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SUMMARY

This paper contains a discussion of the problems involved
in programing and coding Laplace's equaticn for solution on a
large-scale digital calculator. A relaxation method is chosen
as the means of solution and the consequent problem of stop-
ping the iteration before roundoff error becomes appreciable

is confronted. The resulting code and an evaluation of it are

included in the latter part cf tke report.
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1 Introdugction

The solution of Laplace's eguation (vzu =0) is an im-
portant stev in @ vasi number of the problems encountered in
physics and elactricQI engineering. Many of its solutions are
certainly widely known to physicists and slectrical engineers;
buf, though this equation is the simplest involving the La-
placian operator (V2), it still may prove at times an extreme-
1y difficult task to obtain an explicit solution. When the
boundary conditions are complicated (in shape for instance)
the solution is at best an exacting process. Yet, where the
object is to obtain a specific set of values for u within the
bounded region, and this certainly is not an infrequent case,

several methods of solution exist whose application is a mere

matter of toutine.

Given this:information, one might begin to consider wheth-
er or not it is possible to mechanize such a routine so that

little or no human interventiom would bé necessary in its ap-

Plication. It is possible; indeed the mechanization of such

routines comprises the purpose of most large~scale computers in
existence today. |

It is the object of the present paper to demonstrate ohe
way of setting up Laplace's equation so that it can be solved
by such a machine, more specifically the machine being construc-
ted under Savy Project Whirlwind.l It is hoped not only that .

the method chosen has resulted in a program which is simple and
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compact compared with the other programs possible, but that
ite development will also make clear some of the more important
considerations to be taken into acecount in any application of

2 Al every stage an attempt has been made to Keep

the method.
the development general enough so that it may be possible to
utilize the results obtained, or part of them, in other prob-
lems of a similar nature,

The method to be used was determined partly through the
fact that Whirlwind is a digital computer, and partly through
consideration of work in this area of investigation already
completed by staff members of the prroject. The fact that
Whirlwind is a digital dqvice makes the employment of the meth-
ods of numerical analysig almost mandatory. Once the equation
has been reduced by these methods to the proper arithmetic form,
which consists of a determinate set of simultaneous linear al-
gebraic equations, two broad approaches to the solution are
open: 1 - solution of the resultant eqﬁations by elimination,
or 2 - solution by the so-called approximats methods., Since a
fairly comprehensive Project Whirlwind eng;naerihg note has al-
ready begn published on the program for solution of simuliane-

ous equations by elimination it was decided that the present

paper should be directed toward utilizing one of the approxi-

~mate methods.® Reference to another Wwhirlwind engineering

note made it c¢lear that some modification of the single-step

iteration method dgveloped by Gauss and Seidel should be used.*?
Later discussion will show that the iterative method chosen
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will be preferabie in moat caées to elimination, both as to
simplicity or code and as to the accuracy attainable.

wWith the foregoing considerations ih mind the direction
the present paper was to take had been almost completely de-
termined. However it was sarly discovered that if the inves-
tigations were to be completed within the alloted time it would
be necessary to somewhat festrict the scope of the method chosen.
Two such restrictions were made:

1 A lattice or mesh of sguare sectionsvwas employed to

cover the bounded region.

2 The bounda®y conditions were considered to be given

as4values of u at the external points of the lattice.
The significance of these restrictions will be discussed on
pages 7 ff. and pageﬁ.lﬂff., respectively, of this report. It
will be seén that neither of these restrictions seriously. lim-
ite the generality of the Gauss-Seidel method when it is appli-
ed to the solution of partial differential equations on ma-

chines of the Whirlwind type/
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2 Mathematical Definition of the Problem
2.1 An Equivalent Arithmetic Form of Laplace's Egquation

~ R2e2 The Meeh and Boundary Conditions
2.3 The Iteration Procedure

Laplace's eéuation (in vector notation Vau(x,y)d)), as
notéd in the ihtroduction, is one of the most familiar equations
of mathematical physics. The equation makes its appearance in
an important positions in almost every field of physics; as ex-
amples gonsider static elasticity (the wave équation with zero
time variation), diffusion, steady flow of heat or electricity,
irrotational motion of an incompressible flﬁid, and perhaps most
familiar of all the potential distribution of a charge-free space.
Important though these particular problems may be, the equation
of Laplace gains its greatest import from the fact that it is the
simplest equation involving the Lap lacian operator, which apﬁears
in such basic equations as the wave equations of wave-mechanicé.
Thus a knowledge of the solutions of Laplace's equation provides
a foundation for the solution of a great many of the problems for-

mulated by theoretical physics.

Since'Laplace's equaﬁfon is a partial differential equation
(in expanded form, g;'?’-‘z + :—‘-“i'= 0 ), its general solution involves
arbitrary functions. 1In tge usual case this solution is also
required to meet a set of "boundary® conditions so that the ar-
bitrary functicn becomes particular. A necessary and sufficient
condition for thé boundary conditions to specify a particularx

solution in this two dimensional case is that the value of u
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be specified at.every point on the boundary of the region un-
der consideration. If the boundary conditions are given in
another ferm, for instance as a derivative of u at the boun-
dary, it is-possible in most cases to reduce them tc the form
given above; thus there will be little loss of generality if
for the purposes of this irvestigation it is assumed that the
boundary conditions are available as values of u on the boun-

dary.

2.1 An Equivalent Arithmetic Form of Laplace's Equation
The reduction of Laplace's equation to a form suitable
for use by Whirlwind is possible through use of the calculus

of finite differences. One possible derivation is given by

Courant in his Advanced Methods of Applied Mathemtics.? 4

short synopsis followse,.~

A
3h 5 ILQCQ h
. X =m
BAYY Uilx+h,y)=w_, -
eh}t @ @ & »Y y*nh
wix,y)s w,
B R ® ' : (m:O‘l‘i‘....
- Uee (nhn=0,1,2...
h Ak 3h

Fig. 1.

with reference to the diagram (Fig. l.), Courant defines a for-

ward and a backward difference as :t‘ollows:
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forward difference u‘x(",y) - wilx+h,y) = Wixy)

h
backwerd difference w_ (x,y) = S UX,y) - W(x-h,y)

then, Wxx = Wi by - W (x, ) h
and Vi = differencehoperator 2w+ oW
or : V:'u. < :c\ ¥ Mooty Weq - 4 “w. 7Y
For the problem of this thesis, P e Vig -0
L. Mot Men e ug, cug, 1)

o
4
Equation 1) is the basic iteration equation. Here the Laplacian

operator has been replaced by a finite difference operator which
involves only arithmetic operations om the ordinates.

The use of the arithmetic equivalent of Laplace's equation
to obtain a solution over an extended finite region originally
wag accomplished by an adaptation of the mesh analogy used by
Soﬁthwell.6 The analogy consists of exchanging the continuous
variation of u in the region of interest for a “net" whose in-
ternal nodal points eventually take on the value of u at the
equivalent point in the region and whose external (boundary)

nodes are fixed at the corresponding boundary values.

© - interior point
(arbitrary value of u)

® - boundary point
(fixed value of u)

QBQ\\;

Fig. 2.
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The procedure for solution, once appropriate values have
been fixed for the external nodes (cf. Fig. 2.), consists
first in assigning arbitrary values to all other nocdes; the
net is then relaxed by a systematic applicétion of the dif-
ference opératcr. One system of relaxation begins by choos~
ing one node as a reference or center, applying the basic iter-
ation equation (eq. 1), and replacing the value at the refer-
ence point by the one so_obtained. This process is then car-
ried out over the net until all nodes have had their original
arbitrary values replaced in this manner; the whole relaxation
is repeated as many times as necessary until the successive
values at any given node do not change sensibly.

Singe the choice of an iterative method over an 6limina-
tion procedure was more or less an arbit:ary one, it would be
well perhaps to give a preliminary comparison of the two ap-
proaches. Elimiration on the one hand has a smaller total nume~
" ber of arithmetic operétions (indicating a shorter solution,
time); on the other hand iteration involves a more routine ap-
proach and roundoff error is kept to a minimum. It would seem
that elimination is suited to use for small systems of equations
where the rqundoff inherent to exact procedurés is not the 1lim-
iting factor. Iteration would seem more suited to problems
where high accuracy is a requirement and where region of solu~
tion is large (many mesh points). Further information concern-
ing exact and especially elimination prbcedures may be found
in Project Whirlwind engineering note E-lﬁl.7
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2.2 The Hesh and Boundary Conditions

It will be noted that the finite difference operator de-
rived is suitable for use orn meshes of square section only.
That other types of mesh are possible is evident; a triangular
meeh (i. €. a mesh where each node is connected to six other
nodes) has often been used in the solution of problems by the
relaxation method.® The advantage of different basic mesh
shapeslies in the way they can be fitted to the continuous
boundary surrounding the region of interest. This advantage
obvicusly decreases as the mesh interval gets smaller since
the smaller the interval the greater the number of points inJ
the vicinity of the boundary. If the capacity of Whirlwind is
used as an example it can be assumed that it will be possible
to calculate a minimum of 1000 values of u for as many nodes.
This would correspond to upwards of a hundred points lying near
the enclosing boundary. It seems reasonable that with this
many points (snd the corresponding small interval) the accuracy
of the approximatian to the boundary will not be sensibly af-
fected by the mesh shape.

To give some eencrete idea of how the fixed values for the
boundary nodes are obtained it might be good to say a word about
the éimpleat way of setting down these values. Only mesh points
interior to th e boundary are used, the points adjacent to the
boundary being_asaigned‘the value of the boundary function near

them. X¥or instance, in Fig. 2 the value of the boundary func-

tion at Q1 and Qo would be assigned to points 1 and 2 respectively.



There are of course other methods for obtaining the fixed
values of the boundary points (e. g. see L. Fox, Proc. Koy.
S0c. A190, 31-59, 1947) and which one iz chosen is a matter of
the ultimate accuracy needed in the boundary values. Singe
the boundary values so obtained are presented to the computer
in the form of initial data, they have little effect on the
program for solution and will thus be considered as givén quan-

tities henceforth.

2,3 The lteration Procedure
The exact relaxation procedure decided upen is similar to

one desoribed by Courant, It may be summarized as follows:
1. Assume for u(x,y), at all interior points, values,
preferably beiween the maximum and minimum boundary
values (giving a first approximation luj).
- 2. Order the interior net points (1, 2, 3, ...N) in
some arbitrary manner, Pjp, Fg, .;.an
S« Ud ng the basic iteration formula (eq. 1) center-
ed on the point P1, replace the first approximation
lul = lu(.Pl)_ by the value obtained from eg.l, thus
obtaining 2“1‘ Do the same for Upgs Uzy eeeUys thus
arriving at a second approximation for u. If the
formula (eq. 1) includes any earlier changed values
the changed value is used, i. e. if nuj is the value
being replaced, then if i< j, the value n*lui. pre-
viously computed, is used instead of Pu;.

4. Continue this process obtaining %u, %, etc. un-



-til maximum accuracy has been reached.

It can be readily demonstrated that this method is equi-
valent to the Gauss-Seidel single-step iteration. The Seidel
method can be repreaented schematically by the following set
of eguations:

' n¥ =

Ajy By, +eel .Q.w*'Ajj n*lﬂj = By
where nui represents the nth correction to uy . Thus, if the
nth correction of u be considered given, the n+l correction is
obtained for u,by solving equation 1 for uy (o msidering uy
for the moment as unknown but using all the othqr.values as
given), similarly equation 2 is solved for up, and so on until
" the n+l correction has been obtained for all u's, i. e.
i=1, 2, 35 eeej. This is exactly the system deseribed in
the first paragraph of this section, albeit aomewhai differently.

A simple example may make the equivalence clearer.

" “ the values enclosed in boxes
T 2 W3 . T
-Jare the fixed boundary values.
Wai | Mz Uzs '
Wiz

Fig. 3‘-
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Applying the method described in the first paragraph of this

section, the following eguations are obtaiaed:

ne n n n ’ n
.4’“'3--“'3‘ Wae ™ “a~ Mo = 0

Ol - " - "n
1 " w,, Weq Use

But the boundary values are fixed at all times and hence may

= “utl = n‘uu'lt =0

be transposed to the right side of the equations.?® Transpos-

ing and rearranging.-

ne \ n
- = W 4+ W vy
4 Y e “,az "3 nt B ® b,
nel

. el !
= W, ¥4 w T Mgt Mg, v W, T by

a2
but this is exactly the matrix arrangement given above for the

Seidel process,
The equivalence just shown is espegially_significant when
one éonsiders the conclusione concerning iterative methods

which were reached in Project Whirlwind emgineering note E-148.

" 1) A eingle-step iteration method should
be used because :
a) It is easy to obtain sufticient con-
ditions for convergence,
b) A means for instructing the machine
when to stop iterating is available.
¢) Experimental evidence seems to indi-
cate that the product (number of itera-
tions needed to obtain a given acecuracy )
X (amount of computation per iteration)
is less for single-step methods than with
the others examined.

'2) The single-step method should be the Seidel
method because it requires less computation
than the other single-step methods known, "10
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3 General Considerations Pertaining to Digital Computation

The previous sectiom has traced ocut the operations im-
posed by the mathematics of the problem; the present section
recounts the operations necessary to adapt the problein to
solution by a largé-scale digital computer such as Whirlwind;
the next section will detail the manner in which the require-~
ments of the tow earlier sections are mutually satisfied, re-
sulting in the “program®.

While an attempt will be made in the sections that fol-
low to exclude the more unique gualities of Whirlwind (1. e
the.e not likely to be found in other large-scale digital
computers), it must be remembered that the word computer and
.similar expressions when used refer first and foremost to
Whirlwind. All program notation appearing hereafter is that
suggested in Project Whirlwind confereﬁce note C-93; the
actual order code used is that described in Project Whirlwind
engineering note E-235.11 15 some of the work which follows,
notably the code and the more detailed parts of the program,
it must be assumed that the reader has a working knowledge of

the foregoing notes,}2

lhe first comsideration in any program is the systematic
input of data to the computer. In the present case the data
consists of boundary conditions and initial estimates for u
at the interior mesh points. .The inierior points should be

ordered in such a way that the computer can obtain the u's
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for the basic iteration with a minimum of coding. Al the
same time, sincé the fixed boundary values are ordered along
with the interior points (because the boundary values will
at times appear in the basic iteration, cf. Fig. 5 and ac-
companying example) the machine must have some means of de-
tecting them to prevent their becoming modified during the
iteration.

Once the input has been accomplished it is possible to
proceed to the iteration, It is evident that some system
must be found, within the limit set by orders which the com~
puter can interpret, to provide the correct data for the bas-
iec iteration to the arithmetic element in the proper sequence.
After the proper artimetic operations have been preformed it
will be necessary to return the corrected u to its proper
position in the storage and then advance the cycle sc that it
will operate on the u next in order,

Finally some method will have to be provided to stop
the iteration automatically when the accuracy obtained can
no longer be increased. Also at this point as well as through-
out the iteration some purely matnematical checks should be
applied to detect, and if possible eliminate, any inadvertant
arithmetic errors introduced. It would ljkewise be advantageous
to be able to estimate the relative accuracy of the final an-
swer.,

In adaition to the foregoing very general considerations,
there is one problem introduced by Whirlwind which is common

to many but not all digital computers ... the scale factor.
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The problem results from the finite size of the storage regis-
ters. The stcrage of Project Whirlwind is of the parallel type,
a complete number being stored in a register having a simgle
address. The storage registers can hold one fifteen binary dig-
it number (equivalent to approximately five decimal places)
with its sign, or alternately one complete order. Itihas been
decided that the number interval represented by the range from
plus fifteen places to minus fifteen places should be 1 - 2=15
to -(1 - 2-19), (This interval was chosen from the others pos-
gible, such ae the interval 21% to -2**5, for a reason which
will soon become evident). The number range being thus limited,
a sufiiciently large number can and will overflow the limite
of the storage register. While there is an automatic alarm tc
indicate thie condition it is not remedied automatically; there-
fore special rrecautions must be taken at every stage of opera=-
tion to prevent such an overflow,

The scale-factor problem is two-fold ~--- all data must be
multiplied by an appropriate scale-factor to bring it within
the limits of the number system (i. e. all data must be reduced
to an absolute value less than one for Whirlwind), secondly
precautions must be taken at every stage of arithmetic opera-
tion toc prevent an overflow. An arithmetic overflow will oc-
cur whenever two numbers greater than % are added (since the

sum will then be greater than one) or when a division is such
as to give a number greater than one. It is now evident why

a system where all tke numbers are less than one was chosen;



multiplicaticn being a frequent érithmetic procedure, more so
than division, it was desired to make an overflow by multipli-
cation a physical impossibility (i. e. two numbers whose abso-
lute value is less than one cannot have a product greater than
one).
It shoud be noted that orders must in general be stored

in sequence, the sequence in which they will be applied, since
the computer cbtd ns a new order (unless specifically instruc-
ted otherwise by an order) by adding one to the address of the
order of the moment and then "looking up®" the new order at this
modified address. This restriction will affect the actual cod-

ing of the orders a great deal.
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4 The Program

For convenience the results of the last two sectiong have
be rearranged into the four general catagories which follow:
4.1 Problems in Programing the Basic Iterati on

4.,1.1 arrangement of data storage so that the u's
may be obtained with minimum coding.

4.1.2 s8scale=factor problems.
4.2 Problems in Advancing the Cycle to a Hew u,
4.2.1 generation of new u,. |
4.2.2 detection of boundary values.
4.3 Stopping the Iteration at Optimum Accuracy
4.4 Mathematical Checks

4,1 Froblems in Programing the Basic Jteration
4.1.1 Arrangement of Data Storage

Given any ug, it will be necessary to obtain the four con-
necting u's for the basic iteration (see eq. l. and Fig. 1.).
Restated with reference to coding this statement becomes,

"Given the adaress for any u, it must be possible to obtain by
means of standard orders the address of the four connecting u's.”
Thus, the address of any u must be related in some standard

and unvarying manner to the address of the four connecting u's.
The necessary relation is accomplished through dividing the ad-
dress of any g;ven u info two parts; the first part signities

the column number, tha second ﬁart signifies the row number.

Since the address of any register is just a number this can be
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accomplished by using the last a places for the row number,

the preceding places 1n the address section being used for

the column number.l® To obtain the connecting u‘'s above and

below u, it 'is only necessary to add plus or minus one to the

portion of the address used to designate the row number: a

| similaxr operation Will generate the adjacent g's(

Consider this process, together with Whirlwind-type

storage registers and number system, as applied to the group-

ing of Fige 3 o=

M (g-1)

Wiy wi Loy

Weian(§ o) [ M5 ¢ jar) RGO eY)

Fﬂuh'fm!&""“ b

Uicie2d |

Addresses in Decimal

Notation
0201
0102 0202 0302
0103 0203  0303
0204
base 10 a =2

STORAGE REGISTER

' o R, i
P2 T T I 111
D e s niﬁ n;n

o
order ,
address

Addresses in Binary Notation

00000100010
00000100011

Fig. 4.

00001000001
00001000010
00001000011

00001000100

~ base 2

a=>5

00001100010
00001100011



it the address of the register containing u_ is given, then

o}
Ugl for'inatance, may be obta ned by adding 1 X (base)? ;
thus if the address of ug is 0203, then the address of ugy;

is equal to 0203 + 1 X 102 = 0303, as indeed it ia.

4,1.2 obcale~-factor Problems
. The scale-faotor'problem,makea itself evident in two dis-
tinet ways. First of all the original input data must be so
adjusted that it will not overflow the storage registers when
read into the computer. Since this problem is essentially a
"oreliminary measure" which has no effect on the main program
it will be given no further consideration here. However, the
other scale problem, that of overflow during ﬁrithmetic opera~
~tion, affects the computer whenever an addition ér a division
is preformed. ZEssentially all arithmetic operations of this
| type appear during the basic iteration cycle, thus it becwmes
necessary 10 inspect all operations therein for any possible
overflow and then to code the problem in such a way tat an
ovanflow becomes impomssible, )
Inspection shows that the only possiblity for ovexflow-
appears during the formation of u, from the conneeting.uc's.

lhe basic equation requires thatthe four u_,'s be summed and

¢
divided by four. Theé most economical way to accomplish this,
forgetting for the moment the possibility of overflow, is to
add the four u,'s énd then divide by 4. It is immediately
obvious that such a procedure involves the possibility of over-

flow, for if any of the uy's are close to 1 in value, then
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it is easily possible for the sum of the us's , pefore divi-
sion, to exceed 1 and the register capacity. The digits over-
flowing the register are lost and the computation must be
stopped. The alternate meihod of dividing each u, by 4 and
then summing allows no poseibility of overflow since each.uc
divided by 4 must be less than 4+ » and hence the sum of the
four uc's must be less than 1. Thﬁa, the somewhat longer

method of dividing each’uc in turn by 4 pfovea to be the feas-

ible one,

4.2 Problems in Advancing the Cycle to a New u,

4.2.1 Generation of a New u,

Once the basic iteration has been preformed on a-given
Ug, it becomes necessary to advance the cycle 8o that it will
be preférmed on the u next in order. The scén‘of the over-
all process is duch that the iteration cycle proceeds frow
left to right and then, upon reaching the boundary of that row,
beginsmagaip at the left of the next row down. It can be seen
that as long as U, is not adjacent to a boundary value on the
right the problem of finding the address of the new U, siﬁply
involves adding 1 to the column number (i) of the address of
the—present‘uo (ef. section 4.1.1 if this terminology is not
clear). The condition obta ning when uy, is adjacent to a
boundary valﬁe is intimately connected with tﬁe problem of
detection of boundary values and will be discussed along with

this problem in the next section.
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4.2.2 Deveciicn of Boundary Values -

Boundary values must be ordered along with the values of
u being solved for, yet the boundary values must not bé altered
by the basic iteration when it has advanced to the point where
tke address of the new u, coincides with % e address of the
boundary value.l4 Thus some means must be provided in the code
for detecting when the tenative address for the new u, coin-
cides with a boundary address. This detection is accomplished
through storing the address of tke righthand boundary values
(future discusgion will show that these are the only ones in-
volved) in an additional set of registers whose address is e-
qual to the row number (j) plus a comnstant (¢). In this man-
rer by detecting the row number (j) in the gddress of the tena-
tive u, , addirg the constant ¢, and comparing the contents of
the register whose address is j+c with the tenative address of
ug it will be possible to see if the tenative address coincides
with the address of the bcundary value for that row. As an
example (cf. Fig. 4).-

Let c = 15
and let register 17 contain 0302,
register 18 contain 0303

15+ j = KC (the address of the righthand boun-
dary value for row j)

thue given RC ug, = 0203,
3=

and 18+ j = 18 = RC (0303, or the address of the
boundary value for row 3).
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If the temative u, does coincide with the righthand boun-
dary value, then some system must be set up to obtain the first
u to be solved for in the next row down. This can be accom-
plished in the same manner as the boundary value detection,
using this time a new constant ¢' and storiné the address of
the desired u in the register whose address is j+c¢' . By
forming the address j+c' as above and transferring the con-
ients of that register to the programing unit the basiec itera-
tion will be preformed on the first non-boundary u in the next

row down.

- 4,3 Stopping the Iteration
The problem involved here is the result of roundoff er-

ror. If the iteration could be carried out with no roundoff
it would be a monotonicly gsonvergent progcess tending Loward
the correct value of u in the limit; however, with roundoff
the process first converges toward u, then as roundoff error
accumulates the values obtdined obtained begin to oscillate
about ®» me mean value, with amplitudes proportiomal to the
accumulated roundoff.

If there were no roundoff the iteratiom could be stopped

'by instructing the machine to go to the output program when-

ever the difference beiween successive values of u became smal-
ler than a certain amwount. With roundoff such a.procedure is
no longer possiblo for there is no assurance that the differ-
ence bétween two successive values of u-will reach a given

value before the oscillation sets in. The oscillation, being



YA o

L

-26-

a function of the accumulated rcundorf error, builds up and
of course precludes the poseibility of two successive wvalues
of u being less than a specified amount, except by chance, if
they were not so befcre the oscillation was appreciable.
Consideration will show that what is desired in this case
is a function related inversely to the composite accuracy of
all the u's. Such a function will decrease as long as the over=-
all accuracy of the solution (i. e. the solution for the region
under consideration) increases, but as soon as the roundoff be-
® mes of the same order of magnitude as the difference between
the approximate u ana the correct u the function begins to in-
crease., Conseqguently the difference between two successive
values of the function will be positive until the point of

optimum accuracy is reached, at which time the sign will change

to negative and remain so., Thus, by inspecti ng the sign of

this difference after each relaxation, it would be possible to

terminate the calculation at the point of highest accuracy.
There is a functi on discovered by Boussinesq which an-

swers these qualifications. It is an integral function which

he developed while using the metnod of least sqguares to solve

the ditfferential equation,

l u”"‘ AA(X)‘L*'; = 0.|5
A8 modified for use in this report the function takes the form,
jf [Vau.(x,y) -0 ]adey
To be used on a digital computer the mquation must be reduced

to an equivalent aritnmetic form. The following derivation



was accomplished using the trapezoiaal rule for generai n .-
. - 2
consider Pix,y) = LVe’u.(x,,)]

. - 2 e
and Ps; = LV \-\--.j]
where the subscripts "i" and

#j" have the same meaning as
in Fig. 4.

if hy and hy are the ordinate and abscissa intervals respectivedy,

4
“,"‘, !I P(x,y\ dx y

4
h. hy ”[Vautx,n] dxdy =

»

\ ' tn=\)
- —— — )
Tk, L=z Py * _Z;st MY Pnj,] dy

where the sum enclosed in the
brackets 1s a Ifunction of y
(or eventually j), Pyj being
the first value of p in Trow J
and Pnj being the last.

]
== {ip,. (" \
hy I F P‘) 4‘7 + ky I z P":) Jy +:y(-;- Pn3J7

$al

‘ '
= 'E[?Pu t* Puat i Py ¢ %. P\M]

Aot ned e
*[zfra + 3T r toot T pim]
s $:2 *

LI
*?[& Pal ¥ Pa2 *--""lz'. an]

where pyp, is the first value
of p in the last row, Pom
the second value,..., and p
the last value of p in the
last row.

N. B. n 1s varianle with j, that is the last value in row 2
may be at a different ordinate than the last value in any row

J P
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The éqyivalent arithmetic form of the Boussinesgqg integral may

now be written - .
] :
][ [V “‘3’7] c‘uJy = S

s ‘\ "\ ( (P\\"‘ Pin + Py ¢ P\"‘D)

(f: Piy + Z fn“\
+ﬁ;i¢§'. P. ]

N. B. There is the implicit assumption here that all rows con-
tain at least two points, the trapezoidal rule being inapplicable
as such to a row with u given at only one point.
Inspection o0f the arithmetic form given above reveals three
caaée which the computer must detect and react to:
| 1. The computer mﬁst.multiply the first and last
values of Pij in the first and last rows by 3.
2. The computer must multiply the gggs%a:;lues in
all other rows by 3.
3. The computer must leave all other values of Pij
unmodified.
The rules applying in all three cases are routine, and the code
needed to modify Pij according to them is simple, being very
similar to the code used to detect bocundary values,
Several things ghould be noted about the final result a-
bove. Firstldf all, the assumftion tﬁat every row has at least

two values of u being solved for has a negligible effect on
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the solytion, if one considers that any orientation of the
boundary may be sed and that the mesh interval may be made
such as to allow at least two points in the rows next to the
top and bottom (the only places where the appearance of less
than three points is probable).

Secondly it should be especially noticed that the value
computed for V< u at any point utilizes the same summation
of the connecting u,'s as the basic iteration does while com-
puting the new u, .16 Thus, a greaf saving'of orders caun be
attained by combining the first part of the basic "stop itera-
i on" cycle with the equivalent part of the basic iteration
cycle. The way in which this was accomplished is shown in the
detailed flow diagram of the combined cycles (Appendix 11).

4.4 Mathematical Checks
Tﬁe arithmetic checks necessary actually have been taken
care of implicitly in the preceding sections. To see this con-
sider the reasons for-such checks: 1) elimination of any in-
advertant arithmetic errors (usually the result of some tempo-
‘rary malfunction of the machine), 2) ascertainment € the
relative'accuracy of the final result. The fiist check is made
" unecessary by the fact that the iteration procedure tends to
be self-correcting iﬁ the long run, i. e, numerical mistakes
in replacement (of "~luy by Bu) will be corrected automatical-
1y if the itoréticn process is carried out a sufficient num-
ber of times. The second check, on the relative ascuracy of

the firm 1l result, has already been accomplished in the procedure
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used %o stop the iteration, which works precisely on this prin-
ciple. By examining sP, that is the value of the Boussinesg
integral for the n relaxation, one immediately has an estimate
of the square of the error for the solution as a whole (i. e.

an average of the squares of the individual errors in u),.
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5 Evaluation
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Number of Urders and Sicrage Registers

.
|

[&)]
.
z\:

dumber of (perations and sample 3olution Times

ot
N
(5]

Advantages and Disadvantages 30 the Program
£

o

[

Number of Orders and Storage Registers

Lumber of Orders (cf. Appendix I, Order Code): 93

Number of Storage Regisiers (see Appendix I for designaticns):

iype Number
J®c m = total no. of rows
J+c! e
B l.n n & total no. of uy.
total no. of lﬂﬁtlce pts.
K 85
B2 8
C 12
Total (T) n +2m + 113

If n is large then m = ﬁfﬁ‘ and the total number of stcrage
registers is related tc the number of lattice pointe by the fol-
lowing approximate equaticn:

Tan+ 240 113

2.2 Uumber of Operations and Sample Soluticn Times

Let m and n retain the definitions of section 5.1 and

let a2 equal the number of times the overall iteratim cycle

is preformed



‘Total Number of Cperaticns {(seciions are those used in Ap-

pendicee I and Ilj:

Section No. of COrders Iimes Used in Cne QOver-
all Iteration

! 2.1 ' 11 nel

2.2 3 nem+l

Rele1 2 m

2.3 61 | | n

3.1 3 \ m

3.1.1 6 m-1

3.2 3 | !

3.2.1 4 o

Total 93

Total operations: [(P+1)Il « (n-m+1)3 + 2m +6\mn
*+3m 4 6(m-1) "‘3"'4]&-‘:

= [T5n + 8m + 1S ]a
If the approximationm of 5.1 is used the following relation obh-
tains: 5[75!\-\-64\/:9[5]‘
iIf it is assumed that Whirlwind will preform 20,000 operations
per second, then the following relation holds betweeﬁ the num=-

ber of 1attice'points and the solution time:

If n=1600, the solution time is 6 @& sEc.

If n=2500, the solution time is 9 g ssc.
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5.3 aAdvantages and Disadvantages to_the Program

Advantages:

The program is self-correcting to a high degree (cf.
sec. 4.4).

The relative accuracy of the final solution can be esti-
mated (cf. 86C. 4.3).

The ?rogram for the solution is essentially simple (cf.
Appendix II). 4

The number of orders is relatively small (cf. Appendix I).

The program can haqdle a veby large system of lattice
points (an attribute of the iterative approach).

Disadvantages:

For the purposes of machine computation iteratim has
but one disadvantage ... it involves a relatively greater .
number of operations than an "exact" method. However, an
inspection of the sample solution times given in 5,2 will
show that this disadvantagq has become a negligible one in

the case of machines as rapid as whirlwind,
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see reference 7 of the Bibiiograpuay.

There is every reason at this time to believe that tue

first halt of this statement has been fulfilled; as for
the latter half, it is for the reader of this paper to

decide in \what measure that goal has been atltained.

-161 of the Bibliography.

23

See Ref. 7,
vee Ref. 7, E-148 of the Bibliography.

See Ref. 1 of the Bibliography.

See Ref. 4 of the Bibliography.

See Ref. 7 of the Bibliography.

See Ref. 4, chapt. 2, of the Bibliography.

It should be notea that the boundary values are at all
times fixea and thereiore are never modifiea by the basic
iteration (eq. 1.), although they appear in the equation
whenever u, is adjacent to the bcundary.

See Rex., 7, E-148, p. 32, of the Bibliocgraphy.
See Ref. 7

A summary of these notes would of a certainty be meaning-
less unless the summary were to become little more than

a direct ¢opy. This, and the fact that a Kknowleage ol tiae
gereral philosophy of digital computer programing 1s neces=-
sary if the detailed portions of the rest of the report
are to pe of any interest to the reader, dictate the as-
sumption made,

.

Because the orders in Whirlwind are stored in the same
type of register as the data, there are sixteen places
available, 1he first five places are used to designate

the order, the last eleven places are alloted to the
address number,

Boundary values appear in the basic iteration equation
whenever u is next %o any boundary, and hence they mus?y
e addressed in the same manner as the rest of the‘g'a
so that they can be obtained by the process oif section
1.1 &
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See Ref. 3, p 94 ff, of the Bibliography.

The stop cycle is actually checxing the overall result
of the last cycle. Refsrring to the flow diagram {ap=-
pendix II) it becomes evident that the iteration is
actually being stopped one cycle after the optimum cy-
cle. Some careful, though non-rigorous, consideration
given to this indicates that the decrease in accuracy
will ve slight. On the other hand, the losses in voth

storage and operation time are great, amounting to the

order of 50% if the same method is used to stop the i-
teration at the exact cycle of optimum accuracy.
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Project Whirlwind Publicatim s:
Froject Whirlwind, Naval Contract Nb5orié0, Servomechan-
isms Laboratory, iiassachusetts Institute of Technology
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Appendix I

Explanatory Notes
1 Code Symbels: The code symbols are used with the mean-
ings given them in Project Whirlwina engineering note E-235.
- All other notation is either that suggested in Project
whirlwind conference note C-93 or else it is identical with

that used in the body of the Thesis.,.

2 Storage Register Designations:
The prefix R signifies a program order register,
The prefix B signifies data which does not remain
fixed during the program.
the B 1l.n registers store alli values of uy 4
incluaing the boundary values, ithe actual
numerical addresses Ior these registers be-
ing related in the manner aescriped in sec=
tion 4.l1.1 ot the Thesis.
The prefix C indicates registers whose contents will
not be changed during the iteration process; these values

may be stored at any available position.

The registers whose. addresses are symbolized by j+ ¢
and j+c' are the registsrs mentioned in sections 4.2.2

and 4.3, respectively, of the Thesis.

N. B. The'R, By j#c, and jwc!' registers must all be

astored in sequence, as numbered.



CRDER CODE FOR SOLUTION OF
LAPLACE'S ‘EQUATION BY ITERATION

{Input and Output Orders lNot Included)

Register No. Qrderxr axplanation
Last input |
order ca  Cll puts RC (first u of first row
in AC

(Sec. A 2.1 - Is ujj a Boundary Value?)

"1 td B2.4 transfers address of uj to BR.4

Rz td. B2.5 " i " hoom BR.OS

nd sl n eliminates all_but row no. j,
giving j x 28B-15 in AC

R4 sT n gives j x 2715 in ac

R5 ts B2.1 transfers j x 2-15 to B2.1

Ré ad (1l gives j plus ¢, equivalent to

RC (address of boundary value
for row j)

R7 td RS9 transfers j plue ¢ to address
: section of order K9

R8 td k20 transfers j plus ¢ to address
‘ section of order R2Z0

RO ca (J plus ¢) (address from R7); AC contains
address of boundary value at
end of row J

R10 s8u Bzg.4 ascertains if RC u;: is equal
to RC boundary”vai&e;
(=) if uij boundary value
é.’_ ) if J " i

R11l cp RLY ‘ if uj j would be a boundary
value program proceeds to
next step;
if uj; is not a boundary value
progrim zoes to order R1Y



(58C. 4 S.1 = 1B a4 the Final Boundary vValue?)
A lg
Rlz ca C5 puts max. row no. in AC

RLS su Bl.l ascertains if Uy would be the
final boundary value
{=) if gy would be
(+) if uij would not be

R14 cp hs4 if u;. would be the final boun=-
dary Galue program proceeds to

next step;
if ujs is not final boundary
value' program goes to arder R84

(Sec, Ad.2 = Is s8> -l 9)
R1E ca B2.3 puts S in AC

(+) if s < gn-1

R17 ¢p R90 if sB 5 sP~1 program proceeds to
next step
if s < sh=l program goes to or-
der R90

(sec. A4 - Output program)

k18 sp RC first of output orders

The three sections which follow are a cycle resulting from or-
der R1ll: '

(Sec. A 2.2 - Is u(j31)j a Boundary Value?)

K19 a0 BZ.4 gives complement of Uipl,] in
AC3; ‘
stores Ujigl,j in B2.4

R20 ad (Jj plus ¢) (address from R7); ascertains
if RC uy i G
RC Eghn&;}ijégug?ual Lo
(-) if uj41,; is a boundary
value;
(+) if Ujy1,j is not a boun-
dary value
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{sec.
Rz
R23

(Bec,

tion C
k24
k2D
R26
R26
R27
R28
R29
RS0
R31
Réz
R33

ep

R23

A 2.2.1 = “Mark")

ca

i8

c7

Bek

L . ) 3 jaTv
AE 94 s ooundary valis

o, 5
proceedas to next order;
if u, : boundary value
i+, , .
program goes Lo order H2S

puts 2 x 2‘15, the "mark®, in
AC

transfers "mark® to B2.2

A 2.9 -~ Combineu pasic Iteration and Basic Stop Itera-

vcles)
ca
td
td
ad
td
ad
td
ad
td
ad
td

ca

8T
-te

ca

R34
c?
R27

B us 51

[3e]

B2.6

H2 U5, 5m1

puts address of u,. in AC

i3
tranafers addreass of uij to R49
" " L] [} -t o Rb 9
forme address ui,j+l
transfers address
forms address of ui,j-l‘
forms address of ui+l,j

-
forms address of Uj-1,j

address from R27); puts u, .
§n AC A ul’J*‘
gives ui’3+1/4 in AC

transfers quantity toc B2.6

(address from R29); puts Ui, 5a
in AC T



"

R44

R4E

R46
ra7

R48

BT
ad
te

ca

8r

ad

ts

ca

sY

ad

ts

Bl.o
B2.¢

BC uy 31,3

]

B2.6

("stop iteration" sub cycle)

Ra¢

Rr50
RS1

R52

RES

su

sl
ts
ca

sl

ad

©p

BC ujj

2
BZo7
B2.5

C4

R58

Qs

forms (ui,jﬂ. +ui,j-1f/4

(address from R31l); puils uy
in AC

yd

divides it by 4 (a8 in R38)

forms sum of two u's summed in
R39 and the present uy , -
o

-~ =z - e .
§;d§éess from R33); puts Ui.1,j

divides by 4

forme sum of the three u's sum-
med in R43 and the present uy
this sum is equivalent to
(Ugy +ugo+ugz+ugyl/4

-1j?

(address from RR5); puts
(sum ug's)/4 - Uy 5 in AC

gives (sum ug's) = 4uj; in AC

puts RC uij in AC

eliminates all but jsection of
the address of u;
1j
Y)ifj=0
+) if j>0

if j=0 program proceeds to
next order

if j?2 0 program jumps to order
R58
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R61

R62
kod

Ro4

R6S

neé

Re7
R6E8

noY

R70
R71

[#]
©

is

ca

8u

cP

ca

cP

ca

ad

is
ca

ts

ca

‘ad

b & e
) o

. *

w -~

2

Cle

R73

B2.2
C4

R77

B2.7

Cl0

puts Eij in AC

miltiplies ?ij by 3

puts address of uiJ in aC

eliminates all but j seciion
of address

(=) if j max. row no.
(+) if J " " "

if j<max row no. proceeds to
next order

if j=max. row ne, program
goes to R73 (to multiply p

by %)

puts mark, if any, in AC

2-3 if no mark
“+) if any mark

if no mark program proceeds to
next order
if any mark program jumps to
R77 to multiply Pi Q by s and

f

reduce the number marks by
one

brirgs le with proper coeff.,
into AC

forms partial sum of o J's
leading to sB

pute {(sum u,'s)/4 in AC
(address from R25); puts nuij
in place of B~ uj 4

puts address of uij in AC

gives the address of the new
uij in AC



R72 ap Rl repeata the operations from
the beginning on the new u. .

:
-

The. section which follows is az sub-sub cycle resulting fronm
order R61

R73 ca B2.7 puts pij in AC

R74 sr 1 multiplies pij by 3

R78 ts B2.7

r76 sp R62 returns program to the sub
cycle

The section which follows is a sub-sub cycle resulting from
order R64

R77 ca B2.7 puts Pij in AC

R78 sTr 1 multiplies P by 3

R79 ts  B2.7

R&0 ca Bl.2 puts "mark" in AC

K81 su (86 reduces "mark" by one

R82 ts B2.2

R83 sp R65 returns program to the sub
cyvele

Thz section which follows is a sub cycle resulting from order
R1*

(sec. 4 3.1.1 - Generate KC first uj j4q)

R&4 , ca B2.1 pute row no.,Jj in AC
k85 ad C2 gives j+c', equivalent to
RC (address of first u;. in
row j+l1) J
R86 “td R87
* R87 ca j ¢! (address from R86); pute ad-

dress of first ui,j 1 in AC



p ’ € f 3 Y +
R88 td B2.5 g%?ges RC (first ui,j+l’ in
k89 8p RR23 starts program on first order

of sec, 4 2.3
The section which follqws results from order K17

(Sece A 3.2.1 - Prepare to Repeat the Iteration Process)

R90 ¢a B2.9 puts S, now sSP-1l, into AC

ROl ts BR.3 _

R92 ca Cll puts address of first u in first
row in AC :

R93 8p Rl restarts process



DATA REGISTERS

B - Registers

B

-
ieil

RC nth u {(using ieft-right, up-down scan;

ij

contains the row no., j 3 gquantity stored by RO

contains the "mark" H guantity stored by RIS
this register should initially be set at 1 x 2-15

by the Input program. ‘

contains sB-1 ;  guantity stored by K90
quantity stored by R1

modifi ed by R19

contains B l.n

-

guantity stored by R2
or R88

we

containg B 1l,n

's) quantity stored by action

of R36, R40, 444, and K43

contains (sum of u

we

contains Pij Quantity stored by R51

~e

contains (sum of pj;'s)

i 4 guantity stored by R6E
wgich.becomes equai'to
S

-o

c+Jj = RC address of boundary value at end of row j

c'+ J = HC address of first u;, in row j 1

J
C - Repisters
Cl contains ¢ C? contains -2 x 2719
¢z . c! ce . 1 x 28°104 2718
3 " 0,/000000000000000 co " -z x 28719
c4 v 1/111111111111111 c10 " 1 x 23715
GS " maX. rOw NO., m cll " aadress rirst
o " 1 x 2-18 i



Appendix I1

THE FLOW DIAGRAM
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Appendix II

The flow diagrams in this Appendix serve to show the re=-
lation between the different parts of the program. The arrows
indicate the difection in which the program proceeds. Xach
box represents some general OPeiamibnrbeing preformed; the
following information is contained in each box (reading from
left to right): an outline number, the orders used to com-
plete the operation of the box, and the operation being pre-
formed. Boxés having two lines extending from thiii lower sides
are those in which a conditional program is involved and in
which the computer must answer the gquestion asked in the box

and then proceed accordingly.



i Input Program

Sel Is u;.: a2 boun-
R1-R1l dary valuey

YEs

[ Yes
NOJ 1
Cel Is uy i47 a boun- 3.1 Is u;, the final
B19-R21 dary-¥3ide R12-R14 boundsry value?
No Yes No
2eRel Store 2 Sel.l Generate RC
R22-K23 marks R84-RB9 18t Uj el
Y
L¢3 Comb. iteration &
R24=183 stop iteration cycles

Sel

R15=-R17

Is sB » gi-1l9

v |

YES

Se2.1

R90-R93 peat iteration

Prepare to re-

|

4 Cutgut Orders

D iASHAM




