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ABSTRACT

We investigate the potential for exact computations in the statistical mechanics of
disordered systems. Three systems are examined: directed waves in random media,
the 2D ±J Ising spin glass, and tree-like neural networks.

Unitary propagation of directed waves is described by a chr6dinger equation with
a random time-dependent potential. We propose a random S-matrix model for di-
rected waves, based on the path integral solution to this Schr6dinger equation. Exact
computations are performed by summing over directed paths on the square lattice.
We report asymptotic scaling laws for directed waves and interpret them in light of
similar results for random walks.

Sums over paths are also used to investigate the properties of the 2D ±J Ising spin
glass. We present an exact integer algorithm to compute the partition function of
this system, based on the diagrammatic expansion of the high-temperature series.
We examine the low-temperature behavior, the roots of the partition function in the
complex plane, and the scaling laws for defects.

Boltzmann machines are neural networks based on Ising spin systems. We use exact
techniques from statistical mechanics to derive an efficient learning algorithm for tree-
like Boltzmann machines. The networks are shown to be capable of solving difficult
problems in supervised learning.

Thesis advisor: Dr. Mehran ardar
Professor of Physics
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Chapter 

Introduction

Statistical mechanics connects the macroscopic properties of complex systems to the

microscopic interactions of their constituent elements. Examples of such systems in-

clude the electrons in a copper wire, magnetic moments in a block of iron, and helium

atoms in a sealed balloon. Due to the enormous numberl of degrees of freedom in these

systems, it is impossible to write down the true quantum-mechanical Hamiltonian and

solve its Schr6dinger equation, as one might do for the hydrogen atom. Instead, a

starting point for understanding such systems is to formulate a simple, mathemati-

cal model that captures the important physics. Exact, perturbative, or approximate

solutions of the model then make quantitative predictions that can be tested against

experiment. This approach has historically met with a great deal of success. Thus,

long before the advent of sophisticated tools such as the renormalization group, we

had the Sommerfeld model[l] for electrons in normal metals, the mean-field theory of

Weiss[2] for ferromagnets, and the Maxwell distribution[3] of molecular velocities for

'typically, of order 1023.
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ideal gases. All these models led to significant advances, despite the fact that they

did not take fully into account the interactions on the microscopic level.

The development of the renormalization group[4, 5] ushered in the modern era

of statistical mechanics and attached a new importance to simple models of physical

systems. The renormalization group uses scaling transformations to analyze the crit-

ical behavior of systems near a phase transition. It predicts that the physics at large

length scales depends on only a few parameters, such as the dimensionality of the

system and the type of symmetry breaking. One consequence of this is that many

aspects of critical behavior do not depend on the detailed nature of microscopic in-

teractions. This robustness explains the universal features of phase transitions that

appear in very different sorts of systems-for example, uniaxial ferromagnets and

liquid-gas mixtures. It also, accounts for the remarkable success of phenomenological

Landau theories[6] and idealized models.

A great deal of attention is now being focused on the statistical mechanics of

disordered systems[7]. A characteristic feature of such systems is that they lack the

translational symmetries of their pure counterparts. This makes the theoretical treat-

ment of disordered systems more complicated. Of course, experimental realizations

of disordered systems are ubiquitous, since it is rare that nature produces a perfect

specimen of any aterial. Impurities, inhomogeneities, random perturbations-all of

these can lead to interesting, new forms of behavior. In many systems, the disorder

is essentially fixed or frozen on experimental time scales, unaffected by thermal noise

even at high temperatures. The low-temperature (and sometimes T = ) behavior of

the rest of the system can be strongly influenced by the presence of such quenched
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randomness. A recent development in the study of disordered systems has been the

emergence of links to the field of neural computation[8]. Here, ideas from statistical

mechanics have aready helped to clarify a number of issues in optimization 9, 1 0 I I

associative memory[12], learning capacity[13] and generalization[14].

This thesis investigates exact computations in the statistical mechanics of disor-

dered systems. he exactness and efficiency of our methods distinguish them from

previous ones. Three different problems are discussed: directed waves in random

media[15], the 2D ±J Ising spin glass[16], and Boltzmann learning in tree-like neural

networks[17]. The first of these problems concerns the effect of a random potential

on a zero-temperature dynamical system; the second and third deal with quenched

randomness in Ising spin systems. This chapter introduces these problems and the

ideas that unite them.

Many of the difficulties in analyzing disordered systems are best illustrated by

example. The random walk is one of the oldest problems in probability theory[18],

and one with several applications in physics[19]-Brownian motion, polymer chains,

interfaces, and spin systems, to name only a few. Not surprisingly, the properties

of random walks in pure and disordered systems are quite different. Consider, for

example, a random walk on a simple cubic lattice in D dimensions. At time t = 1

the walker is situated at the origin of the lattice. At subsequent times t = 2 etc.,

the walker randomly chooses to take a step in one of the 2D possible directions along

the lattice.

In a pure system, the walker's decision does not depend on his location, and each

direction is an equally likely choice for his next step. At large times t, the probability
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P(x, t) to find the walker at site x is given by the central limit theorem:

I X2
P(X, = (27rDt)D/2 exp - 2Dt

Many of the properties of random walks in pure systems follow immediately from this

Gaussian probability distribution. Two important properties are the walker's mean-

square displacement 2) and the mean number of times to that the walker returns

to the origin. For long walks (t > 1), we have x 2) , t2v with v = 12, and

t1/2 if D = 

to Int if D = 2 (1.2)

CD if D > 31

with CD a dimension-dependent constant. Note that in D < 2 the walker returns to

the origin an infinite number of times as t 4 oo; this has led to the observational

that in D < 2 44 all paths lead to Rome." By contrast, the mean-square distance 2)

does not depend on dimension; it diffuses linearly in time for all values of D.

The situation is clearly different for random walks in disordered systems[20].

Anisotropies and inhomogeneities in the environment can modify the properties of

random walks. For example, on a lattice with a large fraction of missing sites, the

walker may remain localized around its starting point, even at large times. In this

case, the walker will return to the origin many times more than predicted by eq. (1.2).

Likewise, on a lattice with traps and delays, the walk may obey a subdiffusive scaling

law, with x ) _ t2" and v < 12. Other behaviors are also possible, depending on
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the type of disorder.

The problem of random walks in disordered systems appears in various guises

throughout this thesis. It first surfaces in Chapter 11, where we investigate the unitary

propagation of directed waves in random media. Such waves may be formed when

a focused beam impinges on a medium with several scattering defects. In the limit

of strong-forward scattering, these waves obey a chr6dinger equation for a quantum

particle in a random time-dependent potential. We formulate a lattice model for

directed waves based on the path integral solution to this Schr6dinger equation. An

attractive feature of our model is that the paths of directed wave fronts trace out

random walks on an inhornogeneous lattice. The effect of inhomogeneities, and their

relation to the disorder in the original problem, are discussed in detail. We look at

two types of transverse fluctuations, X2 and X2 - X)2 , where overbars denote

averages over all possible landscapes of disorder. In the language of random walks,

these quantities measure the typical deviation of the walker from the origin and the

typical width of the walker's probability distribution. We show how to compute these

quantities recursively as a function of time by summing over all possible random

walks on the lattice. We also derive asymptotic scaling laws for them based on the

properties of elementary random walks.

Another problem in statistical physics that can be mapped onto a sum over random

walks is the two-dimensional (21)) Ising model[21, 221. This model and its applica-

tion to the study of disordered systems form the subject of Chapter III. The Ising

model was originally introduced to study the phase transition in ferromagnetic solids

such as iron and nickel. When samples of these materials are cooled below a critical

9



temperature T they develop a non-zero magnetic moment, even in the absence of an

applied magnetic field. While the value of T varies from material to material, many

properties of the phase transition are universal to all ferromagnets. The understand-

ing of these phase transitions, based on the theory of the renormalization group, is

one of the triumphs of modern statistical mechanics.

The Ising model is an outstanding example of a simple, mathematical model that

captures a great deal of important physics. The model illustrates how the spin-

spin interactions between magnetic ions on a crystal lattice can lead to long-range,

cooperative effects. In short-range Ising models, binary spins Si = ±1 interact with

their nearest neighbors on the lattice via pairwise couplings, or bonds, ij}. In the

presence of a magnetic field h, the Hamiltonian for the system is given by

JijSS - hSi, (1-3)

with the (ij) sum over all nearest-neighbor pairs on the lattice. The partition function

Z = TrSe- 'HIT encodes the thermodynamic behavior of the system at different values

of the temperature T.

In a pure Ising ferromagnet, the bonds Ji = J > are uniform over the entire

lattice. In this case, the ground state of the system, with all the spins aligned in par-

allel, exhibits long-range ferrornagnetic order. In one-dimensional systems, this order

is destroyed by thermal fluctuations, so that only at T = does the system exhibit

true long-range order. In two or more dimensions, however, the ferrornagnetic order

is stable to small thermal fluctuations, so that by gradually raising the temperature,
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one encounters a finite-temperature transition between an ordered and disordered

phase. Below T < T, in the ordered phase, the system exhibits a spontaneous mag-

netization, (Si) :A 0, while above T > T the spins fluctuate about a mean value of

zero. The properties of phase transitions in ferromagnets are well-understood[5] In

the neighborhood of the critical point, the spin-spin correlations decay with distance

as

e- r/t
(SO Sr) (SO) (Sr) rd-2+711

where is a temperature-dependent correlation length. As one approaches the critical

point, the correlation length diverges algebraically as - IT-TI-". Exactly at T, the

spin-spin correlations have a power law decay, characterized by the critical exponent 77.

The values of v and 71 are universal features of pure Ising ferromagnets; they depend

on the dimension of the lattice, but are otherwise insensitive to microscopic details.

Bulk quantities, such as the specific heat and magnetization, also exhibit singular

behavior at phase transitions and have critical exponents associated with them. An

important predict-lion of the renormalization group is that these other exponents are

related to v and 7 by simple scaling laws.

All the critical exponents are known exactly for the pure 2D Ising model, where

the free energy and spin-spin correlations can be calculated analytically in closed form

for zero magnetic. field. A famous method for calculating the partition function of

this system, due to Kac and Ward[23], is to recast the problem as a sum over random

walks. The Kac-Ward method exploits the diagrammatic representation of terms

in the high-temperature expansion as graphs on the square lattice. Kac and Ward
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transformed the problem of evaluating these diagrams into a sum over random walks

of different lengths. For the 2D Ising model with uniform ferromagnetic bonds, the

sum is greatly simplified by the translational symmetries of the lattice. Kac and Ward

performed the sum exactly for walks on an infinite 2D lattice and thus obtained the

free energy for the pure Ising model in the thermodynamic limit. They also showed

how to calculate free energies for systems of finite size.

An active area of research is to extend our understanding to phase transitions

in disordered magnets, where entirely new types of behavior are found. Except for

special cases, disordered magnets are not as well understood as their pure coun-

terparts. Disordered magnets can be created in the laboratory by randomly diluting

non-magnetic materials with magnetic ions. In certain situations, the exchange effects

lead to the presence of competing ferromagnetic and antiferromagnetic interactions.

Materials with these competing interactions are known spin glasses[24, 25], due to

their slow relaxation times at low temperatures. Typical examples of spin glasses

are CuMn and AuFe. At high temperatures, the local magnetic moments in spin

glasses fluctuate about zero mean, but at low temperatures, they freeze in random

directions. As in ferromagnets, these two regimes are believed to be separated by a

phase transition.

The Ising model can also be used to study disordered magnets. To model the

competing interactions in spin glasses with short-range interactions, the bonds jj that

couple nearest-neighbor spins are chosen randomly from a probability distribution

p(Jij). Two common choices, introduced by Edwards and Anderson[26], are the

12



Gaussian distribution

1 -J?./2j2p(jij = 7=;=--e 2 ,

and the ±J distribution

P(Ji = [S(Jij - J) + 44 + A-2

Edwards-Anderson models are believed to capture the important physics of sing spin

glasses, just as pre Ising models do for uniaxial ferromagnets. As in ferromagnets,

one expects to find a diverging correlation length associated with the phase transition

in spin glasses. In particular, just above T, it is believed that the mean-square

correlations (averaged over pairs of spins) should behave as

e-r/�
(So Sr) 2-rd-2+,71

where the divergence of and the power law decay are universal features of the

model. Note that unlike the pure case, finding the ground state for the spin glass

Hamiltonian is a non-trivial problem in optimization. Because it is impossible to

satisfy the competing ferromagnetic and antiferromagnetic interactions, spin glasses

are highly frustrated systems. We seek not only to understand the phase transition

in these models, but also to characterize the properties of the low temperature phase.

In Chapter III, we apply the Kac-Ward method for computing partition functions

to the 2D ±J spin glass. In particular, we present a polynomial-time algorithm to

compute the exact integer density of states for spins on a L x L square lattice. The
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algorithm uses the transition matrix proposed by Kac and Ward to sum over random

walks of length < L'. Despite many previous studies which establish the occurrence

of a zero-temperature phase transition in the 2D ±J spin glass, much remains to be

understood about-, its low-temperature behavior. We investigate the divergence of the

correlation length and the appearance of power-law correlations at the onset of the

phase transition. We also examine the number of low-level excitations in the spin

glass and the sensitivity to boundary conditions at zero temperature.

Though originally introduced to study phase transitions in magnets, Ising models

have found a wide range of applications. Recently, they have been used to study mod-

els of parallel distributed processing[27, 281 and neural computations, 29]. The goal of

these studies has een to understand the emergent computational abilities of networks

of interconnected units. Inspired by the networks of neurons and synapses found in

the brain[30], these connectionist networks have been trained to perform a number of

tasks, including speech generation[31] and recognition[32], pattern classification[33],

handwriting recognition[341, automobile navigation[35] and time series prediction[36].

Unlike traditional. methods of computation, connectionist networks have the ability

to learn from examples and typically exhibit a high degree of fault tolerance.

A simple example of such a network is the binary perceptron[37], shown in Fig-

ure 1. 1. This network has one output unit and N input units Si connected by

weights J and bias h. The units can take the values ±1 and are related by

N
S=sgn EJS,+h

i=1
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S = sgn(YJiS h)

S, S2 S3 S4 +1

Figure 1.1 A binary perceptron with output S, inputs Si, weights J, and threshold
h. The output is equal to the sign of the weighted sum (E JS + h).

The binary perceptron thus computes the weighted sum of its input units and uses

the sign for its output. The bias or offset h sets the threshold for the output unit

to be positively activated; it can be interpreted as the effect of an additional input

unit, fixed at the value 1. Clearly, the perceptron is severely restricted in the

type of input-output mappings it can represent[38]. Given p input patterns with

output 1, and p- input patterns with output -1 a perceptron can perform the

desired mapping only if the p patterns are separated from the p- patterns by a

hyperplane in the N-dimensional input space. Not all problems are linearly separable

in this way. Consider, for example, the problem of multiplication, or N-bit parity.

The case of two input units (N = 2 is illustrated in Figure 12. Note that there is

no line in the 2 plane that separates the inputs whose product is +1 from those

whose product is -1. Consequently, no choice of weights will enable the perceptron

to perform this mapping.

More expressive networks can be created by adding layers of hidden units between

the input units and the output unit[28]. An example of a network with one layer of

hidden units is shown in Figure 13. Ackley, Hinton, and Sejnowski[39] proposed
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S2

G 1

0.5

-1 -0.5

-0. 5

(j) -1

4)

0.5 1 S,

G

Figure 12: Linearly inseparability of the N=2 parity problem: it is impossible to
draw a line that separates the +1 outputs from the -1 outputs.

output unit

hidden units

input units

Figure 13 A Boltzmann machine with one layer of hidden units.

stochastic update rules for multi-layer networks based on the analogy to Ising spin

systems. These rles guarantee that the equilibrium probability for the network to

be found in state obeys the Boltzmann distribution P = -le-O"11, where Z is

the partition function for a system of Ising spins (or units) Si, bonds (or weights)

Jjj, and fields (or biases) hi. The network is queried by clamping the input units

to a particular pattern, then measuring the magnetization of the output unit. The

input-output mapping performed by the network depends on the weights Jjj.
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The Boltzmann learning algorithm prescribes how to adapt the weights in order

to implement a desired mapping between input and output units. In this algorithm,

individual weight changes AJij are computed from the correlations (SiSj) between

the ith and jth units in the network. In Chapter IV, we examine the properties of

Boltzmann machines with tree-like connectivity between the output and hidden units.

For networks of this type, we describe an efficient and economical way to implement

the Boltzmann learning algorithm. Our method exploits the technique of decimation

from statistical mechanics, originally developed in the context of the renormalization

group. The strategy is similar to the one used to analyze complicated electric circuits,

based on the rules for combining circuit elements in series and parallel. We present

similar rules for combining weights in Boltzmann machines and use them to compute

exact correlation functions in polynomial time.

The methods eveloped in this thesis for directed waves, the 2D ±J spin glass, and

Boltzmann machines can be applied to many other problems. Having demonstrated

the potential for xact computations in these systems, we conclude in Chapter V by

mentioning some areas for further research. The last chapter also issues some chal-

lenges for researchers with access to supercomputers and parallel processing machines.

It is hoped that the implementation of our algorithms on these faster machines will

lead to further insights into the statistical mechanics of disordered systems.
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Chapter 2

Directed'VVaves 'in Random 1\4edia

2.1 Introduction and Summary

The problem of wave propagation in random media is one of longstanding theo-

retical interest[40, 41]. Only recently, however, have we begun to appreciate its

connection to other problems in the physics of disordered systems, such as elec-

tron localization[42, 43], directed polymers in random media[44], and anomalous

diffusion[20, 45]. Several authors[46, 47, 48] have suggested that the diffusion of

directed wave fronts in disordered media is described , to a good approximation, by

the Schr6dinger equation for a particle in a random time-dependent potential. In

this chapter, we propose a new model, based on random S-matrices, to explore the

consequences of this description. An important aim of our study is to contrast the

resulting behavior of waves with the types of diffusion known to occur in other dis-

ordered systems.

The approximations that reduce the full wave equation to the parabolic Schr6-

18



dinger equation or directed waves[46] have been discussed most recently by Feng,

Golubovic , and Mang (FGZ)[48]. Here, we briefly review this reduction starting with

the Helmholtz equation for propagation of a scalar wave 4 in a random medium. The

static solution for satisfies

[V + k'n'(x y, z)] D (x, y, z = 0, (2.1)

where n(x, y, z) is a nonuniform index of refraction that describes the landscape of

disorder in the host medium. Following FGZ, we decompose n 2 X y Z) = n2 +0

Sn 2(.X� yj Z)j where n is the disorder-averaged index of refraction, and Sn 2(X, y7 Z)

contains local fluctuations due to randomly distributed scattering centers. The prob-

lem of directed waves arises in anisotropic media in which the scattering potential

set up by these fluctuations varies slowly in the z direction, so as to favor coherent

propagation along the z direction. For such a wave aimed parallel to the z axis, we

can set 4 ( 7 Y, = T (x, y, z) eiknoz , thus reducing eq. 21 to

a2T aT a2T a2 Ip 2 Z) T.
2ikno- = - __ + k'Sn (2.2)

(9Z2 49Z _5X2 qy2

Wave propagation. according to eq. 22) can be alternatively regarded as the scat-

tering of photons by the fluctuations in n. We are interested in circumstances where

the individual scattering events lead to a sequence of small fluctuations in the trans-

verse momentum components of the z-directed paths. We would also like to ignore

any back scattering, i.e. large changes in the longitudinal component of the photon

19



2 2 2 2momentum. For these conditions to hold, we require Sn < n and 0Sn < kn,,Sn .

These conditions may be satisfied in anisotropic media[46, 47, 48] eg. with long

fibers along the z-axis). The parabolic wave equation is thus obtained by ignoring

the second derivative term on the left hand side of eq. 22). The analogy to the

Schr6dinger equation now becomes apparent, after the change of variable z ++ t,

which reduces eq. 22 to

j [_,YV2 + VX Y q T, (2-3)

with (2kno)-' and V = -kSn 2/2no. Eq. 2.3) appears in several contexts besides

the problem of directed waves in random media. A quantum mechanical description

of motion in dynamically disordered media has particular relevance for the problem

of diffusion in crystals at finite temperature[45, 49, 50]. Random time-dependent

potentials have also been used to model the environment of a light test particle in

a gas of much heavier particles[51]. Thus although, as we shall discuss later, the

applicability of eq.. 23) to wave propagation in random media is somewhat limited,

the study of its general scaling properties is of much intrinsic interest.

For generality, we examine the problem of directed waves in d dimensions. The

solution to the appropriate Schr6dinger equation is then given by the Feynman path-

integral formula[46, 52, 53]

2(XIt)�V (X, ) 'Dx(7-) exp r) (2.4)i It dr V(x(r),
,O) 0 2-y d7-
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where x(,r) now describes a path in d - dimensions. In writing eq. 24) we

have chosen the standard initial condition that at time t = 0 the wave function is

localized at the origin. The beam positions X2) and X)2 characterize the transverse

fluctuations of the wave function about the forward path of least scattering. Here we

use ... ) to indicate an average with the weight IT X, t) 12 for a given realization, and

overbars to indicate quenched averaging over all realizations of randomness. Roughly

speaking, X)2 describes the wandering of the beam center, while X2 _ X)2 provides

a measure of the beam width.

Path integrals similar to eq. 24) also appear in the two closely related problems of

directed polymers (DP) 441 and strong localizations, 55, 56]. In the former problem

T(x, t) represents the (positive) Boltzmann weight for the ensemble of DP configu-

rations which connect the origin to , t): each path contributes an energy cost due

to line tension, and a potential energy due to encounters with random impurities[44].

This problem is thus obtained by setting -/ and V(x, -r) imaginary in eq. 24). The

quantum tunnelling probability of a strongly localized electron is also obtained by

summing over all paths connecting the initial and final sites. In this case each path

also acquires a random phase due to the effects of magnetic impurity scatterings[54].

This problem can thus be described by an imaginary , but a real V in eq. 24) We

can thus pose the more general problem of studying the characteristic fluctuations

of path integrals of the form eq. 24), when -y and V can take any values in the

complex plane. Numerical and analytical evidence seems to indicate that DP and

tunneling problems show similar scaling behaviors[54, 56]. We shall present some ev-

idence indicating that the point corresponding to real and V in the complex plane,
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i.e. representing directed waves, is the only point in this space that shows new scaling

behavior for fluctuations.

A special property of eq. 23) which is valid only for real -y and V is unitarity,

i.e. the norm f dxlT(x, t) 12 is preserved at all times. (In the DP and tunnelling

problems, the norm clearly decays exponentially with the length t.) This additional

conservation law distinguishes the directed wave problem from DP and leads to a

number of simplications. Unitarity is of course a natural consequence of particle

conservation for the Schr8dinger equation, but it has no counterpart for directed

wave propagation. It is likely that a beam of light propagating in a random medium

will suffer a loss of intensity, due to either back-reflection, inelastic scattering, or

localization phenomena[57].

Recent efforts to understand the diffusion of directed waves in random media have

focused on the scaling behavior of the beam positions (X2) and X)2 at large t. Lattice

models have been used here with some success. It has been shown using density-

matrix techniques, for instance, that (X2) scales linearly in time as a consequence

of unitarity[49]; recent numerical simulations[58, 59] also support this view. The

scaling behavior f X)2 at large t, however, has proved more controversial. The

first numerical work in this area was done by FGZ[48], who used a discretization

procedure in which the norm of the wave function was not strictly preserved. In 2d,

they found that I x I grew superdiffusively as with v ;z, 3 while in 3d, they found
4

a phase transition separating regimes of weak and strong disorder. Recent numerical

studies[58, 59, 60] on directed waves in 2d cast doubt on the validity of these results

when the time evolution is strictly unitary. These studies report that (X)2 scales
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subdiffusively in 2d as t" with v -- 025 - 030. Bouchaud et al[59] also conjecture

that the wave function becomes "multifractal" in that an infinite number of critical

exponents are required to describe its evolution.

Somewhat surprising is the fact that a continuum formulation of the wave prob-

lem leads to different results. An exact treatment of the continuum Schr6dinger

equation 23) has been given by Jayannavar and Kumar[50]. They show that for

a random potential S-correlated in time, X2) , t3 as t -+ oo. This behavior is

modified when there are short-range correlations in time[51], but the motion remains

non-diffusive in that the particle is accelerated indefinitely as t + 00. Lattice mod-

els introduce a momentum cutoff Pmax - a-1 , where a is the lattice spacing, and

therefore do not exhibit this effect. The momentum cutoff generated by the lattice

discretization is i some sense artificial. Nevertheless, in a real fluctuating medium,

we do expect on large time scales to recover the lattice result, i.e. normal diffusion.

The reason is that dissipative effects do generate an effective momentum cutoff in

most physical systems. (Strictly speaking, even in the absence of dissipation, rela-

tivistic constraints lead to a velocity cutoff v = c.) The presence of such a cutoff

for the wave propagation problem, and hence the physical relevance of lattice versus

continuum models, is still a matter of debate. While there is no underlying lattice,

one suspects on physical grounds that there does exist an effective momentum cutoff

for propagating waves, related to the speed of light in the background medium.

In this study, we investigate a new model for the propagation of directed waves in

strongly disordered multiple-scattering media. Our model is formulated on a discrete

lattice and reproduces the result that the beam position X2) grows linearly in time.
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We find also that X)2 scales as t2v with v = in 2d and as In t in 3d. Our approach
4

is novel in several respects. First, our model is formulated in such a way that uni-

tarity is manifestly preserved in numerical simulations, without resort to complicated

checks. Second, we implement scattering events in a manner consistent with the

local conservation of probability flux. Third, we perform all averages over disorder

exactly, whereas revious studies resort to averaging over a necessarily finite number

of computer-generated random environments. Finally, we look at scaling behavior in

systems that are an order of magnitude larger than those previously considered.

The rest of the paper is divided into two parts. In Section 11, we develop our

model in considerable detail, with emphasis on the simplifying features that permit

one to compute averages over disorder exactly. At the end of this section, we present

the results of or 2d and 3d numerical simulations. Then, in Section 1, we interpret

our results in light-, of well-known properties of random walks. We conclude with some

final comments on the connection to the DP problem.

2.2 Random S-Matrix Model

Previous numerical investigations of the problem have started by rewriting the Schr6-

dinger equation 2.3) as a difference equation. Such an approach has the advantage of

reducing straightforwardly to the continuum description as the unit time increment is

shrunk to zero. Ufortunately, the naive discretization of eq. 23) does not preserve

the unitarity of time evolution. Since most evidence suggests that it is precisely the

constraint of unitarity that gives rise to a new universality class for directed waves,
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this breakdown is quite serious. Realizing this, previous workers have enhanced the

above discretization in ways to mitigate the breakdown of unitarity[48, 58, 59, 60].

We take a different approach and look for a discretization that manifestly preserves

unitarity.

The fundamental motivation for our approach is the path integral description of

quantum mechanics. Rather than discretizing the wave equation 2.3), we seek to

implement the sum-over-histories prescription of the path integral 2.4). To this end,

let us consider the general problem of a quantum particle on a spacetime lattice,

initially localized at point A. We propose to assign a complex-valued amplitude to

each particle trajectory on the lattice that emanates from A. Additionally, we want to

impose the physical requirement that the probability current of the particle satisfies

a local conservation law. The normalized wavefunction of the particle at point can

then be computed by summing the amplitudes of all trajectories that connect A to B.

The number of these trajectories is finite due to the discretization of spacetime We

now show that the surn-over-histories approach, combined with the requirement of

probability conservation, gives rise to a model in which the unitarity of time evolution

is manifestly preserved.

For concreteness we introduce the model in 2d A discussion of its generalization

to higher dimensions is taken up later. As is customary in the study of directed

waves, we identify the time axis with the primary direction of propagation. Our first

step, then, is to consider diffusion processes on the 2d lattice shown in Figure 21 It

is amusing to note that this lattice has also been used for the discretizing the path

integral of a relativistic particle in one dimension[521.
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Figure 21: Lattice discretization for directed waves in d = 2 The wave function
T±(xt) is defined on the links of the lattice, while random scattering events occur
at the sites.
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Figure 22: Scattering event at a lattice site. Time flows in the horizontal direction.
A 2 x 2 S-matrix relates ingoing and outgoing amplitudes.

The wave function in our approach takes its values on the links of this lattice.

We use T± (x, t) to refer to the amplitude for arriving at the site , t) from the ±x

direction (see Figure 22). At t = 0, the wave function is localized at the origin, with

T+(0, 0 = IO. Following the sum-over-histories prescription, our next step is to

assign a complex-valued amplitude to each trajectory on the lattice emanating from

the origin. Transfer matrix techniques lend themselves naturally to this purpose. To

each site on the lattice, we therefore assign a 2 x 2 unitary matrix S(x, t). The values

of the wave function at time t I are then computed from the recursion relation:

T+(x - 1' + 1) -S11(X't) S12(Xt)' IF+ I )
T_(X + 1 + 1) = T (, ) (2.5)

-S21(Xt) S22(Xt).

The S-matrices are required to be unitary in order to locally preserve the norm of

the wave function.,
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The S-matrix procedure outlined above weights each trajectory on the lattice with

a complex amplitude. Consider, for example, the trajectory in which the particle,

incident at the origin from the -x direction, takes two steps in the x direction then

two steps back. The amplitude A assigned to this trajectory is given by the product

of S-matrix elements:

A = S21 0, 0) S21 1, 1) S22 2 2 S22 (1 3. (2-6)

In general, a trajectory of L links on the lattice is weighted with an amplitude derived

from the product of L S-matrix elements. The value of the wavefunction T± (x, t)

is obtained by summing the individual amplitudes of all directed paths which start

at the origin and arrive at the point , t) from the ±x direction. To simulate the

effect of a random potential, we choose the S-matrices randomly from the group

of 2 x 2 unitary matrices. We thus achieve a unitary discretization of the path

integral in eq. 24), in which the phase change from the random potential V(x, t is

replaced by an element of the matrix S(x, t). The recursion relation in eq. 2.5) is the

coarse-grained analogue of the Schr6dinger equation 2.3); unlike a simple difference

equation, however, eq. 25) enforces the local conservation of probability flux and

leads to a sum-over-histories solution for the wavefunction. Unitarity is manifestly

preserved.

Besides these advantages, the S-matrix approach also has a natural physical in-

terpretation for the problem of directed waves in random media. The basic idea is

simple: at time t, we imagine that a random scattering event occurs at each site in
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the lattice at which either (x, t) or (x, t) is non-zero. The matrices S(x, t), which

relate the ingoing and outgoing amplitudes at each lattice site, can then be regarded

as scattering matrices in the usual sense. Figure 22 illustrates a typical scattering

event. A lattice S-matrix approach for the study of electron localization and the

quantum Hall effect has been used by Chalker and coworkers[61]. A related model

has also been recently proposed[62] to investigate the localization of wave packets in

random media. These models also include back scattering and hence involve a larger

matrix at each site.

We are interested in the beam positions

W)t E P(X, t) X2, (2.7)
X

and

(X 2t P(Xlt) P(X2,t) XX2- (2.8)
XI,-T2

Here , P(x, t) is the probability distribution function (PDF) on the lattice at time t,

defined by:

p X, t = p+ X, t) 12 p_ X, t) 12 (2.9)

(Defining the weights directly on the bonds does not substantially change the results.)

Note that unlike the DP problem, P(x, t) is properly normalized, i.e.

EP(Xt = 
X
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and eqs. 27) and 2.8) are not divided by normalizations such as E., P(x, t). This

simplification, a consequence of unitarity, is what makes the directed wave problem

tractable.

The disorder-averages in eqs. 27) and 28) are to be performed over a distri-

bution of S-matrices that closely resembles the corresponding distribution for V in

the continuum problem. However, by analogy to the DP problem[44], we expect any

disorder to be relevant. Hence, to obtain the asymptotic scaling behavior, we consider

the extreme limit of strong scattering in which each matrix S(x, t) is an independently

chosen, random eement of the group U(2). With such a distribution we lose any pre-

asymptotic behavior associated with weak scattering[51]. The results are expected to

be valid over a range of length scales a x < �, where a is a length over which the

change of phase ue to randomness is around 27r, and is the length scale for the

decay of intensity and breakdown of unitarity. Since the parabolic wave equation was

obtained from the full wave equation 2.1) by assuming that the scattering potential

varied slowly along the propagation direction (,OSn' < kn,,Sn 2), it is fair to inquire

if the conditions for the validity of such path integrals are ever satisfied in transmis-

sion of light. As a partial answer, we provide an idealized macroscopic realization

in which a beam of light is incident upon a lattice of beam splatters arranged as in

Figure 22. Each splitter partially reflects and partially transmits the beam, both in

the forward direction. (Note that as long as the beam width is smaller than the size

of each slab, te eam does not encounter variations of n along the t direction, and

will not be backscattered.) In this strong scattering limit, the effect of an impurity

at , t) is therefore to redistribute the incident probability flux P(x, t) at random in
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the x and -x directions. On average, the flux is scattered symmetrically so that

the disorder-averaged PDF describes the event space of a classical random walk:

P(X' ) t! (2.10)
(1_9!(t+9!'

2 2

Substituting this into eq. 27), we find X2)t = t, in agreement with previous stu-
(X)2, given by eq. 28).

dies[49]. Consider now the position of the beam center t

Unlike P(x, t), the correlation function P(X1, t)P(X2, t) does not have a simple form.

An exact calculation of (X)2 thus proves rather difficult.

One way to proceed is to perform numerical simulations, based on eq. 25) in

which averages over disorder are computed by sampling a finite number of computer-

(X 2generated random environments. For the purpose of computing )t , however, this

S-matrix algorithm has a large amount of unnecessary overhead. All the information

required to compute beam positions is contained in the function P(x, t). Moreover,

we are not interested in those quantities, such as transverse probability currents, for

which a complete knowledge of T± (x, t) is required. A better algorithm, for our

purposes, would e one that directly evolves P(x, t) rather than the wave functions

(X, ).

One may wonder if such an algorithm exists, since in general, it is not possible

to simulate the dynamics of the Schr6dinger equation without reference to the wave

function. Consider, however, the scattering event shown in Fig. 22. Probability flux
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Figure 23: Lattice of beam splatters in d = 2 In black: a pair of paths contributing
to W(r, t), the disorder-averaged probability that two paths are separated by 2 at
time t.
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is locally conserved; hence,

12 I 12 = y. 12 I 12. (2.11)
i 0

As the S-matrix that connects these waves is uniformly distributed over the group U(2),

its action distributes the outgoing waves uniformly over the set of spinors whose com-

ponents satisfy eq. 211). A straightforward calculation shows in turn that the

ratio

K - I po 12 (2.12)
JF, 12 + JF 12

t

is uniformly distributed over the interval [0, 1]. This result, which holds for all scat-

tering events on the lattice, can be used to evolve P(x, t) directly, without reference

to the wave functions T± (x, t).

Let us examine in detail how this is done. At t = 0, P(x, t) is localized at the

origin:

P(X t = 0 = O. (2.13)

As before, we imagine that at times t > 0, disorder-induced scattering events occur

at all sites on the lattice where P(x, t) is non-zero. Now, however, we implement

these events by assigning to each lattice site a random number < r,(X, < 

The probability distribution function P(x, t) is then directly evolved according to the

recursion relation

P(X, t + 1 = c(x - 1, t)P(x - 1, t) + f tc(x + 1, t)IP(x + 1, t). (2.14)
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When the numbers ic in eq. 214) are distributed uniformly between and 1, this

set of rules for evolving P (x, t) is equivalent to the previous one for evolving (x, t).

In other words, calculating X)2 by updating P(x, t) and averaging over (x, t) is the

same as calculating X)2 by updating T± (x, t) and averaging over S(x, t). In fact, we

will see later that except in very special circumstances, eq. 214) leads to the same

scaling behavior as long as 7 = 12.

So far, then, we have sketched two algorithms that can be used to investigate the

scaling behavior of (X)2. The first method evolves the wave functions T±(x, t) through

a field of random 5-matrices. The second evolves the PDF P(x, t) directly, with much

less overhead. The exact equivalence of these two methods depends crucially on our

choice of a uniform distribution for the S-matrices that appear in eq. 25). If the

S-matrices are not chosen from a uniform distribution over the group U(2), then the

ratio r, definedby eq. 2.12) will not be distributed over the interval [0, 1] in the same

way at all lattice sites. Moreover, a non-universal distribution for r, invalidates the

logic behind eq. (2.14). We emphasize, however, that the scaling behavior of X)2

should not depend sensitively on the details of the distribution used to generate the

S-matrices in eq. 25) a broad range of distributions should belong to the same

universality class of diffusive motion. Consequently, the simplifying assumption of a

uniform distribution should not destroy the generality of the results for directed waves

in random media and/or quantum mechanics in a random time-dependent potential.

The second method thus retains the essential elements of the problem, while from a

computational point of view, it is greatly to be preferred.

In fact , the greatest virtue of the latter method is that it permits an even further
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simplification. Indeed, though faster, more efficient, and conceptually simpler, it still

suffers an obvious shortcoming: the averages over disorder are performed by sampling

only a finite number of computer-generated realizations of randomness. We now show

how to compute these averages in an exact way.

Define the new correlation function

W(r, t = E P(x, t)P(x + 2r, t). (2.15)
X

From eq. 213), we have the initial condition

Mr, t = 0 = Sro. (2.16)

The value of W(r, t) is the disorder-averaged probability that two paths, evolved

in the same realization of randomness) are separated by a distance 2r at time t.

We can compute this probability as a sum over all pairs of paths that meet this

criteria. A typical. configuration of paired paths is shown in Fig. 22). Consider now

the evolution of two such paths from time t to time t + 1. Clearly, at times when

r 0, the two paths behave as independent random walks. On the other hand, when

r 0, there is an increased probability that the paths move together as a result of

participating in the same scattering event. These observations lead to a recursion
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relation for the evolution of W(r, t):

W(r, t + 1 = 1 + Asr'O W(r, t) + Asr'l. W(r - 1, t) + Asr'-1 W(r + 1, t),
2 4 4

(2.17)

with A = 4(2, - > 0. The value of A measures the tendency of the paths to

stick together on contact. As mentioned before, a uniform distribution of S-matrices

over U(2) gives rise to a uniform distribution of . over the interval [0, 1]. In this case,

A = 13.

Starting from eq. 217), we have found W(r, t) numerically for various values of

< A < The position of the beam center was then calculated from

(X)2 2.t = t - 2EW(r, t)r (2.18)
r

(X)2The results for t < 15000, shown in Figure 22, suggest unambiguously that t

scales as t2, , with v = 14. We emphasize here the utility of the S-matrix model

for directed waves in random media. Not only does our final algorithm compute

averages over disorder in an exact way, but it requires substantially less time to do

so than simulations which perform averages by statistical sampling. We have in fact

confirmed our 2d results with these slower methods on smaller lattices (t < 2000).

We now consider the S-matrix model in higher dimensions. Most of the features of

the 2d model have simple analogues. The wave function takes its values on the links

of a lattice in d dimensions. Random N x N S-matrices are then used to simulate

scattering events at the sites of the lattice. The value of N is equal to one-half
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Figure 24: Log-log plot of the wandering of the beam center X)2 versus the propa-
gation distance t in d = 2 for various values of A (see eq. 2.17)).

the coordination number of the lattice. When the matrices S(x, t) are distributed

uniformly over the group U(N), the same considerations as before permit one to

perform averages over disorder in an exact way. In addition, one obtains the general

result for d > 2 tat (X2) scales linearly in time.

The computation of X)2 in d > 2 of course, requires significantly more computer

resources. In 3d, methods which rely on sampling a large number of realizations of

randomness begin to lose their practical value. We have computed X)2 on a d body-

centered cubic lattice, starting from the appropriate generalization of eq. 217). The

results for t < 3000, shown in Figure 22, indicate that X)2 scales logarithmically in

time.
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Figure 25: Semi-log plot of the wandering of the beam center X)2 versus the prop-
agation distance t in d = 3 for various values of A (see eq. 217)).

2.3 Analysis

In this section, we examine our numerical results in light of well-known properties

of random walks. Consider a random walker on a simple cubic lattice in D = d -

dimensions. We suppose, as usual, that the walker starts out at the origin, and that

at times t = 0) 1 2 ... I the walker has probability < p to move one step in2D

any lattice direction and probability - p to pause for a rest. As pointed out in

the introduction to this thesis, the mean time to spent by the walker at the origin

grows as:

t1/2 if D = 

to Int if D = 2 (2.19)

CD if D > 31
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with CD a dimension-dependent constant. From the numerical results of the previous

section, it is clear that the same scaling laws describe the wandering of the beam

center, X)2, in d = D + 1 dimensions, for d = 2 and d = 3 We now show that this

equivalence is not coincidental; moreover, it strongly suggests that = 3 is a critical

upper dimension for directed waves in random media.

To this end, let us return to our model for directed waves in d = 2 Applying

the recursion relation for W(rt), eq. 217), to the identity for the beam center,

eq. 2.18), gives

(X)2 _ X) 1 2t 1-2E[W(rt)-W(rt-1)]r
r

AW(O' t - 1). (2.20)

Summing both sides of this equation over t, one finds

2Wt E W(O' ). (2.21)
T=O

In the previous section, we saw that the disorder-averaged correlation function W(r, t)

describes the time evolution of two paths in the same realization of randomness.

We can also regard W(r, t) as a probability distribution function for the relative

coordinate between two interacting random walkers. In this interpretation, the value

of A in eq. 217) parametrizes the strength of a contact interaction between the

walkers. If A = , the walkers do not interact at all; if A = the walkers bind on

contact.

39



According to eq. 221), the wandering of the beam center (X)2 is proportional to

the mean number of times that the paths of these walkers intersect during time t If

A = , the number of intersections during time t obeys the scaling law in eq. 219),

since in this case , the relative coordinate between the walkers performs a simple

random walk. Our numerical results indicate that the same scaling law applies when

< A < the contact attraction does not affect the asymptotic properties of the

random walk. To elaborate this point, we expand W(r, t) as a power series in :

W(r, t = 1: A-Wn(r, t).
n=O

The zeroth order term in this series, Wo(r, t), describes a simple random walk, while

higher order terms represent corrections due to the contact attraction A. Substituting

into eq. 221) and using the D = result of eq. 219) give

(X)2 , Atl/2 1 + A
t t1/2 (2.22)

The scaling properties of higher-order corrections follow from simple dimensional

arguments: from eq. 217), it is apparent that A has units of [x], since it multiplies

• Kronecker delta, function. Noting that in the continuum limit, eq. 217) becomes

• diffusion equation, we also have that [X = [t]1/2, so that higher-order corrections

must be smaller by a relative factor of t-'/'. The series thus converges rapidly for

large t, and we conclude that v = 14 exactly in d = 2.

The above argument is readily generalized to d > 2 in which A has the units
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Of [Xid-1 = ti(d-Q/2 . The result is that the wandering of the beam center, (X)2,

in d = D I dimensions obeys the scaling laws in eq. 219), with next order

corrections smaller by relative factors of (A/td21). Moreover, the argument leads

to an upper critical dimension d = 3 above which the typical wandering of the beam

center remains finite even as the propagation distance t - oo. In summary, three

classes of behavior are thus encountered in this model. For A = , i.e. no randomness,

the incoming beam stays centered at the origin, while its width grows diffusively. For

< A < , the beam center, (X)2, also fluctuates, but with a dimension dependent

behavior as in eq.. 219). In the limit of A = , interference phenomena disappear

completely. (This limit can be obtained by replacing the beam splatters of Figure 22

with randomly placed mirrors.) In this case, the beam width is zero, and the beam

center performs a simple random walk.

To conclude, we compare the situation here to the one of directed polymers in

random media[44]. In the replica approach to the DP problem, the n-th moment of the

weight T(x, t) is obtained from the statistics of n directed paths. Disorder-averaging

again produces an attractive interaction between these paths, with the result that the

paths can be regarded as the world lines of n quantum particles interacting through

a short-range potential. The large t behavior of n-th order moments is then related

to the ground state wave function of the corresponding n-body problem in d -

dimensions. In d = 2 the Bethe ansatz can be used to find an exact solution for

particles interacting through delta function potentials: any amount of randomness

(and hence attraction) leads to the formation of a bound state. The behavior of

the bound state energy can then be used to extract an exponent of v = 23 for the
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superdiffusive wandering of the single DP in the quenched random potential.

By contrast, the replicated paths encountered in the directed wave problem (such

as the two paths considered for eq. 215), although interacting, cannot form a bound

state. This point was first emphasized by Medina et al[58], who showed that the

formation of a ound state was inconsistent with the constraints imposed by unitarity

on the lattice. This result also emerges in a natural way from our model of directed

waves. In d = 2 for instance, it is easy to check that W(r, t - - AS,,o)-' is the

eigenstate of largest eigenvalue for the evolution of the relative coordinate. Hence,

as t - oo, for randomness S-correlated in space and time, there is no bound state.

This result holds in d > 2 and is not modified by short-range correlations in the

randomness. The probability-conserving nature of eq. 217) is crucial in this regard.

Small perturbations that violate the conservation of probability lead to the formation

of a bound state. In the language of the renormalization group, this suggests that

the scaling behavior of directed waves in random media is governed by a fixed point

that is unstable with respect to changes that do not preserve a strictly unitary time

evolution. Numerical and analytic results support the idea that this fixed point

belongs to a new universality class of diffusive behavior.
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Chapter 3

The 2D ±j Ising Spin Glass

3.1 Introduction and Summary

The last fifteen years have witnessed a great deal of work on spin glasses 9, 24, 25, 63].

Nevertheless, the description of the phase transition and the nature of the ordered

state remain controversial subjects[64, 651. The starting point for most theoretical

work is the Edwards-Anderson (EA) Hamiltonian[26]

'H E jijuioj, (3.1)
ij

where the Jij are quenched random variables and the ai are Ising spins on a regular

lattice. Interactions with infinite-range[66] lead to a saddle point solution with broken

replica symmetry[9]. It is not known, however, to what extent this mean-field result

captures the behavior of short-range interactions[65, 67].

A widely studied model is the ±J spin glass[68], in which the sign of each bond is
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random but its magnitude fixed. In two dimensions, the ±J spin glass with nearest-

neighbor interactions exhibits a phase transition at zero temperature[69]. The prop-

erties of this T = transition have been studied by high-temperature expansions[70],

Monte Carlo simulations[71, 72, 73, 74, 75, 76], Pfaffian or combinatorial methods[77,

78], and numerical transfer-matrix calculations on small systems[69, 79]. The phase

transition is signalled by a diverging correlation length as T -+ 0; one also finds

algebraically decaying correlations between spins in the ground state. A possible ex-

perimental realization of the 2D ±J spin glass (Rb2Cuj_.,Co,,F4) has been studied

by Dekker et al[80].

This chapter presents a new algorithm to study the 2D ±J spin glass. Our calcu-

lations, like the earlier ones of Blackman and Poulter[77] and Inoue[78], are based on

the combinatorial expansion for 2D Ising models[231. Unlike these authors, however,

we use the combinatorial expansion to compute entire partition functions for spins

on a square lattice; in particular, our algorithm returns the density of states as an

exact integer result. An important feature of algorithms based on the combinatorial

method is that they execute in polynomial time. This distinguishes them from the

numerical transfer-matrix algorithm of Morgenstern and Binder[69], which must keep

track of 2L spin configurations in order to compute the partition function on a strip of

width L. Our algorithm should also be compared to various integer transfer-matrix

algorithms[81, 82, 83, 84] that have appeared in recent years. We obtain exact results

on square lattices much too large to be tackled by transfer-matrix techniques. As with

all exact methods, our algorithm can serve as a useful check on the performance of

specialized replica,[741 and multicanonical[75] techniques for Monte Carlo simulation.
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Figure 31: Distribution of bonds for the fully frustrated Ising model.

Knowledge of the density of states also enables us to compute new quantities, such

as the roots of the partition function in the complex plane[82].

For purposes of comparison, we have also used our algorithm to examine the fully

frustrated (FF) Ising model in two dimensions. This model has been solved exactly

using standard techniques[85]. Like the ±J spin glass, it undergoes a phase transition

at T = . The critical properties of this transition, however, are well understood[86,

87]: the spin-spin correlation length diverges exponentially as �FF - e JIT , and the

heat capacity at low temperatures behaves as CFF - T-'e -IJIT . Figure 31 shows

one possible bond profile for the fully frustrated Ising model. Note that the product

'D JijJjkJklJlilJ' around each elementary plaquette on the square lattice is equal

to 1.

The rest of this chapter is organized as follows. In Section 32, we give a gen-
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eral overview of the algorithm itself. We start by reviewing the high-temperature

expansion of the artition function and the procedure for counting closed loops on

the square lattice. We then discuss the computer implementation of this method as

an exact integer algorithm that outputs the density of states. A number of special

features make the algorithm a useful complement to well-established techniques such

as Monte Carlo simulation and the numerical transfer matrix method.

In Section 33, we present our results on the ±J spin glass. A variety of issues are

explored. First, we compare our estimates of the ground-state energy and entropy

with. those of previous studies on the ±J spin glass. The results are found to be

in good agreement. Second, we investigate the number of low-level excitations on a

square lattice with periodic boundary conditions. For the spin glass, we find that

difference in entropy between the ground state and the first excited state grows faster

than In N but slower than In N 2, where N = L 2 is the number of spins. We examine

the consequences of this for the low-temperature behavior of the heat capacity. Third,

using the complete density of states, we compute the roots of partition functions

in the complex temperature plane. We relate the finite-size scaling of the smallest

roots to the divergence of the correlation length as T - 0. The results suggest an

exponentially diverging correlation length _ e2,1J in contrast to previous works.

Finally, motivated by scaling theories[64, 65, 100, 1011 of spin glasses, we examine

the properties of efects at T = in the ±J spin glass. The probability of non-zero

defect energies on a square lattice of side L is found to scale as p(L) L-7, with

7 = 022 ± 006. ikewise, we find that the defect entropy scales as JSL- Lys, with

ys = 049 ± 002.
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In Section 34, we mention possible extensions of this work to ±J models with

varying levels of frustration and/or missing bonds. We also discuss the potential for

polynomial algorithms to investigate two-dimensional Ising models with other types

of quenched randomness[78].

The appendices contain discussion of technical points. Appendix A explains the

handling of periodic boundary conditions. Appendix describes various aspects

of implementation, including large integer arithmetic, sparse matrix multiplication,

power series manipulations, and special symmetries.

3.2 An Exact Integer Algorithm

We consider a system of Ising spins oi ±1 on an L x L square lattice. The Hamil-

tonian is given by

(3.2)

where the sum is over all pairs of nearest neighbor spins. The quenched random

bonds JJjj} are chosen from the bimodal distribution'

P 1Vij) j Vij - J) + S Vij + J) (3.3)2 2

'In practice, we also imposed the global constraint that exactly one-half of the plaquettes on
the square lattice were frustrated. For the bimodal distribution in eq. 33), the probability for a
plaquette to be frustrated is equal to one-half. In the limit of infinite size, the concentration of
frustrated plaquettes XF also tends to this value. The restriction to realizations with XF = 12
reduces the statistical error that arises in the computation of quenched averages over the bond
disorder[69]. We cannot compute these averages exactly, but must resort to sampling a finite number
of realizations of randomness. In practice, one generates the ±J bonds independently from the
distribution in eq. 33), then discards configurations that do not meet this criterion.
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with J > . On a lattice with periodic boundary conditions, there are exactly N

bonds, with N = L' the total number of spins.

The partition function of the system is given by

Z = E C)"', (3.4)
f-il

with 11T. A high temperature expansion for the partition function in powers of

tanh(OJ) is facilitated by the identity[88]

e'3j'j'i'j = cosh(OJ)[1 + sijojoj tanh(,3J)], (3.5)

where si. Jjj1J is equal to the sign of Jij. Eq. 35) makes use of the fact that the

product oioj can only assume the values ±1. Substituting into the expression for the

partition function yields

Z = cosh 2N(pj) [I + sijujaj tanh(OJ)I. (3.6)

We have thus transformed the problem of evaluating the partition function from a

sum over Boltzmann weights e-13H to a sum over polynomials in tanh(3J), each of

order 2N.

Expanding the product in eq. 36) gives rise to 2 N terms of varying order in

tanh(,3J). Note that a term of f-th order in tanh(,3J) has a coefficient of the form

(Silh 0I'7jI) ... (sjjo-joj,). There exists a one-to-one mapping in which each f-th

order term in tanh(,3J) is associated with the set of bonds 'jI) ji2j2 ... ilit
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that determine (along with the spin variables) the sign of its coefficient. This map-

ping provides a diagrammatic representation of the terms in the high temperature

expansion.

The sum over spin configurations can now be performed term-by-term by repeated

application of the rule

2 if n even
n

or (3.7)
0 if n odd

It is straightforward to show that the only terms which survive this procedure are

those whose diagrams on the square lattice can be represented as the union of non-

overlapping closed loops. Some examples are shown in Figure 32. Each of these

diagrams contributes an amount ±2 N tanhl(,3J) to the partition function. The sign is

positive (negative) if the diagram contains an even (odd) number of antiferromagnetic

bonds; is the total number of bonds in the diagram. The final result for the partition

function thus takes the form

2N
z = 2 N CSh 2N (0j) E Al tanhl(,3J), (3.8)

t=o

where the coefficients At are pure integerS2.

Motivated by the diagrammatic representation, Kac and Ward[23] transformed

the problem of summing the high temperature series into one of evaluating a local

random walk. In particular, they showed that a N x 4N hopping matrix could be

2Note that for even-valued L closed loops on the square lattice necessaril traverse an even
number of bonds; s a result, odd powers of tanh(,3J) do not appear in the high-temperature
expansion. Because this simplifies the algebra considerably, we only consider lattices with even-
valued L.
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Figure 32: Closed graphs of length (a) = 4 (b) = 10, and (cd) = 16 on the
square lattice with periodic boundary conditions. Each diagram represents a term
tanW(V) in the high-temperature expansion of the partition function. Graphs that
wrap around the lattice such as (d) require special handling in performing the sum
over diagrams.

used to compute the coefficients of the high-temperature expansion on the square

lattice. Though they focused on the problem of the pure 2D Ising model with

no randomness, the method they proposed is quite general. It has been used to

study periodically frustrated models[85, 89, 90], and more recently, the 2D sing spin

glass[77, 78]. In wat follows, we review only the most basic elements of this method.

The reader who wshes a more complete understanding should consult any of several

earlier treatments[88, 91, 92].

We continue to focus on an L x L square lattice with periodic boundary conditions

and quenched random bonds. The reduced bond variables si = sji = Jjj1J are equal

to +1 for ferromagnetic bonds and -1 for antiferromagnetic bonds. We use the
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notation iu to refer to the directed bond that points in the direction and terminates

at the ith spin with coordinates (xi, y). Here, _< xi, y L, and E

On a square lattice with N = L' sites, there are 4N directed bonds.

The 4N x 4N' Kac-Ward matrix evolves a random walker from one bond to the

next, keeping track of any changes in her local orientation. In this way, the matrix

generates an amplitude for each random walk that can be related to the weight of the

corresponding diagram in the high-temperature series. To avoid overcounting, the

amplitude of each random walk must acquire a factor of -1 at each self-intersection.

On the square lattice, this is done by employing Whitney's theorem[93] and assigning

a factor e i-ir/4 (.-ir/4 )to each clockwise (counterclockwise) turn of the walk[88, 91].

The matrix elements U,,i, are shown in Table 3.1. The final result of Kac and Ward,

valid in the thermodynamic limit of N oo, is that

InZ 2(,3j)] 1 00 1
__ = In[2 cosh tr(U') tanh'(,3J), (3.9)
N 2Y E 71=0

where tr(U') denotes the trace of the Ah power of the hopping matrix. These traces

count the closed loops on the square lattice in such a way as to reproduce the high

temperature expansion of the partition function. Eq. 3.9) can be written in the more

compact form

Z = 2 N cosh 2N(#j) Vdet[l - Utanh(#J)], (3.10)

using standard matrix identities. The problem is thus reduced to evaluating the

determinant of a 4N x 4N matrix. For models with 2D translational symmetry (e.g.
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sit ujo"ip

SXS xsyi+lyj
sxi+lxjsyiyj
SXi'Xj Syi - 1,yi

SXi-1'XiSYi'Yi
S ei-ir/4

SX Yi 1Yj ,

SX i - 1'Y, e iir/4

SX SY,,Y, e i7r/4
. 4

SXi'XjSyj+jyje"

SXi-1',,SY,'Ye-i-7r/4

&i -1'Ye`7r/4

Sxi+,,xjSyi ye-"7r 41

SXi +1'Y, -i7r/4

0

0

0

0

Table 3.1: Elements, Uj,,i,, of the 4N x 4N Kac-Ward hopping matrix for the 2D ±J
spin glass. The reduced bond variables s are equal to +1 for ferromagnetic bonds
and -1 for antiferromagnetic bonds.

the pure Ising model with no randomness or the fully frustrated model), one can

use a plane-wave basis to diagonalize the matrix and obtain analytic results in the

thermodynamic limit. Of course, the plane-wave basis does not diagonalize the matrix

for a system with quenched random bonds, such as the ±J spin glass.

We can, however, use the Kac-Ward method to compute the partition function for

a ±J spin glass of finite size[77]. In this case, Eq. 310) is no longer valid, but must

be slightly modified to incorporate the choice of periodic boundary conditions. As

it stands, Eq. 3.10) does not properly weight diagrams which cross the boundary of

the lattice. The correct result, based on the combinatorics of closed loops on periodic
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lattices[94], is Z = -Z, + Z2 + Z3 + Z)/2 with

ZA = 2 N cosh 2N(Oj) Vdet[l - tanh(OJ)]. (3.11)

Here, are four distinct 4N x 4N hopping matrices related to one another by

boundary transformations (see Appendix A). The linear combination (- Z, + Z2 + Z3 +

Z4)/2 ensures that all diagrams, including those which loop around the entire lattice,

are weighted correctly in the final expression for the partition function. Further

details on handling periodic boundary conditions are discussed in Appendix A.

We have implemented this algorithm on the computer as follows. Given a set of

bonds, JJjjj, we first construct the 4N x 4N matrices and compute the traces

tr[(UA)t] for < V. This step of the algorithm is the most cornputationally inten-

sive. The coefficients of the series expansions for In ZA are related to the traces by

eq. 3.9). Next, e compute the high temperature series for Z. This is done by ex-

ponentiating the series for In ZA and taking the linear combination that incorporates

periodic boundary conditions. The high temperature expansion for Z is a polynomial

in tanh(,3J) with integer coefficients; the last term, of order 2N, is derived from the

graph that traverses every bond on the square lattice. These 2N coefficients have an

end-to-end symmetry (see Appendix B) that enables one to compute them from the

first N powers of the hopping matrix. Finally, we expand powers of cosh(PJ) and

tanh(flJ) and rewrite Z as a polynomial in e-fli; the end result Z = E g(E)e- flE

yields the density of states. For an Ising model with ±J bonds, we can perform

all these operations using only integer arithmetic. Each of these steps is discussed
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further in Appendix B.

The algorithm has several desirable features. First, it returns the partition func-

tion Z as an exact integer result. In this way, it not only avoids the statistical

uncertainties inherent in Monte Carlo simulation; it also avoids the floating point

errors that creep into numerically "exact" calculations of Z in large systems at low

temperatures. The algorithm thus provides us with an efficient and reliable way to

investigate energies and entropies at low temperatures. This is particularly important

in a system that xhibits a phase transition at T = , such as the ±J spin glass. We

can also calculate other quantities, such as the roots of the partition function in the

complex plane, or the number of low-level excitations, that are otherwise inaccessible.

Unfortunately, the necessity of handling large integers (of order 2N) complicates what

would otherwise e a rather straightforward algorithm to implement. We gratefully

acknowledge the existence of two software tools that proved helpful in this regard, the

BigNum package of C routines and the commercial program MATHEMATICA[95].

A second advantage of the algorithm is that it executes in polynomial time.

This stands in contrast to the numerical transfer matrix method of Morgenstern and

Binder[69], which has time and memory requirements that grow exponentially with

system size. Computing the powers of the hopping matrix requires (N 3) arithmetic

operations (see Appendix B), while in general, the power series manipulations take

much less time. he computation time of our method scales slightly worse than N 3

because the arithmetic operations involve integers of order 2 N . Roughly speaking,

the processing time for storing and manipulating these integers grows linearly in N,

that is, with the number of digits necessary to represent them in memory. One might
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Figure 33: Log-log plot of computation time versus number of spins on the square
lattice. The fit shows - N'.

therefore expect the computation time to scale as - N 3+8 with < < Some

sample times for lattices of various size are shown in Figure 33; we find an effective

value of -- 017. We obtained most of our results on dedicated DEC 3100 work-

stations; the largest lattice that we examined had N = 36 x 36 spins. Perhaps most

intriguing is that the computation of the traces can be trivially decomposed into O(N)

independent computations, so that a faster, parallel implemention of the algorithm

(on a supercomputer or spread across several workstations) should be possible.

3.3 Results

We examined the ±J spin glass on lattices of size L 4 to L = 36. The number

of realizations of randomness studied for each lattice size is shown in Table 32.
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We performed quenched averages by assigning an equal probability to each random

sample:
S

_E Os. (3.12)
S 3=1

Our results on the ±J spin glass show that our algorithm is a useful complement

to well-established techniques such as the numerical transfer-matrix method[69] and

Monte Carlo simulation[74, 75]. We also present some results for the 2D fully frus-

trated Ising model[85, 86]. The comparison of these two systems, both of which

undergo phase transitions at T = , is often revealing.

The typical output of our algorithm is shown in Table 33, which gives the density

of states for a 10 x 10 system with random ±J bonds. Knowledge of the density of

states enables us to perform calculations in either the microcanonical or canonical

ensemble. In he limit of infinite size, of course, the two ensembles should yield

identical results. Figure 34 shows the entropy versus energy curves for the system

using both methods. The difference between the two calculations provides a sense

of the magnitude of finite-size effects at L = 0. The heat capacity of the system,

calculated in te canonical ensemble, is shown in Figure 35.

lattice size
4 6 

107 12 14

16 18

201 22 24
32 36

samples-
8000
2000
800
80

4

Table 32: Number of realizations of randomness studied for each lattice size.
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E
-142

-138

-134
-130

-126

-122

-118

-114

-110

-106

-102

-98
-94
-90

-86
-82

-78

-74

-70

-66

-62
-58
-54
-50
-46
-42
-38
-34
-30
-26
-22

-18

-14

-10

-6

-2

g(E = g(-E)
1714

393704
26810830

1081037598
30884856124

681219831812
12208593158206

183664270660180
2370651664443342

26665546247842738
264439620156521442

2332975127519659794
18440896548918449182

131332616729581167390
846428717389978116910

4953662247974988779202
26396299869918456764966
128336521283648955046794
570254120321897569640274
2318884696771718964963738
8639021129076421274926654

29514583986932577806279238
92546253453945502148308030

266538596843504319655793666
705577194982709216381878662
1717894672802780124241974506
3849313192834817644425385210
7942459215428479616883558298

15098868015221922648819834550
26458472739977677505478377606
42757102380960530199403590582
63744656075332650586700499562
87703140136204818329708230226
111388263537730445390041718418
130618789608427927645846927382
141440475064667109660456174158

Table 33: Energies, E, and numbers of states, g(E), for a ±J spin glass on a 0 x 10
lattice with periodic boundary conditions. The calculation took 110 seconds on an
INDIGO 4000 workstation with no parallelization.
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3.3.1 Ground States and Low-Level Excitations

We used the algorithm first to study the thermodynamic properties of the ground

state. We fit the ata for the ground-state energy and entropy to the finite-size form

f = & + aIL'; a linear term in 11L is not expected due to the periodic boundary

conditions. The ground state energy per spin o is plotted versus 11L' in Figure 36.

Extrapolating to infinite lattice size, we estimate that ToIJ = 1.404 ± 0002. Our

value compares favorably with previous results from combinatorial techniques[77, 78],

numerical transfer-matrix calculations[79], and Monte Carlo simulations[74, 75, 76].

The most accurate of these[77] reports EoIJ = 1.4020 ± 00004. Likewise, we plot

the ground state ntropy per spin in Figure 37. Here, we find �T = 0075 ± 0002,

in fair agreement with the best previous estimate[771, �To = 00704 ± 00002. The

discrepancy may be due to a number of factors, including finite-size effects, boundary

conditions, and insufficient quench-averaging.

We also used the algorithm to study the number of low-level excitations in the
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±J spin glass. On a lattice with periodic BCs, the lowest excited state has an energy

V above the ground state. The quantity e = (Eo + 4J)lg(Eo) measures the

degeneracy ratio of excited and ground states. Figure 38 shows a semilog plot of

ASSG versus the number of spins N. The fact that ASSG grows faster than In N

(dashed line) suggests that the low-lying excitations of the ±J spin glass involve spin

flips on large length scales.

The abundance of low-lying excitations affects the low-temperature behavior of

the heat capacity. In a finite system with energy gap V, the heat capacity vanishes

as C _2e-'Oj. As pointed out by Wang and Swendsen[74], this behavior can break

down in the thermodynamic limit. The 1D Ising model with periodic BCs shows

how this can happen: the energy gap is V, but the heat capacity of an infinite

system vanishes as ClD _ 02e-20J. The anomalous exponent reflects the fact that

the number of lowest excited states grows as N2. From MC and TM studies, Wang

and Swendsen[74] conclude that ?7SG _'32e -2,3J for the 2D ±J spin glass as well. For
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purposes of comparison, we have included data for the D Ising model in Figure 38.

The plots show that ASSG grows faster than In N but slower than In N.

The disagreement in slope between AS1D and ASSG leads us to suggest a different

form for ZTSG- As motivation, we appeal to another exactly soluble model with a phase

transition at T = the fully frustrated (FF) Ising model on a square lattice[85].

On a periodic lattice, the lowest excited states of the FF model have energy 

above the ground state. Low-lying excitations above the ground state in the FF

model also involve spin flips on large length scales: Figure 39 shows that the ratio

g(Eo + 4J)lg(Eo) grows as N In N. The large number of low-lying excitations causes

the heat capacity I-lo vanish as CFF _ 03e -4flJ . Note the extra power of temperature.
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Figure 39: Ratio g(Eo + 4J)lg(Eo) versus N In N for the fully frustrated model.

Comparing ASFF and ASSG in Figure 38, we suspect a similar behavior may describe

the ±J spin glass, so that CSG _ p2+Pe -4PJ with p > .

To explore this possibility, we calculated quench-averaged heat capacities in the

canonical ensemble, using MATHEMATICA[95] to do the high-precision floating

point arithmetic. A semilog plot of the reduced heat capacity (0j)2 rSG versus tem-

perature is shown in Figure 3. 10 for lattices of size L = 12, 16, and 20. In this plot, the

slope of the data measures the value a in the exponent ea,6j of the low-temperature

heat capacity. Wang and Swendsen reported that a -+ 2 at low-temperatures, based

on Monte Carlo data from 417 samples of L = 64 and L = 128 lattices. Unlike Wang

and Swendsen, we do not find that this slope bends over to a value of 2 at low tem-

peratures. Rather, our data for the spin glass, like that for the fully frustrated model,

suggests the exponential decay C - e -40J. The discrepancies between the two sets

of data could be due a number of factors: finite-size effects, unreliable Monte Carlo
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Figure 310: Semilog plot of the reduced heat capacity C(TIJ)' versus JIT for the FF
model and the spin glass (quench-averaged). The corner plot shows two calculations
for the L = 24 spin glass; the lower curve was computed after deleting just one sample
from the quench-average.

estimates, and/or insufficient quench-averaging. The last point deserves emphasis.

At low temperatures, the heat capacity is determined by the ratio gE0 + 4J)lg(Eo),

a quantity which exhibits very large fluctuations between different realizations of

randomness. To illustrate this, we have shown in the upper corner of Figure 310

two calculations of ?7SG for L = 247 one averaged over seventy-nine realizations of

randomness, the other over eighty. Note how one realization of randomness domi-

nates the sample average of the heat capacity at low temperatures. One expects the

sample-to-sample fluctuations to increase in magnitude with system size. On larger

lattices, the effects of small sample sizes could be quite severe.

Another probe of the low-temperature heat capacity is the number of excitations

on a lattice with free boundary conditions. On such a lattice, the spin glass has

excitations of energy 2J above the ground state. Wang and Swendsen used the nu-
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merical transfer-matrix method[69] to calculate the ratio N-'g(Eo + 2J)lg(Eo on

square lattices with free boundary conditions. One expects a constant value for

this ratio if CSG - 'e -2,3J , a slow decay with system size if CSG , 02+pe-4,3J.

Wang and Swendsen observed that this ratio varied weakly with system size and con-

cluded that the low-temperature heat capacity in the thermodynamic limit behaves

2 2,3Jas CSG " C . Figure 311 shows a plot of N-'g(Eo + 2J)lg(Eo) versus lattice

size for the 2d ± J spin glass with free boundary conditions. Our sample average was

performed over 200 realizations of randomness for lattices of size L = 4 to 14. Also

included on the same plot are Wang and Swendsen's results and the corresponding

data for the fully frustrated model. In the FF model, the ratio of 2J excitations to

ground states seems to decay as L` In L. Note that the ratio for the spin glass ex-

hibits an irregular size dependence; this may be due to insufficient quench-averaging

and/or finite-size effects. Given the smallness of the lattice sizes, we do not feel that

either set of data distinguishes between a constant value or a slow asymptotic decay,

such as L-'(In L)P.

The situation for the spin glass heat capacity CSG can therefore be summarized

as follows: The large number of V excitations leads to an anomalous behavior

at low temperatures. A similar effect is observed in the 1D Ising model, where

CiD _ 02e-2,3J, and the 2D FF model, where CFF - 'e -4flJ . For the spin glass, one

can either calculate the heat capacity directly, or look at the number of excitations

on lattices with oen boundary conditions. The available evidence does not clearly

distinguish between e-2,3J and e40J behavior, but in our view, the analogy to the

fully frustrated case is more compelling. It suggests that at low temperatures, the
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Figure 311: Normalized ratio of 2J excitations to ground states versus lattice size
for the FF model and spin glass with open boundary conditions.

heat capacity for the 2D ±J spin glass behaves as 2+p e-40J with p > .

3.3.2 Roots of Z 'in the Complex Plane

One way to investigate phase transitions is to examine the roots of the partition

function, Z, in the complex plane. This was first done by Fisher[96] in a study of

the 2D Ising model with uniform J bonds. Fisher calculated the distribution of

roots of the partition function in the complex z = e -2,3J plane. In the limit of infinite

lattice size, he showed that the roots condense onto two circles centered at z = ±1

and related the singular behavior in the free energy to the distribution of roots in the

vicinity of the positive real axis. Since a system of finite size does not exhibit non-

analytic behavior, it is clear that the roots of the partition function can only condense

onto the positive real axis in the thermodynamic limit. An interesting property of

the 2D Ising model is that the roots of the component partition functions Z (see
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eq. 3.11)) lie on Fisher's loci even if the lattice size is finite[97, 98]. This property is

illustrated in Figure 312 which shows the roots of the partition functions ZA in the

complex plane for the 2D Ising model with uniform bonds. Note that roots of ZA can

lie on the positive real axis, even for lattices of finite size; only in the thermodynamic

limit, however, will roots of the actual partition function cross this axis, giving rise

to singular behavior in the free energy.

We examined the roots of the component partition functions Z\ for the ±J spin

glass on lattices of size L = 4 to L = 0. Figure 313 shows some of these roots

in the complex z = e20J plane. (The roots on the positive temperature axis are

artifacts of the component partition functions ZA.) Note that in considering the

ensemble of all realizations, the roots are described by a probability distribution

in the complex z plane. Figure 313, constructed from a very limited number of

realizations, is only intended to convey the most basic features of this probability

distribution. For urposes of comparison, we also examined the location of roots in

the complex plane for the fully frustrated Ising model. These results are shown in

Figure 314. In both cases, the roots condense around the origin, indicating a phase

transition at zero emperature.

We also examined the roots of the true partition functions for the spin glass; recall

that the true partition functions are related to the component partition functions by

Z = -Z, + Z2 + Z3 + Z)/2. The zeros of partition functions close to a critical

point are subject to finite-size scaling 106]. At a finite-temperature phase transition,

such as occurs in the D > 2 Ising model, the complex zero, T(L), closest to the

positive real axis obeys JT(L - TJ - L-Y1; likewise, the correlation length diverges
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plane for the pre Ising model.

as - T - T-,"', with v = 1/yt. (For a study of zeros in the 3D Ising model, see

[107].) On the other hand, at a T = phase transition, such as occurs in the D

Ising model, one finds jz(L)l L-Y- with z1Y.' , where z(L) is the smallest root

in the complex z = e20J plane. For example, the partition function for a ID Ising

model with periodic boundary conditions is given by

Z = Eexpf0JEojoj+jj
01 i

= 2 L cosh L('3j)[I + tanh L(,3j)].

(3.13)

(3.14)

The smallest root of Z is tanh(,3J = e±i1r/L , or z(L = ±i tan(7r/2L). As L -+ oo,

the magnitude of the root scales as Jz(L) - L-1, consistent with the fact that the
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plane for four different realizations (L = 4 6 , and 1 0) of the ± J spin glass

2,IJ -sizecorrelation length in the 1D Ising model diverges as 6D - e Similar finite

scaling is also found in the 2D fully frustated Ising model. Figure 315 shows a log-log

plot of jz(L)l versus lattice size for the fully frustrated model; note that the data in

this figure correspond to the roots of the true partition functions Z, not those of

ZA. The magnitude of the smallest root in the complex plane scales as jz(L I - L-',

2,3Jconsistent with the exact result �FF - e

In the 2D ±J sin glass, we observed that, for most realizations of randomness, the

smallest root z(L) fell on the imaginary axis. One might expect that the probability

distribution for the magnitude of this root would assume a scale-invariant form as
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L -+ o We were unable to verify this hypothesis, due to insufficient data on large

2 = 4,OJlattices. Instead, we examined the statistics of u(L), where u = z e- . On a

square lattice with periodic boundary conditions, the partition function for a 2D ±J

4,IJspin glass is polynomial in e- . We therefore looked at the scaling of roots in the

complex u = e 4,3i plane. Figure 316 shows a log-log plot of Ju(L I versus lattice size

L, where the average was for computational reasons 3 restricted to realizations with

3For small systems (L < 12), we used the commercial program MATHEMATICA[95] to compute
the roots of Z(u = 0. For larger systems, this was not feasible. Instead, we used an indirect
method to extract the magnitude of the smallest root. Our method works when the desired root
has no imaginary component in the complex u = exp(-4,3J) plane. This was found to be the
case for the majority of partition functions. First, we write the partition function as a polynomial
in u = exp(-4,8J) with integer coefficients: Z & g,,u'. Next, using integer operations, we
invert Z and obtain a power series for 11Z = h,,,u'. The radius of convergence for this
series is determined by the smallest root of Z in the complex u = exp(-4,3J) plane. The ratio

Ih,,,Ih,,,+ I is expected to yield the magnitude of this root. If the root is purely real, the

69



I . I1

jz(L)l

0.1

-0 '_
11%

06.

- 0.

la .0 -

10

L

Figure 315: Magnitude of the smallest root in the complex z = e-2,3J plane versus
lattice size for the 2D fully frustrated Ising model. The dashed line shows Jz(L)j
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lm[u(L) = (i.e. with a negative u(L)). As in Figure 315, the data in this figure

correspond to the roots of Z not Z,\. The fit shows y = 22 ± 01; this suggests to

us that the correlation length in the ±J spin glass diverges as - e 20J . Additional

powers of temperature and/or finite-size effects might explain the deviation from

yu = 2 in Figure 316. Note that this behavior for the correlation length is consistent

with hyperscaling, and our claim that, up to powers of temperature, the heat capacity

4,3Jdiverges as C - e'- . Our result disagrees with previous studies[74, 79, 101] that

report - T-", with v -_ 26-2.8. There may, however, be ambiguities in identifying

the correlation length solely on the basis of zeros of In Z. From comparison to uniform

spin models, it is tempting to conclude a critical dimension of d = 2 from the

ratio converges quite rapidly, making this method an effective one.
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exponential divergence of the correlation length �. There is, however, no compelling

theoretical basis for such a conclusion. Indeed, the most recent numerical simulations

of the ±J model i three dimensions[1081 do not find evidence for a finite-temperature

4phase transition

3.3.3 Defects

A great deal of information on spin glasses has been obtained by examining the

defect energies of finite systems at T = . The defect energy is equal to the difference

in free energies of systems with periodic and antiperiodic boundary conditions. At

T = , this reduces to the difference in energy of the ground state. The scaling

4See 82], however, for an opposite view based on the behavior of the roots.
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theory of defect energies has been developed by Bray and Moore[64, 100], McMillan

[101], and Fisher and Huse[65]. One makes the basic ansatz that the defect energy

on a L x L lattice measures the effective coupling between blocks of spins of size L.

The variation of the defect energy with the system size then describes the resealing

of the block coupling, or equivalently the temperature, under a transformation of

the renormalization group. In a spin glass, the change in boundary conditions is

imposed by reversing the signs of L bonds along a single vertical or horizontal strip

of the lattice. Bray and Moore[100] used this scaling theory to investigate the D

Gaussian spin glass on lattices with L = 2 to L = 12. They found that the probability

distribution for te defect energies scaled as

PL(SE = L-yEfE SE (3.15)
LYE

with fE(x a universal function. For the 2D Gaussian spin glass, the exponent YE

is negative, indicating a zero-temperature phase transition with critical exponent

V = 111YE1. Here, v is the exponent that describes the divergence of the correlation

length - T- as T 4 .

The same method does not enable one to extract the exponent v for the T = 

phase transition of the ±J spin glass[64]. In this case, the probability distribution

for the defect energy does not assume the scaling form 3.15) but instead acquires a

delta function peak at SE = . This behavior is a peculiar consequence of the discrete

nature of the bond randomness, which gives rise to exact energy cancellations and a

finite entropy per spin at T = . The defect energy is also equal to zero in the fully
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frustrated model.

A scaling argument by Bray and Moore[100], however, relates the probability

distribution for the defect energy to the decay of correlations at T = . As before,

we imagine that n an L x L lattice, the defect energy measures the effective block

coupling on length scale L. Let p(L - L-7 be the fraction of L x L blocks for

which J� 0. Assuming that, on length scale L,

(0'00'L) ±1 with probability p(L) (3.16)

0 with probability I - p(L)

it follows that 77 is the critical exponent that characterizes the power law decay

of correlations UI)O'L)2 at T = . Plotting p(L) versus L in Figure 317, we find

0.22 006 in agreement with several previous results[74, 100, 101].

We also looked at the defect entropy, i.e. the difference in the zero-temperature

entropies of systems with periodic and anti-periodic boundary conditions. The mean

square defect entropy for the ±J spin glass is plotted versus lattice size in Figure 318.

The data is fitted to the scaling law VrSS _ Lys with s = 049 002. This is

curiously close to the result SS - L 2 , expected if entropy changes due to reversing

the different bonds along the boundary are statistically independent. Figure 319

shows the data collapse of the probability distribution to the scaling form

PWS = I SS
(3.17)

N/T VE

for lattices of size L = 8 12, and 16. For purposes of comparison, we also examined

73



I

p(L)

r 1

I I I I I

-It. - 4;- - 0-
- Or- 0- 0

�7 ? 
0 06 

10

L

Figure 317: Fraction, p(L), of effective block couplings with 5 versus lattice
size. The dashed line shows p(L - L-'-".

the defect entropy of the fully frustrated Ising model. In this case, there is no need

to perform a quenched average. Figure 320 shows a plot of the defect entropy versus

lattice size. The defect entropy in the fully frustrated Ising model approaches a

constant value with 11L' corrections. This behavior is markedly different from the

spin glass. We do not know any obvious relation between the finite-size scaling of the

defect entropy and other quantities at T = .

3.4 Extensions

To conclude, we mention a number of possible extensions of this work. An obvious one

is treating Ising models with ±J and/or missing bonds. A large number of random

bond and percolation problems fall into this category. Several authors[69, 77, 102]
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have studied the problem that arises when the concentration of frustrated plaquettes

XF is allowed to vary from to 1. The pure Ising model is the case XF = 0; the ±J

spin glass, XF = 1/2; and the fully frustrated model, XF = L It is well-known that

the ferromagnetism of the ground state disappears for x ;Zt 033. Nevertheless, there

remains some question on the nature of the ground state in the vicinity of x 102].F

Besides the transition at xc , there may also be an interesting crossover at T = 

between the spin glass at XF = 12 and the fully frustrated model at XF = L

If there is a central lesson of our work, however, it is that the Kac-Ward determi-

nant of Eq. 3.10) enables one to compute the partition function of any Ising model in

polynomial time[103]. As pointed out by Blackman and Poulter[77], the basic method

applies to any 2D Ising model with nearest-neighbor interactions, not just to models

with ±J bonds. Unfortunately, it is not possible to compute the partition function

this way in the presence of a magnetic field.) In the case of ±J bonds, we can perform

an integer calculation that yields the exact density of states-a nice bonus. Never-
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theless, one should not overlook the potential of computing the determinant of the

Kac-Ward matrix for continuously distributed random bonds. In this case, the ma-

trix elements must absorb not only the signs of the bonds but the factors tanh(ojij)

as a whole. Given the hopping matrix, however, we can use standard floating-point

techniques to evaluate its determinant, and hence the partition function, at any given

temperature. Thermodynamic quantities such as the energy and entropy can then be

computed by approximating derivatives by numerical differences over small temper-

ature ranges. eterminant formulas also exist for spin-spin correlations in 21) Ising

models 22, 104, 105], making it possible to study magnetic susceptibilities. Inoue[78]

has performed determinant-based floating-point calculations on 2D Ising models of up

to size L = 100 a remarkable improvement over what is possible with transfer-matrix

techniques. Polynomial-time algorithms based on these determinants should there-

fore complement well-established methods in the further study of 2D Ising models

with quenched randomness.

Acknowledgements

The work in this chapter represents a collaboration with Mehran Kardar. We thank

David Huse, Daniel Fisher, Georgio Parisi, Michael Fisher, Michael Moore, Naoki

Kawashima, and Makoto Inoue for useful discussions. This work uses the commercial

program MATHEMATICA and the BigNum package developed jointly by INRIA and

Digital PRL.

77



The algorithm takes as input a set of bonds f ij I on an L x L square lattice. Given

these bonds, the first step of the algorithm is to construct the 4L 2 x 4L 2 matrices

UA that appear in eq. 3 1), with A E f 1 2 3 41. To this end, we introduce two

transformations that flip the signs of bonds along a single vertical or horizontal strip

on the square lattice. Figure 321 illustrates the action of these transformations on the

jj(A)set of bonds for a pure Ising ferromagnet, leading to new bond configurations i I.
By definition, Jj�9 = j}. The bonds jJ01 and f J01 are obtained by flipping

.7 13 $3

a single vertical or horizontal strip of bonds; f JO)J, by a combination of such flips.

The hopping matrices UA are given by the elements in Table 31, substituting f JNJ

for f jj . Recall that we have introduced four separate hopping matrices in order to

weight correctly tose diagrams that loop around the lattice in the horizontal and/or

vertical direction. An example of one of these problematic diagrams is shown in

Figure 32. While no single UA matrix assigns the correct weights to these boundary-

crossing diagrams, one can verify that the linear combination of determinants in

Eq. (3.11) does indeed achieve this goal[94].

Note that the bond-changing transformations in Figure 321 do not change the

number of frustrated plaquettes on the square lattice. In this sense, we can say that
J01 f J01, and f J�91 also represent valid realizations of randomness for the ±J

t.7 I t3 t.7

spin glass on a finite-size lattice. The expressions for the partition functions of these

systems are obtained by simply permuting the hopping matrices UA. Our algorithm

thus computes partition functions for the ±J spin glass in groups of four. The fact
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that these four partition functions are related by boundary transformations is useful

for studying various properties of the ground state. In particular, the differences in

the ground state energies and entropies of these four realizations are precisely the

defect energies and entropies defined in Section 33.3.

Appendix B. Implementation

This appendix discusses various aspects of the algorithm's implementation, includ-

ing the handling of large integer arithmetic, sparse matrix multiplication, power series

manipulations, and special symmetries. The main loop of the algorithm computes

the traces of the matrices (U,\)'. An examination of the elements in Table 31 re-

veals an important property of these hopping matrices, namely that one can perform

their matrix multiplication using only integer arithmetic. This is done by keeping

track of the complex phases e'r/' internally and handling their multiplication with

lookup tables. Of course, one must also be equipped to deal with the very large

integers that appear in the computation of powers of the hopping matrix: the matrix

elements of (UA)' count paths of length on the square lattice, and the number of

these paths grows exponentially in f. We defined special data types to store these

integers and perform arithmetic on them; other methods for handling large integers

have also appeared in recent computations of series expansions[83]. Storage and time

requirements were reduced by multiplying matrices one row at a time and by taking
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advantage of the fact that the partial traces satisfy

E[(UA)'1ifif
i

E[(UA)'Ii+-,i+-
S

= EKU'Wli�'i�'
i

=
i

In addition, we exploited the sparseness of the hopping matrices to multiply them

in (N') rather than (N') steps. Computing the required powers of the hopping

matrices UA thus takes a total of (N') steps. Note that the computation of these

traces can in principle be done by 8N parallel processors, one for each bond on the Ath

square lattice; obviously, this would yield a substantial improvement in performance.

Equipped with the traces of the matrices (UA)t, we proceed to compute the com-

ponent partition functions Z\, as defined in Eq. 311), using a sequence of power

series manipulations. The component partition functions obey

00 1 t t
In Z = N In 2 N ln[cosh(OJ) - E - tanh OJ)tr[(U,\) ].

t= f
(3.18)

We obtain the coefficients of the high temperature series for Z\

right hand side of Eq. 3.18) and grouping terms in powers of

the component partition functions as Z = -Z + Z2 + Z3 + Z4

for the partition. function in the form of Eq. 3.8),

by exponentiating the

tanh(OJ). Combining

leads to an expression

2N
Z = 2 N cosh 2N(,3j) E At tanht(3J).

t=O
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cients of the high-temperature expansion.

On a square lattice with periodic boundary conditions, the high temperature series for

Z is a polynomial of order 2N in tanh(,3J). With ±J bonds, however, the coefficient

of tanht(,3J) is equal, up to a possible sign, to that of tanh (2N-t)('3J) due to a

complementarity in the diagrammatic expansion (see Figure 322). The coefficients

have opposite sign if the product of all bonds on the square lattice, HJjj, is negative;

otherwise, they are equal. Due to this symmetry, only the traces of (U,\)t with < N

are necessary to compute the complete high temperature series for Z.

The final task is to extract the density of states from the integer coefficients At

in eq. 38). This is done by simply expanding cosh(OJ) and tanh(,3J) in terms of

e-"J. The amount- of algebra can be reduced by first cancelling powers of cosh 2(Pj)

and [I - tanh'(flJ)] that factorize the high temperatures series. The final result,

Z = Eg(E)e- j3E (3.19)
E

yields the density of states g(E) as a function of energy.
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Chapter 4

Learning 'in Boltzmann Trees

4.1 Introduction and Summary

Statistical mechanics is a powerful tool for analyzing systems with many degrees of

freedom. In the last decade, a number of workers have used statistical mechanics to

study problems outside the traditional domain of physics. One area of intense research

has been the field of parallel distributed processing[27], or neural computation[8] A

fundamental goal in this field is to understand the computational abilities of net-

works of simple processing units. Of particular interest to physicists are networks

whose units obey stochastic update rules, similar to Ising spins in contact with a heat

bath. One can se statistical mechanics to analyze the equilibrium behavior of these

networks and to design learning algorithms that optimize their performance.

The behavior of a network depends on the values of its connections, or weights.

Programming the network to perform a certain task is done by assigning appro-

priate values to these weights. For some tasks, such as the storage of associative
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memories[12], it is possible to choose the correct weights a priori; for most tasks,

however, this is not the case. Instead, one must conduct a systematic search through

weight space to find an appropriate set of values. During this training phase, the

weights are iteratively adjusted in response to evaluations of the network's perfor-

mance. Training is stopped when the network has learned to reproduce the desired

behavior.

To illustrate this, let us return to the simple binary perceptron, introduced in

Chapter 1. This network has input units JSi}, weights i}, offset h, and output S.

The input-output mapping is S = sgn (E JiS + h), as shown in Figure 1. 1. Without

loss of generality, we take the bias h to be zero, since its effect can be incorporated by

adding an extra unit to each input pattern. In the problem of learning from examples,

we are given a set of input patterns i(y)J'=1 and target outputs fS*(y)J'=1; the

goal is to find a set of weights JJiJ that correctly classifies all the input patterns.

This problem is an example of supervised learning-supervised, in the sense that an

imaginary teacher has explicitly provided the perceptron with p, target outputs for

the patterns f Si(P)1-

As discussed in Chapter 1 a solution exists if and only if the patterns in the

training set are linearly separable. Let us assume this to be the case. For binary

outputs ±1, the nmber of mistakes on the training set is equal to

1 E Ji Si (P)= E S*(P) sgn (4.1)
4 Z=1

eq. 41) is called the cost function for the perceptron. Rosenblatt[37] devised a
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learning algorithm for the perceptron that iteratively adjusts the weights f Ji to

decrease the number of mistakes on the training set. The basic idea is to cycle through

the examples in the training set, adapting the weights whenever the perceptron makes

an error. Thus, for each input pattern, the weights of the perceptron are changed by

an amount

Ai = S*(p) - sgn JiSi(p) Si(y),

where 7 > is the learning rate. This process continues until the perceptron correctly

classifies all the input patterns in the training set. Provided that these examples are

linearly separable, the perceptron learning algorithm will converge to a solution in a

finite number of steps[37, 38].

The restriction to linearly separable problems limits the usefulness of simple per-

ceptrons for real-world tasks. As pointed out in the Chapter 1, multilayer networks

with hidden units do not share this fundamental limitation. The first algorithms for

training multilayer networks were reported in the early 1980s; the result was an explo-

sion of activity in the field of neural networks. The general idea behind many of these

algorithms is to minimize a cost function that measures the discrepancy between the

observed and desired performance of the network. In this chapter, we will explore a

particular type of network based on the statistical mechanics of sing spin systems.

These networks, known as Boltzmann machines[39], have several compelling virtues.

Unlike simple perceptrons, they can solve problems that are not linearly separable.

The learning rule, simple and locally based, lends itself to massive parallelism. The

theory of Boltzmann learning, moreover, has a solid foundation in statistical mechan-
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ics.

Unfortunately, Boltzmann machines-as originally conceived-also have some se-

rious drawbacks. In practice, they are extremely slow. The weight adjustments are

based on stochastic correlations that are difficult to compute. The general proce-

dure for estimating them is Monte Carlo simulation[109], combined with the method

of simulated annealing[11]. This approach, though effective, entails a great deal of

computation. Finally, compared to back-propagation networks[110], where weight

updates are computed by the chain rule, Boltzmann machines lack a certain degree

of exactitude. Monte Carlo estimates of stochastic averages are not sufficiently ac-

curate to permit further refinements to the learning rule, such as quasi-Newton or

conjugate-gradient techniques[iii].

There have een efforts to overcome these difficulties. Peterson and Anderson[ 12]

introduced a mean-field version of the original Boltzmann learning rule. For many

problems, this approximation works surprisingly well[113], so that mean-field Boltz-

mann machines learn much more quickly than their stochastic counterparts. Un-

der certain circumstances, however, the approximation breaks down, and the mean-

field learning rule works badly if at all[114]. Another approach[115] is to focus on

Boltzmann machines with architectures simple enough to permit exact computations.

Learning then proceeds by straightforward gradient descent on the Boltzmann ma-

chine cost function[116], without the need for simulated or mean-field annealing.

Hopfield [I 5] wrote down the complete set of learning equations for a Boltzmann ma-

chine with one layer of non-interconnected hidden units. Freund and Haussler[117]

derived the analogous equations for the problem of unsupervised learning.
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hidden units

Figure 41: Boltzmann tree with two layers of hidden units. The input units (not
shown) are fully connected to all the units in the tree.

In this chapter, we pursue this strategy further, concentrating on the case of su-

pervised learning. In section 42, we review the Boltzmann learning algorithm and its

implementation for stochastic and mean-field Boltzmann machines. In section 43 we

exhibit a large family of architectures for which it is possible to implement the Boltz-

mann learning rule in an exact way. The networks in this family have a hierarchical

structure with tree-like connectivity. In general, they can have one or more layers of

hidden units'. We call them Boltzmann trees; an example is shown in Figure 4.1 We

use a decimation technique from statistical physics to compute the averages in the

Boltzmann learning rule. After describing the method, we give results on the prob-

lems of N-bit parity and the detection of hidden symmetries[118]. We also compare

the performance of deterministic and true Boltzmann learning. Finally, in section

4.5, we discuss a number of possible extensions to our work.

'The hidden and output units form a tree; there are no connections between the input units since
they are not allowed to equilibrate. See Section 42.
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We briefly review the learning algorithm for the Boltzmann machine[8]. The Boltz-

mann machine is a recurrent network with binary units Si = ±1 and symmetric

weights wi = wij. Each configuration of units in the network represents a state of

energy

'R WijSiSj (4.2)
ij

The network operates in a stochastic environment in which states of lower energy are

favored. The units in the network change states with probability

1
P(S' --+ -S') A-H/T (4-3)

1 + e

Once the network has equilibrated, the probability of finding it in a particular state

obeys the Boltzmann distribution from statistical mechanics:

WITPB(SI, - , SN = Z e- (4.4)

The partition function Z , e- WIT is the weighted sum over states needed to nor-

malize the Boltzmann distribution. The temperature T determines the amount of

noise in the network; as the temperature is decreased, the network is restricted to

states of lower energy.

We consider a network with input units (1), hidden units (H), and output units (0).

The problem to be solved is one of supervised learning. Input patterns are selected
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from a training set with probability P*(I.). Likewise, target outputs are drawn from

a probability distribution P*(OII,,); the notation P*(0,11,,) denotes the conditional

probability that the desired output is 0, given that the input pattern is I,,. The goal

is to teach the network the desired associations. Both the input and output patterns

are binary. The yth example in the training set is said to be learned if after clamping

the input units to pattern and waiting for the network to equilibrate, the output

units are in the states 0, with probability P*(0,11,,). The input-output mapping

performed by the network clearly depends on the network connectivity, as well as the

2values of the weights

A suitable cost function for this supervised learning problem is

E=EP*(I,,)I:P*(OII,)In P*(O.Iitl) (4-5)
1A (0 I 4)

where P*(OII,) and POII,,) are the desired and observed probabilities that the

output units have pattern 0, when the input units are clamped to pattern I,. This

cost function, known as the relative entropy, measures the difference between the

desired and observed probability distributions. The relative entropy between two

probability distributions is zero if the distributions are the same; otherwise, it is

strictly positive. An application of the relative entropy cost function, familiar to

physicists, is the mean-field approximation discussed at the end of this section.

The Boltzmann learning algorithm attempts to minimize the cost function 4.5)

2Note that during the operation of the network, only the hidden and output units are allowed to
equilibrate, while the input units remain clamped. Weights between input units therefore have no
effect on the operation of the network. Without loss of generality, we take these weights to be zero.

89



by gradient descent. The calculation of the gradients in weight space is made possible

by the general relation

a(In Z) = 1 (Si Si) (4-6)
awij T

where brackets indicate expectation values over the Boltzmann distribution. The

cost function 4.5) depends on the weights wij through the conditional probability

P(OIIIM = ZI,"1101 (4-7)
Z,,,

where the subscripts on Z indicate that the input and/or output units are clamped

and not allowed to equilibrate. Thus,

ZI e- (4-8)
fH)

only traces over te states of the hidden units (H), while

Z,, = 1: COW (4.9)
fOH}

traces over the states of the hidden (H) and output (0) units. The Boltzmann learning

rule minimizes the relative entropy cost function by gradient descent:

aE
A Wij 77 �W-ij

- A'11 - (Sisj)ll (4.10)
'7 P*(IM) P*(011111 [Sisj)io IT I 
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The gradients in weight space depend on two sets of correlations-one in which the

output units are clamped to their desired targets , the other in which they are

allowed to equilibrate. In both cases, the input units are clamped to the pattern 1,,

being learned. The differences in these correlations 3, averaged over the examples in

the training set, yield the weight updates Awij. The parameter 77 sets the learning

rate. For very large training sets with redundant input patterns, it may be desirable

to update the weights on a more frequent basis. An "on-line" version of Boltzmann

learning is obtained by foregoing the average over input patterns and updating the

weights after each example.

The main drawback of Boltzmann learning is that, in most networks, it is not

possible to compute the gradients in weight space directly. Instead, one must resort to

estimating the correlations SiSj) by Monte Carlo simulation[109]. In this procedure,

the units are stochastically updated using eq. 43), and time-averaged correlations

are measured over many sweeps through the network. The time to reach equilibrium

is greatly reduced by starting the simulation at high temperatures and gradually

lowering the temperature to the desired value. This method of simulated annealing[l 1]

leads to acceptable estimates of stochastic averages but has the disadvantage of being

very computation-intensive.

A deterministic version of the algorithm[112] was proposed to speed up learning.

It makes the approximation SiSj) -- Si)(Sj) in the learning rule and estimates the

magnetizations Si) within the mean-field approximation. There are several ways to

'Weights from input units are updated by a simplified Boltzmann learning rule; if A is an input
unit, and a hidden or output unit, then (AB)" = B)", where the sign is determined by the
clamped value of A in the pth pattern in the training set.
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derive the mean-field equations; we choose one that illustrates the relative entropy

cost function. The key idea behind the mean-field approximation is to replace the

Boltzmann distribution 4.4) by a simpler one that factors into N independent terms:

N
PMF(Sl .... I SN) + MA (4.11)

2

Within this approximation, one has (Si) mi and SiSj) mimj + S(l - t?) TO

make the approximation a useful one, the values of mi are chosen so that PMF is as

close as possible to the Boltzmann distribution PB. This is done by minimizing the

relative entropy between the two distributions,

T(M1,---,MV) PMF(Sl,-..ISN)ln PMF(Sl, --, SN)
PB (S1, - , SN)

+ Mi In I Mi + 1 -Mi In Mi
2 2 2 2

+ wijmimj In Z. (4.12)
T t3

The minimum relative entropy is found by setting the derivatives with respect to i

to zero. A straightforward calculation shows that the optimal values of mi satisfy

M = tanh 1 wijmj (4.13)
T

These are the standard mean-field equations, which can also be derived by replacing

the units on the right hand side of eq. 43) by their mean values.

Mean-field Boltzmann machines solve these equations by iteration, combined when
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necessary with a annealing process (i.e. a gradual lowering of T). The resulting val-

ues of Mi are used to estimate the correlations (SiSj) and update the weights accord-

ing to the Boltzmann learning rule. On simple benchmark problems, Peterson and

Anderson[112] found mean-field Boltzmann machines to be 10-30 times faster than

their stochastic counterparts. The problem remains, however, that the mean-field

approximation loses its validity when the units in the network are strongly correlated

with one another. A recent study by Galland[114] suggests that mean-field learning

breaks down in networks with more than one layer of hidden units.

4.3 Boltzmann Trees

Clearly, the ideal algorithm would be one that computes expectation values exactly

and does not involve the added complication of annealing. In this section, we in-

vestigate a large family of networks amenable to exact computations of this sort.

These networks, which we call Boltzmann trees, are simply Boltzmann machines

whose hidden and output units have a special hierarchical organization. There are

no restrictions on the input units, and in general, we will assume them to be fully

connected to the est of the network. For convenience, we will focus on the case of

one output unit; an example of such a Boltzmann tree is shown in Figure 41. Mod-

ifications to this basic architecture and the generalization to many output units will

be discussed later.

The key technique to compute partition functions and expectation values in these

trees is known as decimation[19, 119]. The idea behind decimation is the following.
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Consider three units connected in series, as shown in Figure 4.2a. Though not directly

connected, the end units and S2have an effective interation that is mediated by the

middle one S. Define the temperature-rescaled weights Jij =- wijlT. We claim that

the combination of the two weights J and J2 in series has the same effect as a single

weight J. Replacing the weights in this way, we have integrated out, or "decimated",

the degree of freedom represented by the intermediate unit. To derive an expression

for J, we require that the units S, and S2 in both systems obey the same Boltzmann

distribution. This will be true if

E ejlsls+j2 SS = v/C-eJSIS2 (4.14)
S=±1

where C is a constant prefactor, independent of S, and S2. Enforcing equality for the

possible values of S, = ±1 and S2= 1, we obtain the constraints

Vc--d� = 2 cosh (J, ± J2).

It is straightforward to eliminate C and solve for the effective weight J. Omitting

the algebra, we find

tanh J = tanh J, tanh J2. (4.15)

Choosing J in this way, we ensure that all expectation values involving S, and/or 2

will be the same i both systems.

Decimation is a technique for combining weights "in series". The much simpler

case of combining weights "in parallel" is illustrated in Figure 4.2b. In this case, the
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(a) (b)
S, S1

J1 J1 J1

S +

J2 J2 J2

S2

Figure 42: (a) Combining weights in series: the effective interaction between units
Si and S2 is the same as if they were directly connected by weight J, where tanh J =
tanh J tanh J2. (b) Combining weights in parallel: the effective weight is simply the
additive sum. The same rules hold if either of the end units is clamped.

effective weight is simply the additive sum of J and J2, as can be seen by appealing

to the energy function of the network, eq. 42). Note that the rules for combining

weights in series and in parallel remain valid if either of the end units SI or S2 happen

to be clamped. They also hold locally for weight combinations that are embedded in

larger networks. he rules have simple analogs in other types of networks (e.g. the law

for combining resistors in electric circuits). Indeed, the strategy for exploiting these

rules is a familiar one. Starting with a complicated network, we iterate the rules

for combining weights until we have a simple network whose properties are easily

computed. Clearly, the rules do not make all networks tractable; networks with full

connectivity between hidden units, for example, cannot be systematically reduced.

Hierarchical networks with tree-like connectivity, however, lend themselves naturally

to these types of operations.

Let us see how we can use these rules to implement the Boltzmann learning rule

in an. exact way. Consider the two-layer Boltzmann tree in Figure 41. The effect

of clamping the input units to a selected pattern is to add a bias to each of the
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units in the tree, as in Figure 4.3a. Note that these biases depend not only on

the input weights, but also on the pattern distributed over the input units. Having

clamped the input units, we must now compute expectation values. For concreteness,

we consider the case where the output unit is allowed to equilibrate. Correlations

between adjacent units are computed by decimating over the other units in the tree;

the procedure is illustrated in Figure 4.3b for the lower leftmost hidden units. The

final, reduced network consists of the two adjacent units with weight J and effective

biases h,, h2). A short calculation gives

ei cosh(hi + h2) - e-i cosh(h - h2)
(Si S2 = � � (4.16)

ei cosh(h + h2) + e-i cosh(h - h2)'

The magnetization of a tree unit can be computed in much the same way. We combine

weights in series and parallel until only the unit of interest remains, as in Figure 4.3c.

In terms of the effective bias h we then have the standard result

(Si) = tanh h. (4.17)

The rules for combining weights thus enable us to compute expectation values without

enumerating the 21 = 8192 possible configurations of units in the tree. To compute

the correlation (S:IS2) for two adjacent units in the tree, one successively removes

all "outside" fluctuating units until only units and S2 remain. To compute the

.-magnetization (SI), one removes unit S2 as well.

Implementing these operations on a computer is relatively straightforward, due
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(a) (bl)

(b6)

Si

J h

(cl) I(c2) I

I I

Figure 43: Reducing Boltzmann trees by combining weights in series and parallel.
Solid. circles represent clamped units. (a) Effect of clamping the input units to a se-
lected pattern. (b) Computing the correlation between adjacent units. (c) Computing
the magnetization of a single unit.
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to the hierarchical organization of the output and hidden units. The entire set of

correlations and magnetizations can be computed by making two recursive sweeps

through the tree, storing effective weights as necessary to maximize the efficiency

of the algorithm. Having to clamp the output unit to the desired target does not

introduce any difficulties. In this case, the output unit merely contributes (along with

the input units) to the bias on its derivative units. Again, we use recursive decimation

to compute the relevant stochastic averages. We are thus able to implement the

Boltzmann learning rule in an exact way.

4.4 Results

We tested Boltzmann trees on two familiar problems: N-bit parity and the detection

of hidden symmetries[118]. We hope our results demonstrate not only the feasibility

of the algorithm, ut also the potential of exact Boltzmann learning. Table 41 shows

our results on the N-bit parity problem, using Boltzmann trees with one layer of

hidden units. In each case, we ran the algorithm 1000 times. All 2N possible input

patterns were icluded in the training set. A success indicates that the tree learned

the parity function in less than em,, epochs) where an epoch is defined as one pass

through the training set. We also report the average number of epochs e,9 per

successful trial; in these cases, training was stopped when PO*II, > 09 for each

of the 2N inputs, with O = parity(I,,). The results show Boltzmann trees to be

competitive with standard back-propagation networks[120].

We also tested Boltzmann trees on the problem of detecting hidden symmetries.
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success eavg

2 

3

4
5

1

1

3

4

50

250
1000
1000

97.2 89.3)
96.1 (88.5)
95.1 69.2)
92.9 84.2)

25.8
42.1

281.1
� 150.0

Table 4 : Boltzmann tree performance on N-bit parity. The results in parentheses
are for mean-field learning.

In the simplest version of this problem, the input patterns are square pixel arrays

which have mirror symmetry about a fixed horizontal or vertical axis (but not both).

Figure 44 shows examples of both types of patterns. We used a two-layer tree with

the architecture shown in Figure 41 to detect these symmetries in 10 x 10 square

arrays. The network learned to differentiate the two types of patterns from a training

set of 2000 labelled examples. After each epoch, we tested the network on a set of

200 unknown examples. The performance on these patterns measures the network's

ability to generalize to unfamiliar inputs. The results, averaged over 100 separate

trials, are shown in Figure 45. After 100 epochs, average performance was over 95%

on the training set and over 85% on the test set.

Finally, we investigated the use of the deterministic[112], or mean-field, learn-

ing rule in Boltzmann trees. We repeated our experiments, substituting Si)(Sj)

for (SiSj) in the pdate rule. Note that we computed the magnetizations (Si) ex-

actly using decimation. In fact, in most deterministic Boltzmann machines, one

does not compute the magnetizations exactly, but estimates them within the mean-

field approximation. Such networks therefore make two approximations-first, that

(SiSj) _- (Si)(Sj) and second, that (Si) ;:�i tanh(E Jij(Sj) + hi). Our results speak to
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Input patterns for the problem of detecting hidden symmetries: (a) ver-
symmetry (b) horizontal mirror symmetry.

Figure 44:
tical mirror

the first of these approximations. At this level alone, we find that exact Boltzmann

learning is perceptibly faster than mean-field learning. On one problem in particular,

that of N = 4 parity (see Table 1), the difference between the two learning schemes

was quite pronounced.

4.5 Extensions

In conclusion, we mention several possible extensions to the work in this chapter.

Clearly, a number of techniques used to train back-propagation networks, such as

conjugate-gradient-, and quasi-Newton methods[111], could also be used to accelerate

learning in Boltzmann trees. In this chapter, we have considered the basic archi-

tecture in which a, single output unit sits atop a tree of one or more hidden layers.

Depending on the problem, a variation on this architecture may be more appropriate.

The network must, have a hierarchical organization to remain tractable; within this

framework, however, the algorithm permits countless arrangements of hidden and
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Figure 4.5: Results on the problem of detecting hidden symmetries for true Boltzmann
(TB) and mean-field (MF) learning.

output units. In particular, a tree can have one or more output units, and these

output units can be distributed in an arbitrary way throughout the tree. One can

incorporate certain intralayer connections into the tree at the expense of introducing

a slightly more complicated decimation rule, valid when the unit to be decimated

is biased by a connection to an additional clamped unit. There are also decimation

rules for q-state (Potts) units[19], with q > 2.

The algorithm for Boltzmann trees raises a number of interesting questions. Some

of these involve familiar issues in neural network design-for instance, how to choose

the number of hidden layers and units. We would also like to characterize the types

of learning problems best-suited to Boltzmann trees. A recent study by Galland[114]

suggests that mean-field learning has trouble in networks with several layers of hid-

den units and/or large numbers of output units. Boltzmann trees with exact Boltz-

mann learning may present a viable option for problems in which the basic as-
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sumption behind mean-field learning-that the units in the network can be treated

independently--does not hold. We know of constructive algorithms[121] for feed-

forward nets that yield tree-like solutions; an analogous construction for Boltzmann

machines has obvious appeal, in view of the potential for exact computations. Finally,

the tractability of Boltzmann trees is reminiscent of the tractability of tree-like belief

networks, proposed by Pearl[122, 123]; more sophisticated rules for computing proba-

bilities in belief networks[124] may have useful counterparts in Boltzmann machines.

These issues and others are left for further study.
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Chapter 

Conclusion

This thesis has investigated the potential for exact computations in the statistical

mechanics of disordered systems. Three types of disordered systems were examined:

directed waves in random media, the 2d ±J Ising spin glass, and tree-like Boltzmann

machines. In conclusion, we mention some recent works motivated by the ideas in

this thesis, as well as some open problems for future research.

In Chapter '1, we introduced an S-matrix model for the unitary propagation of

directed waves in random media. The model, based on a discretization of the Feynman

path integral, reduced the calculation of disorder-averaged quantities to a sum over

directed paths on the square lattice. We computed asymptotic scaling laws for the

diffusion of the beam width and the wandering of the beam center in two or more

dimensions. These scaling laws had a simple interpretation in terms of the properties

of random walks.

Recently a number of authors have obtained additional results from the random -

matrix model. Following our work, Friedberg and Yu[126] calculated the leading terms
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in the scaling laws for the beam center in d > 2 and also the next-order corrections.

The analytical results were in agreement with those presented in Chapter 1. Cule

and Shapir[125.] extended the methods of this thesis to compute the higher moments

of the probability distribution for directed waves in random media. If this probability

distribution is multifractal, as claimed by Bouchaud et al[59], the higher moments

should obey new scaling laws whose exponents are not simply related to those of

the lower moments. Within the framework of the S-matrix model, Cule and Shapir

did not find evidence for multifractal scaling, suggesting that certain forms of scaling

behavior may be sensitive to details of the unitary time evolution.

Future investigations with the S-matrix model should lead to a greater under-

standing of random Schr6dinger equations. The current situation is reminiscent of

the outlook several years ago for directed polymers[44]. Transfer-matrix studies of the

polymer problem clarified many important issues, lending numerical support to exact

solutions in d = 2 and providing insights into d > 2 where exact solutions do not

exist. S-matrix models of random Schr6dinger equations should be similarly useful

for studying wave propagation and localization in disordered media. The prospect of

performing exact averages over disorder makes S-matrix models particularly attrac-

tive.

Sums over paths appeared in a rather different context in Chapter 111. Here, we

introduced an exact integer algorithm to compute the density of states for the 2d ±J

Ising spin glass. The algorithm was based on the Kac-Ward method[23] for summing

the high-temperature series of the partition function. The diagrammatic represen-

tation of this series was used to rewrite the calculation of the partition function as

104



a sum over closed loops on the square lattice. Thus, like the S-matrix model for

directed waves, the algorithm for the spin glass was motivated by reformulating the

problem as a sm over paths.

Our method for computing the partition function of the 2d ±J spin glass had

three compelling features. First, the computation time was polynomial in the lattice

size. Second, the results were not susceptible to floating-point error. Third, the main

routine of the algorithm permitted a trivial parallelization. This last feature of the

algorithm has yet to be exploited, but it may be the key to resolving several open

questions. Data on larger system sizes is necessary, for example, to determine whether

the correlation length diverges algebraically or exponentially in d = 2 The nature

of this divergence may provide clues to the lower critical dimension of the ±J spin

glass.

The prospect of exact polynomial-time algorithms raises some interesting histor-

ical parallels. Fifteen years ago, it was widely believed, on the basis of Monte Carlo

simulations, that there was a finite-temperature phase transition in d = 2 spin glasses.

This view was refuted by Morgenstern and Binder[69], who showed using transfer-

matrix results that these simulations did not report true equilibrium behavior at low

temperatures. Since its introduction, the numerical transfer-matrix technique has be-

come a widespread tool for investigating spin glasses. Our algorithm makes clear once

again the value of exact computations in the study of spin glasses. Polynomial-time

algorithms should complement transfer-matrix studies and Monte Carlo simulations

in future work. As noted in Chapter 111, an efficient parallel implementation of our

method should permit the study of larger systems than can be reliably tackled by
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either of these methods.

Ising models with competing ferromagnetic and antiferromagnetic interactions

were also the subject of Chapter IV. Here, they appeared as Boltzmann machines,

neural networks of stochastic units that could be trained to perform useful tasks. The

correlations between adjacent units in these networks were computed by traversing

the branches of a tree, in much the same way that quantities in Chapters II and III

were computed by summing over paths. A decimation technique, developed originally

in the context f the renormalization group, was used to compute these correlations

in polynomial time. This led to an efficient learning algorithm for hierarchical Boltz-

mann machines, one capable of solving non-trivial problems in machine learning and

pattern recognition.

During the last decade or so, the computing community has focused mainly on

learning in feedforward networks[110]. Boltzmann machines have been somewhat

neglected by comparison. The reason for this is easy to understand. In feedfor-

ward networks, the activations of units in one layer of the network are deterministic

functions of the activations in the previous layer. The operation and training of fed-

forward networks therefore do not require any stochastic relaxation, only the local

propagation of unit activations and error signals. As a result, they are much faster

and easier to implement than conventional Boltzmann machines.

The computational tractability of Boltzmann trees opens the door for many fu-

ture investigations. An important direction of research will be to design Boltzmann

trees for new and different types of learning. The problem considered in Chapter IV

was one of supervised learning; the network had access to a training set of input
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patterns and their target outputs. Many other types of learning can be considered.

For example, a weaker form of supervised learning would be to provide only compar-

ative information--that is, whether or not two input patterns have the same output,

without specifying the output itself. In many interesting applications, the outputs

do not have target values at all; this is the problem of unsupervised learning. A

typical problem of this sort is data clustering-separating input patterns into well-

defined classes. In this case , the network must extract the underlying structure of

the unlabelled input patterns, clearly a much harder problem than its supervised

counterpart. Intermediate between supervised and unsupervised learning is the area

of reinforcement learning, in which the network receives simple "reward" and "pun-

ishment" signals, but does not have access to target values. Work in all these areas

is being actively pursued.

This thesis has emphasized the important role of exact computations in the sta-

tistical mechanics of disordered systems. Despite considerable progress on certain

fronts, clearly, much remains to be understood. The future no doubt has many sur-

prises in store, but of two things, we can be certain. One is that statistical physicists

will attempt to tackle problems of greater and greater complexity; the other is that

the computers at their disposal will be faster and more powerful. Both these trends

hold the promise of many more exciting calculations in the statistical mechanics of

disordered systems. This thesis has hopefully pointed in the direction of things to

come.
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