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Abstract
Three topics are considered. Firstly, the so(2, 1) dynamical symmetry of a charged
particle in the field of a vortex in 2 + 1 dimensions is used to solve the Schroedinger
equation when an harmonic potential is present. Endowing the particle with a spin
1/2, we solve albraically the Pauli Hamiltonian in presence of a harmonic potential or
a uniform magnetic field by identifying the representations of the'spl*(2, 1) symmetry
present in that case. Secondly, problems of topological field theories are discussed.
Constructing explicitly the twisted N=2 supersymmetry generators for the 3 I
dimensional topological Yang-Mills theory, we provide an understanding for the lack
of local excitations of this theory. Working in 21 dimensions and defining a twist that
also invert the Grassmann parity, abelian gauged fixed BF and Chern-Simons theories
are obtained by twisting N = 4 supersymmetric matter Lagrangians. Analogous
results are given in 1 I dimensions. Thirdly, nonw-relativistic particles in thermal
equilibrium are discussed in first quantization. The real time matrix propagator is
recovered by making use of a parametrized form fr the action.
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Chapter 

OVERVIENV

We provide here an introductory overview to the problems considered in the following

chapters. Some extra references are also added for the reader interested in background

and/or related works.

The material presented in chapter 2 orbits around the dynamical (super) symmetries

of a charged particle in the field of an magnetic vortex in 21 dimensions. There

is at least two context in which the notion of magnetic vortex arise. In a model of

non-relativistic particles minimally coupled to a Chern-Simons gauge field, the gauss

law is of the form B(x a p(x) where is the (scalar) magnetic field and p is the

charge density while x is the coordinate on the plane[l]. Thus, pointlike charges

also carry pointlike magnetic fluxes. Another motivation is the problem of a parti-

cle evolving in the field of a long and thin tube of flux, as in the Aharonov-Bohm

effect or the idealized cosmic strings, and where the (trivial) motion along the tube

is ignored. Dynamical symmetries on the other hand are especially useful when the

hamiltonian can be expressed as a polynomial in the Casimirs of the symmetry group

of the system. A well known application of this concept is on the hydrogen atom[2].

Combining rotations with the Runge-Lenz vector, the algebra o(4) is obtained and

both spectrum and degeneracies are accounted for by the representations of that alge-

bra. Another well known application is the use of su(3) in connection with the masses

of light hadrons[3]. For a spinless particle, our dynamical symmetry will be so(2, 1)

and in the presence of an harmonic potential, the hamiltonian will be the Casimir
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of the so(2) ompact subgroup, leading to an algebraic derivation of the (discrete)

spectrum. The so(2, 1) symmetry has also been put to use in other problems, as the

generalized harmonic oscillatory (for an hamiltonian '(ap2 + b(qp + pq) + cq 2) where
2

p and q are the canonical variables and abc are real, time dependent functions) as

well as on more general potentials in parabolic coordinates[5]. It is also helpful in con-

structing Green functions for particles in various combinations of harmonic oscillator,

Coulomb and Aharonov-Bohm potentials in three dimensions[6]. Moreover, it also ex-

ists in the two dimensional system of spinless particles mentioned above, with[7] and

without[8] uniform external magnetic field. When our particle is endowed with a spin

1/2, the symmetry algebra becomes larger and graded[9] and is termed spl'(2, 1) We

show how the use of its representations will provide an algebraic solution of the Pauli

equation when either an external magnetic field or a harmonic potential is present.

Chapters 3 and 4 deal with issues of topological field theories JFT). The basic

ingredients entering the definition of a TFT are[10]: 1. a collection of Grassmann

graded fields 4� defined on a Riemannian manifold 2 a odd, nilpotent operator Q

3. an energy momentum tensor that is Q-exact (T,,,,3 f Q, V,,,,31 for some V,,,3) and

4. the condition that physical states are in the cohomology of Q (that is, physical

states are annihilated by Q, and are defined up to addition of states of the form

Q10) for some state ) for BRST gauged fixed theories, these conditions reflect the

requirement of gauge invariance of the physical states[l I]). By defining, as usual, the

energy momentum tensor through a variation of the action with respect to the metric

nX - Jgc,, T(J9 Sq f d j c'O where S here is the quantum action and include the2 f

classical part, as well as the ghosts and multipliers required to gauge fixed it; M is the

n dimensional Riemannian target space I one can display the essential characteristic

that makes TFT's interesting from a mathematical point of view: the possibility

to generate quantities that depend only on the global features of the target space

(topological invariants). The most straightforward example of this is the partition

function Z = f [A�]e-s,, as JgZ = f [d,1Pje-S (-6gS, = f [&Dje-s IQ, XI where X =

fm dnX Vg- Jgc,,3 ,,3. But since the average of IQ, XI is nothing but a vacuum

expectation value, JgZ vanishes. In the same way, one shows easily that if an operator

9



P is in the cohomology of Q, its vacuum expectation value will be a topological

invariant. Interestingly, independence with respect to the metric is thus achieved

without summing over metrics a fact that generated much interest among physicists,

as this is thought to be a pointer to the construction of a theory of quantum gravity.

One of the important developments in the young history of TFT's was made in

1988 with the construction of the so-called topological Yang-Mills (TYM) theory[12].

This relativistic TFT came as an important tool in the study of Donaldson invariants

in four dimensions. When it was constructed, it was noticed that on a flat manifold,

it can be obtained by twisting the N=2 super Yang-Mills (SYM) theory. In four

euclidean dimensions, the Lorentz group SO(4) is isornorphic to SUL(2) x SUR(2).

This twisting consist in taking the diagonal sum of (say) SUL(2) with the autornor-

phism SI(2). Of the initial supersymmetries, one becomes a Lorentz scalar and

plays the role of the nilpotent operator Q and the modified theory is just TYM. But

shortly later, it was also shown[13] that TYM on an arbitrary manifold M can be

recovered by BST gauge fixing (with appropriate gauge parameters) the topological

symmetry (JA a = Oa where A a is the gauge field with a the gauge group index and
IL 1A 1A

Oa is arbitrary) of either zero or the topological ation f dx F A F. In that context,

the nilpotent operator is just the usual BRST charge, and the requirement that the

physical states be in the cohornology of Q is readily seen to imply that only ground

states are physical. But when viewed through the twisting construction, the same

requirement is somewhat unexpected, as the parent theory (SYM) does in fact pos-

sess physical degrees of freedom. In chapter 3 we explore this issue. The details of

the twisting are provided, and some ambiguities on what constitutes the true Lorentz

group after twisting are resolved. The disappearance of excited states is found to be

tied to the lost of hermiticity of some of the Lorentz generators, and the consequences

on the representations of the twisted algebra are discussed.

Now there is more to TFT's than TYM. In fact, TYM is a typical representative

of a class of TFT, often referred to as Donaldson-Witten (or TQFT) type. A few

characteristics define this type. The classical ation is trivial (either zero or a total

derivative as in the example above) whereas the total action is Q exact. Moreover,

10



as for TYM, they can usually be obtained by a twisting from a supersymnietric

theory. The other class of TFT is the so-called BF theories, of which the Chern-

Simons is a special case. In the abelian version, their classical action S, is of the

form fw B(k A F(D-k) (where the subscript is the form degree, F is the field strength

and D is the dimension of spacetime), and is thus not simply a total derivative.

It is also metric independent. When adding the contributions of the ghosts and

gauge fixing terms, the total action appear as S, + f Q, VI, which ensures that the

energy momentum tensor is Q exact, and making apparent the topological nature.

In chapter 4 we present results on how (at least some) TFT's of BF type can be

obtained through twisting. We give examples in two dimensions, but work mostly

in three dimensions, where the twisting make use of the unique SU(2) of spacetime.

This symmetry is mixed with the SU(2) of the automorphism of the N = 4 (free)

parent theory. The original feature of this twisting is that it also involves a change

of Grassmann parity. The close relation with the usual twisting defined to reach

Donaldson-Witten theories suggest an intimate connection between the two types of

TFT and a general conjecture is made on this connection.

In the last chapter, we address an issue of finite temperature physics. The non-

relativistic) picture of path integrals is now a part of most books on quantum mechan-

ics. It is interesting to ask how this construction requires modifications to acount

for the presence of a bath of identical particles. This is not just an academic exercise,

even though ost problems of many particles at finite temperature are usually treated

using field theories. In analogy with particle creation in curved spacetime (and thus

near black holes), one would expect string creation to occur, but so far they have not

been (theoretically) found[151. As string theory is only available in first quantized

form, the question arise of how to describe correctly the propagation of strings in a

bath of strings. As a toy model of this problem, we study the case of non-relativistic

particles. We will take the point of view that the presence of the bath allows for

the propagating particle to be exchanged with others from the bath as it propagates.

This will involve the notion of "hole" (or absence of particle) effectively propagating

backward in time. Dealing with this situation will be best done by making use of

11



a parametrized version of the action, in which the time slicing will be made with

respect with a parameter time 'r rather than the physical time t. Of the various finite

temperature formalisms, we will choose the so-called real time[14] mostly because it

has been shown to be causal, a property clearly desirable when particles are created.

It is also adapted to describe systems harboring out of equilibrium distributions of

particles, as one finds in expanding cosmologies and black holes problems. In that

formalism, the propagator is made of four components gathered in a matrix. We will

give a rather literal interpretation to these components, and explain how they can be

recovered when careful attention is given to the gauge fixing of the reparametrization

invariance.
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Chapter 2

DYNAA41CAL

SUPERSY1\41\4ETRY AND

SOLUTIONS FOR PAULI

HA1\4ILTONIANS

Abstract

A charged point particle interacting with a vortex in 2 dimensions (or

the relative coordinate of two anyons) possess a dynamical so 2, I) symme-

try that can be exploited to solve for the case when an external harmonic

oscillator potential is added. Moreover, if the particle carries spin 12,

its interaction with the vortex exhibits a dynamical spl'(2, 1) supersym-

metry, which can be imported to the cases where a harmonic oscillator

or an external magnetic field is present. Using this supersymmetry, the

corresponding Pauli Hamiltonians can be solved algebraically.

Appeared in Modem Physics Letters A89 1993) 827.
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2.1 Introduction

The physics f a charged point particle interacting with an external magnetic vortex

in 2 I dimensions occurs in many physically interesting contexts. One ca-se is

when the particle is in the field of a long and thin solenoid and motion along the

z-axis is ignored. More generally, because of Chern-Simons electrodynamics, this

Aharonov-Bohm type of interaction also appears between anyons, so its study is of

interest to various types of two-dimensional systems, including models for high-T,

superconductivity.

If the particle of charge e is taken to be spinless, its dynamics is governed by the

Lagrangian (c = = mass = 1):

2L = V + ev A(r) (2.1)
2

where the vector potential

A'(r) (2.2)
27r r2

produces a vortex of strength 4 centered at the origin:

= A = �62(r) . (2-3)

Here, a x b = Eja'bi and v '. Eq.(2.1) also describes the relative coordinate ofdt

two anyons N.

The Hamiltonian for 2.1) can be written as:

2H = V (2.4)
2

with v = p - eA and quantization is then achieved by postulating the commutators

Iri, ri = 

Iri, Vj = j

IV i, Vi I = 6ij, eB(r = 6ije-N2(r) (2-5)

16



It was recently shown 2] that 4) possess a dynamical conformal symmetry generated

by the following three constants of motion:

1 2 (t.H = 2 V zme translation

D = tH - I (r v + v r) (time dilation)
4

2 2K = -t H + 2tD + r (time special conformal transformation 26)
2

When commuted among themselves, these charges reproduce the so(2, 1) algebra:

[D, H = iH

[D, K = K

[H, K = 2iD (2.7)

The group SO(2, 1) is not a compact group, however, the combination

R = I 1 K+aH (2-8)
2 a

generates the compact SO(2) subgroup where the parameter a has dimensions of

time. Because of its discrete spectrum, R is an interesting object to analyze and in

this paper, we discuss how it can be use to solve eigenvalue problems. For the present

case, we choose to consider its form at t = 0, when it reads:

2 2a v r
R = - - + �2 (2.9)2 2 2

But this is just the Hamiltonian obtained by adding to 4 an external harmonic

oscillator potential of frequency = a-':

h 2 2 2H V + W r
2 2
2R i (2.10)
a a=w-1

17



This fact can be used immediately to provide group theoretically the spectrum and

wavefunctions of H4: the possible (infinite dimensional) representations of R are

known ad bv considering its coordinate realization one finds 2:

h (r, = 2w (d + n) V)J (r, ) (2.11)n n

with

ijo 1 n 1/2e 2)d 2n! -lwr2 2d-1 2)
Wr L wr (2.12)

On V/27r r r(n + 2d) n

where the Ls are the generalized Laguerre polynomials. Here,

d + II vJ (2.13)
2 2

where is the integer angular momentum , v and n is a positive integer. This
27r

is indeed the well known result Ill.

Thus, although H4 breaks the conformal symmetry, its occurrence in the so(2, )

algebra is sufficient to solve for its spectrum and eigenfunctions. Interestingly, it is

possible to show that H' also possess a so(2, 1) dynamical symmetry. It is different

from 6 and related by a coordinate transformation. This importation of symmetry

has also been carried out 4 for the case where a uniform magnetic field is added to

(4). In both cases, using group theory to diagonalize the generator of the compact

subgroup leads to a solution of the time independent Schr6dinger equation. Because

it establishes the existence of a symmetry in addition to solve the eigenvalue problem,

this method of importing symmetry is now adopted.

For the two situations just mentioned (with harmonic oscillator or magnetic field)

we now consider the charged particle to be a spin 12 object. In the presence of the

vortex alone, its Lagrangian acquires a fermionic contribution:

1 i
L = -v 2 +-tP4+ev-A+eBS (2.14)

2 2

18



with A given in 22) . Here the �bi (i = 1 2 are anticommuting, time dependent

Grassmann variables and describe the spin degree of freedom of a classical particle

[5]; the spin itself being given by = tk x . Legendre transforming 2.14) gives

the Pauli Hamiltonian:
2H = V _ eBS (2.15)

2

with v = p - eA(r).

Recently 6 215) was shown to possess a dynamical supersymmetry spl'(2, 11

with so(2, 1) for its bosonic subalgebra. In section II, we show that when 215 is

augmented to include an external harmonic oscillator or a uniform magnetic field,

the system is still supersymmetric. In section III, we solve the eigenvalue problem

for these augmented systems by making use, in each case, of the close connection

between the generator of the compact subgroup of SO(2, 1) and the appropriate

Pauli Hamiltonian.

2.2 Supersymmetry Imported

The Hamiltonian 2.15) can be quantized by supplementing (5) with the anticommu-

tator:

(2.16)

By studying the symmetries of 2.14) at the classical level and using Noether's theo-

rem, one finds 6 that for the quantized version of 2.15), the following constants of

motion can be obtained:

2H = _V _ eBS
2

D = tH - (r v + v r)
4

2 2K = -t H + 2tD + r
2

Q1 = V 0

Q = V X ?k

19



Si = -tQi + r tP

S = -tQ2 + r x P

Y = S+ Ir xv .
2

(2.11)

Being time dependent, these charges do not commute with 2.15) but their total time

derivatives vanish:
dC- = i [H, C]
dt

+ OC =0 
Ot

(2.18)

From 216) and 217), the following spl'(2, 1) graded algebra is then verified:

[H, D = H [H, K = 2D [D, K = iK

IQ,, Q1 = H JQ2, Q2 = H 7 fQ1,511 = JQ2,S2 = -2D

[H, SI] = ZQj ,

i
[D, Qi = -- Q1 

2

I
[Y' Q1 = Q2 ,

2

[K, Qi = IS,
I

[D, Si] = -SI
2

2
[Y, Sd = - S2

2

[H, S2] = -iQ2 ,

i
[D, Q21 - Q2

2

i
[Y, Q21 -Q1 ,

2

[K, Q21 = 'S2

[D, S2 = i S2
2

i
[Y, S2 = -- Si

2

fSiSi = S2, S2 = K

[H, Qj = HQ2 = 

M, S2 = JQ2, S I = Y

[K, SI] = [K, S2 = 

(2.19)

This set of symmetry is larger that the one found for the system of a spin 12 and

a magnetic monopole[7], which is Sp(l, 1). It also differs in that in our case, the

symmetries and the algebra are formally exact on the whole plane, including the

origin.

Now the addition to 215) of a spectrum-discretizing harmonic oscillator term

can be accomplished in the following way [8]. The ation for Lagrangian 214)

1 I
S=fdt -V 2 + 1P 

2 2
�+ev -A +eBS (2.20)

20

[YHl=[YK]=[YD]= .



is transformed, under the change of coordinate

I
= - tan wt'

W
r/

r 
Cos wt,

(2.21)

into S = f dt',C' with the new Lagrangian

,ch = O
2

1 2 12- W r
2

. A'+ eB'S'
I I . �I

+ IP + eVI
2

(2.22)

= A = drIP -it-, -3)Here, dt,, V whereas A' and are as in 22) and 2

r'. The corresponding Hamiltonian (we now suppress the primes)

but in terms of

Wh = 1 V2

2

2 2+ W _ eBS
2

(2.23)

with

v = p - eA(r) (2.24)

still describe a spin 12 particle interacting with a vortex, but with the desired exter-

nal harmonic oscillator potential now added. Using 2.21), one can transform 217)

into

h = 1 CS2 WtV2 W 2 2 2 _ 2 Wt62H _ _ Sn 2wt(r.v+v.r)+-W sin wtr OD cos (r)
2 2 2

h 1'tan wtH
W

1- (r v +v r)
4

1sin wtr2
2

1 r2
+ 2

2 cos Wt

1 2 h 1 h
- __ tan wtH + 2 tan wtD

(A)2 W

= cos wtv i - sin wtr tP

K h

Qh
I

n
Si = cos wtv x i - sin wtr x ik
Qh 1 h 1

2 = - - tan wtQ + �-r tk
W Cos t

1 tQh 1
S2h = - tanW 2 ��r x 

W Cos t

21



ye = S + Ir xv (2.25)
2

These charges are now conserved with respect to the new Hamiltonian R h:

dC [Rh, C] + 19C 0 (2.26)
dt at

where t is the transformed time. When _+ 0, Rh -+ H and they become identical

to 2.17). For finite w, they coincide with 2.17) at t = 0 ; at finite t, they follow

their own evolution according to Rh. They are a consequence of symmetries obtained

by using Eq. 2.21) to go from h to L, applying the known symmetry to the latter

case, and then returning to h by inverting Eqs. 221 4 One can also check

that this transformation is supercanonical: If Rh is quantized by imposition of the

commutation relations 2.5) and 2.16), then the same relations follow for non-prime

variables; the quantities in 2.25) are therefore supercharges obeying the superalgebra

(2.19).

In a similar fashion, one can modify the action 2.20) through the transformation

2 Qtlt = - tan -
Q 2

/i - Qtl i tjr = r tan 2 6 r

= cosQtV'-sinQtYj0fj (2.27)

It becomes S' f dt'L' with the new Lagrangian_

,CB /2_ +P'.�'+ev'.A'+ev'-.A'+e(f�+B')S' (2.28)
2 2

and the corresponding Hamiltonian (again suppressing the primes)

R B 2=-V _e(f�+B)S (2.29)
2

where v = - A - eA and A' = -"E'jrj with �2 This describes the ex-'T e

perimentally relevant case when the spin 12 particle sees not only the vortex, but
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also a uniform magnetic field of strength �2 and constitutes a generalization of the

spinless case 4 As for the previous case, assuming that 25) and 2.16) hold with

B(r = � + 462(r) one shows that the transformation is supercanonical. The su-

percharges 2.19) can also be imported and they transform into:

I Q Q2 QB 2 2 2 2H - Cos -tv + r - Cos -tv x r
2 2 8 2 2

Q 2 tj2+_ sin Qt (v r + r v - e1) cos (r) S
8 2

B 2 Q B 1 Q Q 2D - t an - t H - - v r + r V) - - t an - t r
Q 2 4 4 2

4 Q 1 Q r2KB -- tan 2 -t H B + -tan -t D B+
Q2 2 Q 2 2 cos2 Qt

2

QB = COS2 Q V -0 sin Q t V lk+ Qcos Qt r x ik + Q sinQt r ik
1 2 2 2 2

QB = sin Q t V ?k Cos 2 V tk+ QsinQt r x i - Q cosQt r ik
2 2 2 2 2

sB 2 tanQ t QB + r - tan Qt r x ik
I Q 2 1 2

B 2 Q QB QS2 -- tan-t 2 + tan -t r ik + r x
Q 2 2

YB S+ 1 2-r x % + _ (2.30)
2 4

They are time-independent when 2.29) is used to translate the time. They also form

a dynamical supersymmetry by satisfying the graded superalgebra 2.19).

2.3 Spectrum and Wavefunctions

It was shown in the last section that the Hamiltonians 2.23) and 229) possess

a dynamical supersymmetry. We discuss here how this can be used to construct

their eigenfunctions and eigenvalues. Because our modified systems exhibit the same

symmetry as 2.15), much of our group theoretical reasoning overlaps with that of

Ref 6 to which we refer the reader for details.

By considering the subgroup structure of spl*(2, 1) one finds that six Casimirs are

needed to specify a state in the representation space. Here, as in Ref 6 the two
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Casimirs of the full algebra spl'(2, 1) vanish identically in our coordinate realizations

(2-25) and 2.30). The four remaining and their eigenvalues are

JI 'asn = 'I 'asn) (2-31)

Sl'asn = SIjasn) (2.32)

Al 'asn = al V I 'asn) (2-33)

RI 'asn = 1 - 8 - VI 1 + n jasn) (2-34)
2 2

with the constraint

a.5(' - V > (2-35)

Here, is the spin operator with eigenvalues ±. The total angular momentum2

operator

J r x + S (2.36)

has for spectrum

j M + S (2-37)

where the integer accounts for the orbital contribution. A is a fermion number

operator given by
1

A = WI, Sd - - (2-38)
2

and a is either 1 or 1. R is the generator of the SO 2) subgroup of the bosonic

sector SO(2, 1) of the full algebra, defined in 28). For our realization, it is positive

definite and n is a positive integer.

Now consider our imported supercharges for the harmonic oscillating case 2.25).

Because these charges are independent of time, we can always select t = to get:

-hh = W2 K h + H h

= 2wR h la=w-1 (2.39)
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Thus, 234) gives immediately the spectrum of W:

I Is-vI+2n+1)w . (2.40)

IBy use of 2.37), this is independent of s and our algebraically obtained result is

in agreement with the spectrum for two flux-carrying spin 12 particles 9.

corresponding eigenfunctions are found by writing Rh as:

The

h I KhR = +
2a

a h)l((D _
2Kh iDh+ co ) (2.41)

Here, Co is the Casimir of the so(2, 1) algebra 6 and its eigenvalue is given by:

Aja Aia 1) (2.42)

with

Aj = I I 
2

- 8 - VI 1
2

(2.43)

Because A(r) has no radial component, D hcan be realized as:

D h = 9 + 1
2 9r

Hence, 234) leads to the eigenvalue equation

(2.44)

1

r
+ (2Aj, - 1)2

T2
ar- 19J�Orr + 2 r2 h± (r, = 4w (Aj,

'Pran
+ n) V)jh,�� r, ) (2.45)

The ± are for spin up/down. The angular part en' of the wavefunction can be

separated and the normalized solutions are given in terms of the generalized Laguerre

polynomials

0± (r, = eo n! 1/2 2_ n A. 2Aj, 1 - 1wr 2,Aj,,, - 2 
Jan ) W r 2 Ln Pr7rr(2Aj. + n)

. 246)
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In the limit v = , 2.40) becomes

E h (1 = = (Irn + 2n + 1 Lo (2.47)

and we recover the spectrum and degeneracy of a spin 12 particle in a two-dimensional

harmonic oscillator. Or setting s = 0, one gets

E'�(s = 0 = (j - + 2n + 1) w (2-48)

which is the spectrum for the spinless case obtained in 2.13).

The case of HB given in 2.29) offers itself to a similar analysis: using 2.8) with

supercharges 230), we find that

Q__ J + - V)
2

,hB = QR 1=,
0

(2.49)

so the eigenvalues are by 234)

I 1- - I 
+ 2 2 ' (2-50)

Since h B differs from RB by only a constant, they have the same eigenfunctions, with

the appropriate frequency:

n!
7rr(2Aj,, + n),

2Aj,,, - I 11 P 2Aj,, -r e-4 Ln

1/2 Qr2

2
(2-51)

,B± imo (_ 1) n
�'�an (r, 0 = e

The limit = produce the spectrum

I
= -IMI

2

rn 1
- - n -- 8 Q

2 2
E B(V = )

I
+ 8 Q

2
(2.52)

where p is a positive integer. We recognize the levels of a well-known supersymmetric

system: an electron of gyromagnetic ratio 2 in a uniform magnetic field [10]. Here,

26
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the infinite degeneracy of the Landau levels shows up in the various possible values

of m > . Also, in the limit s = 0, we have 

E'(s = 0) I vj + n + V) (2.53)
2 2 2

in agreement with the spinless result of Ref 4.

2.4 Conclusion

A charged particle of spin 12 in the field of a vortex with an external harmonic oscil-

lator or a uniform magnetic field exhibits, on the plane, a dynamical supersymmetry

whose superalgebra, spl*(2, 1), has so(2, 1) for its bosonic sector. By constructing a

basis for the representation space of this superalgebra, it was showed that in both

situations, the Casimir of the so(2) subgroup of so(2, 1) is closely related to the Pauli

Hamiltonian describing the system. In each case, this was used to determine all

regular eigenstates and their eigenvalues.

Now even though the symmetries appear to be formally exact, the presence of the

delta function in the hamiltonian calls for a careful analysis 12]. Further work could

seek to identify the possible self-adjoint extensions required for the various generators

involved 7 Also, it is expected that supercoherent states can be constructed for these

systems 11].
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Chapter 3

HERIWITICITY AND THE

COHOIWOLOGY CONDITION

IN TOPOLOGICAL

YANG-1WILLS THEORY

Abstract

The symmetries of the topological Yang-Mills theory are studied in the

Hamiltonian formalism and the generators of the twisted N=2 super-

Poincar6 algebra are explicitly constructed. Noting that the twisted Lorentz

generators do not generate the Lorentz symmetry of the theory, we relate

the two by extracting from the latter the twisted version of the internal

SU 2) generator. The hermiticity properties of the various generators are

also considered throughout, and the boost generators are found to be non-

hermitian. We then recover the BRST cohomology condition on physical

states from representation theory arguments.
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3.1 Introduction

In recent years, much attention has been devoted to the study of topological field

theories [1]. Because these theories have no local dynamics, their correlation functions

depend only on the global features of the target space. An important example is

given by the topological Yang-Mills (TYM) theory, which was used to obtain the

Donaldson invariants for smooth 4-manifolds[2]. Shortly after TYM was introduced,

it was shown 3 4 that it can also be obtained by BRST gauge fixing the topological

symmetry (�A = ', with O' arbitrary) of either zero or the topological actiona a a

S=f d 4x F` Under an appropriate choice of gauge parameters, the resulting

action is identical to the one introduced in 2 and is given by:

1 1S Tr -F,,3Fa - DaOD-A - i77DaP- + iDc,,00X'-0
fm 4 2

i 2
[X-0, X-0] - -A [7P., [rlq - - [O A)

8 2 2 8

fm IC. (3.1)

Here, all fields are Lie algebra valued and transform acording to the adjoint repre-

sentation of the gauge group, which is taken to be compact and semi-simple. The

covariant derivative is D = c, + [Aa, ], where Vc, is the covariant derivative with

respect to the diffeornorphisms on the curved manifold M of metric g,,,. The gauge

field A, and the scalars A and are bosonic while q, 0. and Xao are all anticom-

muting and respectively scalar, vector and self-dual tensor fields (Xa = I 0 /,V X/,V)2

Note that in this version 3. 1) still possesses the usual (non-topological) Yang-Mills

symmetry.

When 31) was introduced, its intimate relation with N = 2 super Yang-Mills

(SYM) was already noticed 2 In fact, formal representations of the Donaldson

polynomials have also been obtained in SYM[11]. In Euclidean space-time, the latter

theory enjoys the Lorentz symmetry SO 4) (isomorphic to SUL 2) & SUR 2)) as well

as the internal global SU, 2) symmetry. If one "twists" this symmetry by replacing

SUL 2) by the diagonal sum of SUL 2) and SU, 2), SUL, 2), the rotation group
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then becomes SUL,(2)(&SUR(2) and the resulting theory is just 31). Through

this procedure the original supersymmetry generators are also transformed and the

Lorentz scalar supercharge thus obtained is identified as the BRST charge. The

twist procedure has also been used to obtain extended (N = 2 TYM theories[5].

Furthermore, TYM has also been obtained via the use of Killing spinors in N = 2

conformal supergravity[17]; in this case, a "local" version of the twisting procedure is

implemented by embedding the SU(2) connection in the Lorentz spin connection.

In this paper, we will detail the twisting of the N = 2 supersymmetry (Section 32)

and explicitly construct the various generators while studying their hermiticity prop-

erties (Section 33). We will argue that after twisting, the internal symmetry gener-

ators are transformed into a useful and hitherto unappreciated symmetry of 3.1) It

will also be shown that the boost generators are not hermitian. This will be used in

Section 34 to discuss the following issue. Despite their connection through twisting,

TYM and SYM theories differ in that the former does not support any local excita-

tions. When TYM is considered through the BST construction, it is found that the

only states in the cohomology of the BRST charge are those with vanishing energy 2].

Among other things, this absence of local excitations complicates any attempt to use

topological field theories in a description of quantum gravity, a possibility suggested

by the natural general covariance of these theories. It is hence usually thought that

one must first establish a mechanism to break the topological symmetry. As a con-

sequence, we find it compelling to study more closely the relation between SYM and

TYM. Within the context of twisting and without Appealing to the BRST derivation

of 3. 1), we will propose an explanation, based on representation theory arguments,

of why TYM is indeed free of local excitations. As we are only interested in the

details of the canonical quantization of the theory, such as its hermiticity properties

and spectrum, we will work on flat manifolds. Our concluding remarks are contained

in Section 3.
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Our starting point is the N = 2 uperPoincar6 algebra (without central charge) 7, 8]:

[Pa, 1�3]

lja'3' f"I

[Pw QIiI

[QAi, 401

f QAi, Qj3 I

f QAI, QB I

[T'j, JO]

[T'j, Tk I]

[T'j, QAk]

I'T'j QAJ

0, [Pw J""0 = i g,'['- 1�31'
i Z

ga(p Jt,]O + '0[p alv],

0 = [pi" Q'iil'

(Ca0) ABQBi, [QAj jO] (&aO )AbQbj,

jp2Ji a (0-a ) A I

= QAi, bjl,

= T'j, Pa],

- kj)1 (Jjk PI T
2

-- Ji QAj - -2 k 2 J3� QAk

I - - 1
- 6k QA - -6,� Ak2 2

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

(3.2f)

(3.2g)

(3.2h)

(3.2i)

(3.2j)

Our convention closely follows Ref. 9]. Bracketed indices are to be antisymmetrized,

ignoring the ones just preceeding a vertical bar (thus go[,JI,] 90pJa - ,3vJap)-

Greek letters denote Lorentz indices, with P, and ,,3 standing for translation and

Lorentz generators respectively. Capital latin letters are two-spinor indices with un-

dotted ones referring to SUR(2) and dotted ones to SUL(2). Raising and lower-
ABing these indices is done with the help of the antisymmetric matrices EAB, E

_EI = F =and E". They are given by: 612 = _E12 and at on Weyl

10 b A = AB Ispinors as: EAb x E XB. The internal indices are i, ... (in subse

quent sections, these symbols will be used as spatial components of Lorentz indices);

T'j is traceless and generate SI(2). The metric o is euclidean = �,O) whereas

aj), C7a o-j) where oi are the usual Pauli atrices. Similarly to the

Minkowski case, we define o = (o,,,&,3 - o&,,) and &,,3 (&a0',3 - &,39a)-4

We now perform the twisting of this algebra. Replacing SUL(2) by the diagonal

sum of SUL(2) and SI(2) translates into the identification of the internal indices

33
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with left handed Weyl spinor indices, leading to:

QAi QAI� a, (0-')AACII (3.3a)

QBj QBb a2 Q+ a3 (5;,4v) B'b S/21" (3.3b)
D

Vj TA,6 a4 (ev) A b Rv, (3.3c)

where on the RHS, the twisted quantities are expressed in terms of their Lorentz

components: Q, is a vector, Q a scalar, whereas S,,,, and R., are self-dual tensors;

ai's are arbitrary constants. At this stage, these constants could be absorbed in the

definition of the generators, but they will be useful in the next section, as we will use

already known expressions for Q and Q,. Q, Oa and S,,,, are Grassman odd, whereas

R., is Grassman even. Note that vectorial Grassman charges are also known to exist

in non-critical string theory[10]. The relations 3.3) can be inverted:

1
Qa - (Ua )CA QAe7l (3.4a)2a,

1
(3.4b)Q 2a2 B b,

St. I b b Q6 b, (3.4c)
2a3

R I &t") A b (3.4d)W/ 2a4 6 T A,

where we have made use of the identity:

Tr (&,,,,3 1Ja�, J], + I'Ea0pV (3-5)
2 2

Under the twisting 3.3), the superPoincar6 algebra 3.2) is transformed into:

[Fa, P�3 = 0, [Pp JO = Jp[a P], (3.6a)

[Ja0, J1,v] = i6a[y J],3 + 'JO(y Jja,], (3.6b)

[P,3, Q1 = [P,, Oa] = P,3, pv = 0, (3.6c)

[Q, .43] = a3 SaO, (3.6d)
a2
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M" J.01 (6p[. S3]v - v[a �3]y) 1 (3-6e)
2
Q a2

IS,.,, JOI (6a[y 6v]�3 + 6Opv) + (6y[.. S]v 6v[a S],v) (3-6f)
4 a3 2

Q, Q.1 - P. (3-6g)
a1a2

Q�- Pv] + Eapv)3PO) (3.6h)2ala3

f Q11 I Q,31 f Q, Q = f S,.,, S.,3 = , (3.6i)
a3

[Q, Rt,,v] Sill (3-6j)
4a2a4

a2
[RI,,, S�.�3] Q (6a[p 6v]O + Eadpv) (6p[. SO]v 6,(c, �3,],.) (3.6k)

16a3a4 8a4

Q,3
[Qa, RPV] - (6a[y v] + 6p-a,3 (3-61)

8a4

[Rmv, R,3] - (6j,[. RO]v - 6v[a R�3]ft I (3.6m)
4a4

[Ryv, 4,31 = 0 = [Rm,, P,3]. (3.6n)

The existence of 3.6) was conjectured in [I 1, 12]. The Poincar6 sector of the algebra,

Eqs. (3.6a - 3.6b), is of course left unchanged by the twisting. This would suggest

that for the twisted theory, also generate Lorentz rotations. However, a look

at 36) reveals that the fermionic charges, as well as R,, do not transform in the

expected way (e.g. Q does not transform as a scalar). In the following section, we will

examine how the algebra 3.6) is realized in TYM, and identify the correct Lorentz

generators.

3.3 The Algebra Realized

In order to study the twisted N = 2 uperPoincar6 symmetries of 3-1), we make use

of Noether's theorem in its Lagrangian form. Under a symmetry transformation, the

variation of the Lagrangian density is a total derivative 6,C = 9,,A" and using the

equations of otion, the current P = f ieldsO 61) 9C - AP is conserved [ 3. The

simplest of the symmetries is the invariance under translation, for which = ak'a,"C

with aP a constant infinitesimal parameter. The corresponding form of the energy-
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momentum tensor is given by:

OaI I IFY Dco DI A - Dc' A D + D-1 v/ c 'DI
2 2

+D, A" A Jc - gcl",C (3-71)

with

J = 2 [0, D, A] 2 [A, Dao - [V)a, 771 1�511 xp I (3.8)

and where C is the Lagrangian density given in (3. 1). The conservation of this tensor,

,9.0c' = , gives rise to the energy and momentum generators:

Po f d 3X I (FoiFo - PoiPoi - 1DoO DoA + IDiO DiA -Z'EijkDjOk Xi
2 2 2

- )DiXi + Z'rjDi0j + [Xi, Xi] 'A [0i, 0]
2 2

Z 2

+ -A [Oo, V)o + 0 [rj, rj] - [O, AD AoG (3.9)
2 2 8

Pi d3X FOkFik - 1DOA Do 1DOO DiA + Dioj j + 'Dirl �Yo - Ai G
f 2 2

(3.10)

where Xi _= XOi. Here and in the rest, integrations are over "spatial" coordinates,

with traces understood. We also ignore ordering ambiguities. In Eq. 39) AO

should be viewed as the Lagrange multiplier which imposes the generalized Gauss

law constraint G =_ DiFO - Jo -- 0. The Hamiltonian 3-9) can equally be obtained

by Legendre transforming 3.1). In order to compute the algebra of these charges,

we first identify the various momenta of 3.1), and impose on them the appropriate

equal-time canonical commutators:

a _6ab6..6(X _ ),PO 1Xt�(x)"0j,(Y)1

Oa X), l Y) pb6 X _ ),
Po = iTI" 0

a a(X), pb (Y)] = i6ab6,j6(X
0i, _ Y),PA = F [Ai Oj

1 )a, )b(y) = ijab6(X _ ),Po. = __ AA [Oa W, (DOA
2 2
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P'\ a X), -6abDo [A _2(Do(�)bw = (x - y), (3.1 )

where x and y denote here space coordinates. Making use of these commutators,

Po and Pi are found to correctly translate the fields, and when commuted among

themselves vield:

I d'x j AO (x G x) (3.12)

[Pi, Pj = [Po, Pj = 

As with various forthcoming commutators, we find that because of the remnant Yang-

Mills symmetry in the action 3. 1), the algebra 3.6) is only realized on physical states,

annihilated by the constraint G.

We now wish to study the hermiticity properties of our generators. We take for

adjoint assignments:

At A,

-Xi,

ot
0

Ot A. (3.13)

Despite its non-covariance, this choice is natural for various reasons. In order for

the field theory to be well defined, Po should be hermitian and it is under 313).

Moreover, as is shown below, this choice also leads to a semi-positive definite spectrum

for Po, in analogy with SYM theory. Also, Pi and the Lagrangian 3.1) are equally

hermitian with this prescription. Note that because of the peculiarity of the self-

duality operation in euclidean metric[14] (Xa = 1 Ea,3,,,XP' with A = , ifor euclidean2A

and Minkowskian metrics respectively), we require 6,,3,,, to change sign when taking

the adjoint. Civen that the presence of in the various generators has its origin

in the self-dualtiy of XO, this prescription in effect reproduce the study of hermiticity

in Minkowskian metric. An alternative road would be to study the Lagrangian 3.1)

in Minkowski spacetime. The symmetry generators would then, up to signs, be the
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same as the ones presented here for euclidean metric. The algebra of the generators

in that case would be a Wick rotated version of 3.6), obtained by the change: 6,',

,i7m, = di ag (-- 1, 1, 1, 1)), o aj), �Tc' O'i), EaOuv -� Ea0tivi -

Under Lorentz transformations, the variation of the fields is &D where

is an infinitesimal antisymmetric parameter. The corresponding currents:

M`07 xO - I DA DY - I Da DA + F-I atL + D"Y71 v + D7P, x'
2 2 /I F I Z

+ A'Y [A, Dc'O] + A-f [0, DcA] ZA [I, Oc'] - iXY 0, XC'I 9a-�L
2 2

+D,,(x,3A-Y) FaIL + i0'Yxa0 -y (3.14)

are conserved (9,.Wc"3'y = 0) and lead to the constants of motion associated with

boosts ad rtations:

3X Xyo + 3X 01,Moi = x0pi - f d Z f d (3.15)

3X ZMkj d I (XkPj - ?Pk Xj - k (3.16)

where 'Po is the energy density, as integrated in Eq. 3.9) and similarly for Pj from

Eq.(3.10). One can readily check, using 3.13), that Mkj is hermitian but that 110i

is not. We will return to this point in Section 34, in connection with the possible

excited states of the theory. Using Eq. 3.1 1), the following commutators are obtained:

[Po, Moil = X0 d3X 9iAo(x)G(x)+Z d 3x Ai x) G (x) + iP, [Po, Mkj = 0, 317)

[Pj, Moil -ikpo' [Pi, IYIkjl '6i[kpjl, (3.18)

[Moi, A l -imij, '6i[kMO]i (3.19)

[Mki, Ml,.] = i6k[I M,,,]j + 6[l Mkl,.] (3.20)

Together with 3.12), we thus recover the Poincar6 sector of 3.6).

Turning to the twisted supersymmetries, we have the scalar charge Q, identified
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in 2]. It is preserved on an arbitrary manifold and the energy momentum tensor can

by expressed as a Q variation. In the context of the BRST construction of 3.1), it is

precisely the BRST charge. Its expression is:

3X (FQ = f d 0, - ��O [A, ] .
2

+ &) �O - TDO - Di -i (3.21)

Under translation and rotation, it transforms as:

[Po, = = , Q1, (3.22)

i I d3X xiV)O(x)G(x),

1jQQ = fd 3X O(x)G(x).
2

[Mki, Q1 = 0, (3.23)

(3.24)

We thus recover the nilpotency of Q (up to gauge transformations), but 323) shows

that M3 does not correspond to the generator Jo appearing in 36). This is con-

firmed by the study of Q,,,, also identified in 2 Its time and space components are

given by:

3X
Q = Q0 = f d (Foi

Q = f d3X Eijk (F

-. &) Xi OoDOA - DiA + T1 [0, A] I
2

(3.25)

O - ) Xk + OoDiA + ODOA - (Foi

1[O
+Eijk7pjDkA +2 IA] Xi (3.26)

The spacetime symmetry transformations of Q and Qj are made clear by:

- = -if d 3X ?7(x)G(x),[PO I Q1 (3.27)

zjd 3X xiq(x)G(x),

IjQQ = fd 3x A x) G (x),
2

Ai IQ] = iQi - (3.28)

(3.29)
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as well as:

[PO, Qi = -f d 3X Xi x) G(x),

[Moi, Qj = J Q,

[pi, Qi = ,

[lylki, i = '%Qk],

I - -21QQi = 

(3.30)

(3.31)

(3.32)
1 

2fQi,
3Qj = 6ij f d x A(x)G(x),

When Q, is anticommuted with the BRST generator, it gives:

1 -
2 IQ, Q'�3' = - Pa fd'x A,,, x) G (x). (3.33)

Thus, given our choice of generators, 321) 325) and 326), the relation (3.6g is

obtained, provided aja = 1. Observe how the adjoint assignments 3.13) produce:2

Q = Q, (3.34)

and as announced they render the Hamiltonian 3.9) semi-positive definite (as is the

case in SYM).

To identify S,, we compute the adjoint of Qi, obtaining:

+ Pj) Ok + Di - i Do - Fo + Poi) �00

(3.35)

Its spacetime symmetry transformations and nilpotency are revealed by the following

set of commutators:

[Po, Soil = -, d'x �O (x) G (x), [Pj, soil = , (3.36)

3X
zfd xj O (x) G (x), [Mkj Si = AUS01k],

(3.37)

(3.38)
I
_IS0i'S0j = Jij
2

I d'x Ox)G(x).
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Eqs.(3.36 ad 331) show that Soi generates a symmetry if Gauss's law is imposed

and that it is a self-dual object. Relating to previous fermionic symmetries, we

compute:

Isoi, Q = (3.39)

32Isoi, Q1 Pi f d x Ai x) G (x), (3.40)

3 321 Soi Q I Jii Po f dxAo(x)G(x) Eijk k+ f d x Ak(x)G(x) , (3.41)

which reproduces (3.6h), if a1a = 4i

Noting now that the boost generators are not hermitian, we extract from them

the twisted internal generators by taking the anti-hermitian part R = Mt - Mi.

In terms of the fields, it is simply:

Roi f d'x (- i0i 1 + i0oxi + ZEiim7�ixm) (3.42)

1Commuting with the Poincare generators produces:

[Po, Roi = 0, [Pj, Roi = 0, (3.43)

I-Woi, Roj] = -EijkROk, [Mkj, Roi = %R01k], (3.44)

which shows that R is also a self-dual object. When commuted with the fermionic

symmetries and with itself, we get:

[Roi, Q = iSoi, [Roi, (3.45)

[Roi, j = i6ijkQk - i6ijQ, [Roi, Soj] ZEijkSOk - iJijQ, (3.46)

[Roi, Roj = 2Z6iikROk- (3.47)

We thus find that 36) is realized in TYM with the following values of parameters:

a, = 1, a2 a3 and a4 As an infinitesimal transformation, RO only27 4 8
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acts on fermionic fields (as is obvious from 3.42) and in parallel with SYM)

I - Pa
JRT = -(P, 'V

2

JR �)a = -2(. A A

JR X,,,, = 2(,,,,3,q CA[.X A (3.48),3]

where 3 is an infinitesimal, commuting and self-dual parameter. Although relatively

simple, this symmetry appears to have escaped notice. It would be interesting to

investigate its use, for instance, in the perturbative renormalization of TYM 3 5]

or determine the class of manifolds on which it is preserved 12].

So far, we have thus identified for TYM all the generators in the twisted N = 2

superalgebra 3.6), with the exception of J3. This generator should be hermitian,

since it is so before twisting. The more or less natural object to consider here is the

hermitian part of Moi. So we conjecture:

Joi = Moi + Roi (3.49a)
2

I
Jkj = Mkj + -Fkjl Rol, (3.49b)

2

where in (3.49b), we have used the self-duality of R,,,- Using the relations previously

obtained, we find that on physical states, (3-6a - 36b), (3-6d - 3.6f), and (3.6n) are

verified, with the above mentioned values of ai's. Thus 349) is indeed the correct

identification. In fact, this relation should be expected. After twisting, the Lorentz

algebra is isomorphic to SUL, 2) & SUR(2) and thus some hybridization of the internal

symmetry with the old Lorentz generators J3 is expected.

3.4 Hermiticity and Excited States

As shown in the last section, TYM theory in flat Euclidian spacetime realizes the

SO(4) -'Lorentz" algebra in such a way that the boost generators M are non-

hermitian (neither are they antihermitian). In order to classify the possible states
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of the theory, we wish to identify the unitary representations of the symmetry alge-

bra. Let us concentrate here on the compact sector SO(4). As is well known, the

irreducible and unitary representations are in that case finite dimensional (dimen-

sion (2C, + 1) (2f2 + 1) with fl, f2 = 0, , 1 3 ... , the generators are represented by2 2 1

hermitian mtrices and the group elements related to the identity can be written as
It' Mt"e with real parameters a,- Now if �Woj is not hermitian, it is clear that as far

as SO(4) is oncerned, the only admissible unitary representation will be the trivial

one, in which JW0j = 0. The SO(3) subgroup of spatial rotations generated by Mkj

does not suffer this problem, and the Hilbert space of the theory could carry the usual

labels em of the SO(3) representation since this subgroup commutes with Po. But

because Moi are not hermitian, only = m = will be present in that case. This can

be seen in the algebra: acting with both sides of 3.19) on the representation space

will give the same result provided Mj is also vanishing.

If TYM is considered in Minkowski spacetime, with g = 1m, Moi will also be

non-hermitian, with equally dramatic consequences. Suppose we are interested in

the unitary representations of the twisted algebra 3.6), assumed to be rotated to

Minkowski metric, as specified in section 33. To investigate them, we make use, as in

the case of the superPoincar6 algebra 7], of Wigner's method of induced representa-

tions 19]. Tis method is also appropriate here since our symmetry group possesses

the same abelian invariant subgroup, namely the translations. In this method, one

first makes a choice of "standard vector", eigenstates of P, and a representative mem-

ber of the possible classes of eigenvalues of the Casimir P'. One then identifies the

little group, formed by the generators that leave the standard vector intact, and ex-

cluding the abelian subgroup. Once the irreducible unitary representations of the

little group have been identified (restricting to finite dimensional ones), they are then

used to induce an irreducible unitary representation of the whole group. This is done

by acting on the standard vector with the generators that change its eigenvalue of P,.

These infinite dimensional representations then form the plane-wave basis, to which

particles are associated.

Consider the massless case. The little supergroup is formed by C = M +
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M13, C2 = 120 + M23, M2 Q Qa � Sti I R,,,, Acting with any of these will leave the

vector I p = m, 0, 0, m) ) unrotated. Now since

[C1, M21 -C2,

[C2, M121 C1,

[C1, C21 0, (3-50)

is the Lie algebra E2, and since we seek a finite dimensional representation, we are

led to C = C2 = when acting on the standard vector, just as in the superPoincar6

algebra [ 71]. Thus, at this level, the non-hermiticity of M10 and M20 appears irrelevant.

However, in order to induce a representation of the entire group, we need a unitary

realization of the finite transformation generated by M30, M0 - NI13 and M2 -

.%3. But with M30 non-hermitian, this can only be implemented through a trivial

realization: M3 = 0. This in turn implies that if we consider the first part of

Eq. 317) and choose i = 3 when acting on I po , the LHS will vanish, and lead to

P31po = 0. (We refer to euclidean commutators for convenience; at this point the

results clearly do not depend on the signs appearing in them.) One thus conclude

that massless excitations will not occur in TYM.

A similar situation occurs if one attempts to construct massive representations.

Taking as the standard vector lp = m, 0, 0, 0)), the little group is made of Mkj, Q,

Q, SI,, R,,,,). Inducing a representation of the whole group will require a unitary

operator for finite boosts, again this is only possible if the action of Moi is trivial:

Moi 1pi = 0. But using now the first part of 318), we find Po 1pl = 0, again

contradicting the assumption on 1pi). In this way, we recover, in a group theoretical

context, the absence of dynamics in TYM.

We now focus on the last possibility null representations with standard vec-

tor lp = ). (We will not consider spacelike representations). This vector is left

unchanged by any Lorentz transformation and the little group is made of all the

generators: 2Vf,,,O, Q, Q,,,, So and RO. Here, representations of the full group and

the little group coincide. As before, because we seek unitary representations, we will
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require that 111WIP3) = 0 When used in 3.19) we obtain VfkjIP3 = 0, showing the

rotational invariance Of IM, which has thus the characteristics of a vacuum state.

Turning now to the action of Q, consider the time component of 3.33), it reads:

f Q, Q'I IN = (3-51)

since P3) is y construction a physical state. Projecting on (P31, we find

(QP3IQM + (QtP3lQtP3 = (3.52)

and conclude that QP3 = QtJP3 = -

Similarly, we can easily determine that the other generators have eigenvalue 0.

By 3.34), C21 = Making use of 3.28), we then find QdP3 = 0. Applying the

same reasoning with 3.41) and 3.47), we find SWIM = and Ril = Thus, all

generators act trivially in TYM.

Now as mentioned before, the Lagrangian in 3. 1) can be obtained by gauge fixing

of a topological symmetry The BRST charge introduced in that construction is

the scalar Q given in 3.21). In that context, the physical states are assumed to be

annihilated by Q, and such that they are not of the form Qa). Having shown the

former, we now argue for the latter, following Ref 2 Consider a state = Qla),

with Po O = 0. Because [PO, Q = 0, 17p) and I a) can be chosen to have the same

eigenvalue under Po. But with Pa = 0, applying the steps given in 351) and

(3.52) will lead to I) = 0. We thus obtain, in the context of twisted N = 2 SYM,

the BRST cohomology condition of Refs. 2 3 4 on physical states.

3.5 Conclusion

We have used the Hamiltonian formalism to study the symmetries of (3-1). This

formalism offers the inconvenience of a non manifest covariance, but made explicit

the generators, as well as the "propagation" of the Gauss law constraint through

the algebra. In this context, it would be interesting to see how the algebra we have
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obtained is niodified by the gauge fixing of the Yang-Mills symmetry [18]. We were

also able to make precise the relation between the Lorentz generators of TYM

and the twisted version of Lorentz and SUI(2) generators of SYM (o and R,,3

respectively) as displayed in 3.49.). It is usually not illuminating to add symmetries

to obtain new ones, but the interest here lies in their physical significance. One could

avoid introducing the non-hermitian Woi. But in order to understand the Lorentz

structure of the various objects (fields, charges, etc of the theory, they are needed.

It is thus more sensible to discard JO, keeping W,3 and RO. In this way, O

appears as a symmetry of 3.1) unappreciated in previous work. In fact, its existence

may seem odd at first sight, in view of the Coleman-Mandula theorem[20]. But as we

have shown in Section 34, no massive unitary representations are realised in TYM,

and in this way, the conclusions of the theorem are inapplicable. Nevertheless, more

could be learned about R,3. Extending to more general manifolds, is it preserved[12]?

Can it be used, along the lines of 16], to draw conclusions on the quantum theory at

all orders in perturbation theory by restricting the possible counterterms (provided

anomalies are absent)? It would also be interesting to investigate the extent of that

symmetry in other topological theories. For instance, the symmetry algebra of the

Chern-Simons theory in the Laudau gauge has been found to coincide with a twisted

N -_ 4 superalgebra 13, 21]. It is expected that a twisted internal symmetry will also

exist in that case.
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Chapter 4

T'VVISTING TO ABELIAN

BF CHERN-SI1\40NS

THEORIES

Abstract

Starting from a D = 3 N = 4 supersymmetric theory for matter fields,

a twist -with a Grassmann parity change is defined which maps the the-

ory into a gauge fixed, abelian BF theory on curved 3-manifolds. After

adding surface terms to this theory, the twist is seen to map the result-

ing supersymmetric action to two uncoupled copies of the gauge fixed

Chern-Simons action. In addition, we give a map which takes the BF

and Chern-Simons theories into Donaldson-Witten TQFT's. A similar

construction, but with N = 2 supersymmetry, is given in two dimensions.

Produced in collaboration with Roger Brooks and Claudio Lucchesi, and will appear in Nuclear
Physics B.
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This paper deals with the problem of mapping supersymmetric field theories into

topological field theories (TFT's) 16] and of mapping different classes of TFT's

among themselves. TFT's fall under two classes. The first of the TFT's are the

Schwarz-type 2 commonly known as BF, theories. Chern-Simons theory in three

dimensions is a special case of BF theory. The second are Donaldson-Witten or

Topological Quantum Field Theories (TQFT's 3 A sub-class of the TQFT's, the

topological Vang-Mills (TYM) theories are gauge invariant. Another sub-class of

the TQFT's is given by the topological sigma models which do not possess gauge

invariances.

To date, these two classes of theories have had vastly different origins. On the

one hand, the BF theories have non-trivial classical actions and first order equations

of motion. Their classical (abelian) actions on manifolds of dimension D are metric

independent as they are of the form fm B(k A F(D-k) , where F(D-k = dA(D-k-1)

and the subscript denotes the form's degree. These theories are invariant under

Maxwell (or Yang-Mills) gauge symmetries. They are also symmetric under the k-

form symmetry which shifts B(k) into the exterior derivative of a (k - 1)-form. On the

other hand, the TQFT's classical lagrangians are either or a total derivative and

are devoid of classical equations of motion. Apart from the possible surface term,

the entire lagrangian of a TQFT is obtained 7 9 as a BRST gauge fixing of

a symmetry (topological symmetry) which manifests itself as compactly supported

shifts of some field in the theory (for example, the gauge field in TYM) A large class

of the latter theories may also be obtained from N = 2 3 0] or even N > 2 11]

supersymmetric theories via a procedure known as twisting.

We will work in three and two dimensions restricting ourselves to abelian BF

theories. Placed in this context, we will solve a problem which has existed since

the birth of these theories; namely, how to obtain the BF theories via the twisting

of some supersymmetric theory. Furthermore, we will make substantial progress

towards solving an equally long-standing problem; namely, what (if any) is the relation
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between BF theories and TQFT's.

As the twisting process will play an important role in our work, it is appropriate

4to give a quick review 3 using the example of R . Starting with a N = 2 super

symmetric field theory and writing the Lorentz group as SOL(4) S2) x SU,(2),

we then take the diagonal sum of SU, 2) with the automorphism group of the N = 2

superalgebra, SU,-(2). The result is a SUd(2), which we use to form a new Lorentz

group, SOL'(4) SUd(2) x SU, 2). As a result, spin-' fields, which also transformed2

as doublets of SI(2), now become integer spinned, Grassmann odd fields.

The twisted super-Poincar6 algebra, along with its implications for physical states,

has recently been investigated in ref. 12]. In three dimensions, the Lorentz group is

SOL 3) SUL 2). In order to define a twist, the supersymmetric theory will have to

possess a SU, 2) automorphism group so that the new Lorentz group may be taken

to be the diagonal sum of the two SU(2)'s. This means that the D = 3 theory should

be N = 4 supersymmetric. In two dimensions, we will require a U(1) automorphism

group, hence an N = 2 supersymmetric theory.

Glancing at the BF lagrangian (see above), we see that the Grassmann even

fields are first order in derivatives. Whereas, upon gauge fixing, the Grassmann odd

fields are second order in derivatives. This is an inversion of the usual structure

in supersymmetric theories. Scaling this hurdle will be achieved by a second stage

of the twisting wherein we will change the Grassmann parity of the fields; (bosons)

fermions will become (anti-) commuting. As the supersymmetric theory we will apply

our twisting procedure to will not be gauge invariant, the BF/Chern-Simons theory

obtained will be gauge fixed. In this way, we will obtain the abelian BF and Chern-

Simons theories from N = 4 supersymmetric theories in three dimensions. Similarly,

N = 2 theories will be twisted to the abelian D = 2 BF theory. As an artifact of the

process, we will actually obtain two (uncoupled) copies of Chern-Simons theory.

Previously, it had been -shown that the gauge fixed Chern-Simons theories 131

(along with a related construction for the BF theories 14, 15, 161) are invariant un-

der a set of symmetries generated by a pair of scalar and a pair of vector charges,

all Grassmann odd. The algebra of these charges allows a SLI 2, R) �-_ SU, 2) auto-
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morphism group. The number of components of these charges matches the number

of components of four Majorana fermions and it was shown that this algebra is a

twisted version of a D = 3 N = 4 supersymmetry algebra'. As part of our work 

we will find the missing N = 4 supersymmetric theory which realizes the untwisted

algebra. Since, as we will show, the supersymmetric theory may also be twisted to a

TQFT, we will then formally relate a subset of TQFT's to the abelian BF theory.

Our paper is organized as follows. In the next section, the two N = 4 supersym-

metric actions (which differ only by surface terms) we will use throughout our three

dimensional discussion will be presented. Following this, in section 53, we will twist

the first of these actions to the abelian BF theory in three dimensions. After writing

down the action for a D = 2 N = 2 scalar supermultiplet, we will show how to twist

this theory to the two dimensional BF theory, in sub-section 53.3. In section 54 we

shall return to three dimensions and use the second action from section 52, which

we will twist to the abelian Chern-Simons theory. The structure and transformations

generated by the three dimensional twisted superalgebra will be given in section 5.5.

In section 56, we will show how to connect TQFT's obtained from our supersym-

metric theory with BF theories via a change in Grassmann parity. We conclude in

section 57. The conventions used in this paper may be found in the appendix.

4.2 The N = 4 Supersymmetric Actions

Let us begin by introducing the two N = 4 supersymmetric actions we will be using

in our discussion of the three dimensional topological theories. In order to establish

the main features of the twisting process it is best to work on a flat manifold. Later,

we will extend the procedure to curved manifolds (see sub-section 5.3.2). Although

3the actions constructed in this section exist in either Minkowski space-time or 

in the rest of the paper we will restrict our discussion to manifolds with Euclidean

signature.

Our supersymmetric matter multiplet contains the following complex fields:

'This algebra was termed N = 2 in ref. 13].
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FIELD I SPIN GRASSMANN PARITY

0 even

A 0 even

1/2 odd

1/2 odd

There are a number of possible actions we could write down for these fields. Even

within a given action, we can add surface terms. We will see the importance of this

later. As our basic action we take2

The action is invariant under the interchange A ++ -0. From this, it follows that there

is a second N = 2 supersymmetry of 5.1),

2The ordering of the fields in the various terms is important since our twisting procedure involves
changing the Grassmann character of the fields. We will take the ordering as given in this action
throughout.

'Throughout this paper we will discard surface terms while establishing the existence of
supersymmetries.

SSUS = 3X[Oa aa Oaa - + i _ i j�ct (,,a),,
I d �Oa A A 2 X 2 , '30a,00 ] 4 )

invariant under the fol-where the bar denotes complex conjugation. This action is

lowing rigid supersymmetry transformations

[Q., ]

IQQ1V) I

[Q., ]

I Q., 0 I

[Q., A]

I Q., k3 

[Q., ]

I Qa, I

= ixa I
2(-�a)aoqa�

-ikC,

2(,a )aoaaA

i V)Q ,

- 2 �a) 00a 0

-io. ,
- 2 (a).,,,, a. 0 (4.2)

The Q-super-charges form the N = 2 supersymmetry algebra

IQ., Q,3 = -i2 (_�a)c"3aa IQ., Q I = IQ., 0,3 = (4-3)
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[S I i XQ I [Sa, A] iOa 

Isal 001 -2 (,a) aoOaA 2(-y")aO,9aO

[9�1 I 4a I [S., A]

1,54,001 -2 (-ya )a3,9aA I gc,, X0 I 2 (-Ya) aoqa.� (4.4)

The S-super--charges also form an N = 2 supersyrnmetry algebra. The automorphism

group of each of the supersymmetry algebras is U(1).

It will prove useful to re-write Ssus' in terms of real/imaginary fermions rather

than the complex ones. To do this, we define the real and imaginary parts of the

fermions via: Xa Xal + iXa2 and V,, 'O.1 + iV).2- Consequently, the action

becomes

SSUSY 3X[a. + a.,0,9. � + XaA (,Y.), 0,9. 00 BId �0,,A 'EABI (4.5)

The lagrangian in this action is equivalent to that in (5. 1); i.e., no surface terms were

incurred in this re-writing. In twisting to the BF theory, we will use this form of the

action.

From 0,aA and XaA, we can construct another action whose lagrangian differs

from (5. 1) by a total derivative term. To do this we define XPaA ?PcA + iXcA

- A 7pcA,_ iXcA)(Ta As TaA is a complex doublet, we take it to transform as a 2 of

SU, 2) while �p , A is in the conjugate representation. Using this in the action (.1)

we arrive at

SISUSY 3Xpa qaoaa� + 4aBI d �Oa A i (_Ya).O0.XP,3B1

SSUSY + (surface terms) (4.6)

and discard the surface terms. The original two N = 2 supersyrnmetries now become

invariances of the action under the following transformations

[Q.A, 01 iR.A + A)

[Q.A, A] iR.A - A)
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QaA T13B I -21EAB(7')a,31).(O

7 +
QaA, 'D 3 I -2EAB(7').,319. P

aAi -i(TaA + qVaA)

[QaAi A] -i(T.A - T.,A)

QaA i DOB -26AB(7')aO19a(O A)

Q111A TOB -2EAB(_Y')aO'9.(O + A) (4.7)

This shows explicitly that the both actions, SS' and S'SSy are invariant under an

N = 4 supersymmetry. Indeed, the algebra of charges defined by 5.7 is

Na A, QOB I = 46B A (4.8)

This algebra has a SI(2) automorphism invariance with the QA transforming in

the doublet representation.

4.3 Mapping to BF Theories

This section is divided into three parts. First, in sub-section 53.1), we present

the twisting procedure while working with the action SSUSY. As advertised, we will

find the twisted action to be the gauge fixed, abelian BF theory on R 3 - Then, in

sub-section 5.3.2), we will discuss how to obtain the BF theory on curved manifolds.

Finally, in sub-section 5.3.3), as another example of the procedure, we will write down

a D = 2 N- 2 supersymmetric action from which the two-dimensional abelian BF

theory may be obtained via twisting.

4.3.1 g%--Twisting SSUSY

The Lorentz algebra in three dimensions is SOL(3) SUL(2). As the first stage of

our twisting we take all internal indices to be SUL(2) indices. This amounts 13]

to re-defining the Lorentz group to be the diagonal subgroup of SUL(2) x SI(2).

With this, the original scalar fields remain Lorentz singlets while the real spin- 1 fields
2
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become Lorentz bi-spinors: 0B - and XaB - X,,3. This means that we can

decompose as a real vector plus a scalar field; similarly for XO.

As the second stage of our twist, we declare the fields to have opposite Grassmann

parity to those of the parent supersymmetric theory. This second step does not

exist in the known 3 twisting of supersymmetric theories to obtain Donaldson-like

topological quantum field theories (TQFT's). We call this two stage mapping a

twist and define it by the map

Tg O.B 0.0 [i(-y').OA. - a)A

Tg X aB Xa'3 1 [ a )c'OB,,, + iCa,3A]

vIr2

Tg (c i Y)
v/2

Tg 1 (c + i Y)
vf2

Tg A (c + i b)
2

Tg (c - i b)
v/2

T EAB -+ iCC'O (4.9)

The fields on the right hand side of the arrows are defined by this map to have

Grassmann parity opposite to those on the left. The factors of "i" have been inserted

so that the process of complex conjugation commutes with Tg. Additionally, the other

numerical factors are for later convenience. We summarize the new field content in

the following table:
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FIELD I SPIN I GRASSMANN PARITY
I - I

A,, I even

E 0 even

Pa 1 even

A 0 even

C 0 odd

b 0 odd

C, 0 odd
I I

b' I 0 1 odd

map, 7-91 on the action Ssusy as given in eqn. (5.5) we find, up

4This is the action of the fully gauge fixed abelian BF theory in three dimensions 

The first term is the classical BF action. In this term, the Levi-Cevita tensor arises

from a trace on the product of three gamma matrices. The second and third terms

represent the gauge fixings of the local U(1) and 1-form symmetry on Ba (see section

(5.5) for details). In these terms, the Lorentz dot product arises from the trace of

products of two gamma matrices. The ghost actions for these gauge fixings are given

by the last two terms in (5.10). Note that only the Landau gauge appears in this

procedure. The surface terms mentioned above appear only from the gauge fixing

and ghost terms. They are needed in order to write these terms in their conventional

forms.

4.3.2 Curved 3-Manifolds

The classical BF action is topological. It is only after gauge fixing that a metric

appears in the action. We would like to recover this peculiar metric dependence.

4The ordering of the fields in the gauge fixing terms is chosen so as not to introduce additional
minus signs when we later map to the TFT.

Performing the

to surface terms,

SBF --:-- Ifd3X[,6a'cBaObAc + (aa Aa) A aa Ba) E + d0 + b[:)b] (4.10)
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We could simply g-twist the action SUSY on R3 to obtain (5.10) and then co-

variantize it with respect to some background metric on a curved manifold, M. By

definition, te subsequent action,

SM d 3 XE abc BaObA + d3XVg-[(Va Aa)A + VaBa)E + cLc + bAb] , 411)BF I

is the gauge fixed BF theory on M. The derivative a is covariant with respect

to diffeomorphisms of M: a =_ ea',9, + Wa bJb. Here ea' is the driebein with

determinant e. The object Wa b(e) is the dual of the Lorentz spin-connection for which

the dual of the Lorentz generator is Ja.

Instead, suppose we started with the N = 4 gauged supergravity5version of SSUSY.

Among the new fields introduced would be four gravitini and a SU, 2) gauge field, Va.

As an example, the gravitini appear in the spin-connection in the covariant derivative.

The latter is also covariant with respect to local SI(2) gauge transformations due

to the introduction of Va. The action (5-11) does not contain either of these fields

as it is neither N = 4 locally supersyrnmetric or SI(2) gauge invariant. Thus, in

the g-twisting, we must set the gravitini to zero. In order to maintain this ansatz,

however, we must restrict the local supersymmetry of the action so that the gravitini

may not be transformed away from zero. Since the local supersymmetry variations of

the gravitini, a,,', are given by the covariant derivative of the local supersymmetry

parameter, we must find a covariantly constant anti-commuting parameter:

6(a," A= D EA = OaC A _ Wact0 EOA+ VaB AEB = (4.12)a a a

To do this, we accentuate our procedure in analogy with the twisting in D = 4 N = 2

conformal supergravity backgrounds 17]. We introduce a scalar anti-commuting pa-

rameter, by A = 6cA having embedded the SI(2) gauge field in the SU(2) spin

,36,3A V AjcBconnection: Waa aB . All supersymmetries are then lost with the excep-

tion of the one generated by the scalar charges. The corresponding transformations

'The construction of D = 3 N = 4 gauged supergravity along with its explicit couplings to
matter is beyond the scope of this work.
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will be given later. We then identify this curved background with the geometry of

M.

4.3.3 Two Dimensions

To illustrate the generality of our g-twisting procedure, we offer an example in two

dimensions. As the Lorentz group in two dimensions is U(1), our supersymmetric

theory must have this abelian automorphism group. This means that the theory

must be N = 2 supersymmetric. As our action we take

SSUSY 2Xpa 1 -Ce(7a).,3,qaV)O] 
D=2 d 0,9a A 2 V) (4.13)

where and.X are scalar fields and is a complex spin- 1 field. This action is invariant2

under the supersymmetry transformations,

[Q. I 01 A] iOct I

-2 (_Ya).,,q.0 [Q.,00] -2(-y').,3,9aA (4.14)

These form the D = 2 N = 2 supersymmetry algebra

1Q.,QO = -i2(,Ya).Oaa (4.15)

Upon defining = l + iOc,2 and denoting the new fermionS as ocA A = 2,

we define the g-twist to be

Tg O.B -+ O.,3 = [i (-,a ),,,,3 A. - 73) o,,3 - C.OA]
2

Tg c

Tg A c� (4.16)

The D = 2 analog of the procedure discussed in the previous sub-section but with

SU(2) replaced by U(1), may now be applied to the action 5.13). It results in the
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g-twisted action

-D-2 2XEb 2X V/g-[ V a2fd B,9,, Ab + d Aa)A + cAc] (4.17)

This is the gauged fixed, abelian BF action in two dimensions.

4.4 Mapping to Chern-Simons

As is well known, Chern-Simons theory is a special case of a BF theory in which

the Aa and Ba fields are identified 6. At the level of the fields this is a purely formal

operation. However, when one considers that Aa is a U(1)-valued gauge field and Ba

is a singlet under that gauge group, one realizes the absence of a representation theory

prescription for the identification. At the level of symmetries, both fields transform as

the exterior derivative of a scalar parameter. Thus, Chern-Simons theory is strictly a

special case of BF theory only at the level of the structure of the fields in the action.

Although this is a phenomenon in the gauge sector of the theory, we might expect

similar behaviour with the space-time symmetries, if we try to obtain Chern-Simons

via the g-twisting of a supersymmetric theory. Indeed, we will see that if we use the

naive version of SSUS', there is no group theoretic prescription, in terms of SU(2)

representations, for the gt-twist . Our map will be purely in terms of the fields. After

seeing this, we will then turn to S"Us' (in the second sub-section), for which both

the twist on the fields and the group theoretic interpretation are available.

4.4.1 g-Twisted SUSY with and V) Identified

Since we already know that A,,, and must be identified, we start by identifying X

and V) in eqn. (5.5) so that we take the action to be

USY dIX[(ga 1,OaB
SOS 00a A - W').319.0,3B] (4.18)

2

6In order to get the non-abelian Chern-Simons theory, a term which is cubic in the field must
be added to the BF lagrangian.
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Here, A and are now real bosons 7 and �),A represents a pair of real spin- 1 fields,
2

A = 2 Naively, we might define the g-twist by the first line in eqn. 59) along

with 7g- A and Tg : - c. Using this in SCSUSY and applying the procedure

outlined in sub-section 5.3.2), we arrive at the action

SCS = ' Id 3XE.b`A,,0,A, + Id 3X V/g[(V'A,,)E + c',Lc] (4.19)
2

Once again, we have switched the Grassmann parity of the fields. Of course, this is

the gauge fixed abelian Chern-Simons action.

As there are only two real fermions in this action, there is only a global SO(2)

invariance, not SU(2). Thus we are unable to associate the Lorentz symmetry of SCS

with the diagonal sum of two SU(2)'s and there is no group theoretic justification

for taking the internal index on the fermions to be Lorentz spinor indices, in the

definition of the twist. However, we simply point out that if this is done at the level

of the fields, then the Chern-Simons action is obtained.

4.4.2 g-Twisting S'SUSY

There is, however, a way to obtain the Chern-Simons action - actually two copies -

while having a group theoretic justification. We start with the action Sugy 56)

which differs from Ssusy by surface terms. Now we take the internal SI(2) indices

on XFA to be Lorentz spin-! indices. Again this amounts to re-defining the Lorentz2

group to be the diagonal sum of the two SU(2)'s. Then the twist is defined by

Tg XFaB - XP,,, = 1 [_Ya)., (Aa + iBa) + iC,,,,3(E + iA)] (4.20)
72

along with a change of Grassmann parity. 7-9 acts on the scalar fields as before

(5.9). Performing these replacements in S'SUSY and applying the procedure outlined

7The real parts of the corresponding fields from the previous sub-sections.
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in sub-section 5.3.2), we obtain

cZ2 -- f d3X [,61bcAaObA, + bcBaabBc]
,-,Cs 2

- f d 3 X V/g- [(V'Aa)E + (V'B,,)A - cAc - bLb] (4.21)

This is the action for two uncoupled copies of the gauge fixed Chern-Simons theory.

Curiously the appearance of more than one gauge field is a phenomena in extended

supersyrnmetric Chern-Simons theories [1 8]. Identifying the set of fields (Ba, A, b, b)

with the set (Aa, E, , c) reduces this to (twice) the action for one Chern-Simons

gauge field 5.19).

4.5 The g-Twisted Super-Algebra

In the context of gauge fixed theories, "supersymmetry" is to be understood as a set

of transformations generated by Grassmann odd charges which take fields of ghost

number n into fields of ghost number n ± . Vector super-charges of ghost number I

were discovered for the three-dimensional Chern-Simons theory in the Landau gauge

in ref. 19]. It was soon thereafter realized that the same theory is further invariant

under the anti-BRST transformations and another vector generator both of ghost

number - [ 1 3]. The B RST generator and the ghost number - vector generator were

found to close on translations, thereby forming an N = 2 supersymmetry algebra. In

addition, the anti-BRST generator and the ghost number generator form another

N = 2 superalgebra. The N = 2 algebra, including the BRST generator, was then

found to hold for the two- and four-dimensional non-abelian BF theories 14, 15],

and was generalized to arbitrary dimensions in ref. 16]. It was used to prove the

perturbative finiteness of the D = 3 Chern-Simons theory 20] and of the BF theory

(see 16] and references therein). We will now extract these charges and algebras from

our N = 4 supersymmetry algebra (5.8) via twisting.
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The g-twist acts on the super-charges as

7g Qa.B 4 Q.,3 Q. 'CaO Q

Tg Q.B -+ QaO (Y').OQ. + C,,,,,3 Q (4.22)

In the absence of covariantly constant vectors, only the scalar super-charges are
3 -charges is conserved.

conserved on curved manifolds. On R the full set of super

Note that since the supercurrents were originally a product of a Grassmann odd and

the derivative of a Grassmann even field, the Grassmann parity of the super-charges

remains the same, namely odd.

Performing the map on the N = 4 supersymmetry algebra (5.8) we find the g-

twisted algebra whose only non-trivial anti-commutators are

fQ.,Qb = Z2'6.b-,ac fQ.,Q = -i2,9. IQQ,,l = i2a, . 423)

Q and its complex conjugate are nilpotent.

The supersymmetry transformations 5.7) now take the forms:
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[Q,.,4,,]

[Q Al

W C1

IQ, C11

[0, A.]

[Q, A]

IQ, C1

IQ, C11

9,, (c I 

0 

iE 

-A 

9, (c - i Y) ,

0 

_ZE 

-A ,

i 19a (1� - i b) ,

0 

iA ,

_E 

-iOa(c+ ib) ,

0 

-iA ,

_E .

-1Eab,19-'(C + ibl)

-ia,,,(c - ib) ,

iAa ,

-Ba ,

-'Eakac(C - ib')

iaa(cl + ib) ,

-iAa ,

-Ba ,

-kab,&(C - ib) ,

-Oa (c + ibl) ,

iBa ,

-Aa ,

ifab,19C(C + ib) ,

-Oa (c - i Y) ,

-iBa ,

-Aa (4.24)

These are symmetry transformations for the three-dimensional, gauge fixed BF ac-

tion. Upon defining Q = s is' we find the BRST (s) and anti-BRST (s') transfor-

mations to be
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[Q, B.]

[Q, El

IQ, bj

I Q, YJ

[Q, Bal

[Q El

IQ, bj

I Q, YJ

[Qa, Abl

[Q., Al

I Qa, C1

I Q a, C'j

[Qa, Abl

[QaA]

I Qa, C1

IQ., c I

I [Q., Bbl

[Qa El

I Qa, bj

I Qa, YJ

I A, Bbl

A El

IQa1 bj

IQ, VI



= 9.c s B.]Is, A,,]

Is, A]

is, 1

is, C I

18', A.]

IS', A]

IsCj
IS/, tl

9,, b

0 

0 

- E

0 

0 

-A

9ab/

0 

E 

0 

Is, l

is, bj

Is, Yj

IS', Bal

IS/, El

V, bj

is', b1j

19a C'

0 

A 

0 (4.25)

vector super-charges, Sa and s'aSimilarly, the transformations generated

defined byQa = Sa+ is' are found from

by the real,

(5.24) to be

-Cabcacb

-19aC ,

0 

-Aa ,

-EabcaY

-0a Y ,

Ba ,

0 

-EabcOCC

-0ab ,

0 

-Ba ,

- Eabcacb'

-OaC ,

Aa ,

0 (4.26)

The vector super-charges along with the scalar BRST and anti-BRST super-charges

satisfy the superalgebra

Ifsa,561 = Eabcac , I Sa, S' = 9a , I -,ga ,Isa,$ = (4.27)

with all other combinations vanishing. The BRST symmetry and the symmetry

generated by the vector super-charge, a , are in agreement with the results of 16].

The transformations of the anti-BRST and sa charges were not previously given for

the case of BF theories. Our results verify the general statement that s' and s' may
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[SaBb]

18a EJ

18a, bi

18a, V1

8', Bb]

1 El
Isa
is', bj

a

as', Yj

[Sa, Ad

[Sa, Al

I Sa, C1

I Sa, C I

Is/, Ad

a

IS', A]a

Isa , C1
I T

Isa



be obtained from s and s, respectively, via interchanges of ghosts and anti-ghosts.

Due to the first order nature of the classical BF action this takes the form c 4 ,

b' 4 -c, b -+ c and - -b.

Our superalgebras close on-shell only. Superfield formulations of the supersym-

metric theories in section 52 are expected to yield, upon g-twisting, off-shell closure

of the algebras 5.23) and 5.27).

4.6 Relating BF to TFT's

As mentioned before, twisting a supersymmetric action to a TQFT requires only the

first step in our g-twisting process in that the Grassmann parity of the fields is not

changed. Performing the Grassmann parity change twice is equivalent to the identity.

Thus if we perform a Grassmann parity change on the BF action, we expect to find

a TQFT. Let us see this explicitly.

Upon making the replacements,

Aa Pa 1 i Ba Pa2

A �j E

C -4 UU1 b UU2

C, Vi Y V2 (4.28)

with the Grassmann parity assignments,

FIELD SPIN GRASSMANN PARITY

Pai 1 odd

0 odd

Vi 0 even

'xi 0 even

in the three dimensional BF action (5.11), we obtain

I .1 d3XEabc ij

STQFT STQFT Z - Pai(9bPcjf (4.29)
2
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where
2

STQFT d3X V/-g [V,,=, Va �0, + P,, V.�il (4.30)

Making the same replacements in 5.25) yields the BRST transformations under which

STQFTis invariant. We record them for completeness:

IS, Pai I '9a=i

18"Xil 0

IS, �j 0 (4.31)

It is then easy to see that

2

STQFT 8, d3 X.�Ig- P7Va�Oij (4.32)

Since the last term in STQFT is metric independent, the energy-momentum tensor

from the latter action is s-exact. Of course, starting with this TQFT action and

inverting the replacements 5.28) leads us back to the BF theory.

Alternatively, we could start with our action 5.6) and perform the usual TQFT

twist defined to be the map

1 =[(-Ya).,, + iC.,3 6 + k2)]'TTQFT TaB - TO 2 (Pal + iPa2) (4.33)

which leaves the spin-0 fields, = 1 (Vl + iV2) and A (Wl + iZV2) along with72 72

the Grassmann parity of the fields unchanged. With this prescription, we find that

the action, S'SS' becomes STIQFT up to surface terms. If we denote the operation

of changing the Grassmann parity of the fields by g, then this information may be

encoded in the following diagram:
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T

Figure 1: The TFT Triangle.

The last term in STIQFT does not normally appear in topological sigma models

(even flat ones). Its presence is idiosyncratic to three dimensions. It is invariant

under the BRST transformations of eqn. 531). Although this part of the action has

ghost number 2, the full action remains invariant under the U(1) transformation

with weights (-)' for pi and (-)'+' for .

A similar procedure may be performed using the Chern-Simons action, SS, 5.21).

We find only STQFT instead of STQFT; that is g:Scs - STQFT. The map is not

invertible as we cannot obtain the Chern-Simons action from g: STQFT- In other

words, only the gauge fixing and ghost actions of the Chern-Simons theory may be

obtained from STQFT (or STQFT)-

4.7 Conclusion

We have defined supersymmetric actions for matter fields which when gtwisted (a

twist plus Grassmann parity change) yield gauge fixed, abelian BF theories in three

and two dimensions. In three dimensions, our theory is N = 4 supersymmetric while

in two dimensions it is N = 2 supersymmetric. It has also been shown how to obtain

the gauge fixed Chern-Simons theory via a g-twist . Furthermore, a Donaldson-

Witten TQFT is obtained via the usual twisting applied to our supersymmetric action.

This yields a scheme for mapping the BF theories into TQFT's. For the examples

studied we can associate a topological field theory triangle explicitly illustrating the
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maps which relate the supersymmetric, BF and TQFT actions.

The non-abelian case has not been addressed in this work. It would also be inter-

esting to check for possible connections between the observables of the BF theories

(linking numbers) and those of the TQFT's. Indeed, we expect that our procedure

may be generalized to arbitrary dimensional manifolds (without torsion).

Appendix: Conventions

Our conventions are as follows. A Majorana spinor, ip', in three dimensions is

real and has two components. Our gamma matrix conventions in Minkowski space

are -a M (o, 1, _i0,1 i,3). We have the useful identity (_yayb)c, = ab CCO - e'bc (-Yc) .,3

The charge conjugation matrix, C = = o, 2 acts as V) = C3V)3 with CC-f =

&,176/1. Note that since C is imaginary, V),, is imaginary. The metric in Minkowski

space is = diag(l - - ). For manifolds with Euclidean signature, the gamma

matrices are -,a = (0,2,a1,a 3). With these conventions, 0c(V),) is still real (imagi-

nary). The space-time Levi-Cevita tensor is defined by 012 = 1 such that 6abc Cdf -

6a [%e6cf]. Internal or SU(2) doublet indices are lowered with the real symplectic

metric AB as OA CAB = OB and raised as CAB OB ?pA . A bar is used to indicate

complex conjugation.

-,a (0,2, _y3 = 0,3In two dimensions, our gamma matrices are Z91) and . These

satisfy -,a-yb = ,ab - Eab ly3and -y3lya Cab 7b. Otherwise, our conventions are in

analogy with three dimensions.
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Chapter 

REAL TI1\4E PROPAGATOR

FRO1\4 FIRST QUANTIZATION

Abstract

We modify the usual path integral for a non-relativistic particle to include

the eect of a bath of identical particles. For a thermal background, the

matrix propagator of the real time formalism is recovered by making use

of a parametrized form for the action.
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5.1 Introduction

The understanding of field theories has in many ways benefitted from studying their

behavior in urved space-time. Among the interesting features revealed, the most

well known is perhaps the possibility of particle creation, which occurs even for a free

theory. Whether i cosmological context or i explaining Hawking's radiation, the

creation of particle exist on general ground, and has its origin in the ambiguity in

identifying a vacuum state for the theory[l]. Because of these created particles, field

theories in curved spacetime raise issues similar to field theories at finite temperature

(in and out of equilibrium). Also, it has been suggested that various cosmological and

black hole models are best described by string theory (especially near singularities).

But at present, the only available version of this theory is in a first quantized form.

In this context the question arise of how to describe physics in a bath from a first

quantized language. As a step in that direction, we investigate the same issue for

particles.

But care must be exercised in the choice of quantities to be computed. For a

relativistic scalar field in curved spacetime, it can be shown that the usual Feyninan

path integral in fact correspond to an expectation value between 10)i, and 10),,,t

vacua[2] (at last when these asymptotic regions exist). But this raises difficulties, as

can be seen in a simplified model for cosmological expansion in (compactified I I

dimension. Suppose the background geometry of the scalar field has a metric given

by

ds = C (77) (di72 _ dX2) (5-1)

where -o < 7 < oo and < x < 2. Consider the case where the conformal factor

C (rl) undergoes a sudden jump from r1l to r/2 at 7 = 0. With Tt, (7, x) denoting

the energy-momentum tensor, one finds the following for this model[2]. For 7 < ,

i.01TOO10)i"� is simply the vacuum energy, while for > the same quantity is the

sum of the vacuum energy and of the created particles, a sensible result. In contrast,

OUt(OJToOJO)i,, is just the vacuum energy for both range of 77. Moreover, ut(OITI 10)i,

is a complex uantity, and is thus unsuited as a source term in Einstein's equations.
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To avoid such problems, we will make use of the real time formalism. which, owing

to its causal structure, is appropriate for treating initial value problems[3]. As part

of an effort to understand how this formalism can be used in a first quantized theory,

we will construct the (bare) propagator for non-relativistic bosons in the presence of

a (thermal) ackground.

5.2 An Interpretation of the Real Time Propaga-

tor

The time contour we adopt is the one where time goes from - o to oo just above

the real axis, and returns to -oo just below. With this path, the Green function of

the system takes a matrix form[4]:

G(xy) (TpO(x)01(y)) _= TrJTp(O(x)01(y))�J

GF (X, y) G (x, y) (5.2)

G_ (x, y) dF (X, Y)

where

GF(XY = TO(x),O1(y)))

G+(xy = 0(y)O(x))

G-(xy = 0x),01(y))

GF(XY = (T('O(X)O1(Y))) (5.3)

Here, Tp is the path ordering operator along the time contour, x, y hold for spacetime

points and fi is the density matrix. As the time component of each field in the

bracketed pair can either be above of below the real axis, there are clearly four

distinct objects, as given in Eq. 05.3). T and are respectively the time-ordering and

anti time-ordering operators.

Suppose e now restrict ourselves to the case of free, non- relativistic bosons in
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thermal equilibrium in I dimensions. The evolution is governed by the Lagrangian:

V 2
L dx t (x) 2m O(x) (3.4)

where the field V)(x) obeys the equal time canonical relation (x and y obviously denote

here only the space variable):

[10(x 0 Ot (Y' 0 = 6(x - Y)

By expanding V)(x) in modes, constructing the corresponding Fock space and taking

note of the translation invariance, one then get for Eq.(5.3) in momentum space:

2

GF (PO, Px) 27rn(p)6(po - PX (5.6)
A 2m

PO -C� + E

2

G (O, P. = -27m(p)6(po - Xi (5.7)
2m

G_ (O, p = 27r(I - n(p))6(po - P� (5.8)
2m

GF (PO, Px = G' (5.9)

where n (p) is the Bose-Einstein distribution.

In first quantization, we identify GF in Eq. 5.2) as representing the following series

of processes. A particle evolving (in the path integral sense) from the spacetime point

(xi, ti) to (Xf tf ) will, in the presence of a bath, undergo various and distinct class of

evolutions. The first term in Eq.(5.6) represents the usual Feynman propagator, But

because of the bath, particle exchange can also occur during the evolution. As the

initial particle evolves, it can be absorbed in the bath, and the final point (xf , tf be

effectively reached by another particle. Eq.(5.6) shows that this process requires the

exchanging particles to be on shell. It is also clear that this exchange process could

appear an arbitrary number of times between (xi, i) and (xf , tf ).

In a similar fashion, G is taken to represent many processes. The simplest of

them is when a particle evolves from (xi, ti) to some point (x', t') (with t > tf), where

it is annihilates with a "hole" that departed at (xf , tf ). Also, in analogy with the GF
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case, one must also consider all the possible number of exchanges with other particles

during the evolution. GF and G_ can be thought as respectively representing te

same processes as GF and G but inverted (holes playing the role of particles ad

vice-versa).

We now proceed to make these ideas quantitative by using a formulation that

allows for evolution forward and backward in time.

5.3 Parametrization and Gauge Fixing

In first quantization, a parametrized version of the free particle is given by the

actionlIDI:
J'dT poi - A(po - P�" (5.10)

0 2m

where is the parameter time along the world line of the particle in space-time;

without loss of generality, we take the length of the world line to be unity. In this

formulation, the dynamical variables are t and x, along with the associated momentum

po and px respectively. The Lagrange multiplier A enforces the constraint = po -

-2 = . The Green function is then computed as:2m

isG(xf tf; xti) f Dpo Dt Dpx Dx DA e (5.11)

with boundary conditions x(O = xi, t(O) = ti, x(l = xf, and t(l) = tf. By discretiz-

ing Eq.(5.11), one obtains[6]:

dp. p -xi) dpo ipo (tf - ti) d A po -
G(xf tf; Xiti) 27r e 27r e- DA e-'fol P�_ (5.12)

or in Fourier space:

G(po, p.) DA e-i(po-Zl) f d, 2- (5.13)
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Using the constraint R, we consider two versions of the gauge symmetry of the action

i n Eq. 5 1 0):

JX = [X, �'H] �Px
M

it = [t, �H]

JA =

JPX = 6P = (5.14)

or

Jx = [x EAR] EAPE
M

it = [t EAR] EA

JA = (EA)

6PX = 6P = (5.15)

In both cases, we assume that the symmetry parameters vanishes at the end points

�(O = �(I = (O = E(1 = and that the orientation of the world line is preserved.

Making use of Eq.(5-14), the finite transformation on A is A(T = ��' + A(T)d7

(with h(,r) ail arbitrary function that vanishes at the end points of the world line)

and one may gauge fix the system by imposing = Now since A =- fl d A is gauge

invariant, Eq. 5-13) may easily be evaluated with f DA ff. dA with the result:

p2G(po, p = 27r6(PO ) (5-16)
2m

Contrary to expectations, one does not recover the Feynman propagator when using

the symmetry of Eq. 5.14). A similar feature also occurs for the relativistic particle[2].

An interesting alternative is offered by Eq. 5.15), which in the case of a relativistic

particle is in direct relation with the diffeomorphism of the einbein Lagrangian[7].

Using the gauge symmetry of Eq. 5.15), the finite transformation on A is A(,r)

d' A(7) . As before, A = fl dr A is gauge invariant. But now, a function Al T) thatdr'
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goes to zero once (say), is not gauged related to aother A2(7) that does riot go to zero,

even though 1 = A2- Consider for instance all functions A('T) such that AO > and

A(1 < 0. W:� associate all the corresponding contributions to G(pop,). There are

first the class of functions that cross A = for only one value of T. These contribute

to Eq. 5 13),
00 0 00 - -2 )(Al +A2)

fo dAl f 00 dA2 e-'(P 2-

To this process, we include a weight EA(p) that accounts for the presence of the bath.

Here, is the infinitesimal quantity that regularize Eq.(5.17), and one gets:

2

7A(p)J(po - 2

Another class is formed by the functions A(T) that are zero for three values Of T. If

the weight to go from A < to A > is EB(p), we obtain for this class:

7r 2
-A(p)B(p)A(p)6(p0 - (5.19)
2 2

Adding the contributions from classes made of functions with 5 79... crossing points,

we recover G+ given in Eq.(5.7) as long as A(p = I - 2n(p) and B(p = 2n(p).

In a similar fashion, GF will be constructed of all A(T) such that AO > and

A(1 > 0. Cearly, the simplest class is the set of A(T) with no crossing points.

Again, using Eq. 5.13), and f DA fo' dA, we get the zero temperature Feynman

propagator, the first term in Eq.(5.6). But there are also contributions by functions

with two crossing points, they are:

p2
_A(p)B(p)6(po (5.20)
2 2m

where we appealed to the same weights as before. Summing functions with 46,8...

crossing points, we recover GF given in Eq.(5-6)

In just the opposite way, we may look at the functions A(T) such that AO < 

and A(1 > to obtain G- and A(T) such that AO < and A(1 < to obtain GF-
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In this way, the real time matrix propagator is recovered using first quantization.

5.4 Conclusion

To develop ays of dealing with finite temperature phenomena from the point of view

of a first quantized theory, we analyzed the case of non-relativistic bosons. We have

identified how one can incorporate the effect of the bath on the propagation, in the

special case f thermal equilibrium, in analogy with the case of relativistic particles

and strings[2]. Clearly, a more general distribution is found in various cosmological

and black hole contexts and further work could seek to extend the present analysis

to those cases'. Moreover, it would be desirable to derive the weights A(P) and B(p)

a priori, based for example of the development of the background geometry.
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