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ABSTRACT

This paper shows how to deduce the reciprocity laws of Dedekind and Rademacher,
as well as n-dimensional generalizations of these, from the Atiyah-Bott formula, by
applying it to appropriate elliptic complexes on a "twisted" projective space. This
twisted projective space is obtained by taking the quotient of C" - 0 by the action

p(w)(Zl1,. .- ,Zn) = (Wql ,qZn), E C, qi E Z+ ,

where the qi's are mutually prime. Since this is not a manifold, it is necessary to
adapt Atiyah-Bott to the setting of orbifolds.
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Introduction

Let Y be the "twisted" projective space obtained by taking the quotient of C ' - 0

by the action

p()(Zl,... ,zn) = (ql'z 1,. .,q"z,), E C,qi E Z+ ,

where the qi's are mutually prime. We will show in this paper how to deduce the

reciprocity laws of Dedekind and Rademacher, as well as n-dimensional generaliza-

tions of these formulas, from the Atiyah-Bott formula by applying it to appropriate

elliptic complexes on Y. Since the twisted projective space, Y, is not a manifold,

this will require our adapting Atiyah-Bott to the setting of orbifolds. The version

of Atiyah-Bott needed for our purposes is described in section 1 and the number

theoretic applications of it, mentioned above, are discussed in section 2.
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1 Fixed point formula for orbifolds

1.1 The case of good orbifolds

Let X be a compact complex manifold of complex dimension n, G a finite group acting

on X with action r: G x X - X. The quotient space Y = X/G is consequently a

good orbifold.

Define the Dolbeault cohomology of Y to be the G-invariant cohomology of X,

H'(Y) = HG(X), where HG(X) are the G-invariant subspaces of Hi(Y),i = 1,...,n.

A holomorphic G-equivariant function f: X - X induces a quotient map f: Y - Y

and f: Hb(X) Hb(X) from the pull-back on G-invariant forms.

We will define the Lefschetz number of the mapping f to be
n

L(f) = Z(-1)t trace (ft: Hb(X) -- H(X)).
i=1

We will need the following elementary result:

Theorem. 1.1 Let V be a vector space and p : G - Aut(V) a representation of a

finite group G on V. IfL : V - V is a G-equivariant linear map, then

1
trace (L: VG -- VG) = II E trace (p o L) : V -- V),

where VG is the space of G-fixed vectors in V.

By the above Theorem 1.1, we have

L(f) = ' I E trace ((Tgr o f) : Hi(X) --+ H(X)).
i-1 GI EG

Supposing, in addition, that f: Y -+ Y has only non-degenerate isolated fixed points,

or equivalently, that rg o f has only non-degenerate isolated fixed points for all g E G,



we can compute

-(-1)'trace((rgof) : H'(X) - H'(X))= E sgndet(l-d(rgof)p) (1)
i=1 {pl(rgo)(p)=p}

by the standard Lefschetz fixed point theorem [GP].

Theorem. 1.2 Under the above conditions we have:

L(f) C= - C E sgn det (1 -d(r, o f)p).
gIEG {pl(-gof)(p)=p}

1.2 The case of general orbifolds

In order to write formula (1) in a form which makes sense for general orbifolds Y that

are not globally quotients of the form X/G (X a manifold, G a finite group), let us

determine the actual contribution of a fixed point q of f Y - Y. Still assuming

Y = X/G, let Pi,P2, ,Pk be the pre-images of q in X. Replacing, if necessary, f

by r o f for some g E G, we can assume f(pl) = pi. Let Gpi be the stabilizer group

of pi in G. Thus, the contribution of q to the Lefschetz number is:

1 E sgn det (1 - d(r9 o f)p,)
=l =1 {gGl(rgol)(Pi)=pi}

or

G1 i, sgn det (1 - d(r, o f)p,)
I i=1 9EGpi

since f is G-equivariant. In fact,

Z sgn det (1 - d(rg o f)p) = f sgn det (1 - d(rg o f)p,
iEGpi gEGpl

because the Gp,, are conjugate and f is G-equivariant, i.e.

d(rTg O Tg rg. 1 o f)rg;(p) = d(rg O f)p.
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Therefore, the contribution of q to L(f) is

1 k * sgn det (1-d(rgof)pl)
I GI gEGp

or

1 ,Z sgn det (1 -d(T o f)p,).
IGP1 |IEGpl

This motivates the following result (which we will give a proof of elsewhere):

Let : Y Y be a holomorphic function from a compact complex orbifold Y to itself,

having only non-degenerate isolated fixed points ql,...,q,,,. Define the Lefschetz

number of f to be
n

L(f) = Z(-1)itrace (f : H'(Y) _-_ H(Y)).
i=l

Taking orbifold charts around each of the qi's, for a neighborhood Y of qi, there are:

X and G such that Yi = X/G,

a pre-image pi of qi,

an isotropy group Gi, and

a locally well-defined lift fi of f.

Claim: We have

m 1
L(f) = sgn det (1 - d(g o fi)pi)

i=1 7G I EGi

reducing again a global topological invariant to a finite number of local differential

computations.

Remark: If L -+ G is a G-invariant holomorphic line bundle and H'(X,L) the

cohomology groups obtained by tensoring the Dolbeault complex with L, we can

compute the alternating sum of the traces of fl on Hb(X, L) by a sum over the fixed

points of I: Y -- Y of the terms

1 trace (g o fi Lp ) Lp)

Gi gEG, det (1 - d(rg o fi)p,) [AB.
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2 Application to a twisted projective space

2.1 General formula

Take Y to be the orbifold obtained by dividing Cn - 0 by the group C* where C*

acts by

P(,)(Z,,.· ., ,n) = (1 Z1 ,. . W. Z,), qi E Z+ .

Assuming ql, ... , qn mutually prime, the orbifold Y is non-singular except at the n

points:

[1,0,...,0], [01,0...,0], .... [0,...,0, 1]

which have stabilizers Z/ql,..., Z/q, respectively, and thus may be singular. (Notice

that when qi = 1, the corresponding point is non-singular.)

The standard diagonal action of S' on C - 0,

ft(Zi,. . .,Zn) = (e27rit1,.l . e2 ritZn)

induces an action ft on the orbifold Y (since it commutes with p). As long as t Z 0,

its fixed points are only

[1,0,...,0], [0,1,0,...,0],..., [0,...,0,1].

Consider the holomorphic line bundle L over Y associated with the representation

: C* #-- Aut(C), Y(W)c = WdC,

i.e., L = [(Cn -0) x C]/{[z,-7(w)c] [p(w)z,c],w E C}.

In order for L to be well-defined on Y, the condition

qi1 d,i = 1,..., n, or equivalently, ql . qn Id

is required. We will write d = . ql ... qn.
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PROOF. The projection of the hyperplane z, = 1 of C - 0 on Y contains only

one of the singular points, namely [0,..., 0, 1]. The subgroup of C' which fixes this

cross-section is the group of q roots of unity that acts as p(w)(z 1 ,...,z,._.,l) =

(wQ zl,. . .wn-1 Zn-1l,1) , while y(w)c = wdc on the fiber of L. We have

[(0,..., 0, 1), y()c] [p(w)(O,..., 0,1), c]

It II

[(0,..., , O1), wdc] [(0,...,0, 1), c]

hence, in order for L to be well-defined at [0,..., 0, 1] we need q,,d.

Similarly for the other singular points. Q.E.D.

On the cross-section Zn = 1, rq = p(e2rq ) acts by

Tq(21***Z- 1e) =1 (e27riqn-1q .. e2r i qqZn _l

whereas

ft(Tz,.. z =1) (e2 itz... ,e2ritz 1n, e2 rit) A-, (e2nit(l )Zl ,. en n,2it(l- Z- ).
ft(Z , Zn-1, 1) = (e (e2it( e L 

We define an action of S1 on L induced by letting S1 act trivially on the second factor

of (Cn - O0) x C:

et[(0..., 0,0,1), = [(0,..., 0, e2 ), c] [(0, ... .0,1), e2Rtc],

so the action of e2"'it E S1 on the fiber of L above [0,..., 0, 1] is given by multiplication
27rit dby e q.

Interpreting these results in terms of the lift to the smooth Cn-l covering of this

cross-section (which roughly amounts to ignoring the last coordinate Zn when it's 1),

we conclude that

= multiplication by e
2 rit Lo...o) L(o...o)

Tq a (ft)n = (ft)n = multiplication by e q : L(o.,0) - L(o,...,o)

9



2iqd( (f ) 0) d' 1 diae2rit(l)zl, . I et(-1)Zn-d(qo(ft))(o...o) = diag( , , e 9 )iag(e q ,et nZ1

Summing over the qn-th roots of unity, w = e qn, q = 0, 1,..., qn-1, the contribution

of [0,... ,0, 1] to the Lefschetz number of ft is

1 q-1 e27ritd

qn q=0 rIzmin -e2=ri(l1-2m )t 2 eri
q=O Hmn( 1 - e- aqa e ,n )

Similar computations yield similar results for the other fixed points. Adding all these

contributions up we finally get for the global Lefschetz number of it:-n 1 qr -1 2rit d
L(ft) = 9r1 1 (2)

r=l qr q=O nImr(1 _-2ai(l-qm)t . e (2)

On the other hand, the Lefschetz number of ft was defined to be

n-1
L(ft) = Z(-l )'tace(] : H'(Y, L) - H'(Y, L)).

i=l

We assume Hi(Y, L) = 0 for i > 0. As for H°(Y, L) this is the global holomorphic

sections of L and these are just the monomials on C" z, ... z n which transform

under the action of C* according to the law

(l Z)ml · · · (Wqn n)mn = wdml . . Zmn

and hence qlml+. . .+qnm = d. Thus the dimension of H°(Y, L) is the number # of

integerlatticepoints (ml,...,m,) satisfying qlml+...+qnmn = d, ml,... ,m, > 0.

We will compute this dimension in the next section by studying the limit of (2) as

t -- 0.

2.2 The limit case

Although our formula doesn't hold for t = 0 since fo leaves all points fixed, we can

compute its limit as t --. 0. Notice that the dimension of H°(Y, L) is independent of t.

10



So, when t --+ 0,

n q19~~r-l 2rit 

#= limZ- z et-r= q q0 =mr(1 - e'i(- I )t e 'i )

n 1 qr-1 1

= Ez-E
r=l qr =l rHmnr(l -

2ri q ) +
e qr )

n 1e27rit d
li m r( e 

t-o

where the last limit can be computed writing a Laurent series for each summand:

an-l,_ al,1
tn- ltr + + ao, + .. - ..tn-I t

As t -, 0 the sums of the negative terms in these series must cancel and we end up

with

• (ao,r +
r=l

1 qr-1

qr q=l rlmr(1 - e2 ri a)

as the number of non-negative integral solutions of the equation

qlml + ... + qnmn = d.

Now we can write

n 1 qr-=

r=1 qr =1

1 1

Hm r(1 - e2' i ) r= q' r =l,, l

1

fjmr(j _-

and relate this to generalized Dedekind sums according to [HZ] (see section 2.4).

2.3 The case n = 3 and reciprocity laws

For n = 3 (the first interesting case), formula (3) reads:

#{(ml, m 2, m3) E Z3 lqlml + q2m2 + q3 m3 = d, ml, m 2, ms 3 0} =

3 1 qr - 1

E E 27riUm
r= q 1 lnmr(1 - e qr )

A

_ e 
+ lim 1 e2ri(1 t '
t-0 r=l qr In,(l - e2i( qr )

B

11
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Let's deal with each of these terms A and B in turn.

A:

We can write
1

r 7 9r=1,1 701 imr( - r1 Qm)

Setting q3 - kl q2 mod ql, q - k2q3 mod q2, q2 = k3 q1 mod q3, we find

A = Z - 1
A = -- E (1 - 77)(1 - -) 

r~l qr 779r=11r01 r l 4q, s(krq,,)r1l

by the definition of s(k, q,) according to [RG, p.151. But by the Rademacher reci-

procity law [HZ, p. 9 6],

3~~~ q 2 +2 + 2 1
] s(kr,qr) = I q+: + q2 ' 1

r= 12 qlq2q3 4

When q3 = 1 we can take kl = q2, k2 = q, k3 = 0 and the formula reduces to

3 1
12Z s(k, qr) = s(q2, q1) + s(ql, q2) = -

r=l1

which is just the Dedekind reciprocity law [RG].

B:

1
-

q2
+ qlqq+

ql q2 q

1Each summand in B is of the form -
qr

term in the Laurent expansion is

ao = -4
qr,

I w

2 wl

eWt

(1--ewlt)(1-ew2 t

lw 1 W 2 1 W1

2 2 2 w lw 2 12 w2

) for which the constant

1w2
12wl 

Therefore,

3 1/1
B= Eao,r =--+

r=1 4q! q2

1+1)

1 12
+ (qi + q2 + q3) + jq1l2q3 +

2 2
1 q~2 4 + +2

12 q+q+q
12 qlq~q3

Next we should compute the left-hand side to see if it agrees. We have

# {(ml, m 2, m3 ) E Z3Jqimi + q2mn2 + qsm3 = d = lqlqq3, in, 2, m 3 0}

12

13
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Iq q2

=- #{(mi, m 2) E Z2 [Iqml + q2m 2 = (lqtq2 - m3 )q3, mI,m 2 > O}
m3 =0

+ 1 -6(m3) ,

where

[x] denotes the greatest integer not exceeding x,

e(m 3) = 0 or 1, with e(m3) = 0 whenever m 3 is a multiple of ql or q2, and

e(m 3 ) + e(lqlq2 - m3) = 1 when m3 is neither a multiple of q, nor of q2.

Therefore,

= I#{integers
2

in [0, Iqjq2] neither multiples of ql, nor of q2} - (q-1)(q2-1)
2

Also, since

(p - 1)(q + 1
2

we get
lql q2

m3 =0

12

2

for p, q mutually prime,

* qlq2q3 + (q3 -qlq2 + 1)-

We conclude that

#{(ml, m 2 , m3) E Z3 lqlml + q2m2 + q3m3 = d = qlq2q3, i, m, 2, m 3 > 0}

12 1
= - qlq2q3 + (ql + q2 + q3) + 12 2

and, hence, in this case (3) is equivalent to Rademacher reciprocity law.

2.4 Generalized Dedekind sums

When = 0, i.e., d = 0 and the line bundle L is trivial, formula (3) reduces to

n 1 q r - 1 1

r=l qr =l lmr((1 -e r )

rI 1

+lt-Or=l qr lmr(1 - e 2 rr -(1q)t

13

lql q2

E (m3)
m3 =0

1qj q (Iql2 - 3)q3

M3=0 q, q2

k= 1 JI

(lqlq2 - 3)q3



r 1 1

r=1 qr =j7 VImr(1 -lrm)

= 11 -limE - 1 rs
t- r= qr mpr(1 -- 92r(Iq )

where the last limit can be evaluated by the Laurent series argument. Letting

6(qr; q, i r) = , 7 Er1,7 ~1 1

7qr=l 77, 1 lmor( - -qm)

n 1

an(ql,..., qn) = -n(qr; q, i r),
r=l qr

when n = 2, 3, 4, 5 we explicitly find the following generalized reciprocity laws.

Cn(ql,. . .,qn)

1 - -+- 
2 q, q2j

4 (q

1- 1 18 qiQ1

1 1 \ 1 q + q2 + q3
+-- +1)-1 q~+q~+q3

q2 q3 12 qlq2q3

1 1 1+-+-+-
q2 q3 q4

1 (ql+ q2 + ql + q3 + ql + q4 q2 + q3
24 q3q4 q2q4 q2q3 qlq 4

1 1 1 1 q qq- 4-8 qlq 2 q3q4q5 ij<k i
____ ~ s~a~s;~T<;6

1 1 1

144 qlq2q3q4q5 i<3 * 720
i<) 2

q2 + q4

qlq3
q3 + q4

1

qlq 2 q3 q4 q5 

Remark: It is possible to write the limit term (corresponding to B in section 2.3) in

terms of Bernoulli numbers Bn defined by

Bnt = t
E n! et -1 '
n=0

1 1
Bo = 1, B =2 3...

This is why the coefficients in the final expressions for the ac's resemble products of

Bernoulli numbers.
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On the other hand, [HZ, p.100-101] gives results for generalized Dedekind sums of

type 6, for n odd, namely1 kq, l-l ( k ql.l. ., qn)
E 1E r icot -1- (5)

r=l qr k=l m1r qr ql ... qn

where In-l is a certain polynomial in n variables which is symmetric in its variables,

even in each variable, and homogeneous of degree n - 1. Formula (5) is related to the

previous 6,'s and an's by

1 rqr - 1 7rkq, 1 ____

*= qr k=l mgr qr r=1 qr rqr=l,1 *l mor m - 1
n 1 n-l (-2)i

r=1 Q 77qr=1,771 j=0 IC{1l...n}\r,#I=j riI(1- 711 )
n-1 n 1

-2)j 6j+l(q; q, i E I)
j=O r=l qr IC{(1...n\r,#I=j
n

= (-2) j -1 E aj(qi,i E J).
j=l JC{1...n},#J=j

When n = 3, 5

13 1 7 5
12(ql, q2, q3) = q /4(ql q2 q4 q5) q -90 q

i=1 i=

and it is easily seen that (5) is in agreement with our results for a,, n = 2, 3, 4, 5. In

some sense (4) extends (5) to the case of n even.

2.5 Counting lattice points

Considering again a general line bundle (i.e., arbitrary d, or 1), we see that formula

(3) provides an expression for the number # = #n(ql,. . , q,) of integer lattice points

(mi, ..., mn) satisfying qlml + ... + qnM, = d, ml,..., mn > 0, namely
n qr-1 n 2irit 

#n(ql,..., q)= E' E - + lim1 e g'i(6)
r=l qr q=1 q m9r(r t- 1 Q l mmr(1 _ e2qi( 9 )t(

An Bn
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As in the case d = 1 = 0 (see formula (4)),

n 1 qr-1 1

r=l qr q=1 -mi#r(1 - e 21qr)

n 1 1-lim 1rt-0 _ .26q, Hm1rO - e -2

and thus both An and Bn can be computed from the Laurent series argument. For

n 5 we get the following results.

#1 = 1

#2 = 1+1

#3 = qlq2q3 + (q + q2 + q3) + 12 2
1 3 12

#4 = ( 4 qlq2q3q4(ql + q2 + q3 + q4)
6 4

+ q+ q + q32 + q2 + 3qlq2± 3qq3 + 3q1q4
12

+ 3q2q3 + 3q2q4 + 3q3q4 ) + 1

(II qj) ( q)#5 = (I + 
24 12

+ 12 (r qi) q2
2~4 S 

+3* E qiqj)
i<j

I

24 qqi + 3 qiqjqk +1ik

Working out #n(ql,. .. , q,) directly for each n, by decomposing into sums generalizing

the procedure in section 2.2, e.g.

lqlq2q3q4

#4 = #{qlml + q2m2 = x} . #{q3m3 + q4m4 = lqlq2q3q4 - },
X=O

and equating similar powers of I in (6), we can gradually find many other interesting

formulas.

We conclude that it is easy to deduce Number Theory results from Atiyah-Bott

adapted for orbifolds, by applying it to specific examples.
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