Atiyah-Bott Theory for Orbifolds and Dedekind Sums

by
Ana M. L. G. Canas da Silva
Licenciatura em Matemática Aplicada e Computação
Instituto Superior Técnico, Universidade Técnica de Lisboa, 1990
Submitted to the Department of Mathematics in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Mathematics
at the
Massachusetts Institute of Technology
February 1994
© 1994 Ana M. L. G. Canas da Silva. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part.

Signature of Author Department of Mathematics January 10, 1994

Certified by \qquad Thesis Supervisor

MASSACHUSETS WSTIUTR
 ne trumbidgy

APR 251994
Librimites
Science

Atiyah-Bott Theory for Orbifolds and Dedekind Sums

by
Ana M. L. G. Canas da Silva
Submitted to the Department of Mathematics on February 1, 1994 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mathematics

Abstract

This paper shows how to deduce the reciprocity laws of Dedekind and Rademacher, as well as n-dimensional generalizations of these, from the Atiyah-Bott formula, by applying it to appropriate elliptic complexes on a "twisted" projective space. This twisted projective space is obtained by taking the quotient of $\mathbf{C}^{n}-0$ by the action $$
\rho(\omega)\left(z_{1}, \ldots, z_{n}\right)=\left(\omega^{q_{1}} z_{1}, \ldots, \omega^{q_{n}} z_{n}\right), \quad \omega \in \mathbf{C}^{*}, q_{i} \in \mathbf{Z}^{+}
$$ where the q_{i} 's are mutually prime. Since this is not a manifold, it is necessary to adapt Atiyah-Bott to the setting of orbifolds.

Thesis Supervisor: Victor Guillemin
Title: Professor of Mathematics

Contents

1 Fixed point formula for orbifolds 5
1.1 The case of good orbifolds 5
1.2 The case of general orbifolds 6
2 Application to a twisted projective space 8
2.1 General formula 8
2.2 The limit case 10
2.3 The case $n=3$ and reciprocity laws 11
2.4 Generalized Dedekind sums 13
2.5 Counting lattice points 15

Introduction

Let Y be the "twisted" projective space obtained by taking the quotient of $\mathbf{C}^{n}-0$ by the action

$$
\rho(\omega)\left(z_{1}, \ldots, z_{n}\right)=\left(\omega^{q_{1}} z_{1}, \ldots, \omega^{q_{n}} z_{n}\right), \quad \omega \in \mathbf{C}^{*}, q_{i} \in \mathbf{Z}^{+}
$$

where the q_{i} 's are mutually prime. We will show in this paper how to deduce the reciprocity laws of Dedekind and Rademacher, as well as n-dimensional generalizations of these formulas, from the Atiyah-Bott formula by applying it to appropriate elliptic complexes on Y. Since the twisted projective space, Y, is not a manifold, this will require our adapting Atiyah-Bott to the setting of orbifolds. The version of Atiyah-Bott needed for our purposes is described in section 1 and the number theoretic applications of it, mentioned above, are discussed in section 2.

1 Fixed point formula for orbifolds

1.1 The case of good orbifolds

Let X be a compact complex manifold of complex dimension n, G a finite group acting on X with action $\tau: G \times X \rightarrow X$. The quotient space $Y=X / G$ is consequently a good orbifold.

Define the Dolbeault cohomology of Y to be the G-invariant cohomology of X, $H^{i}(Y)=H_{G}^{i}(X)$, where $H_{G}^{i}(X)$ are the G-invariant subspaces of $H^{i}(Y), i=1, \ldots, n$. A holomorphic G-equivariant function $f: X \rightarrow X$ induces a quotient map $\dot{f}: Y \rightarrow Y$ and $f^{\sharp}: H_{G}^{i}(X) \rightarrow H_{G}^{i}(X)$ from the pull-back on G-invariant forms.

We will define the Lefschetz number of the mapping \check{f} to be

$$
L(\check{f})=\sum_{i=1}^{n}(-1)^{i} \operatorname{trace}\left(f^{\sharp}: H_{G}^{i}(X) \rightarrow H_{G}^{i}(X)\right) .
$$

We will need the following elementary result:

Theorem. 1.1 Let V be a vector space and $\rho: G \rightarrow A u t(V)$ a representation of a finite group G on V. If $L: V \rightarrow V$ is a G-equivariant linear map, then

$$
\left.\operatorname{trace}\left(L: V_{G} \rightarrow V_{G}\right)=\frac{1}{|G|} \sum_{g \in G} \operatorname{trace}\left(\rho_{g} \circ L\right): V \rightarrow V\right)
$$

where V_{G} is the space of G-fixed vectors in V.

By the above Theorem 1.1, we have

$$
L(\check{f})=\sum_{i=1}^{n} \frac{1}{|G|} \sum_{g \in G} \operatorname{trace}\left(\left(\tau_{g} \circ f\right)^{\sharp}: H^{i}(X) \rightarrow H^{i}(X)\right) .
$$

Supposing, in addition, that $\check{f}: Y \rightarrow Y$ has only non-degenerate isolated fixed points, or equivalently, that $\tau_{g} \circ f$ has only non-degenerate isolated fixed points for all $g \in G$,
we can compute

$$
\begin{equation*}
\sum_{i=1}^{n}(-1)^{i} \operatorname{trace}\left(\left(\tau_{g} \circ f\right)^{\sharp}: H^{i}(X) \rightarrow H^{i}(X)\right)=\sum_{\left\{p \mid\left(\tau_{g} \circ f\right)(p)=p\right\}} \operatorname{sgn} \operatorname{det}\left(1-d\left(\tau_{g} \circ f\right)_{p}\right) \tag{1}
\end{equation*}
$$

by the standard Lefschetz fixed point theorem [GP].

Theorem. 1.2 Under the above conditions we have:

$$
L(\check{f})=\frac{1}{|G|} \sum_{g \in G} \sum_{\left\{p \mid\left(\tau_{g} \circ f\right)(p)=p\right\}} \operatorname{sgn} \operatorname{det}\left(1-d\left(\tau_{g} \circ f\right)_{p}\right) .
$$

1.2 The case of general orbifolds

In order to write formula (1) in a form which makes sense for general orbifolds Y that are not globally quotients of the form X / G (X a manifold, G a finite group), let us determine the actual contribution of a fixed point q of $\check{f}: Y \rightarrow Y$. Still assuming $Y=X / G$, let $p_{1}, p_{2}, \ldots, p_{k}$ be the pre-images of q in X. Replacing, if necessary, f by $\tau_{g} \circ f$ for some $g \in G$, we can assume $f\left(p_{1}\right)=p_{1}$. Let $G_{p_{i}}$ be the stabilizer group of p_{i} in G. Thus, the contribution of q to the Lefschetz number is:

$$
\frac{1}{|G|} \sum_{i=1}^{k} \sum_{\left\{g \in G \mid\left(\tau_{g} \circ f\right)\left(p_{i}\right)=p_{i}\right\}} \operatorname{sgn} \operatorname{det}\left(1-d\left(\tau_{g} \circ f\right)_{p_{i}}\right)
$$

or

$$
\frac{1}{|G|} \sum_{i=1}^{k} \sum_{g \in G_{p_{i}}} \operatorname{sgn} \operatorname{det}\left(1-d\left(\tau_{g} \circ f\right)_{p_{i}}\right)
$$

since f is G-equivariant. In fact,

$$
\sum_{g \in G_{p_{i}}} \operatorname{sgn} \operatorname{det}\left(1-d\left(\tau_{g} \circ f\right)_{p_{i}}\right)=\sum_{g \in G_{p_{1}}} \operatorname{sgn} \operatorname{det}\left(1-d\left(\tau_{g} \circ f\right)_{p_{1}}\right.
$$

because the $G_{p_{i}}$ are conjugate and f is G-equivariant, i.e.

$$
d\left(\tau_{g_{i}} \circ \tau_{g} \circ \tau_{g_{i}}^{-1} \circ f\right)_{\tau_{g_{i}}(p)}=d\left(\tau_{g} \circ f\right)_{p}
$$

Therefore, the contribution of q to $L(\check{f})$ is

$$
\frac{1}{|G|} \cdot k \cdot \sum_{g \in G_{p_{1}}} \operatorname{sgn} \operatorname{det}\left(1-d\left(\tau_{g} \circ f\right)_{p_{1}}\right)
$$

or

$$
\frac{1}{\left|G_{p_{1}}\right|} \sum_{g \in G_{p_{1}}} \operatorname{sgn} \operatorname{det}\left(1-d\left(\tau_{g} \circ f\right)_{p_{1}}\right) .
$$

This motivates the following result (which we will give a proof of elsewhere):
Let $\check{f}: Y \rightarrow Y$ be a holomorphic function from a compact complex orbifold Y to itself, having only non-degenerate isolated fixed points q_{1}, \ldots, q_{m}. Define the Lefschetz number of \mathscr{f} to be

$$
L(\check{f})=\sum_{i=1}^{n}(-1)^{i} \operatorname{trace}\left(\tilde{f}^{\sharp}: H^{i}(Y) \rightarrow H^{i}(Y)\right) .
$$

Taking orbifold charts around each of the q_{i} 's, for a neighborhood Y_{i} of q_{i}, there are :
X and G such that $Y_{i}=X / G$,
a pre-image p_{i} of q_{i}, an isotropy group G_{i}, and a locally well-defined lift f_{i} of f.

Claim: We have

$$
L(\check{f})=\sum_{i=1}^{m} \frac{1}{\left|G_{i}\right|} \sum_{g \in G_{i}} \operatorname{sgn} \operatorname{det}\left(1-d\left(\tau_{g} \circ f_{i}\right)_{p_{i}}\right)
$$

reducing again a global topological invariant to a finite number of local differential computations.

Remark: If $L \rightarrow G$ is a G-invariant holomorphic line bundle and $H^{i}(X, L)$ the cohomology groups obtained by tensoring the Dolbeault complex with L, we can compute the alternating sum of the traces of f^{\sharp} on $H_{G}^{i}(X, L)$ by a sum over the fixed points of $\check{f}: Y \rightarrow Y$ of the terms

$$
\begin{equation*}
\frac{1}{\left|G_{i}\right|} \sum_{g \in G_{i}} \frac{\operatorname{trace}\left(\tau_{g} \circ f_{i}: L_{p_{i}} \rightarrow L_{p_{i}}\right)}{\operatorname{det}\left(1-d\left(\tau_{g} \circ f_{i}\right)_{p_{i}}\right)} \tag{AB}
\end{equation*}
$$

2 Application to a twisted projective space

2.1 General formula

Take Y to be the orbifold obtained by dividing $\mathbf{C}^{n}-0$ by the group \mathbf{C}^{*} where \mathbf{C}^{*} acts by

$$
\rho(\omega)\left(z_{1}, \ldots, z_{n}\right)=\left(\omega^{q_{1}} z_{1}, \ldots, \omega^{q_{n}} z_{n}\right), \quad q_{i} \in \mathbf{Z}^{+}
$$

Assuming q_{1}, \ldots, q_{n} mutually prime, the orbifold Y is non-singular except at the n points:

$$
[1,0, \ldots, 0],[0,1,0, \ldots, 0], \ldots[0, \ldots, 0,1]
$$

which have stabilizers $\mathbf{Z} / q_{1}, \ldots, \mathbf{Z} / q_{n}$, respectively, and thus may be singular. (Notice that when $q_{i}=1$, the corresponding point is non-singular.)

The standard diagonal action of S^{1} on $\mathbf{C}^{n}-0$,

$$
f_{t}\left(z_{1}, \ldots, z_{n}\right)=\left(e^{2 \pi i t} z_{1}, \ldots, e^{2 \pi i t} z_{n}\right)
$$

induces an action \check{f}_{t} on the orbifold Y (since it commutes with ρ). As long as $t \neq 0$, its fixed points are only

$$
[1,0, \ldots, 0],[0,1,0, \ldots, 0], \ldots,[0, \ldots, 0,1] .
$$

Consider the holomorphic line bundle L over Y associated with the representation

$$
\gamma: \mathbf{C}^{*} \rightarrow \operatorname{Aut}(\mathbf{C}), \quad \gamma(\omega) c=\omega^{d} c
$$

i.e., $\quad L=\left[\left(\mathbf{C}^{n}-0\right) \times \mathbf{C}\right] /\left\{[z, \gamma(\omega) c] \sim[\rho(\omega) z, c], \omega \in \mathbf{C}^{*}\right\}$.

In order for L to be well-defined on Y, the condition

$$
q_{i} \mid d, i=1, \ldots, n, \quad \text { or equivalently, } \quad q_{1} \cdots q_{n} \mid d
$$

is required. We will write $d=l \cdot q_{1} \cdots q_{n}$.

Proof. The projection of the hyperplane $z_{n}=1$ of $\mathrm{C}^{n}-0$ on Y contains only one of the singular points, namely $[0, \ldots, 0,1]$. The subgroup of \mathbf{C}^{*} which fixes this cross-section is the group of q_{n} roots of unity that acts as $\rho(\omega)\left(z_{1}, \ldots, z_{n-1}, 1\right)=$ ($\omega^{q_{1}} z_{1}, \ldots, \omega^{q_{n-1}} z_{n-1}, 1$), while $\gamma(\omega) c=\omega^{d} c$ on the fiber of L. We have

$$
\begin{array}{cc}
{[(0, \ldots, 0,1), \gamma(\omega) c]} & \sim[\rho(\omega)(0, \ldots, 0,1), c] \\
\| & \| \\
{\left[(0, \ldots, 0,1), \omega^{d} c\right]} & {[(0, \ldots, 0,1), c]}
\end{array}
$$

hence, in order for L to be well-defined at $[0, \ldots, 0,1]$ we need $q_{n} \mid d$.
Similarly for the other singular points. Q.E.D.

On the cross-section $z_{n}=1, \tau_{q}=\rho\left(e^{2 \pi i \frac{q}{q_{n}}}\right)$ acts by

$$
\tau_{q}\left(z_{1}, \ldots, z_{n-1}, 1\right)=\left(e^{2 \pi i \frac{i q 1}{q_{n}}} z_{1}, \ldots, e^{2 \pi i \frac{q q_{n}-1}{q_{n}}} z_{n-1}, 1\right)
$$

whereas
$f_{t}\left(z_{1}, \ldots, z_{n-1}, 1\right)=\left(e^{2 \pi i t} z_{1}, \ldots, e^{2 \pi i t} z_{n-1}, e^{2 \pi i t}\right) \sim\left(e^{2 \pi i t\left(1-\frac{q_{1}}{q_{n}}\right)} z_{1}, \ldots, e^{2 \pi i t\left(1-\frac{q_{n}-1}{q_{n}}\right)} z_{n-1}, 1\right)$.

We define an action of S^{1} on L induced by letting S^{1} act trivially on the second factor of $\left(\mathbf{C}^{n}-0\right) \times \mathbf{C}$:

$$
e^{2 \pi i t}[(0, \ldots, 0,1), c]=\left[\left(0, \ldots, 0, e^{2 \pi i t}\right), c\right] \sim\left[(0, \ldots, 0,1), e^{2 \pi i t \frac{d}{q_{n}}} c\right]
$$

so the action of $e^{2 \pi i t} \in S^{1}$ on the fiber of L above $[0, \ldots, 0,1]$ is given by multiplication by $e^{2 \pi i t \frac{d}{q n}}$.

Interpreting these results in terms of the lift to the smooth \mathbf{C}^{n-1} covering of this cross-section (which roughly amounts to ignoring the last coordinate z_{n} when it's 1), we conclude that

$$
\tau_{q} \circ\left(f_{t}\right)_{n}=\left(f_{t}\right)_{n}=\text { multiplication by } e^{2 \pi i \frac{d}{q_{n}}}: L_{(0, \ldots, 0)} \rightarrow L_{(0, \ldots, 0)}
$$

$d\left(\tau_{q} \circ\left(f_{t}\right)_{n}\right)_{(0, \ldots, 0)}=\operatorname{diag}\left(e^{2 \pi i \frac{q q_{1}}{q_{n}}}, \ldots, e^{2 \pi i \frac{q q_{n}-1}{q_{n}}}\right) \cdot \operatorname{diag}\left(e^{2 \pi i t\left(1-\frac{q_{1}}{q_{n}}\right)} z_{1}, \ldots, e^{2 \pi i t\left(1-\frac{q_{n}-1}{q_{n}}\right)} z_{n-1}\right)$.
Summing over the q_{n}-th roots of unity, $\omega=e^{2 \pi i \frac{\rho}{q_{n}}}, q=0,1, \ldots, q_{n}-1$, the contribution of $[0, \ldots, 0,1]$ to the Lefschetz number of \check{f}_{t} is

$$
\frac{1}{q_{n}} \sum_{q=0}^{q_{n}-1} \frac{e^{2 \pi i t i t} \frac{d}{q n}}{\prod_{m \neq n}\left(1-e^{2 \pi i\left(1-\frac{9 m}{9 n}\right) t} \cdot e^{2 \pi i \frac{s+2 m}{q_{n}}}\right)} .
$$

Similar computations yield similar results for the other fixed points. Adding all these contributions up we finally get for the global Lefschetz number of \dot{f}_{t} :

$$
\begin{equation*}
L\left(\check{f}_{t}\right)=\sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{q=0}^{q_{r}-1} \frac{e^{2 \pi i \frac{d}{q r}}}{\prod_{m \neq r}\left(1-\epsilon^{2 \pi i\left(1-\frac{m m}{q r}\right) t} \cdot e^{2 \pi i \frac{q 9 m}{q r}}\right)} . \tag{2}
\end{equation*}
$$

On the other hand, the Lefschetz number of \check{f}_{t} was defined to be

$$
L\left(\check{f}_{t}\right)=\sum_{i=1}^{n-1}(-1)^{i} \operatorname{trace}\left(\breve{f}_{t}^{\sharp}: H^{i}(Y, L) \rightarrow H^{i}(Y, L)\right) .
$$

We assume $H^{i}(Y, L)=0$ for $i>0$. As for $H^{0}(Y, L)$ this is the global holomorphic sections of L and these are just the monomials on $\mathbf{C}^{n} z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}$ which transform under the action of \mathbf{C}^{*} according to the law

$$
\left(\omega^{q_{1}} z_{1}\right)^{m_{1}} \cdots\left(\omega^{q_{n}} z_{n}\right)^{m_{n}}=\omega^{d} z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}
$$

and hence $q_{1} m_{1}+\ldots+q_{n} m_{n}=d$. Thus the dimension of $H^{0}(Y, L)$ is the number \# of integer lattice points (m_{1}, \ldots, m_{n}) satisfying $q_{1} m_{1}+\ldots+q_{n} m_{n}=d, m_{1}, \ldots, m_{n} \geq 0$. We will compute this dimension in the next section by studying the limit of (2) as $t \rightarrow 0$.

2.2 The limit case

Although our formula doesn't hold for $t=0$ since \check{f}_{0} leaves all points fixed, we can compute its limit as $t \rightarrow 0$. Notice that the dimension of $H^{0}(Y, L)$ is independent of t.

So, when $t \rightarrow 0$,

$$
\begin{gather*}
\#=\lim _{t \rightarrow 0} \sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{q=0}^{q_{r}-1} \frac{e^{2 \pi i t \frac{d}{q r}}}{\prod_{m \neq r}\left(1-e^{2 \pi i\left(1-\frac{q_{m}}{q r}\right) t} \cdot e^{2 \pi i \frac{q q_{m}}{q r}}\right)} \\
\left.=\sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{q=1}^{q r-1} \frac{1}{\prod_{m \neq r}\left(1-e^{2 \pi i \frac{q q_{m}}{q_{r}}}\right)}+\lim _{t \rightarrow 0} \sum_{r=1}^{n} \frac{1}{q_{r}} \frac{e^{2 \pi i t \frac{d}{q_{r}}}}{\prod_{m \neq r}\left(1-e^{2 \pi i\left(1-\frac{q_{m}}{q_{r}}\right) t}\right.}\right) \tag{3}
\end{gather*}
$$

where the last limit can be computed writing a Laurent series for each summand:

$$
\frac{a_{n-1, r}}{t^{n-1}}+\ldots+\frac{a_{1, r}}{t}+a_{0, r}+\ldots
$$

As $t \rightarrow 0$ the sums of the negative terms in these series must cancel and we end up with

$$
\sum_{r=1}^{n}\left(a_{0, r}+\frac{1}{q_{r}} \sum_{q=1}^{q_{r}-1} \frac{1}{\prod_{m \neq r}\left(1-e^{2 \pi i \frac{q_{q}}{q_{r}}}\right)}\right)
$$

as the number of non-negative integral solutions of the equation

$$
q_{1} m_{1}+\ldots+q_{n} m_{n}=d
$$

Now we can write

$$
\sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{q=1}^{q_{r}-1} \frac{1}{\prod_{m \neq r}\left(1-e^{2 \pi i \frac{q q_{m}}{q_{r}}}\right)}=\sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{\eta^{q_{r}}=1, \eta \neq 1} \frac{1}{\prod_{m \neq r}\left(1-\eta^{q_{m}}\right)}
$$

and relate this to generalized Dedekind sums according to [HZ] (see section 2.4).

2.3 The case $n=3$ and reciprocity laws

For $n=3$ (the first interesting case), formula (3) reads:

$$
\begin{aligned}
& \#\left\{\left(m_{1}, m_{2}, m_{3}\right) \in \mathbf{Z}^{3} \mid q_{1} m_{1}+q_{2} m_{2}+q_{3} m_{3}=d, m_{1}, m_{2}, m_{3} \geq 0\right\}= \\
& \underbrace{\sum_{r=1}^{3} \frac{1}{q_{r}} \sum_{q=1}^{q_{r}-1} \frac{1}{\prod_{m \neq r}\left(1-e^{2 \pi i \frac{q q_{m}}{q_{r}}}\right)}}_{A}+\underbrace{\lim _{t \rightarrow 0} \sum_{r=1}^{3} \frac{1}{q_{r}} \frac{e^{2 \pi i \frac{d}{q_{r}}}}{\prod_{m \neq r}\left(1-e^{2 \pi i\left(1-\frac{q_{m}}{q_{r}}\right) t}\right)}}_{B}
\end{aligned}
$$

Let's deal with each of these terms A and B in turn.

A:

We can write

$$
A=\sum_{r=1}^{3} \frac{1}{q_{r}} \sum_{\eta^{q r=1, \eta \neq 1}} \frac{1}{\Pi_{m \neq r}\left(1-\eta^{q_{m}}\right)} .
$$

Setting $\quad q_{3} \equiv k_{1} q_{2} \bmod q_{1}, \quad q_{1} \equiv k_{2} q_{3} \bmod q_{2}, \quad q_{2} \equiv k_{3} q_{1} \bmod q_{3}$, we find

$$
A=\sum_{r=1}^{3} \frac{1}{q_{r}} \sum_{\eta^{q_{r}=1, \eta \neq 1}} \frac{1}{(1-\eta)\left(1-\eta^{k_{r}}\right)}=\sum_{r=1}^{3}\left(\frac{q_{r}-1}{4 q_{r}}-s\left(k_{r}, q_{r}\right)\right)
$$

by the definition of $s\left(k_{r}, q_{r}\right)$ according to [RG, p.15]. But by the Rademacher reciprocity law [HZ, p.96],

$$
\sum_{r=1}^{3} s\left(k_{r}, q_{r}\right)=\frac{1}{12} \cdot \frac{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}{q_{1} q_{2} q_{3}}-\frac{1}{4} .
$$

When $q_{3}=1$ we can take $k_{1}=q_{2}, k_{2}=q_{1}, k_{3}=0$ and the formula reduces to

$$
\sum_{r=1}^{3} s\left(k_{r}, q_{r}\right)=s\left(q_{2}, q_{1}\right)+s\left(q_{1}, q_{2}\right)=\frac{1}{12} \cdot\left(\frac{q_{1}}{q_{2}}+\frac{1}{q_{1} q_{2}}+\frac{q_{2}}{q_{1}}\right)-\frac{1}{4}
$$

which is just the Dedekind reciprocity law [RG].
B:
Each summand in B is of the form $\frac{1}{q_{r}} \cdot \frac{e^{\omega t}}{\left(1-e^{\omega} 1^{t}\right)\left(1-e^{\omega 2_{2} t}\right)}$ for which the constant term in the Laurent expansion is

$$
a_{0}=\frac{1}{q_{r}}\left(\frac{1}{4}-\frac{1}{2} \frac{\omega}{\omega_{1}}-\frac{1}{2} \frac{\omega}{\omega_{2}}+\frac{1}{2} \frac{\omega^{2}}{\omega_{1} \omega_{2}}+\frac{1}{12} \frac{\omega_{1}}{\omega_{2}}+\frac{1}{12} \frac{\omega_{2}}{\omega_{1}}\right) .
$$

Therefore,

$$
B=\sum_{r=1}^{3} a_{0, r}=\frac{1}{4}\left(\frac{1}{q_{1}}+\frac{1}{q_{2}}+\frac{1}{q_{3}}\right)+\frac{l}{2}\left(q_{1}+q_{2}+q_{3}\right)+\frac{l^{2}}{2} q_{1} q_{2} q_{3}+\frac{1}{12} \frac{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}{q_{1} q_{2} q_{3}} .
$$

Next we should compute the left-hand side to see if it agrees. We have

$$
\#\left\{\left(m_{1}, m_{2}, m_{3}\right) \in \mathbf{Z}^{3} \mid q_{1} m_{1}+q_{2} m_{2}+q_{3} m_{3}=d=l q_{1} q_{2} q_{3}, m_{1}, m_{2}, m_{3} \geq 0\right\}
$$

$$
\begin{gathered}
=\sum_{m_{3}=0}^{l q_{1} q_{2}} \#\left\{\left(m_{1}, m_{2}\right) \in \mathbf{Z}^{2} \mid q_{1} m_{1}+q_{2} m_{2}=\left(l q_{1} q_{2}-m_{3}\right) q_{3}, m_{1}, m_{2} \geq 0\right\} \\
=\sum_{m_{3}=0}^{l q_{1} q_{2}}\left\{\left[\frac{\left(l q_{1} q_{2}-m_{3}\right) q_{3}}{q_{1} q_{2}}\right]+1-\varepsilon\left(m_{3}\right)\right\}
\end{gathered}
$$

where
$[x]$ denotes the greatest integer not exceeding x,
$\varepsilon\left(m_{3}\right)=0$ or 1 , with $\varepsilon\left(m_{3}\right)=0$ whenever m_{3} is a multiple of q_{1} or q_{2}, and $\varepsilon\left(m_{3}\right)+\varepsilon\left(l q_{1} q_{2}-m_{3}\right)=1$ when m_{3} is neither a multiple of q_{1}, nor of q_{2}.
Therefore,

$$
\sum_{m_{3}=0}^{l q_{1} q_{2}} \varepsilon\left(m_{3}\right)=\frac{1}{2} \#\left\{\text { integers in }\left[0, l q_{1} q_{2}\right] \text { neither multiples of } q_{1}, \text { nor of } q_{2}\right\}=\frac{l\left(q_{1}-1\right)\left(q_{2}-1\right)}{2}
$$

Also, since

$$
\sum_{k=1}^{p-1}\left[-\frac{k q}{p}\right]=-\frac{(p-1)(q+1)}{2} \quad \text { for } p, q \text { mutually prime }
$$

we get

$$
\sum_{m_{3}=0}^{l q_{1} q_{2}}\left[\frac{\left(l q_{1} q_{2}-m_{3}\right) q_{3}}{q_{1} q_{2}}\right]=\frac{l^{2}}{2} \cdot q_{1} q_{2} q_{3}+\frac{l}{2}\left(q_{3}-q_{1} q_{2}+1\right)
$$

We conclude that

$$
\begin{gathered}
\#\left\{\left(m_{1}, m_{2}, m_{3}\right) \in \mathbf{Z}^{3} \mid q_{1} m_{1}+q_{2} m_{2}+q_{3} m_{3}=d=l q_{1} q_{2} q_{3}, m_{1}, m_{2}, m_{3} \geq 0\right\} \\
=\frac{l^{2}}{2} \cdot q_{1} q_{2} q_{3}+\frac{l}{2}\left(q_{1}+q_{2}+q_{3}\right)+1
\end{gathered}
$$

and, hence, in this case (3) is equivalent to Rademacher reciprocity law.

2.4 Generalized Dedekind sums

When $l=0$, i.e., $d=0$ and the line bundle L is trivial, formula (3) reduces to

$$
1=\sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{q=1}^{q_{r}-1} \frac{1}{\prod_{m \neq r}\left(1-e^{2 \pi i \frac{q q_{m}}{q_{r}}}\right)}+\lim _{t \rightarrow 0} \sum_{r=1}^{n} \frac{1}{q_{r}} \frac{1}{\prod_{m \neq r}\left(1-e^{2 \pi i\left(1-\frac{q_{m}}{q_{r}}\right) t}\right)}
$$

$$
\begin{equation*}
\Leftrightarrow \sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{\eta^{q_{r}=1, \eta \neq 1}} \frac{1}{\prod_{m \neq r}\left(1-\eta^{q_{m}}\right)}=1-\lim _{t \rightarrow 0} \sum_{r=1}^{n} \frac{1}{q_{r}} \frac{1}{\prod_{m \neq r}\left(1-e^{2 \pi i\left(1-\frac{q_{m}}{q_{r}}\right) t}\right)} \tag{4}
\end{equation*}
$$

where the last limit can be evaluated by the Laurent series argument. Letting

$$
\begin{aligned}
\delta_{n}\left(q_{r} ; q_{i}, i \neq r\right) & =\sum_{\eta^{q r}=1, \eta \neq 1} \frac{1}{\prod_{m \neq r}\left(1-\eta^{q_{m}}\right)} \\
\alpha_{n}\left(q_{1}, \ldots, q_{n}\right) & =\sum_{r=1}^{n} \frac{1}{q_{r}} \delta_{n}\left(q_{r} ; q_{i}, i \neq r\right),
\end{aligned}
$$

when $n=2,3,4,5$ we explicitly find the following generalized reciprocity laws.

$$
\begin{array}{ll}
& \alpha_{n}\left(q_{1}, \ldots, q_{n}\right) \\
n=2: & 1-\frac{1}{2}\left(\frac{1}{q_{1}}+\frac{1}{q_{2}}\right) \\
n=3: & 1-\frac{1}{4}\left(\frac{1}{q_{1}}+\frac{1}{q_{2}}+\frac{1}{q_{3}}\right)-\frac{1}{12} \frac{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}{q_{1} q_{2} q_{3}} \\
n=4: & 1-\frac{1}{8}\left(\frac{1}{q_{1}}+\frac{1}{q_{2}}+\frac{1}{q_{3}}+\frac{1}{q_{4}}\right) \\
& -\frac{1}{24}\left(\frac{q_{1}+q_{2}}{q_{3} q_{4}}+\frac{q_{1}+q_{3}}{q_{2} q_{4}}+\frac{q_{1}+q_{4}}{q_{2} q_{3}}+\frac{q_{2}+q_{3}}{q_{1} q_{4}}+\frac{q_{2}+q_{4}}{q_{1} q_{3}}+\frac{q_{3}+q_{4}}{q_{1} q_{2}}\right) \\
n=5: & 1-\frac{1}{16} \sum \frac{1}{q_{i}}-\frac{1}{48} \cdot \frac{1}{q_{1} q_{2} q_{3} q_{4} q_{5}} \sum_{i \neq j<k \neq i} q_{i}^{2} q_{j} q_{k} \\
& -\frac{1}{144} \cdot \frac{1}{q_{1} q_{2} q_{3} q_{4} q_{5}} \sum_{i<j} q_{i}^{2} q_{j}^{2}+\frac{1}{720} \cdot \frac{1}{q_{1} q_{2} q_{3} q_{4} q_{5}} \sum q_{i}^{4}
\end{array}
$$

Remark: It is possible to write the limit term (corresponding to B in section 2.3) in terms of Bernoulli numbers B_{n} defined by

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{B_{n}}{n!} t^{n}=\frac{t}{e^{t}-1}, \\
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{3}, \ldots
\end{gathered}
$$

This is why the coefficients in the final expressions for the α_{n} 's resemble products of Bernoulli numbers.

On the other hand, [HZ, p.100-101] gives results for generalized Dedekind sums of type δ_{n} for n odd, namely

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{k=1}^{q_{r}-1} \prod_{m \neq r} \cot \frac{\pi k q_{m}}{q_{r}}=1-\frac{l_{n-1}\left(q_{1}, \ldots, q_{n}\right)}{q_{1} \cdots q_{n}} \tag{5}
\end{equation*}
$$

where l_{n-1} is a certain polynomial in n variables which is symmetric in its variables, even in each variable, and homogeneous of degree $n-1$. Formula (5) is related to the previous δ_{n} 's and α_{n} 's by

$$
\begin{aligned}
\sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{k=1}^{q_{r}-1} \prod_{m \neq r} \cot \frac{\pi k q_{m}}{q_{r}} & =\sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{\eta^{q_{r}}=1, \eta \neq 1} \prod_{m \neq r} \frac{\eta^{q_{m}}+1}{\eta^{q_{m}}-1} \\
& =\sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{\eta^{q r=1, n \neq 1}} \sum_{j=0}^{n-1} \sum_{I \subseteq\{1 \ldots n\} \backslash r, \# I=j} \frac{(-2)^{j}}{\prod_{i \in I}\left(1-\eta^{q_{i}}\right)} \\
& =\sum_{j=0}^{n-1}(-2)^{j} \sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{I \subseteq\{1 \ldots n\} \backslash r, \# I=j} \delta_{j+1}\left(q_{r} ; q_{i}, i \in I\right) \\
& =\sum_{j=1}^{n}(-2)^{j-1} \sum_{J \subseteq\{1 \ldots n\}, \# J=j} \alpha_{j}\left(q_{i}, i \in J\right) .
\end{aligned}
$$

When $n=3,5$

$$
l_{2}\left(q_{1}, q_{2}, q_{3}\right)=\frac{1}{3} \sum_{i=1}^{3} q_{i}^{2} \quad l_{4}\left(q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right)=\frac{1}{18}\left(\sum_{i=1}^{5} q_{i}^{2}\right)^{2}-\frac{7}{90} \sum_{i=1}^{5} q_{i}^{4}
$$

and it is easily seen that (5) is in agreement with our results for $\alpha_{n}, n=2,3,4,5$. In some sense (4) extends (5) to the case of n even.

2.5 Counting lattice points

Considering again a general line bundle (i.e., arbitrary d, or l), we see that formula (3) provides an expression for the number $\#=\#_{n}\left(q_{1}, \ldots, q_{n}\right)$ of integer lattice points $\left(m_{1}, \ldots, m_{n}\right)$ satisfying $q_{1} m_{1}+\ldots+q_{n} m_{n}=d, m_{1}, \ldots, m_{n} \geq 0$, namely

$$
\begin{equation*}
\#_{n}\left(q_{1}, \ldots, q_{n}\right)=\underbrace{\sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{q=1}^{q_{r}-1} \frac{1}{\prod_{m \neq r}\left(1-e^{2 \pi i \frac{q_{m}}{q_{r}}}\right)}}_{A_{n}}+\underbrace{\lim _{t \rightarrow 0} \sum_{r=1}^{n} \frac{1}{q_{r}} \frac{e^{2 \pi i t \frac{d}{q_{r}}}}{\prod_{m \neq r}\left(1-e^{2 \pi i\left(1-\frac{q_{m}}{q_{r}}\right) t}\right)}}_{B_{n}} . \tag{6}
\end{equation*}
$$

As in the case $d=l=0$ (see formula (4)),

$$
A_{n}=\sum_{r=1}^{n} \frac{1}{q_{r}} \sum_{q=1}^{q_{r}-1} \frac{1}{\prod_{m \neq r}\left(1-e^{2 \pi i \frac{q_{q}}{q_{r}}}\right)}=1-\lim _{t \rightarrow 0} \sum_{r=1}^{n} \frac{1}{q_{r}} \frac{1}{\prod_{m \neq r}\left(1-e^{2 \pi i\left(1-\frac{q_{m}}{q_{r}}\right) t}\right)},
$$

and thus both A_{n} and B_{n} can be computed from the Laurent series argument. For $n \leq 5$ we get the following results.

$$
\begin{aligned}
\#_{1}= & 1 \\
\#_{2}= & l+1 \\
\#_{3}= & \frac{l^{2}}{2} q_{1} q_{2} q_{3}+\frac{l}{2}\left(q_{1}+q_{2}+q_{3}\right)+1 \\
\#_{4}= & \frac{l^{3}}{6}\left(q_{1} q_{2} q_{3} q_{4}\right)^{2}+\frac{l^{2}}{4} q_{1} q_{2} q_{3} q_{4}\left(q_{1}+q_{2}+q_{3}+q_{4}\right) \\
& +\frac{l}{12}\left(q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2}+3 q_{1} q_{2}+3 q_{1} q_{3}+3 q_{1} q_{4}+3 q_{2} q_{3}+3 q_{2} q_{4}+3 q_{3} q_{4}\right)+1 \\
\#_{5}= & \frac{l^{4}}{24}\left(\prod q_{i}\right)^{3}+\frac{l^{3}}{12}\left(\prod q_{i}\right)^{2}\left(\sum q_{i}\right)+\frac{l^{2}}{24}\left(\prod q_{i}\right)\left(\sum q_{i}^{2}+3 \cdot \sum_{i<j} q_{i} q_{j}\right) \\
& +\frac{l}{24}\left(\sum_{i \neq j} q_{i}^{2} q_{j}+3 \cdot \sum_{i<j<k} q_{i} q_{j} q_{k}\right)+1
\end{aligned}
$$

Working out $\#_{n}\left(q_{1}, \ldots, q_{n}\right)$ directly for each n, by decomposing into sums generalizing the procedure in section 2.2, e.g.

$$
\#_{4}=\sum_{x=0}^{l q_{1} q_{2} q_{3} q_{4}} \#\left\{q_{1} m_{1}+q_{2} m_{2}=x\right\} \cdot \#\left\{q_{3} m_{3}+q_{4} m_{4}=l q_{1} q_{2} q_{3} q_{4}-x\right\}
$$

and equating similar powers of l in (6), we can gradually find many other interesting formulas.

We conclude that it is easy to deduce Number Theory results from Atiyah-Bott adapted for orbifolds, by applying it to specific examples.

References

[AB] M. Atiyah and R. Bott, Notes on the Lefschetz Fixed Point Theorem for Elliptic Complexes, Harvard University, Cambridge, 1964.
[GP] V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Englewood Cliffs, 1974.
[HZ] F. Hirzebruch and D. Zagier, The Atiyah-Singer Theorem and Elementary Number Theory, Publish or Parish, Inc., Boston, 1974.
[RG] H. Rademacher and E. Grosswald, Dedekind Sums, The Carus Mathematical Monographs 16, The Mathematical Association of America, Washington, 1972.

