ~m

l—=¢

(Erpsa) EM = ET(Erasr) — ( ) EMY(Erpay) (2.35)



Let u € U, u # 0. Let m be the least positive integer such that £3'u = 0. Applying

equation 2.35 to u, we obtain

= AT 2.
0 a( — >E3 u, (2.36)

from which we conclude that m = ¢. Thus we again have dimV = ¢dimU. In this
case we previously found that dimU = ¢, so dimV = ¢2.

Case 10: Ey; #0on V, z = 0 on U (thus (¢ — e ) ELE,¢ + EY, = 0), and
z2=(e—¢€1)E3zE133 + E13y =0 on V. It follows that Ey23y =0on U,soy =0 on
U. We find that yF3 = cE3y, and since V = U + E3U + ... + E'é'lU we conclude that
y = 0 on V. Equation 2.35 now becomes ( E1y32) EJ* = ET*(E123), so we also see that
Ej3x =0o0n V, hence z = 0 on V. From 2 = 0 we find that E,; = (72 — 1)E, E,
and E\E; = ¢E3E, on V. From y = 0 we find that Ej53 = (¢7% — 1)E, Ej3 and
E\Ey; = cEypE; on V. Also, 3¢ = (¢ —E'l)eEsz;;l? + Ef,; = 0; since we have
assumed that Ef,; # 0, it follows that we must also have Ef # 0 and Ej; #0. V is
thus an irreducible module over the generators E;, F2, Ea3, and E5, which satisfy the

relations:

E\E;, = c¢E,E, (2.37)
E\Eys = cEnE, (2.38)
E\E; = EsE (2.39)
E B3 = ¢EnE, (2.40)
EEs = ¢ 'E3E; — Ep (2.41)
EpEs = cEsEqy; (2.42)

Let W be an irreducible submodule of V over the algebra with generators E;, Eq3,
and E;. This algebra is obviously isomorphic to U$1%2*1, which was considered earlier.
The element Fy3[(c —: 1) Ey E3+¢< Ea3) is central in this algebra, and so acts as a scalar
Bon W. Let ¥ = Eg[(c —c ') E;E3 +cEp3). Wehave V=W + E;W 4+ ... + Ei-'Ww.

We now consider the following subcases:

[SV]
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Case 10a: Ef # 0, Ef3 # 0, and & = Epf(c — e 1)EyE3 + cFgs] # 0 on W
(thus € — e~V ELEL + E, # 0). We find that #E, = e~2E;. Thus the spaces W,
E\W.,...,Ef"'W are eigenspaces of & with distinct (since ¢ is odd) eigenvalues 3, B2,
.., Be¥=2 Since Ef # 0, we have dimV = ¢dimW. dimW = ¢, sinceE%; # 0, so
dimV = £,

Case 10b: Ef # 0, Ei3 # 0, and & = Ey[(c — ¢ 1)EyEs + ¢Ey3) = 0 on W.
Then [(¢ — ™) E;E3 + €Eg3] = 0 on W. We find that [(c — ¢7')E;E3 + ¢Eo3)Ey =
e 1E[(e —e7')E;E3 + € Eg3). 1t then follows from V = W+ E\W + ...+ Ef~'W that
[(e —e™')E;E3+ €Ey3) = 0 on V. We then find that Eo3 = (672 — 1)E3E3 on V, and
that E,FE3 = ¢E3E; on V. V is then irreducible over the generators E;, E,, and Es,
which satisfy the relations EyE; = ¢ELE,, E\E3 = E3E,, and E,E; = cE3FE,. Since
(e — e ELEL + E% = 0 and E; # 0, we have Ef # 0. V' then has dimension ¢,

2.5 UY for w = s183, S15389, 51535251, and $15382553

For w = s1538,5153, we find that 8, = a1, B2 = a3, B3 = a1 + a3 + a3, 35 = a3 + as,
and Bs = a1 + a;. We then find, using (2.8) through (2.12), that E3 = E, Ej, =
Es, Eg, = Ey33 = F3E\E; — ¢ VEsEyFy — q  EVEQEs + ¢ 2EQE Fs. B, = Ep3 =
—E3E;+q'EyEs, Es, = E13 = —E Ey+ ¢~ EyE;. With some computation, we find

the relations (2.13) are as follows:

E\E; = ESE,; (2.43)
EyErg3 = qE13Eq ('2.44)»
E3E 23 = qFE123F3 (2.45)

E\Ey = ¢ 'ExE) — Enas (2.46)
E3Es3 = qEEs (2.47)
Er23Ey3 = qE3F 93 (2.48)
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E\Ey, = qEnEy (2.49)

E3E1; = ¢ ErgEs — Eqs (2.50)
E133E 2 = qE12E123 (2.51)
EyEyy = EypEo3 (2.52)

U** has generators E;, E3 with relation (2.43). U**3*2 has generators F;, Es,
Ey23 with relations (2.43) through (2.45). U*1%3*2*1 has generators F;, E3, Ey23, and
E,3 with relations (2.43) through (2.48).

U*%3%29133 hag generators Ey, E3, Eig3, E23, and Ej; with relations (2.43) through
(2.52). We find that the element [(¢ — ¢™')E1Eq3 + qEq23)[(q — ¢ 1) E3Ey2 + qEqa3) is

central in this algebra.

2.6 Irreducible Representations of i/’ for w = s;s3,
$18382, S1838281, and s1535251S3

Proposition 2.10 The finite-dimensional irreducible representations of U'**, where

g is a primitive {th root of unity, have dimension 1.

Proof: Let V be an irreducible 4?1*-module. E; and E3 commute. so V is spanned

by a common eigenvector of E; and Ej.

Proposition 2.11 The finite-dimensional irreducible representations of U **°?,
where ¢ is a primitive (th root of unity, have dimensions:

1 ifEf;=0

1 ifEf=0and E£=0

¢ in all other cases

Proof: Let V' be an irreducible #:1%**2-module. If Ef,; = 0. then Ej23 = 0 and
V is spanned by a common eigenvector of E; and Ej. If Ef = 0 and E§ = 0, then

E, = 0 and E3 = 0 and V is spanned by an eigenvector of Ey3. If Efy3 # 0 and
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Ef # 0, let v be a common eigenvector of E; and E3. Then span(v, Ejpsv, ..., Ef}v)
is invariant under each of the three generators, and the vectors v, E123v, ..., Efzjv are
eigenvectors of E; with distinct eigenvalues. Thus dimV = ¢. Similarly, dimV = ¢ if

Ef,s #0and Ef # 0.

Proposition 2.12 The finite-dimensional irreducible representations of U2 %3525
where € is a primitive {th root of unity with { odd, have dimensions:

1 if Ef;3=0 and Ef; =0

1 if Efj3=0, Ef =0, and E{ =0

2 fEL#0.E4L; #0. and (e — e ) EXEL + EY,, £ 0

¢ in all other cases

Proof: If we relabel the generators E; — E;, E3 — Ei, Fi133 — E2, and E;3 —
E,, we find that we have the same generators and relations as we had for 421523153321
in the case where Ef,; = 0, E%; = 0. From these results we see that dimV = 1, ¢, or
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Proposition 2.13 The finite-dimensional irreducible representations of Us1%2%2%152
where ¢ is a primitive (th root of unity with { odd, have dimensions:

1  ifEf)3=0,Ef=0and E£=0

1 if Ef)3=0, Ef, =0, and Ef; =0

€ if Bl #0 and (e — e EfEf + Elpy # 0

e if By # 0 and (¢ — 1) E4Ef, + Efyy # 0

¢ in all other cases

Proof: Let V' be an irreducible ¢?1*2°2*1%.module. The element [(¢ — ¢~ ') E; Ey3 +
qE23)[(g — ¢71)E3Er; + qF123] is central in Y®1%2%241% | 50 letting [(¢ — c71)E1 Eq3 +
eEygs)[(e—€7)EsEya+¢Ergs] acts as ascalar aon V. Let ¢ = [(¢—c~!) E; Eoz+¢ Eya),
and let y = [(¢ — ¢71)E3E12 + cE123), so 2y = a on V. We also note that z and y
each g-commute with each of the generators. so each is either 0 or invertible on V.

Case 1: Efzs =0on V. Then Ej23 = 0 on V., and we are left with the generators

30



E,, Es, Ej3, and E;,, which satisfy

E\E3; = E3E,
E\Eyzs = ¢ 'EnkE;
E\E,, = cEnE;
EsEy = eEykEs
E3E;; = ¢ 'EpFE;

E2E23 = Exkr

We find that E;E3 and Ey3F;; are central in the representation. If Ef = 0 and
E§ = 0, then E; = 0 and E3 = 0 on V, and V is one dimensional, spanned by a
common eigenvector of Ey3 and Ej,. Similarly, if EZ; = 0 and Ef, = 0, dimV = 1. In
all other cases we find that dimV = ¢. For example, if Ef # 0 and Ej; # 0, let v be an
common eigenvector of Ey and E3. ExEy; = 3 on V, and since E; # 0 we can solve
for Ey, in terms of Fj3 from this equation. Thus span(v, Ey3v, ..., Eﬁ;l) is invariant
under each of the generators. Also the vectors v, Ezsv, ..., E53' are eigenvectors of E;
with distinct eigenvalues, so dimV = (. The other cases are similar.

Case 2: Ef,; #0,2#0on V, and Ef # 0. Let U be an irreducible submodule of
V over the generators E;, E3, Ei3, and Ez;. From z[(¢ — ¢ ')E3E1; + cEq3) = a,
and using the fact that = and Ej5 are invertible, we can solve for Ey; in terms of the
other generators. Thus U/ in Ejz-invariant, and V' = U. By previous considerations
we know then that dimV = ¢ or 2.

Case 3: Ef;; #0, x # 0 on V, and Ef, # 0. Relabeling E; — Ej3, Eo3 — Ej,
Eiy — Es, and Ejp3 — —c~1E}33, we obtain the same algebra as in case 2, with ¢!
in place of €. Thus by case 2 we have dimV = ¢ or ¢2.

Case 4: Ef,; £ 0,2 #0on V, Ef =0, and E{; = 0. Let U be an irreducible
submodule of V over the algebra with generators E;, E3, Ei3, and Ej3. Since Es
g-commutes with each of these generators and E5 = 0, E3 = 0 on U'. The remaining
generators E;, Eij3, and Ej3 on U satisfy the same relations as the gé11erators in

U2 (with Ey — Ey, Ei33 — Eig, and Ej3 — Ej3). Thus dimlU = (. since Ef,3 # 0.
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Also, the element E,j3z acts as a nonzero scalar on U. We find that (Eyg31)F); =
£2Ey2(Eq23z), so the spaces U, Ey,U, ... , Ef;lU are eigenspaces of Fy3x with distinct
eigenvalues (since ¢ is odd). Thus V = U @ Ey2U & ... ® Ej;'U. We shall show that
each of the spaces in the sum is nonzero. For that we need the following formula,
which is proved by induction on m:

&.Zm

1—¢?

1 -
ESEIT'; = €_mE1";E3 - El—m ( ) El'n;—lElgg (253)

Let u be an eigenvector of Ej3 in U; Ejp3u = Au with A # 0. Let m be the least

positive integer such that ET3u = 0. Applying 2.53 to u. we obtain:

: 1 —g?m
0=\l (1——_—2—) E% 1ty (2.54)

It follows that m = ¢, since ¢ is odd. Thus each of the spaces in the sum V =
UBEU®...T Ef7'U is nonzero, and by lemma 2.3 this gives dimV’ = ¢dimU. Thus
dimV = .

Case 5: Ef,; # 0,y # 0 on V. If we relabel the generators E; — E3, E3 — E;,
Ey3 — FEyy, Eyy — Eg3, and Ey23 — Ejg3, we find that we have not changed the
relations. Thus this case is covered by cases 2, 3, and 4.

Case 6: Efy; # 0,2 =0,and y = 0 on V. Then Ejp3 = (¢72 — 1)E Ey3 and
Ei23 = (672 — 1)E3E,;;. We then find that E\Ey; = ¢Ex;Ey and E3Ey; = cEoE;.
Thus V is irreducible over the generators E;, E3, Ej3, and E;3, which satisfy the

relations

E\E3 = E3F;
E\Eys = cEqyE,
E\E, = cE\E,
EsE, = cE)E;
E3FEy;3 = cEyE;

E2Ey = Epkr,



Note that the th power of each of these generators must be nonzero. For example, if
E! =0, then E, = 0 on V, which would imply that E;23 = 0, a contradiction. We also
find that Ey3ES! commutes with each of the generators, so is equal to a scalar 8 on
V. Thus we can solve for Fy3 in terms of E};. Let v be a common eigenvector of E,;
and E3. The space span(v, Eqqv,..., Ef; 1v) is invariant under each of the generators,
and the vectors v, Eyqv, ..., Ef;'v are eigenvectors of E; with distinct eigenvalues.

Thus dimV = ¢.

2.7 UY for w = s98183 and 59515359

For w = s2818382, we find that 3y = aq, o = a1+ a3, B3 = s+ a3, 3y = oy +az +as.
We then find, using (2.8) through (2.12), that Es = E;, E3, = Ey2 = —EE; +
q'EV\Ey, Eg, = Ey3 = —E3Es + 7 E3E,, Ep, = Ens = EoEsEy — ¢ EsEyEy —
¢ 'EyEyE; + ¢~ 2E  E3E,. With some computation, we find the relations (2.13) are

as follows:
E:Er; = qErE, (2.55)
EyEqy3 = qE3E, (2.56)
Ey2Eq3 = Eg3En2 (2.57)
E2Er3s = Ey3Ear + (¢ — ¢ ') EnzEns (2.58)
E13E123 = qE123E12 (2.59)
Eq3E123 = qE193E9 ' (2.60)

U**1% has generators Ey, Ey2, and Ej3 with relations (2.55) through (2.57).
U?*2%1%3%2 has generators Es, Eya, Ea3, and E123 with relations (2.55) through (2.60).
We find that the element E;E123 — qFE12E,3 is central in this algebra.
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2.8 Irreducible Representations of U for w =
$98183 and s$815389

Proposition 2.14 The finite-dimensional irreducible representations of U2*1%3
where € is a primitive {th root of unity, have dimensions:

1  ifE{=0

1 if Ef; =0 and E5; =0

14 in all other cases

Proof: Let V" be an irreducible ¢2****-module. If E% = 0, then E;, = 0 and V
is spanned by a common eigenvector of Ej; and Ey3. If Ef, = 0 and E}; = 0, then
E; = 0 and F23 = 0, and V is spanned by an eigenvector of E3, so dimV = 1. If
E% # 0 and Ef, # 0. then letting v be a common eigenvector of E;; and Ea3, we find
that span(v, Eyv, ..., E5~'v) is invariant under each of the generators, and the vectors
v, Eqv, ..., E5™% are eigenvectors of Ej; with distinct eigenvalues. Thus dimV = ¢.

Similarly, if E5 # 0 and Ej; # 0, then dimV = (.

Proposition 2.15 The finite-dimensional irreducible representations of US2*1%2%2,
where € is a primitive (th root of unity with ¢ odd, have dimensions:

1 ifEf, =0 and Ef3 =0

1 ifEfy3 =0, ES = 0. and E12° or E%; is zero

¢ in all other cases

Proof: Let V be an irreducible ¢422*1*2*2.module. The element E;E 23 — qE12Eq3
is central in U*2°1%3%2 g0 FEyE 93 — cF13F23 = a for some scalar a on V. |

Case 1: Ef #0. Let U be an irreducible submodule of ¥’ over the generators E,,
Ei,, and Ej3. From previous results we know that diml’ = 1 or {. From FE;FE 3 —
cE12E33 = o we can solve for Ejj3 in terms of the other generators. so U7 is Ejj3-
invariant and {7 = V",

Case 2: Ef = 0, Ef, = 0, and Ef; = 0. Since E;; and E»; g-commute with

the other generators, we have Fi; = 0, and Fy3 = 0 on V. It then follows that E;
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g-commutes with Ey23, so E3 = 0. Thus V is spanned by an eigenvector of E;,3, and
dimV = 1.

Case 3: Ef =0, Ef; # 0, and Ei3 = 0. Ef; = 0 implies E;3 = 0 on V. This
implies that E; g-commutes with the other generators, so F; = 0. We are left with
the generators Ey; and Ejg3, which satisfy Eip3F12 = ¢ 'Ej3E123. Since Ef, # 0,
dimV = ¢ if Ef); # 0 and dimV =1 if E{,; = 0.

Case 4: Ef =0, Ef, = 0, and E%; # 0. By the same argument as in case 3, we
have dimV = ¢ if E{,; # 0 and dimV =1 if Ef,3; = 0.

Case 5: E{ =0, Ef, # 0, and E%; # 0. Let U be an irreducible submodule of V
over the generators E;, Fi3, and Ey3. Since E; q-commutes with Fy; and Ej3, E; =0
on U. Then U is spanned by a common eigenvector u of E;; and Fj3; Eiou = Au and
Epsu = pu, where A # 0and pt # 0. V = U+ Ey93U +...4+ E{5; U, and the spaces in the
sum are eigenspaces of E;, with distinct eigenvalues, so V = U & E 23U & ... &EEf;;,}U.
If Ef,; # 0, it follows immediately that each of the spaces in the sum is nonzero, and

dimV = ¢dimU = (. If Ef,; = 0, we use the following formula, which is proven by

induction on m:

1 ~2m

EyElyy = EfyEr 4 (¢ — &™) ('1;_:;2—) Ef33' ErzEns (2.61)
Let m be the least positive integer such that Ef3;u = 0. Applying equation 2.61 to

u, we obtain:
1— =2m

1 —¢?

0=Au(e —¢ 1) ( ) ET3tu (2.62)

We conclude that ¢ = m, since ¢ is odd. Thus we again have dimV = ¢dimU’ = ¢.

2.9 U" and Irreducible Representations of I/}’ for
W = 8518983

For w = s;82s3, we find that 3, = a1, B2 = oy + a3, 33 = a; + a2 + a3. We then find,

using (2.8) through (2.12), that Es = F\, Es, = Ey3 = ~E\E; + ¢7'EQEy. Ep, =




Ei23 = E\E2Es — ¢ BBy Es — ¢ Y E3EVE; + ¢ 2E3 E E,. With some computation,

we find the relations (2.13) for U**2*s are as follows:

EyEqy; = qEn2E,y (2.63)
Ey\Ergs = qErs By (2.64)
Er3Eq23 = qEr23 (2.65)

Proposition 2.16 The finite-dimensional irreducible representations of U *:*3,
where € is a primitive £th root of unity, have dimensions:
1 if any two or three of Ef, Ef,, and Ef;; are zero

£ in all other cases

Proof: Let V be an irreducible Y 1*2*3-module. We find that ElEf;1E123 and
E{"'E3Ef;} are central in U21*3*, so we have By Ef;'Ey33 = a and Ef'EEfl =
on V for some scalars o and §.

Case 1: Any two (or all three) of the th powers of the generators E;, Ey2, Fi23
are 0. Then those two generators are 0 on V, and V is spanned by an eigenvector of
the third generator. So dimV = 1.

Case 2: Any two (or all three) of the ¢th powers of the generators E,, E,,
E,33 are nonzero. Suppose, for example, that Ef # 0 and Ef, # 0. Let U be an
irreducible submodule of V over the generators E; and E;;. Then dimU = ¢, and
from ElEf;1E123 = a we can solve for E,93 in terms of F; and E3, so U is Ejg3-

invariant and V = U, so dimV = £. The other cases are similar.

2.10 U for the Remaining Elements of the Weyl
Group

The remaining (nonidentity) elements of the Weyl Group for sly(C) are s, s3, 5231,
8283, $382, 535283, 938251, $3525351, $3515253, and S332338182. Each of their algebras

U™ have the same (with a change of indices) generators and relations as algebras
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already considered. For example, with the change of indices 1 — 3, 2 — 2, and

3 — 1, Y?*3?2%3%122 has the same generators and relations as the algebra U*1921%s%2,

2.11 A Final Word

In the paper [3], a conjecture is made regarding the dimensions of the irreducible
representations of solvable quantum groups. Namely, this conjecture states that the
dimension should be £(1/2)4imO=  where O, is the symplectic leaf containing the re-
striction of the central character of 7 to Zy. This conjecture has been shown by Kac
to hold for the quantum Heisenberg algebra considered in Chapter 1. For the algebras
of Chapter 2, this conjecture has not been checked but it does predict the possible

dimensions of these representations correctly.
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