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Abstract
In this paper we first define a q-deformation of the universal enveloping algebra of the
Heisenberg Lie algebra. We study this algebra and its finite-dimensional irreducible
representations when q = s, where e is a primitive eth root of 1 with e odd.

For each element of the Weyl group of a finite-dimensional simple Lie algebra,
there is a corresponding solvable quantum group. We find generators and relations
for each of these algebras in the case of the Lie algebra sl 4(C), and we also find the
central elements. Setting q = , where is a primitive eth root of 1 with odd,
we then study the finite-dimensional irreducible representations of these algebras.
It is shown that each representation has dimension either 1, e, or 2. and that the
dimension depends only on the central character.
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Chapter 1

The Quantum Heisenberg Algebra

In this chapter we define the quantum Heisenberg algebra 7-I. which is a q-deformation

of the the universal enveloping algebra of the Heisenberg Lie algebra. Setting q = e, we

obtain the algebra 7H. We examine the finite-dimensional irreducible representations

of this algebra when is a primitive th root of 1, with e > 2.

1.1 Definition and Basic Properties

Definition 1.1 The quantum Heisenberg algebra Al is the associative algebra over

the ring A = C[q, q-', (q - q'l)1-] with generators a, b, c and relations

ab-qba = c (1.1)

ac-q-lca = 0 (1.2)

bc-qcb = 0 (1.3)

We further define 7-, E C, e # 0, 1, or -1, as the algebra 7t/(q - )-). We

observe that 'H1 is the universal enveloping algebra of the Heisenberg Lie algebra.

Proposition 1.2 (a) The elements aibJck ,(i,j, k) E Z+, form a basis of Td over A

and of Xc- over C.

(b) The algebras 7t and 7-t have no zero divisors.

5



Proof: (a) The elements aibick clearly span. To prove they are a basis, it suffices to

show that the element cba reduces to the same element whether we begin by reducing

cb or ba in the product. Checking, we have (cb)a = (q-lbc)a = q-lb(ca) = b(ac) =

(ba)c = q-'(ab - c)c = q-labc - q-1c2 and c(ba) = q-'c(ab - c) = q-(ca)b - q-lc2 =

(ac)b - q-lc 2 = a(cb) - q-lc2 = q-'abc - qlc 2.

(b) To see that there are no zero divisors, we note that (aibick + lower-degree

terms)(arbsc t + lower-degree terms)= qkr-Jr-kai+rbi+°ck+t + lower degree terms).

Proposition 1.3 The element (q -q-)abc - q- c2 generates the center Z of 'H.

Proof: It is easily checked that this element commutes with each of the generators

a, b, and c. Let =(aibck + lower-degree terms) be central. Then aibck must

commute, modulo lower-degree terms, with each of the generators a, b, and c. This

gives the condition that i = j = k. Then z =(ambmcm + lower-degree terms) -

q(1/2)m(m-l)[abc - q-l(q - q-')-lc2] m is a central element of degree less than that of

z. By induction on degree, the proof is complete.

Lemma 1.4 (a) In , for in = 1,2,3,...

abm = qm bm a + (q-(m-l) + q-(m-3 ) + ... + qm-3 + qm- )bm-lc (1.4)

am b = qm bam + (1 + q2 + ... + q2(m-2) + q2 (m-l))am-lc (1.5)

(b) in 7, for m = 1,2, 3,...

abm = embma + l-m (1 2 ) bm-lC (1.6)

aam b = m bam +- ~(1E2 am-lc (1.7)

Proof: (a) By induction on m. Part (b) follows from part (a), with # 0, 1. or -1.

Proposition 1.5 The center Zc of t,, where is a primitive eth root of 1, is gen-

erated by a, b, c, and ( - e-')abc+ -l1 c2 .
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Proof: c clearly commutes with a and b. at commutes with c, and with b by

the preceeding lemma. Likewise be commutes with a and c. The element (q-

q-1 )abc - q-c 2 lies in the center Z of t, so (e - -l)abc + -c 2 lies in Z. Let

z =(aibJck + lower-degree terms) be central. Then aibick must commute, modulo

lower-degree terms, with each of the generators a, b, and c. This gives the condi-

tion that i = j = k (mod ). Then z =(am+erbm+escm+et + lower-degree terms) -

e(1/2)m(m-)aerbeScet[abc - -1 (E - _-I)-1C2]m is a central element of degree less than

that of z. By induction on degree, the proof is complete.

1.2 Irreducible Representations of X.-

We now consider the finite-dimensional irreducible representations of 7'I, where is

a primitive th root of 1, with e > 2. Since at , be, ce, and ( _- - 1)abc + -1lc2 are

central elements of 7-, by Schur's Lemma they act as scalars at = x, b = y, ce = z,

and (e - e-l)abc + - 1l c2 = tv in any finite-dimensional irreducible representation.

Proposition 1.6 The finite-dimensional irreducible representations of 7-,, where 

is a primitive fth root of 1, have the following dimensions:

1 if z = 0, and x or y is zero

t/2 if z 0, x = O, y = 0, and e is even

e if z = 0, x 0, and y 

if z 0, and x 0 O or y 0

if z 6 O, x = 0, y = 0, and e is odd

Proof: Let V be an irreducible 7C-module.

Case 1: Suppose that z = ce = 0 on V. Then, since c q-commutes (see definition

2.1) with a and b, it follows that c = 0 on V (see the proof of lemma 2.2). Then V is

an irreducible module over the generators a and b, which satisfy the relation ab = eba

on V.

la) If x = ae = 0, then since a and b q-commute on V, it follows that a = 0 on V.

Then V is one dimensional, spanned by an eigenvector of b. Likewise, if y = b = 0,

then dimV = 1.

7
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lb) If x = at 0 and y = be 0, let v be an eigenvector of a; av = Av,

A # 0. Then the vectors , bv,...,bt-lv are eigenvectors (these vectors are nonzero

since be # 0) of a with distinct eigenvalues A, eA,...,e-I`A, respectively. The space

span(v, bv,..., belv) is invariant under a and b (and c, since c = 0 on V), so by

irreduciblility is equal to V. Thus dimV = e.

Case 2: z = ce -~ 0, and x = at # 0 or y = be 0. Suppose first that x = at O.

V is also a module over the algebra with generators a and c and relation ca = ac.

Let U be an irreducible submodule of V over this algebra. By the same reasoning as

in case lb), we see that dimU = e. Then from (e-e-)abc + e-lc2 = w, we can solve

for b, obtaining b = [xz(E - e-)]lat-[w - c2 ]ct-X. Thus U is invariant under b,

so V = U by irreducibility and dimV = e. Similarly, if y = be 5 0 we have dimV = e.

Case 3: z = ct 0 x = at = 0, and y = be = 0. Let U be an irreducible

submodule of V over the algebra with generators a and c and relation ca = ac.

Since a q-commutes with c and a = 0, it follows that a = 0 on U (see lemma

2.2). Thus U is one dimensional, spanned by an eigenvector ut of c; cu = Au, with

A 0 since cte O. The space span(u, bu,...,bt-lu) is seen to be invariant under

a, b, and c, so V = span(u,bu,...,be-lu). We note further that cbmu = c-mAu, so

the spaces U, bU, ... ,bt-lU are eigenspaces of c with distinct eigenvalues. Thus

V = U bU E ... · bt- U (direct sum as vector spaces).

3a) Suppose e is odd. Let m be the least positive integer such that bm u = 0.

Applying equation 1.6 to u, we obtain

O= Al-m (1-2m) bm-lu (1.S)

Thus e divides 2m. Since e is odd, it follows that e = m. Thus each of the spaces in

the sum V = U $ bU ... bt -'U is one dimensional, and dimV = .

3b) Suppose e is even. Then, applying equation 1.6 to u with m = /2, we obtain

abe/2u = 0 (1.9)
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For m = /2 + 1,...,e- 1 we have

abm u = Ae 1 bm-l (1.10)

It follows that the space span(be/2u, bt/2+lu, ..., be-u) is invariant under a. It is also

invariant under c, and invariant under b since be = 0, Thus this is an invariant

subspace of V. But it does not contain the vector u, because V = U A bU 3 ... t bt-U

and u E U. Thus by irreducibility, since this space is not equal to V, it must be

0. Thus V = U bU 9 ... D b/ 2-1U. Now let m be the least positive integer

such that bmu = 0. By the same reasoning as in case 3a, we see that e divides

2m. Since m < /2, it follows that m = /2. Thus each of the spaces in the sum

V = U E bU ... G be/2-1U has dimension one, so dimV = /2.

We now consider only the case where is a primitive th root of 1 with ( odd.

Proposition 1.7 In any finite-dimensional irreducible representation of 7-., with 

a primitive eth root of I with odd, we have the relation

'oe = (e -l -)exyz + 72 (1.11)

where at = x, b = y, ct = , and (e - -1 )abc + 6- 1C2 = .

Proof: Case 1: If z = 0, then c = 0 so w = 0, and the relation is satisfied trivially.

Case 2: z 0, and x = 0 or y = O0. Suppose first that at = = 0. As in case 3

of Proposition 1.6, there is a vector u such that au = 0 and cu = Au, where Ae = -.

We can rewrite the element ( - e-l)abc + e-'c 2 as (e2 1)bac + c2. Applying this

element to u, we get wu = A2u. Thus w = A2 , and raising this to the (th power gives

w = z2 = ( - e- ) exyz + 2. If be = 0 the proof is similar.

Case 3: z Z 0, x y~ 0, and y # 0. We have seen that in this case the representation

is ( dimensional. Also in this case, a, b, and c are diagonalizable. For example, letting

v be an eigenvector of a with eigenvalue A, the vectors v,cv',...,c-lv are a basis

for the irreducible 7--module V, and these are eigenvectors of a with eigenvalues
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A, Ae-',...,E-(e-1). Thus the determinant of a is the product of these eigenvalues,

which is x. Similarly, the determinants of b and c are y and z, respectively. We now

take the determinant of the equation

w - e-1C2 = ( --l)abc (1.12)

The determinant of the right-hand side is ( - e1)exyz. The determinant of the

left-hand side is
e-1

II(W - 6-1 s262j), (1.13)
j=O

where # is an eigenvalue of c, so it' = -. To compute this product we use the Gauss

Binomial Formula

r-i r-1 [rn] ... r j + 1]
II (a + q2j/3) = rm + qm(m-1)3m + E [ 1 ]) qj(rn I)omi/3i (1.14)

where [n] = (qn - q-n)/(q - q-1), with m = , a = vw./ = -E- 1J2, and q = e. Noting

that [] = 0, this gives wu + (_-t 2 )e = w- z2.

Proposition 1.8 In 7-l,,

a)

[( - 1-')abc + -1lc2]t = ( - -l)eatbece + (c) 2 (1.15)

b)

[(e - -)ab+ -lc] = ( - e-1)tatbt + c (1.16)

Proof:

a) Z, is a finitely generated commutative algebra. Thus, given any nonzero ele-

ment z of Z., there is a finite-dimensional irreducible representation which maps z

to a nonzero scalar. Also, since 7', is a finitely-generated module over Z, (as a -

module, 7-4 is generated by the monomials aibick with i,j, k < ). the canonical map

Spec 7-, -- Spec Z, is surjective. [4] Thus there is a finite-dimensional irreducible
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representation of 14 which maps z to a nonzero scalar. Since we have shown that

the element [(e - e-')abc + e-lc2]t- (e - )tatbec _ (C,)2 is mapped to zero in any

finite-dimensional irreducible representation, it follows that this element must be zero

in X.

b) Since c commutes with [(e - e-')ab + e-1c], we have [(e - e-')ab + e-lc]c t =

[(e - e-1)abc + -1lc2]t = (e - e:-)taebce + (ce)2. Now use the fact that 71g has no

zero divisors.

1.3 Another Quantum Heisenberg Algebra

Consider the algebra over the ring A = C[q, q- 1, (q - q-l)-'], with generators a, bi,

(i = 1,2) and c with relations

blb 2 = b2 bl (1.17)

ala2 = a2al (1.18)

cai = qaic (1.19)

bic = qcbi (1.20)

biaj = qajbi for i j (1.21)

aibi - qbiai = c (1.22)

This is the algebra U 's3s21 83, which is examined in Chapter 2, with the relabeling

E1 - b, E3 - b2, E23 --* al, E 12 -+ a2, and E123 - q- 1c. We find in Chapter 2

for this algebra that the element [(q - q-)blal + c][(q - q-)b 2a 2 + c] generates the

center. When q = e where e is a primitive th root of 1 with e odd, we find that the

finite-dimensional irreducible representations have the following dimensions:

1 if c = 0, a = 0, and at = 0

1 if ct = 0, b = 0, and b = 0
f2 if c 0 a n d ( -' 'e1)abt ce 0

eZ if c' 0 and ( - 1)ab + O

11
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e in all other cases.
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Chapter 2

Quantum Groups Associated

With U+ (s/4(C))

Let W be the Weyl group of the finite-dimensional simple Lie algebra sI(C). For each

w E W, there is a corresponding solvable quantum group Uw". Each of these quantum

groups is a subalgebra of U+(sln(C)); when wt is the longest element of W, we obtain

U,+(sl,(C)). In this chapter, we consider s14(C) and give defining relations for U/ for

each w E W. Then, letting q = e, a primitive eth root of 1 with e odd, we obtain

the algebras Uw'. We study the finite-dimensional irreducible representations of these

algebras, showing that they all have dimensions which are powers of (. We also show

that the dimensions depend only on the central character of the representation.

2.1 Uq(sln(C)) and UW

Let aij be the Cartan matrix of sl,(C). Quantum sl,(C), which we shall designate

from this point on as U, is the algebra over the ring A = C[q, q-l, (q - q- )-'] with

generators Ei, Fi, Ki, IKi (i = 1,..., n- 1) and relations

Ki Kj = Kj Ki, K i Ki = K_i Ki = 1 (2.1)

Ki Ej = qai Ej Ki , Ki Fj = q-aij Fj Ki (2.2)

13
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EiFj - FjEi = bi (Ki - K')/(q - q1-) (2.3)

EEj - (q + q-')EiE jE + EjE2 = O if aij =-1 (2.4)

EEiE - EjE = 0 if aij = 0 (2.5)

F2Fj - (q + q-)FiF jFi + FjFi2 = 0 if aij = -1 (2.6)

FiFj - FjFi = 0 if aij = 0. (2.7)

We have the following automorphisms Ti (i = 1,..., n - 1) of the algebra U [6]:

TiEi =-FiKi ; TEj = Ej if aij =0 (2.8)

TiEj = -EiEj + q-EjEi if aij = -1 (2.9)

TF =-Ki-'E ; TFj = Fj if aj = O (2.10)

TiFj = -FjF + qFiFj if aij = -1 (2.11)

Th I2 j = KI? "-ae (2.12)

These automorphisms Ti satisfy the braid relations.

Let w E W, and let si,...sim be a reduced expression for tw in terms of simple

reflections. Let l = ai, ..., ,m = Si,...Sim-_,(tim). For I = 1...m, let E3, =

Til...Ti_lEi (these depend on the choice of reduced expression for w). For k =

(kl,..., km) E Z, let E = ...E These elements form a basis of U"w over A [3].

And for i < j we have:

Eo,E13j - q(/'OiJ)E3,Eoi = E ckEk, (2.13)
kE~Zm

where Ck E C[q,q - l] and ck #~ 0 only when k = (kl,...,km) is such that k, = 0 for

s < i and s > j [5]. The algebra UT is generated by the elements E31, ... ,El3m with

defining relations 2.13. Uw is independent of the choice of reduced expression for w

[3].

14



Setting q = , we obtain the algebra UW. The elements E~, (i = 1,...,m) are

central in U [3].

2.2 Preliminary Results on Irreducible Up° Mod-

ules

Definition 2.1 Let x and y be elements of Uw (respectively Uw). We shall say that

x and y q - commute if they satisfy xy - qSyx = 0 (repectively xy - e2yx = 0) for

some s E Z.

The elements E'. are central in the algebra U. Thus, by Schur's lemma, they

act as scalars in any finite-dimensional irreducible representation of U".

Lemma 2.2 Suppose E, q-commutes with each of the generators E,3, of U.'. If

E'i = 0 on a finite-dimensional irreducible U" -module V, then E, = 0 on V.

Proof: Let v E V be an eigenvector of E13j. Then Eiv = 0. By irreducibility, v gener-

ates V as a Uw module. Thus any element of V may be written as a linear combination

of terms having the form E, ...Emv. Then E,3iE .E . . = E31 ...E,Ei t = 

(for some s E Z). Thus E!3i = 0 on V.

Lemma 2.3 Let si,...sim_ be a reduced expression for w in terms of simple reflec-

tions, and let si,...sim be a reduced expression for iti. Let V be a finite-dimensional

irreducible module over the algebra U . V is also a module over the algebra U.t. Let U

be an irreducible submodule of V over the algebraUw'. Ten Vl= U[Ei'3 mU...,E mkU

(direct sum as vector spaces) for some 0 < k < - 1, where dimE,3mU = dimU for

j = ..., k.

Proof: Let r be the smallest postive integer such that there exists u E U, u 0,

satisfying E;+1 E U + Eal + ... + E5,U. We know that r < e - 1, because E 3m acts

as a scalar on V. The sum U + E3,n,U + ... + ErmU is direct (by our choice of r).

15
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From 2.13 it follows that for i < m we have

Ei E = k(IEm)E Ei)+Em fkE,,E,_)+...+fo(E ,,...,E 3m_), (2.14)

where fj(E,,3 ,, E3m,_,) is a polynomial in E,,..., Eom_ Applying 2.14 to a vector

in U, we see that U E) E,3m U B ... e E5 U is invariant under Eo, ..., E,3m_l. We also

have by 2.13

E,+1 E ,-'EJl ) = e( EOm- ...E, )E +1 E5,ngk -l(Eol, -, Em-) + .

+go(Ei3, .... E/3, ,), (2.15)

for some s E Z. By irreducibility of UT over U, the element u generates U over

U, and any element of U may be written as a linaear combination of terms each

having the form Em-...E3lu. Applying (2.15) to u, we see that the right-hand side

of this equation lies in TU 33 E,3m, ... ) E3mU. Thus U -D Ej3,, ... , E, U is

also invariant under E,,,, and by irreducibility over the algebra. U', we have V =

U Em U ED .. D3 E5,, 

Finally, if r = 0, the proof is complete. If r > 0, consider the maps E3m E- l'U --

EmU (i = 1,...,r). Suppose Em-& = 0. Then by choice of r, fi = 0 so E-li = 0.

Thus the nullspace of each of these maps is 0, which implies dimElm'U < dimEmU,

hence dimE-lU = dimnE U.

2.3 UW for w = sl, sls , sls2sl, S1S51SS3, S1S2S1832,

and S1S2S1S:3S2S 1

For w = S1s2S18s3s2 1, we find that ,l = al, 2 = a1 + a 2, 3 = a2, ,34 = a, + 2 + 3 ,

/35 = a2 + a3, and 6 = a 3. We then find, using (2.8) through (2.12). that E31, = El,

E,3 = -E1E 2 + q-1E 2E, E = E2, E04 = E1E2E3 - q-E 2ElE 3 - q-1E3E1E2 +

q-2E3 E 2E1, E,3 = -E 2 E3 + q-lE3 E2, and E 3 = E3. We shall write E32 = E,+,2

16



as El2, etc. With some computation, we find the relations (2.13) are as follows:

EiE12 = qEl2E1 (2.16)

E1E 2 = q-lE 2El - E12 (2.17)

E12E2 = qE 2E12 (2.18)

EiE123 = qE123 E (2.19)

E 12E1 23 = qE1 23El2 (2.20)

E 2E 123 = E123E2 (2.21)

E1E23 = q-lE 23E1 - E123 (2.22)

E12E23 = E23E12 + (q - q-1)E 2E 123 (2.23)

E 2E23 = qE23E2 (2.24)

E1 23E23 = qE23 E1 23 (2.25)

E1E3 = E3 E1 (2.26)

E12E3 = q-lE3E12 - E123 (2.27)

E2E3 = q-E3 E2 - E23

E1 23E3 = qE3 E1 2 3

(2.28)

(2.29)

E 23 E3 = qE3 E23 (2.30)

U"' has the generator El (and no relations). Us1 82 has generators El, El2 with

relation (2.16).

U812 S1 has generators El, El 2, E2 with relations (2.16) through (2.18). In this

algebra, we find that the element E12[(q - q')EiE 2 + qEl2] is central (it is easily

checked that it commutes with each of the generators).

U1'S2SS13 has generators El, El2, E 2, E1 23 with relations (2.16) through (2.21).

17
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Usl 8 28 1 3 2 has generators El, E12, E2 , E123 , E2 3 with relations (2.16) through

(2.25). We find that the element E12E 23 - qE2E1 23 is central in this algebra.

Us'12S3S281 (which is equal to U+(sl 4(C)), because S1 2 sls 3s2s1 is the longest

element of W for s14 (C)) has generators E 1, E 12, E 2, E 123 , E2 3, E3 with relations

(2.16) through (2.30). The elements E12E23-qE 2El 23 and (q-q- )E3[(q-q-)EE 2 +

qEl2]El2 3 + E123[(q - q-1)E 1E 23 + qEl23] are central in this algebra.

2.4 Irreducible Representations of /s' for w = sl,

S1S2, S1S2S 1 S1S 2 1 s3, S1S21S 3S1S 2 and S152S1 3 S2 S1

We now let q = 6, where e is a primitive th root of 1 (with e odd in most cases).

All representations considered will be finite-dimensional. Recall that if si,...si is

a reduced expression for tw in terms of simple reflections, then the elements E3

(i = 1,...,m) are central in U-c, so they act as scalars in any finite-dimensional

representation.

Proposition 2.4 The finite-dimensional irreducible representations of _ s', where 

is a primitive eth root of unity, are one dimensional.

Proof: Let V be an irreducible Us'-module. Since Us' is generated by El, V is

spanned by an eigenvector of El. So dimV=l.

Proposition 2.5 The finite-dimensional irreducible representations of US' 2, where

E is a primitive th root of 1, have the following dimensions:

e if Ef # 0 and E2 0

1 in all other cases.

Proof: Let V be an irreducible U1S2-module. If Ef = 0 on V. then El = 0

on V by lemma 2.2. Then V is one-dimensional, spanned by an eigenvector of E12.

Similarly if Ee2 = 0, then dimV=l. If Ef # 0 and Et2 #~ 0, let v be an eigenvector

of E1, with eigenvalue A (A y# 0). Then span(v, E12 v, ..., Ef-lv) is invariant under E1

and E12, so this space is equal to V. , E12vt ... Elt' are eigenvectors of E1 with
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eigenvalues A, eA,..., -lA, respectively (each of these vectors is nonzero, because

Ee2 0). Therefore these vectors are linearly independent and dimV = e.

Proposition 2.6 The finite-dimensional irreducible representations ofUsl 2Sl, where

e is a primitive eth root of unity with e odd, have dimensions

1 if E12 = 0, and E or E E is zero

e in all other cases

Proof: The algebra U8 '12 '1 is isomorphic to the quantum Heisenberg algebra '

discussed in Chapter 1, with the identification El - b, El2 q-lc, and E 2 - a.

The element E12[(q - q-1)EiE 2 + qE12] is central in this algebra, corresponding to

the element q-2c[(q - q-' )ab + q-lc] in 1. We also note from applying Proposition

1.8 to this case that [( - -')ElE 2 + =E12] ( - l p.'E+ E 2

Proposition 2.7 The finite-dimensional irreducible representations of U s s2sl81S3

where e is a primitive th root of unity with odd, have dimensions:

1 if E 23 = O, E 2 = 0, and E2 = 0

ifE 2 =e20 and E = O

if E123 4 O. E 2 O. a _E E12 °

e in all other cases

Proof: Let V be an irreducible Us' S2s13-module.

Case 1: Ee2 3 = 0 on V. Since E1 23 q-commutes with El, El 2, and E 2, E' 23 = 0 on

V implies that E 123 = 0 on V. Thus, by lemma 2.3, V = U where UT is an irreducible

U: 'S2sI-module. So dimV=1 or e.

Case 2: E 2 0, E 2 = 0, and E on V. = 0 implies E12 = 0. It then

follows that E1 q-commutes with E2, so E = 0 implies El = 0. We are thus left

with the two generators E2 and E123 , which commute. 1V is spanned by a common

eigenvector of these two generators, so dimV=l.

Case 3: E 23 # 0, El2 = 0, and Ee 0 on V. E2 = 0 implies E12 = 0. Let

v be a common eigenvector of E2 and E123, which commute. Then E1 23 v = Av,

with A # 0. The space span(v, Elv, ..., Et-') is invariant under E1, E2, and E1 23 so
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is equal to V. Furthermore, the vectors v, Elvt... Et- are all eigenvectors of E123

with distinct eigenvalues A, er-A,..., E-(t-1)A, respectively (the vectors are all nonzero

because Ee 0). Thus dimV = e.

Case 4: E 2 3 #: 0 and EL2 # 0 on V. V is a module over U1s2'; let U be an

irreducible submodule of V over lU,' S2S . E12[(- - 1 )E1E 2 + E12] is a central element

of Us1s2s, so it acts as a scalar on U. Let x = E12[( - u-1)EiE2 + E 1 2]. WVe see by

checking directly that xE123 = 2E 123 x. We consider the following two subcases.

Case 4a: x = E12[(E - -')E1 E 2 + E12] acts as a nonzero scalar a on U (thus

(- -1) EE 2 + E 2: O). We know that V = U + E123U + ... + E'-13 U. The

spaces U, E123 ;, .... E-1 U are eigenspaces of x with corresponding to eigenvaluLes

a, 2 a, ... , -1, +1, 2-2 a; these eigenvalues are all distinct (because is

odd). Thus V = U ± E1 231U ... · E-JU. Each of the spaces in the direct sum is

nonzero and each has dimension equal to the dimension of U, because E23 0. Thus

dimV = edim(U. From our previous results we know that Ef2: 0 on U implies that

dimU = e. Therefore diml = 2.

Case 4b: x = E12[(i--1)EE2 + E12] = 0 on U (thus (c --1)Ek,'E.+Et12 = 0).

Since V = U + E1 23Ud + ... + E1-23 L and xE2 = E123 X, it follows that x = 0 on

/V. Since E 2 # 0, E12 is invertible so we have ( - -)EE2 + E12 = on V.

Solving for E12, we find that E12 = (-2 - 1)E1E2. Substituting this into the relation

E1E2 = -1E 2E 1 - E12, we find that E1E2 = giE2E1 on V. Thus we see that E1 and

E2 q-commute with all generators. Thus E = 0 would imply that E = 0, which

would further imply that E12 = 0, contrary to assumption. Therefore E # 0, and

likewise E2 0. Direct verification shows that the element E123E-1 commutes with

each of the generators El, E12, E2, and E123. Thus this element is central and acts

as a scalar a on V. E2 acts as a scalar c (c # 0) on V. Multiplying both sides of the

equation E123E2-1 = a on the right by E2, we obtain E123 = (/c)E 2. Since we can

express E12 and E123 in terms of E1 and E2, V must be irreducible over the generators

El and E2, which satisfy E1E2 = SE2E1. Since Ee # 0 and E # 0. we have dimV = e

(shown in the same way as when we let V be an irreducible USs12-module).

Proposition 2.8 The finite-dimensional irreducible representations of US'S2S S3S2,
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where e is a primitive th root of unity with e odd, have dimensions:

1 if El 23 = O, Ee2 = 0, and any two or three of Et, E2, Ee3 are zero

e2 if Elt23 0 and ( - e-) 1E 2 + E 2 O O

e in all other cases

Proof: Let V be an irreducible U1s281'3'2-module. The element E1 2 E 23 -qE2E23

commutes with the generators E1 , E12, E2, E123, and E23 of the algebra U121 '838 2,

so is central. Thus E12E23 - eE2E12 3 acts as a scalar a on V.

Case 1: E 2 # 0 on V. E2 acts as a scalar b (b ¢ 0) on V. From E1 2E 23 -

eE2E1 23 = a, we may solve for E23: E23 = (1/b)[eE2l'E 2E 12 3 + aE'f1]. Thus if U

is an irreducible U[I52s13-submodule of V', we see that U is E 23-invariant, so IU = V.

From previous results, we know that dimLT=( or e' when E'2 0 on U. Thus dimV=e

or 2.

Case 2: E 2 = 0 and Ef23 = 0. E123 q-commutes with all the generators, so

E123 = 0 implies E123 = 0 on V. It then follows that E12 now q-commutes with all

other generators in the representation, so E2 = implies E2 = on V. e are left

with the generators El, E2, and E23, which satisfy the relations E1E2 = -E2E1,

E1E23 = e-1E23E1, and E2E23 = E23E2. We find that the elements E1E2E1-l and

Et-1E-E 2 3 are central in the representation, so they act as scalars: EiE2E3' 1 = 

and E-'E'-1E 2 3 = y. Because El, E2, and E23 all q-commute, if the fth power of any

of these generators is 0, then the generator itself is zero. Thus if any two (or all three)

of these generators have eth powers equal to zero, then V will be one-dimensional,

spanned by an eigenvector of the third generator. Now suppose any two (or all

three) of these generators have (th powers not equal to zero. Let U be an irreducible

submodule of V over the algebra with those two' generators and their relation. Then

(as before) dimU = . But U is invariant under the third generator, because we

can solve for the third generator in terms of the first two from E1E2E1- = /3 or

E'- 'E'- E23 = . Thus in this situation dimV = . So in this case we then have

dimV=l or e.

Case 3: E2 = 0. El23 - 0, Ee = 0. Let U be an irreducible Us1 21 83 -submodule

of V. We have seen that in the case E2 = 0, Ee23 # 0, and E = 0 on Uf, that U is
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one-dimensional, spanned by a vector u which satisfies Elu = 0, E 12u = 0, E2u = Au,

and E12 3 u = pu, where #p t 0 since El23 O0. We have V = U + E23 1U + ... + Ee-U.

E123(E2m3u) = sem(Em3u), and A, e, ... , ret-l are distinct, so V = U G E23U E3 ... 

E2 1 lU. It remains to show that each of these summands is nonzero. If E2 -3 0 this

is clear. If E23 = O, we use the following formula, which is proven by induction on m

(m = 1,2,...):

E1E~m = 2 - m ( 2) E1 El2 (2.31)

Let m be the least positive integer such that Em3u = 0. Then, applying (2.31) to u,

we obtain

0 = -m (1-,e2mn) 1Em-'u. (2.32)

It follows that divides 2m, which implies that e divides m, since P is odd. Thus

e = m, and dimV = ( in this case.

Case 4: E = 0, E 3 0. Et # 0, E = 0 on V. Let Ur be an irreducible

US's218-3-submodule of V'. From previous results we know that E2 = 0 implies

El2 = 0 on U. Now E2 q-commutes with the other generators in the representation

U, so E = 0 implies E2 = 0 on U. Now a simple induction argument shows that

E12(E2m3U) = 0, so E12 = 0 on V (since V = (U + E23U + ... + Et3-lU). From the

relation E12E23 = E23E12 + ( - e-1)E2E 123 , we now have 0 = ( - e-1)E2E 1 23 on

V. Since Et23 # 0, this implies that E2 = 0 on V. Then V irreducible over the

generators El, E123, E23, with relations ElE 123 = E12 3E1, EE23 = E-lE 23El- E1 23,

and E123E2 3 = E23E1 23 . Relabeling these generators El El E123 -- E12, and

E23 E2 , we see that we have the algebra kU12 1. Then from previous results

(noting that 0 -# E123 E12) we have dimV = e.

Case 5: E 2 = 0, E2 0, E # 0, E2 # 0 on V. Let U be an irreducible

U1./s2*923-submodule of V. From previous results we know that U has a basis given

by (u, Elu, ... , Et-), where u is a common eigenvector of E123 and E2; E1 23u = Au

(A # 0, since E 23 O0), E 2u = jIu (it # 0, since E2e # 0). We also know that

El2 = 0 on U. E2E123 commutes with El, so we see that E2Ei23 = tA on U.
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V = U+ + E23U + ... + E3-'U, and E2E1 23(E23u) = ,LAE2m(E3u) for any u E U. Thus

U, E23U, ... , E23-U are eigenspaces of E2E1 23 with respective eigenvalues p1A, 'zAC2,

... , 1AC2e-2 (distinct, since e is odd). Thus V = U fG E23U 3 ... e E3- U. If El 3 0,

then dimV = dimU = e2. If E23 = 0, we use the following formula, which is proven

by induction on m (m = 1,2,...):

= E3El 2 + ) E23 E2E123. (2.33)

Let u E U, u t 0, and let m be the least positive integer such that Eu = 0.

Applying (2.33) to , we have

0 = 2m -1 E 1'u. (2.34)

It follows that e divides 2in, which implies that e divides m., since is odd. Thus

e = m. It then follows that each space in the sum V = U 5 E2 3 ... E3 1 has

dimension equal to the dimension of U, and dimV = edimU = ( 2.

Proposition 2.9 The finite-dimensional irreducible representations of W1 8 2 1 S'
3S2'

where e is a primitive eth root of unity with e odd, have dimensions:

1 if E 23 = 0, E 2 = 0, E 3 = , and E2 = O

1 if E 23 = O, E 2 = 0, Ee=0. Ee = 0, and E3 = 

t2 if E 23 = O, El2 = O, Et 0, E3 O, and ( - -)E E3- + E3 
E22 1 232 23 

(2 if Esf = o, E23 = O, Ef2 # 0, and ( - -1)'El'E + E2 o

2 if E+ # O. (E- -)eEe E Oif E 23 0, (_ e1)efE E #
e2 if E23 O (= - 0-l)EE+E2 = and (--')E 3 [(s--)ElE 2+El2]E 23+

E12[(e- s-1)ElE23 + EE1 23] # 0
e2 if Ee23 # O ( -1)EE + E2 = 0, (e - - )E3[(E - -1)ElE2 + -E12]El23+

E123[(-e'-1)EE 2 3 + E12 3] = O. E # 0. Et3 o0. and ( - - )'EE3 + E23 # 0

e in all other cases

Proof: Let V be an irreducible U1 s2s13s21-lmodule.
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Case 1: E 2 3 =0, Ee3 = , E3 = 0. It then follows that E1 23 = 0 E 23 = 0,

and E t = 0 in the representation. We conclude then that V is an irreducible U9 802s'-

module, so dimV = 1 or e.

Case 2:E = 0, E 23 = 0, E 0, E 2 = 0. Then E123 = 0, E23 = 0, and E12 = 0

on V. Thus V is an irreducible module over the algebra with generators El, E2, and

E3 with relations E1E2 = e-lE 2E 1, E1 E3 = E3E1 , and E2E3 = e-IE 3E 2. Let v be a

common eigenvector of E1 and E3 . If E = 0, then E2 = 0 and dimV = 1. If E C 0,

then the vectors (v, E2v, ... , Et-lv) form a basis for V (they are eigenvectors of E1

and E3, with distinct eigenvalues as eigenvectors of E3 ), so dimV = e.

Case 3: E 2 3 = 0, E3 = 0, E3 # 0, E 2 0. Then E1 23 = 0 and E2 3 =0 on V.

Let U be an irreducible submodule of V over the algebra with generators El, E12, E2

and their relations, i.e. U:'8 2 '1. Since E 2 0, we have dimU = '. We know that

the element E12[( - -')E 1E 2 + E12] is central and acts as a scala.r on U. Let

x = E 12[(e - -l)E 1E 2 + E12]. e find that xE 3 = -2E3 x. using E1 23 = O0 and

E23 = 0. We consider the following two subcases.

Case 3a: x = E12[( - -I)E 1E 2 + E12] acts as a nonzero scalar a on U (Thus

(E - e-l)eE2e+E1 2 & 0). Then V = [U+E3 U+...+E-lU, and since xE 3 = -2E3 x,

we see that U, E 3 U, .... E3-1 are eigenspaces of .r with eigenvalues a, a - 2.

, Q 2e- 2 (distinct, since is odd). Furthermore, each of these spaces ha.s dimension

equal to the dimension of U, since E3 7 0. So dimV = edinlU = (2.

Case 3b: x = E12 [(e--1)EiE 2+sE 1 2] = 0 on U (Thus ( - -1 )-E:E+E~2 = 0).

Then since V = U + E3 U + ... + E3-1U and xE3 = ¢- 2E 1 23 x, it follows that x = 0

on V. Since E1 2 # 0, this implies that [(E - - 1 )E 1 E 2 + sE 1 2 ] = 0 on V. As in case

4b of Proposition 2.7, we find that E12 = (e- 2 _ 1)E1 E 2 and E1 E2 = iE2E1 on V.

Thus V is an irreducible module over the algebra with generators E, E2, and E3

with relations E1E2 = eE 2E 1, E1E3 = E3E1, and E 2E3 = -1E3 E 2. W\e then find in

the same manner a.s for case 2 of this proposition that dimV = .

Case 4: E 2 = 0, E 2 = O on V. It follows that E1 23 = 0, E1 2 = 0 on V. Now

relabel the generators as follows: E1 - E3 , E 2 -- E 2, E3 -- El, and E23 -- - - 1El2.

Now we find that we have the same generators and relations a.s we have for W112' s3s2s1
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when E 23 = O, Ee3 = 0 on V. e -C is also a primitive (th root of 1, so this is covered in

cases 1 through 3 of this proposition. We conclude as in those cases that dimV = 1,

, or e2. Note that the condition (i.e. whether or not it is zero) on the element

(E-1 -)tEtE + El2 of U1128 838 2Sl becomes here the corresponding condition on the

element (e - e1 )eEE3 + E 3.

Case 5: Ee23 = 0, Ef2 # 0, E 3 # 0, and Et # 0 on V. E = implies

E123 = 0 on V. The element E 12E23 - E2E 1 23 = E12E23 acts as a scalar a on V,

so E23 = (a/b)E2 1 on V, where b = E12. Let U be an irreducible submodule of V

over the algebra with generators El, E12, E 2 3 , and E3 with their relations. Let u be a

common eigenvector of E1 (with eigenvalue A 0 for E1) and E3 (with eigenvalue A),

which commute. Then the space span(u, E12u, ... , Eel'u) is seen to be invariant under

, and E3. Also, the vectors u, E12 U E23, and 3. Also, the vectors u, E..., Eu are eigenvalues of E1 with

distinct eigenvalues, since EI(Ejn2u) = mA(E'lu). Thus U =span(u. El 2u, ..., E2lu)

and dimU = e. Note also that E3 (E'2u) = 'm (E'u), so E3 = (/A)El on U.

E1[(e - e-)ElE 2 + E12] commutes with E1, E12, and E2, and thus must also

commute with E23 and E3 , since E23 = (a/b)Etf- and E 3 = (/A)E 1. Thus E 12[(E -

Es-)EE 2 +eEl2 ] = /3 (/3=constant) on U. Since Ef 2 # 0 and Et # 0. E12 and El are

invertible and we can solve for E2 in terms of B. E12 and El. Thus U is E2-invariant,

so U = V and dimV = e.

Case 6: E23 = 0, Ef2 # O0, E 3 # O, and E 0 on V. Relabeling E --, E3,

E2 - E2, E3 -+ El, E12 --+ -- 1E23 and E23 --+ - - 1E2, we obtain the same algebra

we had in case 5, with -1' in place of . Since - 1 is also a primitive th root of 1,

by case 5 we have dimV = e.

Case 7: El23 = 0, E12 - 0 E 3 0, Ee = 0, and E3t = 0 on V. Then E123 = 0

on V. Let U be an irreducible submodule of V over the algebra with generators El,

E12, E23, and E3 . These generators all q-commute (since E123 = 0 on V), so E = 0

and E3 = 0 on U imply E1 = 0 and E3 = 0 on U. Let u be an eigenvector of E12;

E 12 u = Au, A # 0. As in case 5, we have E23 = (a/b)E' on V. where b = Ee.

Thus u is also an eigenvector of E23, so dimU = 1. Now V = U + E 2U + ... + E-U,

so dimV < e. But V is also a module over the algebra with generators El, El 2. and



E2, and we have seen that an irreducible module over this algebra with E12 # 0 has

dimension equal to e, thus dimV > . So dimV = e.

We now consider the cases where E 23 # 0. Direct verification shows that the

element ( - -1)EiE 2 + sE12 q-commutes with each of the generators El, E12, E2,

E123, and E23 (but not with E3). Let x = ( - -1)E1E2 + SE12. Also recall that the

element (q q-1)E3[(q q-1 )Ei E2 +qE12]E123+ E123[(q-q- ) E l E23 + qE1 23] is central

in U1S2SlS3S251, so (- -1)E3[( - -1)ElE2 +£E12]E123+ E1 23[( - -1 )E1E23+-E123]

acts as a scalar in a finite-dimensional irreducible representation of U s 2s1S3S2sl. Let

y - [(s - -'-1)E1E23+F-E123] and z = (. - -- )E3[( - - )ElE 2+-E12]E123+ E123[(c-

-')E1E23 + -E123], so = ( - -)E3E 123 + E123y. z = a for some scalar a on

V. For the following cases, let U be an irreducible submodule of V over the algebra

with generators El, E12, E2, E123, and E23 with their relations. Since x q-commutes

with each of the generators, x is central in this algebra. By the same proof as in

lemma 2.2, either x = 0 on 1U or x 0 on U (i.e. x is invertible on Ul). Also we have

ae = (6 -- 1 )e12 + E12, and likewise ye = (6 - E-1 ) E E 23(' + E23.

Case 8: E 23 # O on V', x' O0 on UT. In this case we may solve for E3 in terms

of El, E12, E2, E123, and E23 from the equation = ( - s-1)E3 xE123 + E123Y = a.

Thus U is E3-invariant, so V = U and dimU = e2 in this case.

Case 9: E 23 : 0 on V, x = 0 on U (thus ( - -l)ELE2( + E 2 = ), and

= ( - e- 1 )E3xE123 + E123Y = a 0 on V. It follows that E123y = on U.

V = U + E3 U + ... + E3-1 U, and we find that (E123y)E3 = E27n'El(E123y), so the

spaces in the sum are eigenspaces of E123y with distinct (since ' is odd) eigenvalues

a, as 2, .. , 2-2 Thus V = U E3U + ... ± E' - 1U. If E3 # 0, we conclude

that dimV = edimU. If Ee = 0, We use the following formula, which is proved by

induction:

(E123x)E3' = E (E123x)-( 1 > ) 3-1 (E23!J) (2.35)
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Let u E U, u 0. Let m be the least positive integer such that E3mu = 0. Applying

equation 2.35 to u, we obtain

0 = 1 -Se E '-u, (2..36)

from which we conclude that m = e. Thus we again have dimV = edlimU. In this

case we previously found that dimU = e, so dimV = e2.

Case 10: E 3 0 on V, x = 0 on U (thus (E e-1)eEE 2 e + Ee2 = 0), and

z = (e - - 1)E 3 xE 123 + E1 23 y = 0 on V. It follows that E12 3y = 0 on U, so y = 0 on

U. We find that yE3 = eE 3y, and since V = U + E3 U + ... + E3-1 U we conclude that

y = 0 on V. Equation 2.35 now becomes (El 23 x)Em = E3m(E1 23 x), so we also see that

E123x = 0 on V, hence x = 0 on V. From x = 0 we find that E 12 = ( - 2 - 1)E 1E 2

and E1E2 = eE 2E1 on V. From y = 0 we find that E123 = (-2 _ 1)E1E2 3 and

E1E23 = E23E1 on V. Also, ye = ( -1)EE23e + El 23 = 0; since we have

assumed that E 23 :# 0, it follows that we must also have E 5# 0 and E23 0. V is

thus an irreducible module over the generators El, E2, E23, and E3, which satisfy the

relations:

E1E2 = eE2El (2.37)

E 1E2 3 = EE 23E1 (2.38)

E1E3 = E3E1 (2.39)

E2 E2 3 = cE 23E2 (2.40)

E2E3 = -E3E 2 - E 23 (2.41)

E23E3 = eE3E 23 (2.42)

Let W be an irreducible submodule of V over the algebra with generators E2, E23 ,

and E3 . This algebra is obviously isomorphic to Us 2 1 . which was considered earlier.

The element E 23[(-. -1 )E 2E3 +E 2 3] is central in this algebra, and so acts as a scalar

/ on W. Let = E23[(E- r-)E 2 E3 + rE23]. We have V = W + ElIV + ... + E-' V.

We now consider the following subcases:
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Case 10a: Ee # 0, Ee3 0, and = E23[(E- -)E 2E 3 + E 23] # 0 on W

(thus - -)eE2E3 + E23 0). We find that 'E1 = -2El;. Thus the spaces W,

E1 W,...,Et-'W are eigenspaces of x with distinct (since e is odd) eigenvalues /, Pe- 2,

... /, /e2 -2. Since Ee 0, we have dimV = edimW. dimW = e, sinceEl 3 0, so

dimV = 2.

Case 10b: Ee - 0, E2e3 # 0, and = E23[(E - e-I)E 2E3 + eE 23] = 0 on W.

Then [(e - e-')E2E3 + eE23] = 0 on W. We find that [(e - -1 )E 2E3 + E23]E1 =

E-l E[(e-se-)E 2 E3 + eE 23]. It then follows from V = W + El W + ... + E-' W that

[(e - -I)E 2 E3 + E23 ] = 0 on V. We then find that E 23 = ( - 2 - 1)E 2E 3 on V, and

that E2E3 = E3E2 on V. V is then irreducible over the generators El, E 2, and E3,

which satisfy the relations E1E 2 = rE2E 1, E 1E3 = E3 E1, and E2E3 = E3E2. Since

(E - -' )E2E3 + Et 3 = 0 and E23 # O, we have E2e # 0. V then has dimension e.

2.5 /W for w = s ls 3 , SlS 3S 2 , S1S3S2Sl, and SlS:3S2Sl 3

For w = S1s3s 2s1s 3, we find that 1 = cl, 2 = C03, 3 = ce1 + a 2 + Ct3 /34 = 2 + a3,

and /.5 = al + a2. We then find, using (2.8) through (2.12), that E31 = El, E1 32 =

E3, E3 = E123 = E3E1E 2 - q-1 E3E 2E 1 - q-lE1E 2E3 + q- 2 E 1E 3 . E,3 = E23 =

-E 3 E 2 +q-'E 2E 3, E 3 = E12 = -ElE 2 +q-1 E 2E1 . With some computation, we find

the relations (2.13) are as follows:

E1E3 E3E1 (2.43)

E1E1 23 = qE12 3E1 (2.44)

E3 E123 = qEl23E 3 (2.45)

E1 E2 3 = q-1E 23E 1 - E1 23 (2.46)

E3E2 3 = qE23E3 (2.47)

E1 23E23 = qE23E1 23 (2.48)

28



EIE12 = qEl2El

E3E12 = q-1E12E 3 - E123 (2.50)

E123E12 = qEl 2E 123 (2.51)

E23E1 2 = E12E23 (2.52)

US11
3 has generators El, E3 with relation (2.43). U 18 38 2 has generators El, E3,

E 123 with relations (2.43) through (2.45). U132" has generators El, E3, E123, and

E23 with relations (2.43) through (2.48).

USls382 '1S3 has generators El, E3, E123, E2 3, and E12 with relations (2.43) through

(2.52). We find that the element [(q - q-')ElE23 + qE23][(q - q-)E3E2 + qE,23] is

central in this algebra.

2.6 Irreducible Representations of U" for w = sls3,

S1 S3 S2, S1S3S2 S1, and SlS3 S2 S1S3

Proposition 2.10 Thle finite-dimensional irreducible representations of U" 3, where

e is a primitive th root of unity, have dimension 1.

Proof: Let V be an irreducible U,' 3-module. E 1 and E3 commute. so V is spanned

by a common eigenvector of E1 and E3.

Proposition 2.11 The finite-dimensional irreducible representations of f' 382,

where is a primitive th root of unity, have dimensions:

1 if Ee123 = 0

1 if E = 0o and E = 

e in all other cases

Proof: Let V' be an irreducible U1s3s2-module. If E'23 = 0. then E123 = 0 and

V is spanned by a common eigenvector of El and £3. If Ef = 0 and E. If E= 0, then

El = 0 and E3 = 0 and V is spanned by an eigenvector of E123. If E:23 # 0 and

29

(2.49)



Ee # 0, let v be a common eigenvector of E1 and E3 . Then span(v. E123v, ..., El-,lv)

is invariant under each of the three generators, and the vectors v, E12 3v,., E-1v are

eigenvectors of E1 with distinct eigenvalues. Thus dimV = e. Similarly, dimV = if

Ee2 3 # 0 and E3 0.

Proposition 2.12 The finite-dimensional irreducible representations of U '183S2SI

where e is a primitive eth root of unity with odd, have dimensions:

1 if E 23 =0 and E 3 = 0
1 if E 3 = 0, E = 0, and E = 0

e2 if E3 # O. E 23 0. and (- E- + E 23

e in all other cases

Proof: If we relabel the generators E1 - E1, E3 - E3 , E123 - E12, and E 23 -

E2, we find that we have the same generators and relations as we had for U '12 1s328 '1

in the case where Ee23 = 0, E23 = 0. From these results we see that dimV = 1, , or

e2 .

Proposition 2.13 The finite-dimensional irreducible representations of Ul 3s2s
l 

s3 ,

where is a primitive (th root of unity with (f odd, have dime-n.sions:

f se = , Ef = 0, and E = O

1 if E 23 = , E = 0, and E = 
e2 if ELt2 3 0 and ( - -1)eEeE3 t+ Ee23 0

J2 if Et23 0 and ( - -)E3EE2 + E 23

Q in all other cases

Proof: Let V be an irreducible UlS"3s2s1"s3-module. The element [(q - q-')ElE 23 +

qE123][(q - q-)E 3 El 2 + qE123] is central in Us"32S153, so letting [(I - - 1)E 1E 2 3 +

eEl 23 ][(e-e-l)E 3El 2 +eE1 23 ] acts as a scalar a on V. Let x = [(,- -)ElE23+El23],

and let y = [( - --)E3 E 1 2 + E1 23], SO xy = a on V. e also note that x and y

each q-commute with each of the generators, so each is either 0 or invertible on V.

Case 1: E 23 = 0 on 1'. Then E1 23 = 0 on V, and we are left with the generators
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E1, E3 , E23, and E12, which satisfy

E1E3 = E3E1

E1 E23 = s-1E23E1

E 1E12 = sE12El

E3E2 3 = CE23E 3

E3E1 2 = e- 1E12E 3

E12E23 = E23E 2

We find that EE 3 and E23E12 are central in the representation. If Ee = 0 and

E = 0, then E1 = 0 and E3 = 0 on V, and V is one dimensional, spanned by a

common eigenvector of E23 and E12. Similarly, if E23 = 0 and Ef2 = 0. dimV = 1. In

all other cases we find that dimV = e. For example, if Ee y 0 and E 3 # 0, let v be an

common eigenvector of E1 and E3. E2312 on V, and since E3 0 we can solve

for E12 in terms of E23 from this equation. Thus span(v, E 2 3V, ... , E3-1) is invariant

under each of the generators. Also the vectors v, E 23v, ... 23are eigenvectors of E

with distinct eigenvalues, so dimV = e. The other cases are similar.

Case 2: E3 0, x 0 on V, and E3 # 0. Let U be a.n irreducible submodule of

V over the generators El, E3, E123, and E23. From x[(£ - -')E 3 E1 2 + sE1 2 3] = o,

and using the fact that x and E3 are invertible, we can solve for E12 in terms of the

other generators. Thus UT in E 12 -invariant, and V = U. By previous considerations

we know then that dimV = e or e2.

Case 3: E 23 5# 0, x 0 on V, and Ee2 # 0. Relabeling E - E23 E23 --- El,

E12 -- E3, and E123 --- -lE123, we obtain the same algebra as in case 2, with E- '

in place of e. Thus by case 2 we have dimV = or e2.

Case 4: E 2 3 # 0, x 0 on V', E = 0, and E2 = 0. Let CU be an irreducible

submodule of V over the algebra with generators E1, E3, E123, and E23. Since E3

q-commutes with each of these generators and E3 = 0, E3 = 0 on . The remaining

generators El, E123, and E23 on U satisfy the same relations as the generators in

8US' 92S' (with E1 + El, E123 -- E12, and E23 -* E2). Thus dimU = C, since E.23 # 0.
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Also, the element E123x acts as a nonzero scalar on U. We find that (E123x)E 12 =

E2E12(E123x), so the spaces U, E1 2U, ... , Ef2-1U are eigenspaces of E123 x with distinct

eigenvalues (since is odd). Thus V = U Q E12U 3 ... e E-'l[. \e shall show that

each of the spaces in the sum is nonzero. For that we need the following formula,

which is proved by induction on m:

E3EEm = 6- m EE 3 - m (1- 1 Em) 'E 123 (2.53)12 -2 12
Let u be an eigenvector of E123 in U; E 123u = Au with A 0. Let m be the least

positive integer such that Em2u = 0. Applying 2.53 to au, we obtain:

0_ ) ~1-m 21--¢m )(0 = -A- () 12 (2.54)

It follows that 7 = , since is odd. Thus each of the spaces in the sum V -

U E E 12U ... D- E2-lr is nonzero, and by lemma 2.3 this gives dimV = (climU. Thus

dimV = e2.

Case 5: E23 0, y # 0 on V. If we relabel the generators E1 E E3 El,

E23 -- E12, E12 -* E23, and E123 - E123, we find that we have not changed the

relations. Thus this case is covered by cases 2, 3, and 4.

Case 6: E 23 O0, x = 0, and y = 0 on V. Then E123 = (-2 - 1)EE 2 3 and

E123 = ( _-2 1)E.3E12. We then find that E1E23 = E23E1 and E3E1 2 = :E12E3.

Thus V is irreducible over the generators E, E3, E23, and E12, which satisfy the

relations

E1E3 = E3 E 1

E E23 = ¢E23E1

EE12 = iE12E1

E3E12 = sE12E3

E3E23 = E23E3

E12E23 = E23E12

:32



Note that the eth power of each of these generators must be nonzero. For example, if

Ee = , then E1 = 0 on V, which would imply that E123 = 0, a contradiction. We also

find that E23Et21 commutes with each of the generators, so is ecual to a scalar /3 on

V. Thus we can solve for E23 in terms of E12. Let v be a common eigenvector of E1

and E3. The space span(v, E12v, ..., Et-lv) is invariant under each of the generators,

and the vectors v, E 12v,..., Etlev are eigenvectors of E1 with distinct eigenvalues.

Thus dimV = e.

2.7 UW for w = S2SlS3 and S2S1S3S2

For w = s2s1s3 s2 , we find that 31 = a2 2 = al + a2, 3 = a 2 + a3, 4 = l + a2 + a3.

We then find, using (2.8) through (2.12), that E31 = E2, E132 = E12 = -E 2 E 1 +

q-lElE2, E3 = E 23 = -E2E3 + q-lE3E2, E = E123 = E2E3E1 - q-lE3E2E1 -

q-lE1E 2 E3 + q-2E1 E3E2. With some computation, we find the relations (2.13) are

as follows:

E 2E12 = qEl2E 2 (2.55)

E2E23 = qE23E 2 (2.56)

E1 2E23 = E2 3E1 2 (2.57)

E2E1 23 = E123E2 + (q - q-')E 12E23 (2.58)

E12E1 23 = qE123 E1 2 (2.59)

E23E123 = qE123E23 (2.60)

US2S13 has generators E2, E12, and E 23 with relations (2.55) through (2.57).

U28s132 has generators E2, E1 2, E23, and E123 with relations (2.55) through (2.60).

We find that the element E2 E123 - qE1 2E23 is central in this algebra.
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2.8 Irreducible Representations of Uw for w=

S281S3 and S9S1S3 S2

Proposition 2.14 The finite-dimensional irreducible representatio ns of US2913

where is a primitive eth root of unity, have dimensions:

1 if Ee = O

1 ifE 2 = O and E2e3 = O

e in all other cases

Proof: Let be an irreducible U2S31-module. If El = 0, then E2 = 0 and V

is spanned by a common eigenvector of El2 and E23. If E'2 = 0 and E3 = 0O then

El2 = 0 and E 23 = 0 and V' is spanned by an eigenvector of E2, so diml = 1. If

E2e 0 and El2 0, then letting v! be a common eigenvector of E12 and E23, we find

that span(v, E2v,..., E-1v) is invariant under each of the generators, and the vectors

v, E2 v, ..., E-l, are eigenvectors of El2 with distinct eigenvalues. Thus dimV = t.

Similarly, if E 0 and E.23 0, then dimV = .

Proposition 2.15 The finite-dimensional irreducible representations of US21i3 82,

where is a primitive th root of unity with e odd, have dimensions:

1 if Ee = O and E = 

1 if Ee23 = o, E' = 0. and E12l or E3 is ero

e in all other cases

Proof: Let V be an irreducible U"2f'1s3s2-module. The element E2E123 - qE1 2E23

is central in US21,3S2, so E2E123 - E1 2E 23 = for some scalar a on 

Case 1: E # 0. Let U be an irreducible submodule of V over the generators E2,

El 2, and E2 3. From previous results we know that dimUl = 1 or . From E2E1 23 -

EE12E23 = we can solve for E123 in terms of the other generators. so U_ is E1 2 3-

invariant and U = .

Case 2: E = 0. = 0, and E.3 = O. Since E12 and E23 cl-commute with

the other generators, we have E12 = 0, and E23 = 0 on V . It then follows that E2
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q-commutes with E123, sO E2 = 0. Thus V is spanned by an eigenvector of E123 , and

dimV = 1.

Case 3: E = 0, El2 0, and E2e3 = 0. E 3 = 0 implies E 23 = O on V. This

implies that E2 q-commutes with the other generators, so E2 = 0. Ve are left with

the generators E1 2 and E123, which satisfy E1 23E12 = e-lE 1 2E1 23. Since E 2 # 0,

dimV = if E 23 0 and dimV = 1 if E 23 = 0.

Case 4: E = 0, Ef2 = 0, and E23 ¢ 0. By the same argument as in case 3, we

have dimV = e if Ee23 5# 0 and dimV = 1 if E 23 = 0.

Case 5: Ee = o, El2 : 0, and Et3: 0. Let U be an irreducible submodule of V

over the generators E2, E1 2 , and E23. Since E2 q-commutes with El 2 and E23, E2 = 0

on U. Then U is spanned by a common eigenvector u of E12 and E2 3 ; E 12 u = Au and

E23U = yu, where A # 0 and t O. V = (U+E1231U+...+E ,23 U. and the spaces in the

sum are eigenspa.ces of El 2 with distinct eigenvalues, so V = - ~ E123U ... E123 U.

If El23 - O, it follows immediately that each of the spaces in the sum is nonzero, and

dimV = edimU = . If Ef 23 = 0, we use the following formula, which is proven by

induction on m:

Cm m ,1 t1 _2m m-1E2E23 = E13E2 +) E' E 12E2 3 (2.61)

Let m be the least positive integer such that El 3u = 0. Applying equation 2.61 to

u, we obtain:

0 = ~L,(e - 1) (1-2m) E1- (2.62)

We conclude that e = m, since e is odd. Thus we again have dimV = edimlU = e.

2.9 UW and Irreducible Representations of UF for

W = S1S2S 3

For w = sl s2s3, we find that dl = cal, 12 = + a 2, 3 = a1 + o 2 + a 3. W"le then find,

using (2.8) through (2.12), that E3, = El, E3 = E12 = -E 1E 2 + q-E 2E1. E 33 =
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E123 = E1 E 2E 3 - q-E 2 E1 E3 - q-E3ElE 2 + q-2E 3E 2E1. With some computation,

we find the relations (2.13) for U°1°2°3 are as follows:

EE1E 2 = qEI 2 EI (2.63)

EE1 2 3 = qE123 E1 (2.64)

E12E123 = qE 23E12 (2.65)

Proposition 2.16 The finite-dimensional irreducible representations of U1 8283,

where is a primitive eth root of unity, have dimensions:

1 if any two or three of El, El2, and El23 are zero

e in all other cases

Proof: Let V be an irreducible U112°3-module. We find that EEf"'E 1 23 and

E-' El 2E[ -f are central in U;' 2ls3, so we have EE[[-1E1 2 3 = a and Ef- E12E- = 

on V for some scalars a and 3.

Case 1: Any two (or all three) of the eth powers of the generators El, E1 2, E123

are 0. Then those two generators are 0 on V, and V is spanned by an eigenvector of

the third generator. So dimV = 1.

Case 2: Any two (or all three) of the th powers of the generators El, E12 ,

E123 are nonzero. Suppose, for example, that Ef # 0 and Ef2 0. Let U be an

irreducible submodule of V over the generators E1 and E1 2. Then dimU = e, and

from E1E' 1-E 123 = a we can solve for E123 in terms of E1 and E1 2, so U is E123-

invariant and V = U, so dimV = e. The other cases are similar.

2.10 Uw for the Remaining Elements of the Weyl

Group

The remaining (nonidentity) elements of the Weyl Group for sl4 (C) are s2, S3, 2s1,

S2s3, Ss2, s2s3 , 32Ss1, s2 S1S2S3, and s53s283Ss2. Each of their algebras

Uw have the same (with a change of indices) generators and relations as algebras
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already considered. For example, with the change of indices 1 -+ 3, 2 -+ 2, and

3 - 1, U 382 33h182 has the same generators and relations as the algebra Ua"12' 1'3a2.

2.11 A Final Word

In the paper [3], a conjecture is made regarding the dimensions of the irreducible

representations of solvable quantum groups. Namely, this conjecture states that the

dimension should be e(1/2)dimO, where O, is the symplectic leaf containing the re-

striction of the central character of 7r to Z0 . This conjecture has been shown by Kac

to hold for the quantum Heisenberg algebra considered in Chapter 1. For the algebras

of Chapter 2, this conjecture has not been checked but it does predict the possible

dimensions of these representations correctly.
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