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Abstract

In the thesis, the universal enveloping algebra U(sl,) and its modified version U are
constructed as subalgebras of the algebra U. The algebra U is constructed as a projective
limit of finite dimensional subalgebras of convolution algebras of constructible functions
on cotangent bundles of flag manifolds.

The construction provides a canonical basis of U, which gives rise to distinguished
bases of all irreducible finite dimensional representations of si,.

The basic steps follow those of Ginzburg’s Lagrangian construction. We show how
the latter is related to Lusztig’s construction of the —part U~ of U(sl,), which is done in
terms of constructible functions on Lagrangian subvarieties of spaces of representations
of quivers. _

Using the geometric setting, we compute the canonical basis of U for sl; and 12 series
of monomials in the canonical basis for sl3.

Thesis Supervisor: George Lusztig
Title: Professor of Mathematics






To my mother and the memory of my father



Acknowledgements.

I would like to thank my advisor George Lusztig for his kind patience and understand-
ing. I benefited greatly from his remarkable talent of suggesting appropriate problems
on which to work.

I am very grateful to many people in the department for being friendly and supportive.
In particular, I would like to mention Professor R. MacPherson, Professor V. Kac, and
also Phyllis Ruby, Maureen Lynch, and Dennis Porche.

[ am grateful to my friends Mikhail Grinberg and Dmitry Kaledin for time we have
spent together, having answered and not answered a lot of questions, both mathematical
and existensial.

I am grateful to my son Eugene for being so truly wonderful.



Contents

1 Preliminaries. 9
2 The algebra U,. 11
3 The basis of U;. 18
4 Dimension of Uj. 25
5 U;—modules. 30
6 Stabilization. 36
7 The algebras I and U. 41
8 The algebra U. 43
9 Lagrangian construction of U~. 51
10 Examples: n = 2,3. 56
Introduction.

A Drinfeld-Jimbo algebra U over Q(v) is defined in terms of generators an relations,
associated with root data (see e.g. [L3, n. 3.1]). G. Lusztig in [L3, Part IV] defined the
algebra U, a modified version of U. This is an algebra without unit, with Cartan part of
U replaced by a direct sum of infinitely many one-dimensional algebras

Every U-—module with a weight decomposition can be naturally regarded as a U-
module, and the algebra, U turns out to be more suitable for studying these modules. In
particular, U has a canonical basis which is compatible with irreducible finite dimensional
modules and their tensor products.

A. Beilinson, G. Lusztig, and R. MacPherson [BLM] constructed geometrically the
algebra U in type A. The construction used the geometry of relative positions of pairs of
flags.

V. Ginzburg [G] gave a “micro-local” version of Belhnson-Lusztlg MacPherson con-
struction. He constructed a projective system of finite dimensional algebras generated
by certain Lagrangian cycles in the cotangent bundles of flag manifolds. An algebra
multiplication was given by convolution in Borel-Moore homology. Each of these alge-
bras was a surjective image of the classical U(sl,), and the homomorphisms from U(sl,)
commuted with the homomorphisms of the projective system.



The algebra U = U(sl,) was shown to be embedded in the inverse limit of this system.
In fact, the same was true for the algebra U.

Ginzburg’s approach also gave a geometric realization of all irreducible finite dimen-
sional representations of sl,, each equipped with a distinguished basis.

We construct the algebra U for U = U(sl,) in terms of constructible functions on
cotangent bundles of flag manifolds, using convolution of functions. The geometric setting
and basic steps follow those of Ginzburg.

Working with constructible functions instead of homology makes proofs and compu-
tations rather elementary (though, sometimes lengthy). It also allows one to see the
relation between the construction of the entire algebra U(sl,) and Lusztig’s Lagrangian
construction of its —part U~. The latter is given in terms of constructible functions
on certain Lagrangian subvarieties of spaces of representations of quivers. It works for
type A as well as for root data of other types (see [L1], [L2]). Understanding this re-
lation might help to find a geometric realization of entire algebras of types other than A,.

The thesis is structured as follows.

Section 1 describes the geometric setting which follows [BLM], [G]. We define the
variety Zy = Ugaeo,Z[A], where Z[A] are cotangent bundles to GLy—orbits O4 on the
variety of pairs of flags in the space C¢.

In section 2, we define the algebra Uy as a subalgebra of the convolution algebra of
constructible functions on Z;. We show that there is a surjective algebra homomorphism
from U(sl,) onto Us.

In section 3, we prove the existence of linearly independent functions {4} 4ce,, such
that each @4 is identically 1 on Z[A], and vanishes on some open dense subset of Z[A']
for any A’ # A.

In section 4, we show that Uy is finite dimensional, and that dim Uy = |©4]. It follows
that the functions {©4}4ce, form a basis of Uj;. Then we prove that the basis with such
properties is unique.

In section 5, we construct all irreducible finite dimensional sl,—modules. Every such
module arises from an irreducible U;—module for some d.

Following [G], we define a closed subvariety M* of Z;. We consider the space L.
of constructible functions on M?, which are the restrictions on M of functions of Uj.
It is finite dimensional. We show that L, is an irreducible Uj—module. We indicate a
highest weight vector s, such that the functions ¢4 s; behave with respect to irreducible
components of MZ in the same way as the functions ¢4 behave with respect to irreducible
components of Z4. Then we prove that {¢4 - s: | pa -8z #0, A€ Og} is a basis of L.

In section 6, we show that for any d there is a surjective algebra homomorphism
from Uyyn onto Uy which commutes with the homomorphisms from U(sl,) described in
section 2. We show that each basis element pp € Uj4n is mapped either to 0, or to a
basis element ¢(g_r of Ua.



In section 7, we consider the inverse limit U of the projective system of {Us}. We
show that the algebra U(sl,) can be imbedded into U. Then, we define a subalgebra
(without unit) of U, which is spanned by the elements

QA=) T PA T PA+D) o

corresponding to all the basis elements of the algebras Uj.

In section 8, we show that the algebra U is isomorphic to the algebra U of type A.
Then we give a geometric interpretation of some purely algebraic results on U obtained
by Lusztig [L3].

In section 9, we describe the relation between the above construction and Lusztig’s
Lagrangian construction of the —part U~ of U(sln).

Section 10 contains examples of computations of canonical bases for n = 2,3.

1 Preliminaries.

The setup closely follows [BLM], [G].

1.1. Let us fix n > 2,d > 0. Consider the variety F4 of n-step partial flags
F=(0=FRCFAC...CF.uCF=C
in the complex d-dimensional vector space. Let
dimF = (dim Fy,dim F,...,dim F,).

Connected components of F; are parametrized by sequences of non-negative integers
I = (h,I...,0),such that 0 < [, <l £ ... < I, = d. The connected component
corresponding to ! consists of all the flags F' such that dimF' = . Each component is a
single orbit under the natural action of the group GLs = GL(d,C) on Fq.

1.2. Let us consider the variety F; x Fy of pairs of flags. As in [BLM], we assign to
each pair (F, F') € F4 x F4 an n x n matrix ®(F, F') = A = (a;;) such that

FNF!

i =dlm(ﬂ-1nF}+R‘an—1)'

Let co(A) and ro(A) be the vectors of column sums of A and row sums respectively, thus

CO(A Zatla Zal% cer Zaiﬂ )7

i=1 =1 =1



TO(A) = ( Zal]-, Zazj, ey Zanj )
j=1 j=1

i=1

We have

(1) all a;; are non-negative integers;
n

(ll) Z ai; = d;
1,J=1
(iii) dim(F;/ Fioy) = ro(A)i, dim(F}/Fj_,) =co(A); foralll <zi,j <n;
(iv) dim(F; N FJ') = Z Qlm, foralll1 <i,7 <n.
I<i;m<y

Let ©4 be the set of n x n matrices satisfying (i) and (ii). The assignment (F, F’) —
®(F, F') defines a bijection from the set of orbits of GL4 under the diagonal action on
Fa4 x Fq to the set Oy.

We denote by Q4 the orbit corresponding to A € ©4. We have

.FdX}-,j': U OA.

A€EB,

1.2.1. The number of elements in O, is equal to th(; number of decompositions of d
into a sum of n? non-negative integers, thus |94] = (**3 ).

1.2.2. We denote by Ay the set of diagonal matrices in ©4. Note that ®(F, F") =
A€ Ayifand only if F = F', and then dimF; = T, are forall: = 1,...,n.

1.3. The set Q4 is partially ordered. For any A, B € ©4 we say that B < Aif Op is
contained in the Zariski closure O4 of O4. We write B < Aif B < A and B # A.

If A= ®(F,F'),B = ®G,G"), then B < A if and only if dimF = dimG, dimF’' =
dimG’, and dim(F; N F}) < dim(G; N G}) for all 4,5 = 1,...,n. Using 1.2 (iii), (iv), we
have that B < A if and only if for all 2,7 =1,...,n

ro(A) = ro(B), co(A) =co(B), Y p < > by

p<i; 957 p<i; q<s

1.4. Let N; be the variety of all nilpotent linear maps z : C* — C4 such that z" = 0.
For a flag F € F4 and a map z € Ny we write z > F ifz(F;) C Fioyforalli =1,...,n.
Clearly, z b F implies Im z*~* C F; C Ker z* foralli=1,...,n.

1.5. The cotangent bundle T*F; can be naturally identified with the set of pairs
M; = {(F,.’D) € Fi X Ndlx DF}.
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Let 7 : My — N4 be defined by 7(F,z) = z.
Following [G], we consider the subvariety Zy = My x n, Mg of My x My = T*(Fyx Fy).
We identify the variety Z; with the set of triples

{(F,F',z)€e F4x Fyx Ng|z b F,z b F'}.

Let Z[A] be the conormal bundle of the orbit O4. This is a locally closed Lagrangian
subvariety of T*(F4 x Fq). We have

Z[A] = {(F,F',z) € Z4 | (F, F') € Oa},

and
Zy= U Z[A].
A€Oy
All the irreducible components of Z; are of the form Z[A] for some A € ©,. Here X
denotes the Zariski closure of X.

1.6. The group GL4 acts on the variety Zy by g - (F, F',z) = (gF,gF',gzg™!). The
action leaves each Z[A] stable.

Unlike the previously considered cases of GL4-action on Fy and Fy x Fy, here the
number of orbits is in general infinite.

1.7. We define a map 70 : Zg — Z4 by o(F, F',z) = (F', F,z). This is clearly an
involutive algebraic automorphism of the variety Z;.

For any F,F' € Fy, if ®(F, F') = A, then ®(F', F) ='A, where ‘A is the transpose of
A (see [BLM, n. 1.1]). Therefore, 1o(Z[A]) = Z['A] for any A € O,.

2 The algebra U,.

2.1. As defined by R. MacPherson [M], a function on a variety is called constructible
if it takes a finite number of values, and the preimage of each value is a constructible set.

Let A4 be the vector space over the field Q of rational numbers of all constructible
functions ¢ : Zy4 — Q. Similarly to Lusztig’s definition of the multiplication of functions
on the space of representations of quivers [L1], we define an operation * on A by

QO]*‘Pz(F,F’,.'E)= ZGX{FEfdlz DF, QO],(F,F,$)'(,02(F,F',$)=G},
a€Q

11



where x denotes the Euler characteristic in cohomology over Q with compact support.
We set x(0) = 0.

The operation * makes A4 into an associative Q-algebra. This follows from finite
additivity of x for constructible sets, multiplicativity of x for fiber bundles, and the fact
that for any regular map f : X — Y of algebraic varieties there exists a stratification of
Y such that for each stratum S the restriction f|;-1(s) is a fiber bundle.

The unit in Ay is a function 1 such that 1(F, F',z) = 0if F # F', and 1(F, F,z) =1
for all F € Fy4,z b F.

2.2. We define now the algebra Uj.

For any ¢,j € [1,n] let E;; be the n x n matrix such that its {,m entry is §;:6;m,
where §;; is the Kronecker é-function. Following [BLM] and [G], we define functions
e, fi € Ag, i =1,...,n—1 as follows.

1, if (F,F',:c) € U Z[A+E,',,'+1]
(F F' ) = A€Ag4—
0, otherwise;

{ 1, if (F,F,z)€ |J Z[A+ Ein,l
fi(F, F’,l‘) = A€Ag-1
0, otherwise.

Note that ®(F,F') = A + E;;4; with a diagonal A € Ag4_1 means that F] C F;,
dim(F;/F!) = 1, and Fj = F] for all j # . Similarly, if ®(F,F') = A+ Ei;1,i, we have
that F; C F}, dlm(F'/F) = 1 and F; = F] for all j # i. It follows (see 1.3) that all the
conormal bundles in the above deﬁnmon are closed.

Let U; be a subalgebra of A4 with 1, generated by the functions {e:, fi}o

Let h; = ¢; *x f; — fi*xe; € Uy.

2.3. The pullback 7 = 73 : Ag — Ay of the involution 7o (see 1.7) is an involutive
vector space isomorphism defined by 7(¥)(F, F',z) = %(F', F, z).

Let AF” be the algebra with the same underlying vector space as Aq4, but with the
reversed multiplication * defined by:

prPp =9 =*p.

12



By definitions of * and 7

(e *x)(F,F',z) = @*=y(F', Fa:)
=Y.qa-X{F € Falz b F, o(F,F,z)-%(F,F,z) = a}
=Teeqa - X{F € Filz b F, r(o)(F,F,z) 1
= 1(¢) * 7(p)(F, F', z)
= 1(p) * T(Y)(F, F', 7).

This shows that 7 is an algebra isomorphism 7 : 43 — AF".

By definition of the functions e;, f;, we have 7(e;) = fi,7(fi) = e, 1 <i <n-1.
Therefore, Uy is stable under 7, and in fact the restriction 7 : Uy — Ug" is an algebra
isomorphism.

Notice that 7(h;) = h;foralli=1,...,n - 1.

Proposition 2.4. The functions e;, f;, h; € Uy satisfy the following relations:

(1) h,'*hj:hj*h,', ISz,]Sn,
(2) e;*fj = f;*e;, foralli# j;

2ej, ifi=,
(3a) hixej—ejxhi={ —e;, ifli—j|=1,

0, ifli—j]>1.

=2f;, ife=j,
(3b) h,'*fj-fj*h,‘: fj, if li—j|=1,

0, if i —j| > 1.

(4a) eixe;xej—e xejxe;—ejxe;xe; =0, if|i~j|=1;
eixej=e;xe;, ifji—7j|>1;

(4b) fixfixfi—fixfixfi—fixfixfi=0, ifli—jl=1;
fixfi=fi*f lf|2~J|>1

Let sl, be a Lie algebra over Q of all n x n matrices of trace 0 with rational entries.
We denote by ¢;, f,, h; the standard generators of the universal enveloping algebra U(sl,,),
so that &; = Ei i1, f, = Eiy1 € sla, by = [e;, f], i=1,...,n~1.

Corollary 2.5. There is a unique surjective algebra homomorphism ~v4 : U(sl,) — Uy

13



such that v4(e;) = e, va(f,) = fiforalli=1,...,n -1

Proof. The relations of proposition 2.4 are precisely the relations for the standard
generators of U(sl,).

We now prove proposition 2.4.
First, we compute the values of the functions ;.

Lemma 2.6. Foranyi=1,...,n -1

hi] = ) Qi — Gig1i41, if A€ Ay,
o= 0, if A€ Q45— Ay

Proof. Since the functions e; and f; take only values 0 and 1, we have

e;* f; (F,F',z) = Z a-x{FeFs|z b F, eF,F z) fi(F,F',z) = a}
a.EQ‘~ . . .
=x{Fe€Falz b F, eF,F,z)=fi(F,F,z)=1}

As f~ollows from 2.2, ¢;(F, F'la:) = f;(F, F”.‘T) =1 if and only if F is such that
(i) F; C (F:‘ N F!), dim(F;/F;) = dim(F!/F}) = 1,

(i) F; = F; = F for all j #4,

(il) a(Fias + Flyn) € P

Necessarily, dim F = dim F’.
If F; # F}, then (i) implies that F; N F] has codimension 1 in both F; and F;. The
only F satisfying the conditions (i)-(iii) is
F=(RCRC..CFLC(FNF)CFi...CF,=C%.
If F; = F!, then F has to be of the form
F=(RCFARC..CFLCVCFu...CF,=0CY,

where V is such that dim(Fi;;/V) =1, and z(F;41) C V.
Therefore,

ei* fi (F,F,z) =x{V|(z(Fi1) + Fi.1) €V C F, dim(F;/V) =1}
= dim(F/(z(Fi1) + Fi-1)),

since the set of such spaces V is isomorphic to a projective space of dimension m =
dim(F;/(z(Fiy1) + Fi—1)) — 1, whose Euler characteristic is m + 1.

14



Thus, we have

dim(F;/(z(Fiq1) + Fio1)), if F=F,

R Y if dim F = dim F’, F; = F! for j # 5,
eixfi (F,Fl,z) = and dim(F/(F,n F))) = 1,
0, otherwise.
Similarly,
dim((z7Y(Fi-1) N Fip1)/ F), if F=F',
. ’ _ 1, 1fd1_mF=_ci1_n_1F',F,=FJ'for]#z,
foxei (F,F'yz) = and dim(F,/(F;0 F!)) = 1,
0, otherwise.

This gives us that h;(F, F',z) = 0 if F # F’, and that for any F' € Fj and any z b F
h(F,F,5) = dim(F/(2(Far) + Fiur)) — dim((z=(Fi1) 0 Fiy)/F)

dim F; — dim(z(Fi41) + Fi-1)) — dim(z(Fi41) 0 Fioy)

—dim(Ker(z) N Fi41) + dim F;

2dim F; — dimz(Fi4;) — dim F;_; — dim(Ker(z) N Fiy4)

2dim F; — dim F;_; — dim F}4,.

inn

Together with 1.2.2, this shows that forall: =1,...,n -1

hilza) = aii — Giy1i41, if A € Ay,
e if A€ 0y— Ay

2.7. Since h;(F, F',z) = 0 unless F = F', for any ¢ € U we have
hixo (F,F,z) =3 a-x{FeFi|z b F, hi(F,F,z) - o(F,F,z)=a}
= aefa.x{ﬁ € Fi| F =F, hy(F,F,z)-(F,F',z) = a}
= ;:?F,F,x)cp(F, F' z)

Similarly,
@ * h,' (F, F',:z:) = (p(F, F',z)hg(F’, F’,.’L‘).

In particular, h; * h;(F, F',z) = 0 unless F = F”, and
h.’ * h_,’ (F, F,a:) = h.’(F, F,z)hj(F, F, z).
Therefore, h; * h; = h;h;, where the right hand side denotes the pointwise multiplication

15



of functions h;, h;.

2.8. By 27, h,‘ * hj = h,'hj = hjh,' = hj * h,'. This proves (1)
Also, 2.7 gives

(h,’ €; —€; % h‘)(F, F',JJ) =
{(2dim F; — dim Fi_, — dim Fi};) — (2dim F{ — dim F;_, — dim F},,)}e;(F, F', z).

Let us denote the factor in braces by C. By 2.2, ;(F, F',z) = 0 unless F; C Fj,
dim(F;/F}) = 1, and F, = Fy for all k # j. It follows that for any F,F’ such that

e;(F,F',z) # 0
9, ifi=j,
-1, ifli—jl=1,

0, ifli—j|>1.

o

This yields (3a).
We deduce (3b) from (3a) using the involution 7 defined in 2.3. We have

(h,'*f,-—fj*h;)+C-fJ— =T((ej*h,-—h.-*e,-)+C-ej)=‘r(0)=0
for any 7,7 = 1,...,n — 1. This gives (3b).
2.9. Let ¢ # j. Then

ei* fi (F,F',z) =) a-x{FeFi|zbF,eF F,z) fi(F,F,z)=a}
a€Q
1, if F{ C F;,dim(F;/F]) =1; F; C F},dim(F}/F};) =1,
= F, = F for all k #1,3;

0, otherwise.

= f; xe;)(F, F',z).

This gives (2).

2.10. To prove the Serre relations we calculate the following functions.

2, if F! C F;,,dim(F;/F'i) =2; F, = Fj for all k # 1;
0, otherwise.

€; * € (F,F',Z) ={

The functions e;4; * €; * €;, €; * €; * €;41, and e; * e;4; * ¢; are all equal to 0 at (F, F',z)
unless

16



(i) z b F, F'
(i) F! C By dim(Fy/F) =2 Flyy C Fat,dim(Fisa/Fly) = 1
(ili) Fr = F{ for all k # ¢,0 + 1;

For F, F', z satisfying the conditions (i)-(iii) we have

2, if F;CFj,, and z(Fiy1) C F], or
eixe; ke (FF z) = if dim(Fi/(F; N F,)) =1,

0, otherwise.

2, if F;CF/;
eiv1 *eix e (F,FY z) = { 0 otherwisef.l
2, if F; € F},,, and z(Fiy,) C F;
1, if Fi; C F/,,, and z(Fi1) € F;
1, ifdim(F/(F;NF,)=1
0

, otherwise.

€; % €41 * € (F,F,,(E) =

It follows that
eike; *€ypyp —2€ %€y k€ + €y ke, xe; =0.

Using again the isomorphism 7, we have

fixfixfin—=2fixfipn*xfi+ firma*xfix fi = T(eiy1%ei*xe; —2e;xe;p1 xe; +e;xe;xe;pqy) = 0.

The rest of the relations (4) are proved by completely analogous computations.
Proposition 2.4 is proved.

Lemma 2.11. All the functions in Uy are constant on GLg-orbits.

Proof. First we notice that the generators of U; are constant on GLg4-orbits. Next,
we claim that * preserves this property. Indeed, let ¢1,02 € Uy be such that ¢;(g -
(F,F',z)) = ¢i(F, F',z) for any (F, F',z) € Z4, g € GL4, t = 1,2. Then

¢1* 02 (9F,gF', gzg™") i 3 .
=Y a-x{F|gzg™' b F, p:(9F, F,gzg97") - p2(F,gF', gzg7") = a}

a€Q . . . .

=Y a-x{F|zbg'F, op:1(F,g"'F,z) - s(g"'F, F',z) = a}
a€Q . . . .

= Z a-x(g-{F|zbF, ps(F,F,z) - p2(F,F',z) = a})
aEQ

=1 %y (F, F', ).

17



The lemma follows.

3 The basis of Uj,.

Theorem 3.1. For any matriz A € O4 there ezxists a function ¢ € Uy satisfying the
following conditions:

D elza =1
(II) ¢ vanishes on some open dense subset of Z[A'] for any A’ # A,

(III) the support supp ¢ is contained in the union |J Z[A').
A'<A

The function satisfying (I)-(II) is unique. We denote it by p4.
The functions {@a}aco, form a basis of the algebra Uj.

In this section, we prove the existence of functions satisfying the conditions (I)-(II)
for every A € ©4. We start with diagonal matrices. Then we construct ¢4 for general
A by an inductive procedure in the spirit of Lusztig’s Lagrangian construction {L2] (see
also section 9).

Let {p4}aco, be a collection of functions satisfying 3.1, (I)-(II). Suppose that for
some c4 € Q

Then by properties (I) and (II), for any A € ©4 the restriction of this sum on some
open dense subset of the irreducible component Z[A] of Z; is equal to c4. Hence, all
ca = 0. Therefore, the functions {¢4}aee, are linearly independent. This implies that
dim U > |04].

In section 4 we prove that {¢4}ace, is a basis of U; by showing that dim U; < |©4].
Then we prove the uniqueness. This will complete the proof of theorem 3.1.

n-1

Let D be a subalgebra of U; containing 1, generated by {h;}1; -
Propositon 3.2. For any diagonal matriz A € Ay there ezists a function o4 € D C Uy
such that

(a) pa is equal to 1 on Z[A] = Z[A],

(b) pa vanishes on Zy — Z[A).

Let C be the algebra of all Q-valued functions on the (finite) set A4, with the usual

18



pointwise multiplication. Let {64}4ea, be the standard basis of C, where é4(B) = 0 if
A # B, and 6§4(A) = 1. To prove the proposition we show that there is an isomorphism
a from the algebra D onto C, such that the functions ¢4 = a~'(64) have the required
properties.

Lemma 3.3. For any function ¢ € D
(i) ¢ is constant on Z[A] for any A € Oy;
(i1) @lzia) = 0 for all A€ O4 — Aq.

Proof. First, notice that by 2.6, all the generators of D satisfy (i), (ii).
Second, as we know from 2.7, h; * h; = h;h;, so the multiplication * in D becomes
just a pointwise multiplication of functions. This proves the lemma.

Lemma 3.3 allows us to define an algebra homomorphism a : D — C so that a(p)(A)
is the constant equal to ¢|z(4. It follows from lemma 3.3 that « is injective.

Lemma 3.4. The homomorphism « is an isomorphism.

Proof. Let D= a(D). We want to show that D=C¢C.
Let A € A4. By lemma 2.6, hilZ[A] = @i — @iy1,i41. dince Y, a;; = d, this gives
hnr IZ[A] =ap_1n-1 —d+ E?__fll a;;, so that

a(hl)(A) 1 -1 0 -0 0 an 0
a(h2)(A) 0 1 -1 -0 0 azg 0
a(h,...2 )(A) 0 0 0 1 -1 An—-2,n-2 0
a(h,,_l)(A) 1 1 1 1 1 Gn-1,n-1 d

Adding all the columns of the matrix above to the last column, we compute its
determinant:

1 -1 0 0 0 1 -1 0 0 0
0 1 -1 .---0 0 0o 1 -1 --0 O
det{ ¢ ¢ .00 =det| : : : ... : =n-1#0.
o 0 0 .-+ 1 -1 0o 0 0 ---1 0
1 1 1 -1 1 1 1 1 .+ 1 n-1

Therefore, the vector of values ( a(hi)(A),...,a(hn-1)(A) ) uniquely determines A,
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i.e. for any A, B € A,

(a(h1)(A), ... a(hn-1)(A) ) = (a(h1)(B), ..., a(hu-1)(B))

if and only if A = B.

This means that the algebra D separates points. Since also 1 € D, by the Stone-
Weierstrass theorem D is dense in C. But the algebra C is finite dimensional, which
implies D = C.

Lemma 3.4 is proved.

3.5. It follows directly from lemma 3.3 and the definition of a that w4 = a71(64)
with- A € Ay satisfy the conditions (a) and (b) of proposition 3.2.

Corollary 3.6. > ¢4=1.
A€A,4

Corollary 3.7. For any ¢ € Uy and any A € Ay
if®(F,F)= A,

otherwise ;

wa+$(F,F',z) = { o

W(F,F',z), if ®(F', F') = A,
0

, otherwise .

’l[)*(PA(F,F,,CE):{

3.8. To proceed with the construction of the basis functions for non-diagonal matrices
we introduce the following relation. For two matrices A, B € ©4 we say that B <« A if
foralle,yj =1,...,n

Z"O(B)p < ZTO(A)P’ E co(B) < ZCO(A)q,

p<i p<i <y 1<
and at least one of the inequalities is strict. By 1.2 (iii), this is equivalent to the following
condition: for any (F, F') € O4, (G,G') € Op,and allt =1,...,n
dimG; < dim F;, dimG' < dim F},
and at least one of the inequalities is strict.

3.9. For the matrix O € ©4 with the only non-zero entry o,, = d we have O < A for
all A € 94. Since O € Ay, the existence of the function ¢o is given by proposition 3.2.

Let us now fix A € ©4 — A4. Assume that we already constructed the functions ¢4
satisfying 3.1, (I)-(III) for all A’ <« A, and all A’ < A.

Let i be the minimal index for which a,q = 0 for all p, q such that either p < q and
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g>t+2,orgq<pandp>t+2ie.

( ann . A4 0 0 )
A= Bip11 " Qiglitl 0
o - 0 Giy2,i42
.. 0
\ 0 PP PP PR 0 ann }

This means that for any (F,F') € Oy, F; # F/,and F, = F} for all p > ¢ + 1. Such
i € [1,n — 1] exists since A € Aq.

3.10. Because of the choice of ¢, there is at least one non-zero off-diagonal entry in
the (¢ + 1)—th column, or in the (: + 1)—th row. Say, a;;4+1 # 0 for some j < . (The
case when a;;+1 = 0 for all j < ¢ is discussed in 3.18.)

Let B = A — Ej;41 + Ej41,i41 (see 2.2 for the definition of E,;). Clearly, B <« A.
By induction assumption, there exists a function ¢pg satisfying the conditions (I)-(III) of
theorem 3.1. We define

P4 =¢€;*pp.

Lemma 3.11. (a) ¢4 is constant on Z[A);
(b)supppa & UJ Z[A].

A'<A
Proof. Fix (F,F') € O4. We want to compute

@a(F, F',z) = ejxpp (F,F,z) = Y t-x{F € F4 |z b F, ¢;(F,F,z)-0p(F,F',z) = t}
teQ

for any z > F, F'. Let

V = {1? € Fa | (~F’ F) € o¢(FvF)‘Ejj+Ei,j+l}~
={F € F4| F; C F;, dim(F;/F;) =1, F, = F, for all p # j}.
Then . .
(pmo_) 1 fFeV,zbFF,
e(F, F'\z) = { 0, otherwise,
so we have L. .
(*) ¢A(F1F’az)=ti{F|Feva LpB(F,F’,I)=t}-

teQ
3.12. We show that the only F which contribute to () are those for which (F, F') €
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Osp.

Let F €V be such that (F, F',z) € supp pp for some z € N;. We claim that then
®(F,F') = B.

Let ®(F,F') = B'. Then B’ < B by property 3.1, (III).

On the other hand, since F € V, forany 1 <I,m<n —1,! #7

S b, =dm(ANF) =dm(ANF)= Y ap= Y be,

p<lig<m p<ligg<m p<iig<m
and foranym=1,...,n-1

Yo 8, =dim(FNF,) <dm(FNF)—1< Y ap—1= Y by

p<iigsm p<iig<m p<iigsm

This means that B < B’ (see 1.3). Therefore, B’ = B.
By induction assumption ¢p|zp) = 1. Thus, we can continue (*):

¢a(F,F'.2)=x{F |z > F, FeV, F,F)=B).

3.13. Next, we show that the condition z b F above is redundant. Namely, we claim
that for any F € V, such that ®(F,F') = B

tbFF = zbkF.
Indeed, for any such F,
2(Fiy1) C 2(Fiy) C Fi = Fy, if k # 5.

Further, since a,, = by, for all ¢ < i, we have F; N F} = F; N F!. Also, because of the
choice of i and j, Fj1 C Fiy1 = F{,,. It follows that

2(Fi1) = 2(Fir) = =(Fsa 0 Fly) S (F;N ) = (B0 F) €
By definition, this means that z > F.
3.14. Finally, for any z b F, F’ using 3.12 and 3.13 we can compute
@a(F,F,z) =x{F|F eV, ®F,F) =B}
=x{V CC* | (F;nFl) + F;-) C V C Fy, dim(F;/V) =1}
= dim(F;/((F; N F{) + F;_1))

= aJv‘+l M
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This shows that P 4|z(4] = aj,i+1, which proves 3.11 (a). To prove (b) we need the following

Lemma 3.15. (cf. [BLM, lemma 3.2]). For any matriz C € O4, and any constructible
function ¥ € Aq such that supp ¥ C Z[C]

supp (e; x¥) U Z[C+ Ejp - J'+l,p]-
p€(1,n):
Cy41,p21

Proof. 1If (G,G',y) € supp (e; * 1), then there exists G € Fy such that (G,G,y) €
supp e;, and (G,G',y) € supp ¥ C Z[C]. Therefore,

(G, é) S 0¢(G,G)—E,’,~+E,',j+n (Gv G’) € OC'

This means that
(i) Gp = Gy for all p # j,
(i) G; C Gj, dim(G;/G;) = 1, }
(iii) t~here exists p € [1,n] such that G; n G, = G; NG, for all ¢ # p, and
(iv) G;NG, C G;NG,, dim(G;NG,/G; N G,) =1

Since
GiNG, +GinnG,y § GiNG,+GiuNG,y S GinNG,

we have ¢j41, = dim(Gj41 N G,)/(G; NG, + Gj41 N G,_;) # 0. Conditions (i)-(iv) imply
that (G,G') € Oc+E,,-E,41,- Lemma 3.15 is proved.

3.16. We now prove 3.11, (b). By 3.1, (III) we know that supp ¢5 C Up<BZ[B'].
By lemma 3.15,

supp pa =supp (e;*¢8) C U U Z[B' + Ejp — Ejpr,l)-
B'<B pel1,n]:
b’ >1

J+p=
Fix B' < B and p such that ¥, , > 1. Let A’ = B' + Ejp — Ej41,. We want to show
that A’ < A.
We claim that p < ¢ + 1. Indeed, assume that p > + 2.
We know that b, = a, = 0 for all ¢, such that ¢ < r and r > i + 2 (see 3.9). Since
j <4, then in particular by, = 0 for all ¢, such that g < j+1 <2+2, andr>p2>:1+2.
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Therefore, since b}, , > 1 we have

Dobye= D b= 3 b2 W+ Y b > S b

9<i+1 q<i+l 9<i+1 q<i+1 q<i+1
r<p-1 r<n r<n r<p~1 r<p~-1

This contradicts the assumption B’ < B. Hence p < i + 1.
By the definitions of B and A',, forany I m=1,...,n

Z agr=€+ Y, by Z a, =¢+ Z b,

g<l; r<m q<l; r<m g<l; r<m g<l; r<m
where

c=d L ifl=gm2i+l, ]l ifl=j5m2p,
~ 1 0, otherwise, ~ 10, otherwise.

Since p < i + 1, the inequality ) _ b, > > b, implies that

g<l;r<m e<l;r<m
’
S d: Y e
q<lir<m g<l; r<m

for all ,m = 1,...,n. This means that A" < A. Therefore, supp 4 C Ua<a Z[A'].
Lemma 3.11 is proved.

3.17. We now finish the construction of 4.

For any A’ € O, the variety Z[A’] is irreducible. Since the function (4 is constructible,
there exists an open dense subset of Z[A’] such that the restriction of ¢4 on this subset
is constant. Let us denote this constant by ¢(A’). We define

Lo (pa= T ) o).

P4 =

We check that o, satisfies the conditions of theorem 3.1, using that by induction as-
sumption 4 has the properties (I)-(III) for any A’ < A.
First, since supp w4 N Z[A] = 0, by 3.14

1

18+1

palzia = - @alza = 1.
Second, @4 is a linear combination of functions with supports contained in the union
Uar<aZ[A']. For ¢4 this is given by lemma 3.11, (b) and for all ¢4 - by property 3.1,
(I11).

Therefore, supp w4 C Ua<aZ[A].
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Finally, ¢4 is defined so that for any A’ < A it is 0 on an open dense subset of Z[A'].
This completes the proof of 3.1, (I)-(III) for ¢4.

3.18. We recall that the function ¢, was constructed under the assumption that
aji+1 # 0 for some j < ¢ (see 3.10). If this is not the case, then as was explained in 3.10,
there must exist k < ¢ such that a;4, & # 0. Then the matrix ‘A has a non-zero entry in
the (¢ + 1)—th column. We prove the existence of ¢4 using the involution 7 (see 2.3),
and the above procedure for the matrix *A.

We need the following facts.

(i) Transposition of matrices in ©4 preserves the relations < and <, i.e.

A <A & A <A
A<€A & A <A

This is obvious from the definitions of < and < (see 1.3, 3.8.)

(i1) A function ¢ € Uy satisfies the conditions 3.1, (I)-(III) for a matrix A € Oy if and
only if the function 7(y) satisfies the same conditions for ‘A.
This follows from (i) and the fact that 7o maps Z[A] isomorphically onto Z['A] for any
A€ ©4 (see 1.7).

By induction assumption, we have the functions ¢4 for all A’ < A and all A’ < A.
For all B such that B <A, or B < ‘A, but B £ A, and B & A, we set 95 = 7(ip(5)).
By (ii), this function satisfies (I)-(III). By (i), we now have functions ¢p: for all B’ such
that B’ < 'A, or B’ < *A. We can apply the procedure 3.10-3.17 to construct the function
©(ta)- Then by (ii), the function

pa = T(p(a))

satisfies 3.1, (I)-(III).
Note that if we set B = A — E;41 + Eiy1,k41, then B < A, and

1
-pB* fi — Y const- pu.

Pa=
aJ,t+l A'<A

4 Dimension of Uj;.

In this section we show that dim U; = (**7°~!), and complete the proof of theorem 3.1.
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4.1. We recall that by corollary 2.5 we have the surjective homomorphism
va: U(sly) = Uy

such that v4(e;) = e, 74(L.) = fiforall: = 1,...,n — 1. This turns Uy into a U(sl,)-
module, where X € U(sl,) acts on ¢ € Uy by

X p=2(X)*ep.

Lemma 4.2. (1) Uy can be decomposed into a direct sum of a finite number of weight

spaces
Ud = @ (Ud)“a
BEMy
where p = (p1, 2y, fn-1), and p(hy) = pi = pip for alli = 1,...,n — 1 (we set

HPn = 0);
(2) For any p € My we have T2} p; = d — kn for some non-negative integer k.

Proof. By corollary 3.6,

(*) Us=1+xUs= (Y, pa)*xUi= D (pa*Ua).
A€y A€l
We claim that the sum in (*) is direct, and that each subspace 4 * U; with A € Aq
is a weight space.

For any A, B € A4, and any 9,y’ € Uy, corollary 3.7 implies that

supp (4 * ¥) Nsupp (pp *¥') = 0,

if A# B. Hence, 4 *Us N pp * Uy = 0. This shows that the sum in (%) is direct.
Further, for any A € A4 and ¢ < n—1 we have hi|z4) = ai; — @iy1,i+1 (see 2.6). Using
corollary 3.7, for any ¥ € U4, we can compute

hixpaxy (F,F',z) = hi(F,F,z)(pa*¥)(F,F',z)

{ (aii — Giyr,i41) - Y(F, F'yz), if (F,F) € Oy,

0 otherwise.

= (G — @ip1i41) - (pa*x¥)(F, F', z).
Therefore, for any ¢ € (pa * Us),

hi - =va(h) * o = hi * ¢ = (aii — Gisr,i41) - -
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This implies that (¢4 * Us) is an eigenspace of va(h;) with the eigenvalue a;; — aiyy i41.
Therefore, @4 * Uy = (Ug)* with u(k;) = ai; — aiy1,i+1, for any A € Aq. The claim (1)

is proved.
Further,
n—-1 n-1
Hi = Z “(hp) = Z(app - ap+l,p+l) = @i — Qnn,
p=t p=t
and

n-1 n

n—-1
Zl‘i= Z(aii—ann)=Eaii_n'avm=d'—ann'n'

1=1 =1 i=1

This proves (2).
Lemma 4.3. The algebra Uy is finite dimensional.

Proof. Let U~,U°, and U* be the subalgebras of U(sl,) generated respectively by
{f.}io!, {R}io), and {g;}l5. By the Poincaré-Birkhoff-Witt theorem,

Usl,) =U"QU°QU*.

The image ¥4(U ™) is generated by monomials {f;, *- - -* fi, € Us}i<ij,...ixcn-1. For any
such monomial we have (f;, *- - - fi,)(F, F',z) = 0 unless dim F; —dim F; = #{p | i, = i}
foralli =1,...,n — 1. Since F;, F! C C¢, all such monomials are 0 if £ > d(n —1).

This implies that dim~4(U~) < oco. Similarly, dimy4(U*) < co. By proposition 3.2,
dimv4(U°) = dim D = |A4] < oo.

Since Uy = 74(U(sln)) = 7a(U~) ® 7a(U°) ® 74(U*), we have dimU; < .

4.4. As a finite dimensional sl,—module, U; can be decomposed into a direct sum
of irreducible modules, U; 2 @L,. Each L, is a highest weight module with an integral
dominant weight A = (A\; 2 A2 2 - 2 A1), An1 2 0.

Let Lyuy,...,Lyn be a complete set of pairwise non-isomorphic modules in the de-
composition of Uj.

U, acts on itself by left multiplication. By definition, this action is compatible with
the action of U(sl,). Therefore, each of L) is also an irreducible Us-module. This gives
an algebra homomorphism r : Uy — EB:,=1End(L A(P))-

Lemma 4.4.1. The homomorphism r is injective.
Proof. We want to show that for any non-zero ¥ € Uy there is AP such that ¢

does not annihilate L. But % * 1 = ¢ # 0, which means that 1 does not annihilate
U; = @L,. Then for some A, ¢ does not annihilate Ly. Since Ly = Ly, for some p € (1, 1],
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the lemma follows.

n—1

4.5. Let A(d) = {A — dominant integral | Y_ A; = d — kn for some integer k > 0}.
1=1
Note that by lemma 4.2, (2) we have A1) ... AW € A(d).

Corollary 4.6. dim U; < Y (dim L))
AEA(d)

Remark. In section 5 we construct the Us—module L) for any A € A(d). This shows
that in fact {A®,..., 0} = A(d).

4.7. We finish the computation of dim Uy using Weyl’s decomposition of a tensor
power of the standard representation of GL, = GL(n, C) into irreducible representations.

Let V be the n—dimensional complex vector space on which GL, acts in the natural
way. Consider the d—th tensor power V®4 of the module V. Let p : GL, — Aut(V®?) be
the corresponding representation.

There is a natural action of the symmetric group S; on V®¢ given by

- (11 @V2Q - ®Va) = Vo(1) B Vo(2) ® -+ ® Vs(a)
for all ¢ € Sy4, v1,...,va € V.

4.8. Let Ay be the subset of the set of integral dominant weights of GL, such that

Ad={a=(a12022...2a,,)|a,.20,a,-ez, Ea,-:d}_

i=1

We denote by W, the irreducible module of GL, with the highest weight .

Proposition 4.9. (H. Weyl, [W])

(1) {W, | a € Ay} is the complete list of irreducible GL,-modules such that
Hom gr,,(Wa, V&%) # 0.

(2) The image p(GL,) coincides with the set Auts,(V®%) of all automorphisms of V®
commuting with the action of S;.

4.10. As is known, the restriction of GL,-action to SL, turns W, into an irreducible
SL,-module. The corresponding sl,(C)-module is isomorphic to Lya) ® C with Xi(a) =
aj—apforalli=1,...,n—1; dimcW, = dimq Lj(a). Note that

Ma) € A(d) & ac€ A,
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Proposition 4.9, (1) and corollary 4.6 imply that
dimU; < ) (dimLy)? = ) (dimW,)? = dimp(GLa).

AEA(d) a€Ay

4.11. By 4.9, (2), dim p(GL,) = dim Auts,(V®?) = dim Ends,(V®?). The last space
is a linear space of all T = (%i,i...iz; j1j2...74)1<ip.jp<n> SUch that i, . 54,5, € C, and for
any 0 € Sy

t =1

ta(1)e(2) - bo(d)s Jo(1)Ja(2) -Jo(d) 192...g; J1J2.--3d°
The dimension of this space equals the number of orbits of S4 acting on the set of

d—tuples of pairs of indices
{((ilajl)v (i27j2)7 ey (idvjd)) I 1 S i17i2’ v ’id’jl)j% LR 7jd S n}

by o - ((21,71), (82, J2), - - -, (34, Ja)) = ((e)r Jo1))s (ia(2), Jo(2))s - - - » (30(d)» Jo(d)))- This in
turn is equal to the number of combinations (possibly, with repetitions) of d elements

out of n? elements of the set of all pairs {(¢,7) | 1 < 7,7 < n}. The latter is equal to
(3.

Combining this with 4.10, we conclude that dim Uy < (#+7°71),

4.12. As was shown in section 3, functions {¢4}aco, € U; are linearly independent.
Therefore, dim Uy > |04 = (4+7° 1) (see 1.2.1).

Together with 4.11 this shows that dim U; = (‘“'QLI), and that {©4}aco, form a
basis of Uj.

Corollary 4.13. If ¢ € U vanishes on some non-empty open subset of Z[A] for any
A € Oy, thenp = 0.

Proof. Since {¢4}ace, is a basis of Uy, we have

p=2 c(A) pa
A€EBy
for some constants ¢(A) € Q. Then for each A € ©4 the right hand side equals ¢(A) on
some open dense subset of Z[A]. But 1 vanishes on an open subset. Since Z[A] is irre-

ducible, any two of its open subsets have a non-empty intersection. Hence all ¢(A) = 0,
which implies ¥ = 0.

4.14. We now prove the uniqueness part of theorem 3.1. Assume that for some
A € 94 functions ¢, ¢’ € Uy satisfy the conditions (I) and (II) of theorem 3.1 for the
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matrix A. Then ¢ — ¢’ vanishes on some open subsets of all Z[B], B € 04. By corollary
413, o — ¢’ = 0.

Corollary 4.15. The set {@4}aco, is invariant under the involution .

Indeed, as was shown in 3.18, the function 7(y4) satisfies the conditions of theorem
3.1 for the matrix ‘A. By uniqueness, 7(¢4) = ¢(1a).

5 Uz;—modules.

5.1. Let z € N;. We recall that z™ = 0 (see 1.4).

For any i € [1,n—1],let \i(z) be the number of Jordan blocks of sizes 7,i+1,...,n—1
in the Jordan decomposition of z. We set A,(z) = 0. Let k(z) be the number of blocks
of size n. Then

M(z) = A2(z) 20 2 Ana(z) 2 An(z) = 0; nz-:l Xi(z) =d - k(z) - n.

i=1

Note that for any z € Ny the weight A such that A\; = Ai(z),i =1,...,n lies in A4 (see
4.4). Conversely, for any A € A4 there obviously exists ¢ € Ny such that AMz) = A

Let C(z) = {gzg™" | ¢ € GLa4} be the conjugacy class of z. As is well known, the
number of conjugacy classes in Ny is finite, and C(z) = C(y) if and only if A(z) = A(y).

5.2. For flags F, F' € F; we say that F C F'if F; C F{ foralli=1,...,n - L
We define the flag

K”z(OgKer:cherng...Q_Kera:"‘l C Ker z" = C%).
Obviously, z 1> K*. We have dim K? = dim Ker ' = ¥, Ap(z) +1 - k(z).

Therefore,
dim K =dim K¥ & A(z)= \(y).

If z b F, then necessarily F; C K7 for all ¢, therefore F C K~*.

5.3. Following [G], for any z € N; we consider
M* = {(F,F',y) € Z,| F' = K*, y = z}.

This is a closed subvariety of Z; isomorphic to the subvariety 7~1(z) of My (see 1.5).
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The subspace
{Y € Aa|suppy S M7} C Ay

is clearly a left ideal of A4. In particular, it is stable under left multiplication by Uy,
which makes it a Uy—module.

Let s, € Ay be such that s,(F,F',y) = 0 unless FF = F' = K*, y = z, and
s:(K*, K*,z) = 1. Let L, be a submodule generated by s,

Ly ={¢*s: |9 €Us}.

Since Uy is finite dimensional, so is L.

We have (F,K*,z), i F =K
' _ d" , K%, ), i ‘= z’y=x’
Y *s: (F,F,y) = { 0, otherwise.

Therefore, multiplication of a function i by s, from the right amounts to restriction of
¥ on M?* followed by extension by 0.

Via the homomorphism 74 defined in 2.5, L, is also a U(sl,)—module, and therefore
an sl,—module.

Theorem 5.4. For any A € Aq and any z € Ny such that \(z) = A

(1) L, is an irreducible sl,—module isomorphic to the highest weight module Ly; s
is a highest weight vector.
(2) Functions {4 * 3z | A € Oa, 04 * 3z # 0} form a basis of L.

The rest of this section is devoted to the proof of theorem 5.4.

5.5. First we show that s, is a highest weight vector.

By definition, e;(F, K, z) could be not 0 only if dim F; = dim K7 + 1. But this would
contradict z b F, since we must have F C K~ (see 5.2). Hence ¢;(F, K*,z) = 0 for all
(F,K*,z) € Z. This gives

€Sz =€*3;=0

foralli=1,...,n—1.
Next, we compute the weight of s :

hi sz =hi*s, = hi(K*, K*,z)-s,.
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By 5.2 and lemma 2.6,
hi(K®, K*,z) = 2dim Ker z* — dim Ker 2! — dim Ker ¢*+!

=2- EA (z) 4+ k(z Z/\ (i-1) §/\ +(+1)- k(z))

= \i(@) - Ain (@)
Therefore, h;-s; = (Ai(z) — Aiqa(z)) sz foralli=1,...,n - 1.

Further, since L, = Ug*s; = v4(U(sl,))*s, = U(sl,) 3z, and L, is finite dimensional,
it is irreducible. Therefore, L, = Ly with A(&;) = Ai(z) — Ais1(z). This completes the
proof of (1).

5.8. To prove (2) we have to understand the set of irreducible components of M~=.

This variety is closely related to the variety of all parabolic subgroups of GLs which
contain a fixed unipotent element. This is a well understood object for GL4 as well as
for the other classical groups, see R. Steinberg [St], N. Spaltenstein [Sp].

The varieties M* also occur in studying resolutions of nilpotent varieties. W. Borho and
R. MacPherson in [BM] call them Spaltenstein-varieties.

In the following proposition we reformulate some of the results, and prove them in

our setting.

Let O4(z) = {A € O4 | Z[A] N M* # 0}.
Let M*(A) = Z[A] N M*. This is a locally closed subvariety of M~=.

Proposition 5.7. (cf. [St].) (i) The set
GLd : Mz(A) = {(gF,gK”,gzg'l) I (F7 Kxaz) € MI(A),Q € GLd}

is dense in Z[A], i.e. GLq- M*(A) = Z[A] for any A € O4(z);
(i) M*(A) is irreducible; dim M*(A) = dim Z[A] — dim C(z);
(iii) {M*=(A)}ace,(z) s the complete set of irreducible components of M*.

Proof. Let Ngry = {y € Na | y b F,F'} be the fiber of the conormal bundle
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Z[®(F, F")] at the point (F, F'). We have

NeEry = U (NEr N C(Y)).
yEN4

This is a disjoint union of a finite number of sets, since the number of conjugacy classes in
Ng is finite. But N gv) is irreducible, therefore there exists z € Ny such that Nz gyNC/(2)
is open dense in N(g f).

Lemma 5.8. For any F € F; such that z > F, the set Nigpg=) N C(z) is open dense in
N(F,K')-
Proof. Let z € Ny be such that N(r k=) N C(z) is dense in N(ks). Then z € C(2). It
follows that rank z* < rank z* for any i € [1,n—1]. Therefore, dim Ker z' > dim Ker z'.
But z b K7, and hence K* C K* (see 5.2). This shows that dim K* = dim K*, and
therefore by 5.2, A(z) = A(z). This implies that C(z) = C(z). The lemma is proved.

5.9. Let us fix a flag G such that z b G, (G, K*) € O4. By definition,

M=(A) = Z[AJn M* = {(F,K*,z) € M* | (F,K?) € O,}
= {(kG,hK*",z) € M* | h € GL4}.

Then
GLy- M*(A)

- (F,K*,z) | (F,K*,z) € M*(A),g € GL4}
hG,hK*®,z) | g,h € GLa, (hG,hK*,z) € M}
G,K*, hzh~') | g,h € GLq4, hzh™! b G, K*}

G,K?,y) | g € GL4, y € Ngxs) N C(z)}

|| I I T |
P NP S S
v e\
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By lemma 5.8, N(g,x=) N C(z) is dense in the fiber NG k). Since
Z[A] = {g : (G’ K:)y) I g€ GLda ye€ N(G,K’)},
this shows that GLy - M*(A) is dense in Z[A]. This proves 5.7, (i).

5.10. We now prove 5.7, (ii).

Let X, be an irreducible component of M*(A). Assume that M*(A) = X; U X,, where
X; = M*(A) — X1 # 0. Then GLy- X is closed in GLy- M*(A), and GLy- X, UGLy- X, =
GL4- M*(A).

The latter set is dense in Z[A], which is irreducible. Therefore, GL4- X; = GLq- X3.
Then X; = (GL4); X1, where (GL4), denotes the centralizer of z. But all the centralizers
of nilpotent elements in GL4 are known to be connected, and therefore (GLgy), stabilizes
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every irreducible component of M*(A). This implies that X; = (GL4), - X; C X;, which
contradicts the choice of Xi, X;. Therefore, we must have X, = 0, so M=(A) = X, is
irreducible.

Let us consider the map pr : Z; — Ny given by pr(F, F',y) = y. Then pr(GL, -
M?#(A)) € C(z), and the restriction pr : GLy - M*(A) — C(z) is a GLj—equivariant
locally trivial fibration with the fiber M*(A). Hence

dim Z{A] = dim GLq- M*(A) = dim C(z) + dim M*(A),
which yields (ii).

5.11. Being conormal bundles, all Z[A] contained in the same connected component
of Z; have the same dimension. Therefore 5.7, (ii) implies that all M*(A) lying in the
same connected component of M* have the same dimension. It follows that M*(A’) C

M=(A) if and only if A’ = A, and hence each M=(A) is an irreducible component of M=.
Further,

M*CZi= |J Z[A] = M = |J M nzZ[A)= | M (A).

A€oy A8y A€Oy(z)

Therefore, each irreducible component must be of the form M#(A) for some A € O4(z).
Proposition 5.7 is proved.

Corollary 5.12. For any A € O4(z)

(i) (wa * 8z)Im=(a) = 1;
(ii) @4 * 8 vanishes on some open dense subset of M*(A') for all A’ # A.

Proof. This corollary is a counterpart of theorem 3.1 for the functions ¢4 * s, € L.
We recall that p|p= = (@ * 38;)|m= for all ¢ € Uy.
Since M*(A) C Z[A], by 3.1, ()

(SOA *3,)]M=(A) = ‘PA!M’(A) =1.

Now suppose that supp(y4 * s;) contains an open subset of M*(A’) for some A’ # A.
Then this set is contained in supp ¢4. But by lemma 2.11, ¢4 is constant on G Lg4-orbits,
and by 5.7, GLq - M*(A') is dense in Z[A’]. This implies that supp ¢, contains an open
subset of Z[A’], which contradicts 3.1, (II).

Corollary 5.13. The functions {p4 * 3:}ace,(z) are linearly independent.
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Proof. Let
Z ca-(paxsz) =0
Aeed(r)
for some c4 € Q. Then by corollary 5.12, for any A € O4(z) the restriction of this sum
on some open subset of the irreducible component M=(A) of M? is equal to c4. Hence,
all Ca = 0.

5.14. We are now ready to finish the proof of theorem 5.4. The key fact which we
need is that dim L, = |Qq4(z)|.

Let a; = A\i(z) + k(z), i =1,...,n. Then a = (a1 2 ... 2 a,) is a partition of d (see
5.1).

A semi-standard a—tableau is the Young diagram of type a with the nodes replaced
by integers 1,2,...,n so that the numbers are nondecreasing along each row, and strictly
increasing down each column.

The number of irreducible components of M equals the number of semi-standard
a—tableaux. This follows from N. Shimomura’s theorem on the fixed point subvarieties
of unipotent transformations on flag varieties (see [Sh]).

On the other hand, the dimension of the irreducible GL,~—module W, of the highest
weight « also equals the number of semi-standard a—tableau (see e.g. [CL]). By 5.4,
(1) we know that L, = L,, and by 4.10, dim L) = dim W,. Therefore, dim L, equals the
number of irreducible components of M~.

By proposition 5.7, (iii) the latter is equal to |©4(z)|. Since the functions {¢4 *
Sz} Ae®4(z) are linearly independent (see 5.13), this shows that they form a basis of L..

Remark. In Ginzburg’s construction (see [G, theorem 4.4]), the basis of L, is given
by fundamental classes of irreducible components of M. This also shows that dim L,
equals the number of irreducible components of M*.

5.15. Finally, we have to show that g * s, = 0 if B € ©4 — O4(z). We use the same
argument as in corollary 4.13. Since ¢pg * 3; € L., it has to be a linear combination of
the basis elements:

PB * 8z = Z ca-(pa*3z).
A€Oy(z)
For any A € ©4(z) the restriction of the right hand side on some open dense subset of
M?(A) is equal to c4. But by corollary 5.12, (ii) we know that ¢p * s, vanishes on some
open dense subset of M*(A). Since M*(A) is irreducible, the intersection of these two
open subsets is not empty. Hence all ¢4 =0, so pg *s, = 0.
This completes the proof of theorem 5.4.
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6 Stabilization.

In this section we show that for any d there is a surjective algebra homomorphism
Ugyn — Uz which commutes with homomorphisms 74, Y44 from U(sl,), and which is
compatible with the bases of Uy and Uyyn given by theorem 3.1.

6.1. Following [G], we fix a decomposition C?*" = C?@ C", and a nilpotent operator
zl : C* — C™ whose Jordan form has a single n x n block. There is a unique complete
flag F* € F, such that z* > F!. Clearly,

F!=Im (2" = Ker (2%), i=1,...,n.

If F € F4 let F @ F! denote a flag in Fy4n whose i—th space is F; @ F! for all
t=1,...,n. For any z € N; obviously

sbF & (@) > (FoF".
For G € Fuin by G € Fy we denote a flag such that G; = G;nNC4, i =1,...,n.

Lemma 6.2. Ifz € Ny and G € Fyyn are such that (z @ z*) b G, then z b G, and
G=GeF.

Proof. Let us fix ¢ € [1,n — 1]. Since (z @ z!) b G, we have
Im(z® )" CG: C Ker(z® ')

(see 1.4). But Ker(z@z')' = Ker z*@Ker(z!)' = Ker '@ F}. Similarly, Im(z@®z!)"~* =
Imz" @ F! (see 6.1). It follows that

FicG,cC'oF.

Therefore, any vector in G; can be written uniquely as a sum u + v, where u € Clve
F,~u C G;. Then also u € G;. Hence G; = (G; N CY o F,-".

The statement z > G is obvious. The lemma is proved.

6.3. Following [G], we consider an embedding 1 : Zy — Z44n defined by
(F,F,z)=(FO F',F'® F',z 0 z).

Let I denote the n x n identity matrix. For any A € ©4 obviously A + I € Og4n.
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Lemma 6.4. (cf. [G, n. 5.1 (i1)]). For any A € ©4 we have :(Z[A]) C Z[A + I].
Proof. We have to prove that for F, F' € Fy
(F,F)eO4 © (FOF',F &F") € Opyr.
Fori,j€[l,n]let V= (F;®F)n (F; & F,ﬁ) It suffices to show that
dimV = dim(F; N F}) + min(¢, j)

for all 4,j = 1,...,n. Let k = min(i,j). Then V = (F; @ F}) N (F! ® F}). Clearly,
F} CV C C*@ F}. Then, as in lemma 6.2,

V=(VnCeF!=(F.nF)e F}.
Hence dim V = dim(F; N F}) + k. This proves the lemma.
6.5. The pullback +* : Uzyn, — Ay is defined by
(P)(F, F' ) = p(o(F, F',2)) = 9(F & F', F' @ F',z @ o).

Proposition 6.6. (1) :* is an algebra homomorphism;
(2) 2*(Ud4n) C Uy, and the following diagram is commutative

U(sl,)

V

‘.
Uggn — Uy

Y4

Here ~4 is the homomorphism given by 2.5.

Proof. Let 11,%2 € Ugyn. We want to show that 2*(1y * 1g) = +*(¢h1) * 2*(¢2).
For any (F, F',z) € Z; we have

2‘('(/11 *¢2) (F'/Flvz):"bl *~¢2 (F@Fu,FjeFﬂ,$®zﬂ)~
= Za-x{F |(z® ") b F, o (FOFLF,z@ ") - ¢(F,F' @ F', z @ 2%) = a}
aEQ

For any F which contributes to the above expression, by lemma 6.2 we have F' = F @ F!,
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and z b F. Therefore we can write

Yi(F@ F' Fz@ 2% = (¢) (F,F,z)
Yo F, F' @ FY 2 @ 2¥) = 0" (4,) (£, F', 2).

We can continue

l‘(lﬁl * 1/’2) (F’ Ij",l‘) . -
= %a x{E € Falz b E, (Y1) (F, F,z) 2" (¢) (E_,F',:c) = a}
a€
= *(¢1) * () (F, F', 7).

This proves (1).

6.7. Let us temporarily indicate the generators e;, f; € U by writing e, f@ Since

t YJs
we already know that :* is an algebra homomorphism, to prove (2) it suffices to show

that *(el**™) = e, () = fP foralli=1,...,n - L.
By lemma 6.4, (Z[A]) C Z[A + I] for any A € ©4. Obviously,

A—FE; ;1 €Aiy & A+1-FE;i}1 € Adynr-

By definition of e; (see 2.2) this implies that z‘(e‘-”“'"’) =9,

3
Next, we notice that the involution 7o defined in 1.7 commutes with 1. Therefore,

r =15 (see 2.3) commutes with :*. Hence,
C(fH) = (el = 7o ( 6 = 7(ef?) = £
The proposition is proved.
Corollary 6.8. The homomorphism 1* is surjective.
This follows from 6.6, (2) and the fact that 74 is surjective.

6.9. Next we show that the bases of U; and Uy, constructed in section 3 are com-
patible with ¢*. Let ©/,, C ©44n be the set of matrices with strictly positive diagonal
entries. There is a bijection Oy, 2 0, given by B — B'— I, where I is the identity
matrix.

Theorem 6.10. The image of a basis element of Usyn under 1* is either 0, or a basis
element of Uy. Namely,
(1) 1*(¢B) = ¢80 for all B € Og,,;
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(2) 1*(¢p) =0 for all B € Ogpn — 0.

Let V be any open dense subset of an irreducible component Z[A] of Z;. The key fact
in the proof of the theorem is that the set

GLygn - (V) ={g- (FOF'  FoF' 20" | (F,F,z)€V, g € GLntq}
is open dense in Z[A + I].

Let U = {(G,G',y) € Zyyn | y*~! # 0}. This is a GL44,—stable open subset of Zy,,.
The condition y*~! # 0 means that the canonical Jordan form of y has at least one

n X n block. Note that the image (Z;) is contained in U.
Let Ug = U N Z[B).

Lemma 6.11. (i) For any B € Ouyn the set Up is not empty if and only if B € O ;
(ii) If B€ ©),,, then B—1€ 04, and GLyn - (Z[B - I]) = Up.

Proof. Let B € ©,,. Then by lemma 6.4, «(Z[B —1I]) C Z[B]NnU = Ug. It
follows that Up is not empty. Since Up is GL44,—stable, this also gives the inclusion
GLCH.,, . Z(Z[B - I]) g UB.

Now let (G,G',y) € Ug # 0 for some B € Og4y4,. Since the canonical Jordan form of y
has at least one n x n block, there exists an element ¢ € GL44, such that gyg™! =z 2!
for some z € N;. Then (z @ z') b ¢G, ¢gG'. By lemma 6.2, the flags ¢G,gG’ can be
decomposed into direct sums

gG=FaF ¢G'=F' o F!, where F = ¢G, F' = ¢G'.

This shows that (9G,gG',z @ z!) = +(F, F',z). Then lemma 6.4 implies that B =
®(F,F') + I. Hence B € ©,,,,, and (F,F’) € Op_r.

Thus (G,G',y) = g7t -«(F,F',z), (F,F',z) € Z[B - I. Since (G,G',y) was an
arbitrary point of Up, this shows that Ug C GL44n - 1(Z[B — I]). The lemma is proved.

Corollary 6.12. If B € O44n, then 1*(pp) vanishes on an open dense subset of Z[A] for
any A € ©4 such that A# B - I.

Proof. Fix A € ©4 such that B' = A+ I # B. Then B’ € 0),,. By 3.1, (II)
the function ¢p vanishes on some open dense subset V of Z[B’]. By lemma 2.11, ¢p is
constant on GLg,,—orbits, so we can assume that V is GL4;,—invariant.

By lemma 6.11, Up: # 0. Thus, both V and Up: are non-empty open subsets of Z[B'],
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which is irreducible. Hence, their intersection V N Up: is not empty. It is also open and
GL4yn—invariant. Lemma 6.11, (ii) implies that ¥V N Up: N2(Z[A]) is a non-empty open
subset of 2(Z[A]), on which ¢p vanishes. Therefore, :*(¢g) vanishes on an open dense
subset of Z[A].

6.13. To prove theorem 6.10, (1) we show that :*(¢p) satisfies the conditions (I)-(II)
of theorem 3.1 for the matrix B — I, and then use the uniqueness part of theorem 3.1.
By 3.1, (I) we have pg|z[5) = 1. But +(Z[B—I]) C Z[B], therefore for any (F, F',z) €
Z[|B-1]
*(pB)(F, F',z) = pp(1(F, F',z)) = 1.

This shows that :*(ppg) satisfies the condition 3.1, (I).

Next, let A € ©4 be such that A # B — I. By corollary 6.12, :*(¢p) vanishes on an
open subset of Z[A]. This proves 3.1, (II).

Thus, :*(pg) satisfies the conditions (I) and (II) of theorem 3.1 for the matrix B — 1.

By uniqueness, :*(¢B) = ¢(B-1).-

6.14. Let B € Ouyn — ©),,,. F To prove 6.10, (2) we show that the function :*(¢p)
vanishes on an open dense subset of Z;, and therefore has to be 0.

For any A € ©4 we have A + I € O}, and therefore A + I # B. By corollary 6.12,
*(¢B) vanishes on an open dense subset of Z[A]. Therefore 1*(ppg) vanishes on an open
dense subset of Z[A] for any A € ©4. By corollary 4.13, :*(pp) = 0.

This completes the proof of theorem 6.10.

6.15. The constructions of finite dimensional representations of Uy and Uy, also
agree with :*. It is easy to see that A(d) C A(d + n) (see 4.5), and for any z € Ny we
have

~

2 M® 3 MEH

The modules L, .1 and L, are isomorphic via :*. Moreover, 1*(S,4,1) = sz, and ¢* takes
the basis given by theorem 5.4 into the basis. Namely, for any basis vector @4 * s;,.1,
A € O44n(z + 7'), we have A — I € Oy(z), and

1(PA * Sz4z1) = P(A-TI) * Sz.
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7 The algebras U and U.

7.1. The homomorphisms 1* give rise to a projective system of algebras

n—-1 n-1 n-1
DUs « DUssn — DUssza — -
d=0 d=0 d=0

Following [G], we consider the inverse limit U of this system.

7.2-~Let @ - Uzozo @d, A = UZ.;O Ad. . .
Let © C O be the set of matrices with at least one zero diagonal entry. Let A = AN®O.
For a matrix A € © let A denote the matrix

A=A-1 min{ai 1 <i<n}

Then A € ©, and A = A for any A € O.
Let k(A) be the integral part of (3, ; a:;)/n.

7.3. For A € O let us consider the sequence pa4 = {(¢4)o, (Pa)1,(Pa)2,...}, such
that
(4); € Bizo Usrin,
(Pa);j=0for0< 5 < k(A) -1, and
(Pa)k(a)+i = Payjn for j =0,1,2,....

Thanks to theorem 6.10, ¢4 € U. )
Note that ¢4 = ¢ 4. For any A € © we have

@A = (07 ey 0,04, PA+I)) P(A+2D)s - - .).
k(A)-1

Every element of U can be uniquely written as a formal linear combination 3,4 c4 -

95‘41 caA € Q
Since all the projections :* are algebra homomorphisms, there is a well defined algebra

structure on U. With Uy * Uy understood to be 0 if d # d’, we have
(Pa*@B)i = (Pa)i * (PB)i,

for all z > 0. )
The unit element 1 € U is the infinite sum I = ) $a.
A€l
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By proposition 6.2, the homomorphisms

n—1 n-1
vik = P Yarkn : U(sln) — D Uaskn
d=0 d=0

are compatible with the projections. Therefore, there is a well defined homomorphism
y:U(sl,) = U.

Lemma 7.4. The homomorphism = is injective.

Proof. The algebra U(sl,) is spanned by monomials of the form

thy @ Uf a
s fp "ol S

where all s;,p; € [1,n — 1], ti,q; 2> 0.

Let t(]) = Ei: =) ti, q(]) = Zi:p,':j qi for each .7 € [1,77. - 1]’

Let d = £721 (8(7) + ¢(7))- We define flags F, F' € Fyso that F, = F! = C%, and all
F;, F! are the canonical subspaces of the form C* C CY, of dimensions

dim Fj =t(j)+ 3 (t(i) +q()), dim Fj=q(5)+ > (t(i) +q(1)),

i<i-1 i<i-1

forallj=1,...,n -1

Then 74(es," f, ™ - - - €5 o™ )(F, F', 0) = (et « for ... xeft x fU)(F, F',0) #0.

This shows that the image of every monomial under 7 is not 0. Since 7 is linear, the
lemma follows.

The image v¥(U(sl,)) is generated by the infinite sums

€ = 7(&) = Z ¢(A+E|‘,i+l)’ ﬁ = ')’(L) = Z 95(.4+E.‘+1,i)'
A€l A€l

Let U be the subspace of U spanned by {¢4} sc6-
Lemma 7.5. U is a subalgebra of U.

Proof. It suffices to show that for any A, A’ € © the product P4 * P4 is a linear
combination of a finite number of ¢5.

This statement is an analogue of the stabilization phenomenon discovered in [BLM].
From proposition 4.2, [BLM], proved by an explicit computation, it follows that there
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exists p, > 0, and B,,..., B, € ©,, such that

supp ((#4)p * ($4)p) € L) Z1B; + (p — po)1]

i=1

for any p > p,. This implies that

PaxPa= Y cB-PB.
BEePo

This is a finite sum. The lemma is proved.

7.6. The involution 7 defined in 2.3, commutes with all the projections :*. Hence, it
gives rise to an involution 7 of U. Corollary 4.15 implies that the set of all 4 is invariant
under 7. It follows that 7 leaves both ¥(U(sl,)) and U stable.

Note that 7(&;) = f;.

7.7. The algebras U,U,v(U(sl,)) correspond respectively to the algebras K, K, U
constructed in [BLM].

8 The algebra U.

8.1. Following Lusztig [L3, Part IV], we define the algebra U for U = U(sl,,).

Let X = {A = (A1,...,An=1) | Ai € Z} be the weight lattice, so that A(h;) = A; for
all:=1,...,n—1.

Let I = {i}25!. Let £ = Z[I] be the root lattice, imbedded in X so that i(k;) =
26;j — 6 j—1 — b; j+1. For v € L we have v(h;) = 2v; —viey — vy foralle =1,...,n -1,
with vy = v, = 0 understood.

For M, )" € X let

U
AIUA" — n—l n-l .
Y= X)U+ D U (B — X))
=1 =1
We have y/Uy» = 0 unless X' — X’ € L.

Let )
U = @ ! UAII .

AAreX

Let waan : U — \Uyw be the canonical projection.
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There is a natural associative algebra structure on U defined as follows.
Let U(v), v € L be the subspace of U generated by monomials

Qm°"§pgﬁt1"'ﬁtxi,,"'i,m’

such that
#lalpg =i} —#{r|s=1}=u
foralli=1,...n —1. We have U = @,¢, U(v).
The product on U is uniquely defined by the following conditions: for any A}, A{, A3A7 €
X, and any @ € U(A\}, — X{),b € U(A; — A7) the product my; rv(a)ma; ay(b) is equal to
T ag(ab) if AY = A3, and is zero otherwise.
Let 15 = 7 (1). Then we have

1/\1AI = 5A'AI1A, /\IUAH = 1AIUIAH

_ 8.2. We now show that the algebra U defined in section 6 is isomorphic to the algebra
U.
For M, ) € X, let

O(N,\")={A € O |ro(A); —ro(A)is1 = A}, co(A); —co(A)iy1 = A5 i=1,...,n—1}.

Then © = Uy anex O(X, A"). The union is disjoint, and ©()’, \”) is empty unless X' — )" €
L.

Note that for any integer k, and any i =1,...,n — 1 we have

ro(A)i — ro(A)iy1 =r0(A + kI); — ro(A + kI)iy,
co(A); — co(A)itr = co(A + kI)i — co(A + kI)iyr.

It follows that all A + kI lie in the same O()\', \").

For any ) € X, and any diagonal A € AN O(), ), we have a;; — aiy1,i41 = A; for all
t=1,...,n — 1. Hence all a;; — an, are uniquely defined by A. Siqce all the entries of A
are non-negative, it follows that there is a unique matrix A(A) = AN O(A, X). We define
1y = ¢a(). Then - ) )

Ivlar = bypnly, T=3 1. -
reXx

Note that 1, € U for all X € X.
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Lemma 8.3. (cf. [L3, n. 23.1.3]). For any A € X, and anyi=1,...,n — 1, we have

i,\ *é—g = é_,'* i,\_i,
L fi=fixlai,
1,\*h;=h,'*1,\ = /\,‘1,\.

Proof. Fix an integer ¢ > 1. Let A = A()) + ¢[. By definition, a;; — a;41,541 = A; for
allj=1,...,n—-1.

Let d = qn+ ¥_; ; ai;. By the definitions of e;, fi in 2.2, and corollary 3.7, we have the
following equalities in Uy

YA *eE = E PA* P(B+Eii+1)
BeAg-y

= YA * P(A~Eii+Ei is1)
= P(A-Eii+Eii+1) ¥ P(A-Eii+Eis1,i41)
= €; * P(A-Ei41,i+1+Eii)-

Let C = A-— E,'+1’,'+1 + E;;. Then
Cjj — Citri+r = Aj — 285 + 61 + 8541

forall j =1,...,n — 1. Hence C € ©(X — i, A — i). This shows that 1yxe =é*1\;.
Using 7, we have the equalities for f;.
By corollary 3.7 and lemma 2.6, we have the following equality in Uy

hi * al|zB) = 6B,4(bii — biy1,i41) = Ai - pa.

This implies that i, * h; = \1,. The lemma is proved.

Lemma 8.4. Forany A € X, andany:=1,...,n -1,
i,\*é;, i,\*f,’ 60.

Proof. Indeed, ) )
Iyxég =1, % ( Z ¢(B+E.',.'+1))-
BeA

Let A = A(}), so that 1 = 4. For any ¢ > 0, there is a unique matrix B € A and
an integer p > 0 such that co(A + qI) = ro(B + E; 41 + pI). Necessarily, p = ¢ if a;; > 0,
p=q—1ifa;=0,and B= A+ (¢—p)I - Ej;.

This shows that .

ly*x& =¢@ax ¢(B+E.‘,.‘+1)'
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By lemma 7.5, this product lies in U.
Since the involution 7 leaves U stable, we have

i,\*ﬁ=‘)_’(é;*i,\)=i,\+i*éi € 0
The lemma is proved.

8.5. Let y:Uy» be the subspace of U, consisting of all (possibly, infinite) sums ¥ c4- P4,
such that ¢4 = 0 unless A € O(\',\").
By corollary 3.7 and lemma 2.6, we have

)‘:U/\" = i,\l * l? * i,\n.
Let @y av : U — x U be the projection defined by
Tavar(dca-@a)= I ca-Pa

Aeé A€EBNB(N,\")
We have 75 ,(1) = 1.
Let »Ux» = »Uyn N U. This space is spanned by {p4 | A € O(N,\")}. We have

A

U=

[}

*0*1: @ i,\:*()’*i,\n= @ ,\10)‘".

MAeX A AreX

Proposition 8.6. (1) #x (y(U) = yUn for any N, \" € X;
(2) There is a unique algebra isomorphism 4 : U — U such the following diagram is
commutative:

U —L1— (V)

6 LI @ Tar,an
Marex Marex

| g —1—g
Proof. We want to show that 7 () € U forany ¥ € ¥(U(sl,)), and any X', \" € X.
First, notice that the statement is true for 1 € y(U).
Next, we show that if the statement holds for ¢ € 4(U), then it is also true for & * ¥,

and Y * &, forany:=1,...,n—1.
We have

'frA,‘/\n(é'- * '(I)) = i,\; * (éi * !,b) * i,\n = (i,\' * é;) * (iy_i * ‘ll) * i,\u).
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The first factor lies in U by lemma 8.4, the second - by the assumption on . Since Uis
closed under multiplication, we have 7y \n(€; *x ¢) € U.
Similarly,

Aapn(px &)= 1o x (Y*&)*Lw = Iy ** Iygg) * (L re) e 0.
Using the involution 7, we see that also f; x ¢, ¥ * f; € U. This proves 8.6, (1).
8.7. Using 8.3, for any M, \” € X, and any : = 1,...,n — 1 we have

T - (R = X)) U+ U (b = X))
=1y % ((hi = X)) x 4(U)) + v(U)) * (ks -_,\(.'iA,)) * 1w
= (L * B = X)) x9(U)) + 4(U)) * (1aw % hi = X/ 1))

=0.
n-1 n-1
This shows that the image of ()_(h; — X)) U+ Y_ U (h; — AY)) under 7 is contained
i+1 i+1

in Ker #y y». Therefore, a map ¥y: U — U is well defined by the requirement

A(maran(8)) = Faran(y(s))

for all s € U(sl,), M, A" € X. This map is obviously surjective.

Let 4(u) = 0 for some u € U. Let t € U be such that €D 7 (t) = u. Then
AI,A"

‘r(t)=(ZXix)*7(t)*(Z L= Y lvxqw+iv= Y #uan(r(t) =0.
e

A”ex AI’AIIGX AI,A"EX
Since 7 is injective (see Lemma 7.4), we have t = 0, and hence u = 0. Therefore, 4 is
injective.
Finally, for any A}, A{, A5, A} € X, and any s € U(A] — M), t € U(A\; — \y) we have

YT ar(8)maau(®)) = bapag Y(mag az(st)) = Sxy n Taran(y(st))
= 1ag *9(8) % Lay * Ly + y(t) * Lay = (g a0(3)) * F(mag an(2)).

This shows that 4 is an algebra isomorphism.
Proposition 8.6 is proved.

Let us identify U = U(sl,) with its image y(U).

8.8. As shown in [L3, n. 23.1.3], U has a natural U—bimodule structure. In our
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situation, both U and 4(U) are subalgebras of the algebra_ U, and this bimodule structure
is realized as a multiplication in U. It is easy to see that U is stable under multiplication

by U.
Indeed, for any M, )" € X, and any: =1,...,n — 1 we have

€; * Anfjl\n = €; * i,\r * f] * i,\u = i)\:_i * €; * f] * i,\u C /\I_iUAH.
By lemma 8.4, 1y_; & € U. This implies that
€; * ,\vff,\n g ,\:_iﬁyl.

Similar for multiplication by f;. Then, using the involution 7, we see that U is stable
under multiplication by U from the right.

8.9. The structure arising in U from the comultiplication on U (see [L3, n. 23.1.5])
can be interpreted geometrically as follows.

Let us fix d = d' + d” > 0, and the decomposition C? = C¥ @ C*".

We define the map Cg4r4v : Zdl X Zd" — Zd by

cd’yd"((F? F" 1‘), (Gv G’a y)) = (F 2] G'; F' 57) Glaz 87 y)'

Then the map ¢} gu : Uy = Uz ® Ugn is well defined, and is an algebra homomorphism.
To see this, we notice first that ¢ u(ei) = e;@1+1Qe;, ci (i) = fi®L+1Q fi. (We

use the same letters for generators of Uy, Us, Ugn; there should not be any confusion.)
For any ((F, F',z),(G,G',y)) € Za X Zsn we have

¢y (es) (F,F',2),(G,G"y)) =ei(F® G, F' @ G,z ® y).

This function equals 1 if and only if
i)z b FF'; ybG,G,
() (FOG);=(F'eG); & F;=G;, F;=Gj forall j#3;
(iii) (F® G); O (F'® G')i, dim (FEBG) /(F’@ G =1
Otherwise, the function vanishes.
Condition (iii) is equivalent to the following condition

F,=F!, G;> G, dimG;/G:=1 or F;DF|, dmF,/F/=1, Gi=G;

This shows that c*(e;) = ¢; ® 1 + 1 ® e;. Since ¢}, 4y obviously commutes with 7, we
have similar equality for f;.
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Then, it is not difficult to show that for any ¢ € Uy
C;I'dﬂ(ei * '(/J) = (ei ® 1 + 1 ® e,‘) * C;l'du(d)).

Similar for f; and multiplication from the right.
Therefore, for any d we have a commutative diagram

A
U UU
@ ’Ydl®‘ydll
7d d’+d“=d
0, D Us o Vs
D cuar =
d'4d"=d

The maps ¢* agree with the projections induced by 2*.

8.10. There are three natural involutions of U, defined by

w(ei) = e, w(fi) = fi, w(hi) = —hy;
0’(8,‘) = fi? O'(fi) = €&, a(hi) = —h;;
6(€) = fa-i, 0(fi) = €ni, 6(hi) = —hacy,

for all 2 = 1,...,n — 1, such that ¢ and é are algebra automorphisms, and w is an
anti-automorphism (see [L3, n. 3.1.3]).

The anti-automorphism 7 (see 7.6) corresponds to the composition cw = wo. A
geometric realization of w or o is not seen, which seems to be a defect of the construction.

The automorphism § is realized as follows.

For F € F,, let F* denote the flag in the dual space (C%)*, such that F}* is the space of
all linear operators vanishing on F,_;. We have dim F}* = codim F,_;forall: =0,...,n.

If ®(F,G) = A, then ®(F*,G*) = B, such that b;; = an—i+1,n~j+1, i.e. the matrix B
is the result of transposition of A along both diagonals.

For z € Ny let z* be defined by z*(v)(F) = v(z(F)). It is easy to check that z > F
if and only if z* > F*.

Let us fix some isomorphism between (C%)* and C?. Then the map (F,G,z) —
(F*,G*,z*) induces an algebra automorphism U; — Uj. By lemma 2.11, it is inde-
pendent of the choice made. It clearly commutes with :*, and therefore gives rise to an
algebra automorphism U — U. This automorphism preserves the canonical basis, and
its restriction to U coincides with é.
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8.11. Each U can be naturally imbedded into U by the Q-linear map
ja:Us = U

such that j4(¢a) = P4 for all A € ©4. The projection onto the image U — 1aUs)
composed with 37! is a surjective algebra homomorphism py : U — Us.
By theorem 6.10, these homomorphisms commute with %, i.e. we have

Ed
v *Pd4n = Pd:

Via the homomorphisms Pd, all the finite dimensional sl,—modules constructed in
section 5, become naturally U —modules.Thank to theorem 5.4 and n. 6.15, the basis
B = {¢ 4} ace0 of U has the property similar to the property of the distinguished basis of
U, with respect to Us—modules. Namely, for any irreducible module L, with the highest
weight vector s;, the elements

{@A'Srl(ﬁA‘sx#Oa Aeeo}

form a basis of L.

812. Let Xt ={Ae X | 201=1,...,n— 1} be the set of dominant weights.
The partition B = Ujex+B[)] of the canonical basis of U into two-sided cells is defined
in [L3, n. 29.1]. It can be seen geometrically as follows.

As was explained in the proof of proposition 5.7, for any matrix A € ©, there exists
a unique conjugacy class C(z) in Ny such that the set {(F, F',y) € Z[A] |y € C(z)} is
open dense in Z[A]. Let A € X* be such that A\ equals the number of i x i blocks in
the Jordan decomposition of z for alli =1,...,n — 1. Clearly, Me X+,

Note that the class corresponding to A + I is C(z & z*) (see 6.1). Since the above
definition does not take into account n x n Jordan blocks, we have M = )+ Therefore,
it makes sense to assign A4 to $4. We define

BN = {@a| M = A}
This gives a partition B = Uyex+B[\.

8.13. The partition of B into cells is compatible with the homomorphisms py defined
in n. 8.11.

We recall that for an integer d > 0, the set Ay C X™* consists of all A such that
xi= 1"~15); = d — kn for some integer k > 0. This is the same set as in 4.5, but now
we have chosen a different basis for X.
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By theorem 5.4, {L}xen, is the complete set of irreducible Uy—modules. We know
that dim Uy = ¥ sea,(dim Ly )?. Therefore, using n. 8.11, we have

~

Ker pg = span Ujga, B[A].
The algebra U, = U/Ker pq is isomorphic to the finite dimensional factor of U
U/UIX —Ad),

defined in [L3, n. 29.2].

9 Lagrangian construction of U~.

9.1. Let U~ be the subalgebra of U = U(sl,) generated by {f }i}.

We describe the construction of U~ which is a special case of G. Lusztig’s construction
of the —parts of universal enveloping algebras of Kac-Moody algebras (see [L1], [L2}).
The construction was given in terms of constructible functions on certain Lagrangian
subvarieties of spaces of representations of quivers.

Let V = @'_, Vi be a graded finite dimensional vector space over C.
The space of representations of the gragh A, is the vector space
-1
Ey = @(HomC(V}, Vis1) ® Homg(Vig1, Vi)

=1

A representation t € Ey is written t = ®(t; 41 © tiv1i)-
The group Gy = [I'-; GL(V;) acts naturally on Ey by

-1
(9,t) = P(gi+1tiitr197" D gitisrigign)-

=1

Two representations are called isomorphic if they lie in the same orbit.

9.2. Consider the Gy —stable variety
Av = {t € Ey |tatiz = 0 = ti_y atig-1, ticritiio = tigratiie, 1 =2,..., 0= 1}

A point t € Ay corresponds to the commutative diagram
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0 t12 23 t1_2,1-1 ti_10 0
0= V.= V, — -5 =y =
— V1 — V2 = -1 — Vi — Q.
0 t2 taz t—1,1-2 -1 Y

9.3. For v € (Zxo)', let V, be the space of all V = @'_, Vi such that y(V); = dim V,
foralli =1,...,L

Let M(V) be the Q—vector space of all constructible functions on Ay which are
constant on Gy —orbits. Because of this condition, for any v € (Zzo)’ and all V €V, we
can identify M(V) with a single vector space M(v).

For two graded vector spaces V, V we write V C V if V.CViforalli=1,...,I.If
t € Av, then for V C V we write t ~ Vif ti;(V;) C VJ for all |i — j| = 1; we denote by
t|y the element of Ay obtained by restriction of ¢ on V.

Let V' € V,» be such that R; : V/ 3V V; is an isomorphism for all . There is a
unique s € Ayr such that R;s;; = t;iR; for all |i — j| = 1. For a function f € M(V') we

define
f(ty) = £(s).

In fact, this defines the value f(y) for any f € M(V'). It is independent of choices of V'
and R.

Let M = @®,M(v). There is an associative algebra structure on M defined as follows.
Let V€V, and let v = v/ + v". Let f' € M(v'), f” € M(v"). Then for any t € Ay
we define

frxf')= %a x{VEVm|VCV, t~V, f(ty)- f(tly) =a}.
a€

9.4. For i € [1,1], let p be such that p; = & ;. Then V, consists of one point, 0.
Let F: € M(p) be such that F;(0) = 1. Let Mo be the subalgebra of M generated by
F,i=1,...,1

Let n=10+1.

Theorem 9.5. (Lusztig, [L1, Theorem 12.13]) There is an algebra isomorphism o :
U~ 5 My such that o(f,) = F; for alli=1,...,n—1.

9.6. We now explain how the above construction is related to the construction of U.

Let a matrix A € O, be lower triangular. It means that for any (G,G’) € O4 we have
G C G (see 5.2). Let us fix (G,G',z) € Z[A].

Let v = (dim G} — dim G;)75;'. Note that v depends only on A.
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We choose V' € V, and isomorphisms
ri : Gi/G; =V,

foralli=1,...,n—1. Weset V5 =G,/Go =0, V, =G, /G, =0.
By definition, ¢ & G,G', i.e. for all i € [1,n — 1] we have

2(Gi) € Gi-1, 2(G}) S Gi_y.
Therefore, z induces linear maps z; : G}/G; — Gi_,/Gi-1. For each i we define
tiio1 =izt 2V = Vi,

Similarly, G; C Giy1, G: C G',,. Hence the identity map € : C* — C? induces linear
maps & : G;/G; — Gi,,/Git+1. Therefore, for each ¢ we can define a linear map

tiiqr = rip&r; 1 V; > Viga.
This gives us t € Ey. Furthermore, for any ¢ =1,...,n — 1 and any v € G! we have
&1Zi(v + Gi) = &o1(z(v) + 2(Gi) + Gioy) = z(v) + G,

and
Tin&(v + Gi) = Tiga(v + Gig1) = 2(v) + 2(Gig1) + Gi = z(v) + G;.

Therefore, the following diagram is commutative.

™
]

ne=

0 3 2 0o
—_ ' —_ ' —_ —5 ' —_—
0 — Gl/Gl — Gz/GQ — [ Gn—l/Gn—lq— 0
0 £, Z3 Zpn-1
T -
0 t12 t23 tn—2,n-1 0
0 — W — V2 — — Vi =0
0 ta taz the1,n=2 0

This shows that t = ¢t(G,G",z) € Ay.
For any f € M we define a function ¢ = Ry(f) € Aq by

¢(G,G',z) = { f(t(G,G'2)), {GCG,

0 otherwise.

This map is well defined, and is independent of the choice of the assignment (G,G’, z) —
t(G,G', z).
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Let Uy = va(U™).

Proposition 9.7. (1) Ry is an algebra homomorphism;
(2) Ry(F}) = fi for all i =1,...,n—1, so that Ry(Mo) = Uy, and we have the
Jollowing commutative diagram.

U-
o J]l
Yd Mo Yd4n

A de

Ud- Ud—+n

Proof. The equality Ry(F;) = f; obviously follows from the definitions of F; and f;
(see 9.4 and 2.2).

Let us fix ¢ € Mp and j € [I,n —1]. For (G,G',z) € Z4,let V € V,, {r}, (G, G, z)
be as in 9.6.

If G; = G, then we have Ry(F; * ¢)(G,G',z) = 0 = f; * Ry(¢) (G,G',z). I
dim G}/G; > 1, let v be such that v} = v; — §; ;. Then

R(F;+$)(G,G'a) =3 ax{VeVa|VCV, t~V, d(tly) = a)
) €Q i
aeQ

= Z a- X{é € Fa | (Gvé’x) € U Z[A + Ejn ), Rd(¢)(éa G',z) = a}
a€Q A€My
=fi* Rd(¢) (G’ G'vx)'

Therefore, Ry is an algebra homomorphism.
The proposition follows.

Proposition 9.7 shows that the homomorphisms { R4} give rise to a homomorphism

RZMQ—)U.

9.8. Lusztig’s construction provides the canonical basis for U~. It is compatible with
the decomposition My = @, Mo(v), where Mo(v) = Mo N M(v).

The basis of My(v) is parametrized by irreducible components of Ay, V € V,. For an
irreducible component Y of Ay, the basis function fy has the following properties (see
(L2, Proposition 3.6]):
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(a) frlo =1 for some open dense Gy —stable subset O of Y;
(b) fy = 0 outside Y U H for some closed Gy —stable subset H C Ay of dimension
< dim Av.

9.9. Let Eyy C Ev (resp. Evy,_) be the subspace of representations s such that
Si+1,i = 0 (resp. 8ij41 = 0) for allz = 1,...,n — 2. Clearly, Ev = Ev 4 & Ev.. For
te Ev, let us writet =t* @ t~, wherett € Ev,,t” € Ey _.

The space Ev can be naturally naturally regarded as a cotangent bundle of Ey ;. As
was shown in [L1, n. 14], any irreducible component of Ay is the closure of the conormal
bundle of some Gy —orbit on Ey 4.

Proposition 9.10. There is a bijection between the canonical basis elements of My and
strictly lower triangular matrices in ©. It is given by fy — C, such that

R(fr) =Y ¢c+D)-
DeA

9.11. First, we show that for any lower triangular A € ©4 thereis V € V,, and an
irreducible component Y of Ay such that

(*) Rifr)= Y s

Be©y
A-B diagonal

For any (G,G',z) € Z[A] let v = (dimG}/G;)’Z}. Let V,{r;} and ¢(G,G', ) be as
in n. 9.6. Note that t* is independent of z. Therefore, we have a morphism from the
fiber NG of Z[A] to the fiber Ni+ of the conormal bundle of the orbit Gy - t+. It is
surjective.

Let Y be the closure of the conormal bundle of Gy - t*. By property 9.8 (a), the
function fy = 1 on some open dense subset of Ny+. Therefore, Ry4(fy) = 1 on some open
dense subset of Ng ). Since Ry(fy) € Uy, it is constant on all GLy—orbits. Hence,
R4(fr) =1 on some open dense subset of Z[A].

It is easy to show that the +part of ¢(F, F’,y) is isomorphic to t* if and only if
(F,F") € Z[B] such that B € Oy, and all the off-diagonal entries of A and B coincide.
By the same argument as above, Ry( fy) is identically 1 on an open dense subset of such
Z|B). :

Similarly, we show that R4(fy) vanishes on an open dense subset of Z[B]if A — B
is not diagonal. Therefore, the difference of R4(fy) and the right hand side of () is a
function in Uy, vanishing on an open dense subset of Z;. By corollary 4.13, it has to be
0.

9.12. Next, we show that for any V and any irreducible component Y of Ay, there
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exists d and a lower triangular matrix A € ©4 such that (*) holds.

Let Y be the closure of the conormal bundie of the Gy orbit of s € Ey ;. It is easy
to show that there exists a pair of flags G, G’ € F; for d large enough, such that for any
z > G,G' the +part of t(G,G’, z) is isomorphic to s. By 9.11, the matrix A = ®(G,G")
satisfies (x).

By proposition 9.7 (2), the homomorphisms Ry commute with :*. Since by theorem
6.10, ¢* is compatible with the bases of Uy, and Uy, the proposition follows.

Corollary 9.13. For any A € X*, the basis {p4} of U and the basis {fr} of My give
rise to the same canonical basis of the sl,—module L.

Indeed, for any lower triangular matrix A € ©4 and any module L, as in n. 5.3, there
is at most one function pp € Uy such that A — B is diagonal, and ¢p * s; # 0.

10 Examples: n = 2,3.

In this section we compute the canonical basis for n = 2, and some monomials in the
canonical basis for n = 3.

We omit *, writing ¢ instead of ¢ * ¢.

For an element ¢ of Uy or U, and an integer a € Zyo, let
d)a
‘(-1?.

1,b(“) =

10.1. The canonical basis of U for U = U(sl;) is computed in [L3, n. 25.3]. We
describe the computation in the geometric setting. 3
The basis of U in this case is parametrized by 2 x 2 matrices in O (see 7.2):

(g‘c‘) (gg) a,b,c € Zso.

The corresponding basis elements are given by
¢@ =& as-c i) 09 = A Marsece®.

Let us prove it. Let k € Z>, and let
k a k 0
A=(b c+k)’ D-(O a+b+c+k)’
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A, D € ©4, where d = a + b+ c+ 2k.
Let

o= Aol
We have (G, G',z) # 0 if and only if

dimGy = a+k; dimG) = b+ k; dim(G; NG}) 2 k; Im ¢ C G1 NGY; rank z < k.

As can be easily seen, ¢|z4) = 1, and p|z5) = 0 for all B £ A.

Let now (G,G',z) € Z[A], A’ < A. Then dim(G; N G}) > k, and dim(G, + G}) <
a + b+ k. Therefore, the maximal possible rank of z is

min(dim(G; N G}),codim (G, + G})) > k.

But ¢(G,G’,z) # 0 only if rank z < k. Hence, ¢ vanishes on an open dense subset of
Z[A"].
By theorem 3.1, ¢ = ¢ 4. Then theorem 6.10 implies

A —(a)3 F(b
PQ = 61( )1—a—b-cf1( )-
The computation for p(; g) is similar.
Note that &/P1_o_y /;® = P14, for all a,b > 0.
Let now U = U(sl3).
Proposition 10.2. The following monomials are contained in the canonical basis of U:
—(a) g (b)=(0)3% F(s)= Fr r(a)=(b) F(o)3 - ()= (r
(1) s @FO O, FOEOFN, F@e®FOT . e F0el,
[>b4+t, —l>a+b—c, =l2t+r—3, —m>c+s;
(@) F(®)=(c)3 F(s)- F(r r(a)-(d) 7(9)3 (&) F@)=(r
@ E RN mFYEOR, R8P RO el F 0,
—1>c+s, m>2b+t, -m>2a+b—c,—-m>2t+r—s;

-~ —(b)=(¢)3 £(s) F F(r r(a) 7 () F(c)3 —(8)=()=(r
(3) el(a)e'z( )CI(C)]-(I,m)fl( )f2(t)f1( ), fz( )fl( )fz(c)l(—m,—l)e'z( )el(t)ez( )a
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~l>a+c+s+r,—-m2b+t,b>a+c, t>s+r;

(4) FEEICEIS PR ALY AT AR AT A A VI NSO
5O FOFOR, O RO R a2 0e00,
—I>a4+c+t, -m2b+s+r,b2a+c, t2s+r;

(5) GEEREITTIRY ALT ALY AU AT A0 A TS

—I>b+t, -m>a+c+s+r,b2a+c, t2s+r.

Proof. Let A = (ay;) be a 3x3 matrix, A € ©4. Let us consider the following functions
in Uy.

b= el fmten glosten) o) g,

o = o) oty plmton) o) o),

by = et fony gl fomiea) )

bo = et lony gl floniea) )

b = el gl lemiea) o),

where

A = (a1 — a2+ a2+ an, a2 — a3 — azz — a3 — 431 — a13),
p = (an —az — a1z —az —aa — 413,

G2 — G33 + @12 + @21 — a3z — Gz3 + a3 + a13),

w = (au — @99 — G132 — @21, G2 — 33 + G12 + @21 — A32 — A23 — 431 — 013)-

For all j = 1,...,5 we have ¥j|z(4) = 1, and ¥;lzigy =0if B £ A.
10.3. Any matrix B < A has to be of the form
an +u a12 +v a13—u—v
B= an +w az + 2 Q33— W —2

a3 —U—WwW a3z —V—2 azt+ut+v+w+z

for some integers u, v, w, z such that u, u + v, u+w, u+v+w+2z > 0 (see 1.3).
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10.4. For each j € [1,5], we list the conditions on the coefficients of a matrix A. For
A satisfying these conditions, and for B < A as in 10.3, let (G, G’,y) € supp ¥; N Z[B).

For the fiber NG of the conormal bundle Z[B] at (G,G"), we compare rank y,
rank y2, rank y|g, etc. to those maximal possible for z € Ng ). We are looking for
u, v, w, z such that the condition ¥;(G, G’,y) # 0 does not force any of these numbers for
y to be less than maximal. In each case we show that we must haveu =v=w=2=0.

This means that 1; vanishes on an open dense subset of Z[B] for B # A. Therefore,
by theorem 3.1 it is equal to 4. Since all the conditions involved hold for A if and only
if they hold for A + I, this will show that ; gives rise to the canonical basis element ¢ 4.

The proof repeatedly uses the fact that z &G, G’ if and only if x(G,—ﬂG;) - G;_lﬂG;-_l
for all 7,5 (see 1.4). In particular, we must have

2(C?) C G NGY, 2(GaNG) S G NG, 2(Gr) CGi NGy, 2(Gy) €GN G,

and also

(G, +G) =0, z(G2 + G3) € G, + G.

10.5. Let j = 1, and let a1y > a2z, asz 2 az;, a3 2 a12+a11—az2, a3z 2 d21+ap—an.

If z > 0, then the maximal rank of z? is strictly greater than as;. But dimIm y <
a1 + ay2 + a1 + az;, and dim(Ker yNIm y) > aqy + a1z + aa, hence rank y? < ag;. This
implies z < 0, hence u + v+ w > 0.

If v <0, and u +w > 0, then

maxdimz(G)) > a1 + an > dimy(G,).

If v <0, and u+w =0, then v+ 2 < 0 contradicts u + v+ w + z > 0. Hence, v > 0.

Similarly, w > 0, and also u + v+ z,u + w+ 2 > 0.
fu+v+w=0,thenz=0,v+w=—-u<0.It follows that u = v =w =2 =0.
Ifu+v+w>0,then

max rank (a:|G2+G£) = min(a;; +az+an+u+v+w,an+astan-—v—w-—2z),

and dimy(G2+G}) < a11+a12+ag;. Therefore, az+az3+a—v—w—2 < an+aztan.
Then

maxrank £ = min(ay; + a1z + az + a2 + U + v + w + 2,az; + azs + az; + azz + u),
and rank Yy S ay + a1z + a2 + azg.

Hut+v+w+z=0,thenu=v=w=2=0.lfu+v+w+2>0,then u=0, and
ag2 + ag3 + a3z + aaz < ay; + arg + az; + asz, which also leads tov=w =2 =0.
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10.6. Let j = 2, and let as2 > a1, @33 > @z, @12 2 G23+asz—ap, 21 2 Gz +asz—az:

Since the space Gy + G} + (G2 N G3) contains a subspace of dimension ay; + a;2 +
az1 + age + a1z + a2, we have

codim (G + G4 + (G2 N Gy))

I

a3+ aszx+az—z+u

< a3+ as +ass.

Therefore, z > u 2> 0.
Also,

maxdim z(G:NGy) = an+u2an 2 dimy(G, N Gy).

Hence, u = 0, and v,w > 0.
Finally,

maxrankz = aen+antantantvtw+z
> ay1 + 612 + an + a2 > rank y.

Hence,v+w+z=0,sotha,tu=v=w=z=0.

10.7. Let j = 3,4, or 5, and let az2 2 a1 + @13 + aa, as3 > ag9 + az + a12.
Let also

az3 > a2, a3z > an, if j =3;

a3 > a1, a3z < az, if J =4

azs < ajz, a3z < ag, if j =5.

Since all the entries of B are non-negative, we have u + v < a13,u + w < az. Then
u+4v+w+2z>0implies —z2 <ut+v+w< a3 +an—u. Therefore, az; + z 2 a1 + u.
For all j = 3,4,5 we have

maxdim z(G2 N G}) = an +u > an > dim y(G2 N G3);
maxrank 2= »_ aj+utvtw+z2 Y ai; > dim Imy.
i3<2 $1<2
It follows that u + v+ w+ 2z =u=0.
Now we have —w — z = v > 0, —v — z = w > 0. We can compute

maxdim z(G3) = an + min(a;z, d23) + v > an + min(ay2, a23) = dim y(Ga),
maxdim z(Gj}) = an + min(an,a3) +w 2 an + min(az1, asz) = dim y(G3)-
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Hence v = w = 0, and therefore also z = 0.

10.8. We have shown that all the functions v¥;, j € [1,5] give rise to the basis
elements ¢4 for the corresponding A.

All the monomials listed in the proposition can be obtained from the corresponding
functions ;, using involutions 7 and é (see 2.3 and 8.10).
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