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Abstract

The Cape Neddick complex provides a compact example
of a layered basic intrusion. An investigation of the
rhythmically layered unit shows that this consists of five
major mineral phases: plagioclase, pyroxene, hornblende,
biotite and magnetite. Modal analyses indicate that the
layers are determined by fluctuations in the relative
proportions of plagioclase, pyroxene and hornblende. The
composition of pyroxene, as determined by X-ray diffrac-
tion analysis, shows slight iron enrichment in dark layers.
The compositions of biotite and hornblende, investigated
by refractive index measurements, show no variation within
the sensitivity of these measurements. A sharp discontinuity
within the layered sequence separates units of very slightly
different mineralogy, one unit containing more serpentine
(primary olivine) than the other.

It is suggested that ionic diffusion played a primary
role in determining the layering, and that the discontinuity
marks the contact of two, chronologically closely spaced,
magmatic phases.

Thesis Supervisor: David R. Wones
Title: Associate Professor of Geology
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Introduction

Location and previous work

The Cape Neddick complex is an oval stock which intrudes
metasediments of the Kittery formation in southern Maine,
and forms a small promontory to the east of York Beach village.
Its location is shown in Figure 1. The main rock type of the
complex is gabbro, the term 'complex' implying a division
into lithological sub-units, and including many dikes of
varying size, attitude, and composition which cut it.

The earliest detailed description of the gabbro is that
of Wandke (1922b). A brief summary of its lithology is given
as a part of his more extensive work (Wandke, 1922a) on the
intrusive rocks of the Portsmouth Basin. Haff (1939, 1941
and 1943) examined some of the dikes which are included in,
or related to, the complex, and a petrologic description of
the gabbro is presented in his (1939) study of multiple dikes
of Cape Neddick. Gaudette and Sakrison (1959) examined
structural features of the complex, and Gaudette and Chapman
(1964) demonstrated a radial and tangential "spider's web"
pattern in the system.of jointing. Eldridge (1960) reviewed
the petrography of the gabbro, and Woodard (1968) has ex-
amined contact reactions between the gabbro and the intruded
metasediments.

The most complete and extensive study is that of Hussey
(1961 and 1962), who has described the petrology, petrography
and lithological construction of the complex, and related it

to two other small basic intrusions in the same locality.

Lithologz

Wandke . (1922a) distinguished, on the basis of mineralogi-
cal composition, four distinct phases within the complex:
contact phase, gabbro, anorthosite and,forming the center
of the intrusion, cortlandtite. Hussey (1961 and 1962)
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re—examined and modified Wandke's subdivisions, distinguish-

ing five lithological units: agglomerate, gabbroic pegmatite,

normal gabbro, anorthositic gabbro and cortlandtitic gabbro,

as shown in Figure 2. The unit referred to as normal gabbro

is recognized by its medium gray color, and, at a distance

which ranges from 500 to 1,000 feet from the contadt, grades

into anorthositic gabbro, which is light gray in color, re-

flecting its largely feldspathic composition. Both these

units show distinct uniform layering, apparently due to regu-

lar fluctuations in the relative proportion of feldspathic

and ferromagnesian minerals,and emphasised by their differential

resistance to weathering, the férromagnesian—rich layers being

slightly more resistant. The layers form a concentric.pattern

around the center of the complex. In the normal gabbro they

lie parallel to the contact with the Kittery formation, dip-

ping steeply inward toward the center of the complex, but

. become progressively less steep throughout the anorthositic

gabbro. The center of the complex, and two cresent-shaped

regions within the anorthositic unit, consist of cortlandtitic

gabbro. This unit is rich in ferromagnesian minerals, particu-

larly olivine which is charaéteristically included in large

poikilitic hornblende crystals. Where exposed, the contact

between the anorthositic and cortlandtitic units is sharply

defined.

Agglomerate is exposed at the eastern and southern cdnf
tacts of the intrusion. It consists of fragments of the
Kittery formation, and possible near-surface volcanic material.
Gabbroic pegmatite occurrs as lenses within the normal gabbro,
and is characterised by oval-shaped pods of coarse-grained
material. _ ,

Hussey (1961) Suggests, on the basis of the configuration
and inter-relationships of the\three major units (normal gabbro,
anorthésitiq gabbro and cortlandtitic gabbro), the following
mode of emplacement: '

The Complex; roughly funnel shaped, was emplaced in two
stages of cone-fracturing as a result of two intrusive phases
of a tholeiitic parent magma. The earlier phase produced the
normal gabbro and anorthositic gabbro, the latter being an
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in situ differentiate expressing later crystallization of
feldspathic melt. The second phase occurred after a time
interval sufficient for at least partial solidification,as
indicated by its sharp contact with the first. The same
magma was forced upward into the center of the body, and into’
the two arcuate fractures which are now apparent as cort-
landtitic apophyses within the anorthositic unit. The
cortlandtitic’gabbfo represents the early crystalline phases
of this second injection, the overlying, feldspathic dif-
ferentiate having presumably been removed by erosion.

Four types of layering are present in the complex:
rhythmic graded layering, rhythmic non-graded layering,
sporadic non-graded layering and irregular layering. The
distinctive uniform layering of the normal and anorthositic
units is of the rhythmic type, both graded and non-graded
varieties being presént. Sporadic, non-graded layering
occurs towards the inner margin of the anorthositic unit,

and irregular layering occurs in the cortlandtitic unit.

Statement of the Problem .

The origin of small-scale, rhythmic layering in igneous
rocks has undergone considerable discussion [see, for instance,
Wager (1953, 1959'and 1963), Wager and Brown (1968), Hess
(1960) , Jackson (1961)] which will be reviewed in a later
section. One purpose of the present study is to contribute
to this discussion by examining mineralogical and petro-
graphic variations which distinguish alternating rhythmic
layers in the Cape Neddick complex. The second purpose is
to examine variations associated with a particular type of .
anomaly in the layering. It was remarked by Hussey, and is
clearly shown on observation of the outcrop, that although
the layering in the normal gabbro, and the outer part of
the anorthositic gabbro, is generally continuous, there are
several occurrenées of anomalouS'layering in which one éeries
of layers truncates agaihst another, producing an effect simi-

lar to that of cross bedding in sedimentary rocks; or in
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which there is a-sharp discontinuity between two otherwise
continuous series. The appearance of the first type of
anomaly suggests that it may result from a change in the
direction of flow of liquid from which the crystals are
settling, being in fact an igneous analogy of cross bedding.
The second does not have the appearance of resulting from
a flow mechanism. Two possible explanations are as follows:
firstly, that a block of partially solidified material has
slumped,'ﬁnder gravity, into still molten magma, or secondly,
that a slightly later pulse of magma has intruded, in dike-
like manner, into partially or wholly solidified layered
gabbro. It is proposed, by making close examination of the
layered series on either side of such an ancmaly, to detect
mineralogical and petrographic variations which may indicate

its origin.



Procedure

Description of the Area

The area selected for detailed study éovers_approximately
20 square feet within the unit of normal gabbro, at the eastern-
most tip of Cape Neddick. Its location is indicated by 'A'
in Figure 2, and it is illustrated in detail in Figure 3.
The reason for its selection is twofold. Firstly, it is
located within a region of well developed, non-graded rhyth-
mic layering, and secondly, it demonstrates clearly the type
of anomaly described above. This is shown in Figure 4. The
series of layers on the eastern side of a sharp discontinuity
terminates abruptly, while the series on the western side laps
‘up against it, curving toward the center of the complex. |

As shown in Figure 2, the "topography" of the area falls
into two sections. The landward (upper) section consists of
large, jointed blocks whose interspaces are filled with loose
boulders, and whose vertical walls provide a convenient loca-
tion for core operations. These bloéks are in the process
of being worn, altered and broken away by marine erosion.
The seaward (lower) section is low and flat, in effect a
wave-cut terrace which is submerged at high tide. The dis-
continuity described above trends N20°W across the area. It
is easily visible in the flat, seaward‘section, disappears
beneath a pile of loose boulders in the vicinity of the joint
blocks, and is picked up again on the landward side of these
blocks. On the eastern side of the discontinuity layering
is well developed and distinct, on the western side it is
somewhat less so. On the eastern side of the discontinuity,
and abutting against it, is a roughly rectangular block of
considerably lighter-colored, non-layered material, about 15
square feet in area, whose boundaries make sharp contact
against the darker, layered gabbro. Individual dark layers
‘of the gabbro/aré about 1 inch wide; light layers are about
3 inches wide, and the layers dip toward the center of the
complex at an angle of 75° to 80°. '
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Plan of Study

A preliminary survey of the mineralogical composition
of the layered gabbro, including descriptions of the constit-
uent minerals and their textural and paragenetic relation-
ships, is followed by an investigation of four modes of vari-
ation:

(i) wvariation in mineralogical composition of light

and dark layers within a continuous series of
layers.

(ii) variation in mineralogical composition of the

layered series on either side of the discontinuity.

(iii)variation in the properties of individual mineral

phases in light and dark layers within a continuous
series.

(iv) variation in the properties of individual minerals

on either side of the discontinuity.

The observations made and results obtained will be as-
similated into a coherent explanation of the process by which
this small area of rock might have formed, in the hope that
extrapolation of the results to more extensive areas might

contribute to the understanding of magmatic processes.

Selection of Samples

’ Samples selected for detailed examination are numbered

3 through 15, and are located as shown in Figure 3. Samples
3 and 4 are horizontal cores, l% inches in diameter, directed
perpendicularly to the layering and of sufficient length to
cut across three or four layers. Samples 7 through 15 are
vertical cores, 0.9 inch in diameter and about 2 inches long.
Sample 7 is taken from the block of light-colored material.
Samples 8 through 15 are taken from the layered regions as
follows: 8 through 11 are taken from the eastern side of

the discontinuity. Eight and 10 are from the same light band
and separated laterally by just over 1 foot; 9 and 11,

similarly separated, are from the adjacent dark band. Samples



12 through 15 have locations analogous to these on the
western side of the discontinuity. Twelve and 14 are from
the same light band and separated by about 1 foot; 13 and

15 are from the adjacent dark band and have the same separa-

tion.

Procedure for Analysis of Samples

Thin sections were prepared from each sample for petro-
graphic study. In core samples 3 and 4 these were cut so
as to be oriented both perpendicular and parallel to the
layering, thus enabling detection of any preferred orienta-
tion of grains. It had been intended to cut the sections
from alternate light and dark bands but difficulty arose in
that the layering, quite conspicuous upon the outcrop, was
hard to detect when the samples were returned to the labora-
tory. In core sample 3, in fact, it was impossible to de-
tect any evidence of layering, but in 4 it was just possible
to distinguish alternate concentrations of light and dark
grains. This difficulty in detecting layering in hand
samples necessitated the collection of samples 8 through 15,
which were carefully selected so as to be from known light
and dark layers as seen on the outcrop; Sections from these
samples were cut parallel to the layering. The locations
and orientations of thin sections from the core samples,
together with the location of samples later ground for re-
fractive index measurements and x-ray analysis, are shown
in Figure 5. The ground samples were selected so as to
correspond as closely as possible to a particular thin
section.

Sections from cores 3 and 4 are designated as 3-1, 3-2
etc; and the corresponding ground samples as 3A, 3B etc.
Sections and ground samples from cores 7 - 15 are designated

by the core number alone.
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Observations

1. Petrology

Observations from a preliminary qualitative study of
the overall composition‘of the rock, identification and
properties of the constituent mineral phases, and textural
and paragenetic relationships between these phases are
presented below:

A. Mineralogical composition.

The rock consists of five major mineral phases:
plagioclase, pyroxene, amphibole, biotite and magnetite.
Minor constituents, that is, phases which generally form
less than 1% of the whole, are apatite, quartz, alkali
feldspar, ilmenite, carbonate, chlorite, serpentine, sericite
and a trace of zircon.

B. Description of minerals present.

(i) Plagioclase. This occurs as elongate grains,

the subhedral tendency of which is, however, marred by gross
irregularities. Frequently one grain appears to deeply pene-
trate, or be entirely enclosed by, another, and the result

is generally a haphazard intergrowth of grains as shown in
Figure 6. Very occasionally, an extremely irregular,inter-
locking accumulation of tiny, anhedral feldspar crystals, with
a few ferromagnesian grains, occurs, as shown in Figure 7.
Albite twinning is ubiquitous; pericline and Carlsbad twin-
ning are common. There is, however, a rather surprising
scarcity of cleavage. The grains are strongly zoned, the
pattern of zoning shown depending upon the orientation of

a particular grain. One pattern recurs so frequently that

it might be described as typical. It is best shown by grains
whose sections are oriented parallel or sub-parallel to the
{010} planes, and is illustrated in Figure 8. A calcic core
is surrounded by a region of fine, sharply divided oscillatory
zones, and a normally zoned, that is, progressively more sodic,
rim. The zoning may conveniently be studied using a flat-

stage microscope, by selecting sections oriented precisely
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perpendicular to the Z vibration direction, and measuring the

angle between Y and {010}, the plane of albite twinning. The

plagioclase composition may then be determined from the ap-

propriate curve of Duparc and Reinhard (1924, p. 32). The

core generally shows some patchy zoning, and contains many

small, randomly oriented inclusions of biotite, opague material,

hornblende and occasional zircon. Within the region of os-

cillatory zoning, zones more calcic than the core itself may

occur. Frequently individual zones are themselves composed

of a series of exceedingly fine oscillations. A few inclusions

may occur within this region. The rim shows a steady decrease

in calcium content toward the edge of the crystal; extending

to what must often be a highly sodic periphery, and is generally

free of inclusions. It is not possible to obtain the precise

composition of the rim by the method outlined above for zoned

crystals, since the optical vibration directions vary with

composition, and a section which is appropriately oriented

for the core will not be so for the rim. The composition

of plagioclase cores shows great variety, averaging about

An,o but ranging from Ans,; to Ans, even in one section.
Measurements by C. M. Spooner (personal communication)

on plagioclases from the normal gabbro, using a 4-axis uni-

versal stage, have shown that an optic angle of 90° cor-

responds to a composition Anss. This indicates that the

plagioclase is in a low-temperature structural state.

(Deer, Howie and Zussman, 1963, p. 134).

(ii) Pyroxene. Pyroxene occurs in anhedral grains
which are almost colorless under plain light, with a slightly
pink tinge, and in some sections a hint of pleochroism. It
is optically positive with a moderate optic angle (about 50°)
indicating augite. Maximum interference color is 2° green.
Most sections show characteristic pyroxene cleavage. Twin-
ning, with composition plane {100}, is quite common. In
.addition to cleavage, the grains contain many irregular
fractures which are filled with green or brownish green material,
probably chlorite. Most of the pyroxene grains contain tiny,

oriented needle-like inclusions (Figure 9). These inclusions
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Figure 9. Oriented. inclusions in pyrevene. The continuous dark
lines running diagonally acress the photograph are {110} cleavage
traces. Section 4-7. Ordinary Light . x 860.
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form clusters, often densely packed and sometimes covering

the entire area of the enclosing pyroxene grain. They are
oriented in two directions, range in length from .005mm -
.05mm and,although dark in color, are not quite opagque. Their
small size makes measurement of their optical properties un-
feasible. Rutile was suspected, on the basis of their general
appearance, and their apparent similarity to a description

of exsolved rutile in orthopyroxene by Moore (1968). Elec-
tron microprobe analysis was used in an attempt to identify
them. Although the inclusions were too small even to permit
focussing of the electron beam upon one individual, it was
hoped to obtain an indication of their composition, particu-
larly their titanium content, by comparing an analysis of a
grain abundant in inclusions with one free from them. The
pyroxene grains analysed were taken from core no. 1, a sample
that was obtained for a preliminary investigation of the layer-
ing and which is not discussed in the present study. It is
located about 15 feet to the east of the northeast corner of
the area shown in Figure 3. The results of the analyses are
presented in Table 1, which compares three small grains, all
free of inclusions, with a grain almost filled by a dense
cluster of them. The results are somewhat inconclusive. The
inclusion-rich grain showed higher titanium than two of the |
inclusion-free grains; the third inclusion-free grain, how-
ever, showed just as high a titanium content. Moore (per-
sonal communication) suggested that the inclusions are not
rutile, and a visual comparison of them with the rutile
needles which Moore described also showed obvious dissimi-
larity.

Thelcomposition of the pyroxene in terms of atomic per-
centages of calcium, iron and magnesium end members was ob-
tained from the microprobe analysis as Cassz.gs Mgusz.s Feiz. e
confirming its identification as augite. This composition is
plotted on Figure 21 (in a later section), in comparison
with compositions obtained from Xx-ray diffraction measurements,
and those of pyroxenes from the layered series of the

Skaergaard Intrusion, East Greenland.
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Table 1

Electron microprobe analysis of four pyroxene grains

! % weight of oxides

1

Pyroxene with needles

2

3

4

Pyroxene free from needles

FeO
TiO,
Al,0;
MgO
Cao
Si0;
Na ;0

Total

8.3
1.8
4.9

13.6

21.6

49.9
0.2

100.3

8.5
1.2
3.8
13.4
21.4
50.2
0.2

98.7

8.9
1.8
4.9
13.0
21.8
51.8
0.2

102.4

8.
1.

4.
13.
21.
50.
0.

99,

3
4
2
3
8
7
2

9




(iii) Amphibole. Amphibole occurs in large, an-
hedral masses, as flakes within pyroxene grains and as small
inclusions in plagioclase cores. It is deep brown in color
and shows strong pleochroism as follows:

X | Y | Z
light yellow Iyellowish brown l deep brown

The grains are optically negative with a large optic angle
(about 80°). The color and pleochroism and large optic angle
indicate common hornblende. Maximum interference color is 2°
green. Appropriately oriented grains show the characteristic
amphibole cleavage and all grains show irregular fracturing.

(iv) Biotite. Biotite occurs as euhedral to sub-
hedral grains, as flakes within pyroxene grains and as tiny
inclusions in plagioclase cores. It is deep reddish brown
in color, suggestive of high titanium content (Hall, 1941la),
and shows the following pleochroism:

X | v | Z
light yellow l deep red-brown l deep red-brown

The optic angle is very small (2°-3°), and maximum inter-
ference color is 2° green.

(v) Magnetite. Magnetite occurs for the most part
as large, amoeba-like blobs, and only occasionally as euhedral
grains.

(vi) Minor constituents. Apatite occurs as elongated,

anhedral graihs and, less frequently, as subhedral crystals.
The anhedral grains average about lmm in length, but occasion-
ally are 2mm or longer.

Quartz occurs as subhedral or anhedral grains, readily
distinguished from plagioclase by its lack of twinning, in-
clusions or zoning, and its uniaxial negative interference
figure. '

Alkali feldspar occurs as anhedral grains, distinguished
from plagioclase by its lack of twinning and slightly lower
relief. 1Its large optic angle (70°-80°), slightly cloudy

appearance, and response to sodium cobaltinitrate stain in-
dicate orthoclase.
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Ilmenite occurs as small, rounded grains, distinguished
from magnetite by a yellowish luster in reflected light, in
contrast to the blue-gray luster shown by magnetite. Suf-
ficient was collected from sample 4C to prepare an xX-ray
powder sample and thus confirm its identification. The data
used in identification are presented in Table 2.

Carbonate, chlorite, serpentine and sericite are altera-
tion products, and described in the next section.

C. Textural and paragenetic relationships.

The texture is broadly described as hypidiomorphic
granular. The most obvious feature is that pyroxene, horn-
blende and, in general, biotite, are interstitial in a matrix
of randomly oriented plagioclase grains. The ferromagnesian
minerals appear to have flowed between and around the'plagio—
clase grains, sometimes completely enclosing them, as shown
in Figure 10. Their forms are thus completely controlled by
the plagioclase interstices. They are not evenly dispersed
in the plagioclase matrix, but tend to group into clusters.

A comparison of the sections oriented parallel to, and per-
pendicular to, the layering, reveals no obvious evidence for
preferred orientation of any grains.

Relationships between the ferromagnesian minerals them-
selves are complex,but a general pattern which frequently
tends to be followed is illustrated by Figure 10. A pyroxene
grain is partially or wholly surrounded by hornblende, which
extends away from the pyroxene grain as narrow stringers
through feldspar interstices. These stringers terminate in
biotite as opaque grains. It must be emphasized that such
a pattern is merely a tendency; nevertheless the tendency
is considered sufficient to be regarded as significant.

As mentioned above, biotite has a second mode of occur-
rence: as tiny, subhedral and anhedral inclusions in the
central regions of plagioclase grains. Although in such
occurrences there 1is a general tendency for the biotite grains
to be aligned in the direction of the traces of the albite
twin lamellae, this is by no means the rule, and all orienta-

tions are observed. Both biotite and hornblende occur fre-



Table 2. X-ray identification of ilmenite in sample 4C.*

X~-ray data for black; non- X-ray data for ilmenite (FeTiOj;)
magnetic material from sample - (Posnjak and Barth, 1934)
4C.
*%20 a |
(observed) (observed) d hkl
degrees A A
23.812 3.733 3.70 110
32.564 2.747 2.74 121
35.274 2.542 2.53 110
40.340 2.234 2.23 120
48.762 1.866 1.865 220
53.087 - 1.724 1.720 : 231
61.604 1.504 1.504 130
63.299 1.468 1.465 211
Computed cell dimensions Cell dimensions of ilmenite
= 5.531%0.002 A = 5.52
o = 54°43.3'%0.9" | o = 54°40"
o
V = 104.96:0.05 A | V = 104.6 A®

This data corresponds most closely to the composition.FeTiog
(see Posnjak and Barth (1934) p. 273, fig. 1)
*Refined in rhombohedral system, using computer program written
by Evahs, Appelman and Handwerker (1963) and described in a '
later SECtiéﬁ; '
** Explanation of symbols

20 diffraction angle . d interplanar spacing

a cell edge _ o axial angle

\Y celi volume
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bi
pt hb

Figure I0. Characteristic occurence and asseciation of
pyroxeae, hornblende and bictte. The ferromoagnesian minerols
are interstitial in a motrix of randomly orfiented plagiodase
grains. Ordinary light. % 5. Section L-5.

(pL: plogioclase ; px = pyrexene ; hb « hornblende bi - biotite)
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quently as flakes within pyroxéne.grains. In some instances,
biotite is enclosed within a hornblende grain, but no occur-
rences of biotite enclosing hornblende are observed.

Magnetite has every possible mode of occurrence. It
occurs. as irregular, amorphous masses, as interstitial grains
in the plagioclase matrix, as anhedral or subhedral grains
within all of the major mineral phases, and as small inclu-
sions in plégioclase cores. A particularly characteristic
occurrence is as an intergrowth with biotite.

Ilmenite generally occurs in small, rounded forms within,
or at the periphery of, magnetite grains, but is occasionally
observed within pyroxene.

Apatite may occur within any mineral phase, but is most
frequently observed in the plagioclase matrix. It does not
appear to be confined to the interstices as are the ferro-
magnesian minerals, and the grains are usually rounded and
irregular. Quartz, however, appears to be a part of the
matrix itself, interlocking with the feldspar grains. It
also occurs in association with'orﬁhoclése, in a graphic
intergrowth as shown in Figure ll. Both quartz and ortho-
clase are far more abundant in section 7, from the light-
colored block, than in any other section.

Carbonate has several modes of occurence. It may occur
as continuous grains, either independently or together with
chlorite, in plagioclase interstices; as tiny, irregulafly
distributed, flaky grains closely associated with pyroxene
and green chlorite; or as regular, oval masses of flaky grains,
generally within pyroxene (see Figure 12). These oval masses
are often associated with serpentine, as described below.
From its ‘association and occurrence, the composition is as-
sumed to be dolomitic. }

Chlorite is most conspicuouély present as fibrous,
green, fan-shaped aggregates of penninite, characterised by
its anomalous blue interference color. Such aggregates fte—
quently occur invplagioclasé interstices, often together with
carbonate. Patches of pale green or greenish brown chlorite

are associated with pyroxene, biotite and hornblende.



Figore 1l.  Graphic intergrowth of guartz (Light) and
orthoclase (dark). Sectien 7-1. (ross nicols. % |T6.



Serpentine occurs as fibrous aggregates which have a
distinctive pseudomorphic form. These aggregates range from
0.2mm to 3mm in length, and are frequently oval in shape and
associated with clusters of ferromagnesian minerals (Figure 12).
In no cases, however, do they enclose a ferromagnesian grain.
They also occur in interstices in the plagioclase matrix.

The serpentine is green to greenish brown in color, and so
finely fibrous that its fibrous nature is apparent only under
high magnification, and under crossed nicols. The whole
aggregate is crossed by irregular fractures. Interference
colors range from greenish yellow to reddish brown, having
probably been modified by the natural color of the mineral.
Due to the fibrous nature of the material it is impossible
to obtain an interference figure, and identification as
serpentine is on the basis of color, fibrous structure, and
pseudomorphic form. Frequently these forms consist of a
combination of both serpentine and flakey carbonate, some-
times containing a few grains of magnetite. ,

A véry small amount of sericite is present, as an altera-
tion product of plagioclase. ,

The following observations are made as to alteration
relationships between individual mineral phases:

(i)  Pyroxene altering to hornblende (see Figure 10)

(idi) Pyroxene altering to hornblende and biotite

(Figure 13)
(iii) Pyroxene altering to carbonate and chlorite
_ .(Figure 14) ' _
(iv) | Pyroxene altering to carbonate, hornblende and
chlorite (Figure 15)

(v) = Hornblende altering to biotite (Figure 15)

“(vi) Hornblende altering to carbonate and chlorite
(vii) Biotite altering to carbonate and chlorite
(viii) . Biotite alterlng to magnetlte (Flgure 16)

(ix) ‘Plagloclase alterlng to sericite.

The significance of these observations will be discussed

in a later section.
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Figure 12 . Serpentine and corbonate aggreqates in pyroxens.
These appear to be psevdomorphic {orms. Section 3-1.
Ordinary Light. x 45

(pL = plagioclase ; px : pyroxene;, maog: magnetite;, co = carbonate;
se = serpentine)



Figure 13. Pyroxene altering to horablende and bictite. The
areo of the pyroxene qrain moarKed 'Q' represents light qreen
material  ( possibly chlorite) which appears To be an intermediate
stoge in the alteralion process. Sectiom 3. Ord'lmr\l Light. x Db
(pL= plogioclase; px - pyroxene; hb : hornblende ; bi=bictite)



pL

Figore IlL. Pyroxene altering 1o carbonate and chlerite (Penm'nl.te)
Sectionn L-3. Cross nicols. x Db.

(pL = ploagioclase ; px= pyroxene;, hb = hornblencle ; bi = biotite;
ca: carbonate ; ch = chlorite)



FLSU{Q 15 . P\_.]ro'xen.e uLternhg to coarbonate, hormmblende aond
chlorite °, and possibly hornblendle altering to bictite.

Section L-G6. Cross nicols. x Bb.

(pt = plagioclase ; px: pyroxene; hb = hornblende; b :biotite;
mog = magnetite | ca = carbonate ; ch =chlorite)



o

Fgure lb. Bioktite altering to magnetite by exsolotion olong
{o01} cleavage planes. Section L. Ordifary light. x 139
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2. Variations in mineralogical composition.

Variations in the mineralogical composition of light
and dark layers, and across the discontinuity, were investi-
gated using the method of point counting. Selected thin
sections from core samples 3 and 4, and sections 7 through
15, were analyzed. The sections from core 3 and 4 were
chosen so as to be oriented parallel to the layering, thus
ensuring their representation of a single layer. For each
of these sections, between 7,000 and 9,000 points were counted,
forming a rectangular grid at intervals of 0.4mm along the
length of the section and 0.2mm across it. This number of
points is estimated to give a standard deviation of about
0.5% (see Chayes, 1956; p. 39). In cases where alteration
of a mineral has occurred, the parent mineral is counted
whenever alteration is sufficiently incomplete for it to be
recognizable. Percentages of calcite and chlorite thus rep-
resent cases for which alteration is complete and the parent
mineral unrecognizable. Section 7 was stained, using sodium
‘cobaltinitrate, to reveal the orthoclase present. The re-
sults of these analyses are presented in Table 3, and in
Figures 17 and 18, and wiil be discussed in a later section.

3. Variation in properties of individual minerals.

(i) Pyroxene
Brown (1960) has described the effect of ion sub-

stitution on the unit-cell dimensions of clinopyroxenes from
the Skaergaard Instusion, East Greenland, and shown a linear
dependencé of the dimensions b and asinBf upon substitution of
Fe2t and Mg2+ for ca?t. a sufficiently precise measurement
of these parameters for the Cape Neddick clinopyroxenes should
thus reveal any significant;variations in their composition.

In order to estimate the precision required, the effect
of éhange in the 'b' cell dimension on the 221 reflection was
taken as an example. Caléulation showed that in this case a

change of 0.02& in the cell dimension would produce a change



Table 3. Mineralogical éompositions (volume %) of selected samples.
Sample Plag. Px. Biot. Hb. Opag. Apat. Qz. Or. Calc. Chl. Serp.| Total
- 70.62 16.39 2.62 3.09 4.34 0.80 0.04 0.07 0.60 0.62 0.80 99.99
- 65.79 15.01 3.81 4.87 7.77 0.45 0.06 0.01 0.65 0.78 0.79 99.99
- ©69.57 11.27 6.17 5.71 5.09 0.72 0.26 0.10 0.36 0.63 0.11 99.99
- 67.48 15.83 2.24 6.06 6.81 0.19 0.07 0.05 0.78 0.32 0.16 99.99
- 66.13 18.74 1.52 7.10 4.71 0.08 0.88 0.00 0.62 0.17 0.04 99.99
- 72.23 7.08 4.73 9.27 4.43 0.51 0.09 0.12 0.69 0.85 0.00 100.00
- 79.74 8.86 3.32 1.82 4.33 0.13 0.31 0.12 0.62 0.76 0.00 100.01
- | 70.26 11.79 - 3.66 7.42 4.08 0.49 0.14 0.06 0.78 1.31 0.00 99.99
- 84.19 6.60 1.90 0.65 4.59 0.17 0.06 0.04 0.75 1.04 0.00 99.99
83.04 0.35 4.63 0.00 3.17 0.83 2.28 4.03 1.16 0.50 0.00 99.99
75.51 9.26 4.45 3.46 4.20 0.30 0.67 0.30 1.21 0.65 0.00 100.01
62.86 16.82 4.67 8.21 5.38 0.18 0.16 0.14 1.15 0.42 0.00 99.99
10 80.78 5.93 4.44 1.93 3.78 0.29 0.17 0.11 1.47 1.10 0.00 100.00
11 65.31 16.56 4.29 4.33 6.28 0.54 0.22 0.16 1.53 0.77 0.00 99.99
12 76.50 10.32 3.44 0.78 6.45 0.31 0.08 0.08 0.97 0.69 0.37 99.99
13 59.70 15.99 3.20 8.10 11.76 0.20 0.04 0.05 0.34 0.28 0.34 100.00
14 75.03 13.49 4.12 0.13 5.05 0.27 0.16 0.21 0.82 0.43 0.29 100.00
15 68.39 14.00 3.77 7.13 5.20 0.06 0.29 0.06 0.48 0.56 0.06 100.00

—be —



OPAQULES

HORNBLENDE

BioTITE

PYROXENLE

PLAGIOCLASE

3-1 3-3 3-5 37 3-9

Figure 7. Variation ia mineralogical composition along core sampies # 3
and 4. Light and dorK lagers indicatedd where Lthese are distinguishable
on the speaimen. '
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of 0.02° in the diffraction angle (28). This is near the
limit of precision of the techniques available for diffraction
angle measurement. The accuracy may, however, be improved
by measuring several reflections and computing unit-cell
parameters which give the best fit to the entire set of
measurements. A rough estimation showed that if 10 reflec-
tions are measured, each to a precision of 0.02°, the best
fitting values of the cell parameters should be within 0.01R
of the true values. Any variation greater than this should
therefore be detectable. Cell parameters were calculated
using a computer program written by Evans, Appelman and
Handwerker (1963). The imput for this program is a set of
measured values of 26, a set of approximately known cell
parameters, and the crystal system and space group} The
program compares the measured 26 values with those computed
from the approximate cell parameters, and uses the differences
to compute a more accurate set of parameters. In several
successive cycles it provides a set of parameters from which
the computed values of 20 give the best (least-squares) fit to‘
the measured values. The differences in these values are
used to compute standard deviations in these parameters. A
sample of the computer output is shown in Figure 19.

Pyroxene grains were hand sorted, under a low-power
microscope, from samples 3A - 3F, 4B - 4E and 8 - 15 as
shown in Figure 5, and ground under acetone to prepare powder
mounts for x-ray diffraction analysis. (Samples 4A and 7 con-
tained so little pyroxené that it was impossible to separate
sufficient to prepare a powder mount.) i

Reflections from samples 3A - 3F and 4B - 4E were recorded
using a Guinier fine-focussing camera. Samples 8 - 15 were
analysed using a Picker diffractometer, owing to loss of
- availability of the Guinier equipment. All x-ray measurements
were made using CuKo, radiaﬁion with nickel filter, at 38 Kv
and 18 ma. '

The arrangement of the Guinier camera permits simultaneous
analysis of four samples, mounted on a four-port sample holder.

It is found, however, that each of the ports tends to have
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slightly different focussing characteristics, thus for con-
sistency each sample was allotted to a separate sample holder
and mounted in the two center ports. Synthetic spinel
(MgAl,04, a, = 8.0833), provided by W. C. Luth, was used as
an internal standard. The Guinier camera records the dif-
fraction pattern on photographic film as a series of dark
lines, the geometry of the arrangement being such that a
separation of lmm on the film corresponds to a difference
of %° in diffraction angle. 1In theory, it should be possible
to measure line separations to an accuracy of 0.0lmm, and
thus obtain 26 to an accuracy of 0.005°. In practise, however,
the focussing characteristics of the camera and the finite
width of diffraction lines introduce instrumental and per-
sonal errors which reduce the accuracy. By mounting the same
sample in different ports of the sample holder, and by making
two series of measurements on each port, it was hoped to
locate and estimate these errors. In order to make comparison
between samples as close as possible, reflections having
fixed indices were used. Eleven reflections, which appeared
as reasonably strong and sharp lines on each film, were
selected for the least-squares refinement: 021 220 221
310 311 131 002 221 311 112 331. The results of the
Guinier refinement are presented in Tables 4 and 5, and in
Figures 20a and 2la. Results from samples 4B and 4C are
missing due to inadequate quality of the films obtained.
Powdered pyroxene from samples 8 - 15 was mixed with acetone
and prepared for diffractometer analysis as a smear mount on
a glass microscope slide. 1In order that personal and in-
strumental errors might be located, each sample was run
twice, once as 26 was increased from 0 to 70°, and again
as 20 was decreased through the same range. Twelve dif-
fraction peaks, which showed up reasonably strongly and
sharply on each of the recordings, were used in the least-
squares refinement: 021 220 221 310 311 1I31 221 311
330 331 221 and 150. The results of the diffractometer
refinement are presented in Table 6 and in Figures 20b and
21b. It may be noted, from Figures 20 and 21, that although



Table 4. 7Unit-cell dimensions of pyroxenes from samples 3-A - 3-E. Measurements
using Guinier fine-focussing camera.
a A a b A b c A c
3-A i* 9.751 0.005 8.943 0.005 5.255 0.003
ii 9.755 0.005 8.933 0.005 5.257 0.003
iii 9.759 0.005 8.934 0.005 . 5.258 0.003
iv 9.761 0.002 8.938 0.002 5.260 0.001
3-B i 9.760 0.003 8.917 0.003 5.265 0.002
ii 9.755 0.003 8.921 0.003 5.264 0.002
iii 9.756 0.002 8.920 0.002 5.267 0.001
iv 9.751 0.003 8.921 0.003 5.265 0.001
3-C i 9.758 0.008 8.915 0.008 5.258 0.004
ii 9.756 0.005 8.915 0.005 5.261 0.003
iii 9.749 0.005 8.923 0.005 5.261 0.003
iv 9.754 0.004 8.921 0.004 5.263 0.002
3-D i 9.749 0.002 8.921 0.002 5.263 0.001
ii 9.751 0.003 8.914 0.004 5.265 0.002
iii 9.748 0.003 8.919 0.003 5.268 0.002
iv 9.754 0.003 8.921 0.003 5.267 0.002
3-E i 9.751 0.003 8.928 0.003 5.263 0.002
ii 9.755 0.003 8.924 0.003 5.264 0.002
iii 9.751 0.002 8.918 0.002 5.263 0.001
iv 9.760 0.004 8.919 0.004 5.260 0.002

*Four series of measurements for each sample are represented as follows:

i First series of measurements on port #2 of Guinier mount
ii Second series of measurements on port #2 of Guinier mount
iii First series of measurements on port #3 of Guinier mount
iv Second series of measurements on port #3 of Guinier mount

(Table 4 continued on next page)
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Table 4. Unit-cell dimensions of pyroxenes from samples 3-A - 3-E. (Continued)

sinpg AsinB asingB A(asinB) A% AV

3-A i* 106° 4.1° 2.5" 9.370 0.007 440.36 0.23
ii : 106° 5.5° 2.4" 9.373 0.007 440.18 0.23

iii 106° 0.1' 2.7 9.381 - 0.007 440.68 0.24

iv ) 106° 2.8'" 1.0" 9.381 0.003 440.98 0.09

3-B i 106° 5.6"' 1.8" 9.378 0.004 440.11 0.16
ii 106° 5.4" 1.8" 9.373 0.004 440.20 0.16

iii 106° 6.7' 1.2! 9.373 0.004 440.28 0.11

iv 106° 4.7" 1.3° 9.370 0.004 440.06 0.12

3~C i 105°59.8" 4.2" 9.380 0.010 439.75 0.38
ii 106° 1.5° 2.6" 9.377 0.007 439.75 0.24

iii 106° 2.2" 2.8" 9.370 0.008 439.85 0.25

iv 106° 3.7" 1.9 9.373 0.005 440.11 0.18

3-D i 106° 5.1° 1.2° 9.367 0.003 439.80 0.11
ii 106° 8.6" 1.8" 9.367 0.004 439.59 0.16

iii 106° 7.9' 1.6" 9.364 0.004 439.95 0.14

iv l106° 7.8" 1.7° 9.370 0.004 440.24 0.15

3-E i 106° 4.1" 1.5° 9.370 0.004 440.28 0.14
ii 106° 6.7" 1.7° 9.372 0.004 440.21 0.15

iii 106° 3.3" 0.8 9.371 0.003 439.85 0.08

iv 106° 2.1° 2.2" 9.380 0.006 440.05 0.20

*Four series of measurements for each sample are represented as follows:
i First series of measurements on port #2 of Guinier mount
ii Second series of measurements on port #2 of Guinier mount
iii First series of measurements on port #3 of Guinier mount
iv Second series of measurements on port #3 of Guinier mount
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Table 5. Unit-cell dimensions of pyroxenes from samples 4-D and 4-E.

Measurements
using Guinier fine-focussing camera.

a A a b Ab c A c
4-D i* 9.752 0.003 8.918 0.003 5.266 0.001
ii : 9.753 0.002 8.917 0.002 5.267 0.001
iii 9.755 0.003 8.915 0.003 5.267 0.002
iv 9.757 0.003 8.916 0.003 5.267 0.002
4-E i 9.756 0.004 8.916 0.004 5.271 0.002
ii 9.762 0.004 8.910 0.004 5.273 0.002
iii 9.751 0.004 8.917 0.004 5.266 0.002
iv 9.754 0.003 8.918 0.003 5.268 0.002

*Four series of measurements for each sample are represented as follows:

i First series of measurements on port #2 of Guinier mount
ii Second series of measurements on port #2 of Guinier mount
iii Pirst series of measurements on port #3 of Guinier mount
iv Second series of measurements on port #3 of Guinier mount

(Table 5 continued on next page)
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Table 5. Unit-cell dimensions of pyroxenes from sample 4-D and 4-E. Measurements
using Guinier fine-~focussing camera. (Continued)
sinB AsinpB asinpB A(asingB) \Y AV
4-D i* 106° 4.9' 1.4" 9.370 0.004 440.01 0.12
ii 106° 6.4° 1.1° 9.370 0.003 440.02 0.10
iii 106° 5.3° 1.4° 9.373 0.004 440.16 0.13
iv 106° 6.1° 1.7° 9.374 0.004 440.27 0.15
4-E i 106° 5.6 2.1" 9.374 0.005 440.53 0.19
ii 106° 9.0" 2.0" 9.377 0.006 440.53 0.18
iij 106! 4.4" 2.1" 9.370 0.006 440.01 0.19
iv 106° 5.6' 1.5" 9.372 0.004 440.30 0.25

*Four series of measurements for each sample are represented as follows:

i
ii
iii
iv

First series of measurements on port #2 of Guinier mount
Second series of measurements on port #2 of Guinier mount
First series of measurements on port #3 of Guinier mount
Second series of measurements on port #3 of Guinier mount
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Table 6. Unit-cell dimensions of pyroxenes from samples 8 - 15.

Picker diffractometer.

Measurements using

a A a b A b c A c
8 i* 9.752 0.003 8.914 0.003 5.273 0.005
ii 9.755 0.004 8.908 0.003 5.278 0.006
9 i 9.754 0.002 8.916 0.002 5.269 0.004
ii 9.753 0.002 8.916 0.002 5.271 0.004
10 i 9.753 0.004 8.912 0.003 5.275 0.006
ii 9.754 0.003 8.912 0.002 5.276 0.004
11 i 9.754 0.003 8.917 0.002 5.266 0.005
ii 9.755 0.003 8.918 0.002 5.268 0.004
12 : i 9.755 0.001 8.915 0.001 5.268 0.002
ii 9.752 0.002 8.914 0.001 5.272 0.003
13 i 9.755 0.003" 8.914 0.002 5.270 0.004
ii 9.754 0.002 8.918 0.001 5.273 0.003
14 i 9.756 0.005 8.913 0.003 5.275 0.007
ii 9.754 0.006 8§.913 0.004 5.272 0.009
15 i 9.753 0.004 8.915 0.003 5.269 0.006
ii 9.751 0.004 8.916 0.003 5.271 0.006

*Two series of measurements for each sample are represented as follows:
i Diffractometer run in forward direction
ii Diffractometer run in reverse direction

(Table 6 continued on next page)
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Table 6. Unit-cell dimensions of pyroxenes from sample 8 - 15. Measurements using

Picker diffractometer. (Continued)
, sinB Asing asinR A(asinB) \Y
8 i 106° 2.1 2.1 9.373 0.005 440.54 . 0.35
ii . 106° 3.9 2.4 9.374 0.006 440.74 0.40
9 i 106° 1.3 1.5 9.375 0.003 440.40 0.25
ii 106° 2.3"' 1.5 9.373 0.003 440.53 0.24
10 i '106° 3.9 2.6" 9.372 . 0.006 440.60 0.42
ii 106° 2.1 1.7 9.374 0.004 440.81 0.
11 i 106° 2.3 2.0 9.374 0.004 440.23 0.32
ii 106° 3.3° 1.6" 9.375 0.004 440.43 0.27
12 i 106° 3.4° 0.8" 9.374 0.002 440.26 0.13
' ii 106° 4.4°' 1.0°' 9.371 0.003 440.35 0.17
13 i 106° 5.0°' 1.8 9.373 0.004 440.31 0.29
ii 106° 4.9 1.1° 9.372 0.003 440.67 0.18
14 i 106° 6.1°" 2.9 9.373 0.007 440.70 0.47
ii 106° 5.8 3.6" 9.372 0.008 440.32 0.60
15 i 106° 2.8 2.2 9.373 0.006 440.26 0.38
ii 106° 1.4°' 2.4" 9.372 0.006 440.42 0.

*Two series of measurements for each sample are represented as follows:
i Diffractometer run in forward direction
ii Diffractometer run in reverse direction
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a similar range of standard deviations is obtained using either
the Guinier camera or diffractometer, better reproducibility_
is generally shown in the diffractometer measurements.

(ii) Biotite and hornblende

Biotite and hornblende were examined by refractive
index measurements. The refractive index of biotite as a
function of iron content, on the join phlogopite-annite, has
been studied by Wones (1963). His data shows that an in-
 crease of 1% in iron content produces an increase of about
0.001 in the Yy refractive index. The relation between re-
fractive indices and chemical composition of common hornblende
is given by Deer, Howie and Zussman (1963, p. 296), and shows
that an increase of 1% in the ratio Mg/(Mg+Fe+2+Fe+3+Mn) pro-
duces a decrease in the o and Y refractive indices of about
0.001.

Refractive index measurements were made using immersion
oils calibrated at intervals of 0.002; thus any changes of
greater than #2% in iron or magnesium content should be de-
tectable. The measurements were made on samples 8 - 15.

For biotite, both o and vy refractive indices were measufed,
the difference between B and Yy indices being undetectable.
For hornblende the Yy index only was measured.
The refractive indices of biotite were found to be
constant for all samples:
' Yy=1.670% 0.002
o = 1.605 * 0.001 at 24°C
The high value of Yy is indicative of high iron, high titanium,
or both (Hull, 1941b). | | |

The hornblende index also was constant for all samples:

Yy =1.690 * .002 ' at 24°C
The composition cannot be determined reliably from the re-

I+

lationship given by Deer, Howie and Zussman (1963), since
this does not take into account the effect of titanium content.
‘(1ii) Plagioclase

The strong zoning described above makes study of
plagioclase compositions by x-ray techniques unsuitable, since

these would merely give an average composition over all the



zones of several grains. Refractive index measurements also
are unsuitable, since only the edge of a particular grain
would be determined. An attempt at petrographic study of
variation in the composition of plagioclase cores in samples
'3 and 4 was made by extinction angle measurements on sections
perpendicular to the Z vibration direction. Such sections
were chosen, firstly because they revealed the most distinct
. pattern of zoning and enabled specific location of the core,
and secondly because the extinction angle measured (X~010)
is the most sensitive to variation in composition for calcic
plagioclase. Difficulty was encountered due to the extremely
irregular form of the grains, which are often so intergrown
that a particular grain is hard to define. However, several
grains sufficiently complete for cores to be determined were
found per thin section, and an idea of the range of core
compositions could thus be obtained. The results of the
measurements are presented in Table 7, together with cor-
responding core compositions obtained from Duparc and Rein-
hard (1924, p. 32). (One plagioclase grain, from core sample
l, was analysed during the electron microprobe run, and
showed 14.1% Cao, corresponding to an anorthite content of
70%) .



Table 7. Composition of plagioclase cores obtained from ex-

tinction angle measurements.

Section XA0L10 3AN Section X~ 010 $An
30.7 56 31.1 56
33.8 61 30.5 56
3-1 38.7 69 | 4-1 33.4 58
35.3 63 34.2 58
27.7 53 | 33.1 | 60
34.0 61 24.0 50
41.6 74 39.0 70
3-3 37.4 66 4-3 33.7 59
35.5 63 27.6 53
33.1 60 34.0 61
28.3 54 | 41.8 75
31.6 58 35.2 63
3-5 33.8 59 4-5 34.0° 61
35.7 64 27.0 52
28.9 55.5 29.3 55




Summary of Results

Paragenetic relationships between individual minerals
were summarised in a previous section (1B).

Inspection of Figures 17 and 18, and Table 3, indicates
the following generalizations as to the role of varying
mineralogical composition in determining light and dark
layers:

| (i) Plagioclase is higher in light layers than in
dark layers. ‘

(ii) In samples 8 - 15, pyroxene is higher in dark
layers than in light layers. 1In sample 4, however, this does
not appear to hold.

(iii) Biotite is fairly constant in all samples, and
whatever variability it does show does not appear to cor-
relate significantly with the nature of the layers.

(iv) Hornblende is considerably higher in dark layers;
in light layers it is present only in very small amounts.

(v) The proportion of opaque minerals does not appear
to correlate significantly with the nature of the layers.

(vi) As far as can be judged from the small amounts
in which they occur, minor constituents have no significant
correlation with the layering.

(vii) The light-colored block (sample 7) is rich in
quartz and orthoclase, and poor in pyroxene and hornblende,
compared to all the other samples.

Core sample 3 showed remarkably few variations, none of which
appeared to be significant or correlative. This explains the
difficulty encountered in distinguishing layering in the
sample, but is unexpected on account of the layering observed
on the outcrop. The only detectable variations are slight
fluctuations in the proportion of plagioclase, of dark minerals
as a whole, and of opaque minerals.

Estimation of the significance of variations on either
side of the discdntinuity can only be subjective. It seems
to the author that, on the eastern side of the discontinuity,

(samples 4 and 8-11), fluctuations are slightly more marked,
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and the proportion of plagioclase in either type of layer is
higher, than on the western side. There is, however, one
variation that is believed to have real significance, and

that is in the amount of serpentine present. The results

of point counting, as shown in Table 3, show zero serpentine

for all sections from core sample 4, and for sections 8§ - 1l1.
These samples are all from the eastern side of the discontinuity.
The‘sections from core sample 3, however, and sections 12 - 15,
all of which are from the western side of the discontinuity,

all show some serpentine, and generally in significant quantity.
In order to check the reality of this variation the thin
sections were re-examined and a count made of the number of
serpentine aggregates occurring in each. The results of this
count are presented in Table 8. The few aggregates observed

in thin sections from the eastern side of the discontinuity

are in all cases very tiny; those on the western side are
numerous and generally large, usually greater than lmm, and
sometimes greater than 2mm, in length.

The only detectable variation in the properties of
individual minerals is in the pyroxenes. Hornblende and
biotite, if they vary, do so by less than 0.02%. Further
investigation, however, using x-ray analysis, may reveal vari-
ations since this method proves to be more sensitive as shown
below in the case of pyroxenes. Plagioclase compositions
vary too much within a single thin section to enable varia-
tions between thin sections to be revealed.

The pyroxene compositions are plotted in Figure 22,
which is based on that of Brown (1960). In this plot the
values of all measurements on each sample have been averaged,
thus the pointé plotted actually have an area of uncertainty
around them. For clarity these areas are not shown on the
diagram, and it is believed that the trends shown by the
points themselves are significant. These trends are as
follows:

(i) Pyroxenes from dark bands (samples 9, 11, 13, 15,
4D) are richer in iron (by an order of about 2%) than those

from light bands.



Table 8. Occurrence of serpentine aggregates.

West of discontinuity East of discontinuity
Thin section # No. of Thin section # No. of
serpentine serpentine
aggregates aggregates
- 12 - 1 (<0.5mm)
- 10 - 0
- 11 - 1 (<0.5mm)
- 14 - 0
- 3 - 1 (<0.5mm)
- 2 - 0 '
- 2 - 1 (<0.5mm)
3- 2 - 0
3- 1
7-1 0
12 2 8 0
13 2 -1  (<0.5mm)
14 3 10 o
15 1 11 0
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(ii) Pyroxenes from the eastern side of the discontinuity"
(8, 9, 10, 11 and 4E; not, however, 4D) tend to be very slightly
more calcic (by an order of about 0.5%) than those from the
western side. '
Pyroxenes from core sample 3 show a wide range of'variability.
It must be left to the judgement of the reader to decide
whether such variability in one sample renders the trends out-
lined above as merely coincidental. The author, however be-
lieves that the trends are real and that the extreme varia-
tion in core sample 3 is anomalous. 7

The ¢ dimension varies somewhat irregularly. The ion
substitution that would effect variation in this direction,
that is, in the direction of the chains of silica tetrahedra,
would be A1%%" for ca**. This may be the case; however Brown
(1960) noticed a similar irregular variation in the c dimen-
sion of clinopyroxenes from the Skaergaard Intrusion and sug-
gested that it might be related to exsolution. If so, the
same may apply to Cape Neddick clinopyroxenes, the oriented
inclusions described in an earlier section being exsolution
lamellae. ‘ '
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Discussion of Results

Petrogenesis

In all sections it appears that plagioclase crystallized
prior to pyroxene, and pyroxene prior to hornblende. Biotite
presents a problem, since it is present both in plagioclase
cores and plagioclase interstices. This implies that, al-
though the majority of biotite crystallised late, a small
amount of it was in fact the earliest crystalline phase.

The paragenesis is complicated by the irregular forms and
‘patchy growth of the plagioclase. Comparison with photomicro-
graphs of plagioclasé phenocrysts erupted from Kilauea,volcano,
Hawaii (Richter and Murata.(1966), p. D9) indicates that they
have undergone considerable resorption and recrystallization.
Possibly early formed crystals have been brought into contact
with fresh supplies of magma as a result of movement either
of the crystals themselves, the magma, or both. The greater
part of this irregular crystallization appears to have taken
place before that of the ferfomagnesian minerals, which always
occur between the more euhedral edges of plagioclase grains.
These edges presumably represent the latest stage of plagio-
clase crystallizatioh. ' ,

Magnetite, since it is observed within every other phése,
has crystallized from the earliest stages, as well as being
a product of exsolution from biotite. Carbonate represents
late magmatié alteration of ferromagnesian minerals. Apatite
has its common role as an accessory mineral of middle-to-late
stage crystallization. )

Serpentine, from the characteristic, rounded form of its
aggregates and the irregular fracturing observed, is assumed
to be pseudomorphic after olivine. It is in various stages
of alteration to carbonate.v Where serpentine is observed
it'appears-that olivine must have been the first ferromagnesian
mineral to crystéllize, since it is always wholly or partially

surrounded by pyroxene or hornblende.



Quartz and orthoclase are the products of the latest,
silica rich melt. Orthoclase is often observed close to
biotite and magnetite, and may be a product of biotite-

magnetite exsolution. Figure 23 shows the inferred paragenesis.

Origin of Layering

Most theories of layering in basic rocks invoke gravity
to promote differentiation and some kind of periodic motion
of the magma to produce cyclic deposition. Hess (1960) sug-
gests that the layered series of the Stillwater complex,
‘Montana, results from variable rates of accumulation of
crystals of different density as these fall in ascending and
decending convection currents. Jackson (1961) describes a
gravity/convection-current mechanism for the layering in the
ultramafic zone of the Stillwater complex. Here the change
in mineralogy of settled crystals is due to convective
overturn in the top half of the magma chamber and stable
conditions at the bottom. 'Wéger (1953) suggests that the
layered series of the Skaergaard intrusion, East Greenland,
is caused by variation in velocity of the convection currents
moving across the floor of the magma pool. Heavier crystals
are deposited while the velocity is higher, lighter crystals
while it is lower. He later (1959) considers the possibility
of a pfocess involving alternate supersaturation and nucleation,
combined with convection currents, in controlling -the layer-
ing. ‘ ,

Brown (1956) explains layering in the Rhum intrusion,
Outer Hebrides, as resulting from periodic fresh influxes of
magma. He suggests_thaﬁ the intrusion was'connected with an
overlying volcano, and periods of volcanic eruption produced
~changes in physical and chemical conditions (particularly
temperature .and water content) which determine the crystal-

- lizing phase. As erupted magma left the chamber fresh supplies
came ih from below and a newlcycle commenced. Lombaard (1934)

also favors an intermittent magma supply as controlling factor

in the layered series of the Bushveld complex, South Africa.
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It does not seem that any of the above theories can be
applied to the layered gabbro at Cape Neddick. Any theory of
its formation must explain the following:

(1) Vertical layering

(ii) Very small scale of layering

(iii) Initial oscillatory zoning, followed by irregular
crystallization, in the plagioclase

(iv) Alternate concentrations of plagioclase and
ferromagnesian minerals

(v) Slight iron enrichment of pyroxene in dark layers

(vi) Greater content of hornblende in dark layers.

The theories outlined above are considered inapplicable for
the following reasons:

(i) Gravity settling would not produce vertical layers.

(ii) Even if the layers Were originally horizontal, and
have subsequently been deformed as suggested by
Hussey (1961), gravity settling would be apparent
as graded layering. Graded layering, although
present in the complex, is much rarer than non-
graded. Also, gravity settling would result in
parallelism of tabular crystals with the layering
plane. This has not been detected in the present
study, although universal-stage work on optic
plane orientation would be necessary to confirm
its absence.

(iii) Gravity settling of plagioclase is a slow process
(estimated at 92m/year by Wager and Brown (1968))
and it is hard to see how a slow settling process,
combined with a long-period mechanism such as con-
vection currents or periodic volcanic activity,
could produce the very small scale layers at Cape
Neddick. - The scale of layering to which such
theories have been applied is of the order of feet
rather than inches.

(iv) Periodic release, or influx, of magma would pro-
duce a sudden change in conditions so that layers
should be sharply bounded. Those at Cape Neddick

are comparatively ill defined.
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As an alternative to these theories, the following simplified
model is prepared, and is illustrated in Figure 24.

Magma of composition corresponding to 18% diopside (Di),
24.5% albite (Ab) and 57.5% anorthite (An) was injected into
the Kittery metasediments. This composition was computed from
a spectrochemical analysis of a portion of the normal gabbro,
given by Woodard (1968) in connection with his investigation
of contact reactions. The CIPW norm was obtained using a
computer program written by Luth and Diness and revised by
C. M. Spooner (personal communication), and was recalculated
to 100%(Di + Ab + An. |
' As this liquid cooled, plagioclase of composition ~ An+s
(most calcic composition of plagioclase cores) crystallized first.
If conditions of steady fractionation were maintained, plagio-
clase of increasingly sodic composition would continue to
crystallize until the three-phase bdundary_in the system
Di-Ab-An (see Figure 24a) was reached. At this point cotectic
crystallization of pyroxene and plagioclase would take place
along the boundary until all the liquid was used up. However,
the extremely irregular nature of the plagioclase crystals
indicates that conditions of crystallization were more com-
plex. _ '

Oscillatory zoning in plagioclase feldspar has been dis-
cussed by Phemister (1934), and a possible explanation is
compouhd stages of precipitation, each involving two thin
shells of more and less calcic compositions. This results
from a lack of balance between rate of diffusion of ions and
rate of crystallization. A process such as this is envisaged
to account for the oscillatory zoning observed in the Cape
Neddick feldspar, and occurred during the early stages of
- crystallization. As magma continued to be injectéd, the
growing crystals were subjected to turbulent motion, continually
being brought into contact with ffesh magma more calcic than
- the crystal fims, which were thus resorbed. As the magma
became more sodic recrystallization occurred, resulting in

the observed irregularity}
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After the turbulent injection period, crystallization
proceeded under stable conditions. The plagioclase crystals
continued to grow as an orthocumulate (defined by Wager (1963),
and meaning growth by addition of successively more sodic
rims). It is postulated that the plagioclase grains were
lighter than the more mafic liquid and thus tended to rise
toward the roof of the chamber. A little olivine also crystal-
lized out early. Peck, Wright and Moore (1966), in studying
crystallization of basalt in Aloe lava lake, Hawaii, have
found evidence of crystal setting of olivine microphenocrysts
in the lower part of the lake. It is therefore suggested
that the olivine in the Cape Neddick magma chamber likewise
tended to sink.

This static crystallization proceeded inwards from the
contacts of the intrusion as follows: Consider successive
layers in the liquid (1, 2, 3 etc) at increasing distance
from the contact. The liquid is already a "mush" of ran-
domly oriented plagioclase grains. Layer 1 reaches the
eutectic temperature first and pyroxene crystallizes out to-
gether with plagioclase,in the interstices of the plagio-

clase matrix. Mg?"

ions diffuse in from layer 2 to form the
pyroxene crystals, leaving layer 2 slightly deficient in Mg2+,
but enriched in Fe?* and H,0. The rate of diffusion of ions
from 1 to 2 is greater than the rate of fall of temperature
of 2. Thus when 2 reaches the eutectic temperature, the
crystals formed will be enriched in Fe?', and will grow under

a slightly higher water pressure (P ). Experiments by

Yoder and Tilley (1962) have shown gﬁgt increase in water
content tends to inhibit crystallization of plagioclase,
and favors formation of amphibole in place of, or assaciated
with, pyroxene. 1In a run using the 1921 lava of Kilauea
volcano, Hawaii, held at 1000°C and 5000 bars Pﬁzo for 18
hours, they obtained clinopyroxene rimmed by amphibole, in
a manner very similar to that observed in the Cape Neddick
sections.

Thus layer 2 consists of a smaller proportion of plagio-

clase, a greater proportion of hornblende, and iron-enriched
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pyroxene, as compared to 1. As 2 forms, Fe?T and H,0 ions
diffuse into it from 3. The rate of diffusion is greater
than the rate of fall of temperature of 3 so that this be-
comes depleted in Fe2% and H,0. When the eutectic temperature
is reached in 3 therefore, the pyroxene is magnesium enriched,
and little amphibole, but a larger proportion of plagioclase
crystallize. In this way successive layers are built up,
with regularly fluctuating composition determined by lack of
balance between rate of ionic diffusion in the particular
layer, and rate of fall of temperature in that layer. Oc-
~casionally blocks of anorthositic material, from the initial
concentration of plagioclase at the top of the chamber, fall
into the crystallizing layered series. This may be a result
of decreasing pressure as crystals form, with resulting de-
crease in density of the liquid phase so that the overlying
plagioclase accumulation is mechanically unstable. Such an
origin is suggested for the block of light-colored material
in area 'A'. ,

The composition of the crystallizing mass becomes more
anorthositic as it moves down the three-phase boundary, so
that the center region consists largely of plagioclase

(anorthositic unit).

Origin of Anomaly

It is proposed that the anomaly investigated is the re-
sult of a second, minor magmatic phase. This caused some of
the slightly olivine rich accumulation at the base of the ,
chamber to intrude olivine-deficient material above. Move-
ments 1iké this during the solidification process produce
effects of strain, such as shown in the biotite grain in
Figure 25, and possibly the brecciated aggregates of plagio-

clase as shown in Figure 7.
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Figure 25. Strained bictite grouin.  Sectiwon 0. Cross nicols. 128,



Conclusion

It is proposed that differentiation of layers in the
Cape Neddick gabbro is a result of lack of balance between
ionic diffusion and rate of fall of temperature. Both graded
and non-graded layering could be determined by this process,
the graded layering being a result of a fluctuating, rather
than steady, gradient. Anomalies which resemble cross bed-
ding are caused by motion of the crystallizing magma;
anomalies such as the one investigated result from re-intrusion
of magma. Light colored areas in the normal gabbro may rep-
resent slump blocks of overlying anorthositic material. The
anorthositic unit of the complex is an in situ differentiate
of the normal gabbro; the cortlandtitic unit is the result
of a later intrusion of olivine-rich magma.

X-ray analyses of hornblende and biotite might indicate
significant variations in their composition, and study of
detailed mineralogy over a much larger area of the complex
is needed to indicate whether variations are consistent.

The problem of the needle-like inclusions in pyroxene re-
mains unsolved, and single-crystal x-ray techniques might
prove useful here. The relationship of the cortlandtitic
magma to the normal-anorthositic magma (are they two separate
magmas, or differentiates of the same magma?) is an important
question which study of trace element distribution (presently
being carried out by F. A. Frey and R. Zielinski at M.I.T.)

may help resolve.
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