
r
:

ThE PROGRAING OF LAPLACE'S EQUATIONl

FOR SOLUTIO1b BY ITERATION

(on Whirlwind I)

by

John H. Holland

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science

at the

I"~assachusetts Institute of echnology

1950

Su e+3~ ~ ~ ~ r 7 .>*.r,.-.r~ C~~j Lr ' r -?(>etr 'ef
X~~~~~~~~~~~~-i3" , * T

-

_ lc

r

Cambridge, Massachusetts
May 19, 1950

Professor Joseph S. Newell
Secretary of the Faculty
Massachusetts Institute of Technology
Cambridge, Massachusetts

Dear Sir:

This thesis, entitled The Programing of Laplace'-

tion for Solution by Iteration (on Whirlwind I), is present-

ed herewith in partial fulfillment of the requirements for

the degree of Bachelor of Science in Physics at the assachu-

setts Institute of Technology.

Resectfully,

John H. Holland

r

ACKNOVJLEDGRENi T

MM_ -

ALvo La '4_VX w'J.QDLU btLI CJ;UiVWLLB 61 at WLL.LL1 P2 L% P LIC A-

tremely helpful advice given to him by Professor opal at

various crucial stages in the development of this thesis.

Thanks are also to be extended to R. R. Everett and J. C.

Proctor for their aid in providing access to the library of

Project Whirlwind.

t

· 1Y �7 �lr\� 1·1�a·11�0 �� ��lm��r E�rrm� �T r�rcl �nr\-rr?·r rrrra �rn

r
I

TABLE OF CONTENTIS

Page

Letter of Transmittal iii
Acknowledgement iv

Table of Contents v

Summary vi

1 Introduction 1

2 Mathematical Definition of the Problem 5

2.1 An equivalent arithmetic form of
Laplace's equation 7

2.2 The mesh and boundary conditions 10

2.3 The iteration procedure 11

3 General Considerations Pertaining to a Digi-
tal Computer 14

4 The Program 19

4.1 Problems in programning the basic-
iteration 20

4.1.1 arrangement of data storage 20
4.1.2 scale-factor problems 22

4.2 Problems in advancing the cycle
to a new u 23

4,2.1 generation of a new u 23
4.2.2 detection of boundary values 24

4.3 Stopping the Iteration 25

4.4 Mathematical checks 29

A6. " -

r

Evaluatioln 1

t5.1 IurNmber f orders and storage regis-
T ers 32

5.2 Number of operations and samnple solu-
tion times 32

5.3 dvantages and disadvantages to the
program 34

Footnotes 35

. ibliography 3 7

I Appendix I - The Code 38

Appendix II - The low Diagram 48

r

SUMXARY

This paper contains a discussion of the problems involved

in programing and coding Laplace's equation for solution on a

large-scale digital calculator. A relaxation method is chosen

as the means of solution and the consequent problem of stop-

ping the iteration before roundoff error becomes appreciable

is confronted. The resulting code and an evaluation of it are

included in the latter part of te report.

1

INTRODUCTIO]t

1 Introdution

The solution of Laplace's equation (V 2u - O0) is an im-

portant ste in a vast number of the problems encountered in
physics and electrical engineering. Many of its solutions are

certainly widely known to physicists and electrical engineers;

but, though this equation is the simplest involving the La-

placian operator (2), it still may prove at times an extreme-

ly difficult task to obtain an explicit solution. When the

boundary conditions are complicated (in shape for instance)

the solution is at best an exacting process. Yet, where the

object is to obtain a specific set of values for u within the

bounded region, and this certainly is not an infrequent case,

several methods of solution exist whose application is a mere

matter of outine.

Given this. information, one might begin to consider wheth-

er or not it is possible to mechanize such a routine so that

little or no human intervention would be necessary in its ap-

plication. It is possible; indeed the mechanization of such

routines comprises the purpose of most large-scale computers in

existence today.

It is the object of the present paper to demonstrate one

way of setting up Laplace's equation so that it can be solved

by such a machine, more specifically the machine being construc-

ted under avy Project Whirlwind.1 It is hoped not only that
the method chosen has resulted in a program which is simple and

compact compared with the other programs possible, but that

its development will also make clear some of the more important

considerations to be taken into account in any application of

the method-.2 At every stage an attempt has been made to seep

the development general enough so that it may be possible to

utilize the results obtained, or part of them, in other prob-

lems of a similar nature.

The method to be used was determined partly through the

fact that Whirlwind is a digital computer, and partly through
consideration of work in this area of investigation already

completed by staff members of the prroJect. The fact that

Whirlwind is a digital device makes the employment of the meth-

ods of numerical analysis almost mandatory. Once the equation

has been reduced by these methods to the proper arithmetic form,

which consists of a determinate set of simultaneous linear al-

gebraic equations, two broad approaches to the solution are

open: 1 - solution of the resultant equations by elimination,

or 2 - solution by the so-called approximate methods. Since a

fairly comprehensive Project hirlwind engineering note has al-

ready been published on the program for solution of simultane-

ous equations by elimination it was decided that the present

paper should be directed toward utilizing one of the approxi-

mate methods. Reference to another Whirlwind engineering

note made it clear that some modification of the single-step
iteration method developed by Gauss and Seidel should be used. 4

Later discussion will show that the iterative method chosen

-4-

will be preferable in most cases to elimination, both as to

simplicity o code and as to the accuracy attainable.

With the foregoing considerations in mind the direction

the present paper was to take had been almost completely de-

termined. owever it was early discovered that if the inves-

tigations were to be completed within the alloted time it would

be necessary to somewhat restrict the scope of the method chosen.

Two such restrictions were made:

1 A lattice or mesh of square sections was employed to

cover the bounded region.

2 The boundary conditions were considered to be given

as values of u at the external points of the lattice.

The significance of these restrictions will be discussed on

pages 7 ff. and pages 10ff., respectively, of this report. It

will be seen that neither of these restrictions seriously- lim-

its the generality of the Gauss-Seidel method when it is appli-

ed to the solution of partial differential equations on ma-

chines of the Whirlwind type/

2

AEWIATICAL DEFIITIO O TE ROBSLE

-6-

a Mathematical Definition of the Problem

2.1 An quivalent Arithmetic Form of Laplace's quation

2.2 The Mesh and Boundary Conditions

2.3 The Iteration Procedure

Laplace's equation (in vector notation Vz(x,y)-O), as

noted in the introduction, is one of the most familiar equations
of mathematical physics. The equation makes its appearance in

an important positioni in almost every field of physics; as ex-

amples consider static elasticity (the wave equation with zero

time variation), diffusion, steady flow of heat or electricity,

irrotational motion of an incompressible fluid, and perhaps most

familiar of all the potential distribution of a charge-free space.

Important though these particular problems may be, the equation

of Laplace gains its greatest import from the fact that it is the
simplest equation involving the I lacian operator, which appears
in such basic equations as the wave equations of wave-mechanics.

Thus a knowledge of the solutions of Laplace's equation provides

a foundation for the solution of a great many of the problems for-

mulated by theoretical physics.

Since Laplace's equation is a partial differential equation

(in expanded form,a + O), its general solution involves

arbitrary functions. In the usual case this solution is also

required to meet a set of "boundary" conditions so that the ar-
bitrary function becomes particular. A necessary and sufficient

condition for the bound-ary conditions to specify a particular

solution in this two dimensional case is that the value of u

be pecified at every point on the boundary of the region un-

der consideration. If the boundary conditions are. given in

another form, for instance as a derivative of u at the boun-

dary, it is possible in most cases to reduoe them to the form

given above; thus there will be little loss of generality if

for the purposes of this' investigation it is assumed that the

boundary conditions are available as values of u on the boun-

dary .

L j An auialent Arithmetic Form of LaPlaae's Equatior

The reduction of Laplace's equation to a form suitable

for use by Whirlwind is possible through use of the calculus

of finite differences. One possible derivation is given by

Courant in his Aan ced etods of Aplied Mathematics.5 A

short synopsis follows.-

3 h

)k

u~j ca u(~hy)= ,
unL h@

u..,, (.- o.,.& ,.)

Fig. 1.

With reference to the diagram -(Fig. 1.), Courant defines a for-

ward and a backward difference as follows:

-7-

forward difference , (-,) (X , Y)
h

bacXward difference ux (x, 1)= (x.Y) - L (x-h y)

then , X -x '1^ a7I i (,71 h

and Vu.L a difference operator = U + LL

or _ _ _ _U -- _

For the problem of this thesis, i. e. 7S - a @

LI c + Uce U4 e - UAL. -i i i)
4

Equation 1) is the basic iteration equation. Here the Laplacian

operator has been replaced b a finite difference operator which

involves only arithmetic operations on the ordinates.

The use of the arithmetic equivalent of Laplace's equation

to obtain a solution over an extended finite region originally

was accomplished by an adaptation of the mesh analogy used by

Southwell. 6 The analogy consists of exchanging the continuous

variation of u in the region of interest for a "net" whose in-

ternal nodal points eventually take on the value of u at the

equivalent point in the region and whose external (boundary)

nodes are fixed at the corresponding boundary values.

/
t--

I
>4l

P.
44

0 - interior point.
(arbitrary value a of u)

- boundary point
(fixed value of u)

Fig. 2.

Q.

Qa

I

A

P tf

I

f-----------

I--
., . .

5f

I
I
I.

f,.

1

4

I

I

I

`11_�

-9-

The procedure for solution, once appropriate values have

been fixed for the external nodes (of. Fig. 2.), consists

first in assigning arbitrary values to all other nodes; the
net is then relaxed by a systematic application of the dif-
ference operator. One system of relaxation begins by choos-

ing one node as a reference or center, applying the basic iter-

ation equation (egq. 1), and replacing the value at the refer-

once point by the one so obtained. This process is then car-

ried out over the net until all nodes have had their original
arbitrary values replaced in this manner; the whole relaxation

is repeated as many times as necessary until the successive

values at any given node do not change sensibly.

Since the choice of an iterative method over-an elimina-

tion procedure was more or less an arbitrary one, it would be

well perhaps- to give a preliminary comparison of the two ap-

proaches. Flimination on the one hand has a smaller total num-

ber of arithmetic operations (indicating a shorter solution.

time); on the other hand iteration involves a more routine ap-

proach and roundoff error is kept to a minimum. It would seem

that elimination is suited to use for small systems of equations

where the roundoff inherent to exact procedures is not the lim-

iting factor. Iteration would seem more suited to problems

where high accuracy is a requirement and where region of solu

tion is large (many mesh points). Further information concern-

ing exact and especially elimination procedures may be found

in ProJect Whirlwind engineering note -161.7

- o0-

2.2 The esh and Boundary Conditins

It will be noted that the finite difference operator de-

rived is suitable for use on meshes of square section only.

That other types of mesh are possible is evident; a triangular

mesh (i. e. a mesh where each node is connected to six other

nodes) has often been used in the solution of problems by the

relaxation method.8 The advantage of different basic mesh

shapeslies in the way they can be fitted to the continuous

boundary surrounding the region of interest. This advantage

obviously decreases as the mesh interval gets smaller since

the smaller the interval the greater the number of points in

the vicinity of the boundary. If the capacity of hirlwind is

used as an example it can be assumed that it will be possible

to calculate a minimum of 1000 values of u for as many nodes.

This would correspond to upwards of a hundred points lying near

the enclosing boundary. It seems reasonable that with this

many points (nd the corresponding small interval) the accuracy

of the approximaticn to the boundary will not be sensibly af-

fected by the mesh shape.

lo give some Concrete idea of how the fixed values for the

boundary nodes are obtained it might be good to say a word about

the simplest way of setting down these values. Only mesh points

interior to the boundary are used, the points adjacent to the

boundary being assigned the value of the boundary function near

them. For instance, in Fig. 2 the value of the boundary func-

tion at Ql and Q2 would be assigned to points 1 and 2 respectively.

There are of course other methods for obtaining the fixed

values of the boundary points (e. g. see L. ox, Proc. Roy.

Soc. A190, 31-59, 1947) and which one is chosen is a matter of

the ultimate accuracy needed in the boundary values. Since

the boundary values so obtained are presented to the computer

in the form of initial data, they have little effect on the

program for solution and will thus be considered as given quan-

tities henceforth.

2s3 The teration rrocedure

The exact relaxation procedure decided upoP is similar to

one described by Courant. It may be summarized as follows:

1. Assume for u(x,y), at all interior points, values,

preferably between the maximus and minimum boundary

values (giving a first approximation lui).

2. Order the interior net points (1, 2 3, ...iI) in

some arbitrary manner, P1, R2, ..'

3. UeL ng the basic iteration formula (eq. 1) center-

ed on the point 21, replace the first approximation

lu1 'lu(P1) by the value obtained from eq.l, thus
obtaining 2u 1. Do the same for u2, u3, ...uN, thus

arriving at a second approximation for u. If the

formla (eq. 1) includes any earlier changed values

the changed value is used, i. e. if nuj is the value

being replaced, then- if i , the value nlu i, pre-

viously computed, is used instead of nui.

4. Continue this process obtaining u, 4u, etc. un-

I

-til maximum accuracy has been reached.

It can be readily demonstrated that this method is equi-

valent to the Gauss-eidel single-step iteration. The Seidel

method can be represented schematically by the following set

of equations:

A1l lU1 + A12 A , + A13 nu, .. · Alj B

A2l m z + A2 nk2 u2 +A n3 +. + A2 j nuj - B2

Ajl n½ul + ** Ajj n+lmj = Bj

where nui represents the nth correction to ui. Thus, if the

nth correction of u be considered given, the n+l correction is

obtained for u by solving equation for ul (considering u1

for the moment as unknown but using all the other values as

given), similarly equation 2 is solved for u2, and so on until

the n+l correction has been obtained for all u's, i. e.

i - 1, 2, 3, ... j. This is exactly the system described in

the first paragraph of this section, albeit somewhat differently.
A simple example may make the equivalence clearer.

the values enclosed in boxes

. are the fixed boundary values.

U~

Fig. 3.

-12-

Applying the method described in the first paragraph of this

section, the following equations are obtained:

a' z2 ~ ' n 3 - -i 0G
But the boundary values are fixed at all times and hence may

be transposed to the right side of the equations.9 Transpos-
ing and rearranging.-

n* 4

-- tAL + 4e,-I waks~ ~ta~ +i ~tAt & * %A1 f bt
but this is exactly the matrix arrangement given above for the

6eidel process.

The equivalence Just shown is especially significant when

one considers the conclusions concerning iterative methods

which were reached in roJect Whirlwind engineering note E-148.

" 1) A single-step iteration method should
be used because

a) It is easy to obtain suff'icient con-ditions for convergence.
b) A means for instructing the machine
when to stop iterating is available.
c) IExperimental evidence seems to indi-
cate that the product (number of itera-
tions needed to obtain a given accuracy)
X (amount of computation per iteration)
is less for single-step methods than with
the others examined.

2) The single-step method should be the Seidelmethod because it requires less computation
than the other single-step methods known. "10

-0I-

JHlnAUL CONSIDERATIONS PERTATIiG 0 DIGITAL CPUTATIO0b

3_ General Considerations Pertaining to Digital Comutation

The previous section has traced out the operations i-
posed by the mathemtics of the problem; the present sectio

recounts the operations necessary to adapt the problem to

solution by a iaxge-scale digital conputer such as Whirlwind;

the next section will detail the manner in which the require-
ments of the tow earlier sections are mutually satisfied, re-
suiting in the program".

While an attempt will be made in the sections that fol-
low to exclude the more unique qualities of Whirlwind (i. e.

thca.e not likely to be found in other large-scale digital
computers), it must be remembered that the word computer and

similar expressions when used refer first and foremost to

Whirlwind. All program notation appearing hereafter is that
suggested in Project Whirlwind conference note C-93; the

actual order code used is that described in Project Whirlwind
engineering note -235.11 In some of the work which follows,

notably the code and the more detailed parts of the program,
it must be assumed that the reader has a working knowledge of
the foregoing notes.12

The first consideration in any program is the systematic

input of data to the computer. In the present case the data
consists of boundary conditions and initial estimates for u
at the interior mesh points. The interior points should be
ordered in such a way that the computer can obtain the u's

r ;

for the basic iteration with a minimum of coding. At the

same time, since the fixed boundary values are ordered along

with the interior points (because the boundary values will

at times appear in the basic iteration, of. Fig. 3 and ac-

companying example) the machine must have some means of de-

tecting them to prevent their becoming modified during the

iteration.

Once the input has been accomplished it is possible to

proceed to the iteration. It is evident that some system

must be found, within the limit set by orders which the com-

puter can interpret, to provide the correct data for the bas-

ic iteration to the arithmetic element in the proper sequence.

After the proper artimetic operations have been preformed it

will be necessary to return the corrected u to its proper

position in the storage and then advance the cycle so that it

will operate on the u next in order.

Finally some method will have to be provided to stop

the iteration automatically when the accuracy obtained can

no longer be increased. Also at this point as well as through-

out the iteration some purely mataematical checks should be

applied to detect, and if possible eliminate, any inadvertant

arithmetic errors introduced. It would iAkewise e advantageous

to be -able to estimate the relative accuracy of the final an-

swer.

In addition to the foregoing very general considerations,

there is one problem introduced by Whirlwind which is common

to many but not all digital computers ... the scale factor.

_ I ~~ i-

The problem results from the finite size of the storage regis-

ters. The storage of Project 1Whirlwind is of the parallel type,

a complete number being stored in a register having a simgle

address. The storage registers can hold one fifteen binary dig-

it number (equivalent to approximately five decimal places)

with its sign, or alternately one complete order-. Itthas been

decided that the number interval represented by the range from

plus fifteen places to minus fifteen places should be 1 - 2- 1 5

to -(1 - 2-15). (This interval was chosen from the others pos-

sible, such as the interval 215 to -2+i5, for a reason which

will soon become evident). The number range being thus limited,

a sufficiently large number can and will overflow the limits

of the storage register. While there is an automatic alarm to

indicate this condition it is not remedied automatically; there-

fore special precautions must be taken at every stage of opera-

tion to prevent such an overflow.

The scale-factor problem is two-fold --- all data must be

multiplied by an appropriate scale-factor to bring it within

the limits of the number system (i. e. all data must be reduced

to an absolute value less than one for Whirlwind), secondly

precautions must be taken at every stage of arithmetic opera-

tion to prevent an overflow. An arithmetic overflow will oc-

cur whenever two numbers greater than are added since the

sum will then be greater than one) or when a division is such

as to give a number greater than one. It is now evident why

a system where all the numbers are less than one was chosen;

multiplication being a frequent arithmetic procedure, more so

than division, it was desired to make an overflow by multipli-

cation a physical impossibility (i. e. two numbers whose abso-

lute value is less than one cannot have a product greater than

one).

It shord be noted that orders must in general be stored

in sequence, the sequence in which they will be applied, since

the computer obtains a new order (unless specifically instruc-

ted otherwise by an order) by adding one to the address of the

order of the moment and then looking up" the new order at this

modified address. This restriction will affect the actual cod-

ing of the orders a great deal.

4

TiHE ThOGRA"

The Pror

For convenience the results of the last two sections have

be rearranged into the four general catagories which follow:

4.1 Problems in Programing the Basic Iteratl on

4.1.1 arrangement of data storage so that the u's
may be obtained with minimum coding.

4.1.2 scale-factor problems.

4.2 Problems in Advancing the Cycle to a New o

4.2.1 generation of new R.o

4.2.2 detection of boundary values.

4.3 Stopping the Iteration at Optimum Accuracy

4.4 Mathematical Checks

41 Problems in Programing the Basic Iteration
4.1.1 Arrangement of Data Storage

Given any u, it will be necessary to obtain the four con-

necting u's for the basic iteration (see eq. 1. and Fig. 1.).

Restated with reference to coding this statement becomes,

"Given the address for any uo it must be possible to obtain by

means of standard orders the address of the four connecting u's."

Thus, the address of any u must be related in some standard

and unvarying manner to the address of the four connecting u's.

The necessary relation is accomplished through dividing the ad-

dress of any given u into two parts; the first part signifies
the column number, the second part signifies the row number.

Since the address of any register is just a number this can be

-21-

accomplished by using the last a places for the row number,

the preceding places in the address section being used for

the column number.l3 To obtain the connecting u's above and

below u it is only necessary to add plus or minus one to the

portion of the address used to designate the row number: a

similar operation will generate the adjacent u's.

Consider this process, together with Whirlwind-type

storage registers and number ystem, as applied to the group-

ing of Fig. 3

IL (- l

I ',i rU ; i

r,',-.,a +) ,. . i ., ' " ':,'! '

l~~~~~~~~~~~~~~ V~ (4){O.1~
w;'i+Ri~~~~~~~~~~~~~~~~~~~~

Addresses in Decimal
2No tation

STORAGE REGISTER

·- H- -

tm-in w I. i .4

order ,
address

Addresses in Binary otation

0201

0102 0202

0103 0203

0204

base 10

0302

0303

00000100010

00000100011

a=2

00001000001

00001000010

00001000011

00001000100

base 2 a

00001100010

00001100011

Fig. 4.

It the aaduress of the register containing u o is given, then

Ucl , for instance, may be obtained by adding 1 x (base)a ;

thus if the address of uo is 0203, then the address of u1l

is equal to 0203 + 1 x 102= 0303, as indeed it is.

4.1.2 6cale-factor Problems

The scale-faotor problem makes itself evident in two dis-

tinct ways. irst of all the original input data must be so

adjusted that it will not overflow the storage registers hen

read into the computer. Since this problem is essentially a

"preliminary measure" which has no effect on the main program

it will be given no further consideration here. owever, the

other scale problem, that of overflow during arithmetic opera-

tion, affects the computer whenever an addition or a division

is preformed. ssentially all arithmetic operations of this

type appear during the basic iteration cycle, thus it becomes

necessary to inspect all operations therein for any possible

overflow and then to code the problem in such a way 'tiat an

ovef low becomes impossible.

Inspection shows that the only possiblity for overflow

appears during the formation of uo from the connecting uc's.

The basic equation requires tbatthe four u's be summed and

divided by four. The most economical way to accomplish this,

forgetting for the moment the possibility of overflow, is to

add the four u 's and then divide by 4. It is immediately

obvious that such a procedure involves the possibility of over-

flow, for if any of the ucts are close to 1 in values then

- 44-

-23-

it is easily possible for the sum of the uc's , before divi-

sion, to exceed iand the register capacity. The digits over-

flowing the register are lost and the computation must be

stopped. The alternate method of dividing each u c by 4 and

then summing allows no possibility of overflow since each uc

divided by 4 must be less than a , and hence the sum of the

four u's must be less than 1. Thus, the somewhat longer

method of dividing each uc in turn by 4 proves to be the feas-

ible one.

4.2 Problems in Advancing the Cycle to a ew U0

4.2.1 Generation of a New uo

Once the basic iteration has been preformed on a given

uo, it becomes necessary to advance the cycle so that it will

be preformed on the u next in order. The scan of the over-

all process is duch that the iteration cycle proceeds from

left to right and then, upon reaching the boundary of that row,

beginasagain at the left of the next row down. It can be seen

that as long as uo is not adjacent to a boundary value on the

right the problem of finding, the address of the new uo simply

involves adding 1 to the column number (i) of the address of

the present uo (of. section 4.1.1 if this terminology is not

clear). The condition obtt ning when uo is adjacent to a

boundary value is intimately connected with the problem of

detection of boundary values and will be discussed along with

this problem in the next section.

- 4-

4.2.2 Detection of oundary Values

Boundary values must be ordered along with the values of

u being solved for, yet the boundary values must not be altered

by the basic iteration when it has advanced to the point where

the address of the new u o coincides with t e address of the

boundary value.14 Thus some means must be provided in the code

for detecting when the tenative address for the new u coin-

cides with a boundary address. This detection is accomplished

through storing the address of t righthand boundary values

(future discussion will show that these are the only ones in-

volved) in an additional set of registers whose address is e-

qual to the row number (j) plus a onstant (c). In this man-

ner by detecting the row number (j) in the addres of the tena-

tive uo , adding the constant c, and comparing the contents of

the register whose address is +c with the tenative address of

uo it will be possible to see if the tenative address coincides

with the address of the boundary value for that row. As an

example (of. ig. 4).-

Let c = 15

and let register 17 contain 0302,

register 18 contain 0303

154-j RC (the address of the righthand boun-
dary value for row j)

thus given RC uo - 0203,

and 15 +j 18 = RC (0303, or the address of the
boundary value for row 3).

if the tenative u does coincide with the righthand boun-

dary value, then some system must be set up to obtain the first

u to be solved for in the next row down. This can be acom-

plished in the same manner as the boundary value detection,

using this time a new constant c' and storing the address of

the desired u in the register whose address is j +-' . By

forming the address jc' as above and transferring the con-

tents of that register to the programing unit the basic itera-

tion will be preformed on the first non-boundary u in the next

row down.

: 4.3 Stoping the Iteration

The problem involved here is the result of roundoff er-

ror. If the iteration could be carried out with no roundoff

it would be a monotonicly .ponvergent process tending toward

the correct value of u in the limit; however, with roundoff

the process first converges toward up, then as roundoff error

accumulates the values obtained obtained begin to oscillate

about w me mean value, with amplitudes proportional to the

accumulated roundoff.

If there were no roundoff the iteration could be stopped

by instructing the machine to go to the output program when-

ever the difference between successive values of u became smal-

ler than a certain amount. With roundofI such a procedure is

no longer possible for there is no assurance that the differ-

ence between two successive values of uwill reach a given

value before the oscillation sets in. The oscillation, being

LL

-A

I.

.E

I
i

II I

I

e-

t,

_ .,_ _

-26-

a function of the accumulated roundoff error, builds up and

of course precludes the possibility of two successive values

of u being less than a specified amount, except by chance, if

they were not so before the oscillation was appreciable.

Consideration will show that what is desired in this case

is a function related inversely to the composite accuracy of

all the u's. Such a function will decrease as long as the over-

all accuracy of the solution (i. e. the solution for the region

under consideration) increases, but as soon as the roundoff be-

c mes of the same order of magnitude as the difference between

the approximate u ana the correct u the function begins to in-

crease. Consequently the difference between two successive

values of the function will be positive until the point of

optimum accuracy is reached, at which time the sign will change

to negative and remain so. Thus, by inspecting the sign of

this difference after each relaxation, it would be possible to

terminate the calculation at the point of highest accuracy.

There is a function discovered by Boussinesq which an-

swers these qualifications. It is an integral function which

he developed wile using the metihod of least squares to solve

the differential equation,
u e ,A(x)W A + .

As modified for use in this report the function takes the form,

IJ [¢,y) ·-] l XJY

To be used on a digital computer the equation must be reduced

to an equivalent arithmetic orm. The ollowing derivation

was accomplishea using the trapezoiaal ruLe or eneraal .-

consider PVx,y) - [V L(XY)1L
and p] 2

where the subscripts "iH anid
"j" have the same meaning as
in ig. 4.

if h and hy are the orainate and abscissa intervals respectilvesi,

hl ['= ItI P<>y} Ld~r

CIr -, a- -

where the sum enclosed in the
brackets is a function of y
(or eventually j) P1j oeng
the first value of p n row j
and Pnj oeing the last.

= k| Pit '- 1^ | *Pj A' I

_ I r P + + * ·r ' -+ _l

+ '2 P I + Pn; ++ .. r ;]
where plm is the first value
of p in the last row, P2m
the secona value,..., ana P.m
the las; value of p in the
last row.

A. B. n is variaole ith J, that is the last value in row 2

may be at a different ordinate than the last value in any row

j 2.

The euivalent arithmetic form of the Boussinesq integral may

now be written -

C~L B r r ^? t Pi + rn ? Am)

(P + r

N. B. There is the implicit assumption here that all rows con-

ta at least two points, the trapezoidal rule being inapplicable

as such to a row with u given at only one point.

Inspection of the arithmetic form given above reveals three

cases which the computer must detect and react to:

1. The computer must multiply the first and last

values of ij in the first and last rows by ~.
and last

2. The computer must multiply the first values in

all other rows by j.

3. The computer must leave all other values of ij

unmodif i ed.

The rules applying in all three ases are routine, and the code

needed to modify pij according to them is simple, being very

similar to the code used to detect boundary values.

Several things should be noted about the final result a-

bove. irst of all, the assumption that every row has at least

two values of u being solved for has a negligible effect on

- ;i C'

the solution, if one considers that any orientation of the

boundary may be red and that the mesh interval may be made

such as to allow at least two points in the rows next to the

top and bottom (the only places where the appearance of less

than three points is probable).

Secondly it should be especially noticed that the value

comuted for V2 u at any point utilizes the same summation

of the connecting u t's as the basic iteration does while com-

puting the new u .16 Thus, a great savin; of orders cn be

attained by combining the first part of the basic stop itera-

L on"' cycle with the equivalent part of the basic iteration

cycle. The way in which this was accomplished is shown in the

detailed flow diagram of the combined cycles (Appendix II).

4.4 Mathematical Checks

The arithmetic checks necessary actually have been taken

care of implicitly in the preceding sections. To see this con-

sider the reasons for- such checks: 1) elimination of any in-

advertant arithmetic errors (usually the result of some tempo-

rary malfunction of the machine), 2) ascertainment f the

relative accuracy of the final result. The first check is made

unecessary by the fact that the iteration procedure tends to

be self-correcting in the long run, i. e numerical mistakes

in replacement (of n-lu by nU) will be corrected automatical-

ly if the iteration process is carried out a sufficient num-
ber of times. The second check, on the relative accuracy of

the f iml result, has already been accomplished in the procedure

used to stop the iteration, which works precisely on this prin-

ciple. By examining Sn , that is the value of the Bousainesq

integral for tile n relaxation, one immediately has an estimate

of the square of the error for the solution as a whole (i. e.

an average of the squares of the individual errors in u).

RVALUAT I O.N

5 Evaluation

5. 1 lnumber of rd ers and Storage Hegisters
5 .2 iumber of COperations and ample Solution Tmes

5. 3 Advantages and Disadvatages o the rogramr

5.1

iumber of

lumber of

number of rders and torage egisters

Orders (of. Appendix i, Order Code): 93

Storage egisters (see Appendix I for designations):

Type Number

j+ m total no. of rows

j+c' m

B l.n n total no. of u.
total no. of ltice pts.

P.

B 2

C

Total (T)

8

12

n + 2m *- 113

If n is large then m - n and the total number of storage

registers is related to the number of lattice points by the fol-

lowing approximate equation:

T n 2 +113

5.2 Iumber of rations and Sample Solution Times

Let m_ and n retain the definitions of section 5.1 and

let a equal the number of times the overall iteratim cycle

is preformed

v

r

?

j:

Total number of Cperaticrs (sections are those used in Ap-

pendices I and II):

Section Iso. of Orders

2.1

2.2

2.2.1

2.3

3.1

3.1.1
3.2

3.2.1

11

3

2

61

3

6

3

4

Times Used in One Over-
all Iteration

n +-l

n- m 1l

m

n

m

m-1
1

1I

Total 93

Total operations: [(r+ I) l U (n-mm) -+ m + 2I3m+ - (-1) + +4]L=
s 1"75n + Sm * iS la

If the approximation of 5.1 is used the following relation ob-

tains: 3 75 + J; *iS]]
If it is assumed that Whirlwind will preform 20,000 operations
per second, then the following relation holds between the num-

ber of lattice points and the solution time:

If n 1600, the solution time is 6 a, sc.

If n-2500, the solution time is 9a sec.

I

r

ii 'ZA Avv..htr ra4 Ash nTh4 .=A~rQ - 4 ·C + n a D',.vanl

Advantages:

The program is self-correcting to a high degree (cf.
sec. 4.4).

The relative accuracy of the final solution can be esti-
mate (c7. sec. 4.).

The program for the solution is essentially simple (of.AQ -- Ai a TT

The number of orders is relatively small (of. Appendix I).

The program can handle a very large system of lattice
points (an attribute of the iterative approach).

Disadvantages:

For the purposes of machine computation iteraticn has

but one disadvantage ... it involves a relatively greater

number of operations than an "exact" method. Howev, an

inspection of the sample solution times given in 5.2 will

show that this disadvantage has become a negligible one in

the case of machines as rapid as Whirlwind,

i

I

I

i

i

I

i bee reference 7 of the Bibiography.

2 There is every reason at this time to believe that the
first halZ of this statement has been fulfilled; as for
the latter half, it is for the reader of this paper to
decide in \what measure that goal has been attained.

-5 X ee Rief. 7, i-161 of the Bibliography.

4 bee Ref. 7, E-148 of the Bibliography.

5 Oee Ref. of the Bibliography.

6 See Ref. 4 of the Bibliography.

7 See Ref. 7 of the Bibliography.

8 See Ref. 4, chapt. 2, of the Bibliography.

9 It should be notea that the boundary values are at all
times fixe and therefore are never modified by the basic
iteration (eq. 1.), although they appear in the equation
whenever u is adjacent to the boundary.

10 See Rei. 7, -148, p. 32, of the Bibliography.

11 See Ref'. 7

12 A summary of these notes would of a certainty be meaning-
less unless the summary were to become little more than
a direct copy. This, ana the act that a nowleage o the
general philosophy of digital computer programing is neces-
sary i the detailed portions of the rest of the report
are to e of any interest to the eader, dictate the as-
sumption made.

13 because the orders in Whirlwind are stored in the same
type of register as the data, there are sixteen places
available. The first five places are used to designate
the order, the last eleven places are alloted to the
address number.

14 Boundary values appear in the basic iteration equation
whenever u is next to any boundary, and hence they must
be addressed in the same manner as the rest of the u's
so that they can be obtained by the process of section
1. .

15 See Ref. 3, p 94 ff, of the Bibliography.

16 The stop cycle is actually checxing the overall result
of the last cycle. Referring to the flow diagram p-
pendix I) it becomes evident that the iteration is
actually being stopped one cycle after the optimum y-
cle. ome careful, though non-rigorous, consideration
given to this indicates that the decrease in accuracy
will be slight. On the other hand, the losses in both
storage and operation time are great, amounting to the
order of 506 if the same method is used to stop the i-
teration at the exact cycle of optimum accuracy.

.'i
Iv

F

~~~~~~~~~~~~~~;T' T~ . ...
r

i

i ;·S t 1 i aTP L. ;; ` r I ll,

I ousant, d vanc ed L-e thods in .1 Ued _la maat i, _ s

2 Grinter

3 lat. es. Council Bull. 92, umerical Integration of Dif-
ferential iquations (1933).

L 

4 ~,ousnwe£

5 L. lox, roc. Roy Soc. A190, 31-59 (1947).

6 L. ox, uar. J. Ilech. & App. ath. 1, 253-279 (1948).

7 roject Whirlwind Publicatim s;
Eroject Whirlwind, aval Contract 5ori60, Servomechan-
isms Laboratory, £assachusetts Institute of Technology

C-93 lotations for Coding

C-94 1~xample of Coding rocedure

E-148 The Solution of Systems of Linear Algebraic Equa-
tions by Successive Approximation

R-161 Code for Solutim of Simultaneous quations by
Eliminaticn

L-235 Description of Whirlwind Codes

1K-127 The hirlwind I Computer Block Diagrams

-1 65 The Convergence of the Gauss-Seidel Iterative Lethod

_..

!



Append ix i

Tii CODE



Appendix I

Explanatory otes

1 Code Symbols: The code symbols are used with the mean-

ings given them in Project Whirlwira engineering note -235.

All other notation is either that suggested in roJect

Whirlwind conference note C-93 or else it is identical with

that used in the body of the Thesis.

2 Storage Register Designations:

The prefix R signifies a program order register.

The prefix B signifies data which does not remain

fixed during the program.

the B l.n registers store all values of uij
including the boundary values, the actual
numerical addresses or these registers be-
ing related in the manntr aescrioet n sec-
tion 4.1.1 cio the Thesis.

The prefix C indicates registers whose contents will

not be changed during the iteration process; these values

may be stored at any available position.

The registers whose-addresses are symbolized by j+ c

and j+c' are the registers mentioned in sections 4.2.2

and 4.,3 respectively, of the Thesis.

. B. The R, B, j+c, and Jc' registers must all be

stored in sequence, as numbered.



ORDLR CDE FOR SOLUTIO OF

LAPLACE' t EQUA7 ION BY ITRAiTON

(input and Output Orders o t ncluded)

Register o.

Last inut
order

(Sec. A 2.1 -

Order

ca C11l

:Planat ion

puts RC (first of first row
in AC

Is Uij a Boundary Value?)

td B2. .4 transf ers address of uij to 2.4

td 3 B2.5

sl n

sr n

ts B32.1

acd C1

td R9

ti

eliminates all bt row no. j,
giving j x 2n- 1 5 in AC

gives j x 2- 1 5 in AC

transfers j x 2-15 to BE2.1

gives j plus c, equivalent to
RC (address of boundary value
for row j)

transfers j plus c to address
section of order Hi.

transfers j plus to address
section of order R20

ca (j plus c)

su B2 .4

cp Itl9

(address from R7); AC contains
address of boundary value at
end of row j

ascertains if RC u is equal
to C boundary vatle;
(-) if u * boundary value
+) if of 

if ui j would be a boundary
value program proceeds to
next step;
if Uij is not a boundary 7alue
program goes to order Hi9

Ri

R2; i If 1 I I 1 B2. 5

R6

R7

td R2,D

R10

Rll

R5

H9



, ec. i _L - is ij the Final oundary Value? 

ca jC5 puts ma. row no. in AC

su B2. I

op :S4

ascertains if u would be the
final boundary value(-) if would be
(+) if ui would not be

if ui would be the final boun-
dary alue program proceeds to
next step;
if uj is not final boundary
value program goes to cwder R84

(Sec. a3.2 - s Sn > Sn -l ?)

ca B2.j

su 2. 9

op R90

puta S in in C

(-) if Sn 3 Sn- l

(+) if Sn < Sn - l

if Sn Sl program proceeds to
next step
if Sn C Sn-l program goes to o-"-
der R90

(Sec. A4 - Output program)

X18 sp RC first of output orders

The three sections which follow are a cycle resulting from or-
der Rll:

(Sec. A 2.2 - Is u(i+l)j a oundary Value?)

ao B2.4

ad (j plus c)

gives complement of ui1,, j in
AC;
stores uil, j in B2.4

(address from R7); ascertains
if RC u +.j is equal to
RC bouna 1 alue;
T-) if uil,j is a boundary
value;
(+) if uil, j is not a boun-
dary value

R14

R 1 Fi

Ri6

R17

R19

R20



R21

(Seco A .2 Z

R22

cp R23

- "ark )

ca C7

if i+lj boundary vaue

proceeds to next order;
if ui+ l ,j boundary value
program goes to order R2£

puts 2 x 215, the mark", in
AC

ts B2.2 transfers "mark' to 2.2

(Sec. A 2.3 -
tion Cycles)

R24

R25

R26

R26

R27

R28

R29

R3

R31

H32

R33

Combineu nasic Iteration ad Basic top Itera-

ca

td

td

ad

td

ad

td

ad

td

ad

td

puts address of uij in AC

transfers address of uij to R49

to " " " to RS69

forms address u i j+l

transfers address

forms address of ui,j-1

B2. 5

R49

R69

C06

R34

C7

R- 7

C8

R41

C9

R4-5

ca RC ui,tj 1

R35

i36

R37

sr

ts

ca

B2 6

.C ui,j-

forms address of

forms address of Ui-l,j

(address from R27); puts u i
in AC

gives ui,j+l/4 in AC

transfers quantity to B2.6

(address from R29); puts ui ,j-
in C

H23



ad 2.5
gives u i ,j 4 in AC

forms (ui,j+1. u i,j -1 )/4

ts 2.6

ca RC ui

sr 2

ad B2.6

ts B2.6

ca RC uil,j

sr 2

ad B2.6

,JI (address from Ri31); puts u i 1,
in AC

divides it by 4 (as n )38)

forms um of two u's surtned in
R39 and the present ui lj

(address from R33); puts uil, j
in AC

divides by 4

forms sum of the three 's sum-

med in R43 and the present Uilj,
this sum is equivalent to

(Ucl 0 + U+ u 3+ Uc4 )/4
ts B32.6

("stop iteration" sub cycle)

su RC uij

sl 2

(address from R25); puts
(sum U' s)/4 - uij in AC

gives (um Uc's) - 4uij in AC

ts B23;.7

ca B2.5

sl n

ad C4

cp R58

puts RC uij in AC

eliminates all but jsection of
the address of uij

(-) if i j- O
(+) if j 

if j = O program proceeds to
next order
if j 0 program jumps to oraer
R58

R40

i41

R42

R43

1144

R45

R46

i47

R48

R49

R50

R51

R52

R54



ca

sr

ts
ca

sI

B2. 7

132.7

n

su C12

cp R73

ca B32.2

ad C4

op R77

ca B2.7

ad B2.9

ts
ca

ts

puts Pij in AC

multiplies ij by 

puts address of uij in C

elimirates all but j section
of address

(-) if j max. row no.
(+) if j ,' ,,
if j max row no. proceeds to
next order
if j =max. row no, program
goes to R3 to multiply pij
byj)
puts mark, if any, in AC

(- if no mark
if any mark

if no mark program proceeds to
next order
if any mark program jumps to
R77 to multiply Pi* by and
reduce the number df marks by
one

brings pi with proper coeff.
into AC

forms partial sum of Pij's
leading to Sn

B2.9

2 .
l31.n,

ca 32.5

ad C10

puts (sum u 0 's )/ 4 in AC

(address from R25); puts nu i
in place of n'lui

puts address of uij in AC

gives the address of the new
uij in AC

R5 5

156

h58

R59

R60

R61

R62

hb;3i~

R65

R67

R68

r t 6 9

H70

R71



repeats the operations rom
the beginning on the new u. ,j

The section which
order R61

follows is a sub-sub cycle esulting from

ca B2.7

R74 ar 

puts pij in AC

multiplies Pij b 

returns program to the sub
cycle

The section which
order R64

R77

follows is a sub-sub cycle resulting from

ca B2.7

sr I

R79

puts ij n AC

multiplies ij by 

ts B2.7

ca B2.2

su C6

puts "maxrk in AC

reduces "marck" by one

ts B2.2

sp R65 returns program to the sub
cycle

The section which
R1 4

follows is a sub cycle resulting from order

(Sec. A 3.1.1 - Generate RC first ui,j+l)

ca B2.1

ad C2

put8 row no.,j in AC

gives j+ c', equivalent to
RC (address of first u.i in
row j+l) j

td R87

a J c' (address from R86); puts ad-
dress of first uij 1 in AC

,~j 1

R72 p RI1

h76

ts 3B2.7

sp R62

R82

R83

R64

R85

R86

R87



td B2.5 places RC (first u,+i ) in
B2.5 -J+I

R89 sp R23 starts program on first order
of sec. A 2.3

The section which follows results from order R17

(Sec. A 3.2.1 - Prepare to Repeat the Iteration Process)

R90 ca B2.9 puts Sn, now Sn -l, into AC

R91 to B2.3

R92 ca Cl1 nuts address of first u in f i

sp R1

row in AC

restarts process

rst

R88

R93



DATA RPEGIST.ERS

legisters

B I .n RC nth uij using ieft-rit, up-down scarin)

B 2.1 contains the row no., j ; quantity stored by R5

.8 2.2 contains the "mark" ; quantity stored by iR24
this register should initially be set at 1 x 2- 15
by the Input program.

B 2.3 contains n 'l

B 2.4 contains B .n

B 2.5 contains B 1,n

B 2.6 contains (sum of Uc S )

-b 2.7 contains Pij

B '.9 contains (sum of p s)
which becomes equa to
S

quantity stored by h90

quantity stored by RI
modifi ed by 19

quantity stored by R2
or R88

; quantity stored by action
of R.36, O, 440 , 44, d R48

; Quantity stored by R51

; quantity stored by i69,

ctj -i RC address of boundary value at end of row j

c'+j _ AC address of first uij in row j 1

C - Registers

C1 contains c

C2 i" C 

C3 " 0/"000 00000000000

,.

C?7 contains - x 2 1 5

C8

C9

C10

Cllf" max. row no., m

" ix 3 £-1

..

,I

11

Ui 

i x 2 a - 15 2- 

-2 x 2a-15

ataress irst

!12 ontains (mazx. row no. - ,) x nl'15

04

C6
(.,6

1/1111 11 ill 11 IL 11



Appendix II

THE FLOW DIAGRAM



The flow diagrams in this Appendix serve to show the re-

lation between the different parts of the program. The arrows

indicate the direction in which the program proceeds. ach

box represents some general operation-being preformed; the

following information is contained in each box (reading from

left to right): an outline number, the orders used to com-

plete the operation of the box, and the operation being pre-

formed. Boxes having two lines extending from thir lower sides

are those in which a conditional program is involved and in

which the computer must answer the question asked in the box

and then proceed accordingly.



.

i

tI

£) JA$Z;A 5 - J ]614O'/I%


