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Abstract
In a shared radio frequency environment, where several intentional and unintentional
transmitters are expected to co-exist, the ability to identify the source of an arbi-
trary interfering signal, using an automated diagnostic tool, is desirable. Treating
the subject as a pattern recognition problem in a radio frequency environment, a.
viable scheme for the classification of the interfering signals, with adaptive learning
capability, has been developed. The scheme incorporates an architecture for signal
acquisition, a strategy for feature extraction, and algorithms for signal classification
and learning. To lay the background for current and future work in the subject, a
categorization of interfering signals consisting of six categories has been proposed and
mathematical models for representative examples from the six categories were con-
structed. Performance of the proposed scheme with respect to hardware and software
system parameters was evaluated through Monte Carlo simulations.
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Introduction

Upon reading the title of the thesis, several questions may come to the mind of

the reader. What is a shared radio frequency environment? Why are we interested

in adaptive classification of interfering signals? How can we adaptively classify the

interfering signals?

The first two questions will be answered in this introductory chapter. The answer

to the third question will be the subject of the thesis.

Description of the Problem

A shared radio frequency environment is a public-use frequency band where several

intentional and unintentional transmitters are expected to co-exist. Unlike a con-

ventional frequency band with one permitted user, where the interference is usually

treated as Gaussian noise, the problem of interference is much more complicated in a

shared frequency band because of the presence of several permitted users, transmit-

ting a wide variety of signals, including transient or otherwise time-varying signals.

Examples of shared frequency bands are the 902-928 MHz, 2400-2,483.5 MhIz,

and 5,725-5,875 MHz bands2 in the United States [61]. Allocations for spectrum use

in these bands have been made by the Federal Communications Commission (FCC),

under the provisions for Radio Frequency Devices (Part 15), Industrial, Scientific, and

Medical Equipment (Part 18) and Amateur Radio Stations. Transmitters operating

under Part 15 require no license, but are neither afforded interference protection from

2 Hereinafter these three frequency bands will be referred to as the bands centered at 915 MIIz,
2.44 GHz, and 5.8 GHz, respectively.
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existing and future licensed operations nor from any other Part 15 devices.

In addition to the indoor radio networks employing spread spectrum signalling,

authorization for which was recently provided under Part 15 of the FCC rules [55], a

variety of intentional and unintentional transmitters use all or part of the three bands.

Examples of such users are amateur radio stations, electronic article surveillance

systems, microwave ovens, photocopiers, elevator switches, garage door openers, toy

walkie-talkies, RF welding equipment, diathermy, and other communications and

non-communications equipment [6], [14], [41], [50], [57].

Interference from other sources using the same frequency band is considered to be

one of the major impairments to the successful operation of indoor radio systems [34].

However, our concern in this thesis is not with methods to counter such interference,

since this subject is discussed in many recent textbooks on spread spectrum systems,

including [74].

Our focus in this project will be to develop a scheme to identify the source of an

arbitrary interfering signal'. Such a scheme can then be incorporated into an ato-

mated diagnostic tool, capable of performing interference diagnosis. The diagnostic

tool can be used in several circumstances, for example to survey a given environment

prior to installing a radio network (perhaps to find a suitable location for the base

station of the network), or to identify the source of interference when a radio link fails

due to interference (such that a remedy could be found), or to monitor a shared radio

frequency environment on a regular basis and avoid potential radio link failures. The

diagnostic tool will provide advice automatically, relieving the pressure to perform

the diagnosis manually, and eliminating the need for an expert human engineer.

We have motivated the need for interfering signal classification. But why are we

interested in making the classification process adaptive? If the classification process

is specific to only a given set of interfering signals in a given environment, the at-

tractiveness of the diagnostic tool will disappear when new sources of interference

3 In addition to interference diagnosis for shared radio frequency environments, the developed
scheme could also be adapted to identify illegal users in radio frequency environments with one user,
or to perform interference diagnosis for other problems involving transient and random signals, like
interference diagnosis for power-lines.
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are discovered. Such discovery of new interference, or a new behavior of a known

interference is not at all unlikely since the spectrum in use is a shared spectrum

for which no license is required, and users may appear and disappear unpredictably.

Hence, adaptive learning capability of the tool would allow the user to update the

tool whenever necessary, with minimal input from the user.

Therefo:e, we set our objectives as to develop a scheme for interfering signal

classification, with adaptive learning capability. Such a scheme will incorporate a

viable architecture for the diagnostic tool and the necessary algorithms to perform

the learning and diagnosis. In order to motivate the future hardware implementation

of developed architecture and algorithms, the performance of the proposed scheme and

the significance of some of the system parameters will be characterized analytically

and through simulations.

Contributions of the Thesis

The problem to be addressed in the thesis could be described as a pattern classification

problem, in a radio frequency environment, involving a variety of signals exhibiting

transient and random behavior. Unfortunately, no published prior work has been

found for such a problem. The only classification problem that appears to address the

radio frequency environment is the problem of modulatioTn recognition. Modulation

recognition, which is in fact a subset of the more com, plex problem of interfering

signal classification, does not involve difficulties such as the transient nature of many

interfering signals, frequency hopping phenomenon, difference in bandwidth between

the interfering signals, and general random behavior of most interfering signals. So,

the techniques used in modulation recognition, details of which will appear later in

the report, are not directly applicable to our problem.

The contributions of the thesis consist of both engineering contributions and aca-

demic contributions. The engineering contributions of the thesis are:C-

The development of an appropriate high-level architecture for the diagnostic

tool, that can be supported by the current state of technology.
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* The investigation of the sensitivity of system performance with respect to the

system parameters.

The academic contributions of the thesis are:

* Categorization of the interfering signals and the modelling of several known

interfering signals, which provides the background for current and future work

in the subject.

o Development of a strategy for feature extraction, to allow the adaptive classifi-

cation of a wide variety of signals

* Tlhe development of the learning and classification stages, and the associated

identification of a viable decision rule among known decision rules for pattern

classification, such that a simple algorithm for the adaptive learning process is

possible.

The outcome of the project consists of a viable scheme for interfering signal classi-

fication, whose performance has been verified through simulations, and a set of initial

system parameters to provide the background for the future hardware implementation

of the proposed scheme.

Organization of the Report

The remainder of this report is divided into two parts. Part I reports the development

of the architecture and algorithms for interfering signal classification, and Part II

illustrates the performance evaluation of the proposed system that was performed by

simulating the interfering signals and the learning and classification stages.

Part I consists of four chapters. In Chapter 1, the development of the architec-

ture for adaptive signal classification is reported, with particular emphasis on the

signal acquisition techniques. In Chapter 2, the term interfering signal is defined, a

categorization of the interfering signals consisting of six categories is proposed, and

mathematical models are constructed for examples drawn from each of the categories.

4



Chapter 3 addresses the topic of a suitable strategy for feature extraction, using the

background provided by the models of Chapter 2. The selection of the six critical

features is described and several other features are proposed for future extensions.

Chapter 4 concludes Part I by illustrating the process of identifying a suitable deci-

sion rule, and the development of the learning and classification stages.

Part II also consists of four chapters. Chapter 5 describes the system implemen-

tation through simulation, which primarily involves the discussion on the software

packages that were written for the Monte Carlo simulation of interfering signals, and

for the implementation of the learning and classification stages. In Chapter 6, a

model for the simulation process is discussed, and the results of initial experiments

performed to validate the scheme, and to understand the significance of the features

extracted, are reported. Chapter 7 continues with the experiments by evaluating

the system performance with respect to software and hardware system parameters.

Chapter 8 concludes the report by summarizing the accomplishments of the thesis

and providing directions for future work.

There are two appendices to the report. Appendix A contains a description on an

optional hardware module that would improve the performance of the system when

the encountered interfering signal is a narrowband signal. Appendix B contains the

actual documented software packages written for the performance evaluation.
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Chapter 1

Architecture for Adaptive Signal

Classification

We begin this chapter by discussing the basic functional specifications for the diag-

nostic tool proposed in the introduction to this report, and we derive a scheme for

interfering signal classification that would satisfy the requirements of the tool. Then

we illustrate the challenge involved in the signal acquisition, and motivate the use of

the quadrature sampling of bandpass signals. We proceed to develop a viable hard-

ware architecture for adaptive signal classification, identifying the significant system

parameters that will be later addressed in this report. Appendix A of this report

concerns an optional hardware module that can be used to improve the performance

of the system if several types of narrowband interfering signals exist.

1.1 The Concept of a Diagnostic Tool

In this section we discuss the proposed concept of a diagnostic tool for interference

diagnosis, which is the primary application of the signal classification architecture

and algorithms to be developed in this project. Understanding the requirements of

the tool would facilitate the development of the necessary system design theory.

We would like the~tool to have the capability of correctly classifying the observed

signal if the signal has been previously encountered by the tool, and the capability of

7



adaptive learning if the signal is new. We therefore conclude that the diagnostic tool

should have two operating modes - the Learn7ing mode and the Diagnostic mode.

The Learning mode will be used during the installation of the tool in a new

environment, and whenever a new source is found. The Learning mode should require

minimal supervision from the user. In this mode, the tool will collect data. from the

source in consideration, compute the necessary parameters to identify the source in

the future and store these parameters in a system library. The internal processing

involved will not be transparent to the user.

During the Diagnostic mode, the tool captures the signal encountered, derives

a parametric representation of the data, compares it with the models stored in the

system library, and finally provides the user with the classification of tile signal.

The tool will have the capability of estimating the likelihood of the diagnosis being

correct, and if the probability happens to be lower than a predetermined threshold,

it will declare a no diagnosis state, which may correspond to the discovery of a new

source, or equivalently, the discovery of a new behavior of a known source. If the user

desires, he may switch to the learning mode at this point to update the system library.

The no-diagnosis state may also correspond to several other situations, for example

excessive background noise, or the presence of more than one interfering signal'.

The diagnostic tool may take one of several forms. It could be a stand-alone

diagnostic tool, in which case it will have its own built in memory and processing

power. It could be a diagnostic sub-system that can be interfaced to a personal

computer, in which case the sub-system will have the necessary hardware for signal

acquisition and storage, but will use the processing facilities of the host system. The

diagnostic sub-system can also be incorporated into a host system in the form of a

communications test set (for an example of a test set, see [31]), which would otherwise

not have the hardware or the software needed to perform interference diagnosis.

Further development of functional specifications for the tool is beyond the scope

of this project. Based on the discussion in the preceding paragraphs, we propose the

'In this project we will be concerned with classification when only one interfering signal is present.
The extension of the work to include classification when multiple sources are present will be discussed
briefly in Chapter 8, as a suggested topic for future work.
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Figure 1-1: Proposed Scheme for Interference Diagnosis

scheme illustrated in Figure 1-1 for the interference diagnosis.

We recognize that the functions of the tool fall into two broad categories: signal

acquisition and signal analysis. Signal acquisition is a hardware problem, and in

Figure 1-1, the modules marked Receiver Front End and Sampling and Storage fall

in this category. The Receiver Front End is responsible for capturing the signals in

the band of interest and submitting the signal to the Sampling and Storage module.

The Sampling and Storage module, as the name implies, is responsible for sampling

and storage of the acquired signals.

Signal analysis is an algorithmic problem. The two modules in Figure 1-1, marked

as Characterization and Featare Etraction and Comparison with Models will be

employed for the purpose of signal analysis. Although the two modules could be

implemented strictly in hardware, we prefer to implement them in software. The

9



Characterization and Feature Extractioil module is responsible for transforming the

acquired data (which may consist of several thousand samples), for the purpose of

dimension reduction, into a feature vector consisting of features extracted from the

acquired data. The Comparison with Models module is responsible for comparing

the received feature vector with models stored in the system library and provide

an output. The output will have two layers. Outpt Layer will consist of the

identification of the most likely source among the models currently in the system

library, or the no-diagnosis state if the likelihood of the most likely interfering signal

is lower than a predetermined threshold. Otput Layer 2 provides the actual values

of the features computed (which will otherwise not be transparent to the user), for

independent evaluation of the diagnosis by the curious user.

As can be seen from Figure 1-1, all four of the modules are involved in the Di-

agnostic mode. In the Learning mode, only the first three of the modules are used.

The loop in the Learning mode indicates that repeated measurements will be made

in order to characterize the distribution of the feature vectors obtained. Therefore,

there is an intermediate processing of the acquired feature vectors prior to storing the

information in the Library, which we refer to as the adaptive learning process. This

processing stage is not explicitly shown in Figure 1-1.

The system design issues that are algorithmic in nature will be discussed in Chap-

ters 3, and 4. In the following section, we address the challenge of an appropriate

sampling technique which can then be used to develop a suitable hardware architec-

ture for diagnostic tool.

1.2 Strategy for Sampling

1.2.1 The Need for a Sampling Strategy

It is common to use a spectrum analyzer with a. broadband antenna, to perform radio

frequency measurements [4], [22], [69]. Unfortunately, such an approach to signal

acquisition is insufficient for our purpose. Most commercially ava.ilable spectrum

analyzers are scanning analyzers (also known as non-real-time analyzers) that is not

10



tuned to the entire spectrum in consideration at once, but only to a single frequency

at one time. The analyzer scans through the spectrum, and since it must wait to

tune to a frequency, the phenomenon under test must be repetitive or it may not

be detected [30]. For example, consider a unmodulated carrier that is hopping in

frequency, thereby virtually occupying a wider bandwidth. In order to accurately

capture this signal, the spectrum analyzer's sweep rates have to be synchronized with

respect to the hopping rate of the signal. There are two problems with this. First,

the spectrum analyzer may not have a high enough sweep rate to accommodate

high hopping rates of the signal. Second, prior knowledge of the hopping pattern of

the signal is necessary to establish sweep rates that are synchronized, and since our

purpose is to classify an unknown signal, such knowledge of time-varying behavior of

interfering signals will not be available prior to the classification.

The purpose of the above discussion is primarily intended to motivate the fact that

in order to accurately capture an unknown signal, which can virtually be anywhere in

a given band, the entire band has to be captured simultaneously. We recall that the

bands that are of interest to us are the three bands, centered at 915 MHz, 2.44 GIIz,

and 5.8 GHz. Since the higher band of 5.8 GHz is currently limited by the cost of

technology for consumer products [14], we focus our attention on the two lower bands.

Also, since the the 2.44 GHz band has a bandwidth of 83.5 MHz, higher than the

bandwidth of the 915 MHz band, we realize that by setting our target for the 2.44

GHz band, the obtained solution can be easily adapted for the 915 MHz band.

We state here the famous sampling theorem due to Shannon (1949):

Theorem 1.1 If a function f(t) contains no frequencies higher than W cps it is

completely determined by giving its ordinates at a series of points spaced (1/2W) s

apart.

A proof of the theorem, and its extension to the case of random signals, could be

found in [36]. Therefore, by direct application of Theorem 1.1 for the 2.44 GHz band,

which has frequency components up to 2.4845 GHz, a sampling rate of almost 5 GHz

would be required. Such high sampling rates are unfortunately beyond the scope of

the current technology.
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Fortunately, since the signal is bandlimited to the permitted frequencies, either

because the signal is naturally bandlimited, or because the signal has been bandpass

filtered to remove the spectral components that are not in the band of interest, we

found solutions to the sampling problem by means of bandpass sampling theorems.

1.2.2 Direct Sampling of Bandpass Signals

Even though a bandpass signal is bandlimited, directly sampling a bandpass signal is

more complicated than a bandlimited lowpass signal, because two spectral 3a.nds are

involved in the case of bandpass signal, one centered at the positive center frequency

of f and another centered at -f,. Since sampling produces replicas of the original

spectrum [56], appropriate choice of sampling frequency is necessary to avoid aliasing.

There are several theorems that have been discussed in theory that can be used

in the selection of the appropriate sampling frequency. One such theorem is the first-

order sampling theorem for bandpass signals, stated below, where the signal is directly

sampled at a lower rate than that predicted by Theorem 1.1.

Theorem 1.2 For a bandpass signal y(t) having spectral components (in Hz) only in

the range f - V< Ifl < fo + W, where f > W, miinimum required samnpling rate

(in Hz) to determine the signal for all values of time, by direct sampling of y(t), is

given by
2(fo + W)fs(min) = 2f+ (1.1)

where k is the largest nonnegative integer satisfying

k < W (1.2)- 2W

For a proof and a detailed treatment of the theorem, see [11]. Discussions on direct

sampling of bandpass signals could be found in many recent textbooks, including [12],

[56], [60], [67].

We notice that f(,,m iu) in equation (1.1) takes values in the range [4W, 81i'), with

the minimnum value of 4W achieved when (1.2) is satisfied with equality. The value

of 4W is precisely twice the bandwidth of the signal, which is the same as the re-
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quired minimum sampling frequency for a lowpass signal of equivalent bandwidth.

Generalization of the first-order sampling of bandpass signals to second and higher

order sampling, where two or more interleaved sequences of equispaced sampling is

performed [36], [60], results in a more efficient sampling rate with the minimum rate

of twice the bandwidth applicable to any value of TV.

Theorem 1.2 provides, in theory, a method for sampling a bandlimited high fre-

quency signal at a much lower rate than that predicted by Theorem 1.1, and this is

particularly useful when f is much larger than W. The signal directly reconstructed

from the samples of the direct sampling process will correspond a lowpass signal, with

a bandwidth of ~f3( m· i), but with the knowledge of fo, the original bandpass signal

can be determined by means of frequency shifting [60].

However, many practical issues arise in implementing this method in hardware.

We shall assume, for the convenience of discussion, that (1.2) is satisfied with equality

and the sampling rate of 4W is applicable. By employing the direct sampling tech-

nique, we will essentially be making an analog-to-digital converter (ADC) running

at a rate of 4W, thereby expecting to see a signal that varies in the order of 2W, to

digitize a bandpass signal which has frequency components up to f + W.

First, we realize that any jitter in the clock input to the ADC will result in an

increased error in quantization because the signal is varying much faster than the

sampling rate. Second, there will be a further increase in the sampling error due to

the aperture time constraints of real ADCs . For example, the AD90282, a high speed

flash 8-bit ADC capable of sampling rates up to 300 MSPS, has an aperture delay of

1.4 ns, and an aperture uncertainty of 3 ps (rms) [2].

The aperture time is the interval between the application of the hold command

and the actual opening of the switch within the ADC, and consists of a delay and

an uncertainty. While there are methods to compensate for the aperture delay, by

means of advancing the hold command by the known value of aperture delay, the

aperture uncertainty poses the ultimate limitation. The maximum frequency f,,,n

which can be handled with less than one least significant bit (LSB) error, is related

2This is the fastest 8-bit converter listed in [2]
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to the number of bits per sample, n, and the aperture uncertainty, rau, by [2]

2-n
fma < -r (1.3)

For the AD9028, the maximum frequency which can be handled with less than

1 LSB error is computed to be approximately 400 MHz, which is much less than

frequencies up to 2.4835 GHz that may be encountered in the 2.44 GHz band.

Direct sampling of bandpass signals is not impossible to implement, but imple-

mentation using current hardware technology may lead to errors in sampling that

are higher than the error that would be encountered in the case of a lowpass signal

with equivalent bandwidth. We realize that this error is due to the presence of high

frequency components in the bandpass signal, and if we could downconvert the band-

pass signal to a lower frequency band, then the error rate would be reduced. This

option, leading to another sampling theorem for bandpass signals, will be discussed

in the next section.

1.2.3 Quadrature Sampling of Bandpass Signals

Now, we consider the option of preprocessing the bandpass signal prior to sampling.

The preprocessing takes the form of downconverting the bandpass signal to two equiv-

alent baseband signals, then sampling these two signals at the rate prescribed by

Theorem 1.1.

We state the quadrature sampling theorem for bandpass signals as:

Theorem 1.3 A bandpass signal y(t) having spectral components (in Hz) only in the

range f - W < If < fo + W, where f > W, can be determined from samples of its

two equivalent quadrature baseband components, each sampled uniformly at 21 V.

Proof: Any bandpass signal y(t) may be written as [12], [64]

y(t) = x(t) cos[2rfot] + q(t)] (1.4)
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With xi(t) = x(t) cos[O(t)] and xQ(t) = sin[qb(t)],

y(t) = xi(t) cos[27rft] - Q(t) sin[27rfot] (1.5)

Since cos[27rf0t] and sin[2rfot] are real functions, xi(t) and xQ(t) will be real provided

that y(t) is real. Further, since y(t) is has a bandwidth of 2W centered around f,,

xz(t) and x.Q(t) will be lowpass signals bandlimited to [-W, W]. By Theorem 1.1,

xi(t) and xQ(t) can each be uniquely determined by sampling each of them at 2W.

With the knowledge of f,, y(t) can be uniquely determined from the samples of xi(t)

and xQ(t), each sampled at a rate 2W. O

For an alternate derivation of the theorem, see [10]. Since the applicability of

Theorem 1.1 has been shown for the case of random signals [36] and since we have

only used Theorem 1.1 to prove Theorem 1.3, we realize that Theorem 1.3 can be

applied to the case of random bandpass signals.

We will refer to xi(t) and xQ(t) as the in phase (I) and quadrature (Q) components

of y(t). By using conventional techniques of downconversion [42], where the bandpass

signal y(t) is multiplied with the signals 2 cos(27r.ft) and -2 sin(27rfot) from a local

oscillator and then lowpass filtered to retain only the frequency components in the

range [-W, W], we can obtain x.(t) and zQ(t), respectively.

We notice that, asqopposed to direct sampling of bandpass signals at a rate of 4W

(or higher), now we are able to sample the two quadrature components at 2W each.

For the 2.44 GHz band, the bandwidth of 2W corresponds to a value of 83.5 MHz,

which can be achieved-by many of the high speed ADCs currently available in the

market, including the AD9028 encountered before. By downconverting the bandpass

signal into two baseband quadrature components, we have solved the problem induced

by the presence of high frequency components. However, we have also introduced

additional hardware into the system by the option, and hence additional system

parameters.

Having found a suitable sampling strategy, we proceed to discuss a hardware

architecture for the diagnostic tool in the next section.

15



1.3 Proposed Hardware Architecture

The requirements introduced by the need to perform adaptive signal classification

introduces no additional hardware complexity. The signal acquisition stage is iden-

tical in both the Learning mode and the Diagnostic mode, with the only hardware

difference being the repeated measurements needed to characterize the distribution

of feature vectors in the Learning mode, which can be achieved by generating an

appropriate control signal in software. Therefore, the same hardware can be used for

signal acquisition in both of the modes.

There is an added advantage in using the same hardware for both modes, besides

being cost efficient. Since the signal acquired in the Learning mode will be subject

to the same system parameters (say, for example, the number of bits per sample), as

the signal acquired in the Diagnostic mode, the characterization of the distribution

of feature vectors in the Learning mode will be a more accurate description of the

feature vectors likely to be encountered by a given diagnostic tool in the Diagnostic

mode.

Although detailed hardware design for the diagnostic tool is beyond the scope of

the paper, we would like to at least outline a high level architecture for the tool. We

recall that there were four modules in the scheme proposed in Figure 1-1. We would

like to reduce these four modules into three hardware stages, with the two software

modules of Characterization and Feature Extraction, and Comparison with Models,

combined into a single hardware stage of Processing Unit. In addition to containing

the two software modules, the Processing Unit will also be responsible for part of the

control of the signal acquisition process on the one end, and the user interface on the

other end. The three hardware stages are discussed in the following subsections.

1.3.1 The Receiver Front End

The Receiver Front End takes two inputs, a BAND SELECT control signal from the

Processing Unit to indicate the frequency band that should be captured (either the

915 MHz, 2.44 GHz, or the 5.8 GHz band), and an ATTENUATOR INPUT control signal
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Figure 1-2: The Receiver Front End

from the Sampling and Storage module, to set the appropriate attenuation level for

the encountered signal. It has one output, which is the received Radio Frequency

(RF) signal, submitted to the Sampling and Storage module.

A possible implementation of the Receiver Front End is shown in Figure 1-2. The

reader should note that the receiver continuously receives RF signals, with possible

changes in the attenuation level as prescribed by the ATTENUATOR INPUT control

signal, provided that the tool has been turned on, and the band has been selected.

Therefore the Receiver Front End need not be aware of the mode of operation.

The band-selection could be achieved by having three bandpass filters with the

3dB cut-off frequencies set at the edges of the three bands we discussed before3 and

by employing the BAND SELECT control signal to choose the appropriate filter.

The attenuator is present to adjust the relative strength of the received signal such

that the full dynamic range of the analog-to-digital converter in the Sampling and

Storage module can be utilized. The attenuator also ensures that the RF amplifier

is not driven into saturation. Since different interfering signals may require different

attenuation levels, the attenuator should be a variable attenuator. A programmable

attenuator may be used for this purpose, provided that its settling time is short

compared to the duration of occurrence of the interfering signals that are of interest. If

such an attenuator is not available, then several different attenuators, set at different

attenuation levels, may be used in parallel, with the selection of the appropriate

attenuator made by the ATTENUATOR INPUT control signal.

3Here we are assuming that it is sufficient to observe only the activities within the band, and we
will not be concerned with out of band emnissions from neighboring bands.
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Figure 1-3: Sampling and Storage

Further discussion on the components of a typical radio frequency receiver could

be found in handbooks and textbooks on radio frequency surveying, including [69].

1.3.2 Sampling and Storage

The Sampling and Storage module takes the RF signal from the Receiver Front End,

and the control signals BAND SELECT and SAMPLING RESET from the Processing Unit

as its inputs, and generates the ATTENUATOR INPUT control signal for the attenuator

in the Receiver Front End, and the SAMPLING COMPLETE interrupt signal for the

Processing Unit, as its outputs. Like the Receiver Front End, the Sampling and

Storage module will also be not aware of the mode of operation, and will faithfully

sample and store the signals received whenever the SAMPLING RESET is set by the

Processing Unit. Such continuous sampling allows flexible triggering.

A possible implementation of the module is shown in Figure 1-3. The generation

of SAMPLING COMPLETE signal is not shown in the figure. Also not shown in the

figure is the additional control circuitry to control the transfer of data between the
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Processing Unit and the Sampling and Storage Module that may become necessary.

In Section 1.2, we saw how a lowpass signal bandlimited to [- W, W] needs a sam-

pling rate of only 2W. However, this is only in the ideal case, and in practice usually

a higher rate would be required. Oversampling by a factor of 2, thereby employing

a sampling rate of 4W as opposed to the ideal sampling rate of 2W, is typically

recommended [44]. While a higher sampling rate leads to a greater accuracy in dig-

itization, it also makes the acquisition system operate at a higher speed, requiring

more memory for the same duration of observation, thereby making the system more

expensive. Since further verification of the need for oversampling requires hardware

experiments, which is beyond the scope of this project, we shall assume that the

factor 2 of oversampling is applicable.

The wideband4 IQ signal acquisition shown in the dotted box in Figure 1-3 is a

direct implementation of Theorem 1.3. The BAND SELECT control signal from the

Processing Unit is used to select the appropriate downconversion frequency, lowpass

filter bandwidth and the sampling rate, since these three values will be different for

different frequency bands. A sinusoid at f,, the center frequency of the band of

interest, from a local oscillator can be used as an input to a 900 power splitter, which

will generate cos 27rft, and sin 2rfot. These two signals can be multiplied with the

incoming RF signal in a frequency mixer, and lowpass filtered (using Lowpass Filter

II in Figure 1-3) to retain only the frequency components in the range [-W, IW] where

2W is the bandwidth of the band being captured. The resulting I and Q signal, as

defined in Section 1.2.3 of this chapter, can be digitized using a high speed ADC as

discussed before. Taking into consideration the factor 2 of oversampling discussed

above, a sampling rate of 167 MHz is suitable for the 2.44 GHz band.

The reader may be surprised to see the blocks labelled Envelope Detector, Lowpass

Filter I and Low-speed Sampling, in Figure 1-3. These three blocks will be used

to acquire what we shall refer to as the slow-varying envelope of the encountered

interfering signal. As we shall see in Chapter 2, there are devices such as Microwave

4Appendix A describes an optional hardware module that can be added to the system to improve
performance in the special case where the signal encountered is a narrowband signal. So, we use the
word wideband here to distinguish between the two hardware modules
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Ovens that emit RF energy only during one half of the 60 Hz cycle of the power supply.

Hence, we are interested in detecting the presence or absence of a "square wave" at

60 Hz, the slow-varying envelope, which is a piece of information which we suspect

would be useful in identifying the signal. Since the 60 Hz frequency corresponds

to a period of 16.7 ms, in order to compute the slow-varying envelope ill software

from the wideband I and Q samples that are sampled at a high frequency, a huge

amount of sampling memory (in the order of Megabytes) will be needed. So, we have

elected to compute the slow-varying envelope in hardware using an envelope detector,

a lowpass filter, and an ADC sampling at a much slower rate. The envelope detector

is a rectifier circuit, commonly described in many textbooks, including [42]. Ideally,

we would like to the slow-varying envelope to be a square wave at 60 Hz for signals

from devices exhibiting the 60 Hz behavior, and a pure DC value for other signals.

However, a large bandwidth will be required to accurately characterize a square wave

[42], and this will unfortunately permit high frequency components to corrupt the

slow-varying envelope. But since we are only interested in an approximate shape of

the envelope, we realize that capturing up to, say, the fifth harmonic of the square

wave should be sufficient. Therefore, the time constant of the envelope detector

should be sufficiently large to remove all high frequency components, and to further

ensure that only the frequency components below the fifth harmonic of the square

wave remains, we include a lowpass filter with a 3 dB bandwidth of 300 Hz. The slow

envelope can be sampled at 1200 Hz, corresponding to a factor 2 of oversalmpling,

and the duration of observation needs to be only 16.7 ims, which is the period of a

60Hz signal, thereby requiring only 20 samples per observation.

The block labelled Sampling Control is responsible for generating the ATTENU-

ATOR INPUT control signal to set the attenuation level in the Receiver Front End,

and the TRIGGER signal to start storing the sampled signal. After the band has been

selected and the SAMPLING RESET has been set, the module will be continuously

sampling the received signal. Initially the attenuation level should set to a low level,

such that any signal above the mean thermal noise may be detected. By observing

a small number of samples, the amplitude of the received signal will be compared to
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a threshold value, and if the threshold is exceeded then an interfering signal will be

assumed to be present. Then, based on the first few samples observed, the Sampling

Control will make a guess as to what the appropriate level of attenuation should be,

and after a delay corresponding to the settling time of the attenuator, the TRIGGER

signal will be generated to start the storage of the samples. Upon completion of the

storage, the SAMPLING COMPLETE interrupt signal will be sent to the Processing

Unit.

There are several system parameters in the Sampling and Storage module that

may have a significant influence on the performance of the diagnostic tool. With

respect to the slow envelope acquisition, we have essentially resolved, in theory, the

issue of the lowpass filter bandwidth, and the sampling rate. Further verification of

the method and the analysis related to the system parameters have to be performed

through actual hardware experiments. Likewise, in the case of the wideband I and Q

signal acquisition, again we have resolved the issue of the lowpass filter bandwidth and

the sampling rate, leaving further verification (involving issues like the possible non-

linearity of the mixer, and the non-ideal behavior of the filters) up to future hardware

experiments. In the case of the Sampling Control, we only outlined a general scheme

that can be used to control the sampling process, and we realize that a significant

amount of design and verification has to be performed. In particular, the appropriate

threshold for comparison of the signal amplitude, the exact number of samples to

be used in generating the control signals, and the criteria for generating the control

signals are expected to important.

There are three other parameters of the system that we would be able to analyze

in theory and through simulations. These parameters are:

* The dynamic range of the sampling system

* The duration of observation

* The sensitivity of the system to frequency and phase jitters from the local

oscillator circuitry used in the downconversion process

The dynamic range issue affects both the slow envelope acquisition and the wide-
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band I and Q signal acquisition. The remaining two issues are related to only the

wideband I and Q signal acquisition, since we have resolved the issue of duration of

observation (i.e. 20 samples at 1200 Hz) for the slow varying envelope, and there is

no downconversion involved.

The dynamic range issue will be addressed from the viewpoint of the number of bits

per sample required for acceptable performance, keeping in mind that the attenuator

can be used to utilize the maximum dynamic range of the ADC. The duration of

observation is related to both the sampling rate and the record length (the number of

samples per observation), but since we have set the sampling rate (recall the factor 2

of oversampling), only the record length is a variable in our investigation. Since the

local oscillator circuitry used in the IQ downconversion process may exhibit frequency

and phase jitters, we would like to model these jitters as stochastic processes to gain

an understanding of how sensitive the system performance will be to the non-ideal

behavior of the system. These topics will be addressed in Part II of this report.

1.3.3 The Processing Unit

As we saw in Section 1.1 of this chapter, the diagnostic tool can take one of several

forms, and the required hardware for the Processing Unit will be different for each

implementation. In any case, the Processing Unit should have the memory needed

to contain the system library, but since the feature vector computed is expected to

be much smaller i-dimension than the actual data, only a small storage space will

be needed. The memory allocated for the system library should allow both READ

and WRITE operations, since data will be written during the Learning mode and read

during the Diagnostic mode.

In addition to the primary responsibility of performing the necessary signal analy-

sis during the two modes of operation, the Processing Unit will also be responsible for

the control of the tool (with the exception of the ATTENUATOR INPUT control signal

generated by the Sampling and Storage Module), and for the interface with the user.

After the entry of the desired inputs from the user, the Processing Unit will

generate the BAND SELECT and SAMPLING RESET signals previously discussed. Upon
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receiving the SAMPLING COMPLETE interrupt signal from the Sampling and Storage

module, the Processing Unit will read in the data acquired, and perform the necessary

signal analysis. The Processing Unit will have the knowledge of N, the number of

independent measurements needed for the Learning Mode, and is solely responsible

for generating the required number of SAMPLING RESET signals and for keeping track

of the number of measurements completed at any given time during the Learning

Mode. Another responsibility of the unit is to update the system library after the

adaptive learning process. The Processing Unit is also responsible for providing the

two output layers (the results of the diagnosis) through the selected used-interface.

Hardware parameters of the Processing Unit relate to the processing speed of the

of the system, which is a customer satisfaction issue, and therefore will not be ad-

dressed in this project. However, there are several software parameters that affect

the performance of the system, including the required number of independent mnea-

surements to be made during the Learning mode, the specific features that should be

included in the feature vector, the algorithm for adaptive learning and classification

of the interfering signals, and the value of Pth, the threshold value for the likelihood of

the most likely signal, below which the diagnostic tool should declare the no-diagnosis

state.

Since the Processing Unit is the only module that is aware of the mode of oper-

ation, the requirement of making the signal classification adaptive introduces severe

constraints in the form of appropriate feature selection methodology and classifica-

tion algorithms. Theoretical issues related to the selection of these parameters will

be discussed in detail in Chapters 3 and 4, and the related performance evaluation

will be discussed in Part II of this report.

1.4 Chapter Summary

This chapter began Part I of this report, by discussing several issues related to the

architecture for adaptive signal classification. We introduced the reader to details

concerning the proposed application of the architecture and algorithms developed in
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this project, in the form of a diagnostic tool for interference diagnosis. We recognized

the difficulties in signal acquisition, and we explored strategies for sampling. We

then discussed the details of the Receiver Front End, and the Sampling and Storage

module. We also discussed briefly the hardware aspects of the Processing Unit which

incorporates the two software modules of Characterization and Feature Extraction,

and Comparison with Models. Since the design of these two modules are primarily

algorithmic, the necessary algorithms will be developed in Chapters 3 and 4. In

Chapter 2, we will proceed to develop models of interfering signals, keeping in mind

that the signal acquisition architecture will affect the form of the received signal. The

system hardware system parameters identified in this chapter will be further addressed

in our performance evaluation process, which is reported in Part II. Appendix A of

this report contains a brief description of an optional hardware module that could be

added to improve the performance when the encountered signal occupies a bandwidth

much narrower than the bandwidth of the captured band.
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Chapter 2

Interfering Signals: Definition,
Examples, and Mathematical
Models

The objective of this chapter is to gain an understanding of how a variety of received

interfering signals, obtained through a signal acquisition architecture employing Th?-

orem 1.3 of Chapter 1, -would look like in its equivalent baseband representation.

We begin this chapter by defining the term interfering signal and proposing six cate-

gories of interfering signals. We then develop a general baseband representation of the

received interfering signals, and proceed to model examples drawn froim the six cate-

gories of interfering signals in the desired baseband representation. These models will

be both used in motivating appropriate feature selection methodology in Chapter 3,

and for performance evaluation in Part II.

2.1 Definition and Categorization

2.1.1 What is an Interfering Signal?

In this project, we will not be concerned with out-of-band emissions of transmitters

form neighboring bands, although these emissions exist as a major electromagnetic
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compatibility problem [68]. We will also not concern ourselves with natural radio

noise sources such as atmospheric, solar, and cosmic noise sources. Therefore our

focus will be entirely on permitted users of a given shared frequency band.

In a shared radio frequency environment, where there are more than one legal

users, interfering signals can only be defined with respect to a given user. However,

it should be noted that interference is a problem only to intentional transmitters

who emit radio frequency energy for the purpose of transmitting information, and

therefore depend on the safe reception of the transmitted signal, such as indoor radio

local area networks (radio LANs), amateur radio, garage door openers, and electronic

article surveillance devices. The unintentional transmitters of the shared spectrum,

that are either functionally dependent upon the radiation power (like radio-frequency

stabilized arc welders), or happen to radiate electric energy because it is less expensive

for the manufacturer of the equipment to accept its presence than to suppress it. (for

example, photocopiers and elevator switches), typically do not face the problem of

interference.

So, we define interfering signals from the standpoint of the destination of a. given

transmission.

Definition 2.1 "Interfering Signals" in a shared radio firequency environment are all

components of permitted signals that are present in a given frequency band, having

sufficient power above the mean thermal noise to be detected by the receiver of a given

user, with the exception of the intended signal to be received by the given ser.

For radio LAN operations in the 915 MHz and 2.44 GHz bands interfering sig-

nals would include signals from sources like amateur radio, electronic article surveil-

lance devices, microwave ovens, photocopiers, elevator switches, garage door openers,

toy walkie-talkies, diathermy, radio-frequency stabilized arc welders, and other non-

communication equipment [6], [14], [41], [50], [57]. Although most of the work in this

project will focus on interfering signal classification for wireless LANs, the algorithms

and architecture developed could easily be adapted for other users, as we will see in

Chapter 8.
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2.1.2 The Six Categories of Interfering Signals

To perform an exhaustive search of all possible interfering signals and their character-

istics is not within the scope of our project. Therefore, we will divide the interfering

signals into several categories, and choose a representative example from each cate-

gory for further analysis.

With respect to categorizing the interfering signals, we found the work of Mid-

dleton to be particularly inspiring. Middleton has divided impulsive electromagnetic

interference arising from non-Gaussian random processes into three classes, and the

work has been reported in several publications, including [53], [68], [73]. The three

classes of interference are Class A, which consists of noise that is "typically narrower

spectrally than the receiver in question, and as such generates ignorable transients

in the receiver's front end when a source emission terminates"; Class B, where, "the

bandwidth of the incoming noise is larger than that of the receiver's front-end-stages,

so that transient effects, both in the build-up and decay occur, with the latter predom-

inating"; and Class C, which "is the sum of Class A and Class B interference," [53].

Middleton further developed statistical models for the three classes of interference,

assuming that, " the locations of the various possible emitting sources are Poisson-

distributed," and " the emission times of the possible sources are similarly Poisson-

distributed in time," [53].

We realize, however, that such Poisson-distributed impulsive noise is only a subset

of all possible interfering signals in a shared radio frequency environment. Therefore,

we developed a more comprehensive categorization for the interfering signals, implic-

itly using Middleton's idea of categorizing the signals according to their bandwidth.

In comparing the bandwidth of the interfering signal, we will use the official al-

locations made by the FCC for radio frequency devices (under Part 15) mentioned

in the introduction to this report'. Since the receiver bandwidth, as we decided in

1The bandwidth allocated for ISM equipment (Part 18) appears to be somewhat lifferent than
that allocated for radio frequency devices (Part 15) in the 2.44 GHz band. ISM equipment are
allowed to operate at 2450 MHz, with a tolerance of ±-50 MHz, whereas the band allocated for radio
frequency devices is 2400-2483.5 MHz [61]. So, one can expect emissions from Part 18 equipment
that may appear to be "out-of-band" from the viewpoint of Part 15 devices.
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Chapter 1, is equal to the official bandwidlth allocations made by the FCC, one could

also interpret the comparison of bandwidths as being between the signal bandwidth

and the receiver bandwidth. We first introduce three broad categories: signals with

bandwidth that is much less than the bandwidth allocated for the band it occupies,

signals with bandwidth that is in the order of the bandwidth allocated for the band

it occupies, and signals that have a much larger bandwidth than the bandwidth allo-

cated to the band in consideration2 . We shall refer to these three categories as Type

A, Type B, and Type C, respectively.

Type A interfering signals can be further categorized into signals that are pure

tone signals, and signals that have a larger bandwidth than a pure tone signal (but

much smaller than the bandwidth of the band it occupies). We will refer to these to

subcategories as Type Al, and Type A2, respectively. One could think of the Type A2

signals as modulated Type Al signals. An example of a. Type Al signal would be

signals transmitted by Electronic Article Surveillance Devices, and an example of

Type A2 signal would be narrowband transmissions from amateur radio stations.

Type B signals, which occupy a bandwidth that is in the order of the allocated

bandwidth, can also be further categorized into two sub-categories. Interfering signals

may occupy a large bandwidth, either because they are narrowband signals that

exhibit fequency hopping, or because they may naturally have a large bandwidth at

all times. We will refer to these two subcategories as Type B1 and B2, respectively.

Type B1 signals have a narrow local (or short-term) bandwidth, but a wide global (or

long-term) bandwidth. Both the local and the global bandwidths of Type B2 signals

are wide. An example of Type B1 signal would be frequency hopped spread spectrum

transmissions from amateur radio stations, and an example of Type B2 signal would

be emissions from a microwave oven.

Type C signals, which occupy a bandwidth that is much larger than the bandwidth

of the band in consideration, can also be further categorized into two subcategories.

These signals could either be impulsive with pulse durations sufficiently narrow in time

2Signals that have a bandwidth that is greater than the width of a given band are probably occu-
pying more than one of the permitted bands, and as such we use the phrase "band in consideration"
to compare that bandwidth of these signals, as opposed to "band it occupies"
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that the emissions extend through several of the permitted bands (with suppressed

emissions in the forbidden bands that occur in between the permitted bands), or these

signals could non-impulsive signals (for example, the classical wideband Gaussian

noise). These two subcategories would be referred to as Type Cl, and Type C2,

respectively. An example of Type C1 signal would be emissions from a photocopier.

Although thermal noise is generally Gaussian [18], but by Definition 2.1, thermal

noise cannot be considered as an interfering signal, and we have not found a suitable

alternate example for Type C2 signals. However, we will still include a theoretical

model for wideband Gaussian noise, since it appears to be a good approximation for

many naturally occurring phenomena [20].

We formally state the six categories of interfering signals in Definition 2.2.

Definition 2.2 The six categories of interfering signals in a shared radio frequency

envitronnent are:

* Type Al: Single tone signals.

* Type A2: Signals with bandwidth larger than single tone signals, but much

smaller than the bandwidth of the band occupied; typically a modulated Type

Al1 signal.

* Type B1: Frequency hopping signals that have a narrow local bandwidth but a

wide global bandwidth, thereby occupying most or all of the bandwidth allocated.

o Type B2: Signals that occupy most or all of the bandwidth allocated at all times

when they are present; typically a modulated signal with a constant carrier fre-

quency.

* Type C>: Signals that occupy a bandwidth much greater than the bandwidth of

the band in consideration, due to a highly impulsive random process.

* Type C2: Signals that occupy a bandwidth much greater than the bandwidth of

the band in consideration, other than Type Cl signals.

We will select one representative example from each category and develop math-

ematical models for them, which will be used in our analysis in subsequent chapters.
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2.2 Background for Model Construction

There are three reasons why we are interested in constructing models for the interfer-

ing signals. First, construction of such models would provide a deeper understanding

of the physical and statistical characteristics of the interfering signals, which we will

need in order to derive the appropriate feature extraction methodology for signal

classification. Second, these models can be used to generate test cases for perfor-

mance evaluation, which will be addressed in Part II of this report. Third, these

models would further contribute to the understanding of the behavior of the interfer-

ing signals, which can be used in the successful deployment of indoor radio local area

networks.

We realize that the models constructed should represent the signals likely to be

received by the signal acquisition architecture described in Chapter 1. In order to

reduce the complexity of the models, we will assume that the channel frequency

response, H(f), is represented by H(f) = 1 for all frequencies of interest, and there-

fore the channel exhibits no multipath effects. The signal-to-noise ratio (due to the

channel and receiver noise) will first be assumed to be very large to facilitate the

development of the models. owever, in implementing the models for performance

evaluation, finite signal-to-noise ratios will be introduced in Chapter 6.

Since we have assumed the application of Theorem 1.3 in deriving the architecture

for signal acquisition, the received signal will consist of in-phase and quadrature

components, which we will generally refer to as the equivalent complex baseband form

of the actual bandpass signal, in this chapter and subsequent chapters. The in-phase

and quadrature components will be the real and imaginary parts, respectively, of the

equivalent complex baseband representation.

We make the following proposition for the form of the received signal.

Proposition 2.1 The received signal from an interfering source, obtained through an

architecture employing Theorem 1.3, can be written in the equivalent com7plex baseband

form R(t) given by

R(t) = s(t)r(t)ei[27f(t)t + A (t)] (2.1)
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where s(t) and r(t) represent the real-valued slow-varying and rapid-varying envelopes,

and A f(t) and AO(t) represent offsets between the carrier frequency (if any) and phase

of the interfering signal and the local oscillator.

Proof: Let us rewrite equation (1.4),

: y(t) = x(t)cos[2irfo(t)] + +(t)] (2.2)

Here, y(t) is the (bandpass) interfering signal, bandlimited either because it is natu-

rally bandlimited, or because it has been bandpass filtered in the receiver. We know

form the proof of Theorem 1.3, that the in-phase and quadrature components, xi(t)

and xQ(t), of the equivalent baseband representation of the bandpass signal are given

by xr(t) = x(t) cos[q(t)], and xQ(t) = x(t) sin[O(t)], respectively. Since the real part

of R(t) is the in-phase component, and the imaginary part of R(t) is the quadrature

component, we write

R(t) = x(t) cos[O(t)] + ix(t) sin[q(t)] = x(t)ei*(t) (2.3)

We could always write the envelope x(t) as a product of a slow-varying envelope s(t),

and a rapid-varying envelope r(t). The motivation for writing x(t) as a product, and

a formal definition of s(t) will both appear in Definition 2.3. In the case where the

interfering signal is modulated, its carrier frequency need not be the same as the

center frequency f of the band, which is the frequency we use for downconversion.

Hence there may be an offset Af(t) in the two frequencies3 , which may be a function

of time because the carrier frequency may be a function of time (for example, in

the case of frequency hopping signals). Likewise there will be an offset AO(t) in the

phase, due to the difference in the phase of the carrier and the phase of the local

oscillator, which again could be a function of time, since the phase of the interfering

signal could be a function of time (for example, in the case of frequency or phase

modulated signals). So, we conclude that ¢(t) in equation (2.3) could be written as

3Af(t) will be zero when there is no modulation, like in the case of Type C signals.
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+(t) = 27rAf(t)t + aS(t). The resu:l follows. o]

In Chapter 1 we illustrated a method through which the slow-varying envelope s(t)

could be estimated in hardware. Now we would like to propose a formal definition

for s(t). We realize that a radio frequency device that has been powered on need

not continuously transmit radio frequency energy. A classic example would be the

emissions from microwave ovens, which occur only during one half of the power supply

cycle of 60 Hz, and a violation to this rule has has never been observed [15]. So, there

is a deterministic component to the general stochastic behavior of radio frequency

emissions. Hence, we make the following definition for s(t).

Definition 2.3 The slow varying envelope of an interfering signal, from a source that

has been powered on, is the deterministic component of the envelope of the emission,

indicated by a level 0 when emissions are known to to be absent, and by a level 1

otherwise.

For sources other than microwave ovens, such deterministic behavior is usually

not nown, and therefore we expect to see s(t) = 1 in most cases. But estimating

s(t) in practice is a very difficult problem, and the method proposed in Chapter 1

may not be optimal. We leave the issue of developing methods for a more accurate

acquisition of s(t) to future hardware designers.

2.3 Examples and Mathematical Models

We have identified the four parameters, s(t), r(t), Af(t), and AO(t) as being critical

in constructing models for interfering signals. Hence, we are in search of statistical

characterizations of these four parameters for each of the six categories of interfering

signals.

In performing such an investigation, we will assume that the band of interest is a

hypothetical shared band with a center frequency of f , and a bandpass bandwidth of

2W, to make our work independent of any actual band and to facilitate extending our

findings to applications other than interference diagnosis for radio LANs. However,
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we will draw examples from the 915 MHz and the 2.44 GHz bands, when useful data

concerning a given source is available.

2.3.1 Type Al Interfering Signal

The example of a Type Al interfering signal that we will discuss in detail is the

signal from an Electronic Article Surveillance Device (EASD), in the form of a radio

detection system, that is often used for anti-theft purposes in places like shopping

malls and libraries. The description in the following paragraph was obtained from

[59].

The radio detection system operates in the 915 MHz band. In one form of its im-

plementation, a packaged diode is attached to the articles in the store. The shoplifter,

who leaves the store with the packaged diode still attached to the article, passes be-

tween two antennas, one of which is radiating at a given frequency in the 915 MHz

band and, at the same time, under a metallic plate radiating at a much lower fre-

quency, say around 100 kHz. The diode mixes the two frequencies by rectification and

the resultant sum or difference frequency is the telltale sign giving away the presence

of the diode on the article.

For the purpose of constructing a model for the EASD in our hypothetical band,

we will assume that a theft never occurs during the duration of observation. Since

the lower frequency from the metallic plate is not within the band of interest, we are

concerned with only the pure tone signal from the antennas. We assume that this

signal can be modelled as a single tone signal.

Therefore, for the EASD, SEASD(t) = rEASD(t) = 1, and both AfEASD(t) and

AEASD(t) will not be a function of time. Since it is quite likely that we will not

know the operating frequency of the device, we will assume that the operating fre-

quency will be uniformly distributed in [fo - W, f + W], and hence AfEASD will be

uniformly distributed in [-W, W]. Similarly A/EASD will be assumed to be uniformly

distributed in [0, 2ir].
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2.3.2 Type A2 Interfering Signal

The example of Type A2 interfering signal that we will model is a frequency modulated

(FM) signal from an amateur radio station. First, let us write an expression for a

typical FM signal [67]:

YFM(t) = A cos [2rfct + kf j g(t)dt] (2.4)

The carrier frequency is f,, which need not be the same as the center frequency f,

of our hypothetical band, and the maximum frequency deviation is kflg(t)lma,. We

will model g(t) as a Gaussian noise bandlimited to audio frequencies (approximately

20 kHz).

Once again, we find that SFM(t) = rFM(t) = 1. We assume that such an amateur

radio station uses a constant carrier frequency during a given duration of transmission.

However, the carrier frequency need not be the same for different transmission periods,

and need not be the same for different amateur radio stations, and therefore could

take any value in [f,-W, fo+ W]. Hence, we mnodel AfFM(t) as an unknown constant,

uniformly distributed in [-W, W] for a given observation. The phase offset AOFM(t)

will be a function of time, given by

sOeFM(t) = kf g(t)dt + 0o (2.5)

where ,o is uniformly distributed in [0, 27r]. Appropriate values for kf will be chosen

for our model in Chapter 5, keeping in mind that kf should only be a small fraction

of 2W, in order for the model to belong to Type A2 interfering signal.

2.3.3 Type Bi Interfering Signal

Type B2 interfering signals are typically frequency hopped spread spectrum signals.

Authorization for both direct sequence and frequency hopped spread spectrum tra.ns-

mission has been given to amateur radio stations [55], and it appears that radio

amateurs were among the commercial users of spread spectrum [65].
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Now, we would like to model the example of a Type B2 interfering signal based on

amateur radio transmissions employing Single Sideband, where the carrier frequency

is changed periodically, and we will refer to this model as Frequency tHopped Single

Sideband (SSB/FH) transmission.

Since we cannot expect to see any deterministic absence of the interfering signal,

we conclude that SSSB/FH(t) = 1, and we assume that the carrier is modulated with

g(t), Gaussian noise bandlimited to audio frequencies. The carrier frequency will be

a function of time due to the frequency hopping phenomenon, and we will assume

that the hop duration is uniformly distributed in [tl, t2]. Suitable values for t and

t2 will be chosen in Chapter 5, for repeated generation of this interfering signal. The

hop duration, once chosen, does not vary for a given observation.

We write equation (2.1) in a slightly different form for this model:

RSSB/FH(t) =r(t)eiO(t)ei[af(t)+] (2.6)

where r(t)ei °(t) is an analytic signal4 associated with g(t), the message to be trans-

mitted. We could further write

r(t)eie(t) = g(t) + it[g(t)] (2.7)

where the notation I7 indicates Hilbert Transform. So rssB/IFH(t) is the magnitude

of the right hand side of equation (2.7), and AOssB/FH(t) = OSSB/FH(t) + AO0, where

OSSBIFH(t) is the argument of the right hand side of equation (2.7), and A#0 is a

constant phase offset that is uniformly distributed in [0,2r]. 2]fSSB/FH(t) will be a

function of time, periodically changing from one value that is uniformly distributed

in [-W, W], to another value similarly distributed, with the period given by the

hop duration, which is yet another random variable (because, in general we will not

know the hop duration chosen by the radio amateur), as mentioned in the previous

paragraph. Further details will appear in Chapter 5.

4 For a definition and discussion on analytic signals, and the associated Hilbert Transforms, see [56]
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Figure 2-1: Proposed State Model for Microwave Oven Interference

2.3.4 Type B2 Interfering Signal

Although direct sequence spread spectrum signals from amateur radio stations or

other sources could be considered as examples of Type B2 interfering signals, we

have chosen radio frequency interference from microwave ovens as the representative

because of some unique properties of the interference, and because of the ubiquity of

the use of microwave ovens that coincides with the indoor communications operations

domain.

Following are some observations we made using the data from [13], [14], [15] for

microwave oven interference characteristics:
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* The radiation has a random and contiguous frequency content over approxi-

mately 100 MHz bandwidth, with a carrier frequency of 2.45 GHz and specific

amplitude envelope distribution.

* The interference radiation emission is synchronous to the 60 Hz power supply

frequency, and the interference energy exists for only half of the period.

* During the one half period of the power supply when interference energy exists,

the amplitude of the emission takes a complicated distribution. During the first

nAt seconds, n pulses are emitted, spaced At apart, with the peak amplitudes

uniformly rising from a relative value of 0 to 1, where n is between 1 and 10,

and At was observed to be approximately 3ts. Then the envelope takes the

form of continuous pulse train, approximately equal in amplitudes, also spaced

At apart. When this continuous pulses train occurs, sometime pulses may be

missing, or several pulses may collapse together to form contiguous radiation.

At then end of the one half period, again 7 pulses are emitted spaced At apart,

with the amplitudes decreasing.

* Rise times of the pulses are about 5-10 ns, and that missing pulses occurred

roughly about 5-10% of the time.

* Amplitude distribution of for the pulses is always higher than the adjacent

continuous carrier by about 10 dB.

Based on the above information, we developed a six-state model, shown in Fig-

ure 2.1, for the microwave oven interference. State 1 corresponds to the one half

period of the power supply when there is no interference energy present. States 2 and

6 correspond to the build-up and build-down of the pulse train, during the start and

51n [14], an ideal interference model in the form of a mathematical expression, which does not
account for the missing pulse phenomenon, and the pulse collapsing phenomenon, and the non-
zero pulse durations, was proposed. The six state model proposed here could be considered as an
extension of this model, although we had to make several assumptions concerning the transition
probabilities between States 3, 4, and 5, duration of stay in State 5, and the distribution for pulse
durations. Future work in extending this model should include the verification of the assumptions
we had made.
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the end of the radiation for every cycle. There will be n pulses in each state, and we

will assume that the integer n is uniformly distributed in [1, 10]. The duration the

process stays in these two states are 3n iis per cycle, corresponding to the value of

At = 3ts. State 3 corresponds to the continuous emission of pulses spaced At apart,

during which the process may move to States 4 or 5 randomly, and return to State 3

randomly. We assign the value of .075 (the mean of 5% and 10%), for the probability

of the process going to State 4 from State 3 at any given time, and a value of 1 for

the probability that it will return to State 3 from State 4. Probabilities of transition

to and from State 5 are not known, and we will make appropriate assumptions when

we perform the Monte Carlo simulations in Chapter 5.

Now, we will return the the issue of constructing a model in our hypothetical

band which we will refer to as MWO, based on the microwave oven interference.

Since 2.45 GHz is 8.25 MHz away from the center frequency of the 2400-2483.5 MHz

band, and it appears to be a constant, we find that AfivwO(t) = 8.25 MHZ for all t.

Further, AOMwo(t) will also be a constant, randomly distributed in [0,2r]. And we

realize that sMWo(t) will now be a square wave at 60 Hz, oscillating between levels 0

and 1, and rMWO(t) will take a complicated distribution, dictated by States 2 through

6 of Figure 2.1. Further details will appear in Chapter 5.

2.3.5 Type C1 Interfering Signals

Reader may find a strong similarity between our Type C1 signals and Middleton's

Class B noise that was discussed in Section 2.1.2 of this chapter. Type C1 interfering

signals are impulsive noise signals, that have an extremely wide bandwidth, occupying

several of the permitted bands, with emissions probably suppressed in the forbidden

bands that occur in between the permitted bands.

The example of Type C1 interfering signals that we will explore is radio frequency

emissions from photocopiers. Measurements of impulsive noise due to photocopiers

have been studied, and some limited information is available. The following are some

observations we made from [6], [7]:

* Impulsive noise inside buildings is very wide band, and pulse durations observed
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are directly a function of the receiver bandwidth.

* The mean amplitude of radiation, above mean thermal noise power, was 11.5

dB, 12.7 dB, and 10.6 dB, in the three bands centered at 918 MHz, 2.44 GHz,

and 4.0 GHz, respectively, for photocopier emissions.

* The mean and standard deviation of the pulse duration observed in the 2.44

GHz band, using a 30 MHz bandwidth, were 143 ns and 155 ns, respectively,

for photocopier emissions.

e Spacing between consecutive bursts were similar in the three bands measured,

and specifically the mean and the standard deviation of pulse spacing in the

2.44 GHz band, using a 30 MHz bandwidth, were 221 ns and 220 ns, respectively,

for photocopier emissions.

We would like to construct a model in our hypothetical band centered at fo,

which we will refer to as PC, based on interference characteristics of the photocopier

in the 2.44 GHz band. Once again we find spc(t) = 1, since we cannot expect to

see any deterministic absence of the interference. Unfortunately, characterization of

rpc(t), Afpc(t) and AOpc(t) does not follow directly from the observations above

(although we have some information about the amplitude distributions and pulse

interarrival times, we have no information about the phase).

Although the exact process within the operation of a photocopier that is respon-

sible for the emissions is not clear, it appears that corona discharges are often present

in electrophotographic reproduction [35]. Further, "lightning pulses" that are very

narrow in time have been found due to corona discharges [29], and the general sta-

tistical properties of corona pulses have been studied [1] [40], [49]. So, assuming that

the photocopier emissions are due to corona discharges, or a process very similar to

corona discharges, we state the following postulate 6 on which the model we are about

to develop will be based on.

6 The model proposed here, although implicitly uses the data observed in [6], [7], was developed
primarily based on the postulate we proposed. Therefore, the authors of [6], [7] should not be held
responsible for any errors that may have resulted in the modelling, and future researchers should
verify all aspects of the model prior to extending the model.
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* The pulses occur randomly, according to a Poisson distribution, and the pulse

durations are sufficiently narrow to allow the interference energy to extend to

frequencies much larger than 4 GHz. Further, there is no modulation present,

and hence in its natural form, the interference does not exhibit any oscillatory

behavior.

* The pulse shape, for a pulse occurring at time Tk could be characterized by

Ake-A(t-Tk)u(t - Tk), where Ak has a Gaussian distribution, and A is a random

variable with mean value much larger than 4 GHz.

Specific assumptions for the distribution of A, as observed after a bandpass filtering

process in the receiver, will be made in Chapter 5, for the purpose of simulating the

interference. Now, based on the postulate above, we can develop the appropriate

distribution for rpc(t). Since the pulses arrive according to a Poisson distribution, the

interarrival time between pulses will be exponentially distributed. For an exponential

distribution, the expected value should be equal to the standard deviation [23] and the

values of 221 ns and 220 ns for the mean and standard deviation of the pulse spacing

in the 2.44 GlIz band, appear to support our postulate (the receive filter appeared

only to affect the pulse duration, and not the pulse spacing). Hence, we conclude

that rpc(t) should consist of randomly spaced pulses, with exponential interarrival

times, and with the peak amplitude Gaussian distributed. Further assumption about

the pulse duration will be made in Chapter 5.

We suspect that Afpc(t) should be zero since there is no modulation. However,

it seems unclear how the AOpc(t) should look like. In order to help decide the

distribution for the phase offset, we state and prove the following lemma, which will

consequently be used to prove Proposition 2.2.

Lemma 2.1 For a pulse c(t) = e-A(t)u(t), the Fourier Transform7' of c(t), is approz-

imately constant over [f - IW, fo+ W] and [-fo - W, - fo + W], provided that fo << A

and that W << f.

7 We define the Fourier Transform of 2(t) as X(f) = fo x(t)e-i2ftdt and the Inverse Fourier

Transform of X(f) as x(t) = f-00 X(f)ei 2 f t df
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Proof: The Fourier Transform of c(t), at fo is given by[67]

1 A 27rfo

C(o) = A + i27rfo A2 - (27rfo)2 -A2 - (2.rf) 2

Hence, when A > f,, we could approximate C(fo) as

C(f) A (2.9)

With W << f,, the result follows. E

The assumption f, << A is not unreasonable since the interference energy appears

to extend to frequencies much larger than 4 GHz, and the center frequencies of interest

are only 915 MHz and 2.44 GHz. We use the above lemma to prove the following

proposition.

Proposition 2.2 For a pulse occurring at Tk, given by ci(t) = c(t - Tk), where c(t)

is as defined in Lemma 2.1, the output c2(t) of the bandpass filtered version of c (t),

using an ideal bandpass filter with center frequency fo and bandwidth 2W, is given by

c2(t) ~ 2C(f,)c(t) cos[27rf(t - Tk)] (2.10)

where (t) is the lowpass filtered version of b(t - Tk) with an ideal lowpass filter having

a cutoff frequency of W, provided that the conditions of Lemma 2.1 hold.

Proof: First we note that Cl(f) = C(f)e -i2" fTk. By using Lemma 2.1, we write

CZ(t) = C(fo) efo i2Wf(t-T)df + fW i2rf(tT)df) (2.11)

Upon integration and substitution of limits,

c2(t) = 2C(fo)n[2rW(- T)] cos[2rf(t - Tk)] (2.12)r(t-- Tk)

We recognize that sin"[2(t-T) is the response of an ideal lowpass filter with cutoff W

to a delayed ideal impulse 6(t - Tk). The result follows. O
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With the aid of Proposition 2.1 we conclude that Afpc(t) = 0. Now we could

write the equivalent baseband representation Rpc(t) as

q

Rp(t) E A (t- )ei( 2 foTk+80) (2.13)
k=1

where 0o is the constant phase offset due to the downconversion process which we

assume is uniformly distributed in [0,27r], and the pulses occur at times Tk, for k =

1,...q. The interarrival times Tk - Tkl are exponentially distributed and the peak

amplitude Ak is Gaussian distributed. Equation (2.13) characterizes both rpc and

AOpC. We realize that (t) appears to be the response of an ideal lowpass filter to

an ideal impulse, because of the assumptions made through Lemma 2.1. Hence, in

Chapter 5, we will reconsider the issue of appropriate duration and shape for the

filtered pulse. We could further write equation (2.13) in a manner consistent with

Proposition 2.1, with explicit expressions for rpc(t) and AOpc(t), but we realize

that such a step is unnecessary since all the information we need is contained in

equation (2.13).

2.3.6 Type C2 Interfering Signal

We will model the example of Type C2 interfering signal, called GN, based on the

theoretical bandlimited white Gaussian noise (the noise is bandlimited because of the

receive filter).

We write the bandpass noise as

yGN(t) = xi(t) cos(27rfo) + x2(t) sin(27rft) (2.14)

Here xl(t) and x2(t) are independent and each of them are white Gaussian noise

processes, bandlimited to [-W, TV]. We note that xl(t) and xl(t + kr), where k is a

non-zero integer and r = (1/2W), are independent, and similarly for X2(t) [64].

Noting that GN(t) 1 and AfGN(t) = 0, we could write the equivalent baseband
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Model Type Model Based On
EASD Al Electronic Article Surveillance Devices
FM A2 Narrowband Amateur Radio Frequency Modulated Signals
SSB/FH B1 Frequency Hopped Single Sideband Amateur Radio Signals
MWO B2 Microwave Oven Emissions
PC C1 Photocopier Emissions
GN C2 Theoretical bandlimited white Gaussian noise

Table 2-1: Summary of the Six Models of Interfering Signals

representation RGN(t) as

RGN(t) = rGN(t)ei GN(t) (2.15)

where the envelope rGN(t) has a Rayleigh distribution and the phase OGN(t) has a

uniform distribution, since it is well know that the envelope of a Gaussian process is

Rayleigh distributed, and the phase is uniformly distributed [20], [54]. More details

will appear in Chapter 5.

2.4 Chapter Summary

In this chapter, we presented a definition for interfering signals, and introduced the

reader to the six classes of interfering signals that we developed. Then we proposed

a representation for the received form of an interfering signal, which identifies the

slow-varying and rapid-varying envelopes, the frequency offset and the phase offset

as critical parameters in describing an interfering signal. We also provided a formal

definition for the slow-varying envelope. We then selected a representative example

from each of the six categories of interfering signals and constructed models for them

in our hypothetical band. A summary of the six models appear in Table 2.1. These

models will be further developed in Chapter 5, to be used in the performance eval-

uation stage. These models were drawn from different categories, thus spanning a

wide variety of interfering signals, and we will use them to motivate the appropriate

feature selection methodology, which will be the topic of Chapter 3.
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Chapter 3

Strategy for Feature Extraction

This chapter concerns itself with the design of the feature extraction stage whose

purpose is to extract representative features from the observed data for the purpose

of adaptive learning and classification. We first discuss the constraints of the feature

extraction stage, and we set our objectives to develop a strategy for feature extraction.

In the process of developing the strategy, we will identify several features that will

be useful in classifying the six examples of interfering signals that we discussed in

Chapter 2, and we also identify several other features that would be useful when

more interfering signals are involved.

3.1 Constraints and Objectives

In Chapter 1 we divided the problem of system design for adaptive signal classification

into two independent problems of signal acquisition and signal analysis, and we solved

the problem of signal acquisition, illustrating the benefits of using the same signal

acquisition architecture for both the Learning and Diagnostic modes. Similarly, we

would like to design the feature extraction stage such that the same features are

extracted in both of the modes, with repeated measurements required for the Learning

mode. The topic of adaptive learning and signal classification will be discussed in

Chapter 4, and in this chapter we will focus on identifying suitable features to extract

from the acquired signal.

44



The primary purpose of the feature extraction stage to is reduce the the observed

data to a smaller feature vector, consisting of sufficient features. Specifically, this

corresponds to extracting as few features as possible, but at the same time ensuring

that the features extracted contain sufficient information for distinguishing among

the different interfering signals.

The Learning mIode should require minimal supervision from the user, with the

user having to only ensure that the interfering signal is present for the duration of

the measurements. The architecture we proposed in Chapter 1 is capable of making

the required number of measurements during the Learning mode. If the feature

extraction stage is designed carefully, there will be no necessity for modifying the

feature extraction stage when new interfering sources are found, thus making the

adaptive learning requirement satisfied with a simple design.

If we could identify a set of optimal features such that any interfering signal could

be recognized using this set, our problem will be greatly simplified. However, we

realize that to search for a feature vector that has such universal applicability would

be an impossible task, especially since an exhaustive search for all characteristics of

interfering signals has not been done. So we set our target as to first find a suitable

approach, or a suitable strategy for feature extraction and identify a viable set of

features to recognize the limited number of interfering signals that were discussed in

Chapter 2, and in the process of doing so, we hope to discover several other features

that would be useful when a larger set of interfering signals is encountered.

As stated in the introduction to this report there appears to be no prior work re-

lated to the complex problem of interfering signal classification, and thus there seems

to be no suitable background on which we could base our search. In pattern clas-

sification problems, feature extraction stage is considered to be much more problem

dependent than the learning and classification stages [21]. Hence, an approach that

has been used for related classification problems, which can at best be regarded as a

subset of the complex problem of interfering signal classification, is not expected to

be directly applicable. So, we will use the understanding of the fundamental char-

'For example, one subset of interfering signals is modulated signals, and for the purpose of
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acteristics of the interfering signals that were developed in Chapter 2 to provide the

starting point for the feature extraction problem.

3.2 Constructing the Feature Vector

The four parameters consisting of the slow-varying and rapid-varying envelopes, the

phase and frequency offsets, were identified in Chapter 2 as being critical in describing

an interfering signal. Now we would like to further explore methods to recover those

parameters implicitly present in the received signal. We realize therefore, there is

a need for an intermediate stage, which we call waveform characterization, where

we reconstruct the representative waveforms in the form of the slow-varying and

rapid-varying envelopes, phase and instantaneous frequency functions, and spectral

frequency estimates. From these intermediate waveforms, we will then extract a set

of sufficient features to construct the feature vector.

There is one issue that we need to resolve prior to launching into the feature

extraction process. The actual amplitude of the signals, and hence the power received

from signals is not a useful measure in classifying the signal because the received power

is often a function of several variables including the power supplied to the source of

interfering signal, and the distance of the source form our receiver. Hence, we realize

that the envelope computations should incorporate a normalization step, such that

the actual power of the received signal does not bias our decision. So, we normalize

an envelope e(t) (which may either be the slow-varying or rapid-varying envelope),

such that the resulting normalized envelope-e(t) has the property:

E[e2(t)j = 1 (3.1)

modulation recognition features like modulation index were ised[52]. Another subset would be
impulsive noise sources, where features like pulse duration and pulse spacing have been suggested
for radio noise surveys [68], and Gaussian factor and overlap index have been used for recursive
identification of impulsive noise channels[73]. Clearly these features can only be used if we are willing
to tolerate a more complex learning and classification process, where we use different features for
different types of interfering signals.
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By ensuring that the second moment of the envelope has a nominal value of 1, we

will be comparing normalized received signals that will appear to have the same total

energy or power2, regardless of the origin of the signal, and hence we could consider

the comparison to be "fair". The problem of normalization will not be present in

feature extraction from the characterizations of phase, instantaneous frequency and

spectral frequency estimates.

3.2.1 The Slow-Varying Envelope and Feature vl

In Chapter 1, we illustrated one method of obtaining s(t), the slow-varying envelope,

in hardware. If this method is used, then there will be no additional processing

involved in computing s(t), with the exception of normalizing the envelope using the

criterion of equation (3.1). The problem remaining is the determination of a suitable

feature to be extracted from s(t).

We recall from Chapter 2 that there were only two kinds of s(t). The first kind

corresponds to most of the interfering signals, where there was no known duration of

deterministic absence of the interference and s(t) = 1 for all t. The second kind was

observed in the case of microwave oven emissions, where s(t) was a square wave at

60 Hz. Further, we note that the duration of observation was fixed to be equal to one

period of the 60 Hz square wave.

In order to distinguish between a constant-valued envelope and a square wave,

we could use the variance of the envelope. The variance of an ideal constant-valued

envelope will be 0. By writing the variance a2(t) = E[s 2(t)] - E2 [s(t)], and by noting

that E[s2(t)] = 1 due to our normalization, it can be easily shown that for an ideal

square wave envelope, where the duration of observation is exactly one period of the

square wave, the variance would be 2. Since the variance is continuous valued, it can

also be used to classify envelopes other than the two kinds we saw above.

Hence, we decide to include the variance of the slow-varying envelope in the feature

vector. This feature will be referred to as vl.

2For a definition of energy and power of a signal, see[45]
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3.2.2 The Rapid-Varying Envelope and Feature v2

There are two steps involved in obtaining r(t), the rapid-varying envelope. First, since

the acquired complex baseband signal R(t) will consist of the in-phase and quadrature

components xr(t) and xQ(t), r(t) is given by r(t) = /X I x, and this absolute value

has to be computed. Then the computed envelope should be normalized using the

criterion of equation (3.1).

Reasoning along the same lines as with the previous case of s(t), we see that the

variance of r(t) contains useful information. Due to the normalization, the variance

will take values between 0 and 1. The variance will be close to 0 for signals with a

constant envelope (like FM signals and signals from EASD ), and the variance will

be close to 1 for highly impulsive signals (like emissions from photocopiers).

We do not consider extracting the mean of the envelope as an additional feature

because the variance 2(t) can be written as 2(t) = 1- E 2 [r(t)], after the normal-

ization, and therefore computing the mean would be redundant. However, higher

order central moments in the form of skewness or kurtosis3 of the envelope would be

useful in classifying impulsive signals that exhibit varying levels of impulsiveness, and

also in classifying non-impulsive signals that exhibit a variety of distributions. For

information on the different values of skewness and kurtosis for a variety of impulsive

and non-impulsive signals, see [33].

But in light of our decision to extract only the minimum required features for

classifying the six signals in consideration, we restrict ourselves to including only the

variance of the rapid envelope in the feature vector. This feature will be referred to

as 2.

3.2.3 Instantaneous Frequency and Features v3 and v4

With respect to the general interfering signal model of Proposition 2.1, we have

reconstructed s(t) and r(t) and decided on suitable features to extract. Now the

remaining problem concerns the phase and carrier frequency offsets, AO(t) and Af(t).

3 Definition and discussion on skewness and kurtosis could be found in most textbooks on statis-
tics, including [23], [43].
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Unfortunately, the phase +(t) of the complex baseband signal R(t) consists of both of

the offsets (recall the expression +(t) = 2rAf(t)t+AO(t) from the proof of Proposition

2.1).

Computing (t) from the observed R(t) is straightforward, since (t) is simply

the argument (phase) of R(t). However, it should be noted that this method only

generates the principal value of 0(t), in the range [-7r, r] (or equivalently, in the range

[0, 27r]), although the actual phase may very well take a value outside this range.

We realize that it is not possible to exactly recover Af(t) from 0(t) in general, even

in the absence of any noise. However, we would like to obtain as much information

as possible about Af(t) from +(t). One answer to this problem is in the for of

instantaneous frequency.

Instantaneous frequency has become popular for analysis of time-varying signals,

and has found applications in a variety of fields including detection of harmonically

related signals [8], time-varying filtering [9], analysis of cyclostationary signals [75],

speech pattern analysis [5], and modulation recognition [38], [46], [71]. Since our

interfering signals in general will exhibit a time-varying behavior, we expect the in-

stantaneous frequency to be useful in the classification process.

We define the instantaneous frequency of a complex valued signal as the derivative

of the phase4 , and this definition is similar to the classical definition by Mandel [47].

Hence, for our complex signal R(t), whose phase is given by 0(t), the instantaneous

frequency will be di). Noting that +(t) = 2rAf(t)t + Ad(t), and writing A9(t)dt

9(t) + A,, we see that the instantaneous frequency is given by

d(t) dXf(t) d(t)d(t) = 2 r t + 2rAf(t) + dt (3.2)
dt dt dt

Since equation (3.2) defines the instantaneous frequency for a continuous-time

4 Definition of the instantaneous frequency is necessary because, as noted by Cohen [16], the term
instantaneous frequency is subject to definition. For example, in [27], in addition to a definition
that is similar to (3.2) a variety of "instantaneous" frequencies have been illustrated, including
Mathematical Frequency, Zero Crossing Frequency, and the Running Fourier Frequency, and they
were all instantaneous in the sense that they were all a function of the present time (which the
Fourier frequency, in the ordinary sense, is not).
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signal, we need develop a method for computing its value for a discrete-time signal.

However, to avoid the theoretically required digital differentiators, we will develop an

approximate method based on the difference in phase between adjacent samples. We

write the (radian) instantaneous frequency wi(t) = d(t ) as

wi(t) = lim [(q$(t + 6t)- 0(t - t)] mod .27 (33)
t-.0 2bt

where the notation mod.2ir represents a modulo 2 operation to account for q(t)

being defined on [-7r,wr]. Setting At, = 2 t for a discrete-time signal, where At, is

the sampling interval, and by using the discrete-time index n, instead of t, and by

delaying wi[n] by half a sample, we see that

wi[n] = (O[n] - [n - 1]) mod .2 (3
At,

for a discrete-time signal. VWe would like to express wi as a fraction of the sampling

frequency. Noting that wi[n] takes values on [- -, ), we define the normalized

instantaneous frequency fi[n] as

fi[n]= ] - [n.- 1] mod .2r (3.5)
2w

which will be used in Chapter 5.

Let us consider the special case where the signal has a constant carrier frequency

and has a constant phase offset (like signals from EASD and microwave ovens). In

this case we see that the instantaneous frequency will be exactly the same as Af(t),

which is a constant. The mean of the instantaneous frequency, in the presence of zero

mean noise, will yield an unbiased estimate of the constant carrier frequency offset.

The variance will be zero in the absence of noise, or equal to the noise variance in the

presence of any noise, thus indicating that the signal has a constant carrier frequency

and phase.

In the case of FM signals, where the carrier frequency is constant, but the phase
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is not, the instantaneous frequency will be

dOFM(t) 2 t dOFM(t)d = 217rŽIfFM(t) + dt (3.6)
dt dt

We recall from equation (2.5) of Chapter 2 that the term d6Fm(t) is actually a scaled

form of the the message transmitted. If the message has a zero mean over the duration

of observation, then the mean value of the instantaneous frequency will yield the

carrier frequency offset. The variance of the instantaneous frequency will be the

scaled variance of the message transmitted (the scaling occurs because of the factor

kf in equation (2.5)).

In the case where the carrier frequency offset is zero, like for the case of Gaussian

noise or the emissions from photocopiers, the instantaneous frequency will simply be

the derivative of (t). Since the phase of Rpc(t), as we showed in Proposition 2.2,

takes only discrete values, the derivative of Opc(t) will be zero most of the time, with

impulses occurring at times when there is a new pulse. Hence the mean and variance

of the instantaneous frequency will be small. In the case of RGN(t), the phase is

uniformly distributed, and we expect the mean of the derivative of OGN(t) to be close

to zero, but the variance will be large.

When both the phase and the carrier frequency are a function of time, like in the

case of SSB/FH (where the carrier frequency is hopping) we see that the instantaneous

frequency is

dqssB/FH(t) 2 fs B/FH(t) + 27r B/s(t) + SSBIFH(37)
dt =i dt dt

From equation (2.7), we know that OSSB/FH(t) is a function of g(t), the transmitted

message which is bandlimited to audio frequencies. Since the bandwidth of g(t) is

very small compared to the sampling rate, g(t) will vary very slowly in time, and

hence OssB/FH(t) will vary very slowly in time. So the contribution of dOssB/FH(t) todt

the right hand side of equation (3.7) will be negligible, and we rewrite equation (3.7)

as

dqssB/FH(t) 2 fssB/FH(t) + 2 FH( (38)
dt dt
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If a hop occurs during the duration of observation, then the instantaneous fre-

quency will take discrete values, with a "jump" to the new frequency at the point

when the hop occurs, and in this case the mean of the instantaneous frequency will

be a weighted average of the two (or more) carrier frequency offsets, and the variance

will provide a measure of the distance between the hopping frequencies. If a hop does

not occur during the duration of observation, then the mean would yield an estimate

of the carrier frequency, and the variance will be close to zero.

Higher order moments in the form of skewness and kurtosis of the instantaneous

frequency will be useful when there are several frequency and phase modulated signals,

occupying a wide bandwidth, that have to be distinguished. For our purpose, the

means and the variance of the instantaneous frequency should be sufficient. We will

refer to these two features as v3 and 4, respectively.

3.2.4 Estimated Phase and Feature v5

In the previous section, we attempted to estimate Af(t) from +(t), but ended up also

estimating d(t). In order to distinguish a signal which has a constant A0(t) from a

signal that has a AO(t) that varies very slowly in time, dA4(t) will not be useful and
dt

we still need to estimate AO(t) from +(t).

In the case where the carrier frequency is constant, we could estimate AO(t) by

first computing the mean instantaneous frequency, which provides an estimate of the

carrier frequency offset, obtaining Afc, and subtracting the product Afct from (t).

Since we will not know the initial value of t that should be used, this procedure

will result in an additional constant phase error in the estimate of AO(t), but this

should not pose any additional problem since there is already a constant phase error

due to the mismatch of the signal phase to the phase of the local oscillator. In the

5 The reader may wonder why we include the mean of the instantaneous frequency, since only
the microwave oven has a unique carrier frequency among all of our models. Although we have not
considered restricting the carrier frequencies of the other sources, in practice, many sources do have
a restricted frequency range. For example the electronic article surveillance devices manufactured
by Sensormatic Inc., use only the 902-905 MHz range of the 902-928 MHz band[59]. As we will see
in Chapter 4, our algorithms for learning and classification automatically reduce any bias that may
result when the mean frequency is not unique for a given source.
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case where the carrier frequency is not a constant, like the SSB/FH signal, the mean

instantaneous frequency will not yield an unbiased estimate of the carrier frequency,

but in this case the phase will not be particularly useful in classification, and as such

we will neglect the error in the estimate of the phase.

Now that we have an estimate of the phase, the next step is to decide on a suitable

feature to extract from the estimated function. The important information we wish

to extract from the estimated phase is not the mean value of the phase, since this

is simply an uninteresting random variable, but the phase spread of the signal. The

phase spread will be a critical statistic in distinguishing narrowband signals that have

a constant envelope. For example, in distinguishing between single tone signals from

EASD and narrowband FM signals, we will find (in Chapter 6) the phase spread to

be the critical differentiating feature.

Although a measure of the phase spread could be obtained by calculating a suit-

able value of variance, this step is not straightforward because the values of the

estimated phase are the principal values in the range [-7r, r] as observed previously,

and therefore we cannot use the linear variance measure. The answer to this problem

is in the form of circular variance, defined by Mardia [48]. If a set of observations

consist of phase values Oi,i = 1,..., L, then the sample circular variance Qo for the

observation is given by

1

QO = 1L Cos i + s(in Oi (3.9)

The circular variance results in a value between 0 and 1, with 0 indicating that the

phase is a constant, and a value close to 1 indicating that the phase values are widely

dispersed. We expect the phase spread to be close to 0 for EASD signals, and very

large for FM signals.

Since the mean value of the phase is not useful, we will not attempt to include

the circular mean of the phase in our feature vector. However, the circular skewness

and kurtosis will be useful in classifying signals that exhibit a variety of different

distributions in their phase values, particularly when the signals occupy a narrow
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bandwidth. This is a pleasant contrast to the statistics of the instantaneous frequency

which will be useful when the phase and frequency modulated signals (both analog

and digital) have a wide bandwidth.

However, for our limited set of interfering signals, the phase spread factor in the

form of circular variance is sufficient. This feature will be referred to as 5.

3.2.5 Time Variant Periodogram and Feature v6

We have extracted a number of statistics for the feature vector, but none of them

contain any information about the spectral bandwidth of the signals. Recognizing that

our basis for categorizing the signals was the spectral bandwidth, we would like to

obtain some measure of the bandwidth of the interfering signals. The reader should

note that there is no obvious relationship between instantaneous frequencies and

Fourier components, as observed by Mandel [47]. In particular, Fourier components

are defined only over the infinite time domain, whereas instantaneous frequencies are

defined at an instant of time.

Time-frequency analysis is a rich field, and a variety of spectral analysis techniques

have been proposed for the study of time-varying signals, including the short-timle

Fourier transforms, Wigner-Ville distributions, discrete Zak transforms, and Gabor

representation [3], [16], [17], [24]. However, incorporating such detailed spectral anal-

ysis techniques is not within the scope of our project, and the curious reader is referred

to [16], which is a classical tutorial on time-frequency distributions.

For the purpose of extracting a suitable measure of the signal bandwidth during

the observation period, we will use the time-variant periodogram. We define the

time-variant periodogram ST(t, f) of our complex signal R(t) as [26], [62]

1
ST(t, f) = I1RT(t, f)l 2 (3.10)T

where RT(t, f) is given by

lRT(t, f) = j R(u)e i2 fudu (3.11)
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ST(t, f) is the normalized squared magnitude of the Fourier transform of the signal

segment of length T centered at time t. The time (t - T/2) corresponds to the time

when the trigger signal of the signal acquisition hardware is set, which in the case of

an ideal system should always correspond to the same event, and for a given system,

the duration of observation T will be fixed. Hence, we will drop the T and t in

subsequent references to Sr'(t, f), and simply use the notation S(f) . The magnitude

of Fourier transform could easily be computed using Fast Fourier Transform (FFT)

algorithms.

We are interested in the local6 spectral bandwidth of the signal as depicted in the

acquired periodogram. We define the local spectral spectral bandwidth as

2,) fw (f- <f>)2S(f)df
a 2 W J-w p, (3.12)f w S(f)df

where the mean frequency <f> is given by

fw fS(f)df (3.13)
fV S(f)df

and the complex baseband signal R(t) is contained in the band [-W, W].

Although higher order central moments will provide useful information in char-

acterizing a variety of spectral distributions, we will restrict ourselves to a-(f), the

variance of the spectral frequency. This feature will be referred as v6.

3.3 Chapter Summary

In this chapter, we discussed the constraints of the feature extraction problem, and set

our objectives to search for a feature extraction strategy. We used the interfering sig-

nal models of Chapter 2 as our basis, and we discovered that there is an intermediate

stage of waveform characterization prior to feature extraction. Features discovered

6The spectral bandwidth is localbecause the acquired periodogram corresponds to a finite window
in time, representing the spectral content only for the event of interest.
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Feature Description
vl Variance of the slow varying envelope
V2 Variance of the fast varying envelope
V3 Mean of the instantaneous frequency
v4 Variance of the instantaneous frequency
V"5 Phase spread (circular variance of the phase)
'v6 Local spectral bandwidth (variance of spectral frequency)

Table 3-1: Summary of the Six Components of the Feature Vector v

as being viable to perform the classification were in the form of mean and variance

of the characterized waveforms, with higher order moments in the form of skewness

and kurtosis recommended for advanced applications. There is an added advantage

in extracting features in the form of statistical moments, since this will eventually

lead us to assume a multivariate Gaussian distribution for the feature vector, thereby

greatly simplifying the adaptive learning and classification stages, as we will see in

Chapter 4.
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Chapter 4

Adaptive Learning and Signal
Classification

This is the final chapter of Part I of this report, where we conclude our development

of architecture and algorithms for adaptive classification of interfering signals, by

developing the appropriate algorithmic design for the Learning and Diagnostic modes.

We first discuss the constraints and objectives for the learning and classification

stages, and initiate the search for a suitable decision rule. We decide on the Maximum

Likelihood rule, a special case of the more general Bayes minimum error rule, and

explore the details of the Learning and Diagnostic (classification) modes. We conclude

the chapter by reviewing the assumptions that were made in arriving at the Maximum

Likelihood rule, and we describe a method to estimate an upper bound on the Bayes

error, which we could later use to assess the performance of our decision rule.

4.1 The Search for a Decision Rule

4.1.1 Constraints and Objectives

The learning and classification stages are very closely related, since the learning stage

is the preparation for the classification stage. Thus, we should first search for a

suitable decision rule for assigning classes in the Diagnostic mode (the classification
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stage), keeping in mind that the decision rule should require as simple a learning

process as possible, and minimal supervision from the user. Specifically, the user

should be required only to ensure that the interfering signal being introduced to the

diagnostic tool is present for the duration of learning.

We have maintained simplicity in designing the signal acquisition stages and the

feature extraction stage which do not require any modification in the architecture or

algorithms when new sources are found. Now, we would also like to explore the pos-

sibility of maintaining such simplicity in the design of the learning and classification

stages, such that once again no modification of the decision rule is required when new

sources are found. If no change in the decision rule or the features to be extracted

are required, then obviously no change in the learning process will be necessary when

new sources are found. So we set our target as to search for a decision rule that has

the universal applicability to all of the interfering signals that are in our limited set,

and possibly to an even larger set of interfering signals.

4.1.2 Investigation of Possible Approaches

As promised in the introduction to this report, we will discuss the approaches used

in the area of modulation recognition, which appears to be the classification prob-

lem that is closest to ours. We postponed the discussion of the techniques used in

modulation recognition until this chapter because, with respect to signal acquisition

and feature extraction, the techniques were not directly applicable. In particular,

impulsive noise and transient events are not present in the case of modulation recog-

nition. Further, the bandwidth and carrier frequencies are assumed to be known,

which greatly simplifies the problem.

A considerable amount of work appears to have been done with respect to mod-

ulation recognition, [32], [38], [39], [46], [52], [70], [71]. The difficulty in adapting

the methods used in modulation recognition for our purpose is due to the fact that

the feature extraction used in some of the work is very specific to a given problem

(like [52], [32] ) or the classification procedure is specific to a given problem (like

[46]). In particular, we note that any form of classification algorithm that involves
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sequential classification of the signals in question, where at each stage of the pro-

cedure the extracted features are compared to either eliminate certain signals or to

make a conclusion, is not suitable for our application. Such a sequential procedure

will have to be revised every time a new source is found. To equip the diagnostic

tool with the capability of reorganizing the sequential classification procedure every

time a new source is found would make the system software intensive, and we prefer

to avoid such complexity.

The approaches used in [38], [39], [70], [71] appear to be very similar. Histograms

were constructed for the acquired and processed waveforms, and the cell heights of the

histograms were used as the components of the feature vector. The classification was

performed by using either a linear or a polynomial decision function. Unfortunately,

the coefficients of the decision functions have to be recalculated every time a new

source is found, and this complicates the adaptive learning process.

By extracting specific features from the acquired data, we have inadvertently elilll-

inated the use of distribution free methods' like histogram method discussed above.

Although the histogram method has the advantage that we do not need to character-

ize the distribution of the feature vector, this method imakes the feature vector very

large, which we could tolerate, but the additional problem that arises in defining the

cell width of the histograms is difficult to solve. In the case of modulation recognition,

uniform cell division is possible because the bandwidth and the carrier frequency of

the signals are known, the signals are modulated and typically the frequency hopping

phenomenon is not considered, the problem of resolution due to different signals hav-

ing a wide variety of different bandwidths does not occur, and impulsive or otherwise

random behavior of the signals is not encountered 2 .

lFor more details on other distribution free methods like kernel estimators, k-nearest-neighbor
methods and series expansion methods see [28].

20nce again we return to the well discussed example of distinguishing between narrow band FM
signals (with frequency deviation less than 500 KHz) and pure tone signals. If the bandwidth spanned
is 100 MHz, with 100 uniformly separated cells, both signals will have identical instantaneous and
spectral frequency histograms. The reader should think about how to deal with comparing frequency
histograms of the same signal which can have different mean frequencies at different times, or if the
signal is hopping in frequency. Another problem is normalizing the amplitude envelope data, where
in the case of modulation recognition, we could remove the spurious noise by median filtering, and
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Although [32] uses a sequential evaluation procedure, in one of the stages, the

comparison was made by using a likelihood ratio test, by assuming a Gaussian dis-

tribution for the feature in question. Since the likelihood ratio test is based on the

Bayes minimum error rule, which is a fundamental algorithm often used in classifica-

tion problems, we will explore the possibility of using this algorithm to generate our

decision rule.

4.2 Algorithms for Learning and Classification

The Bayes minimum error rule states that, if a finite number of interfering signals Ck

are considered, and a vector v is observed, then assign v to the class ci if [28]

P(cilv) > P(cjIv) for allj i (4.1)

For our application, the classes ck correspond to the interfering signals, and the

vector v is the feature vector. Since the a posteriori probabilities P(ck v), are rarely

known, we use the well known Bayes theorem

P(VCk)P(Ck )P(ckLv) = P(vC)P(k) (4.2)
P(V)

and noting that P(v) = k P(Vilk)P(Ck), and assuming that all of the signals have

the same a priori probability P(ck) (all signals are equally likely), and by defining

g9(v) = P(vlci) (4.3)
k P(VICk)

we write the decision rule (4.1) as: Assign v to class c if

gi(v) > gj(v) for all j # i. (4.4)

By assuming that all signals have the same a priori probability P(ck), we have reduced

simply normalize the data with respect to the maximum value, but in our case, we would like to
preserve those spurious components since they may correspond to impulsive noise.
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the Bayes minimum error rule to the Maximum Likelihood (ML) rule [66].

Now, if we knew the P(vlci), the probability distribution of the feature vector

for a given interfering signal, then we could apply the decision rule (4.4). Although

we could attempt to find approximate distributions for feature vectors of each of

the interfering signals separately, this process will not only be tedious, but will also

complicate the learning and classification process. So, we would like to explore the

possibility of finding one distribution function that has acceptable approximation for

all feature vectors from all of the interfering signals, with only the parameters of the

distribution being different for different signals.

Naturally, the first candidate for such an attempt would be the well known Gaus-

sian distribution. Although the Gaussian distribution is merely an abstract mathe-

matical form, it often provides a good approximation to many natural distributions

[28], probably due to the Central Limit Theorem. The Central Limit Theorem states

that under rather general conditions, the distribution of the sum of a sufficiently large

number of random variables tends to be Gaussian, even if the individual random vari-

ables are not Gaussian [20], [58]. We recognize that the features we have extracted

were all in the form of statistical moments, and in most cases the features can be

thought of as sums of random variables. Motivated by this discovery, we will assume

that the feature vector extracted has a multivariate Gaussian distribution. Implica-

tions of this assumption on the performance of the classification will be discussed in

Section 4.3.

4.2.1 The Learning Mode

Given that we have assumed a multivariate Gaussian distribution for the feature

vector, the learning process is straightforward. Since a Gaussian distribution is coni-

pletely characterized by its mean m, and covariance matrix E [37], during the learn-

ing stage only these two values need to be estimated from the observed set of feature

vectors.

The maximum likelihood estimate 3 of the mean, im, and the covariance matrix,

3 The choice to use maximum likelihood estimation was arbitrary. We could have also used Bayes
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E are given by [21]
1 L

M= vk (4.5)
k=l

and

= ( V - )(Vk- )T (4.6)
k=l

where N is the number of training sets used in the Learning mode.

Therefore, during the Learning mode, the user has to only labeP the interfering

signal, and ensure that the signal is present for the duration of learning. The diagnos-

tic tool will be capable of making the required number of N measurements, compute

the N feature vectors, estimate the mean and the covariance matrix for the interfering

signal, and store them in the system library.

The value of N is one of the system parameters that we need to decide upon.

Naturally a higher value of N would result in an improved estimate of the mean and

covariance matrices, but this would also make the Learning mode more tedious for

the user.

4.2.2 The Diagnostic Mode

The p-dinmensional Gaussian density for the feature vector v = [vl ... vp]T has the

form [37]
1 _ -½(Vm)T-l(vm) (47)

f(v)= (27r)p./21E11/2 4.7)

Since our feature vector consists of 6 components, p = 6. From the Learning mode,

we will have estimates of mi and Ei corresponding to signals ci, and for our set of six

interfering signals, i = 1 ... 6. So we could rewrite equation (4.3) as

gi(v) = f(vIc ) (4.8)
k f (VICO)

estimation, but the results obtained by the two procedures are often identical [21].
4This type of learning is termed supervised learning[21], because the user has to provide the label

for the signal, i.e. inform the diagnostic tool that the signal is coming from a given signal, during
the Learning mode.
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where f(vlci) is given by

f(vIc) = 1 _ .)T -i (4.9)

Now, we could simply apply the ML decision rule (4.4) and make a decision in favor

of the signal ci that has the maximum gi(v) for the feature vector that is observed.

Recognizing that the denominator Ekf(vlck) in equation (4.8), and the fac-

tor (27r)3 in the denominator of equation (4.9) are common to every signal, we could

simplify the mathematical representation of the ML rule. However, the current form

described by (4.4), (4.8) and (4.9) is convenient in deriving the criteria for declaring

the no diagnosis state (introduced in Chapter 1) as a possible output from the Di-

agnostic Mode. The maximum value of gi(v), corresponding to the signal ci which

receives the favorable decision, will have values in the range (1/r, 1), where r is the

number of known interfering signals, for which the estimated mean and covariance

matrix exists in the system library. In order declare the no-diagnosis state we should

choose a threshold value pth in the range (1/r, 1), such that if the observed maximum

value of gi(v) is below this threshold, then the no-diagnosis state should be declared.

There is a trade-off to be considered in determining Pth. High values of Pth will not

only reduce the misclassification rates, but also the correct classification rates. We

recognize that Pth is a critical system parameter, but since the choice of pth depends

on the desired level of misclassification and correct classification rates, which will be

specific to a given application, we will not discuss this issue any further.

4.3 The Performance of the ML Decision Rule

In Chapter 3, we focused on deriving a feature vector which has universal applicability,

and a decision was made to extract the same features for all interfering signals. There

are two concerns raised by this feature extraction process that the decision rule should

account for. First, there may be correlation between the features, which need not be

the same for different interfering signals. Second, the variance of the different features

will in general be different for different signals, and it may be necessary to incorporate
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appropriate weighting in the decision rule, to emphasize critical features and de-

emphasize unreliable features for a specific comparison (for example, in comparing

EASD and FM signals, the phase spread is critical, but the mean instantaneous

frequency is unreliable).

The ML rule, based on the imultivariate Gaussian assumption for the features,

incorporates the covariance matrix in the decision making, thereby accounting for

both of the above concerns. In particular, automatic weighting of the features takes

place, emphasizing features with small variance, and de-emphasizing features with

large variance, for a given comparison.

In deriving the Maximum Likelihood decision rule specified by (4.4), (4.8), and

(4.9), we have made three assumptions. First, we assumed that the criterion specified

by the Bayes minimum error rule is applicable to our problem. The Bayes minimum

error rule it targeted towards minimizing the mean error in classification. There

could be special circumstances where it may be necessary to set the target slightly

differently. For example, if the specific error of classifying signal ci as signal cj is

costlier that any other error, we may have to target towards minimizing the cost of

this given error, instead of minimizing the mean error. However, since we are not

aware of any such special circumstances, we will assume that minimizing the mean

error is an acceptable target.

Second, we have assumed that the a priori probabilities of all of the signals, P(ci),

are equal. In a given environment, the interfering signals encountered may not be

equally likely to occur. Again, since we are concerned with the most general case,

the assumption that the all of the interfering signals have equal a priori probabilities

appears to be reasonable.

Third, we have assumed that the feature vector extracted has a multivariate Gaus-

sian distribution. Although this is only an approximation, motivated by the Central

Limit Theorem, we realize that if the error in the approximation is sufficiently large,

then the performance of the ML decision rule will be significantly affected. Esti-

mating the error in ,the approximation, either theoretically or experimentally, is not

particularly useful since we are not concerned with the actual distribution of the fea-
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ture vectors, but the effect of the approximation on the performance of the decision

rule. In the following subsection, we describe a method by which we could assess the

effects of the approximation.

4.3.1 The Theoretical Bayes Error

If we could compute the theoretical Bayes error that should result if the distribution

of the feature vectors is strictly Gaussian, then we could compare the observed error

rate with the theoretical error rate. Instead of computing the actual Bayes error,

which will be a tedious task since the feature space that we have developed has 6

dimensions, we use the upper bound eu(ci, cj), for the actual Bayes error eBayes(ci, cj)

for two distributions ci and c that are Gaussian, which is given by [2.5]

eBayes(CiCj) < eu(ci,cj) = P(ci)P(cj)eB(cicj) (4.10)

where the Bhattacharyya Distance, B(ci, cj), between the two distributions ci and cj

described by N(mi, Ml) and N(mj, Ej), respectively, is

Ic,) 1 1 1 (Si( +Sj(l
B(ci,c4) = m )T(- +)(m i - m) + -In ln (4.11)

8 2 2

Since the actual mean vectors and covariance matrices are usually not known, we will

have to use the maximum likelihood estimates for the mean vector and covariance

matrix for each distribution. The upper bound of the Bayes error prescribed by (4.10)

could be used to compare the distributions of the interfering signals, two at a time.

By assigning P(ci) = P(cj) = -, we could write (4.10) as

(Cil, Cj) = _e-B(c,c ) (4.12)
2

So, if the observed error rates are less than or in the order of the upper bound on

the Bayes error, than we would be able to conclude that the multivariate Gaussian

approximation of the feature vectors has not significantly affected the performance of
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the ML decision rule.

4.4 Chapter Summary

In this concluding chapter for Part I, we solved the problem of finding algorithms

for learning and classification. The careful design of the feature extraction stage of

Chapter 3 allowed the assumption of Gaussian distribution for the features extracted,

and the use of the Maximum Likelihood decision rule, a special case of the Bayes

minimum error rule, for the classification stage greatly simplified the learning and

classification processes. Hence, we achieved our target for adaptive learning capability

through a simple solution. The upper bound on the Bayes error was discussed to

provide a method to assess the performance of the derived decision rule.

The developed architecture and algorithms will be implemented through siniula-

tion to evaluate the performance of the system, and the details will appear in Part II

of this report.
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PART II:

PERFORMANCE EVALUATION

_ _ .__
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Chapter 5

System Implementation

In Part I we developed a comprehensive approach towards adaptive classification of

interfering signals. In Part II we will be concerned with evaluating the performance of

the proposed scheme for interference diagnosis. In this chapter, we will discuss proce-

dures that were written to stochastically simulate the interfering signals of Chapter 2,

and to implement the architecture and algorithms developed in Chapters 1, 3 and 4.

The procedures written have been divided into four packages, and the complete docu-

mented software appears in Appendix B. The first package provides some basic tools

for the construction of models for interfering signals. The second package implements

the models for the interfering signals based on the findings of Chapter 2, with several

assumptions made to make the simulation complete. The third package implements

the feature extraction strategy of Chapter 3, and the fourth package implements the

remainder of the system, including the system parameters discussed in Chapter 1 and

the algorithms for learning and classification discussed in Chapter 4. The optional

hardware module described in Appendix A will not be implemented in our simulated

system because we would like to understand the performance of the system without

the optional module. All of the procedures a.re written in lathentatica and the reader

who is unfamiliar with Mathematica should refer to [72].
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5.1 The Basic Tool Kit

The basic tool kit for simulation consists of procedures Gauss, Expo, FFT, IFFT,

Mean, Variance, Audio, and Pulse, and will be used extensively in constructing the

models for interfering signals. The actual software written appears in the package

BasicTools. m.

The procedures Gauss and Expo generate Gaussian and exponential random vari-

ables using the method described in [19], [43]. The procedures FFT and IFFT compute

the Fast Fourier Transform and Inverse Fast Fourier Transform, respectively, of the in-

put list. The procedures Mean and Variance compute the sample mean and variance

of the input list. The procedure Audio generates a Gaussian noise that is bandlimited

to audio frequencies (about 20 kHz).

The procedure Pulse takes as arguments an integer L, corresponding to the desired

number of samples per observation, bw (in MHz), corresponding to the bandwidth

captured, rt (in ns), corresponding to the risetime of the desired pulse, and tc (in

ns) corresponding to the time constant for decay of the pulse, and returns a pulse

that rises linearly and decays exponentially, satisfying the input parameters. This

procedure will be used extensively, and we would like to make the following remarks

concerning its usage:

* Since e-5 0, we will assume that the duration of the pulse approximately

equals five time constants, provided that the risetime is very short.

* The bandwidth simulated and the sampling rate are equal, as per our findings

through Theorem 1.3 of Chapter 1 (a bandpass bandwidth of 2W requires ideal

sampling rate of 2W on two channels).

* The risetime of a pulse t, observed using a lowpass bandwidth of Blp is related

through [12]
1

Btp > (5.1)
- 2t h

Noting that the equivalent bandpass bandwidth Bbp is twice the lowpass band-
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width, we write

BbP > 1 (5.2)

Relation (5.2) will be useful in manipulating rise times that were measured

using a fixed bandwidth that is different from our bandwidth of interest

* Similarly, we will assume that the duration-bandwidth product is a constant in

order to manipulate pulse duration statistics that were measured using a fixed

bandwidth, provided that the actual bandwidth (unfiltered) is larger than our

simulated bandwidth.

The procedures described in the preceding paragraphs will be used in the following

section for implementing models of interfering signals.

5.2 Models for Interfering Signals

The procedures written to simulate the interfering signals are contained in the package

SourceModels.m. The package consists of six parts, corresponding to the simulation

of the wideband IQ signal acquisition described in Chapter 1, and a supplement that

corresponds to the slow varying envelope acquisition.

In interpreting the models, the reader should keep in mind that the primary

purpose of implementing the models in software is to allow Monte Carlo simulation

of the interfering signals, and therefore the models may have several built in random

variables. For example, in the case of EASD signals, the operating frequency is

assumed to be uniformly distributed in a given range. This does not mean that the

operating frequency is different for subsequent samples in the same observation, but

simply means that the frequency need not be the same for different observations

and hence we will generate a random variable for every observation (simulation) to

represent this parameter.
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5.2.1 Simulating the EASD Interference

As we discussed in Section 2.3.1 of Chapter 2, we will model the interference from

electronic articles surveillance devices (EASD) as pure tone signals. We will assume

that the operating frequency is uniformly distributed in [fo - 40 MHz, fo + 40 MHz],

and thus the factor AfEASD will be uniformly distributed in [-40 MHz, 40 MHz]. The

implementation of this models is very straightforward, and the procedure written

could be found in Part 1 of the SourceModels.m package.

5.2.2 Simulating the FM Interference

In Section 2.3.2 of Chapter 2, we developed a model for narrowband frequency mod-

ulated signals from amateur radio stations. Once again we will assume that the

carrier frequency is uniformly distributed in [f, - 40 MHz, fo + 40 MHz], and thus

the factor AfFM will be uniformly distributed in [-40 MHz, 40 MHz]. We will also

assume that the maximum frequency deviation is uniformly distributed in [50 kHz,

500 kHz], and the message to be transmitted is Gaussian noise bandlimited to audio

frequencies (hence we could use the output of the procedure Audio as the message).

The procedure written to implement the model could be found in Part 2 of the

SourceModels.m package.

5.2.3 Simulating the SSB/FH Interference

Simulation of frequency hopped single sideband signals from amateur radio stations

(SSB/FH) is somewhat more complicated than the previous two signals because of

the frequency hopping phenomenon. In [65], it was recommended that amateur radio

stations could use SSB signals with the carrier frequency hopping about ten times a

second to reduce the distortions due to signal fading. However, such a slow hopping

rate would make the problem very uninteresting since a hop would be very unlikely

to be encountered in duration of observation that is much less than 1 ms. So, we will

assume that the hop duration is uniformly distributed in [.1 nms, 1 inms].

As we will see in Chapters 6 and 7, duration of observation that is less than 100 Its
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is often sufficient for the wideband signal acquisition, and the slow-varying envelope

acquisition is not affected by the frequency hopping. So, we can expect to see no

more than one hop (two carrier frequencies) in a given observation. In the procedure

contained in Part 3 of the SourceModels.m package, we first generate two carrier

frequencies zi MHz and z2 MHz. To make sure that the two frequencies do not turn

out to be the same, zi will be an even integer uniformly distributed in [-40, 40] and

z2 will an odd integer uniformly distributed in [-39, 41]. Then the value for the hop

duration, represented by the random variable hop is generated, and the probability

p that a frequency hop could occur for the generated value of hop is computed, and

incorporated into the procedure. The message to be transmitted is again obtained

form the procedure Audio, and since the remaining details of the implementation are

straightforward, the curious reader is referred to the procedure contained in Part 3

of the SourceModels.m package.

5.2.4 Simulating the MWO Interference

The model for interference from microwave ovens (MWO) is by far the most conipli-

cated among the six models. The eight procedures written to simulate the interfer-

ence, MWoven, Collapse, Build, Npulse, Mpulse, Risec, StayC, and DropC, could be

found in Part 4 of the SourceModels. m package.

We continue with the proposed state model of Figure 2-1 that was discussed in

Chapter 2. We recall that the interference energy is emitted only during one half of

the period of the 60 Hz cycle, and when the interference is emitted, the quantity At

which has an approximate value of 3 ,as, plays a key role.

There are approximately 2767 bins of width At 3 Lps in one half of the period of

the 60 Hz cycle. Of these bins, the first and last n bins are occupied by the build-up

and build-down pulses respectively, with one pulse per bin, and the peak amplitudes

of the pulses rises uniformly from 0 to 1 in nAt, during the build-up period, and

drops uniformly during the build-down period. In the main procedure MWoven, we

first generate the value of nn, corresponding to the in discussed above, which we model

as an integer uniformly distributed in [1,10]. The values corresponding to the peak
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amplitude during the build-up period is entered into buf 1, and later a reversed version

of buf will be appended to represent the build-down period.

We define another variable m = 2767 - 2n, corresponding to the remaining bins

in the one half of the 60 Hz cycle. During this period, continuous pulses are emitted,

spaced At apart, and pulses may be missing (with probability .075, approximately) or

pulses may collapse together to form continuous radiation. Now the main procedure

MWoven makes a call to the procedure Collapse whose responsibility is to introduce

the pulse collapsing phenomenon. We will assume that during the first and last 100

bins, pulse collapsing does not occur, and so Collapse returns a list of m - 200

elements, where a 1 indicates a normal pulse, 2 indicates the start of a collapsing

event, 3 indicates that the pulses remain collapsed, and 4 indicates the end of the

collapsing event. We have assumed that the probability that pulses may collapse at

any given time (during the m.- 200 bins) is .1, and that the number of bins for which

they remain collapsed is uniformly distributed in [1, 10], not including the two bins

for the rise and fall of the collapsing event.

The list returned by Collapse and the reversed version of buf (to account for

the pulse build-down period) are appended to buf 1 to form buf2. Further, buf2

is randomly rotated to account for the. fact that the trigger signal mlay be set at

anytime during the one half period of 60 Hz when emissions occur, keeping in mind

that half of the time we expect to see the trigger set at the beginning of build-

up pulses. Then we take the first s elements from the list, where s is number of

bins of width 3 ts in the duration of observation, which determines the type of

emission that should occur in each of the observed bins. The procedure Build is

given the responsibility of building the appropriate emissions for each of the bins.

The procedure Build makes calls to subroutines Npulse (corresponding to the n bins

of build-up and build-down pulses), Mpulse (corresponding to the remaining 77. bins),

RiseC, StayC, and DropC (corresponding to the pulse collapsing event). Specifically, if

the element is less than 1, then build-up (or build-down) pulses are constructed using

Npulse. If the element is 1, then normal pulses, with the pulse missing phenomenon

incorporated, are constructed using Mpulse. Likewise, the elements 2, 3, and 4, will
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yield the emissions corresponding to the pulse collapsing event, using RiseC, StayC,

and DropC.

We would like to make the following remarks concerning the envelope of the emis-

sions:

* The pulses constructed by the procedure Pulse which rises linearly and decays

exponentially will be assumed to describe the pulses emitted by the microwave

oven.

* Although in [15] the risetimes of pulses were observed to be 5-10 ns, taking the

relation (5.2) into consideration, we will assign the risetimes of the pulses as

Max [ (1000/bw), 5] ns, where by is the bandpass bandwidth (in MHz) captured.

e We will assume that the duration of the pulses are uniformly distributed in [200,

400] ns, and thus the time constant for decay will be uniformly distributed in

[40, 80] ns.

* As we observed in Section 2.3.4 of Chapter 2, amplitude distribution for the

pulses is always higher than the adjacent continuous carrier by about 10 dB,

and so we add the appropriate envelope of the continuous carrier (indicated by

the buffer rf, in subroutines Npulse, Mpulse, RiseC, StayC and DropC) to the

pulses.

Since the microwave oven operates at a nominal frequency of 2.45 GHz, which is

8.25 MHz away from the center frequency of 2.4175 GHz of the 2.44 GHz band, we

generate a carrier at Af = 8.25 MHz, and modulate the carrier with the envelope

obtained from the previous steps. The reader should compare the state nodel of

Figure 2-1, with the procedures written in Part 4 of the SoureModels.m package.
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5.2.5 Simulating the PC interference

We rewrite equation (2.13) for the equivalent baseband representation of the Photo-

copier (PC) interference:

q

RpC(t) = Ak(t - Tk)e-i( 2 rf°T k+ o) (5.3)
k=l

So, we could express the interference from photocopiers as a superposed sum of in-

terference from q pulses, where q is the number of pulses that occur during a given

observation.

We recall from Section 2.3.5 that the interarrival times of the pulses have an

exponential distribution. The procedure PhotoSpace takes L, bw (in MHz), and b (in

ns) as arguments and returns a list of pulse interarrival times that are exponentially

distributed with mean b and sufficient to cover the duration of observation specified

by the number of samples per observation L and the sampling rate of bw MHz. We

will use a value of 220 ns for b, as observed in Section 2.3.5.

The individual pulses could be described by Ak(t - Tk)e-i (2 srfTAk+o), and the

procedure PhotoPulse is responsible for constructing the pulses. PhotoPulse takes

the standard arguments L and bw, and the arguments z (the number of samples by

which the pulse is delayed; corresponds to Tk) and theta (the phase offset O, of the

first pulse). Since we have assumed that Ak is Gaussian, using the values of 12.7

dB, and 3.9 dB for the mean amplitude and standard deviation observed in [7] for

photocopier emissions in the 2.44 GHz band, we generate a random variable with

distribution N(1, .36) to represent Ak (this was done by converting the values 12.7

dB and 3.9 dB to a linear scale, and normalizing the mean to 1). Proposition 2.2

prescribed a :(t - Tk) in the form of response of a lowpass filter to a delayed ideal

impulse, due to the assumptions made through Lemma 2.1. However, we will assume

that a pulse generated by the procedure Pulse, and delayed accordingly, is sufficient

for our purpose. In particular, using the relation (5.2) and that the actual bandwidth

of the unfiltered pulse is much larger than the bandwidth of observation, we note that

the risetime of the pulse should be /bw, where bw is the bandwidth of observation.
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As for pulse duration, since the observation made in [7] used a bandpass filter with

bandwidth 30 MHz, we need to estimate the pulse duration for bandwidths other than

30 MHz, which is done by assuming that the time-bandwidth product is constant (as

we discussed in Section 5.1). Pulse duration statistic for the photocopier emissions

in the 2.44 GHz band, using a bandpass filter with bandwidth 30 MHz, had a mean

value of 143 ns, and we assume, for convenience, that the pulse durations are also

exponentially distributed. Then the appropriate value for the time constant for decay

is computed. With the knowledge of Tk and 0o (phase offset of the first pulse), and

by assuming f =2.4175 GHz, which is the center frequency of the 2.44 GHz band,

we could compute the corresponding phase offset for each pulse.

The procedure PhotoCopier is the main procedure that first generates 80, and

calls for the procedure PhotoPulse to construct the first pulse. Then the procedure

PhotoSpace is called to obtain the pulse interarrival times, and repeated calls to

PhotoPulse are made to construct all of the pulses, and finally the superposed sum

of all the pulses is computed. The three procedures PhotoCopier, PhotoSpace and

PhotoPulse could be found in Part 5 of the SourceModels.m package.

5.2.6 Simulating the GN Interference

The interference from the theoretical bandlimited white Gaussian noise (GN) is imple-

mented in the procedure Noise, contained in Part 6 of the SourceModels.m package.

The model is a straightforward implementation of the model discussed in Section 2.3.6.

5.2.7 Simulating the Slow-Varying Envelopes

There are two types of slow-varying envelopes, s(t), that we discussed in Chapter 2.

The first one is the s(t) in the form of a 60 Hz square wave, corresponding to the

emissions of microwave ovens, and is implemented in the procedure MWOenv. The

second corresponds to the remaining five interfering signals, where s(t) = 1 for all t,

and this is implemented in the procedure STDenv. The two procedures incorporate the

lowpass filter with cutoff 300 iHz, and the sampling rate of 1200 HZ that was decided
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in Chapter 1. Both procedures take one argument L, which is the number of samples

per observation, and we will use L = 20, again as we decided in Chapter 1. The two

procedures could be found in the Supplement to the SourceModels.m package.

5.3 Procedures for Feature Extraction

The package Feature Extraction.m consists of procedures InstFreq, CircVar, PSD,

and Extract. The procedures InstFreq, CircVar, and PSD, which compute the in-

stantaneous frequency, circular variance of estimated phase, and the power spectral

density (periodogram), respectively, are direct implementations of equations (3.5),

(3.9) and (3.10), respectively. The main procedure Extract takes a slow-varying en-

velope and a complex baseband signal as arguments and returns the the corresponding

feature vector consisting of the six features. Since all of these procedures are a di-

rect implementation of the strategy for feature extraction described in Chapter 3, no

further details details will be discussed.

5.4 Procedures for System Simulation

The package SystemSimulation.m is the last of the four packages written, and con-

sists of 9 procedures. The procedures Transmitl and Transmit2 take a complex list.

and a real list respectively, and add appropriate Gaussian noise at the desired signa.l-

to-noise ratio (SNR; expressed in dB). The procedures Digitizel and Digitize2

take a complex list and a real list respectively, and the desired number of bits per

sample, and return a digitized list. The procedures Fjitter and Pj itter, introduce

frequency jitter and phase jitter from the local oscillator circuitry, at the desired rate.

The details of the procedures Digitizel, Digitize2, Fjitter and Pjitter will be

further discussed in Chapter 7.

The procedure Run takes arguments n, L, bw (in MHz) and snr (in dB), simulates

each of the interfering signals n times (using the parameters L and bw), transmnits

these signals at the stated value of snr, optionally introduces digitization, frequency
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jitter or phase jitter, and extracts the feature vectors. The results, containing the

feature vectors, are left as global variables bufAl ... bufC2, which will be. later used

by the procedure Learn. The procedure Learn computes the maximum likelihood

estimate of the mean vector and covariance matrix for each interfering signal, which

is a direct implementation of the Learning Mode of Section 4.2.1, and leaves the re-

sults as global variables to be used by Diagnose. The procedure Diagnose, having

access to the mean vectors and covariance matrices from the Learning Mode, takes

a list of feature vectors and computes the likelihood values gi(v) according to equa-

tion (4.8), and returns a list of likelihood values for each feature vector in the input

list. The classification (or declaration of the no-diagnosis state) can be made by visual

inspection.

5.5 Chapter Summary

In this chapter, we discussed the procedures that were written to simulate the in-

terfering signals, and to implement the Learning and Diagnostic modes discussed in

Part I of this report. The procedures are contained in Appendix B of this report

and will be used extensively for the purpose of performance evaluation, in Chapters 6

and 7.
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Chapter 6

Validating the Scheme

This chapter is the first of the two chapters that will address the issue of system

performance. We will first discuss a model for the simulation process and use the

procedures of Appendix B, which were written to satisfy the model, to perform several

experiments. There are two specific objectives that we would like to achieve through

these experiments. First, we would like to evaluate the performance of the ideal

system at different noise levels for validating the proposed scheme and to investigate

if the system performance is within the theoretical bounds discussed in Chapter 4.

Second, since the strategy for feature extraction played a very important role in the

development of the scheme, we would like to understand the significance of each of

the features, and compare the findings with the theoretical expectations discussed in

Chapter 3.

6.1 Simulation Model

We introduce the concept of channel and receiver noise that we did not consider in

Chapter 2. We assume that the noise is independent of the signal, and has a zero mean

Gaussian distribution. So, the received slow-varying envelope .(t) can be written as

s(t) = s(t) + n(t) (6.1)
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Figure 6-1: The Simulation Process: Both the interfering signal and the received
signal will consist of a complex baseband signal, and a slow-varying envelope.

where s(t) is the uncorrupted slow-varying envelope, and n(t) is the zero-mean Gaus-

sian noise with a non-zero variance o2, which is independent of s(t). Likewise the

received complex baseband signal, 1R(t), consisting of in-phase and quadrature com-

ponents, could be written as

R(t) = R(t) + nI(t) + inQ(t) (6.2)

where R(t) is the actual baseband signal, and n1(t) and nQ(t) are the in-phase and

quadrature Gaussian noise components, each of them having zero mean, and non-zero

variance o, and independent of each other, and independent of the signal. For any

given simulation, we define the signal-to-noise ratio (SNR), in dB, as

E[y2(t)]SNR = 10 log10 E[n2(t)] (6.3)

where y(t) could be the slow-varying envelope, the in-phase component, or the quadra.

ture component, and n(t) is the noise.

A model for the simulation process is shown in Figure 6-1. In addition to the

assumption that the channel frequency response is constant for all frequencies of

interest, we also assume that the receiving system is ideal. Specifically, this means

that all filters exhibit an ideal behavior, the mixers (in the downconversion process)

are strictly linear, and the sampling control circuitry is ideal, thus generating the

trigger signal at exactly the start of the event of interest.

In the experiments to be performed in this chapter, we also assume that the local
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oscillator and the associated power splitter do not exhibit any frequency or phase

jitters, and that the analog-to-digital converters have an infinite number of bits. We

will remove these two assumptions in the experiments to be performed in Chapter 7.

6.2 Ideal System Performance

The procedures Run, Transmitl, and Transmit2, which we introduced in Chapter 5,

are capable of generating the received signals according to the model of Section 6.1.

The Learning and Diagnostic modes were implemented using the procedures Learn

and Diagnose. All experiments will be performed assuming an ideal bandpass band-

width BW of 100 MH, and as such the ideal sampling rate would be 100 MHz on

each of the in-phase and quadrature channels. Sampling rate for the slow-varying

envelope acquisition will be 1.2 kHz, as we decided in Chapter 1.

In the experiments to be performed in this chapter, we will fix the record length

per observation, L, to be 2000 samples. The number of training sets to be used in

the Learning mode, N, will be fixed at 100 sets per signal. We will also use the same

sets for both learning and classification'.

Now we are ready to perform our first experiment., which will be for the purpose

of validating the proposed scheme. We generated 100 independent sets for each

interfering signal at SNR 15 dB, and simulated the Learning and Diagnostic modes.

The results are tabulated in the form o a Confusion AMatrix, shown in Table 6-1. We

repeated the experiment at SNR 10 dB and SNR 5 dB, and the results are tabulated

in Table 6-2 and Table 6-3, respectively.

Perfect classification resulted when SNR was at 15 dB. The performance dete-

riorated to misclassification rates of 4.3 % and 7.5 % when the SNR was at 10 dB

and 5 dB, respectively, and all of the confusion was between the signals EASD and

FM. This observation does not surprise us because both of these signals are Type

A interfering signals. Both EASD and FM signals have identical slow-varying and

rapid-varying envielopes, and in both c.,ses, the mean instantaneous frequency does

'Using different sets for training and classification will be introduced in Chapter 7
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Interfering Classified As
Signal Al A2 B1 B2 C1 C2
EASD Al 100
FM A2 100
SSB/FH Bl 100
MWO B2 100
PC C1 100

GN C2 100

Mean Misclassification Rate: 0 %

Table 6-1: Ideal System Performance at 15 dB SNR. Other experiment parameters
were BW = 100 MHz, L = 2000 samples/set, N = 100 sets.

not provide any useful information. Although the FM signal has a marginally larger

bandwidth than the EASD signal, instantaneous frequency and the spectral frequency

data will not be helpful in distinguishing the two signals because the bandwidth cap-

tured was 100 MHz, which is much larger than the bandwidth of either of the signals.

When the signals are corrupted by noise, the difference in the distribution of both

the instantaneous frequency and the spectral frequency for the two signals will not

be significant. Therefore, we see that the phase spread is the critical feature that is

useful in distinguishing the two signals. The phase of the EASD signal, which ideally

should be a constant, becomes more dispersed when the noise level rises, and thus the

difference in the phase spread values for the two signals decreases. Hence we conclude

that the results of the experiment are as expected.

In Chapter 4 we decided that we will compute the upper bound on the Bayes

error, Eu(ci, cj) by comparing the distributions of the interfering signals two at time,

according to equations (4.11) and (4.12). However, since confusion resulted only

between the EASD and FM signals, we need to compute the value of E,"(c, cj) only

for the distributions of these two signals. Table 6-4 shows the computed values of

the Bhattacharyya Distance, the upper bound on the Bayes error and the actual

observed error, between the the signals EASD and FM, for the three noise levels.

The Bhattacharyya Distance was computed using the maximum likelihood estimates
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Interfering Classified As
Signal A1 A2 B1 B2 C1 C2
EASD Al 89 11
FM A2 15 85
SSB/FH B1 100
MWO B2 100
PC C1 100
GN C2 I== 100

Mean Misclassification Rate: 4.3 %

Table 6-2: Ideal System Performance at 10 dB SNR. Other
were BW = 100 MHz, L = 2000 samples/set, N = 100 sets.

experiment parameters

Interfering Classified As
Signal Al A2 B1 B2 Cl C2
EASD Al 79 21
FM A2 24 76

SSB/FH B1 100
MWO B2 100
PC C1 100

GN C2 100

Mean Misclassification Rate: 7.5 %

Table 6-3: Ideal System Performance at 5 dB SNR. Other experiment parameters
were BW = 100 MHz, L = 2000 samples/set, N = 100 sets.
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Noise Level Bhattacharyya Upper Bound on Observed
(SNR) Distance, B(ci, cj )' Bayes Error, e,(ci,cj) Error
15 dB 2.72 0.033 0.000
10 dB 0.64 0.262 0.130
5 dB ` 0.34 0.355 0.225

Table 6-4: Confusion Between EASD and FM Signals. The observed error was com-
puted from the results shown in Tables 6-1, 6-2, and 6-3.

of the mean vectors and covariance matrices, instead of the actual mean vectors and

covariance matrices which are not known.

The observed error was less than the upper bound on the Bayes error at all

levels of SNR for the confusion between EASD and FM signals. Since tle confusion

between the remaining pairs of signals was observed to be 0, we conclude that the

performance of the ML decision rule, based on the multivariate Gaussian assunlption

for the features vectors, was within the limits of the upper bound on the Bayes error.

6.3 Understanding the Feature Vector

We have shown the viability of the proposed scheme for interfering signal classifica-

tion. Since the strategy for feature extraction played a very important role in the

development of the scheme, we would now like to understand the significance of each

component of the feature vector, before attempting to the study the system perfor-

mance with respect the system parameters.

In the experiments performed to evaluate the importance of each of the features,

we used the same data sets that we generated in the experiment at SNR 15 dB of

Section 6.2. However, we modified the learning and classification stages slightly. First,

we removed feature vl from all of the feature vectors, and simulated the Learning and

Diagnostic modes. Then we replaced feature vl, and removed feature v2. We repeated

this step for all of the six features. The results of the six experiments are tabulated

in Tables 6-5, 6-6, 6-7, 6-8, 6-9 and 6-10.
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Interfering Classified As
Signal A1 A2 B1 B2 C C2
EASD Al 100
FM A2 100
SSB/FH B1 99 1
MWO B2 2 98
PC C1 100
CN C2 100

Mean Misclassification Rate: 0.5%

Table 6-5: System Performance with Feature val (Variance of the Slow-Varying Enve-
lope) Removed. Parameters of the experiment were SNR = 15 dB, BW = 100 Mlz,
L = 2000 samples/set, and N = 100 sets.

When the feature vl, the variance of the slow-varying envelope, was removed from

the classification process, the performance dropped from the 0 % misclassification of

Table 6-1, to 0.5 % misclassification of Table 6-5. All of the confusion was between

the signals from SSB/FH (frequency hopped single sideband signals) and MWO (mi-

crowave oven emissions). Naturally, since the slow-varying envelope was unique for

the MWO, in the absence of this feature, confusion resulted between the MWO and

SSB/FH, which is another Type B interfering signal.

When the feature v2, variance of the rapid-varying envelope, was removed, the

nmisclassification rate rose to 3 % as shown in Table 6-6. Ten of the SSB/FI1 data. sets

were classified as EASD signals and eight were classified as FM signals. When a hop

does not occur during the observation, the SSB/FI signals will have a very narrow

bandwidth, and a constant carrier frequency. In such a case the SSB/FI signals could

be distinguished from the EASD signals by examining the rapid-varying envelope,

since the envelope should be ideally a constant for the EASD signals. So, when

this key feature is missing, confusion results between EASD and SSB/FH signals.

Similarly, if the SSB/FH exhibits a hop to another carrier frequency that is very

close to the first carrier frequency during the observation, or if the phase noise is

sufficiently high, the SSB/FH signals would appear very similar to the FM signals if
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Interfering Classified As
Signal Al A2 B1 B2 C1 C2
EASD Al 100
FM A2 100
SSB/FH B1 10 8 82

MWO B2 100
PC C1 100
GN C2 100

Mean Misclassification Rate: 3 %

Table 6-6: System Performance with Feature v2 (Variance of the Rapid-Varying En-
velope) Removed. Parameters of the experiment were SNR = 15 dB, BW= 100 MHIz,
L = 2000 samples/set, and N = 100 sets.

the rapid-varying envelope is not used in the classification.

Removal of the feature V 3 , the mean of the instantaneous frequency, resulted in

a misclassification rate of 0.3 %, as shown in Table 6-7. One of the MWO signals

was classified as SSB/FH, and one of the SSB/FH signal was classified as FM. The

misclassification of the MWO signal was expected since the microwave oven has a

nominal frequency of 2.45 GHz, and when the mean frequency is not. considered

in the classification, the MWO signal is likely to be confused for another Type B

signal. But the confusion between SSB/FH and FM signal seems surprising at the

first glance because we did not restrict the range of carrier frequencies for either of

these signals. However, there is a logical explanation for this observation. The carrier

frequency offset AfFM for the FM signals was assumed to be uniformly distributed

in [-40 MHz, 40 MHz], and hence we expect the feature v3 for FM signals to take

values in the same range, with approximately equal probability. Although we made

a similar assumption for the carrier frequency of the SSB/FH signals, these signals

exhibit frequency hopping, and when a hop occurs during the observation, the value of

V3 , which will be the weighted mean of the two carrier frequency offsets, is less likely to

take values that are close to the two edges of the [-40 MHz, 40 MHz] range, and more

likely to be closer to 0. So we see that the mean instantaneous frequency does play a
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Interfering Classified As
Signal Al A2 B1 B2 C1 C2
EASD Al 100
FM A2 100
SSB/FH B1_ 1 99

MWO B2 1 99
PC C1 100
GN C2 100

Mean Misclassification Rate: 0.3 %

Table 6-7: System Performance with Feature t,3 (Mean Instantaneous Frequency)
Removed. Parameters of the experiment were SNR = 15 dB, BW = 100 MHz, L =

2000 samples/set, and N = 100 sets.

role in classifying signals which do not have a restricted range of carrier frequencies.

In the absence of this feature, the confusion between signals with constant carrier

frequencies and signals that exhibit frequency hopping, increases marginally.

When the feature v4, the variance of the instantaneous frequency, was removed

from the feature vector, the misclassification rate was 0.3 %, as shown in Table 6-

8. Two of the FM signals were misclassified as EASD signals. Although we do not

expect the feature V4 to be particularly useful in distinguishing between FM and

EASD signals, the variance of the instantaneous frequency is marginally different for

the two signals, and the slight increase in the confusion when 4 is removed is not

surprising.

In Chapter 3, we discussed the importance of the phase spread in distinguishing

between EASD and FM signals. Results shown in Table 6-9, corresponding to the

classification without V5, the phase spread, confirms our argument. The mlisclassifi-

cation rate rose significantly to 9.5 %, with all of the confusion occurring between the

signals EASD and FM, as expected.

What was previously not expected was the lack of symmetry in the confusion

because only 9 of the EASD signals were mislassified as FM signals, but almost half

of the FM signals were misclassified as EASD signals. Since the variance of the slow-

87



Interfering Classified As
Signal Al A2 Bl B2 C1 C2
EASD Al 100
FM A2 2 98
SSB/FH B1 100
MWO B2 100
PC C11 100
GN C2 100

Mean Misclassification Rate: 0.3 %

Table 6-8: System Performance with Feature 4 (Variance of Instantaneous Fre-
quency) Removed. Parameters of the experiment were SNR = 15 dB, BW= 100 MHz,
L = 2000 samples/set, and N = 100 sets.

Interfering Classified As
Signal A1 A2 B1 B2 Cl C2
EASD Al 91 9 _

FM A2 48 52

SSB/FH B1 100
MWO B2 100
PC C1 100
GN C2 [ 100

Mean Misclassification Rate: 9.5 %

Table 6-9: System Performance with Feature v5 (Phase Spread) Removed. Parameters
of the experiment were SNR = 15 dB, BW = 100 MHz, L = 2000 samples/set, and
N = 100 sets.
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Interfering Classified As
Signal A1 A2 B1 B2 C1 C2
EASD Al 99 1
FM A2 100
SSB/FH B1 100
MWO B2 100
PC C1 100
GN C2 100

Mean Misclassification Rate: 0.2 %

Table 6-10:- System Performance with Feature 6 (Local Spectral Bandwidth) Re-
moved. Parameters of the experiment were SNR = 15 dB, BW = 100 MHz,
L = 2000 samples/set, and N = 100 sets.

varying and rapid-varying envelopes, and the mean instantaneous frequency are not

useful in distinguishing between FM and EASD signals, in the absence of the phase

spread, the weight of the classification falls on the unreliable features v4, variance of

the instantaneous frequency, and v6, the local spectral bandwidth. The EASD signals

generate approximately constant values for 4 and v6 for different observations, but

since the maximum frequency deviation of the FM signals was a random variable,

the values of v4 and v6 for FM signals will vary significantly between observations.

When the maximum frequency deviation is relatively large, resulting in relatively

large values of 4 and V6 , the FM signals are classified correctly. But when the

maximum frequency deviation is small, dilemnma results. Since the ML decision rule

make decisions in favor of the most likely signal, and since the EASD signal is more

likely to exhibit small values of v4 and v6, the FM signal is misclassified as an EASD

signal.

When the feature 6, the local spectral bandwidth (variance of the spectral fre-

quency), was removed from the feature vector, the misclassification rate was 0.2 %,

as shown in Table 6-10. One of the EASD signals was confused for an FM signal.

The local spectral bandwidth appears to be the least significant of all the features.
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6.4 Chapter Summary

In this chapter we discussed the model that was used in simulation, and performed

various experiments to investigate the viability of proposed scheme, and to under-

stand the significance of the components of the feature vector. We found that the

performance of the decision rule was within the theoretical limits specified by the

Bhattacharyya distance and the upper bound on Bayes error. We also found that the

features extracted had different levels of significance, with the phase spread and the

variance of the rapid-varying envelope being the most critical, and the local spectral

bandwidth being the least critical.
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Chapter 7

System Parameters and System
Performance

We continue with the performance evaluation of Chapter 6, taking some of the system

parameters into consideration. The parameters that are of interest to us are the

dynamic range of the sampling module, the duration of observation for the wideband

IQ signal acquisition, frequency and phase jitters in the downconversion process,

and the number of training sets required during the Learning mode. Experiments

will be performed to characterize the dependence of the system performance on the

system parameters. We set our target as to experimentally derive the viable range

of the parameters such that the resulting mean misclassification rate does not exceed

1 %, with the channel and receiver noise at 15 dB SNR. and when only one system

parameter is considered. The derived set of initial system parameters can then be

used as a background for future hardware experiments.

7.1 The Dynamic Range of the Sampling Module

In Chapter 6, we assumed that the available number of bits per sample was infinite,

thus resulting in no noise due to digitization. Now we will remove that assumption

and characterize the performance of the system with nite number of bits per sample.

However, we will assume that the attenuator and the attenuation control circuit of
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Interfering Classified As
Signal Al A2 B1 B2 Cl C2
EASD Al 100
FM A2 100
SSB/FH B1 100
MWO B2 100
PC C1 100
GN C2 100

Mean Misclassification Rate: 0 %

Table 7-1: System Performance with 8-bit Digitization. Other system parameters
were SNR = 15 dB, BW= 100 MHz, L = 2000 samples/set, and N = 100 sets

Chapter 1 are ideal, resulting in the maximum utilization of the dynamic range of

the analog-to-digital converter.

We used the procedures Digitizel and Digitize2 of Appendix B to introduce

digitization of the signals. We generated 100 independent sets for each interfering

signal, and performed the learning and diagnosis. The experiments were performed

at SNR 15 dB, using a sampling rate of 100 MHEz, training set size of 100, and a. record

length of 2000 samples per observation for the wideband IQ signal acquisition (the

slow-varying envelope was acquired using a sampling rate of 1.2 kHz with a record

length of 20 samples per observation, as before).

Three experiments were performed with the dynamic range represented by 8 bits,

6 bits and 4 bits per sample. The results are shown in Tables 7-1, 7-2, and 7-3.

Perfect classification resulted with 8-bit digitization. The performance deteriorated

to misclassification rates of .2 % and 1% with 6-bit and 4-bit digitizations, respec-

tively. So, we conclude that 4-6 bits per sample should be sufficient to keep the

mean misclassification rate at 1 % or less. However, memory is typically addressable

in 8-bit elements, and 8-bit analog-to-digital converters currently available can sup-

port the desired sampling rates (as we saw in Chapter 1). As such, we could use an

8-bit digitization, leaving greater flexibility in the design of the attenuation control

circuitry.
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Interfering Classified As
Signal A1l A2 B1 B2 C1 C2
EASD Al 100
FM A2 1 99
SSB/FH B1 100 - _

MWO B2 100
PC C1 100
GN C2 100

Mean Misclassification Rate: .2 %

Table 7-2: System Performance with 6-bit Digitization. Other system parameters
were SNR = 15 dB, BWT'= 100 MHz, L = 2000 samples/set, andl N = 100 sets.

Interfering Classified As
Signal A1 A2 Bi B2 C1 C2
EASD Al 99 1
FM A2 5 95

SSB/FH B1 100
MWO B2 100
PC Cl _ 100 __
GN C2 100

Mean Misclassification Rate: 1 %

Table 7-3: System Performance with 4-bit Digitization. Other system parameters
were SNR = 15 dB, BW = 100 MHz, L = 2000 samples/set, and N = 100 sets.
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Interfering Classified As
Signal Al A2 B1 B2 Cl C2
EASD Al 94 6
FM A2 11 89
SSB/FH BI 100
MWO B2 100
PC C1 100
GN C2 100

Mean Misclassification Rate: 2.8 %

Table 7-4: System Performance with L = 1500. Other system parameters were
SNR = 15 dB, BW= 100 MHz, and N = 100 sets.

7.2 Duration of Observation

In Chapter 1, we decided on a fixed duration of observation of approximately 16.7 nms

for the acquisition of the slow varying envelope. We also fixed the sampling rate

at 1.2 kHz, requiring 20 samples for the intended duration of observation. Further

verification of the choice of these parameters will require hardware experiments.

Now, we consider the issue of duration of observation for the wideband IQ signal

acquisition. For a given sampling rate, the duration of observation will determine the

record length L, corresponding to the number of samples per observation. The record

length will subsequently determine the size of the memory required for the signal

acquisition. Since the memory has to support high sampling rates (as we discussed

in Chapter 1) and fast memory integrated circuits are expensive, and since a large

record length would require more processing time, thereby delaying the diagnosis, we

naturally would like to minimize the duration of observation.

In all of our experiments in Chapter 6, we used a record length L of 2000 sam-

ples/set with the sampling rate at 100 MHz, corresponding to a duration of observa-

tion of 20 s. When the noise level was at SNR 15 dB, as we saw in Table 6-1, j]erfect

classification resulted when L = 2000. We repeated the experiment at L = 1500,

with the other parameters of the experiment remaining the same. The results are

shown in Table 7-4. The misclassification rate was 2.8 %.
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Since our target was to keep the mean nmisclassification rate at 1 % or below, we

conclude that the record length L should be 2000, corresponding to a duration of

observation of 20 jts. With 8 bits per sample, a memory of 2 kbytes for each of the

in-phase and quadrature components does -not appear to be unreasonable. However,

it should be noted that the value of L would be higher in practice for the same

duration of observation because the required sampling rate would be higher than the

ideal sampling rate of 100 MHz that we have used (recall the factor of oversampling

discussed in Chapter 2).

It should also be noted that the duration of observation of 20 Its is relevant only

the given set of interfering signals that we have considered. For example, since the

confusion was only between FM and EASD signals when L was 1500 samples/set,

if one of the two signals was not in the set of interfering signals, then the choice of

L = 1500 is sufficient. Also, the longer duration of observation was necessary because

we have severely limited the bandwidth of the FM signal. If the maximuml frequency

deviation of the FM signal was larger than the values we had assumed in Chapter 5,

then a smaller observation duration could be tolerated.

With the presence of frequency hopped signals, the choice of duration of observa-

tion becomes even more complicated. For example, if a given environment consists

of mostly wideband signals (Types B2, C1 or C2), then we would like the frequency

hopped signal (Type B1) to appear as a narrowband signal. So, we should set the

observation duration to be less than the mean hop duration anticipated, so that the

observed signal is less likely to involve a frequency hop. However, if the environment

consists of mostly narrowband signals, then we would like the frequency hopped sig-

nal to appear as a wideband signal, and so we should set the duration of observation

to be larger than the hop duration.

Therefore we conclude that the choice of the duration of observation is heavily

dependent on the actual interfering signals anticipated in a given environment. When

such information is not available, a nominal value of 20 .s llay be used for the

duration of observation of the wideband IQ signal acquisition.
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7.3 Frequency and Phase Jitters

The topic of frequency and phase jitters, or phase noise, is actually a subset of the

broader category of frequency stability [51]. The stability of an oscillating source

decreases if the signal is anything other than a perfect sine function. Our concern

with frequency stability is due the extensive use of phase dependent time-domain

parameters in the feature extraction process. In particular, estimation of the phase

offset to compute the phase spread (feature v5) requires the correction for the carrier

frequency offset, and we suspect that the frequency stability of the local oscillator

would affect the estimated carrier frequency offset. In addition to that, the values for

features 13 and 4 (mean and variance of the instantaneous frequency) would also be

affected by frequency stability of the local oscillator.

The local oscillator circuitry, consisting of a local oscillator and a 900 power split-

ter, is responsible for generating cos(27rfot) and sin(2irft). These two signals will

then be used in the quadrature downconversion process. There are specifically two

kinds of phase noise that we are interested in. First, we will consider the case where

the same jitter is present in both of the quadrature signals. Since sin2 ct + cos2 ct = 1

regardless of any jitter in a, in this case the amplitude of the signal will not be

affected. Second, we will consider the case where the jitter is different on the two

quadrature channels, thereby affecting the phase and the amplitude of the resulting

baseband signal.

For convenience of modelling, we will assume that the frequency or phase jitter will

be a uniformly distributed zero-mean stochastic process, where the adjacent samples,

spaced apart by the sampling interval, are independent. We recognize that such

modelling may not accurately describe the actual jitters likely to be encountered in

the hardware implementation. However, since our purpose is only to investigate if

such jitters should be given importance in the system design, we will not venture in

to modelling the jitters accurately, and the curious reader is referred to [63] for a

detailed treatment on phase noise in signal sources.
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Interfering Classified As
Signal A1 A2 B1 B2 C1 C2
EASD A1 97 3

FM A2 2 98
SSB/FH B1 100
MWO B2 100
PC C1 100
OCN C2 == = _100

Mean Misclassification Rate: 0.8 %

Table 7-5: System Performance with Frequency Jitter Uniformly Distribute( in [-5
MHz, 5 MHz]. The adjacent samples, spaced apart by-the sampling interval, were
independent. Other system parameters were L = 2000, SNR = 15 dB, BTV = 100
MHz, and N = 100 sets.

7.3.1 Frequency Jitter

Frequency and phase jitters may originate from both the local oscillator, which should

ideally generate a sine wave at f,, and the 90° power splitter, which should ideally

generate sin(27rfot) and cos(27rfot) to be used in the IQ downconversion process. In

this subsection, we will assume that the 90° power splitter is ideal, and that the phase

jitter from the local oscillator can be absorbed into the frequency jitter. So we will

consider only the frequency jitter from the local oscillator, and write the output f(t)

of the non-ideal oscillator as fo(t) = fo + fj(t) where fj(t) is a zere-mean stochastic

process, and we assume that the adjacent samples of fj(t) that are spaced r, apart

(where r, is the sampling interval) are independent and uniformly distributed. The

procedure Fjitter of Appendix B is capable of introducing the frequency jitter.

We performed several experiments by varying the range of the distribution of the

frequency jitter and Table 7-5 contains the results for the experiment that resulted

in a mean misclassification rate that was close to 1 %. In this experiment .fj(t) wa.s

uniformly distributed in [-5 MHz, 5 MHz]. The other system parameters were the

same as the standard experiment of Table 6-1.

We recognize that the frequency jitter that we have assumed does not affect the

97



amplitude of the downconverted signal because the same frequency jitter is present

in both the in-phase and quadrature components. Further, since we have assumed

the frequency jitter to have a zero mean, the estimation of the carrier frequency

offset is not significantly affected, and the phase spread factor remains reliable in

distinguishing between the EASD and FM signals. The maximum tolerable range of

[-5 MHz, 5 MHz] for the frequency jitter appears to be lenient enough to allow the

use of most commercially available local oscillators.

7.3.2 Phase Jitter

Now we consider the case where the phase noise on the two quadrature channels

are independent. For convenience of modelling, we assume that the local oscillator

and the 90° power splitter exhibit only phase jitter (the frequency jitter, if any, is

assumed to be absorbed by the phase jitter). Specifically this means that the two

outputs of the local oscillator circuitry could be represented by cos[27rfot + i(t))]

and sin[27rft + OQ(t))], and we recognize that the phase difference between the two

outputs need not be 900 as it would be in an ideal system. We further assume that

OI(t) and Q(t) are two independent zero-mean stochastic processes, that have uniform

distributions. Hence the phase noise in the two quadrature channels will in general

not be the same. The procedure Pjitter of Appendix B is capable of incorporating

the phase jitter.

We performed several experiments by varying the range of the jitter, until the

observed mean misclassification rate was close to 1 %. The other parameters of the

experiment were maintained at the same values of the experiment of Table 6-1. The

results of the experiment where the phase jitter was uniformly distributed in [-7 °, 7"]

are shown in Table 7-6.

One of the SSB/FH signals were confused for an FM signal. This observation is

not surprising because the independent phase jitters on the two quadrature channels

will affect the amplitude. As we saw in Table 6-6, the variance rapid-varying envelope

(feature v2) plays an important role in distinguishing between the SSB/FH and FM

signals, and when the rapid-varying envelope is distorted, the error rate increases.
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Interfering Classified As
Signal Al A2 B1 B2 Cl C(2
EASD Al 98 2
FM A2 3 96 1

SSB/FH B1 100
MWO B2 100
PC C1 100

GN C2 100

Mean Misclassification Rate: 1 %

Table 7-6: System Performance with Phase Jitter Uniformly Distributed in [-7 ° , 70].

The phase jitter on the two quadrature channels were independent, and the adjacent
samples of the jitter were also independent. Other system parameters were L = 2000,
SNR = 15 dB, BW = 100 MHz, and N = 100 sets.

Since the system tolerates a phase jitter that is uniformly distributed in [-7 ° , 70],

which appears to be within the reach of currently available local oscillators and 90°

power splitters, we conclude that phase jitter in the downconversion process is not a

critical issue to be addressed in future hardware system design stages.

7.4 Training Set Size

In all of our previous experiments, we used 100 training sets during the Learning

mode, with the same data sets used for the Diagnostic mode. As noted in Chapter 4,

the number of training sets N is a critical parameter and we would like to explore

the significance of N.

First, we would like understand the change in performance when independent sets

are used for learning and classification. We performed an experiment similar to that

of Table 6-1, maintaining N = 100, but by using independent sets for the learning

and classification. The results are shown in Table 7-7.

The change in performance from perfect classification of Table 6-1 to a misclassi-

fication rate of .2 % when independent sets were used for learning and classification,

appears to be negligible. Next, we repeated the experiments at N = 50, N = 25, and
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Interfering Classified As
Signal A 2 B1 B2 Ci C2
EASD Al 100
FM A2 1 99
SSB/FH B1 100
MWO B2 100
PC C1 100
GN C2 100

Mean Misclassification Rate: .2%

Table 7-7: System Performance with N = 100. The sets used for learning and
classification were independent. Other system parameters were L = 2000, SNR = 15
dB, and BW= 100 MHz.

N = 10. The results are tabulated in Tables 7-8, 7-9 and 7-10.

Since there was no change in performance when N was reduced from 100 to 50,

we conclude that the value of N should not be more than 50. The value of N = 25

resulted in a misclassification rate of 1 %, satisfying our target. However, we cannot

conclude that N = 25 as being optimal because the choice of N is heavily dependent

on the set of interfering signals in consideration. Clearly, as shown in Table 7-10, if

the signals EASD and FM are not involved, then a value of 10 is sufficient for N. A

critical parameter in determining the appropriate value of N is the variance of the

features involved. If the variance of the features are small for an interfering signal,

only a small number of measurements will be needed to characterize the distribution

of the features for that signal. If the variance is large, then more measurements will

be needed. For example, in the case of EASD and FM signals, the carrier frequency

takes a wide range of values. So, the mean instantaneous frequency (feature 3 ) will

have a large variance. Therefore, to accurately characterize the distribution of iT3 for

the two signals, a large number of measurements will be needed.
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Interfering Classified As
Signal Al A2 B1 B2 C1 C2
EASD Al 100
FM A2 1 99
SSB/FH B1 100
MWO B2 100
PC C1 I _ I 100 =
GN C2 _ 100

Mean Misclassification Rate: .2%

Table 7-8: System Performance with N = 50. The sets used
ficatior. were independent. Other system parameters were L
and BW = 100 MHz.

Interfering Classified As
Signal A1 A2 B1 B2 C1 C2
EASD A1 98 1 1

FM A2 2 97 2

SSB/FH B1 100
MWO B2 100
PC C1 100
GN C2 100

Mean Misclassification Rate: 1 %

for learning and classi-
= 2000, SNR = 15 dB,

Table 7-9: System Performance with N = 25. The sets used for learning and classi-
fication were independent. Other system parameters were L = 2000, SNR = 15 dB,
and BW= 100 MHz.
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Interfering Classified As
Signal Al A2 BI B2 C1 C2
EASD Al 98 1 1

FM A2 4 90 6
SSB/FH B1 100
MWO B2 100
PC Cl 100
GN C2 100

Mean Misclassification Rate: 2 %

Table 7-10: System Performance with N = 10. The sets used for learning and
classification were independent. Other system parameters were L = 2000, SNR = 15
dB, and B W = 100 MHz.

7.5 Putting the Parameters Together

So far we performed experiments varying one parameter at a time, by setting our

target as to achieve a mean misclassification rate of no more than 1 % at SNR

15 dB. Now, we remove the constraint concerning the mean misclassification rate

and incorporate all of the system parameters discussed in this chapter, to perform

one final experiment. The experiment was performed once again at SNR 15 dB,

with the standard sampling rate of 100 MHz. The parameters introduced weie 6-bit

digitization, record length L = 2000 samples/set, frequency jitter that is uniformly

distributed in [-5 MHz, 5 MHz], phase jitter that, is uniformly distributed in [-7o, 7"],

and training set size N = 25, with independent sets for training and classification.

The results are tabulated in Table 7-11.

The mean misclassification rate was 4 %. Although we did not set a. target for the

performance of the overall non-ideal system, the correct classification rate of 96 %

provides sufficient encouragement for future hardware implementation of the scheme.
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Interfering Classified As
Signal Al A2 BI B2 Cl C2
EASD Al 90 6 4

FM A2 7 87 6
SSB/FH B1 1 99
MWO B2 100
PC C1 100
GN C2 100

Mean Misclassification Rate: 4 %

Table 7-11: Performance of a Non-ideal System. Parameters of the system were SNR
= 15 dB, BW = 100 MHz, 6-bit digitization, L = 2000, frequency jitter uniformly
distributed in [-5 MHz, 5 MHz], phase jitter uniformly distributed in [-7 °, 7°], and
N = 25.

7.6 Chapter Summary

In this chapter, we investigated the effect of some of the system parameters on the

performance of the system. The parameters considered were the dynamic range of

the sampling system, duration of observation for the wideband IQ signal acquisition,

frequency and phase jitters, and the size of the training set. Whenever possible, we

made specific conclusions about the viable values for the system parameters, empha-

sizing the fact that the interfering signals in consideration will dictate the final choice

of the parameter values. The results of the investigation, consisting of a. set of initial

system parameters, is expected to provide sufficient background for future hardware

experiments.
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Chapter 8

Open Problems

We have achieved our objectives stated in the introductory chapter of this report. We

have developed a scheme for adaptive classification of interfering signals, incorporating

an architecture for signal acquisition, a strategy for feature extraction, and algorithms

for classification and adaptive learning. We have also established a background for

future work by categorizing the interfering signals and constructing mathematical

models for some of the known interfering signals. The proposed scheme has been

verified through Monte Carlo simulations and the performance of the system with

respect to several of the system parameters has been characterized.

However, there are several tasks that have to be undertaken before the develop-

ment of the desired diagnostic tool could be considered to be complete and ready for

commercial production. Clearly, the logical next step is to implement the architecture

and algorithms in hardware and verify the viability of the proposed scheme. There

are several hardware design challenges that have to be met in the process, for example

in the design of the sampling control circuitry to generate the trigger and attenuator

input signals. The conclusions made in Chapter 7 concerning the specifications for

the system parameters is expected to be helpful in the hardware implementation of

the scheme. Although we used data reported by independent radio frequency survey-

ors in modelling some of the interfering signals, it is desirable that some empirical

data concerning the interfering signals be obtained through hardware measurements,

prior to the final hardware implementation of the system. Such measurements can
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be used to verify our models, and will also be helpful in making design choices. For

example, the actual strength of the received signals in a given environment will aid

in designing the attenuation control circuitry. Experiments should also be performed

to investigate the significance of the non-ideal behavior of some of the system com-

ponents, like the filters and the mixers, that we did not consider in out theoretical

treatment.

We did not address the issue of performing the diagnosis when multiple interfer-

ing signals are present, and when the network in consideration is still ill operation.

The presence of multiple interfering signals is not an unlikely event, and in order to

incorporate the capability to perform the diagnosis, additional hardware and software

design may be needed to separate the signals. Design issues related to performing

the diagnosis while the network is still in operation is another related problem that

will e a suitable topic for further research. Another interesting area. for research

would be to study the requirements to perform dynamic diagnosis, where the system

makes repeated diagnosis. This option is possible because of the modest durations of

observation required, as we discovered in Chapter 7.

Other topics that need to be addressed before the commercial production of the

diagnostic tool involves issues like the appropriate user interface for the diagnostic

tool, and the actual form of implementation the tool should take. As we discussed

in Chapter 1, the diagnostic tool may be implemented in several ways, including in

the form of a stand-alone diagnostic tool, or a diagnostic subsystemI to be interfaced

to another host system, which could be a personal (possibly wireless) computer or a

communications test set.

The topics discussed above are directly related to the implementation of the de-

sired diagnostic tool for indoor radio LANs. There are also several other areas which

could form the subject of future research. As we mentioned in Chapter 2, the devel-

oped architecture and algorithms could be adapted to perform the interfering signal

classification for applications other than indoor radio LANs. For example, we could

construct a diagnostic tool for the diagnosis of interference faced by an electronic
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article surveillance device'. Since the development of the architecture and algorithms

were maintained to be independent of the specific application as .ar as possible, we

expect the adaptation to other applications to be straightforward.

Another optional area for future work would be the extension of the proposed

scheme to support a larger set of interfering signals. In particular, the categorization

that we proposed could be revised as the characteristics of more interfering signals are

understood, and models for a larger set of interfering signals could be constructed.

The models will be useful in the verifying the applicability of the proposed strategy

for feature extraction, and the algorithms for classification and learning, for a larger

set of interfering signals. The models could also be used to provide a deeper under-

-tanding of the interference characteristics in a shared spectrum, which may result in

improvements in the design of indoor radio networks.

1In a retail store for example, a point-of-sale terminal on a spread-spectrum network located
within 50 feet of an electronic article surveillance device could conceivably jam the device [41].
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Appendix A

Narrowband Signal Acquisition

This appendix could be thought of as an extension to Chapter 1 because of the

hardware nature of the topic. However, to fully appreciate the discussion, knowledge

of the interfering signal Types Al, A2, and B1 of Chapter 2, and the feature extraction

process of Chapter 3 will be necessary, and the reader is advised to have read these

two chapters prior to reading this appendix.

One of the difficulties in the acquisition and analysis of interfering signals is that

the bandwidth and the central frequency of the signals is always an unknown. In

particular, if the signal occupies only a fraction of the bandwidth allocated for a.

given band, but located at a center frequency which will appear to be a random

variable to an independent observer, then the analysis of the signal based on the

wideband I and Q signal acquisition we discussed previously, would be very difficult

because of frequency resolution issues. For example, consider distinguishing between

a pure tone signal, and a narrowband FM signal with frequency deviations less than

500 KHz, both in a band having a width of 00 MHz. Both of these signals will almost

look alike in the amplitude plots, and instantaneous or spectral frequency plots (see

Chapter 3 for details). Although we have developed methods to solve this difficulty by

proper choice of feature extraction strategy, it may still be desirable to incorporate an

additional (but optional) hardware module capable of acquiring narrowband signals

with greater resolution. The primary purpose of the optional hardware module would

be to capture only the small fraction of the bandwidth containing the narrowband
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RF Signal

Figure A-i: The Optional Hardware Module for Narrowband Signal Acquisition

signal, instead of capturing the entire band.

Figure A-1 illustrates a possible approach that could be taken for acquiring nar-

rowband signals. Naturally, the first problem is to estimate the carrier frequency

of the signal, from the first few samples obtained form the wideband signal acqui-

sition hardware. Therefore, we assign an additional task to the Sampling Control

circuitry we saw before in Figure 1-3. The carrier frequency may be estimated by

computing the mean of the instantaneous frequency of the first few samples, similar

to the method of computing feature v3 (the mean instantaneous frequency) discussed

in Chapter 3. We estimate the carrier frequency using only the first few samples be-

cause, if we wait any longer, the interfering signal might disappear, or may hop to a

different carrier frequency. Since only the carrier frequency can be estimated reliably

in a short period of time, the bandwidth of the variable bandpass filter should be fixed

(to a fraction of the total bandwidth of the band), with only the center frequency as

the variable.

Therefore, the narrowband signal acquisition will proceed simultaneously with the

wideband signal acquisition, with a small start-up delay due to the carrier frequency
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estimation and settling times for the variable oscillator and the variable bandpass

filter. Since the data from the narrowband signal acquisition will have no significance

when the signal encountered is a wideband signal (i.e. wider than the bandwidth

of the variable bandpass filter), during the signal analysis stage, only the data from

the wideband signal acquisition should be looked at first. If it is found that the

signal occupied only a fractional bandwidth during the duration of observation, then

the wideband data should be replaced with the narrowband data. Otherwise, the

narrowband data should be simply discarded. Hence, the purpose of the narrowband

signal acquisition is not to provide additional information about the"signal, but more

reliable information when the signal is a narrowband signal.
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Appendix B

Procedures for Interfering Signal

Simulation and Classification

(* Package Name: BasicToolKit.m

(* (c) Ganesh N. Ramaswamy November, 1991 *)

(* PROCEDURES IN THE PACKAGE: *)
(* Gauss: Takes one argument L and returns a list of length L *)

(* containing Gaussian random variables.

(* Expo: Takes one argument b and returns an exponentially

distributed random variable with mean b. *)

(* FFT: Computes the Fast Fourier Transform of the input list

(Mathematica's Fourier Expansion corresponds to the

(*' conventional Inverse Fourier Transform). *)

(* IFFT: Computes the Inverse (Fast) Fourier Transform of the input *)

list.

(* Mean: Computes the mean of the input list. *)

(* Variance: Computes the variance of the input list. *)

(* Audio: Takes arguments L, and bw (in MHz)-, and returns L samples *)

of Gaussian noise bandlimited to audio frequencies *)

(about 20 kHz), sampled at rate b MHz. *)

(* Pulse: Takes arguments L, bw (in MHz), rt (in ns), and tc (in ns),*)

and returns L samples corresponding to one pulse starting *)

at time = 0, with linear risetime rt ns, and exponential *)

fall time with time constant tc ns, sampled at b MHz.

(*********************************************************************
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Gauss[LInteger] :=

Block[ {ans, rl, r2, r3, r4},

ri = Table [Random[], {L}];

r2 = Table [Random[I, {L}];

r3 = Sqrt[-2 Logril]];

r4 = Cos[2 Pi r2] //N ;

ans = r3 r4;

Return ans] ]

Expo bInteger] :=
Block[ {ans, rl},

ri = Random];

ans = -b Log [rl];

ans = Round[ans];

Return ans] ]

FFT[listI := InverseFourier[list]

IFFT[list_] := Fourier[list]

MeanElist_] : Apply[Plus, list]/Length[list]

Variance[list_] := Mean[(list - Mean[list])^2]

Audio[L_Integer, bw_Integer] :

Block[ {ans, bufl, buf2, z, z2, n},

zl = (20 10^3) / (.5 bw 10^6);

n = Round[8 / zl];

n = Max[L, n];
z2 = Round[.5 z n;

bufl = FFT[Gauss[n]];

buf2 = Join[Table[1, {z2}], Table[O,{n - 2 z2j], Table[1,{z2}];

buf2 = bufl buf2;

ans = Re[IFFT[buf2]];

ans = Take[ans, L];

ans = ans / Max[Abs[ans]];

Return ans] ]

Pulse[LInteger, bwInteger, rtInteger, tc_Integer] :=

Block[ {ans, bufi, buf2, z},

z = Divide[l, bw 10^6];

bufl = Table [ Divide[t z, rt 10-9], {t, 0, Ceiling[ rt 10^-9 / zl}];

bufi = bufl / Max[bufl];
buf2 = Table[ E^(-t z / (tc 10^-9)), {t, 1, (L - Length[bufl])}];
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ans = Join[bufl, buf2];
ans = ans // N;
Return [ans] 

(************************* End of Package ***************************)
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(* Package Name: SourceModels.m *)

(* Cc) Ganesh N. Ramaswamy November, 1991 *)

(* PROCEDURES IN THE PACKAGE:

(* The procedures in this package are divided into six parts, *)

(* corresponding to each interfering signal; and one supplement *)

(* for the slow varying envelope generation. *)

(*************************** $PART **********************************)

(* Interfering Signal Simulated: Electronic Article Surveillance *)

Devices (EASD); Type Al. *)

(* Implemented in a single procedure EASD. Takes L and bw (in MHz) *)

(* as arguments, and internally generates a frequency offset that is *)

(* uniformly distributed in -40 MHz, 40 MHz], and returns L samples *)

(* of EASD signals, sampled at bw MHz *)

EASD[LInteger, bwInteger] :

Block[ {ans, z, w, theta, per),

theta = 2 Pi Random[];

z = Random[Real, {-40, 40}];

w = 2 Pi z 10^6 // N;

per = Divide[l, bw 10^6];

ans = Table[Cos[w t per + theta] + I Sin[w t per + theta], {t, 1, L];

ans = ans // N;

Return [ansi ]

(*************************** PART 2 **********************************)
(* Interfering Signal Simulated: Narrowband FM signals (FM); *)

Type A2.

(* Implemented in a single procedure FM. Takes L and bw (in MHz) as *)

(* arguments, and internally generates a carrier frequency offset *)

(* that is uniformly distributed in -40 MHz, 40 MHz], and calls for *)

(* the procedure Audio, and generates a frequency modulated signal, *)

(* with maximum frequency deviation (indicated by k) that is

(* uniformly distributed in [50 kHz, 500 kHz], and returns L samples *)

(* sampled at bw MHz *)
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FM[L_Integer, bwInteger] :=

Block[ {ans, bufl, buf2, z, w, theta, k, per},

theta = 2 Pi Random[];

z = Random[Real, {-40, 40}];

w = 2 Pi z 10^6 // N;

per = Divide[i, bw 10'6];
bufl = Audio[L, b];
buf2 = Table[ Apply[Plus, Take[bufl, t]], {t, 1, L}];

buf2 = buf2 per;

k = 2 Pi 10^3 Random[Real, {50, 500}]; (* k in kHz *)

buf2 = k buf2 // N;

ans = Table[CosEw t per + buf2[[t]] + theta]

+ I Sin[w t per + buf2E[t]] + theta], {t, 1, L}];

ans = ans // N;

Return [ans] ]

(*************************** PART 3 **********************************)

(* Interfering Signal Simulated: Frequency Hoppped Single Sideband *)

(* Signals (SSB/FH); Type B *)

(* Implemented in a single procedure SSBfh. Takes L and bw (in MHz) *)

(* as arguments. Assumes that no more than two carrier frequencies *)

(* will be involved in one observation, and generates two carrier *)

(* frequencies (zi and z2) that are always different, and uniformly *)

(* distributed in [-40 MHz, 40 MHz]. A hop duration (hop), which i *)

(* uniformly distributed in [.1 ms , 1 ms], and the probability that *)

(* a hop occurs during observation (p) are calculated. Internal call *)

(* for Audio provides the message for transmission, and an SSB signal*)

(* is generated, and L samples sampled at bw MHz are returned. *)

SSBfh[LInteger, b_Integer]

Block[ {ans, bufi, buf2, buf3, zi, z2, hop, p, wi, 2, l,thetal,

theta2, per},

thetal = 2 Pi Random[];

theta2 = 2 Pi Random[];

zi = 2 Random[Integer, {-20, 20)];

z2 = 2 Random[Integer, {-20, 20}] + 1;

hop = 0.1 Random[Integer, {1, 10}]; (* hop dur .1 - ms *)

p = L / (bw 10i3 hop);

p = .5 (p + i) // N;
p = Round[Random[Real, {0, p}]];

1 = p Random[Integer, {1, L}];

wi = 2 Pi zi 10-6 // N;

w2 = 2 Pi z2 10'6 // N;
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per = Divide[i, bw 10^6];

bufi = FFT[Audio[2 L, b]];

buft = Drop[bufl, -L];

buft = IFFT[bufl];

buf2 = Table[Cos[wi t per + thetall] + I Sin[wi t per + thetall,

{t, 1, (L - 1)}];

buf3 = Table[Cos[w2 t per + theta2] + I Sin[w2 t per + theta2],

{t, 1, l}];

buf2 = Join[buf2, buf3];

ans = bufl buf2;

ans = ans // N;

Return[ans] ]

(*************************** PART 4 *********************************)

(* Interfering Signal Simulated: Microwave Oven Emissions (MWO);
(* Type B2. *)
(* PROCEDURES IN PART 4:

(* MWoven: The main procedure that takes L and b (in MHz) as

(* and returns L samples, sampled at bw MHz. First generates *)
heights of build up pulses, and then calls for Collapse, *)

and Build. Accommodates for the fact that observation *)

(* may start at any time when emissions are occurring (so *)

buf2 is rotated randomly). See text for more details.
(* Collapse: Takes argument L, and returns a list consisting of L *)

(* elements, where a value indicates a normal pulse, and *)
(* values 2, 3, 4, indicate pulses collapsing (2 is the *)

(* start and 4 is the end of collapsing). Probability of *)

(* pulses collapsing is assumed to be .1, and the duration *)
(* of pulses collapsing is uniformly distributed in [1, 10]*)

(* bins (bins are spaced 3 us apart), not including the *)

bins corresponding to the rise and fall of the , )

(* collapsing event. *)
(* Build: Builds the pulses or continuous rf energy emissions, using *)

the input list. If the current value of list is less than *)

(* 1, then build-up pulses are generated. If the value is 1, *)
(* then continuous pulse trains are generated. If the value is*)

(* 2, 3, or 4, emissions corresponding to pulses collapsing is*)

generated. ,)
(* Npulse: Takes arguments c and bw (in MHz), and calls for procedure*)
(* pulse. Returns a pulse with peak amplitude c, and time *)

constant for decay uniformly distributed in [40, 80] ns. *)

(* Mpulse: Similar to Npulse, but now the peak amplitude is 1, *)

(* and the missing pulse phenomenon, with probability .075 *)
(* is incorporated. *)
(* RiseC: Returns samples that correspond to the rise period of *)
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(* pulses collapsing. Similar to rise of Npulse / Mpulse. *)
(* StayC: Returns samples that correspond to the constant period of *)

(* pulses collapsing. *)
(* DropC: Returns samples that correspond to the decay period of *)

(* pulses collapsing. Similar to fall of Npulse / Mpulse). *)

(* (rf energy, with amplitude uniformly distributed in [.1,.2] is *)

(* added to all five of Npulse, Mpulse, RiseC, StayC, and DropC). *)

MWoven[LInteger, bwInteger]

Block {arins, bufl, buf2, w, theta, per, nn, m, s},

nn = Random[Integer, {1, 101];

bufl = Table [x/nn , {x, 1, nn}];

m = 2767 - (2 nn);

buf2 = Collapse m - 200];

buf2 = Join [ Table [1, {t, 1, 1001], buf2,

Table[l, {t, 1, (Length [buf2] - m -100)1}];

buf2 = Join [bufl, buf2, ReverseEbuffl], Table CO, {t, 1, 1001]];

buf2 = RotateLeft[buf2, Random[Integer] Random[Integer, {1, 27661]];

s = Ceiling [ L / (3 b)];
ans = Build[Take[buf2, s], b];

ans = Take[ans, L];
w = 2 Pi 8.25 10'6 // N;
per = Dividetl, bw 10^6];

theta = Random ];
buf3 = Table[Cos[w t per + theta] + I Sin[w t per + theta], {t, 1, L];

ans = ans buf3;

ans = ans // N;

Return[ans] ]

Collapse[L_Integer] :=
Block[ {buf},
buf = {};

While[Length[buf] < L,

buf = Join [buf,

Join[ {{1}}, {{1}}, {{}},{{1}}, {{1}}, {{1}},{{1}}, {{1}}, {{1l}},

{Join [{2}, Table[3, {t, 1, Random[Integer, {1, 10}]}], {4}]}]

[[Random[Integer, {1, 10}]]]];];

Return[buf] ]
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Build[list_, bwInteger] :=

Block[ {res, i},

res = {};

i =1;

While [ i <= Length[list],

If list[[i]] < 1, res = Join[res, Npulse[list[[i]], b]];

If listill]] == 1, res = Join[res, Mpulse[bv]]];

If[list[[i]] == 2, res = Join[res, RiseC[bv]]];

If[list[[i]] == 3, res = Join[res, StayC[bw]]];

If[list[[i]] == 4, res = Join[res, DropC[bll]]];

i++;];
Return res] ]

Npulse[c_, bw_Integer] :=

Block[ {ans, rf, 1, rt, tc},

1 = 3 bw;

rf = Table [ Random[Real, {.1, .2}], {t, 1, 1}];

rt = Max [(1000 / b), 5];

tc = Random[Integer, {40, 80}];

ans = Pulsetl, bw, rt, tc];

ans = c ans;

ans = ans + rf;

ans = ans // N;

Return ans] ]

Mpulse[ bwInteger] :
Block[ {ans, rf, 1, m, rt, tc},

1 = 3 bw;

rf = Table [ Random[Real, {.1, .2}], {t, 1, 1}];

rt = Max [(1000 / b), 5];

tc = Random[Integer, {40, 80}];

m = Round [Random[Real, {.425, 1.425}]];

ans = Pulse[l, bw, rt, tc];

ans = m ans;

ans = ans + rf;

ans = ans // N;
Return[ans] ]

RiseCE bwInteger] :=

Block[ {ans, rf, buf, 1, z, rt},
1 = 3 bw;

rf = Table [ Random[Real, {.1, .2}], {t, 1, 1}];
z = Divide[1, bw 10^6];
rt = rt Max[100/bw, 5];
buf = Table[ Divide[t z, rt 10-9], {t, 0, Ceiling[ rt 10^-9 / z]}];
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buf = buf / Max[bufl;

ans = Join[buf, Table [l, {t, 1, (1 - Length[buf])}];

ans ans + rf;

ans = ans // N;

Return [ans] 

StayC[ bw_IntegeI] :=

Block[ {ans, rf, 1,},

1 = 3 bw;

rf = Table C Random[Real, .1, .21}], t, 1, 1}];

ans = Table [1, {t, 1,11];

ans = ans + rf;

ans = ans // N;

Return[ans] ]

DropC[ bwInteger] :=

Block[ {ans, rf, 1, z, tc},

1 = 3 bw;

rf = Table [ Random[Real, .1, .21}], t, 1, 1];

z = Divide[1, bw 10^6];

to = Random[Integer, 40, 80}];

ans = Table E(-t z / (tc 10^-9)), {t, 1, 1}];

ans = anxis + rf;

ans = ans // N;

Return [ans] ]

(*************************** PART **********************************)
(* Interfering Signal Simulated: Photocopier Emissions (PC); *)

Type C. *)

(* PROCEDURES IN PART 5: *)

(* PhotoCopier: The main procedure that takes L and b (in MHz) as *)

(* arguments and returns L samples, sampled at bw MHz. *)

(* Internally calls for PhotoSpace to obtain the *)

(* pulse spacing and PhotoPulse to construct the *)

(* pulses. *)

(* PhotoSpace: Takes arguments L, b (in MHZ) and b (in ns) and *)

(* generates a list of exponentially distributed random *)

(* variables with mean b ns, sufficient to cover the *)

(* duration of observation. *)

(* PhotoPulse: Takes L, bw (in MHz), z (number of samples by which *)

the pulse is supposed to be delayed) and theta (phase *)

(* offset of the first pulse) as arguments. Risetime *)

(* of pulses is fixed by bandwidth, and the fall time *)

(* has time constant that is exponentially distributed. *)

(See text for details). The peak amplitude of the
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pulse is N[1, .36], and the appropriate phase is

added, corresponding to the value z and the center *)

(* frequency 2.4175 GHz.

PhotoCopier [L_Integer, bvInteger] :=

Block[ {ans, bufl, buf2, theta, i},

theta = 2 Pi Random[];

ans = PhotoPulse L, bw, 0, theta];

bufi = PhotoSpace[L, bw, 220];

i = Length[bufl];

buf2 = Table Apply[Plus, Take[bufl, q]], {q, , i}];

While[ i > 0,

ans = ans + PhotoPulse[L, bw, buf2[[i]], theta];

i--;];
ans = Take[ans, L];
ans = ans // N;
Return [ans] ]

PhotoSpace[L_nteger, bwInteger, b_Ineger, b_Integer :=

Block[ {buf, bb},

bb = Round[O.001 (b bw)];

buf = {};

While Apply[Plus, buf] < L,

buf = Append [buf, Expo[bb]];];

Return[buf] ]

PhotoPulse[L_Integer, bInteger, z_Integer, theta_] :

Block[ ans, bufll, buf2, rt, tc, pd, q, phase},

pd = Max[80, Expo[143]];
pd = pd (30 / bw);

rt = 1000 / bw;

tc = Ceiling pd / 5];

q = .36 Gauss[1];
q = Max[.1, (q + )];

bufl = Pulse[L, bw, rt, tc];

phase = theta - (2 Pi 2.4175 z 1000 / b);

buf2 = Table[Cos[phase] + I Sin[phase], {t, 1, L}] //N;

bufl = bufll buf2;

bufll = Join Table[O, {z}], bufl];

bufll = Take [bufl, L];

bufl = q bufi;

ans = bufll // N;

Return ans] ]

127



(*************************** PART 6 **********************************)

(* Interfering Signal Simulated: Bandlimited White Gaussian Noise *)
(GN); Type C2.

(* Implemented in a single procedure Noise. Takes L and bw (in MHz) *)

(* as arguments, and internally calls for procedure Gauss, and *3

(* generates the in-phase and quadrature components of the noise. *)

(* (bw is not needed, but included to adhere to convention thus far) *)

Noise[L_Integer, bw_Integer] :=

Block[ ans, buff, buf2},

bufi = Gauss[L];

buf2 = Gauss[L];

ans = bufl + I buf2;

Return[ans] ]

(************************* SUPPLEMENT *******************************)
(* The Slow-Varying Envelope for the interfering signals: *)

(* PROCEDURES IN THE SUPPLEMENT: *!

(* MWOenv: Returns L samples, sampled at 1200 Hz, for the filtered *)

(by lowpass filter with cutoff 300 Hz) version of the *)

slow-varying envelope of the microwave oven (MWO) *)
emissions (which exhibits the 60 Hz behavior).Accommodates*)

(* for the fact that observation may begin at any time (hence*)

RotateLefttbufl, q] command) when interference energy is *)

emitted. *
(* STDenv: Returns L samples, corresponding to s(t) = 1, filtered *)

by the same ideal lowpass filter as in MWOenv. *)

MWOenv[LInteger] :=

Block[ {ans, bufi, buf2, q, s},

s = Ceiling[L/20];

q = Random[Integer, {1, 9}];

bufi = {1,1,1,1,1,,1,1,1,0,0,0,0,O,O,0,0,0,0};

buf = RotateLeft[bufi, q];

buf2 = {1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1};

bufl = FFT[bufl];

bufi = bufi buf2;

bufi = IFFT[bufl];

bufi = Re[bufl];

ans = Table[bufl, {s}];
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ans = Flatten[ans];
ans = Take[ans, L];
ans = ans // N;

Return ans ]

STDenv[LInteger] :=

Block[ {ans, bufi, buf2, q, s},
s = Ceiling[L/20];

q = Random[Integer, {1, 9}];
buf = {,,1,1,1,1,1,1,1,1,1,1,1 ,1};
bufi = RotateLeft[bufl, q];
buf2 = {1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,,1};
buf1 = FFT[bufl];

bufi = bufi buf2;

buff = IFFT[bufl];
bufi = Re[bufi];

ans = Table[bufl, {s}];

ans = Flatten[ans];
ans = Take[ans, L];
ans = ans // N;
Return[ans] ]

(********************* End of Package **************************** )
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(* Package Name: FeatureExtraction.m *)

(* *)
(* (c) Ganesh N. Ramaswamy November, 1991 *)

(* PROCEDURES IN THE PACKAGE:

(* InstFreq: Computes the instantaneous frequency of the input list. *)

(* CircVar: Computes the circular variance (phase spread) of the *)

input list, internally correcting for the carrier

(* frequency offset by calling the procedure InstFreq *)

(* PSD: Computes the power spectral density of the input list, using *)

(* the periodogram, and returns a list which contains pairs *)

(* (x, y), where x is the frequency (stated as a fraction of *)

(* the sampling frequency), and y is the spectral density at x *)

(* Extract: Takes listl, and list2, where listl is the slow varying *)

envelope, and list2 is the complex baseband signal, and *)

returns the feature vector containing the features

(* vi ... v6. Internally calls for procedures InstFreq, *)

CircVar and PSD.

InstFreq[list_] :=

Block[ {ans, buf, buf2, buf3, z},

z = 2 Pi // N;

buf = ArgElist];

buf2 = Table[ Mod[(buf[[t]] - buf[t-1)), z], {t, 2, Length[list]}];

buf3 = Round[buf2 / z];

ans = buf2 - z buf3;

ans = ans / z;

ans = ans // N;

Return [ans] ]

CircVarElist_] :

Block[ {ans, bufi, buf2, f, 1, c, s, r},

f = 2 Pi ean[InstFreq[list]] // N;

1 = LengthElist];

bufi = Table[ E(-f -t I), {t,,1}];
buf2 = bufi list; -

buf2 = ArgEbuf2];

c = Mean[Cos [buf2] ];
s = Mean[Sin [buf2]; ;
r = Sqrt[ c^2 + s2];

ans = 1 - r;

Return [ans] ]

PSD[list_] :=
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Block[ {ans, 1, bufl, buf2 },

1 = Length[list];

1 = 1/2;

bufi = FFT[list];

bufi = Abs[bufl]^2;
bufi = Join[Drop[bufl, 1, Take[bufl, 1]];

buf2 = Table[t, {t, -1, (1 - 1)}];

buf2 = buf2 / (2 1);
ans = {buf2, bufl};

ans = Transpose[ans];

Return[ans] ]

ExtractElisti_, list2_] :=

Block[ {ans, bufl, buf2, buf3, buf4, buf5S, buf6, 1, vl, v2, v3, v4, v5, v6},
buft = listl / Sqrt[Mean[listli2]] //N;
vl = VarianceEbufil];

buf2 = Abs[list2];

buf2 = buf2 / Sqrt[Mean[buf2^2]] // N;

v2 = Variance[buf23; -

v5 = CircVar[list2];
buf3 = InstFreq[list2];

v3 = Mean[buf3];
v4 = Variance[buf3];
buf4 = PSD[list2];

buf4 = Transpose[buf4];

buf5 = buf4[[2]];

buf6 = buf4[1]];
1 = Apply[Plus, buf5];
mf = Apply[Plus, buf5 buf6] / 1;
v6 = Apply[Plus, (buf6 - mf)^2 buf5S / 1;
ans = {vi, v2, v3, v4, v5, v6} // N;

Return[ans] ]

(************************* End of Package ****************************)
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(* Package Name: SystemSimulation.m 

(* (c) Ganesh N. Ramaswamy November, 1991 *)

(* PROCEDURES IN THE PACKAGE: *)

(* Transmiti: Takes a complex list and a desired SNR, and adds *)

complex Gaussian noise at the stated SNR to the list. *)

(* Transmit2: Takes a real list and a desired SNR, and adds real *)

(* Gaussian noise at the stated SNR to the list.

(* Digitizel: Takes a complex list, and desired number of bits for *)
digitization, and returns a digitized version of the *)

input list. *)

(* Digitize2: Takes a real list, and desired number of bits for *)

(* digitization, and returns a digitized version of the *)

input list. *)

(* Fjitter: Takes arguments list, bw (in MHz), and range (in MHz) *)

(* and returns a list that is distorted by frequency jitter *)
of the local oscillator that is uniformly distributed in *)

(* [-range MHz, range MHz], (range need not be an integer). *)

(* Pjitter: Takes arguments list and range (in degrees), and returns *)

a list that is distorted by phase jitter (on two

quadrature channels), that is uniformly distributed *)

(* in [-range (degrees), range (degrees)]. *)

(* Run: Takes arguments n, L, bw (in MHz), and snr (in dB), and *)

(* generates list bufAi ... bufC2, each containing n feature *)

vectors, corresponding to the 6 interfering signals.

(* Internally calls for the procedures that simulate the

(* interfering signals, using parameters L and bw, and adds *)

noise at the stated snr, and extracts the features. *)

Optional procedures Digitize, Fjitter and Pjitter may be *)
included (See note before the beginning of the procedure). *)

(* Learn: Uses the global variables bufAl ... bufC2 generated by Run,*)

and estimates the mean vectors mAl ... mC2, and covariance *)

(* matrices cAl ... cC2, corresponding to the 6 interfering *)

(* signals. The mean vectors and covariance matrices are also *)

global variables. *)

(* Diagnose: Takes a list of feature vectors and computes the *)

(* likelihood values for each interfering signal. Uses

(* global variables generated by Learn. *)

Transmit[list, snr_] :=

Block[E ans, buf, a, bi, b2, cl, c2, 1},
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1 = Length[list];

a = 0l^(snr / 20);

bi = Sqrt[Mean[(Re[list])^2]];

b2 = Sqrt [Mean [(Im[list]) 2] ];

cl = bi / a;

c2 = b2 / a;

buf = cl Gauss[l] + I c2 Gauss[l];

ans = list + buf // N;

Return [ans] ]

Transmit2[list_, snr_] :=

Block[ {ans, buf, a, b, c, 1},

1 = Length[list];
a = 10^(snr / 20);
b = Sqrt [Mean [list2]];

c = b / a;

buf = c Gauss[l];

ans = list + buf // N;

Return ans] ]

Digitize2[list_, bit_]:=

Block [{bufl, buf2},

bufll = ReElist] / Max[Abs[Re[list]]];

buf2 = Im[list] / Max[Abs[Im[list]]];

bufll = 2(bit - 1) bufl;

buf2 = 2^(bit - 1) buf2;

bufl = Round[bufl] + 0.1; (* Note: + 0.1 is done to avoid the

buf2 = Round[buf2] + 0.1: (* possible 0/0 problem while computing $)

ans = bufl + I buf2; (* the argument during feature *)

Return[ans] ] (* extraction; the error is negligible *)

Digitize2[list_, bit_]:=

Block [{buf},

buf = list / Max[Abs[list]I;

buf = 2(bit - 1) buf;

buf = Round bufl;
buf - buf + 0.1; (* See note above *)

Return [buf] ]

Fjitter[list, bwInteger, range_]:=

Block [{ans, buf, 1, per},

1 = Length[list];

buf = Table[ Random[Real, {-range, range}], {l}];

per = DivideE[, bw 10^6];

buf = 2 Pi buf //N;

133



buf = Table[Cos[buf[[t]] t per] + I Sin[buf[tt]] t per ], {t, 1, 1}];

ans = list buf;

Return[ans] 

Pjitter[list_, range_]:=

Block [{ans, bufl, buf2, 1, per},

1 = Length[list];

buf = Table Random[Real, {-range, range}], {1}];

buf2 = Table[ Random[Real, {-range, range}], {l}];

per = Divide[C, bw 10^6];

bufl = (Pi / 180) bufl //N;

buf2 = (Pi / 180) buf2 //N;

buf = TableC CosEbufl[It]]I + I SinCbuf2[[t]]] , {t , 1, 1}];
ans = list buf;

Return ans] ]

(************ NOTES FOR PROCEDURES Run, Learn and Diagnose **********)
(* (1) bufAl... bufC2, mAl ... mC2, cAl ..cC2, are GLOBAL variables *)

(* (2) Internal calls for Digitize, Fjitter and Pjitter may be made *)
after each of the Transmit commands in the procedure Run, *)

(* to introduce non-ideal system behavior. *)

Run[nInteger, LInteger, b_Integer, snr_] :=
Block[ {i, listi, list2, list3, list4 },

i = n;

bufAl = {};
While [i > 0,

listl = EASD[L, b];
listl = TransmitiClisti, snr];

list2 = STDenv[20];
list2 = Transmit2[list2, snr];

list3 = Extract[list2, listl];
bufAl = AppendCbufAl, list3];

i--;];
i = n;

bufA2 = {};
While Ci > 0,

listl = FMCL, bw];

listl = TransmitiClistl, snr];

list2 = STDenv[20];

list2 = Transmit2[list2, snr];

list3 = Extract list2, listl];

bufA2 = AppendCbufA2, list3];

i = n;
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bufBl = {};

While [i > 0,

listi = SSBfh[L, bw];

listl = Transmitl[listi, snr];

list2 = STDenv[20];

list2 = Transmit2[list2, snr];

list3 = Extract[list2, listl];

bufBi = Append[bufBi, list3];

i--;]
i = n;

bufB2 = {};
While [i > 0,

listl = MWoven[L, bw];

listi = Transmiti[listl, snr];

list2 = MWOenv[20C;

list2 = Transmit2Clist2, snr];

list3 = ExtractElist2, listl];

bufB2 = Append[bufB2, list3];

i--;];
i = n;

bufCi = {};
While [i > 0,

listl = PhotoCopier[L, bw];

listl = TransmitiElisti, snr];

list2 = STDenv[20];

list2 = Transmit2[list2, snr];

list3 = ExtractElist2, listl];

bufCi = Append[bufCi, list3];

i--;];

i = n;

bufC2 = {};

While i > 0,

listl = Noise[L, bw];

listl = Transmiti[listi, snr];

list2 = STDenv[20];

list2 = Transmit2[list2, snr];

list3 = Extract[list2, listl];

bufC2 = Append[bufC2, list3];

i--;];

Learn:=

Block[ { listAl, listA2, listB1, listB2, listCi, listC2 },

mAl = MeanEbufAl];
listAl = Table[ Outer[Times, bufAl[[t]] - mAl, bufAi[[t]] - mAll,
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{t, 1, Length[bufAl]}];

cAi = Mean[listAl];

mA2 = ean[bufA2];

listA2 = Table[ Outer[Times, bufA2[[t]]

{t, 1, Length[bufA2]}];

cA2 = Mean[listA2];

mB1 = Mean[bufBil];

listBi = Table[ Outer[Times, bufBi[[t]]
{t, 1, LengthCbufBl]}J;

cB1 = Mean[listBl];
mB2 - = Mean[bufB2];
listB2 = Table[ Outer[Times, bufB2[[t]]

{t, 1, Length[bufB2]}];

cB2 = Mean[listB2];

mCI = MeanEbufCl];

listCl = Table[ Outer[Times, bufCl[t]]

{t, 1, Length[bufCl]}];

cC1 = Mean[listCl];

mC2 = Mean[bufC2];
listC2 = Table[ Outer[Times, bufC2[[t]]

{t, 1, Length[bufC2]}];

cC2 = Mean[listC2];

]

- mA2, bufA2E[t]] - mA2],

- mB1, bufBl[[t]] - mBl],

- mB2, bufB2[[t]] - mB2],

- mCi bufCl[[t]] - mCi],

- mC2, bufC2[[t]] - mC2],

Diagnose[list_] :=
Block[ {i, al, a2, bi, b2, cl, c2, dAl, pAl, dA2, pA2, dBi, pB1, dB2,

pB2, dCi, pCl, dC2, pC2, res },
i = Length[list];

ans = {};

al = ((2 Pi)^-3)/ Sqrt[Det[cA1]];

a2 = ((2 Pi)^-3)/ Sqrt[Det[cA2]];

bi = ((2 Pi)^-3)/ Sqrt[Det[cBl]];

b2 = ((2 Pi)^-3)/ Sqrt[Det[cB2]];

cl = ((2 Pi)^-3)/ Sqrt[DettcCi]];
c2 = ((2 Pi)-3)/ Sqrt[Det[cC2]];

WhileEi > 0,
dAl = -.5 (list[[i]] - mAl). Inverse[cAl]. (list[[i] - mAl);

pAl = aa (E^dA);

dA2 = -.5 (list[[ill - mA2). Inverse[cA2]. (list[[i]] - mA2);

pA2 = bb (E'dB)

dBi = -.5 (list[[i]] - B1). Inverse[cBl]. (list[[i]] - mBi);

pBi = cc (E^dC);

dB2 = -.5 (listC[[i]] - mB2). Inverse[cB2]. (list[[i]] - mB2);

pB2 = dd (E^dD);
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dCi = -. 5 (list[[i]] - mCi). Inverse[cCi]. (list[[i]] - mCi);
pCl = ee (E^dE);
dC2 = -.5 (list[[iJ] - mC2). Inverse[cC2]. (list[[i]] - mC2);

pC2 = ff (E^dF);

res = {pAi, pA2, pB1, pB2, pCi, pC2};

res = res / Apply[Plus, res] //N ;

ans = Append[ans, res];

i--;];
ans = .01 Round[10O ans];
Return [ans] I

(************************* End of Package ***************************)
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