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Abstract
In the thesis, the universal enveloping algebra U(sl,,) and its modified version are
constructed as subalgebras, of the algebra 6. The algebra U is constructed as a projective
limit of finite dimensional subalgebras of convolution algebras of constructible functions
on cotangent bundles of flag manifolds.

The construction provides a canonical basis of &, which gives rise to distinguished
bases of all irreducible finite dimensional representations of sl,.

The basic steps follow those of Ginzburg's Lagrangian construction. We show how
the latter is related to Lusztig's construction of the -part U- of U(sl"), which is done in
terms of constructible functions on Lagrangian subvarieties; of spaces of representations
of quivers.

Using the geometric setting, we compute the canonical basis of for S12 and 12 series
of monornials in the canonical basis for S13-
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Introduction.
A Drinfeld-Jimbo algebra U over Q(v) is defined in terms of generators an relations,
associated with root data (see e.g. [L3, n. 31]) G Lusztig in [L3, Part IV] defined the
algebra a modified version of U. This is an algebra without unit, with Cartan part of
U replaced by a direct sum of infinitely many one-dimensional algebras.

Every U-module with a weight decomposition can be naturally regarded as a
module, and the algebra turns out to be more suitable for studying these modules. In
particular, has a canonical basis which is compatible with irreducible finite dimensional
modules and their tensor products.

A. Beilinson, G. Lusztig, a nd R. MacPherson [BLMJ constructed geometrically the
algebra in type A. The construction used the geometry of relative positions of pairs of
flags.

V. Ginzburg [G] gave a "micro-local" version of Beilinson-Lusztig-MacPherson con-
struction. He constructed a projective system of finite dimensional algebras generated
by certain Lagrangian cycles in the cotangent bundles of flag manifolds. An algebra
multiplication was given by convolution in Borel-Moore homology. Each of these alge-
bras was a surjective image of the classical Usl,,), and the homomorphisms from Usl,,)
commuted with the homomorphisms of the projective system.
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The algebra U = Usl,) was shown to be embedded in the inverse limit of this system.
In fact, the same was true for the algebra .

Ginzburg's approach also gave a geometric realization of all irreducible finite dimen-
sional representations of sl,, each equipped with a distinguished basis.

We construct the algebra for U = Usl,,) in terms of constructible functions on
cotangent bundles of flag manifolds, using convolution of functions. The geometric setting
and basic steps follow those of Ginzburg.

Working with constructible functions instead of homology makes proofs and compu-
tations rather elementary (though, sometimes lengthy). It also allows one to see the
relation between the construction of the entire algebra U(sl,,) and Lusztig's Lagrangian
construction of its -part U-. The latter is given in terms of constructible functions
on certain Lagrangian subvarieties of spaces of representations of quivers. It works for
type A as well as for root data of other types (see 1j, [L2]). Understanding this re-
lation might help to find a geometric realization of entire algebras of types other than A,,.

The thesis is structured as follows.
Section describes the geometric setting which follows [BLM], G]. We define the

variety Z = UAEOZ[A], where Z[A] are cotangent bundles to GLd-orbitS OA on the
variety of pairs of flags in the space Cd.

In section 2 we define the algebra Ud as a subalgebra of the convolution algebra of
constructible functions on Zd. We show that there is a surjective algebra homornorphism
from Usl,,) onto Ud.

In section 3 we prove the existence of linearly independent functions IVA}AEe,, such
that each VA is identically on Z[A], and vanishes on some open dense subset of Z[Aj
for any A' 3 A.

In section 4 we show that Ud is finite dimensional, and that dim Ud = Edl- It fllows
that the functions VA}AE8, form a basis of Ud. Then we prove that the basis with such
properties is unique.

In section 5, we construct all irreducible finite dimensional 1"-modules. Every such
module arises from an irreducible Ud-module for some d.

Following [G], we define a closed subvariety M-- of Zd. We consider the space L.,
of constructible functions on M', which are the restrictions on M' of functions of Ud.
It is finite dimensional. We show that L- is an irreducible Ud-module. We indicate a
highest weight vector s., such that the functions A s,., behave with respect to irreducible
components of M' in the saine way a the functions VA behave with respect to irreducible
components of d- Then we prove that IVA Sx I A S. 0, A E E)d} is a basis of L.

In section 6 we show that for any d there is a surjective algebra hornomorphism
from Ud+,, onto Ud which commutes with the homomorphisms from U(31") described in
section 2 We show that each basis element WB E Ud+,, is mapped either to 0, or to a
basis element V(B-I) Of Ud-
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In section 7 we consider the inverse limit U of the projective system of Ud} Ve
show that the algebra U(sl,,) can be imbedded into U Then, we define a subalgebra U
(without unit) of U, which is spanned by the elements

... +- (P(A-I) +- (PA +- (P(A+I) -- ----

corresponding to all the basis elements of the algebras Ud.

In section 8, we show that the algebra is isomorphic to the algebra of type A.
Then wegive a geometric interpretation of some purely algebraic results on obtained
by Lusztig [U].

In section 9 we describe the relation between the above construction and Lusztig's
Lagrangian construction of the -part U- of U(sl,,).

Section 10 contains examples of computations of canonical bses for n = 23.

1 Preliminaries.
The setup closely follows [BLMI, [G].

1. 1. Let us fix n > 2 d > 0. Consider the variety Fd of n-step, partial flags

C: FF = (O = Fo 9 F, C ... 9 F,�, Cd)

in the complex d-dimensional vector space. Let

dimF = (dim F1, dim F2,. dim Fn).

Connected components of Fd are parametrized by sequences of non-negative integers
1 = (11, 12, - -, W, such that < 12 <_ -- < = d. The connected component
corresponding to consists of all the flags F such that dimF = 1. Each component is a
single orbit under the natural action of the group GLd = GL(d, C) on Fd.

1. 2. Let us consider the variety Fd x Xd of pairs of flags. As in [BLM], we assign to
each pair (F, F) E Xd x Xd an n x n matrix O (F, F) = A (aij) such that

aij = dim ( FinFl
, n F,1 + , n F,

Let co(A) and ro(A) be the vectors of column sums of A and row sums respectively, thus

n n n

co(A) ail, ai2, ain )i
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n n n

ro(A) al-, a2j, anj

We have

(i) all a are non-negative integers;

(ii) ai = d;

(iii) dim(Fi/Fi-1) ro(A)i, dim(Fj'/Fj'-,) co(A)j for all < ij n;
(iv) dim(i n F,) 1: al,,,,, for all < i, n.

I<i; M:5j
Let E)d be the set of n x n matrices satisfying (i) and (ii). The assignment (F, F) �-4

4�(F, F) defines a bisection from the set of orbits of GLd under the diagonal action on
.Fd x Fd to the setOd-

We denote bOA the orbit corresponding to A E(d- We have

-Fd X d U OA -
AEed

1.2.1. The number of elements in(d is equal to the number of decompositions of d
2 = (d+n2into a sum of n non-negative integers, thus Al d

1.2.2. We denote by Ad the set of diagonal matrices in0d. Note that F, F)
A E Ad if and only if F = F', and then dim Fi = Ek=1akk for all i = 1,...,n.

1. 3. The set E)d is partially ordered. For any A, B E E)d we say that B < AifOB is

contained in the Zariski closure OAOfOA- WewriteB<AifB<AandB54A.
If A = 4�(F, F), B = t(G, G'), then B < A if and only if dimF = di�mG, dimF'

dimG' , and dim(Fi n F,) < dim(Gi n G�) for all i, j = 1, . . . , n. Using 1. 2 (iii), (iv), we
have that B < A if and only if for all ij = 1,...,n

ro(A) = ro(B), co(A) = co(B), E ap, < bpq.
p5i; q<j p5i; q<j

1.4. Let Nd be the vaxiety of all nilpotent linear maps x : Cd -+ Cd such that Xn = 0.

For a flag F E Ydand a map x E Ndwe write x >F if x(F) 9 Fjj for all i n.
Clearly, x > F implies IM Xn-' C , C Ker xi for all i = n.

1.5. The cotangent bundle T*.Fd can be naturally identified with the set of pairs

Md= j(Fx) E Fdx Nd I x > Fl.
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Let r : Md --+ Ad be defined by r(F, x = x.
Following [G], we consider the subvariety Zd = Md x NdMd of M x Md �--- T * (.F x rd).

We identify the variety Zd with the set of triples

IJ(F, F, x) E Fd x Fd x Nd I x > , x > F.

Let Z[A] be the conormal bundle of the orbit OA. This is a locally closed Lagrangian
subvariety of T*(.Fd x Fd). We have

Z[A = I(F, F, X) E Zd I F, F') E OA},

and
Zd= U Z[A].

AEed

All the irreducible components of Zd are of the form Z[A] for some A E E)d. Here
denotes the Zariski closure of X.

1.6. The group GLd acts on the variety Zd by g (F, F', x = gF, gF', gxg-1). The
action leaves each Z[A] stable.

Unlike the previously considered cases of GLd-action on Fd and d x Fd, here the
number of orbits is in general infinite.

1.7. We define a map o Zd --+ Zd by ro(F, F, x = F', F, x). This is clearly an
involutive algebraic automorphism of the variety Zd.

For any , F E Xd, if 0(F, F = A, then 4�(F', F) ='A, where 'A is the transpose of
A (see [BLM, n. 1.1]). Therefore,,ro(Z[Al = Z['Al for any A E (d-

2 The algebra Ud.

2.1. As defined by R. MacPherson [M] a function on a variety is called constructible
if it takes a finite number of values, and the preimage of each value is a constructible set.

Let Ad be the vector space over the field Q of rational -numbers of all constructible
functions W : Zd --+ Q. Similarly to Lusztig's definition of the multiplication of functions
on the space of representations of quivers 11, we define an operation on Ad by

VI * 02(F, F', x) E a E Xd I x >.P, �01(F, P, X) W2 (P, F', x = a},
aEQ
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where X denotes the Euler characteristic in cohomology over Q with compact support.
We set X(O = .

The operation makes Ad into an associative Qalgebra- This follows from finite
additivity of X for constructible sets, multiplicativity of x for fiber bundles, and the fact
that for any regular map f : X -- Y of algebraic varieties there exists a stratification of
Y such that for each stratum the restriction f If -i (s) is a fiber bundle.

The unit in Ad is a function such that 1(F, F', x = if F F and 1(F, F, x = 
for all F E Fd, x F.

2.2. We define now the algebra Ud.

For any i, i E [1, n] let Eii be the n x n matrix such that its 1, m entry is 8jj6j,"',
where bj is the Kronecker b-function. Following [BLMI and [GI, we define functions
ei, fi E Ad, i n - as follows.

1, if (F, F1 x) E U ZIA + Eii+,]
ei (F, P, x = AEAd-i

0, otherwise;

11 if (F, P, x) E U ZIA + Ej+jjI
fi(F, F X) = AE,1,1-1

0, otherwise.

Note that F, P) A + Ejj+j with a diagonal A E Ad-1 means that Fj C Fi,
dim(Fi/Fi' = 1, and Fi Fj' for all j : i. Similarly, if 6(F, F') = A + Ei+,,i, we have
that F C Fj', dim(Fi'/F) = 1, and F = Fj' for all j 36 i. It follows (see 13) that all the
conormal bundles in the above definition are closed.

Let Ud be a subalgebra of Ad with 1, generated by the functions I ej, fi I'-'
Let hi = ei * fi - A * ei E Ud.

2.3. The pullback = ro Ad --+ Ad of the involution o (see 17) is an involutive
vector space isomorphism defined by r (0) (F, F, x = (F', F, x) -

Let A" be the algebra with the same underlying vector space a Ad, but with the
d

reversed multiplication defined by:
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By definitions of and r

,r (�p * ) (F, F, x) = �p * O(F, F, x)
= 1C- a Xf P EFd I x
= -aEQ a XP EFd I x
= ' (0) * r (p) (F, F, x)
= ' (V) � () (F, F, x).

�o (F', P, x) (P, F, x = a}
7(�O)(,P, F, x) x = a}

This shows that is an algebra isornorphism r : Ad --+ A"' d

By definition of the functions ei, f, we have r(ei = f, 7(fi = ei I < i < n - .
Therefore, Ud is stable under r, and in fact the restriction 7 Ud --+ Udpp is an algebra
isomorphism.

Notice that r(hi = hi for all i = n - .

Proposition 24. The functions ei, f, hi E Ud satisfy the following relations:

(1) hi h = hi hi, < ij n;

(2) ej * f = f * ei, for all i j;

2ei,
(3a) hi e - e hi = -ej,

01

-2fj,
(3b) hi*fj-fi*hi= I

01

if = j,
if Ii - j = ,
if Ii - j > .

if = j,
if Ii j = ,
if Ii - j > .

if Ii A = I;

if Ii - I = ;

(4a) ei*ei*ej-ei*ej*ei-ej*ei*ei=O,
e * e = e * e if Ii - j > ;

(4b) f*fj*fj-fj*fj*fj-fj*fj*fj=O,
fi*fj=fj*fi' fli-j1>1.

Let sl,, be a Lie algebra over of all n x n matrices of trace with rational entries.
Wedenotebyeif hthestandardgeneratorsoftheuniversalenvelopingalgebraU(31,,),
so that = Ej+j f = Eli E sln, h = g, f 1, i = 1, . . . , n - .

Corollary 25. There is a unique surjective algebra homomorphism IN USln) -- Ud
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such that -Id ,e = ei, IN (f i = f for all i = 1, . . . , n - .

Proof The relations of proposition 24 are precisely the relations for the standard
generators of U(sl,).

We now prove proposition 24.
First, we compute the values of the functions hi.

Lemma 26. For any i = 1, n - I

aii - ai+,,i+,, if A E Ad,
hilz[,A) 0, if A E E)d - d-

Proof. Since the functions ei and f take only values and 1, we have

ei * f F, F', x = a x E rd I x t P, ei (F,.P, x) f (P, F', x = a}
aEQ

= XJF E -Fd I F e(F, F, x = f(F, F', x = 1}

As follows from 221 e(F,.P, x) f (P, F', x) I if and only if is such that
(i) Fi c (Fi n Fi'), dim(Fi/F) dim(Fi'/Fi) 1,
(ii) F = = for all j i,
(iii) xFi+ + Fi'+,) Pi.

Necessarily, dim F dim F.
If Fi 36 Fi', then (i) implies that F n Fi' has codimension in both Fi and Fi'. The

only satisfying the conditions (i)-(iii is

= Fo F c ... : i- g i n F) c Fi ... F. = c d).

If F = Fi', then has to be of the form

FF = Fo F, Fi-1 V Fi ... C- n = Cd),

where V is such that dim(Fi+,/V = 1, and xFi+, C V.
Therefore,

ei * f (F, F, x) = XV I x(Fi+, + Fi-1) C V C F, dim(i/V = 1}
= dim(Fi/(x(Fi+, + Fi-1)),

since the set of such spaces V is isomorphic to a projective space of dimension m
dim(Fi/(x(Fi+, + Fi-1) - 1, whose Euler characteristic is m + 1.
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Thus, we have

Iif F = F,
if dim F = dim

and dim(Fi/(
otherwise.

dim(Fi/(x(Fi+, + Fi-1)),
1,

07

F, F = F,' for j : i,
Fi n ,,) = 1e * f (F, F', x =

Similarly,

dirn((x-1(Fj-j n Fj+j)1Fj),
1,

01

if F = F,
if dim F = dim F, F = Fj' for j i,

and dim(Fi/(F n Fi') = ,
otherwise.

fi*ej (F, F', x =

This gives us that hi (F, F, x) = if F 5 F, and that for any F E Fd and any x L F

= dim(Fi/(x(Fi+l + i-1) - dim((x-'(Fi-,) n Fi+,)IFi)
= dim Fi - dim(x(Fi+,) + Fi-1)) - dim(x(Fi+,) n Fi-1)

- dim(Ker(x) n Fj+j) + dim Fj

hi (F, F, x)

= 2dimFi-dimx(Fi+l)-dimFi-j-dim(Ker(x)nFi+,)
= 2dimi-dimi-,-dimFj+j.

Together with 12.2, this shows that for all i = 1, --, n -

if A E Ad,

if A E Od - d-

2.7. Since hi F, F, x = unless F = F, for any �p E Ud we have

= 1 a XP E Fd I x t.P, h(F,
aEQ

= a - X-P E rd J = , h(F,
aEQ

= h(F, , xW(F, F, x)

IF, x) -�p(pl F'x = al

F, x) -�p(F, F', x = a}

hi * �p (F, F, x)

Similarly,
W hi (F, F', x = W(F, F', x) hi F', F', x).

In particular, hi hi F, F, x = unless F = F, and

hi h F, F, x = hi F, F, x) hi F, , x) 

Therefore, hi hi = hihj, where the right hand side denotes the pointwise multiplication

15

aii - ai+,,i+,,
hi I Z[A] =- 0,



of functions hi, hi.

2.8. By 27, hi hi = hih = hhi = h hi. This proves (1).
Also, 27 gives

(hi e - e hi) F, F', x =

J(2 dim F - dim Fi- - dim Fi+, - 2 dim Fj - dim Fi'- - dim Fi'+, I ej(F, F', x).

I C Fj,Let us denote the factor in braces by C. By 22, ej (F, F x = unless j
dim(F/Fj' = 1, and Fk = FA, for all k : j. It follows that for any , F such that
ej (F, F, x 5 

This yields (3a).
We deduce (3b) from (3a) using the involutions defined in 2.3. We have

(hi f - f hi) C - f =r((e * hi - hi e) C ei) =r(O = 

for any i, j = , . . . , n - . This gives (3b).

2.9. Let i : j. Then

= 1 a XP E Jd X t P, ei(
aEQ

IF, F, x) f P, F, x = a}

= 1; F C Fj', d i rn (Fj'l Fi = ,
i'j;

ei * fi (F, F, x)

F, d i m (Fi / Fj')
Fk' for all k :A

This gives 2).

2.10. To prove the Serre relations we calculate the following functions.

ej * ei (F, F', x) -- 2, ifFj'C:Fjdim(Fj/Fi)=2;
0, otherwise.

F = Fk for all k i;

The functions ei+l * ei * ei, ej * ei * ei+,, and ei * ei+ * ei are all equal to 0 at (F, P, x)
unless

16
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(i) x r , F';
(ii)Fj'CFjdim(Fj/Fj')=2; Fj'+jCFj+jdirn(Fj+j/Fj'+j)=1;
(iii) Fk = Fk for all k i, i + 1;

For , F', x satisfying the conditions (i)- (iii) we have

21

0,

2,

0,

if F C Fi'+,, and xFi+,) 9 Fj' or
if dim(Fi/(i n Fi'+,) = ;
otherwise.

if F C Fi'+,;
otherwise.

ei * ei * ei+i (F, F', x =

ei+ * ei * ei (F, F', x =

ej * ej+j * ej (F, F', x =

21 if F C Fi'+,, and xFi+, C Fj';
1, if F C Fi'+,, and xFi+,) V: Fj';
1, if dim(Fi/(F n Fi,+,) = ;
0, otherwise.

It follows that
ej * ej * ej+j - 2e * ej+j * ej + ej+j * ej * e = .

Using again the isomorphismr, we have

f * f * fj+j - 2f * fj+j * fi +fi+l * f * f = T(ej+j * ej * ej - 2e * ej+ * ej + ej * ej * ei+, = .
The rest of the relations 4) are proved by completely analogous computations.

Proposition 24 is proved.

Lemma 211. All the functions in Ud are constant on GLd-orbits.

Proof. First we notice that the generators of Ud are constant on GLd-orbits. Next,
we claim that preserves this property. Indeed, let �01, �P2 E Ud be such that Vi(g
(F, Ft , x) = o(F, F', x) for any (F, F', x) E Zd, E GLd, i = 1 2 Then

�Pl * �P2 (gF, gF', gxg-')
a X P I gxg-1 > P, �01 (9F, P, 9X9 - W2 (-P, gF', gxg

aEQ

Ea XjP I x t>9-'P, �O1(F,9-1-PX)-V2(g-1.P,F',x) =a}
aEQ

a X(g P I x t�- P, (Pl(F, P, X) (P2(.P, F', x = al)
aEQ

(P1 * V2 (F F7 X).

17



The lemma follows.

3 The basis of Ud.

Theorem 31. For any matrix A E Od there exists a function E Ud satisfying the
following conditions:

M V I Z[A]
(II) vanishes on some open dense subset of Z[A'] for any A' : A,
(III) the support supp W is contained in the union U Z[A'].

AI<A

The function satisfying (I)-(II) is unique. We denote it b A-

The functions IVA}AEO, form a basis of the algebra Ud.

In this section, we prove the existence of functions satisfying the conditions (I)-(II)
for every A E (d- We start with diagonal matrices. Then we construct VA for general
A by an inductive procedure in the spirit of Lusztig's Lagrangian construction [L21 (see
also section 9.

Let VAJAE9, be a collection of functions satisfying 31, (I)-(II). Suppose that for
some CA E

CA-WA=O-
AEed

Then by properties (I) and (II), for any A E Od the restriction of this sum on some
open dense subset of the irreducible component Z[A] of Zd is equal t CA. Hence, all
CA = . Therefore, the functions VAJAEe, axe linearly independent. This implies that
dim Ud > 0dj-

In section 4 we prove that f WA}AEO, is a basis of Ud by showing that dim Ud I d

Then we prove the uniqueness. This will complete the proof of theorem 31.

Let D be a subalgebra of Ud containing 1, generated by lhi}'-'

Propositon 32. For any diagonal matrix A E Ad there exists a function VA E D C Ud

such that
(a) WA is equal to on Z[A] -_ Z[A])
(b) WA vanishes on Zd - Z[A].

Let C be the algebra of all Q-valued functions on the (finite) set Ad, with the usual
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pointwise multiplication. Let bAJAEa,, be the standard basis of C where 6A(B = if
A :� B, and bA(A = 1. To prove the proposition we show that there is an isomorphism
a from the algebra D onto C such that the functions OA = a(W have the required

properties.

Lemma 33. For any function P E D
(i) �p is constant on Z[A] for any A E (d;
(ii) 01Z[A] =_ for all A E Od - d-

Proof. First, notice that by 26, all the generators of D satisfy (i), (ii).
Second, as we know from 27, hi h = hhi, so the multiplication in D becomes

just a pointwise multiplication of functions. This proves the lemma.

Lemma 33 allows us to define an algebra homomorphism : D - C so that a�p)(A)
is the constant equal to �pJZ(A]- It follows from lemma 33 that a is injective.

Lemma 34. The homomorphism a is an isomorphism.

Proof. Let 
Let A E d-

= (D). We want to show that = C.
By lemma 26, hi1Z[A = aii - ai+,,i+,. Since E� I aii = d, this gives

hn-1 I Z[A = an-1,n-1 - d + En-' aii, so that

... 0 0 )

... 0 0

... :

... 1 1

... 1 1

0 )
0

0

d

ci(hi)(A)
a(h2)(A)

a(hn-2)(A)
a(hn-1)(A)

1

0

0

1

all
a22

an-2,n-2
an-1,n-1

Adding all the columns of
determinant:

the matrix above to the last column, we compute its

det

O ... O O ) ( i

-1 ... 0 0 0

... : = det

0 ... 1 -1 0

1 ... 1 1 1

O ... O O

-1 ... 0 0

... : = n - :� 0.

0 ... 1 0

1 - - - 1 n -

1

0

0

1

-1

1

0
1

-1

1

0

1

Therefore, the vector of values ( a(hi)(A),.. I a(hn-1)(A) ) uniquely determines A,
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i.e. for any A, B E Ad

(a(hi)(A),..., a(h._j)(A) (a(hi)(B),. a(h._j)(B)

if and only if A = B.
This means that the algebra separates points. Since also E b, by the Stone-

Weierstrass theorem is dense in C. But the algebra C is finite dimensional, which
implies = C.

Lemma 34 is proved.

3.5. It follows directly from lemma 33 and the definition of a that A a-'(bA)
with A E Ad satisfy the conditions (a) and (b) of proposition 32.

Corollary 36. VA = -
AEAd

Corollary 37. For any TP E Ud and any A E Ad

O(F, Ft , x), if F, F) A,
VA * O(F F, x) 0, otherwise 

O(F, F, x), if 4�(F' F) A,
VA F F, x) 0, otherwise 

3.8. To proceed with the construction of the basis functions for non-diagonal matrices
we introduce the following relation. For two matrices A, B E E)d we say that B A if
for all i = ,...,n

E ro(B)p 1: ro(A)p E co(B), 1: co(A),
P<i P<i q<j q<j

and at least one of the inequalities is strict. By 12 (iii), this is equivalent to the following
condition: for any (F F) E OA, (G7 GI) E OB, and all i = n

dim Gi < dim Fi, dim G < dim Fj',

and at least one of the inequalities is strict.

3.9. For the matrix 0 E E)d with the only non-zero entryOnn =d we have 0 < A for
all A E (d- Since E Ad, the existence of the function Vo is given by proposition 32.

Let us now fix A E (d - Ad. Assume that we already constructed the functions A'
satisfying 31, (I)-(III) for all Al < A, and all A' < A.

Let i be the minimal index for which a, = 0 for all p, q such that either p < q and
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q i 2 or q < p and p 2 i.e.

I

A =

r all ... aj'i+1 U U I

ai+,,, ... ai+,,i+l 0

0 ... 0 ai+2,i+2

.. 0

L 0 ... ... ... 0 a.. - j
N I

This means that for any (F, F') E OA, F 5 Fj', and p = Fp' for all p i + 1. Such
i E [1, n - ] exists since A d-

3.10. Because of the choice of i, there is at least one non-zero off-diagonal entry in
the (i + I)-th column, or in the (i + 1)-th row. Say, aj+j for some j i. (The
case when aii+l = for all i i is discussed in 318.)

Let = A - Ei+l + E,,i+i (see 22 for the definition of Epq)- Clearly, A.
By induction assumption, there exists a function OB satisfying the conditions (I)-(III) of
theorem 31. We define

OA = e * �OB-

Lemma 311. (a) A is constant on Z[A];
(b) SUPP OA U Z[A'J.

A'<A

Proof. Fix (F, F') E OA We want to compute

OA F, F', x = e * OB (F, F', x) 1 t XI P E Fdl x t ei (F, X) VB F', x) t}
tEQ

for any x t , F'. Let

V E d (F, E O-O(FF)-Ejj+E,,.I+ I

E Xd Pi c Fi, dirn(i/Fj = 1, Pp = p for all p j.

Then
1, if P E V, x t P, F;

ej(FF'X) 0, otherwise,

so we have
OA(F, F', x) t x I E V, WB(P, F', x = t}.

tEQ

3.12. We show that the only which contribute to (*) are those for which P, F) E
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Let F E V be such that (F, F', x) E SUPP �PB for sme x E Nd. We claim that then
P = B.

Let D (.P, F' = Then B' < B by property 3 , (III).
On the other hand, since F E V, for any I < , m < n - , 5 i

1: = dim(P n ,,n Pq
p:51; qm

E
p<1; q:5m

ap = 1: bpq7
p<1; q:Sm

= dim(t n n =

and for any m = 1,...,n- 1

E b = dim(Pi n F,1)P
P<j; :5M

E apq - = 
p5j; q- p<j; q5-

< dim(F n F,' - < bpq,

This means that B < B' (see 1. 3). Therefore, B'= B.
By induction assumption WBIZ[B] = 1. Thus, we can continue (*):

(�A (F, F', x = X P I x t P, P E V, 0 (P, F' = B}.

3.13. Next, we show that the condition x >P above is redundant. Namely, we claim
that for any P E V, such that P = B

x > , P o x > P.

Indeed, for any such ,

x(Fk+, C x(Fk+, C Fk = Fk, if k j.

= F n Fj'. Also, because of theFurther, since apq = bpq for all q i, we have F n Fj'
choice of i and j, Fi+l C Fj+j = Fi'+,. It follows that

x(Fj+, = Fj+, = Fj+i n Fj1+j) c F nFil = (Fin )cFj -

By definition, this means that x > P.

3.14. Finally, for any x t F, P using 312 and 313 we can compute

= XJP
= IV
= dim(

I F E V, t(F, P = I
C: Cd I (F n F,, + Fj-, g V C Fi, dim(Fi/V = 1}
Fj / ((Fj n Fi,) + Fj - 1))

(�A(F, F, x)

= ai+,-
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This shows that'�A I Z[A] aji+i which proves 311 (a). To prove (b) we need the following

and any constructibleLemma 315. (cf. [BLM, lemma 321). For any matrix C E Od,
function E Ad such that supp Z[C]

supp e * V)) C U Z[C + Ejp - Ei+jp].
pE[ln]:
C-7+1,p>l

such that (G, (�, Y) EProof. If (G, G', y) E supp (e * 0), then there exists ( E Fd
supp e, and , G', y) E supp O Z[C]. Therefore,

(G, 0) E 04(GG)-Eii+Ejj+i, (, G') E Oc 

This means that
(i) Gp = Gp for all p j,
(ii) Gj C Gi, dim(Gi/Gj = 1, -
(iii) there exists p E [1, n] such that Gj n G = G n G' for all q :A p, and
(iv) Oj n G' c G n G', dim(G n G'10 n G' = .

P P P P

Since

i� n G' + �j+j n G_1 C G n G' + Gj n G_ c �j+j n 7,P P :0 P P -

we have ci+lp = dim(Oj+l n G')I(O n G' + �j+j n G'-,):� 0. Conditions (i)-(iv) imply
P P P

that (G, G') E Oc+EP-E,+,,p - Lemma 3.15 is proved.

3.16. We now prove 3.11, (b). By 3.1, (III) we know that SUPP WB 9 UBI<BZ[B'I.
By lemma 3.15,

SUPP WA = upp (ei * WB) U U
B'<B PE(ln]:

1j+1'P>1

Z[B'+ Eip - Eipl.

Fix B' < B and P such that bj'+,,p > 1. Let A' = B'+ Eip - Ei+,,p. We want to show
that A'< A.

We claim that p < i + 1. Indeed, assume that p �! i + 2.
We know that bq, = aq, = 0 for all q, r such that q < r and r > i + 2 (see 3.9). Since

j < i, then in particular b., = 0 for all q, r such that q < j + 1 < i + 2, and r > p > i + 2.
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Therefore, since > we havej+1'P -

1: bqr = E bqr = E biq r >- b+lp+ E bqr > 1 br
q<j+l q<j+l q<j+l q<j+l q<j+l
r<p-1 r<n r<n r<p-I rZp-1

This contradicts the assumption < B. Hence p i + 1.
By the definitions of B and A',, for any 1, m = .... n

aqr = E bqr; alqr + E bqr
q<1; r<m q<1; r<m q<1; r<m q51; r:5rn

where
11 if I = j M > i + 1 1 fj; >P,
o, otherwise, 0, otherwise.

Since p i + 1, the inequality bqr bqr implies that
q<1; r:�,m q<1; r<m

at > aqrE qr E
q51; r<m q<1; r!5m

for all 1,m = 1,...,n. This means that A' < A. Therefore, SUPP OA UA'<AZ[Ag.

Lemma 311 is proved.

3.17. We now finish the construction Of A-

For any A' E(dthe variety Z[A'] is irreducible. Since the function OAis constructible,
there exists an open dense subset of Z[A'] such that the restriction Of OA on this subset
is constant. Let us denote this constant by c(A'). We define

1
VA = .(OA E c(A') VA')-

aii+l A'<A

We check that A satisfies the conditions of theorem 31, using that by induction as-
sumptionVA, has the properties (I)-(III) for any A' < A.

First, inceSUPP WA, n Z[A] by 314

1
WA I Z[A] = .OA I Z[A)aii+l

Second, WA is a linear combination of functions with supports contained in the union
UA1<AZ[Aj. ForOA this is given by lemma 311, (b) and for all WA' - by property 3 ,
(III).

Therefore, SUPP VA C AI<AZ[A'I.
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Finally, A is defined so that for any A' < A it is on an open dense subset of Z[A'].
This completes the proof of 31, (I)-(III) for A-

3.18. We recall that the function A was constructed under the assumption that
aji+l 5 for some j i (see 310). If this is not the case, then as was explained in 310,
there must exist k < i such that ai+,,A: :� 0. Then the matrix 'A has a non-zero entry in
the (i + 1)-th column. We prove the existence Of A using the involution (see 23),
and the above procedure for the matrix 'A.

We need the following facts.
(i) Transposition of matrices in Od preserves the relations < and <, i.e.

A' < A 'A' < 'A,

A' < A 'A' < 'A.

This is obvious from the definitions of < and < (see 13 38.)
(ii A function E Ud satisfies the conditions 31, (I)-(III) for a matrix A E )d if and

only if the function rW) satisfies the same conditions for 'A.
This follows from (i) and the fact that o maps Z[A] isomorphically onto Z[A] for any
A E Od (see 17).

By induction assumption, we have the functions VA' for all A' < A and all A' < A.
For all such that < 'A, or < 'A, but A, and B -;C A, we set WB =r(W(,B)).
By (ii), this function satisfies (I)-(III). By (i), we now have functions WBI for all such
that < 'A, or < 'A. We can apply the procedure 310-3.17 to construct the function
V(,A). Then by (ii), the function

VA = rW('A))

satisfies 31, (I)-(III).
Note that if we set = A - Elk + Elk+l, then < A, and

1
VA = � � .WB A COnSt -VA'

aji+l AI<A

4 Dimension of Ud.
In this section we show that dim Ud = d+n 2 and complete the proof of theorem 31.d
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4.1. We recall that by corollary 25 we have the surjective homornorphism

N U (S n) --* Ud

such that Yd(ei) = ei, ltd(V = f for all i = 1,...,n - . This turns Ud into a U(sln)-
module, where X E U(s1n) acts on V E Ud by

X W = Id(X) * W-

Lemma 42. (1) Ud can be decomposed into a direct sum of a finite number of weight
spaces

Ud (Ud)
j4EMd

where it = (ILI, A2... An-01 and A(h.) Ai - i+, for all i = 1,...,n - (we set
An = );

(2) For any A E Md we havern-1 d - kn for some non-negative integer k.

Proof. By corollary 36,

Ud Ud WA) Ud (WA Ud)-
AEAd AEAd

We claim that the sum in is direct, and that each subspace WA Ud with A E Ad
is a weight space.

For any A, B E Ad, and any E Ud, corollary 37 implies that

Supp (VA n supp WB * = ,

if A B. Hence, WA Ud nWB * Ud 0. This shows that the sum in (*) is direct.
Further, for any A E Ad and i < n - we have hi I Z[Al =_ aii - ai+,,i+l (see 26). Using

corollary 37, for any E Ud, we can compute

hi*WA*?P(FF',x) hi(FFX)(WA*O)(FF',x)

(aii - ai+,,i+,) -O(F, F', x), if (F, F) E OA,
0 otherwise.

(ai - a,,i+,) -(WA * iP)(F, F', x).

Therefore, for any E (WA Ud),

h. = yd(h-) * V = hi = aii - ai+,,i+,)
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This implies that (�PA * Ud) is an eigenspace Of N (h.) with the eigenvalue aii - ai+,,i+,.
Therefore, (,�A * Ud (Ud)" with i(hj = aii - ai+,,i+l, for any A E Ad. The claim (1)

is proved.
Further,

n-1 n-1
E (AP) = E(app - ap+,,p+, = aii - anni
P=i P=i

and
n-1 n-1 nE E (aj - ann = Eaji - n, ann = d - ann -n.
i=1

This proves 2).

Lemma 43. The algebra Ud is finite dimensional.

Proof. Let U-, U0, and U be the subalgebras Of U (S In) generated respectively by
n-1, Jhif jn-1 I and Ii}n-1 . By the Poincar6-Birkhoff-Witt theorem,i=1 i=1

U(Sln) = U_ 0 U0 0 U+-

The image-Yd(U-) is generated by monomials Ifi, * ... *fi, E Ud}1<ij,...,ik!�'n-1. For any
such monomial we have(fi, * ... * fik) (F, F, x) = 0 unless dim Fi'- dim Fj = # lp I ip = }
for all i = ... I n - 1. Since Fi, Fj' gCd I all such monomials are 0 if k > d(n - 1).

This implies that dim-fd(U- < oo. Similarly, dim-ld(U+) < oo. By proposition 32,
dim-Yd(U')= dimD = Adj < 00-

SinceUd = N(U(Sln)) = -yd(U-) & -td(Uo) oyd(U+), we have dim Ud< oo.

4.4. As a finite dimensional sl,,-module, Ud can be decomposed into a direct sum
of irreducible modules, Ud �_-- E)L,\. Each L,\ is a highest weight module with an integral
dominant weight A = (Al > A2> ... > An-1), An-1 > 0.

Let L,\(,), . . . I L,\(,) be a complete set of pairwise non-isomorphic modules in the de-
composition of Ud.

Ud acts on itself by left multiplication. By definition, this action is compatible with
the action of U(sl,,). Therefore, each of L,\(,) is also an irreducible Ud-module. This gives
an algebra homomorphism r : Ud --+ eP=jEnd(L,\(p)).

Lemma 4.4.1. The homomorphism r is injective.

Proof. We want to show that for any non-zero E Ud there is AW such that 0
does not annihilate L,\(,). But 0 * 1 = 7k 54 0, which means that V) does not annihilate
Ud � LA. Then for some A, ik does not annihilate L,\. Since L,\ �- L,\(,) for some P E [ 1, III
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the lemma follows.

n-1
4.5. Let A(d = A - dominant integral Ai = d - kn for some integer k > 0.

Note that by lemma 42, 2) we have A('),..., 0) E A(d).

Corollary 46. dim Ud (dim Lx)'.
AEA(d)

Remark. In section we construct the Ud-module L\ for any A E A(d). This shows
that in fact IAM,..., A(')} = A(d)-

4.7. We finish the computation of dim Ud using Weyl's decomposition of a tensor
power of the standard representation of GL, = GL(n, C) into irreducible representations.

Let V be the n-dimensional complex vector space on which GLn acts in the natural
way. Consider the d-th tensor power VOd of the module V. Let p: GLn --+ Aut(VOd be
the corresponding representation.

There is a natural action of the symmetric group Sd on VOd given by

a VI (9 V2 9 ... d = V,(1) 9 V-,(2) ... 9 Va(d)

for all a E Sd, VI, - , Vd E V

4.8. Let Ad be the subset of the set of integral dominant weights of GL,, such that

n

Ad = = al a2 > > n I an > Oai E Z, Ea = d}.
i=1

We denote by W,,, the irreducible module of GLn with the highest weight a.

Proposition 49. (H. Weyl, [W])
(1) IW, I a E Ad} is the complete list of irreducible GLn-MOdules such that

HOM GLn (W- I V1d) 0 0.
(2) The image p(GL,,) coincides with the set Auts,(Vod) of all automorphisms of VOd

commuting with the action of Sd-

4.10. As is known, the restriction of GLn-action to SLn turns W"' into an irreducible
SLn-MOdule. The corresponding Sln(C)-module is isomorphic to L\(,) 0 C with i(a)
ai-anforalli=1,...,n-1; dimcW,,,,=dimQL,\(,,,).Notethat

A(a) E A(d) a E Ad-
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Proposition 49, (1) and corollary 46 imply that

)2 = Wdim Ud< E (dim L,\ 1: (dim "")2 = dim p(GL,,).
,\EA(d) cEAd

4. 1 1. By 49, 2), dim p(GL, = dim AutSd (Vod = dim Ends, Vod). The last space
is a linear space of all T =(til i2 ... id; j1 '2---'d)l<ip,' <,,, such that ti1i2 ... id; il j2 ... id E C, and for
any 0 E Sd

ti-,(1)i.,(2) ... ia(d); Ja(I)ja(2) ... ja(d) = ti1i2---id;J'1J'2 ... Jd'

The dimension of this space equals the number of orbits Of Sd acting on the set of
d-tuples of pairs of indices

I ((il, l), (i2, i2), (id, id)) I <ili2, -,idilihi- Jd< n}

by ((il, l), (i2, h), - (id, id)) = (ia(l), a(l)), (ia(2), a(2)) i ... (ia(d) i,(d))). This in
turn is equal to the number of combinations (possibly, with repetitions) of d elements
out of n 2 elements of the set of all pairs I i, j I < j n}. The latter is equal to
(d+n2 -1

d
Combining this with 410, we conclude that dim Ud (d+,2_1).d

4.12. As was shown in section 3 functions IWA}AE9 E Ud are linearly independent.
Therefore, dim Ud> Edj = (d+n 2_1) (see

d
Together with 411 this shows that dim Ud = dn 2_1 ), and that IVA}AE8 d form ad

basis of Ud.

Corollary 413. If E Ud vanishes on some non-empty open subset of Z[A] for any
A EOd, then V = .

Proof. Since VA}AE9d is a basis of Ud, we have

? = E c(A VA

AE9d

for some constants c(A) E Q. Then for each A EOd the right hand side equals c(A on
some open dense subset of Z[A]. But tk vanishes on an open subset. Since Z[A] is irre-
ducible, any two of its open subsets have a non-empty intersection. Hence all c(A = ,
which implies = .

4.14. We now prove the uniqueness part of theorem 31. Assume that for some
A EGd functions v, V E Ud satisfy the conditions (I) and (II) of theorem 31 for the
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matrix A. Then � - p' vanishes on some open subsets of all Z[B], B E E)d. By corollary
4.13, p - (pi = .

Corollary 415. The set IVAIAEed is invariant under the involution .

Indeed, as was shown in 318, the function r(VA) satisfies the conditions of theorem
3.1 for the matrix 'A. By uniqueness, r(VA)

5 Ud-modules.

5.1. Let x E Nd. We recall that x = (see 14).
For any i E [ 1, n - 11, let Ai (x) be the number of Jordan blocks of sizes i, i + 1, . . I n - 1

in the Jordan decomposition of x. We set A(x) 0. Let k(x) be the number of blocks
of size n. Then

n-1
AI(x) > A2(X) > ... > An-i(x) > A(x) 0; Ai(x) = d - k(x) n.

Note that for any x E Nd the weight A such that Ai = Ai (x), i = 1, . . . , n lies in Ad (See

4.4). Conversely, for any A E Ad there obviously exists x E Nd such that A(x) = A.
Let C(x) = gxg- I E GLdj be the conjugacy class of x. As is well known, the

number of conjugacy classes in Nd is finite, and C(x) = C(y) if and only if A(x) = A(y).

5.2. For flags F, F' E Fd we say that F C P if Fi C Fj' for all i = 1, n - 1.
We define the flag

K' = (O C Ker x C Ker x 2 C: ... C: Ker Xn-1 C Ker Xn = Cd).

Obviously, x L K'. We have dim Kix = dim Ker X, = EP=1 Ap(x) + i - k(x).

Therefore,
dim K' = dim K" A(x) = A(y).

If x t F, then necessarily Fi C Kif for all i, therefore F C K-T.

5.3. Following [GI, for any x E Nd we consider

MX = J(F7 P, Y) E Zd I P = K', y = x}.

This is a closed subvariety of Zd isomorphic to the subvariety r-'(x) of Md (see 1.5).
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The subspace
1 E Ad I supp M' C Ad

is clearly a left ideal of Ad- In particular, it is stable under left multiplication by Ud,

which makes it a Ud-module.
Let s., E Ad be such that s,,(F, P, y = unless F = = KT, y = x, and

S,(Kx, K-T, x = 1. Let L., be a submodule generated by s,

L. = fO S. E Ud}.

Since Ud is finite dimensional, so is L.,.
We have

O(F, KX , x), if P = KT, y = x,
3, (F, F , Y) 0, otherwise.

Therefore, multiplication of a function by s., from the right amounts to restriction of
on M-T followed by extension by .
Via the homomorphism -Id defined in 25, L., is also a Usl,,)-module, and therefore

an sl,,-module.

Theorem 54. For any A E Ad and any x E Nd such that A(x = A

(1) L., is an irreducible sl,,-module isomorphic to the highest weight module L'X; S.,,
is a highest weight vector.

(2) Functions J�OA * - I A E Gd, OA S., 0} form a basis of L.,.

The rest of this section is devoted to the proof of theorem 54.

5.5. First we show that s-r is a highest weight vector.
By definition, e(F, K-T, x) could be not only if dim F = dim Kj' + 1 But this would

contradict x L> F, since we must have F C K' (see 52). Hence ei (F, Kr, x = for all
X(F, K x) E Zd. This gives

e-. ST = e S, = 
-4

for all i n - .
Next, we compute the weight of s.,

h -s, = hi s. = hi (K', K-, x) s.,.
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By 52 and lemma 26,

hi K', K', x = 2 dim Ker x - dim Ker x- - dim Ker x+'
i i-1 i+1

= 2. (E Ap(x) + I k(x))-(E Ap(x) + (i - 1) k(x) - 1: Ap(x) + (i + 1) k(x))
P=1 P=1 P=1

= Ai x - Ai+, x).

Therefore, h s. - Ai+, x)) s,, for all i = I-, n - .

Further, since L.., = Ud*S- = 1d(U(S1n))*S, = U(sl,,)-s, and L,,, is finite dimensional,
it is irreducible. Therefore, L., �4 L,\ with A(hi = Ai(x - Ai+,(x). This completes the
proof of (1).

5.6. To prove 2) we have to understand the set of irreducible components of M'V.

This variety is closely related to the variety of all parabolic subgroups of GLd which
contain a fixed unipotent element. This is a well understood object for GLd as well as
for the other classical groups, see R. Steinberg [St], N. Spaltenstein [Spl.
The varieties M' also occur in studying resolutions of nilpotent varieties. W. Borho and
R. MacPherson in [BMJ call them Spaltenstein-varieties.

In the following proposition we reformulate some of the results, and prove them in
our setting.

Let E)d(X = A E (d I Z[A n Mx : .

Let M-(A = Z[A] n Mx. This is a locally closed subvariety of M.

Proposition 57. (cf. [St].) (i) The set

GL,1 M'(A = (gF, gKO, gxg-' I F, K'T, x) E M;r(A), E GLd}

is dense in ZAl, i.e. GLd M--(A = ZA] for any A E Ed(X);

(ii) MI (A) is irreducible; dim M-T (A) = dim Z [Al - dim C (x);

(iii) M11(A)}AE9,(o) is the complete set of irreducible components of M'.

Proof. Let NFFI = ly E Nd I y t , F'} be the fiber of the conormal bundle
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Z[(D(F, F)] at the point (F, F). We have

N(FFI) U (N(FFI n C(y))-
YENd

This is a disjoint union of a finite number of sets, since the number of conjugacy classes in
Nd is finite. But NFFI) is irreducible, therefore there exists z E Nd such that N(FFI)nC(z)
is open dense in NFFl)-

Lemma 5.8. For any F E Fd such that x L , the set NFK- n C(x) is open dense in
N(FK-) 

Proof. Let z E Nd be such that NFK- n cz) is dense in NFK-). Then E C(z) It
follows that rank x < rank z for any i E [1, n - 1. Therefore, dim Ker x > dim Ker z.

But z 1 K, and hence K C K- (see 52). This shows that dim KT= dim K-, and
therefore by 52, A(x = A(z). This implies that C(x = C(z). The lemma is proved.

5.9. Let us fix a flag G such that x t G, (G, K') E OA. By definition,

M-T(A)=Z[A]nM- =FK-Tx)EM-TJ(FKT)EOA}
10G, hKz, x) E M- I h E GLdJ-

Then

GLd-M-T(A) =g-(FKxx)I(FKxx)EMT(A),gEGLd}
= Ig (hG, hK-T, x I g, h E GLd, (hG, hK-T, x) E M}
= Ig (G, Kx, hxh-1 I g, h E GLd, hxh-1 t G, K-T}
= Ig (G, K-T, y I E GLd, y E NGK-) n C(x)}

By lemma 5.8, NGK- n C(x) is dense in the fiber NGK-)- Since

Z[A = Ig (G, K XI I E GLd, Y E NGK-)},

this shows that GLd M'(A) is dense in Z[A]. This proves 57, (i).

5.10. We now prove 57, (ii).
Let XI be an irreducible component of M-(A). Assume that M-(A = Xi U X2, where

X = V--(A - XI . Then GLd Xi is closed in GLd M'(A), and GLd XI U GLd X2
GLd M-(A).

The latter set is dense in Z[A], which is irreducible. Therefore, GLd Xi = GLd X2-
Then X = GLd).T -XI, where (GLd)x denotes the centralizer of x. But all the centralizers
of nilpotent elements in GLd are known to be connected, and therefore (GLd).T stabilizes
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every irreducible component of M'(A). This implies that X = GLd)., -Xi C Xi, which
contradicts the choice of X X2. Therefore, we must have X2 so M-T(A = XI is
irreducible.

Let us consider the map pr : Zd --+ Nd given by pr(F, F', y) y. Then pr(GLd
M-w(A)) Qx), and the restriction pr : GLd M--(A) --+ C(x) is a GLd-equivariant
locally trivial fibration with the fiber M(A). Hence

dim Z[A = dim GLd M(A = dim C(x) + dim M'(A),

which yields (ii).

5.11. Being conormal bundles, all Z[A] contained in the same connected component
of Zd have the same dimension. Therefore 57, (ii) implies that all M(A) lying in the
same connected component of MT have the same dimension. It follows that MT(A') C
M- (A) if and only if A' = A, and hence each Mx (A) is an irreducible component of M-T.
Further,

M- c Zd U Z[A] o- M U (M-- n Z[Aj) U M-T(A).
AE9d AEe,, AEei(x)

Therefore, each irreducible component must be of the form M(A) for some A E Od(X)-

Proposition 57 is proved.

Corollary 512. For any A E E)d(X)

(i) (WA *S.) M-(A) = ;

(ii) A S., vanishes on some open dense subset of M'(A') for all A' 5 A.

Proof. This corollary is a counterpart of theorem 31 for the functions WA * s-, E LT.

We recall that Vim. = W * s)Im. for all E Ud.

Since M-T(A c Z [A], by 31, (I)

(VA * S.)IM-(A = WAIM-(A)

Now suppose that SUPP(WA S) contains an open subset of M- (A') for some A' A.
Then this set is contained in supp WA. But by lemma 21 1, WA is constant on GLd-orbits,
and by 57, Gj - M'(A') is dense in Z[A']. This implies that SUPP WA contains an open
subset of Z[Aj, which contradicts 31, (II).

Corollary 513. The functions VA * Sx}AE9d (.T) are linearly independent.
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Proof. Let
1: CA - (VA * 8.0 = 0

AE9d(X)

for some CA E Then by corollary 512, for any A E E)d(X) the restriction of this sum
on some open subset of the irreducible component M--(A) of M-- is equal t CA. Hence,
all CA = 0-

5.14. We are now ready to finish the proof of theorem 54. The key fact which we
need is that dimL- = E)d(X)I-

Let a = Ai x) + k(x), i = 1, . . . , n. Then a = (a, ... a,,) is a partition of d (see
5.1).

A semi-standard a-tableau is the Young diagram of type a with the nodes replaced
by integers 1 2. . ., n so that the numbers are nondecreasing along each row, and strictly
increasing down each column.

The number of irreducible components of Mx equals the number of semi-standard
a-tableaux. This follows from N. Shimomura's theorem on the fixed point subvarieties
of unipotent transformations on flag varieties (see [Sh]).

On the other hand, the dimension of the irreducible GL,, -module W,,, of the highest
weight a also equals the number of semi-standard a-tableau (see e.g. [CLI). By 54,
(1) we know that L., �_-- L,\, and by 4 0, dim L, = dim Wc,,. Therefore, dim L,- equals the
number of irreducible components of Mx.

By proposition 57, (iii) the latter is equal to 10d(X)I- Since the functions IVA
S,}AE9,,(.,) are linearly independent (see 513), this shows that they form a basis of L.,.

Remark. In Ginzburg's construction (see [G, theorem 441), the basis of L., is given
by fundamental classes of irreducible components of M-T. This also shows that dimL..'
equals the number of irreducible components of M-T.

5.15. Finally, we have to show that WB * S = if E Ed - E)d(X)- We use the same
argument as in corollary 413. Since WB * s E L, it has to be a linear combination of
the basis elements:

VB * Sx CA (VA * S.)-
AE9,&)

For any A E 19d(X) the restriction of the right hand side on some open dense subset of
Mx(A) is equal to CA. But by corollary 512, (ii) we know that WB * . vanishes on some
open dense subset of M--(A). Since M-T(A) is irreducible, the intersection of these two
open subsets is not empty. Hence all CA = , SO �PB * x = -

This completes the proof of theorem 54.
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In this section we show that for any d there is a surjective algebra homomorphism
Ud+,, --+ Ud which commutes with homomorphisms IdN+n from Usl,,), and which is
compatible with the bases of Ud and Ud+,, given by theorem 31.

6. 1. Following [G], we fix a decomposition Cd+n = Cd D Cn, and a nilpotent operator
xi Cn __4 Cn whose Jordan form has a single n x n block. There is a unique complete
flag F1 E Fn such that I P. Clearly,

FP = IM XO)n-i = Ker (xd)', = ... I n.

If F E Fd , let F D FO denote a flag in Fd+n whose i-th space is Fj (D FP for all
i n. For any x E Nd obviously

x t F #� (X e XI) > (F ED FI).

For G E Fd+n by G E Fd we denote a flag such that Q = G n Cd i = 1, . . . , n.

Lemma 62. If x E Nd and G E -d+n are such that (x ED I) > G, then x > G, and
G = 9 D FO.

Proof. Let us fix i E [1, n - ]. Since (x D XI > G, we have

Im (x (D xI)n-i C G C Ker (x ED xd)i

(see 14). But Ker(xEDxd) = Ker xeKer(xd) = Ker x�Fjo. Similarly, Im(xEDxj)n-i
IM Xn-' (D Fj' (see 61). It follows that

g Cd E FI.F' C G i

Therefore, any vector in G can be written uniquely as a sum u + v, where u E Cd7 v E
Fio C Gi. Then also u E Gi. Hence G = (G n Cd) ED Fj'.

The statement x > G is obvious. The lemma is proved.

6.3. Following [G], we consider an embedding z : Zd -* Zd+n defined by

z(F, F', x = F ED F', F1 D FI, x D XI).

Let I denote the n x n identity matrix. For any A E (d obviously A + I E E)d+n-
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Lemma 6.4. (cf. [G, n. 5.1 (ii)]). For any A E Od we have Z[A]) C: Z[A I.

Proof. We have to prove that for F, F E rd

(F, F') E OA '#� (F ED P, F'(1) Fd) E OA+1-

For i, i E [1, n] let V = F e Fid) n (F,' ED Fd). It suffices to show that

dim V = dim(F n F,) + min(i, j)

for all zj = 1,...,n. Let k = rnin(ij). Then V = F e Fko) n (F, ED k'). Clearly,
Fkd C V Z Cd Fko. Then, as in lemma 62,

Cd) e d eFk.V = V n k = (F n ,

Hence dim V dim(F n F,) + k. This proves the lemma.

6.5. The pullback z* : Ud+,, --+ Ad is defined by

z*(O)(F, F', x = Oz(F, F', x) = O(F ED Fd, PED Fd, x ED xd).

Proposition 66. (1) %* is an algebra homomorphism;
(2) Z*(Ud+n) C Ud, and the following diagram is commutative

U(Sln)

'Yd+ n Id

F

Ud+n Ud

Here fd is the homomorphism given by 25.

Proof. Let 1, 02 E Ud+n We want to show that z* (0 * 2) (01) (02)

For any (F, F, x) E Zd we have

Z*(0 * 02) (F, F, x = 1 * 2 (F ED F, F(D Fd, x ED xd)
1 a X I x ED xl t P, iki(F e FOP, x ED xd) 02(P, F'(D Fd, x D xd = al
aEQ

For any which contributes to the above expression, by lemma 62 we have = ED F1,
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and x Therefore we can write

01 (F ED Fl,.P, x ED xu) z (V)I) (F, L x)

02(F, P ED P, x ED xg) = (02 (L F X).

We can continue

Z*(01 * 02) (F, F, x)
I:a-xIPE.Fdl x > , z'(01) (F, P, x) Z(02 (, F', x = a}
aEQ
Z*(01) * Z*(02) (F, F, x).

This proves (1).

e� d) fi(d) Since6.7. Let us temporarily indicate the generators ej, fi E Udby writing
we already know that z* is an algebra homomorphism, to prove 2) it su4ices to show

Z*(e�d+,)) �d)' 2-(f(d+n)) = fid)that = e i for all i = .... n - .
By lemma 6.4, z(Z[A]) C Z[A + I] for any A E Od- Obviously,

A - Eii+l E Ad-1 # A I - Eii+l E Ad+n-1 -

(d+n)) = ed)
By definition of ej (see 2.2) this implies that (e

Next, we notice that the involution o defined in 17 commutes with z. Therefore,
,r =,ro* (see 2.3) commutes with z*. Hence,

* yi(d+n)) = Z*,r(e�d+n)) *(e �d+n)) = (e �d)) = fid).

The proposition is proved.

Corollary 6.8. The homomorphism z* is subjective.

This follows from 6.6, 2) and the fact that yd is surjective.

6.9. Next we show that the bases of Ud and Ud+n constructed in section 3 are com-
patible with t*. Let E)d+nC E)d+n be the set of matrices with strictly positive diagonal

entries. There is a bisection E)'+n Od given by B �-+ B'- I, where I is the identity

matrix.

Theorem 6.10. The image of a basis element Of Ud+n under z* is either 0, or a basis
element of Ud. Namely,

(1) Z*(WB) = ',O(B-I) for all B E E)d+n;
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(2) 1�OB = for all E (d+n ('d+,,-

Let V be any open dense subset of an irreducible component ZA] of Zd. The key fact
in the proof of the theorem is that the set

GLd+,, (V) = Ig (F ED F, F' ED F1, x ED x I F, F x) E V, g E GL,,+d}

is open dense in Z[A I.

Let U = I G, G', y) E Zd+,, I yn-1 3 0. This is a GLd+,, -stable open subset of Zd+,,.

The condition yn- 5 means that the canonical Jordan form of y has at least one
n x n block. Note that the image Zd) is contained in U.

Let UB = U n Z[B].

Lemma 611. (i) For any E E)d+n the set UB is not empty if and only if B E E)d+n;

(ii) If B E Od+w then - I E Od, and GLd+n z(Z[B - I]) = UB.

Proof. Let E E)d+n' Then by lemma 64, zZ[B - II) C Z[B] n U = UB It

follows that UB is not empty. Since UB is GLd+n-stable, this also gives the inclusion
GLd+n z(Z[B - I) UB.

Now let (G, G', y) E UB for some E Gd+n- Since the canonical Jordan form of y
has at least one n x n block, there exists an element E GLd+n such that gyg-1 = (D xg
for some x E Nd. Then (x D xO C A gG'. By lemma 62, the flags gG, gG' can be
decomposed into direct sums

gG = F ED F1, gG = FD F1, where F = gG, F = gG'.

This shows that (gG, gG 1 x (D x1 = (F, F', x). Then lemma 64 implies that 
,t (F, F) + I. Hence E E)'+n, and (F, F') E OB - I

1Thus (G, G', y = g- z(F, F, x), (F, F, x) E Z[B - I] - Since (G, G', y) was an
arbitrary point of UB, this shows that UB C GLd+n z[B - I]). The lemma is proved.

Corollary 612. If B E (d+n, then 1*(WB) vanishes on an open dense subset of Z[A] for
any A E Od such that A B - I.

Proof. Fix A E Ed such that = A I B. Then B' E O'd+n' By 31, (II)
the function WB vanishes on some open dense subset V of Z[B'j. By lemma 211, WB is

constant on GLd+n-orbits, so we can assume that V is GLd+n-invariant.
By lemma 6 1 1, UB : . Thus, both V and UB, are non-empty open subsets of Z [B'],
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which is irreducible. Hence, their intersectionvnuB, is not empty. It is also open and
GLd+,, -invariant. Lemma 61 1, (ii) implibs that V n UB n zZ[Al) is a non-empty open
subset of Z[A]), on which VB vanishes. Therefore, 1*(WB) vanishes on an open dense
subset of Z[A].

6.13. To prove theorem 610, (1) we show that (VB) satisfies the conditions (I)-(II)
of theorem 31 for the matrix - I, and then use the uniqueness part of theorem 31.

By 31, (I) we have WBIZ[B] = 1. But Z[B-I] c Z[B], therefore for any (F, F, x) E
Z[B - I]

Z* WB (F, F', x) = WB (z (F, F', x))

This shows that Z*(VB) satisfies the condition 31, (1).
Next, let A E Od be such that A 5 - I. By corollary 612, Z*(WB) vanishes on an

open subset of Z[A]. This proves 31, (II).
Thus, 1*(WB) satisfies the conditions (1) and (11) of theorem 31 for the matrix - I.

By uniqueness, Z*(�OB = W(B-I)-

6.14. Let E Ed+, - O'd+n' F To prove 610, 2) we show that the function Z*(WB)

vanishes on an open dense subset of Zd, and therefore has to be .
For any A E Od we have A I E E)d+n, and therefore A I B. By corollary 612,

1*(VB) vanishes on an open dense subset of Z[A). Therefore 1*(VB) vanishes on an open
dense subset of Z[A] for any A E Ed. By corollary 413, Z(WB = -

This completes the proof of theorem 610.

6.15. The constructions of finite dimensional representations of Ud and Ud+n also
agree with z*. It is easy to see that A(d) C A(d + n) (see 45), and for any x E Nd we
have

% M' ' M+".
The modules L_+.,, and L., are isomorphic via z*. Moreover, s", and z* takes
the basis given by theorem 54 into the basis. Namely, for any basis vector WA * 8,+,I,

A E Od+n(X + XO), we have A - I E Od(x), and

Z'(VA S+A) = W(A-I) * Sz-
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7 The algebras U and -
7.1. The homomorphisms z* give rise to a projective system of algebras

n-1 n-I n-I
(� Ud 4 (� Ud+. (� Ud+2n 4--

d=O d=O d=O

Following [G], we consider the inverse limit U of this system.

7.2. Let = d=o Od, A = U'd=o Ad-
Let C be the set of matrices with at least one zero diagonal entry. Let,& An
For a matrix A E let denote the matrix

= A - I min faii, 1 < i < nI.

Then A E , and A for any A E 6.
Let k(A) be the integral part of (Eij a)/n.

7.3. For A E let us consider the sequence A = (OA)O, (OA)l, PA)2 .... such
that

(OA)i E E'- I Ud+j.,

(OA) = for < i k(A - 1, and
(OA)k(A)+ = +jI) for j = , 1 2 ....

Thanks to theorem 610, OA E U.
Note that OA = Oi. For any A E we have

OA = 0, - , 0, WA, W(A+I)) V(A+2I), 

k(A)-I

Every element of U can be uniquely written as a formal linear combination F'AE' CA

OA, CA E Q.
Since all the projections z* are algebra homomorphisms, there is a well defined algebra

structure on (J. With U * Ud, understood to be if d 5 d, we have

(OA OB)i = (OA)i * (OB)i,

for all i > .
The unit element E CI is the infinite sum OA-

AS&
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By proposition 62, the homomorphisms

n-1 n-1
'Ydk = (D-/d+kn U(Sln) (1) Ud+k,,

d=O d=O

are compatible with the projections. Therefore, there is a well defined homomorphism

-f U(Sln) -- U-

Lemma 74. The homomorphismy is injective.

Proof. The algebra U(sl,,) is spanned by monomials of the form

e,, tj fpl q, e,, t, fpl q1,

where all si, pi E [1, n - 11, ti, qi 0.
Let t(j) = Ei: , =j ti, q(j) = Ei: p,=j qi for each j E [1, n - 11. Cd

Let d = E--1 (t(j) + q(j)). We define flags , F E rd so that & = F,' , and all
ck C cdFi, Fj' are the canonical subspaces of the form - , of dimensions

dim Fi = t(j) + (t(i) + q(i)), dim Fj' = q(j) + (t(i) + q(i)),

for all j n -
f q, tj q1 t * fql,� ... * et, fpqll)(F, F, 0) 0 0.Then -Yd(e,,ti P, e., fpl )(F, F, 0) = e.1 P 31

This shows that the image of every monomial under y is not 0. Since y is linear, the
lemma follows.

The image -y(U(sl,,)) is generated by the infinite sums

j�i = -J(eJ = E O(A+Eii+,), lf(fi) O(A+Ei+,,i)-
AEA AEA

Let & be the subspace of CT spanned by IOAIAEI;'

Lemma 7.5. & is a subalgebra of CT.

Proo It suffices to show that for any A, A' E E) the product OA * OA' is a linearIf.
combination of a finite number of OB-

This statement is an analogue of the stabilization phenomenon discovered in [BLMJ.
From proposition 4.2, [BLM], proved by an explicit computation, it follows that there
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exists p 0, and Bi,..., B, E Op. such that

M
Sup (�A)p * �Al)p) U Z[Bj + (P - P.)II

for any p p. This implies that

�A * Al CB - B-
BEep.

This is a finite sum. The lemma is proved.

7.6. The involution defined in 23, commutes with all the projections Z*. Hence, it
gives rise to an involution of U. Corollary 415 implies that the set of all OA is invariant
under f. It follows that leaves both y(U(sl,,)) and stable.

Note that ;T-(�i = A.

7.7. The algebras , 0, -y(U(sl,,)) correspond respectively to the algebras K, U
constructed in [BLM].

8 The algebra&.
8.1. Following Lusztig [L3, Part IV], we define the algebra for U = Usl,,).

Let X = A A,,-,) I Ai E Z} be the weight lattice, so that A(h.) Ai for
all i = ... In - .

Let I = i'. Let C - Z[IJ be the root lattice, imbedded in X so that i(kj)
2biJ biJ-1 bJ+1. For E C we have v(h. = 2v - v- - vi+1 for all i 1 ... In 1,
with vo = v = understood.

For Y' E X let

,\1UV1 Un-1 n-1
A') U + U (h. -AII)

We have U,\, = unless Al - A" E L.
Let

U,\
V,V'EX

Let rv'v, : U -- \U\,, be the canonical projection.
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There is a natural associative algebra structure on defined as follows.
Let U(v), v E C be the subspace of U generated by monornials

.41 .. 'ePkAt, ... h f ... f

such that
#Jq I Pq = i - #Jr I s, = i} vi

for all n - 1. We have U = ,,EC UM'

The product on is uniquely defined by the following conditions: for any A', All I AU" E
X, and any a E U(A' - A, b E U(A' - A") the product is equal to

1 1 2 2 2\11(ab) f A'1 = 2A an s zero otherwise.
I 7 d i
1 2

Let 1,\ Then we have

1,\l,\, A'UAl = 1,\'Ul,\"

8.2. We now show that the algebra defined in section 6 is isomorphic to the algebra

For A', A" E X, let

G(Al I A") = A E I ro(A) - ro(A)i+l A', co(A) - co(A)i+ = Ml; i n - 1}.i S

Then U,\',,\"EX (A', A"). The union is disjoint, and E (A', A") is empty unless A- A" E

IC.

Note that for any integer k, and any i = 1, . . . , n - we have

ro(A) - ro(A)i+l ro(A + U) - ro(A + kI)i+,,
co(A) - co(A)i+1 co(A + U) - co(A + kI)i+l.

It follows that all A U lie in the same G(A', A").
For any A E X, and any diagonal A E A n E(A, A), we have aii - ai+,,i+ = Ai for all

i = ... I n - . Hence all aii - ann are uniquely defined by A. Since all the entries of A
are non-negative, it follows that there is a unique matrix A(A) n O(A, A). We define

Then

,\Ex

Note that E for all E X.
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Lemma 83. (cf. [L3, n. 23.1.3]). For any A E X, and any i = I-, n - , we have

ei e

Proof Fix an integer q > 1. Let A A(A) + qI- By definition, aji - aj+,,j+l = A for
all j = I-, n - .

Let d = qn + Ejj aij. By the definitions of ei, fi in 22, and corollary 37, we have the
following equalities in Ud

�PA * ei �PA * W(B+Ejj+j)

BEAd-1

= ',PA * (#0(A-Eii+Ejj+j)

= 00(A-Ejj+Ejj+j * W(A-Ejj+Ei+ii+0

= ei * V(A-Ei+ii+i+Ejj)-

Let C = A - E,+Ii+l + Eii. Then

cjj - cj+,,j+l = Aj - 26ji + bji-l + bji+l

for all j = 1, . . . I n - 1. Hence C E E) (A - i, A - i). This shows that �i �i i,\-!.
Using ;r-, we have the equalities for A.
By corollary 37 and lemma 2.6, we have the following equality in Ud

hi * WAIZ[B] = bBA(bij - bi+,,i+,) = Ai - �OA-

This implies that i\ * hi = Ai i,\. The lemma is proved.

Lemma 8.4. For any A E X, and any i 11 ... In - 1,

E

Proof Indeed,
i,\ Ei i,\ O(B+Eii+l)) -

BEA

Let A = A(A), so that OA. For any q > 0, there is a unique matrix B E 3� and
an integer p > 0 such that co(A + qI) = ro(B + Eii+l + pI). Necessarily, p = q if aii > 0,
p=q-1 ifaii=OandB=A+(q-p)I-Eii.

This shows that
i,\ * 1�i = OA * �P(B+Ejj+j)-
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By lemma 75, this product lies in .
Since the involution leaves stable, we have

4 * f (�i * i\ = i\+i * Ei E

The lemma is proved.

8.5. Let U,\,i be the subspace of U, consisting of all (possibly, infinite) sums 1: CA 'OA,

such that A = unless A E E(A', A").
By corollary 37 and lemma 26, we have

= i'\1 * r

Let CT--+ \XT,\,, be the projection defined by

1: CA OA) 
AE6

E CA A-

AE6n8(VVI)

We have = i,\.
Let = \16, n (J. This space is spanned by OA I A E ()(A',Y')}. We have

= (J = i\ * 6 * ,\ = D \XT,\".
V,V'EX \',,\'#EX

Proposition 86. (1) = for any A', A" E X;
(2) There is a unique algebra isomorphism � : & -+ (J such the following diagram is

commutative:

U - -/(U)

7 .
Proof. We want to show thatTr,\,,,\,,(1k) E & for any 1k E -Y(U(Sln)
First, notice that the statement is true for i E y(U).
Next, we show that if the statement holds for E y(U), then it

and ik * Ei, for any i = 1,...,n - .
We have

), and any ', A" E X.

is also true for ,

* 0 = i,\ * (��i * 1k * i,\, = (i,\ *Ei) * 0\,- * * \").
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The first factor lies in by lemma 84, the second - by the assumption on . Since is
closed under multiplication, we have rvv,(�i E

Similarly,

tv"vN) *�i = i,\ * V) * 1�i * i,\I, E (J.

Using the involution ;r-, we see that also f * , fi E U. This proves 86, (1).

8.7. U si ng 83, for any A', A" E X and any i = 1, . . . , n - we have

-f((h - A') U U h - All))
A') * -t(U)) + I(U)) (hi A"i,\,)) * i\,,

i i

(i,\ * hi - A') f(U)) + -t(U)) * (i,\,, hi - A"iv,))
0.

n-1 n-1
This shows that the image of (& A') U E U (Ai - Y)) under is contained

i+1 i+1

in Ker tA1,A11. Therefore, a map � : --+ is well defined by the requirement

i(7rA1,A11(S) = fA1,A11(-Y(S))

for all s E U(sl,), A', A" E X. This map is obviously surjective.
Let ju = for some u E . Let t E U be such that (D u. Then

-t(t) tv * Y(t) tv') i,\, -f(u) * i'v, frv'A"(-/(0 = .
VEX V'EX VV'EX VV'EX

Since is infective (see Lemma 74), we have t 0, and hence u = . Therefore, is
infective.

Finally, for any A', A", Al, A" E X, and any s E U(A' - A"), t E U(A' - A") we have
1 1 2 2 1 1 2 2

= bAl"Al b
�2 '\'1'1'\2 .

4 * Y(S) 1m * 1,\ * Y * 1,\,, 'AIt
1 1 2 2 (S)) * i(7r\21'\2(t))

This shows that is an algebra isomorphism.
Proposition 86 is proved.

Let us identify U = Usl,,) with its image -y(U).

8.8. As shown in [L3, n 23.1.3], has a natural U-bimodule structure. In our
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situation, both and -y(U) are subalgebras of the algebra i, and this bimodule structure
is realized as a multiplication in (J. It is easy to see that (J is stable under multiplication
by U.

Indeed, for any A', A" E X, and any i n - we have

�� * = lE * j'\1 * (J p = i,\I- * E i'\11 C'\#-iCT)'11.

By lemma 84, iA,- *Ei E . This implies that

ei C Ai(J,\"-

Similar for multiplication by i. Then, using the involution -r, we see that U is stable
under multiplication by U from the right.

8.9. The structure arising in from the comultiplication on U (see [L3, n. 23.1.5])
can be interpreted geometrically as follows.

Let us fix d = d + d > and the decomposition Cd = Cd' (1) Cd".

We define the map Cd',d" : Zd, x Zd, - Zd by

Cdld" ((F, F', x), (G, G', y) = (F D G, P D GX (D Y).

Then the map Cdld" : Ud --+ Ud' 9 Ud" is well defined, and is an algebra homomorphism.
To see this, we notice first that C*Id" (ei = ej & 1 + 1 0 ej,

d Cdld" (fi = f 0 1 + 1 0 fi (We
use the same letters for generators of Ud, Ud,, Up; there should not be any confusion.)

For any ((F, F, x), (G, G', y)) E Zd, x Zd,, we have

C:Id" (ei) ((F, F', x), (G, G', y) = ej (F ED G, P ED G', x ED y)

This function equals I if and only if
(i) x > , F; y > G, G';
(ii) (F ED G)j = (F ED G% #!, F = Gj, Fj' = G� for all j i;
(iii) (F D G)i D (FED G%, dim (F D G)il(F'ED G% = .
Otherwise, the function vanishes.
Condition (iii) is equivalent to the following condition

Fi = Fj', Gi D 7, dim Gi / G' = or Fi D Fj', dim Fj / Fj' = 1, G G�i I

This shows that c(ei) = ej 0 1 + 1 0 ej. Since C*d#,d" obviously commutes with , we

have similar equality for fi.
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Then, it is not difficult to show that for any E Ud

41,d1f(ei * ?P) -- (ei 1 + ei) * 44'414

Similar for f and multiplication from the right.
Therefore, for any d we have a commutative diagram

U U (2) U

Id (5 Id (91dif
di+dlf=d

Ud Ud 9 Ud"
di+d"=d

di (D Cd"dif
+dfl=d

The maps c* agree with the projections induced by t'.

8.10. There are three natural involutions of U, defined by

w(ei = ei, w(fi = f, w(hi) -hi;
a(ei = f, a(fi = ei, a(hi) -hi;
S(ei = f-i, b(fi = e-i, bhi = -h.-i,

for all i = 1, n - , such that a and are algebra automorphisms, and is an
anti-automorphism (see [L3, n. 31.31).

The anti-automorphism r- (see 76) corresponds to the composition a = a A
geometric realization of w or a is not seen, which seems to be a defect of the construction.

The automorphism is realized as follows.
For F E Fd, let F* denote the flag in the dual space Cd)*, such that Fi* is the space of

all linear operators vanishing on F,,-i. We have dim Fi* codim F,,-i for all i = 0,..., n.
If OF, G = A, then i(F*, G* = B, such that bij an-i+1,n-j+1, i.e. the matrix 

is the result of transposition of A along both diagonals.
For x E Nd let x* be defined by x*(v)(F = v(x(F)). It is easy to check that x L F

if and only if x* > F*.
Let us fix some isomorphism between (C')* and Cd. Then the map (F, G, x) �-4

(F*, G*, x*) induces an algebra automorphism Ud --+ Ud. By lemma 2 1, it is inde-
pendent of the choice made. It clearly commutes with z*, and therefore gives rise to an
algebra automorphism U --+ 0. This autornorphism preserves the canonical basis, and
its restriction to U coincides with .
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8.11. Each Ud can be naturally imbedded into by the Q1inear map

Jd: Ud

such that d(�PA) = A for all A E Od. The projection onto the image U --+ Jd(Ud)

composed with -' is a sur ective algebra homomorphism Pd Ud-d i
By theorem 610, these homomorphisms commute with z*, i.e. we have

I Pd+. = Pd-

Via the homomorphisms Pd, all the finite dimensional sl,,-modules constructed in
section 5, become naturally 6-modules.Thank to theorem 54 and n. 615, the basis
B = IOA}AEeo of U has the property similar to the property of the distinguished basis of
Ud with respect to Ud-modules. Namely, for any irreducible module L., with the highest
weight vector s, the elements

f OA S I OA S., :� 0, A E 00}

form a basis of L.,.

8.12. Let X+ = A E X I Ai > 0, i n - 1} e the set of dominant weights.
The partition b = U,\EX+b[Al of the canonical basis of U into two-sided cells is defined
in [L3, n. 29.11. It can be seen geometrically as follows.

As was explained in the proof of proposition 5.7, for any matrix A E ed there exists
a unique conjugacy class C(x) in Nd such that the set (F, Ft , Y) E Z[A I Y E C(x)} is
open dense in Z[A]. Let AA E X+ be such that A4 equals the number of i x i blocks in
the Jordan decomposition of x for all i = 1, . . . , n - 1. Clearly, AA E X+.

Note that the class corresponding to A + I is C(x (D xO) (see 6.1). Since the above
definition does not take into account n x n Jordan blocks, we have AA = AA+I. Therefore,
it makes sense to assign AA to OA We define

AB[A] = JOA I A = A}.

This gives a partition f3 = U,\EX+f3[A].

8.13. The partition of b into cells is compatible with the homornorphisms Pd defined

in n. 8.11.
We recall that for am integer d > 0, the set Ad c X+ consists of all A such that

Ej = 1 n-1jAj = d - kn for some integer k > 0. This is the same set as in 4.5, but now
we have chosen a different basis for X.
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By theorem 54, L,\1AEA,, is the complete set of irreducible Ud-modules. We know
that dim Ud = -,\EA,,(dimL,\)'. Therefore, using n. 8.11, we have

Ker Pd =span UZAd b[A].

The algebra U OlKer Pd is isomorphic to the finite dimensional factor of

&/&[X+-Ad1,

defined in [L3, n. 29.21.

9 Lagrangian construction of U-.
9.1. Let U- be the subalgebra of U = U(sl,,) generated by jfjn-1

We describe the construction of U- which is a special case of G. Lusztig's construction
of the -parts of universal enveloping algebras of Kac-Moody algebras (see [Ll], [L2]).
The construction was given in terms of constructible functions on certain Lagrangian
subvarieties of spaces of representations of quivers.

Let V V be a graded finite dimensional vector space over C.
The space of representations of the gragh Al is the vector space

1-1
Ev = (1)(Homc (V, V+,) E) Homc (V+,, V))

i=1

A representation t E Ev is written t = ED(tjj+j ED ti+li).
The group Gv fj�=j GL(V) acts naturally on Ev by

(g7 O --* (D(gi+1tii+19_1 ED 9iti+1,i9_1

i 41
i=1

Two representations are called isomorphic if they lie in the same orbit.

9.2. Consider the Gv-stable variety

Av = It E EV I t21t12 = 0 = t1-1,nt1,1-1, tjjjtjjj = tj+jjtji+j, i

A point t E Av corresponds to the commutative diagram
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0 t23 ti-2,1-1 ti-i'l 0o V O.V V2 ... VI-1 ( I
0 t2l t32 tell 0

9.3. For v E (Z>o)', let V be the space of all V (D�=j V such that v(V)i = dim i
for all i 1.

Let M(V) be the Q-vector space of all constructible functions on AV which are
constant on Gv -orbits. Because of this condition, for any v E (Z>o)l and all V E V we
can identify M(V) with a single vector space M(v).

For two graded vector spaces V we write � C if V for all i = 1, . . . , 1 If
t E A, then for � C V we write t V if ti (V) g V for all ji - j I = 1; we denote by
tj�, the element of Af, obtained by restriction of t on V.

Let V' E V,,, be such that R : V 24 V/'�j is an isomorphism for all i. There is a
unique E A, such that Rjsij = tijR, for all i - ji = 1. For a function f E M(V') we
define

MO = AS).

In fact, this defines the value f (ff,) for any f E M(v') - It is independent of choices of V'
and R.

Let M = e,,M(v). There is an associative algebra structure on M defined as follows.
Let V E V,, and let v = V + 0. Let f E M(v'), f" E M(v"). Then for any t E AV

we define

f f" (t) a - x E V,,,, C V, t f'(fV) f"(t I f,) = a}.
aEQ

9.4. For i E [1, 11, let M be such that uj = bj. Then V, consists of one point, 0.
Let Fi E M(y) be such that Fi(O) = 1. Let MO be the subalgebra of M generated by

Fi, = 11 ... 11.

Let n = 1 + 1.

Theorem 9.5. (Lusztig, [L1, Theorem 12.131) There is an algebra isomorphism O'
U- 24 Mo such that o,(L) = Fj for all i = n - 1.

9.6. We now explain how the above construction is related to the construction of (J.
Let a matrix A E E)d be lower triangular. It means that for any (G, G') EOAwe have

G C G' (see 5.2). Let us fix (G, G', X) E Z [Al -
Let v = (dim C - dim Gi)'-'. Note that v depends only on A.
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We choose V E V, and isomorphisms
r : G1G- -- Vi

t i I

for all i n - 1. We set = GlGo = 0, V = Gn/G, = .
By definition, x t G, GI, i.e. for all i E [1, n - 1 we have

x(G,) C G-1, x(G' C GI

Therefore, x induces linear maps j�j : GlGj --+ G-jfflj-j. For each i we define

tij-1 = rj-jj�jr-i : i --+ Vi-1-

Similarly, G Gj+j G G�+,. Hence the identity map E : C' --+ C' induces linear
maps �i : GVGi G411Gj+j. Therefore, for each i we can define a linear map

tjj+j = rj+jEjr- : V --+ V,.

This gives us t E Ev. Furthermore, for any i = 1, . . . , n - I and any E Q we have

�i-i.t-(v + G = E-j(x(v) + x(Gj) + G-1 = x(v) + G,

and
-ti+i�i(v + G =-i+,(v + Gj+j = x(v) + xGi+, + G = x(v) + Gi.

Therefore, the following diagram is commutative.

00 . )
0

0
0 . )

0

el

22

t12)
4

t2l

_!2 +
4

23

_t23+

4

t32

Fn-2 0
) GI -I G,-,. 0n

Xn-1 0

1rn-l
tn-2,n-I 0

... 4 Vn-1 4

G'IG,1

rlI

V,

G'IG22

r2I

V2

0

0
0tn-ln-2

IThis shows that t = t(G, G x) E Av.
For any f E M we define a function = Rd(f) E Ad by

f (t(G, GI I x)), if G G,
otherwise.

This map is well defined, and is independent of the choice of the assignment (G, GI, x) �-4
1t(G, G, X).
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Let U! = -Yd(U-)-

Proposition 9. (1) Rd is an algebra homomorphism;
(2) Rd(F = f for all i = 1...,n - , so that Rd(MO = Uj, and we have the

following commutative diagram.

U_

11

'Yd +n

R

Ui so U;, n

Proof. The equality Rd(F = f obviously follows from the definitions of Fj and fi
(see 94 and 22).

Let us fix E MO and i E [1, n - 1. For (G, G', x) E Zd, let V E V, I ri}, t(G, G', x)
be as in 96.

If G = j', then we have Rd F * ) (G, G, x = = f Rd 0) (G, G', x If
dim G / Gj > 1, let v be such that v = - ThenI I

= 1: a -XI �'E V I V, t, =a}
aEQ

Rd F * ) (G, G', x)

a -X�' C I dim Vjl V = I tj-,, + I tj+,,j 9 V, 0(tip = al
aEQ

=Fa-XjOE,'F`dj(GOX)E U Z[A+Ej+jjjRd(O)(0,G',x)=aj
aEQ AEad-I

f * Rd 0) (G, G', x).

Therefore, Rd is an algebra homomorphism.
The proposition follows.

Proposition 97 shows that the homomorphisms IRd} give rise to a homomorphism
R Mo --+ (J.

9.8. Lusztig's construction provides the canonical basis for U-. It is compatible with
the decomposition Mo = ED,,Mo(v), where Mo(v = MO n M(v).

The basis of Mo(v) is parametrized by irreducible components of Av, V E V. For an
irreducible component Y of Av, the basis function fy has the following properties (see
[L2, Proposition 361):
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(a) fy lo = for some open dense Gv -stable subset of Y;
(b) fy = outside Y U H for some closed G -stable subset H C AV of dimension

< dim AV.

9.9. Let Ev, C Ev (resp. Ev,-) be the subspace of representations s such that
si+,,i = 0 (resp. sii+l = 0) for all = 1,...,n - 2 Clearly, Ev = Ev,+ ED Ev,-. For
t E E, let us write t = t (D t-, where t E Ev,+, t- E Ev,-.

The space E can be naturally naturally regarded as a cotangent bundle of Ev,+ As
was shown in [L1, n. 14], any irreducible component of AV is the closure of the conormal
bundle of some Gv-orbit on Ev,+.

Proposition 910. There is a bisection between the canonical basis elements of Mo and
strictly lower triangular matrices in . It is given by fy �-* C, such that

R(fy = E O(C+D)-
DE&

9.11. First, we show that for any lower triangular A E E)d there is V E V., and an
irreducible component of AV such that

Rd fY) VB-
BEed

A-B diagonal

For any (G, G', x) E Z[A] let = (dim G�lGi)'-'. Let V, ri} and t(G, G', x) be as
in n. 96. Note that t is independent of x. Therefore, we have a morphism from the
fiber NGG') of Z[A] to the fiber Nt+ of the conormal bundle of the orbit Gv t It is
surjective.

Let Y be the closure of the conormal bundle of Gv t. By property 98 (a), the
function fy = on some open dense subset of Nt+. Therefore, Rd(fY = on some open
dense subset of NGGl)- Since Rd(fY) E Ud, it is constant on all GLd-orbits. Hence,
Rd(fY = on some open dense subset of Z[A].

It is easy to show that the +part of t(F, F I y) is isomorphic to t if and only if
(F, F) E Z[B] such that E Gd, and all the off-diagonal entries of A and coincide.
By the same argument as above, Rd(fY) is identically on an open dense subset of such
Z[B].

Similarly, we show that Rd(fY) vanishes on an open dense subset of Z[B] if A -
is not diagonal. Therefore, the difference of Rd(fy) and the right hand side of (*) is a
function in Ud, vanishing on an open dense subset of Zd. By corollary 413, it has to be
0.

9.12. Next, we show that for any V and any irreducible component Y of A, there
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exists d and a lower triangular matrix A E E)d such that (*) holds.
Let Y be the closure of the conormal bundle of the Gv orbit of s E Ev,+. It is easy

to show that there exists a pair of flags G, G' E d for d large enough, such that for any
x > G, G' the +Part of t(G, G', x) is isomorphic to s. By 911, the matrix A = D(G, G)
satisfies (*).

By proposition 97 2), the homomorphisms Rd commute with z*. Since by theorem
6.10, z* is compatible with the bases of Ud+,, and U, the proposition follows.

Corollary 913. For any A E X, the basis OAJ of 61 and the basis Ifyj of Mo give
rise to the same canonical basis of the sl,,-module L\.

Indeed, for any lower triangular matrix A E Od and any module L,, as in n. 53, there
is at most one function OB E Ud such that A - is diagonal, and �PB * S 0-

10 Examples: n = 23.
In this section we compute the canonical basis for n = 2 and some monomials in the
canonical basis for n = 3.

We omit *, writing iko instead of * 0.
For an element of Ud or U, and an integer a E Z>o, let

O(a) 0
- a!

10.1. The canonical basis of for U = U12) is computed in [L3, n. 25.31 We
describe the computation in the geometric setting.

The basis of U in this case is parametrized by 2 x 2 matrices in (see 72):

a c a
b b 0 a, b c E Z>o.

The corresponding basis elements are given by

(a) (b) (b)W(b 1E ia+b+,� (a)c = 1 -a-b-cfj , �Oq O-)
b

Let us prove it. Let k E Z>o7 and let

A k a 7 D k 0
b c+k 0 ab+c+k
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A, DE Od, where d= a+b+c+2k.
Let

� = e (a) (b)
1 �ODfil -

We have �p(G, G', x) :� if and only if

dim G = a k; dim G' = b + k; dim(Gl n G) k; Im x C G n G; rank x < k.

As can be easily seen, �01Z[A] =- 1, and �01Z[B] 0 for all A.
Let now (G, G', x) E Z[A'J, A' < A. Then dim(Gl n G > k, and dim(G + G <

a + b + k. Therefore, the maximal possible rank of x is

min(dim(GI n G), codim (GI G) > k.I 1

But �p(G, G', x) :� only if rank x < k. Hence, �p vanishes on an open dense subset of
Z[A'J.

By theorem 31, � = OA. Then theorem 610 implies

(a) (b).
�(O 'El La-b-,

b c

The computation for �0(- O.) is similar.
b

(a) (b) (b) (a)Note that l La-b I 1 ia+bEl for all a, b > .

Let now U = UI3)-

Proposition 10.2. The following monomials are contained in the canonical basis of U:

I (a), (b) I(c)j( WI (t)E (r)2 2 1 _M,-I)�l 2 2(a) I (b) E (c) i (I m) I (s) E (t) f ()
(1) El 1 2 2 1 i

> b+t, -1 >a+b-c, - > t+r-s, -m > c+s;

(a) I (b)E (c) i (I'm) I (s) E (t)(2) �2 2 1 1 2 12(r),
1(.)E (b) I(c)j( (s) f (t) E (r)1 1 2 _m,-1)E2 1 1

-1> c+s, m > bt7 m>a+b-c, m>t+r-s;

(3) E (a)E (b) E (c) i 1,m) 11(s) 12(t) 11 (r) 1 2 1
(a) I (b) I (c) i (M (r)2 1 2 _,n,_I),E (3)

2 El E2 
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-1 >a+c+s+r, -m > b+t, b> a+ c, t > s+r;

- (a) (b) () (I'M) f (s) f (t) f (r) f (a) fib) f (c) i ( (9 M N(4) el �2 l 2 1 2 2 2 _M,-I)iFl 2 l 

- (r - (t) (S) UM) f,(c) f (b) f (a), f (r) (C M (a)
e2 el E2 2 1 1 f2(VI(')'(-M'-I)IE2 � 2 7

- > a c + t, m > b s + r, b > a c, t > s + r;

(a) (b) (C)i(I'Mj (s)f (t)f (r), f (a) f (b) f (c) i ( (a) (r)(5) IE2 El E2 2 1 2 1 2 1 _ M'- I) 91 92 �I i

- > b t, -m > a c s + r, b > a c, t > s + r.

Proof. Let A = aii) be a 3 x 3 matrix, A E Gd. Let us consider the following functions

in Ud.

(a13) f(a2l (a23+al3)1,, (a32+a3l) a12)f(a3l)
el 1 )e2 A el 1

(a23) (a3l) al2+al3)1 (a2l+a3l) aI3)f(a32)02 = e2 f2 el JA A e2 2

03 = e (a13)e(a23+al3)e(al2)1,., (a2I)f(a32+a3I) (a3l)
1 2 1 f 11 2 f 11

04 = e (a13)e(a23+al3)e(al2)1" (a3I)f(a2I+a3I) (a32)
1 2 1 A I A
(a13) aI2+aI3) (a23)1,,, (a32)f(a2I+a3I) (a3l)

05 - e2 el e2 A I f2'

where
A = (all - a22 + a12 + a2l, a2 - a - a3 - a2 - a3 - a13),

p = (all - a2 - a1 - a2 - a3 - a13,

a2 - a3 + a12 + a2 - a3 - a23 + a3l + a13),
W = (all - a2 - a1 - a2l, a2 - a3 + a12 + a2 - a3 - a2 - a3 - al3)-

For all i = 5 we have Z[A] = 1, and Oj IZ(B] a if A.

10.3. Any matrix < A has to be of the form

a12 + V

a22 + Z

a3 - V - Z

for some integers u, v, w, z such that u, u + v, u + w, u + v + w + z > 0 (see 1.3).
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a1 - U - V

a2 - W - Z

a33 + U + V + W + Z

all + u
B= a2l + W

a3 - U - W



10.4. For each i E [1, 5], we list the conditions on the coefficients of a matrix A. For
A satisfying these conditions, and for < A as in 10.3, let (G, G', ) E supp O. n Z[B].

For the fiber NGG') of the conormal bundle Z[B] at (G, G'), we compare rank y,
2rank y rank YG, etc. to those maximal possible for x E NGGl)- We are looking for

u, v, w, z such that the condition 0(G, G', y) does not force any of these numbers for
y to be less than maximal. In each case we show that we must have u = v = w = z = .

This means that vanishes on an open dense subset of Z[B] for A. Therefore,
by theorem 31 it is equal t �OA- Since all the conditions involved hold for A if and only
if they hold for A + I, this will show that Oj gives rise to the canonical basis element A-

The proof repeatedly uses the fact that x tG, G'if and only if x(G-nG'.) C Gi-,nG'.-l
3

for all J' (see 14). In particular, we must have

X(Cd) 9 G2n G', x(G2n G C GI n G', x(G2) G n G', x(G') C G2n G'2 2 2 2 It

and also
x(G + G' = 0, x(G2+ G') G + G'1 2 11

10.5. Let j = , and let all a22, a3> a22, a23> a12+ajj-a22, a32> a21+ajj-a22-
If z > , then the maximal rank of x 2is strictly greater than a22. But dirnIm y 

aIj+aI2+a21+a22, and dim(Ker y n Im y) all aI2+ a2l, hence rank y 2 < a2-2. This
implies z < 0, hence u + v + w > .

If v < , and u + w > , then

max dim x(G' > all a2l dim y (G').2 2

If v < , and u + w = , then v + z < contradicts u + v + w + z > . Hence, v > .
Similarly, w > , and also u + v + z, u + w + z > .

If u + v + w = 0, then z = 0, v + w = -u < . It follows that u = v = w = z = .
If u + v + w > 0, then

max rank (X I G2 +G2 = min(all + a12+ a2l+ u + v + w, a22+ a23+ a32 - V - W Z)

and dim y (G2+G') aII+a12+a21. Therefore, a22+a23+a32-V-W-Z< all+al 2+a2l-2

Then

max rank x = min(all + a12+ a2l+ a22+ u + v + w + za22+ a23+ a32+ a33+ u),

and rank y < all + al 2+ a2l+ a22-

Ifu+v+w+z = 0, then u= v = w = z =0. Ifu+v+w+z > then u =0, and
a22 + a23 + a32 + a33 < all + a12 + a2l + a22, which also leads to v = w = z = .
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10.6. Let j = 2 and let a22 all, a33 a22, a12 a23+a33-a22, a2l a32+a33-a22-

Since the sace G, + G' + (G2 n G') contains a subspace of dimension all a12 +1 2

a2l + a22 + a13 + a2l, we have

codim G1 + G' + (G2nG') = a23+a32+a33-Z+U1 2

< a23 + a32 + a33-

Therefore, z > u > 0.
Also,

maxdim x(G2 n G' = all + u > all > dimy(G2 n G').2 2

Hence, u = 0, and v, w > 0.
Finally,

maxrankx = all+al2+a2l+a22+V+W+Z

> all + a12 + a2l + a22 > rank y.

Hence, v + w + z = 0, so that u = v = w = z = 0.

10.7. Let j = 3,4, or 5, and let a22 > all + a13 + a3l, a33 > a22 + a2l + a12-

Let also
a23 > a12, a32 > a2l, if j = 3;
a23 > a12, a32 < a2l, if j = 4;
a23 < a12, a32 < a2l, if j = 5.

Since all the entries of B are non-negative, we have u + v < a13, U + W < a3l. Then
u + v + w + z > 0 implies -z < u + v + w < a13 + a3l - U- Therefore, a22 + Z > all + u.

For all j = 3,47 5 we have

max dim x(G2 n G') = all + u > all > dim y(G2n G');2 2

maxrankx= Eaii+u+v+w+z> Eaij>dimImy.
iJ52 ij<2

It follows that u + v + w + z = u = 0.
Now we have -w - z = v > 0, -v - z = w > 0. We can compute

maxdim x(G2)= all + min(a12, a23) + V> all + min(a12, a23)> dim y(G2),

max dim x(G�2) = all + min(a2l, a32)+ w > all + min(a2l, a32)> dim y(G').
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Hence v = w = , and therefore also z = .

10.8. We have shown that all the functions E [1, 5] give rise to the basis
elements A for the corresponding A.

All the monomials listed in the proposition can be obtained from the corresponding
functions Oj, using involutions 7 and (see 23 and 810).
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