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Abstract
A variety of Hoo techniques to develop tactical missile autopilots robust to the

presence of parametric variations have been analyzed. Three different Hoo techniques

are compared: Ho, mixed sensitivity, Hoo with modelled parametric uncertainty, and

Hoo with inner loop compensation. The importance of dynamic scaling (g-analysis

and g-synthesis) to reduce conservatism when the Ho problem has a block diagonal

uncertainty structure is also evaluated.

The results demonstrate the importance of the structured singular value (ssv) for

the reduction of conservatism when a block diagonal perturbation structure exists. The
extension of the ssv to the synthesis of Hoo designs (gi-synthesis) also proves to be a

valuable synthesis tool. Controllers synthesized using classical Hoo optimization

techniques are found to have poor robustness to parameter variations. Controllers
synthesized using the Hoo inner loop technique exhibit excellent parameter robustness,

but poor robust performance in the presence of unstructured uncertainty. Controllers
synthesized using HoJ.-synthesis techniques with modelled parameter uncertainty

demonstrate adequate parameter robustness while providing the best framework for

simultaneously satisfying multiple uncertainty criterion.
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Chapter One:

Introduction

One of the most challenging of guidance and control problems is that of a modern

tactical air-to-air missile in pursuit of a highly maneuverable aircraft. The missile, in an

attempt to intercept the aircraft, undergoes dramatic changes in flight conditions and

experiences high accelerations capable of exciting a multitude of unmodelled high

frequency dynamics. The parametric variations associated with these changes in flight

conditions and the possible excitation of high frequency unmodelled dynamics can

cause the missile's control system to degrade, and in many cases to become unstable.

Because of this potential for instabilities, the performance one can extract from a missile

control system must be offset by the requirement that the closed loop system remain

stable in the presence of model uncertainties and parametric variations. The conflicting

requirements between performance and stability have been the focus of much research

in the past several years, [1] thru [7].

The Hoo design methodology has recently arisen as one of the more popular modern

control techniques. Its popularity stems from its ability to formulate the control

problem as a frequency domain optimization problem [8]-[10]. This technique first

appeared in literature in a paper by Zames [11], in which the emphasis was placed on

sensitivity optimization. A simple extension of this optimization problem led to the
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development of the mixed sensitivity problem, in which the optimal controller

minimizes a weighted sensitivity cost function subject to stability robustness

constraints. The stability robustness constraints were developed from classical design

techniques and extended to the multi input multi output framework by utilizing singular

values and norm bounds on expected model errors [1],[3],[12],[13]. The error models

assumed, were based on worst case model uncertainty and made no attempt to

incorporate direction or phase information - for this reason the error models are called

unstructured uncertainties. The mixed sensitivity problem was the first attempt to

incorporate known model uncertainty directly into the design process. Others methods

which have recently been developed to incorporate model uncertainty in the design

process include [2l,r4, r5.

The application of the Hoo methodology to research problems soon showed that while

the closed loop system demonstrated excellent robustness to unstructured uncertainty, it

had poor robustness to structured uncertainties; such as parametric variations. The lack

of robustness to parameter variations manifests itself as instabilities of the closed loop

system [14]-[16].

In the mid 1980's it was shown that analysis of linear systems with block diagonal

perturbation structures using the Hoo norm produced overly conservative results. It

was proven tat by optimally scaling the transfer functions of the closed loop system,

to minimize its directionality, the conservatism of the maximum singular value could be

significantly reduced [17], [18]. This measure became known as the structured

singular value ( g ).

When the Hoo problem was formulated with multiple uncertainty requirements and

desired performance criteria, the conservatism experienced in the application of the Hoo
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norm also produced controllers that were conservative in nature. The optimistic results

of the structured singular value were incorporated into the H., design procedure to

reduce conservatism. This led to the development of the newest robust control

algorithm: p Synthesis [19].

1.2 Contribution of Thesis

The purpose of this thesis is to demonstrate the use of different H. methodologies to

the development of a missile control system that is robust to the presence of both

unmodelled dynamics and parametric variations. The thesis will compare four separate

missile autopilot designs: Ho. mixed sensitivity, H.* with modelled parametric

variation, classical, and Ho. with inner loop compensation.

This thesis will demonstrate the effectiveness of utilizing the structured singular value

to reduce conservatism in the presence of multiple uncertainties, as well asperformance

requirements. Since the synthesis of controllers using the H. optimization is sensitive

to scaling effects, the thesis will also demonstrate the effectiveness of incorporating the

results of the structured singular value directly into the design process ( synthesis).

1.3 Organization of Thesis

This thesis consists of five chapters. Chapter Two discusses the important theories that

underlie an understanding of the development of robust control systems using the Hoo

theory and the small gain theorem. This discussion includes:

* Small Gain Theorem

• Structured Singular Value ( g-analysis)

* Ho optimization

* Synthesis

15



In Chapter Three, the dynamic model of the missile is developed, while Chapter Four

covers the actual synthesis of the missile control system. The first half of Chapter Four

discusses the choice of performance criterion, the specification of uncertainty models,

and the importance of g-analysis and g-synthesis. The second half of Chapter Four

covers the development of the four different autopilot designs. A discussion of the

important similarities and differences between these designs is included in the last

section of Chapter Four.

Finally, Chapter Five summarizes the thesis and suggests possible directions for future

research.

16



Chapter Two:

Robust Control Theory

Two of the most important purposes of feedback in a control system are the

stabilization of unstable plants, and the reduction of uncertainty in the system's

response. A certain amount of uncertainty is always present both in the environment in

which the system operates as well as in the description of the system itself. When the

presence of external disturbances are accurately known, then their effects can be

accounted for during the design process. In most cases, however, it is not possible to

know a priori the specific nature of such disturbances or their possible effects on the

system. Accordingly, it is often necessary to design control systems with adequate

disturbance rejection properties.

Similar to the effects of disturbances, uncertainties in the description of the plant affect

the system's closed loop performance. This resulting degradation in performance may

manifest as a slightly more oscillatory system, or it may result in an unstable system.

Uncertainties of this nature arise because infinite dimensional nonlinear time varying

systems are often approximated by finite dimensional linear time invariant models.

The ability of a system to adequately reject external disturbances and noisy

measurements is an indication of it's performance capabilities. The performance of a

17



system is generally measured by how well the system is capable of tracking command

signals and/or regulating specific outputs. The effects of these uncertainties on the

system is a degradation in the desired output response of the system. When properly

formulated, tracking properties can be considered a form of disturbance rejection since

it is desired to regulate the tracking error to zero.

The assessment of how resilient a system is to internal changes due to parametric

variations and unmodelled dynamics is a measure of how robust the system is. As

noted above, if not properly developed, feedback control systems can become unstable

in the presence of modelling errors. Systems which exhibit stability in the face of

significant changes in plant structure are said to have good stability robustness

properties.

In general there is a tradeoff between the performance of a system and its robustness

properties. Tracking requirements and disturbance rejection properties require

increased closed loop bandwidths, while robustness to unmodelled dynamics requires

smaller bandwidths. When no uncertainties exist in a model, high performance control

laws capable of following command signals with very high frequency content can be

developed. In all practical situations, however, linear models neglect high frequency

dynamics which result in significant errors between the model and the actual plant.

When the control system has the ability to respond to frequencies where unmodelled

dynamics have appreciable magnitude, the system may become unstable. This potential

for instability requires that the bandwidth of the closed loop system be restricted in such

a way as to prevent the control system from responding to signals above a critical

frequency.

18



The majority of analysis and design techniques assume that a sufficiently accurate

model of the plant to be controlled has been formulated. Although some methods draw

conclusions about the effects of uncertainty on the response of the closed loop system,

only a few have made attempts to directly incorporate the knowledge of uncertainty into

the design procedure.

One of the primary objectives of robust control theory is the development of

methodologies that explicitly formulate the control problem so as to account for

uncertainties in the modelled system. By accounting for known plant variations and

possible model errors, the control systems will be provide closed loop stability not only

for the nominal model, but also for a range of plants characterized by the nominal

model together with its uncertainties.

Another aim of robust control theory is to extend the application of linear feedback

control into areas of nonlinear and time varying processes. By incorporating

information concerning the differences between the nonlinear time varying model and

the linearized approximation, it may be possible to develop feedback control laws

using linear time invariant (LTI) models that respond just as well for the non-linear

system.

The next few sections discuss some of the most important advances in robust control

theory to date. The first section discusses the importance of the small gain theorem in

the establishing sufficient conditions to guarantee stability in the presence of expected

model errors, as necessary and sufficient conditions to insure adequate performance,

and finally as a measure of robust performance. After an appropriate controller has

been determined, the robustness of a system can be verified in the frequency domain by

applying the small gain theorem.
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The second section introduces the structured singular value and demonstrates its

importance to the reduction of conservatism when the uncertainty has a block diagonal

structure The third section introduces the importance of the Hoo problem and

addresses how its results allow the designer to explicitly formulate the control problem

to satisfy both performance and robustness criteria simultaneously.

Finally, the last section of this chapter discusses the newest addition to robust control

theory, g-synthesis. Section 2.2 demonstrates the importance of using the structured

singular value to reduce conservatism in the small gain theorem, while Section 2.4

shows how p-Synthesis utilizes the results of the structured singular value to reduce

conservatism in the solution to the Hoo problem.

2.1 Small Gain Theorem

In classical designs, the stability of the closed loop system is measured by means of

gain and phase margins. The Bode plot of the open loop transfer function G(s)K(s)

indicates how much uncertainty in gain and phase characteristics a system can

withstand before its stability is affected. The Nyquist Stability Theorem provides

necessary and sufficient conditions for determining the stability of the closed loop

system:

Theorem 1. Nyquist Stability Criterion [20]

The closed loop system is stable if and only if the graph of

G(jo)K(jco) for -oo to oo encircles the point -+Oj as many times

anticlockwise as G(jco)K(jo) has right hand plane poles.
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The gain margin of the system is defined to be the minimum change in gain

(either up or down) which alters the number of encirclements of the point -1 +Oj.

The phase margin has a similar definition: the minimum phase shift a system

could experience without changing the number of encirclements of the point -

l+Oj.

The Generalized Nyquist Criterion (GNC) attempted to extend the fundamentals

of the classical Nyquist Criterion to the multi-input multi-output (MIMO)

framework of modern control theory. In the MIMO framework, the

Generalized Nyquist Criterion established similar rules, but looked at the plot of

det[I+G(s)K(s)]. As in the classical theorem, changes in the number of

encirclements of the point -+Oj was the criterion for establishing stability

margins.

In the MIMO framework, changes in gain were not as simple to assess as they

were in the single input single output (SISO) case. This difficulty led to the

development of error models which provided information regarding the

maximum possible error bound for the model at each point in frequency. The

stability of the system was then verified by plotting circles, or Gershgorin

bands, around a discrete set of points in the frequency domain. The radius of

the circle was the magnitude of the largest error expected at that frequency. If

one of the bands overlapped the point -l+Oj, the stability of the system was

uncertain. This provided only a sufficient condition for stability, since it

assumed no phase characteristics, and also assumed that the largest possible

model error could occur in any direction in the space of the system.
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A simple extension of the Generalized Nyquist Criterion, thle small gain theorem is

perhaps the most utilized theorem in the field of robust control. Given a stable closed

loop system M(s), the small gain theorem provides a measure of how stable the system

is to a particular model uncertainty A(s). This theorem provides the same sufficient

conditions as the GNC and the Gershgorin bands, but it's application is simpler and

more structured.

Figure

Based on the feedback system of Figure 2.1, the small gain theorem states that:

Theorem 2. Small Gain Theorem [20]

If M(s) is stable, the closed loop system of Figure 2.1 is stable for

all functions A which satisfy:

* A(s) is a stablefunction

* IIA(s)JI < 1 for all s = jw

if and only if IM(s)I_ < 1 for all s=jo

Proof: If M(s) is stable and A(s) is stable, then the feedback

system of Figure 2.1 can only become unstable if one or more of the

characteristic loci of -AM encircles the point -1+Oj or equivalently,
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det(l+AM)=O. If the characteristic loci, Ai(M(s)A(s)) , the spectral

radius, p(e) , the maximum singular value, v(-) , and

Li (Ma)l< p(MA) (MA) (2.1)

then no encirclements of -1 +Oj can occur if U(MA) < 1 at each point

in frequency or, equivalently if,

IIMAIL < 1 (2.2)

Using the triangle rule, and the fact that 11AIl_ < 1

IUM(s)IL < 1 (2.3)

Based on the results of the small gain theorem, if the maximum singular value of the

closed loop transfer function is less than the inverse of the minimum singular value of

the uncertainty, the system is guaranteed to be stable. Note that this theorem is only a

sufficient condition for stability; if the condition is violated, the system may or may not

be unstable.

Stability requirements as well as performance specifications may be formulated as small

gain problems. By finding the appropriate transfer functions for M(s) a designer can

verify performance goals, stability requirements and robust performance.

2.1.1 Stability Robustness

When the model of a system is known exactly, there is no need to determine stability

margins. If however, the model is a linearized reduced order approximation to a

complex system, significant modelling uncertainty exists. There are several ways of
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representing this uncertainty. Three of the most popular methods for capturing

uncertainty due to unmodelled dynamics are:

* Multiplicative Input Uncertainty

Ga = Gom(1 + WAi) (2.4)

* Multiplicative Output Uncertainty

Ga = ( + WAo)Gm (2.5)

* Additive Uncertainty

G = G, + dG where dG = WAa (2.6)

In the representation of the uncertainty, W is a real rational stable transfer function

which represents the maximum model error over all frequency. The uncertainty block,

A, is a stable transfer function whose AIL[ < 1 . The A block contains all the phase

information, i.e. it represents any possible phase variation.

Using the results of the small gain theorem, sufficient conditions for robust stability of

the system of Figure 2.2 can be expressed as either

~((I + GK)-' GK) < (WAi)-1 (2.7)

or,
JjIIw (I+ GK)-' GKJ < 1 (2.8)

Actual Plant

error model ! _ _ _ _ _ _ _ _ _ ,
X . X k

Figure 2.2 Output Multiplicative Error
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The first result is a statement of the small gain problem while the second is expressed as

a requirement for satisfying the small gain problem of Figure 2.1.

In many instances one error model will not be sufficient to capture the differences

between the real plant and the model. In such cases, additional error models may be

incorporated into the block diagram of Figure 2.2. For example, the system shown in

Figure 2.3 has multiplicative modelling errors at both the input and output of the plant.

This problem may arise when there is uncertainty in the actuator and in the output of the

plant. Here, the small gain theorem must be applied using both uncertainty models

simultaneously. It is not sufficient to verify the norm inequalities for the transfer

functions of Al and A2 separately.

In order to apply the small gain theorem to a multiple uncertainty problem, the engineer

must redraw the block diagram as shown in Figure 2.4.

Figure 2.4 Two Block Uncertainty
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The transfer function, M(s) is represented by

[ (I + KG)- 'KG W(I + KG)-1K 1
M(s)= W2(I + GK)-1 G W2(I +GK)-1GKJ (2.9)

Satisfaction of the small gain theorem requires that IIM(s). < 1.

The uncertainty structure represented by Figure 2.4 has a block diagonal structure. The

straightforward application of the H. norm provides a very conservative result.

Section 2.2 will discuss a method to reduce the conservatism of this result.

2.1.2 Performance Optimization

In the design of control systems performance criteria are generally specified as input

output relations. Typical performance criteria include:

v Disturbance Rejection

* Command Following

* Minimum Control Use

* Zero Steady State Error

One way of attempting to meet certain performance specifications is to augment the

plant with weighting filters. For example, an integrator is placed on the tracking error,

a high pass filter is used for low frequency disturbance rejection, and a low pass filter

is used for high frequency noise attenuation.

Once a feedback control law has been determined, satisfaction of the performance

requirements can be assessed by application of the small gain theorem. Unlike the case
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of robust stability, when the problem is properly formulated, the application of the

small gain theorem provides both necessary and sufficient conditions for verification of

frequency specified performance criterion.

Figure 2.5 shows the small gain formulation for performance; w represents all external

disturbances, and z represents all performance variables to be minimized.

When IM(s)Il < 1 the desired performance criterion has been achieved. If there exists

a region in which IIM(s)IL > 1, then the performance is degraded at that frequency

band. The I1-110, norm provides a measure of the degradation. If JIM(s)ll = 1.5, then

the performance specifications are degraded by 50% of their desired level.

2.1.3 Robust Performance

It is generally desirable to guarantee a minimum level of performance over a range of

plant variations. This can be achieved by combining the results of sections 2.1.1 and

2.1.2. A closed loop system can be analyzed by placing weighting functions and error

models on all appropriate transfer functions and then applying the small gain theorem.

It is important however, for the designer to remember that there are conflicting

requirements between high performance and good robustness. In particular, the system

is constrained by:

S(s) + C(s) = 1,
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where S(s) is the sensitivity function and C(s) is the complementary sensitivity

function. In order to guarantee a minimum stable performance in the presence of

modelling uncertainty, the system must satisfy the small gain theorem of Figure 2.6.

where Au and Ap represent the unstructured uncertainty and performance requirements

respectively. Whenever a problem contains unstructured uncertainties and performance

requirements it will have the block diagonal structure of Figure 2.6.

2.2 g-Analysis

The application of the small gain theorem to problems which contain multiple

uncertainty blocks, (see Figure 2.3) or to problems with a mixture of performance and

stability robustness specifications (see Figure 2.6) introduces one of the most serious

limitations in the application of the lieL| norm. When more than one specification is

given, the uncertainty block, A, takes on a block diagonal structure. By blindly

applying the 1[e[1 norm, no attempt is made to utilize this structure. The result is an

excessively conservative estimate of the minimum perturbation that can destabilize the

system.

When the uncertainty block has a diagonal structure, the inputs and outputs of the

system are related in sets defined by the block structure.
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U1 M(s)

U 2
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Figure 2.7 Effects of Scaling

When considering simultaneous perturbations, there is no way of eliminating the cross

effect of the input ul to the output Y2. In Figure 2.7, the input ul is related to the

output Yi, but not to the output Y2. In determining the jIM(s)ll it is mathematically

assumed that all the inputs are meaningfully related to all outputs. The conservatism in

the Ilol1, norm arises because of the relative difference in scales between inputs and

outputs which are not associated with the same uncertainty block. Since 11*l11 calculates

the largest magnification of a signal between all inputs and all outputs, this scaling

problem may exaggerate the relative importance of one input set to an unrelated output

set.

Figure 2.7 shows the effect of scaling on the input/output nature of the system. In the

top picture, the relations between ii and y are simply

Yl -= Mlu + M 2u2 (2.)
Y2 = M 21 U1 + M22U2

When the transfer function between ul and Yj is scaled, the relations between U and 

become

Y1 = Mlul + k M 1 2 2 (2.11)

Y2 = kA21u + M22u2
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In the above example, it is obvious that for certain choices of k, the input ul has an

exaggerated effect on the output Y2. This demonstrates the severe limitation of 1111 .

While it is important to consider the effects of simultaneous perturbations, the scaling

between unrelated input /output sets may result in overly conservative estimates of

IIM(s)L.

In 1982, John Doyle [17] introduced the structured singular value as a method of

reducing the conservativeness associated with block diagonal perturbations. The

structured singular value utilizes the uncertainty structure of A to optimally scale the

inputs and outputs of the system, minimizing the influence one input set has upon an

unrelated output set.

There are two types of uncertainties which arise in problem formulations: repeated

scalar blocks and full blocks. Let S denote the number of repeated scalar blocks and F

the number of full blocks present in a specific problem. Repeated scalar blocks have

dimension r associated with the number of places the scalar uncertainty arises in the

problem, so the ith scalar block has dimension ri. Like repeated scalars, full blocks

can be of any dimension and are not necessarily square matrices. To simplify the

explanation of the structured singular value, however, it will be assumed that all full

blocks are square matrices. In this case, the dimension of the jth full block is mjxnmj.

The total perturbation A is a compilation of all scalar uncertainties, 5, and full block

uncertainties, A. Given the S scalar uncertainties and the F full block uncertainties, A

is defined as

A ={diag(3jr ..... slA .... A) I i SC, A Cijx " } (2.12)

For consistency, the dimension of A should be the same as that of M.
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Figure 2.8 General Interconnection

Having defined the total structured uncertainty form A, is defined as the inverse of

the smallest A which makes the feedback system of Figure 2.8 unstable, i.e.

det(I+MA)=0.

0 if no A solves det(I + MA) = 0

u(M) = 1 1 (2.13)

[A, {a(A)I det(I + MA)=0}(3

There are two degenerative cases to which the definition of g is expected to simplify to:

* A represents a single full block uncertainty

A e C " XMm u(M) = U(M) (2.14)

* A represents a single repeated scalar uncertainty

A C s.t. A =I P(M)=p(M) (2.15)

These relations are consistent with the expected solution of the small gain problem

using the appropriate norm bounds.
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Some other properties associated with . are

* There exists a D, DAD1 = A

* (M) = (MU) = (UM)

*t p(DMD') = (M)

where D has a block diagonal structure similar to A, and U is a unitary matrix.

The first property above states that there exists a matrix D that has the same block

stru%.ture as and commutes with A. Since A is block diagonal, each entry on its

diagonal commutes with the same entry of D. Therefore, D has the following structure

D = diag(D .... Ds,d-,,l,..dI,) (2.16)

In this way, Di commutes with repeated scalar blocks iI, , and dI, commutes with

A.

It was shown in [17] that the value of ,I(M) is bounded above and below by

max inf
U p(UM) < I(M) < D (DMD- ) (2.17)

U D

It was further proved that the lower bound is always an equality. Unfortunately, the

maximization problem is not guaranteed to converge to the global minimum. There are

problems that exist which contain many local maxima, and gradient techniques have

been known to converge to the nonoptimal solution.

Doyle also proved that in certain special cases the upper bound is also an equality. This

equality is important, since it can be shown that the minimization of DMD -' has no

local minima which are not global. These special cases occur when A has no more than

three blocks; where each block represents a separate uncertainty or performance
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Figure 2.9 Optimal Scaling Block Diagram

specification. For cases in which A contains more than three blocks it has been shown

that the upper bound remains reasonably tight. In fact worst case convergences have

had accuracies of 85%, whereas most others have been approximately 95% correct.

It is generally simpler to intuitively understand the function of g when one considers

the case of three or fewer blocks and uses the upper bound as the definition of g. The

scaling matrix, D, is represented point by point in the frequency domain as a diagonal

matrix of frequency-varying scales. As noted, D commutes with A, however, D does

not commute with M(s). As shown in Figure 2.9, the appropriate choice of D, scales

the off-diagonal terms of the matrix DMD-'. By searching for the D that minimizes the

maximum singular value of DMD -1', the conservatism of the Ill norm is reduced.
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Figure 2.10 Maximum vs. Structured Singular Value

A brief example may be helpful at this point: Given a two-by-two constant matrix M,

[20 21

Z(M) = 20.1355

the maximum singular value of M equals 20.1355. Figure 2.10 plots an ellipse that

represents the locus of possible amplifications of the matrix M as a function of the input

direction. It is obvious that the maximum singular value is much greater than the

minimum singular value. This is evidenced by the elongation of the ellipse.

To apply the small gain theorem to this matrix would require that the maximum singular

value of M be less than some prespecified magnitude. Satisfaction of this requirement

produces extremely conservative results for directions other than that of the maximum

singular value.
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Using a gradient search supplied in the . Tools software package, the D scale is found

to be

D=[.316 0] Al 43.16 0]D=D[ 1 01

so that,

1 6.32
DMD-I = 6.32

16 .2]

U(DMD- ) = u(M) = 7.84

When the system matrix M is scaled by this optimal D, the maximum singular value is

reduced to 7.84. This shows clearly that without scaling, the results of the 11II11 norm

are quite conservative. Figure 2.10 shows the loci of amplifications of DMD-' as a

function of input direction. In this case, the scaling has reduced the elongation

considerably. The off-diagonal terms of DMD- have been equalized as much as

possible, given that they are equivalent. Application of the small gain theorem to the

matrix DMD- results in a much less conservative estimate of stability. As an item of

comparison, the locus of amplifications of the system matrix with the least amount of

conservatism is represented by a circle, so that every direction has the same amount of

magnification.

2.3 H Design Methodology

The H. design methodology has become in recent years one of the most popular of the

modemrn control techniques. The reason for its popularity is its ability to formulate the

control problem as a frequency domain optimization process. This technique first

appeared in the literature in a paper by Zames [ 11], in which the emphasis was placed

on sensitivity optimization. In 1988, Keith Glover and John Doyle published results
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which generalized the sensitivity optimization process and provided a direct state space

solution [21].

Previously, researchers in the field of modern control investigated time domain

optimization techniques. These techniques assumed a specific nature of the inputs and

the disturbances of the system - primarily, that they assumed a certain spectral

distribution as well as specific probabalistic magnitudes such as covariance intensity

[22], [23]. In cases where nothing was known about the inputs and disturbances,

except that they contained a finite amount of energy, it became more meaningful to pose

the problem as a minimization of the maximum possible energy amplification of the

system's output.

Further research showed that minimizing the appropriate weighted transfer function

norms made the Hoo optimization a powerful tool for loop shaping techniques [9]. This

utility had great appeal to classical designers, as they now had the ability to formulate

the control problem as a weighted sensitivity optimization process. Moreover, it

allowed them to explicitly augment the system with information about bandwidth

limitations based on norm bounded unmodelled dynamic error models.

The following sections give a concise overview of the Hoo methodology. More detailed

information on the theory behind Hoo solutions can be found in the works of B. A.

Francis [24] and Glover and Doyle [21].

2.3.1 The Hoo Norm

The Hoo norm is one of several operator norms used to describe the possible

amplification of a signal entering a system. The Hoo norm is defined as

11G(s)ll = sup (G(jw)) (2.18)
0o
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where IIG(s)ll. satisfies the usual properties of nonrms- namely,

IIGII 0 with IIGII = 0 iff G = 0

IlaGil = alllGI! for any scalar a

JIG + HiI < jIGII + IiHM

||GHI < GJIJIHl

The HO, norm is referred to as an operator norm because it represents the greatest

possible amplification of the mapping of the operator, G(s), which maps a function, the

input signal, into another function, the output signal.

To fully understand the meaning of the Hoo norm, consider the input signal u(t) which

is known to have a finite amount of energy as measured by

IuII12 = ruT dt (2.19)

but no other information regarding the signal is available. The H,, norm describes the

greatest increase in energy that can occur between the input, u, and the output, y, for a

given system, G. This was proven in a theorem by Vidyasagar, 1985 and Francis,

1987 and is stated as

Theorem: 3

If IluI2 < and y(s)=G(s)u(s) and G(s) is stable and proper and has no

poles on the imaginary axis then:

sup! = IIGhIy (2.20)

Proof: omitted. see [24]

Intuitively, the H. norm can be realized as the peak point in a maximum singular value

plot of the transfer function G(s) as shown in Figure 2.11.
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Figure 2.11 Maximum Singular Value and Ho

2.3.2 The Hoo Problem Formulation

A block diagram depicting the H., problem formulation is shown in Figure 2.12. This

diagram is often referred to as a linear fractional transformation.

w z

Figure 2.12 Linear Fractional Transformation

The vector w, represents external inputs to the system and the vector z represents

signals which mathematically describe design objectives. Since the transfer function

relationship between w and z represents a set of mathematical relations characterizing

the desired system response, it often contains weighting functions which represent

various performance objectives and norm bounds on error models.
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The vector y contains all measured variables that will be used to provide the controller

with information about the plant. The controller, K(s), generates a feedback signal

represented by the vector u.

If P(s) is partitioned as

P(s) [P2,(s) P(s)]

then the relatior between the inputs and the outputs of the system can be expressed as

z = Plw + P 2u (2.21)

Y = P21w + P22 u (2.22)

Using the relationship u=Ky, equations 2.21 and 2.22 can be combined to obtain:

z = [P 1 + P 2K(I - P22K)-' P, ]w (2.23)

The expression in brackets is often denoted as F,(P,K), so that 2.23 can be expressed

as

z = F (P,K)w (2.24)

From this expression, the Hoo optimization process is stated as: Find K(s) which

stabilizes the closed loop system and minimizes IF, (P, K)i

The term Hoo is defined as the set of transfer functions of asymptotically stable,

realizable systems. Therefore X E H. means that X is an asymptotically stable

realizable system. The Hoo problem arises because it is desirable to minimize

IF, (P, K)l over all F, (P,K) , such that F (P,K) e H and the feedback combination of

P and K is internally stable [20].
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2.3.3 Loop Shaping and Plant Augmentation

The original Ho problem was formulated as a sensitivity optimization problem (Figure

2.13) In that case, the optimization criterion was

minimize IISL where S = (I + PK)- '

It was soon found that this minimization could be improved upon by augmenting the

output y with a weighting filter. An appropriate choice of weighting filter was one that

had unity gain at frequencies at which the sensitivity minimization was important and

attenuated the signal above the cutoff frequency. The new problem was formulated as

minimize W(s)S(s).

where W(s) represented the weighting filter.

The solution to the above minimization problem had one complication: it produced

controllers with infinite bandwidth systems; there was no explicit criterion in the

problem formulation to limit the bandwidth of the system. This led to the formulation

of the mixed sensitivity problem:

minimize W(s)S(s)
W(s)C(s)

where Wu(s) represented a bound on the expected modelling error of the open loop

plant and C(s) was the closed loop transfer function.
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Figure 2.14 Standard Hoo Feedback Formulation

This problem optimized the sensitivity of the system for disturbance rejection while

satisfying the stability robustness criterion for stability in the presence of unstructured

modelling uncertainty.

The standard Hoo problem formulation is depicted in Figure 2.14. The minimization

criterion is

W(s)S(s)
minimize W(s)C(s)

W (s)R(s)ll

where R(S) is the transfer function from w to the control u. Typically, the weights Wu

and Wc tend to perform the same objective: bandlimit the closed loop system. Wu is the

appropriate filter to use if the plant uncertainty is specified as a multiplicative output

error, while the weight Wc tends to model uncertainties which are additive in nature.
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There are some requirements on the structure of P(s) in order to insure that the solution

to the H.o problem is proper. P12 and P2 1 must be proper transfer functions. P21 can

be made proper by providing a noise signal to each measured variable. P12 can be

made proper by either weighting the control transfer function, R(s), with a proper

weight, Wc(s), or selecting a Wu(s)G(s) combination that is proper. If Wu(s)G(s) is

not proper, a relatively small weight can be placed on the control TFM R(s) without

interfering with the general solution of a mixed sensitivity/weighted output design.

2.3.4 The Glover-Doyle Hoo Solution

In 1988, Keith Glover and John Doyle published a paper which provided a state space

formula for determining all stabilizing controllers that satisfy an H,o norm bound [21].

Specifically, the solution to their algorithm provided the set of all stabilizing controllers

K(s) such that

I1F,(P,K)II < y (2.25)

for some prespecified y 91.

The following state space solution to the Hoo problem is taken directly from the paper

published by Glover and Doyle in 1988. This solution minimizes the Hoo norm for the

linear system represented by

x = Ax + Bow + B 2u (2.26)

z = Cx + D,,w + D 12u (2.27)

y = C2x + D21w + D22 u (2.28)

where w E 9r, u E 9, z E 91, y E 9P2
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In order to determine the solution to 2.25, the system of 2.26-2.28 must satisfy the

following assumptions:

* (A,B2) is stabilizable and (A,C2) is detectable.

(This is required for the existence of a stabilizing controller K)
* D12 is full column rank and D21 is full row rank

(This is sufficient to ensure that the controllers are proper)

* [A.-i! B2 ] has full column rank for all co
Lc, D12J

* [A -C Dm ] has full row rank for all co

Along with these above assumptions, a scaling of u and y and a unitary transformation

of w and z are necessary in order to simplify the algorithm notation. The scaling

assumes that it iz possible to arrange D12, D21 and Dll as they are shown below:

[0] D2 =[O I]

(D1111 D11121

LDI 21 D1122

where D1122 has m2 rows and P2 columns. The following notation is introduced to

simplify the equations:

R = D.D, - [ 2im o where D,. = [DI D]

R = D:,l - [ where D.1 = [D*1D21*

43



Based oil the results of Glover and Doyle, the solution to the Hoo problem is solved by

finding the solution to the following two Riccati equations, denoted XOO and Y.

respectively:

XA- BR-D, Cl) + (A - XBD.C) X.. - X.BR-'BX._ + C1(I-D 1 .R-'Do)C =0 (2.29)

Y.(A-B D:-C) +(A-B D:R-'C)Y. - Y.Ci'-CY + B (I-D* iR-D., )B* =0 (2.30)

The state feedback and output injection matrices are defined as:

F =-R-(DC, + B°X.) partitioned asF =[FI F F'

H = -(BID:, + Y.C)R -1 partitioned as H = [H,, H12 H2]

Given the Riccati equations 2.29 and 2.30, the solution to the Hoo problem is stated on

the following pages without proof. This solution is taken directly from [21].

Theorem 4 Glover and Doyle Algorithm

For the system described by 2.29 to 2.30 and satisfying the above

assumptions:

a) There exists an internally stabilizing controller K(s) such that

IF,(P,K)IL < y ifandonly if,

i) y > max(U[o,,,,o,2], oD;,,D,2 ])
and,

ii) there exists X. > 0 and Y_ > 0 satisfying 2.29 and 2.30

respectively and such that p(X.Y.) < 2

b) Given that the conditions of part a are satisfied, then all

stabilizing controllers K(s) satisfying F, (P, K)| < y are given by

K = F(Ka,() for arbitrary E RHi such that 1111J < r
where,
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A B, B 2

= D1 D12,

LC2 D 21 0

b.. = -D..:.D;.. (y~ - O ;. )-' DI..2 - DI12
D12 R2"'x and , e RXP2 are any matrices satisfying

D,2D12 = I- D1 121 (7 yI-D 111D1 11 1) D;1 21

152, = I - D1(y 2 I- 1 D;) D12

and
B2 = (B2 + H12 )D1 2

C2 =-D21 (c: + F,2)Z

=-H 2 + B2D2
C1 =F 2 Z+ DIlD 2 C2e, = 

A = A+HC+B2D 2C,

where

Z = (I - 2Y X) -1

Using the Glover and Doyle algorithm, one can find the controller which minimizes

IIFI(P,K)II by successively reducing the value of y : il the limiting value yo is

reached, such that p(X., Y.)= y , or until one of the two Ricatti equations fails to

have a positive semi-definite solution.

The solution to the above set of nonlinear equations provides the set of all stabilizing

controllers, where 4> is arbitrary, which minimizes equation (2.25). One solution,

called the maximum entropy controller, is found by setting 4D =0. It has the realization

K = (, B,C 6,D,1 ) (2.31)

and therefore has the same dimension as the augmented plant P(s).

The above solution is determined for the case where D22=O, which can be validly

assumed in this particular problem formulation. The addition of D22 can be performed

by applying the algorithm to the plant
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P =P- 0 D22 (2.32)

and obtaining the controller K . The desired controller is then of the form:

K = K(I + DK)-' (2.33)

2.3.5 H Insight

There are two results of the Hoo, process which warrant further discussion. The first is

the loop shaping capability, and the second is the nature of the controller.

Because the I-H, optimization process minimizes the cost function 11F(P,K)IL less than

some prespecified value of y, the designer has the ability to shape certain performance

loops as desired, so long as he/she chooses weights that are not conflicting in nature.

The best way to understand how loop shaping is accomplished is to assume that given

the appropriate choice of weightings a minimum value of y=1 is achieved. In this case,

the optimization process guarantees that

Wp(s)S(s)] <
IlW(s)C(s)l -

This solution insures that for all frequencies, the following relationships also hold:

IIWP(s)s(s)l< 1 and,

IlW(s)C(s)ll < 1

Using the above relationships and the properties of norms, it is easy to prove that

(S(s))< Wp(s)-l and,

Z(C(c)) < Wu (s)-'l for all o
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The choice of weighting filters should be the inverse of what the designer actually

wants the loop shape to be. In the case of unstructured uncertainty, the weighting

filters should be an error model which represents a bound on the maximum expected

plant uncertainty. In that case, the solution to the Hoo problem would be one that

satisfies the small gain stability robustness criterion.

The Hoo optimization procedure is an excellent method for synthesizing controllers

where the performance objectives and stability requirements can be expressed as

functions of frequency loop shapes. In such cases, formulation of the Ho problem and

minimization of y<1 guarantee that all design objectives have been met and satisfy the

small gain theorem. There is difficulty, however, when one desires a specific transient

response to input commands. Choices of weighting filters to accomplish time domain

transient goals are much more difficult and generally require several iterations before

the designer receives a response which satisfies his/her specific goals.

The basic idea behind the Hoo compensator is that it inverts the stable dynamics of the

plant and substitutes in their place desirable dynamics prescribed by the weighting

filters. In the inversion process, the stable poles are cancelled by zeroes and the stable

zeroes are cancelled by poles. Unstable poles and zeroes are replaced by mirror image

stable poles and zeroes [16].

This plant inversion process has been shown to provide results which are sensitive to

parametric variations when the poles being inverted are lightly damped resonant pole

pairs [14]. The purpose of this thesis is to suggest alternative problem formulations

which provide Hoo solutions that are robust to the parametric variation that influences

the location of lightly damped poles.
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2.4 -Synthesis

The primary objective of Hoo theory is to minimize F, (P, K)I over all frequencies. It

has been shown above that there are specific types of problem formulations in which

the 1'll norm produces conservative estimates of the maximum amplification. These

conservative results in the application of the 11'11 norm to the solution of the Hoo

problem suggest that solutions of the Hoo problem may also be conservative in nature.

Indeed, the above statement has proven true [6]. When determining a controller K(s)

for the Hoo problem, the solution is extremely sensitive to the scalings of inputs, in

relation both to one another and to their corresponding outputs. When the Hoo

algorithm is formulated to satisfy a small gain problem that has a block diagonal

structure, the results may be extremely conservative.

Section 2.2 demonstrated the effectiveness of applying an optimal scaling procedure to

the analysis of the small gain problem. This section discusses the newest theory in

robust modern control, g-synthesis. -Synthesis utilizes the optimal scaling procedure

of the structured singular value to reduce the conservatism of the Hoo problem solution.

The g-Synthesis problem becomes one of finding a stabilizing controller K(s) and a

scaling matrix D(s) such that

I|DF,(P, K)D-'il_

is minimized. The specific solution to the -Synthesis problem has not been

analytically determined. However in [19], Doyle recommends the so-called D-K

iteration as a method of approximating the solution to the g-synthesis problem. The D-

K iteration is a systematic way of calculating the controller K(s) and the dynamic scales
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D(s) to converge to a sub-optimal solution. The first step in the t-synthesis problem to

formulate the original H., problem as a minimization of

JIF,(P, K)Il

If the synthesis of the controller K(s) meets the required specifications, there is no need

to proceed further. If the Hoo norm is not less than the desired value, the closed loop

block of Figure 2.15 is analyzed using the structured singular value.

Figure 2.15 Analysis

In the analysis of the structured singular value, optimal D scales are calculated to

improve the scaling of the system matrix. These D scales are approximated with real,

minimum phase invertible transfer function weighting matrices. If the bound meets

the specified criterion, then the procedure is complete. If, however, it does not, the D-

scales are absorbed into the open loop plant as demonstrated by Figure 2.16.
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Figure 2.16 Ix-Synthesis

Once the D-scales are absorbed into the plant, a new controller K(s) is determined.

This new controller will have an increased number of states, since the D-scales have

states of their own. The increase in the order of states is four times the number of

states used in the D-scale approximation. Half of the states are present in the controller,

and half in the plant's D-scales. After the controller K(s) is determined, the structured

singular value is assessed again. If the design goals are met, the procedure is stopped,

if not, the procedure continues to iterate on the selection of K(s) and D(s). Hence the

name D-K iteration.

It should be noted that the solution to the -synthesis problem using the D-K iteration

does not guarantee convergence to the optimal solution. Although each step in the

process is guaranteed to solve the appropriate optimization process; K(s) minimizes

IF,(P,K)IL and D(s) minimizes IIDF,(P,K)D-'IL , the joint minimization of

JJDF, (P K)D -'l is not guaranteed based on this stepwise approach.

Another difficulty present in the g-problem is that of developing D-scales for repeated

scalar uncertainties. When the uncertainty is a repeated scalar of dimension r, the D

scale which optimally scales the uncertainty constitute a full matrix of dimension r.
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There is currently no method for implementing a full matrix D-scale with real rational

transfer functions. Therefore, in the g-synthesis problem, the calculation of D-scales

for repeated scalars must be a suboptimal approach. The approach used is to assume

for the synthesis problem that the uncertainty of dimension r actually represents r

different scalar uncertainties of dimension 1. This assumption produces conservative

results, but the conservatism of this approach is still much less than that of ignoring the

block diagonal structure.
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Chapter Three:

The Model: Tactical Missiles

One of the most challenging problems in the area of guidance and control is that of a

modem tactical air to air missile in pursuit of a highly maneuverable aircraft. The

missile's dynamic motion is characterized by a set of nonlinear, time varying, coupled

differential equations. The inability to directly develop control systems for differential

equations of this nature makes the design of high performance robust control systems

extremely difficult.

The missile, in an attempt to intercept the aircraft, often undergoes dramatic changes in

flight conditions and experiences high acceleration rates capable of exciting a multitude

of unmodelled high frequency dynamics. The parametric variations associated with the

changes in flight conditions and the possible excitation of high frequency unmodelled

dynamics may cause the performance of a missile's control system to degrade and in

many cases, to become unstable.

The changes in flight conditions affect the nominal operating point around which the

missile's control system is designed. In general, a series of control laws are developed

which are scheduled as a function of flight condition. One of the more difficult of

parameters to schedule is angle of attack. Along with being difficult to measure, the
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angle of attack changes rapidly during the pursuit of an aircraft and hence is difficult to

schedule accurately, necessitating robust design techniques.

The following sections discuss the development of the linear time invariant model used

for synthesizing a longitudinal missile control system.

3.1 The Dynamic Model

The synthesis of missile autopilots requires the characterization of the dynamic motion

of the missile in flight. There are six equations of motion which describe a body in

three dimensional space: three force equations and three moment equations. When the

mass and moments of inertia are assumed constant the equations of kinematic rigid

body motion can be expressed as the Euler's equations below.

Translational Dynamics

m(u+ qw- rv) = F + g (3.1)

m(v+ ru- pw) = Fy + gy (3.2)

m(w+ pv - qu) = F, + g (3.3)

Rotational Dynamics

In p-(Iyy - I)qr + Iy,(r2 -q 2)- I.(pq + )+ l(rp-q)= T.TL (3.4)

Iw q-(I -)rp+g (p2-r2)a-I ty(qr+ p)+l n(pq-)= TM (3.5)

I.- (I - I)qp + (q2 _p2)_ Iy (rp + q)+ Ixz(qr-p) = TN (3.6)

where gxgy, and gz are the components of gravity along each axis.
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Angular rates
Component of
velocity on axis
Force along each
axis
Moments about
each axis
Moments of
Inertia

r

I w

N

IZz

Table 3.1 Body Axis Notation

U

X

L

Ix x

The Euler equations (3.1) to (3.6) are expressed in the body axis of the missile. Figure

3.1 shows the standard axis system used to describe the axis relative to the missile

body, while Table 3.1 lists the symbols which denote the various components of force,

moments, and velocities along each of the three axes.
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In order to simplify the equations (3.1) to (3.5), several assumptions are made:

1) The missile's mass is symmetric with respect to the xy, yz, and

xz axis. This eliminates the cross products of inertia. (Ixy = Iyz

= Ixz = 0)

2) Gravity is ignored. This omission will be compensated for in the

implementation by introducing a DC bias into the system.

3) In order to design a linear control system for the longitudinal

motion of the missile, it is assumed that motions in the

longitudinal plane do not influence motions in the lateral plane

(p=r=v=0).

The above simplifications reduce Euler's equations to the following three nonlinear,

coupled differential equations:

m(u+ qw) = F. (3.1a)

m(w- qu) = A F (3.3a)

Iyy q = TM (3.5a)

If pitch rate were integrated to give the pitching angle 0, these equations would

represent a set of fourth order coupled differential equations describing the motion of

the missile in the longitudinal plane. There are two modes associated with these

equations: the phugoid mode and the short period mode. The phugoid mode, in

general, is a slowly varying mode and will be compensated for in the guidance system.

Therefore it is only necessary to develop a control system to control the short period

mode of the missile.
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In the short period approximation to the missile's longitudinal motion, it is assumed

that the forward velocity u is constant, u = U. This assumption eliminates the need for

equation (3.1a). Since there are only two differential equations left, two states are

sufficient to accurately model the short period mode of a tactical missile: angle of attack,

a, and pitch rate q.

3.1.1 Aerodynamic Forces

The force Fz and moment Tm are generated by the lifting and control surfaces of the

missile. In order to characterize the aerodynamic response of the missile, the forces

and moments are represented by the normalized aerodynamic coefficients, Cn and Cm,

respectively:

N =ypV 2SC (3.6)

M I 2 pV 2SlC. (3.7)

The lifting force, L, is defined as perpendicular to the velocity vector V. The force Fz

is related to the lifting force by equation (3.8) (see Figure 3.2):

F, =-Lcosa (3.8)
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The aerodynamic coefficient Cn is measured in the inertial axis normal to the wing. It

is therefore related to lift by equation (3.9):

C, = C cos ca. (3.9)

Finally, the force in the z direction, Fz, can be represented as

F. =-Ncos2 a. (3.10)

The velocities w and u can be represented as functions of the total velocity, as seen in

Figure 3.2. These relations are

w= Vsina (3.11)
u = Vcos a. (3.12)

The rate of change of angle of attack can be represented as

0 W 0* w a - (3.13)
u Vcos a

Dividing equation (3.3a) through by mass, m, and u, and using the relations (3.10),

(3.12) and (3.13), equation (3.3a) can be written as

QSC. cos a
a qQSC, mcosV (3.14)

where Q is the dynamic pressure. Dividing equation (3.5a) through by the moment of

inertia Iy, and using the relation (3.7), equation (3.5a) can be written as

* QSdCm (3.15)

5~~~~~~~~~~~~(.5
Since the aerodynamic coefficients Cn and Cm are nonlinear functions of many

different variables (e.g., mach number and angle of attack), the coefficients of Cn and
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Cm are expanded using a Taylor series to approximate the contribution of each

parameter to the total force. In this example, angle of attack and elevator deflection are

the only variables accounted for explicitly:

C. = C, + C.a + C,*dq (3.16)

C. = C. + Ca+C.dq (3.17)

where dq represents the deflection of the elevator.

After representing the aerodynamic coefficients by a Taylor series approximation,

(3.14) thru (3.17) can be combined and linearized around a trim operating point. This

analysis provides a linear representation of the dynamic equations for the short period

mode.

a Z a z+q+ z ldq (3.18)
V V

q = Maa + Mdqdq (3.19)

where,

z. =QSC,,na cosa (3.20)
m

Zd =QSCaq cos (3.21)
m

Ma QSdCa (3.22)

QSdC,(Mdq =~d~dq (3.23)
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3.1.2 Actuators

A linear actuator is used to move the control surface when commanded. This actuator

can be modelled as a second order system with a natural frequency of con=28 3 (rad/sec)

and a damping ratio of ~=.707.

dq s2 w, .24s +c2 dq, (3.24)

The actuators are limited to 55 deflection and 300 deg/sec deflection rate.

3.1.3 State Space Representation

Combining equations (3.18), (3.19), (3.24) together, the dynamic equations used to

describe the short period motion of a missile in flight can be represented in state space

form as:

z. Zdq a1 c
V Vq 

_, 0 M q + Idqc (3.25)

.q 0 0 0 1
dq 0 0 _o)2 -2'Ow dqL -

[A]=[Za 0 Zd 0]X+[ ]dq (3.26)
q 0 1 0 0- 0

Where the stability derivatives Zx, Max, Zdq,Mdq, are nonlinear functions of angle of

attack and mach number. The outputs, vertical acceleration and pitch rate, are measured

by an accelerometer placed at the C.G. and a rate gyro, respectively. This state space

representation is both controllable and observable.
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Figure 3.3 Plant Variation with Angle of Attack

3.2 Model Analysis

Figure 3.3 shows the open loop plant's maximum singular value variation as the angle

of attack changes from 0° to 20°. As the Figure shows, the resonant peak of the short

period mode shifts in frequency from approximately 3 rad/sec to 17.5 rad/sec.

This shift will make designing a robust controller extremely challenging. The Hoo

design methodology tends to invert the stable poles and zeros of the plant and add

additional poles and zeros to satisfy the design criterion. This pole-zero cancellation

technique will certainly produce unfavorable results in this case. Even classical designs

where notch filters are developed are difficult to implement on plants whose dynamics

vary so drastically with parameter changes.
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Variation of Open Loop Poles with Angle of Attack

-5 0

Real

Figure 3.4 Root Locus of Open Loop Poles

Figure 3.4 shows the root locus plot of the short period poles as the angle of attack is

varied. At a = 0 ° , there is an unstable right hand plane pole. This is because Cmi is

positive at 0' angle of attack, and the sign of CmGa determines the stability of the open

loop airframe: when Cmin is positive, the airframe is unstable. Positive values for

Cma occur when the aerodynamic center is forward of the center of gravity.

Since the open loop plant's parameters vary significantly with changes in angle of

attack, it is necessary to define a nominal model upon which a robust controller will be

developed. The nominal model was determined by examining the stability derivatives

over the range of angle of attack and choosing an average value for each parameter.

Appendix A contains a list of the parameter values at a discrete number of angle's of

attack for the desired flight condition along with the average and center values of each

parameter.
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Figure 3.5 Bode Plot of Nominal Plant

The nominal model was chosen using the average values of the parameters as listed in

Appendix A. The output of acceleration was normalized by gravity and all angles were

measured in degrees. Figure 3.5 shows the nominal plant open loop bode plot for each

output channel.

The eigenvalues of the nominal plant are:

real I imaginary frequency damping 1
-.5516 -12.641i 12.653 .0436 
-.5516 +12.641i 12.653 .0436
-200.08 -200.14i 283 .7070
-200.08 +200.14i 283 .7070

Table 3.2 Poles of Nominal Plant
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There are no multivariable transmission zeros present in the plant, however there are

zeros in each of the output channels. These zeros are located at:

Pitch Channel -.95913
Acceleration -32.6466

Channel +32.6466
Table 3.3 Zeros of Nominal Plant

Notice that the pitch channel has a pole very close to the origin. This will make it

difficult to have tight inner loop performance in the design synthesis. It should also be

noticed that the acceleration channel has a non-minimum phase zero. This right hand

plane zero is the result of the missile being controlled by surfaces aft of the center of

gravity. When an acceleration command generates a controlled fin deflection, the

missile's elevator surface produces an initial lift in the direction opposite of that

commanded, however, the moment due to the fin deflection will eventually result in an

acceleration in the desired direction. This will be evident as an initial undershoot in a

step response time history.
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Chapter Four:

Design Synthesis

This chapter discusses some of the important issues in the development of a missile

control system capable of providing robustness to both unstructured uncertainties and

variations in the angle of attack.

In the first section, the important issues concerning the choice of performance weights

will be discussed. The second section discusses the relevant facts about unmodelled

dynamics and demonstrates the importance of the structured singular value for reducing

conservatism in both the analysis and synthesis of optimal Hoo designs. The last

section compares four problem formulations which attempt to satisfy a set of robust

performance criterion over a range of angles of attack.

4.1 Performance Objectives

The first task in developing a control system is determining the appropriate performance

criteria. In the case of the tactical missile problem, performance specifications are
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Figure 4.1 Performance Weight

generally in the form of a time constant of the response to a unit step command as well

as certain disturbance rejection properties.

The performance specification for this specific problem is:

Design a controller to track commanded acceleration maneuvers

with a steady state error of no more than one percent and a time

constant of less than .4 secs. The controller must provide robust

performance over a wide range of angles of attack and must avoid
saturating tail deflection actuator rates as well as avoid high
frequency unmodelled dynamics.

Weighting functions which mathematically describe the performance requirements are

determined from the above specification. Figure 4.1 shows a bode plot of a typical

performance weight. The three parameters which define the weighting function are: the

low frequency gain, the crossover frequency, and the high frequency attenuation factor.

Satisfaction of the performance criteria can be achieved by appropriately choosing the

values for each of these parameters. In this example, the performance critieria are
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specified in the time domain so it is difficult to choose specific values for these

parameters. The choice of each parameter must be made by iteratively selecting the

values until the required performance specifications are achieved. In cases where the

performance specifications are expressed in the frequency domain, the choice of values

for the parameters are more obvious.

The steady state error requirement determines the low frequency gain of the sensitivity

weight. If it is desired to track commands with no more than a 1% error then it

necessary for the sensitivity transfer function, S(s), to have a low frequency gain

smaller than .01. In section 2.3.5 it was shown that the appropriate choice of

performance weight was the inverse of the desired sensitivity loop shape. Therefore,

in order to insure that the low frequency gain of S(s) will be less than .01, the

performance weight, Wp, must have a low frequency gain of 1/.01 or 100.

After determining the low frequency gain, it is necessary to fix the crossover

frequency. This will set the minimum bandwidth for tracking command signals. In

this case, it is desired to have a time constant of .4 secs or better. A crossover

frequency of 4 rad/sec was chosen to meet the performance requirement. This value

was determined by trial and error. The bandwidth of the performance weight was

varied in order to determine the minimum crossover frequency necessary for satisfying

the time response specification. In cases where it is known what the desired tracking

bandwidth is, the problem is more straight forward.

The final requirement in the specification of a performance weight is the high frequency

attenuation factor. The attenuation factor penalizes the high frequency portion of the

tracking error. In general, small attenuation factors result in systems where the output

contains significant amounts of high frequency energy. This usually results in large
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overshoots and high actuator control rates. When the attenuation factor is increased to

values closer to one, the system's output response slows down and less control effort

is used. The results of increasing the attenuation factor is an apparent increase in the

damping of the system. This can be evidenced as a reduction in the overshoot of the

step response and less control energy. The placement of a pole to fix the attenuation

factor at a certain gain is similar to using a proportional as well as integral feedback in

the outer tracking loop of classical designs.

For this specific problem, the performance weight Wp was chosen to be

.2(s +20)(41
Wp = . (4.1)

(s+.04)

This choice of performance weight will provide a low frequency gain of 100 for a

tracking accuracy of 99%, a crossover frequency of 4 rad/sec for a time constant of .4

secs. or better, and a high frequency attenuation factor of .02 to limit overshoot and

excessive use of controls.

Along with placing a performance weight on the tracking error, small disturbances were

injected into the system to satisfy other necessary performance requirements. A small

gyro noise (.001 rad/sec) was modelled as a disturbance to the pitch rate measurement

to account for any noise which may be inherent in the gyro. This is also necessary in

order to insure that the Hoo problem is properly formulated.

A small pitch rate disturbance (.01 rad/sec/sec) was modelled as a disturbance to the

plant. This was done to provide process noise to the system. Without the addition of

process noise, the state estimator will assume that the dynamics of the plant are

undisturbed by outside sources. Such an assumption would produce a controller that

has poor performance in the presence of external disturbances.
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4.2 Unmodelled Dynamics and p-Synthesis

The synthesis of missile control systems begins with the development of a linearized

model of the missile. The missile, in general, is a complex, high order, nonlinear and

time varying system with many high frequency structural modes. The linear dynamic

model as derived in chapter three, is a simple approximation of the short period mode.

Many assumptions were made in order to arrive at the low order linear model. The

assumption which played the largest role in the simplification of the missile dynamics

was the rigid body assumption used to develop Euler's equations.

The rigid body assumption is that the missile has Pn structural body modes. The

missile, on the contrary, has a very slender body with many low frequency bending

modes. When a control system is designed without taking into account signals which

might excite these bending modes a dynamic instability may result. This instability is

similar to that of the flutter problem associated with aircraft.

The instability arises because excitation of the bending modes produces high frequency

feedback signals which are detected by the sensors used to measure the motion of the

missile. If these signals have significant amplitudes at frequencies below the cutoff

frequency of the control system, they will cause spurious corrective forces to be applied

to the vehicle. The structural feedback loops thus established may produce an

undesirable waste of power or even a dynamic aeroelastic instability [26].

The interaction of the elastic modes on the output of the missile can be visualized in

Figure 4.2. In order to insure that the elastic modes will not affect the stability of the

system, their influence must be assessed in relation to the bandwidth of the closed loop

response of the linear system.
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Figure 4.2 Block Diagram of Missile Control System

The error introduced by neglecting elastic modes in the linear model can be modeled as

additive inputs between the deflection of the elevator and the output of the missile as

shown in Figure 4.2. The uncertainties dGa and dGq of Figure 4.3 are stable transfer

functions which are used to bound the expected magnitude of the unmodelled elastic

mode dynamics.

Other forms of uncertainty which may arise in the development of a linear model are

uncertainties in the actuator dynamics. The actuators are assumed to be perfect linear

models. This is true for frequencies below their operating bandwidth, but as the

operation of the actuator reaches the cutoff frequency, nonlinearities may occur.

The uncertainty structure at the input to the actuator of Figure 4.3 represents uncertainty

in the gain and phase characteristics of the linear model. Using a normalizing factor of

k=.6, this uncertainty structure is chosen to represents as much as 35 degrees of phase

uncertainty and a gain variation of .6 to 2.5.
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Figure 4.3 Modelled Uncertainties in the Linear Model

After determining the magnitudes and locations of the uncertainties in the linear model,

the closed loop system is analyzed using the small gain theorem. If the small gain

theorem is satisfied, IM(s)IL < 1, then the stability of the closed loop system to these

unmodelled dynamics is assured. Since the small gain theorem is only a sufficient

condition for stability, violation of the small gain theorem makes no statement about the

stability. In the general, however, when there exists unstructured uncertainties in the

model, it is desirable that the small gain theorem be satisfied.

Because it is desired to satisfy the small gain theorem whenever there exists

unstructured uncertainties, it is important to utilize the modelling error information

during the design process. The Hoo optimization method is one of the only methods

which can be formulated to guarantee satisfaction of the small gain theorem for

unstructured uncertainties a priori: if such a solution exists.

70



I 

I I
I I - - - - - - - - - - - - - - - - - - - -

4- - - - - -- _

4- - - - -

4- - - - - --

Figure 4.4 H, Problem Formulation

The additive uncertainties dGa and dGq can be represented by the following two

equations:

dG = W (S)a (4.2)

dGq = Wq(S)Aq (4.3)

where W represents all the magnitude characteristics of the uncertainty and A represents

all the possible phase uncertainty.

Since the uncertainty blocks are represented by magnitudle and phase characteristics, the

order in which the magnitude and phase are represented is arbitrary. For example, the

same uncertainty can be represented as WA or AW. Figure 4.4 shows one possible

Ho problem formulation which could be used to satisfy the small gain theorem.
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Figure 4.5 Weighting Functions

4.2.1 Example One

As section 2.4 discussed, when the Ho problem is formulated with a block diagonal

structure, such as Figure 4.4, the resulting solution may be overly conservative. This

conservatism arises because of the relative scaling difference between the different

input/output sets. The following example shows the conservatism of an Hoo design

and demonstrates the effectiveness of utilizing dynamic scaling to reduce this

conservatism.

For this specific example, the performance weight used is defined by equation (4.1).

The problem is formulated similar to that of Figure 4.4 except that in this case the

uncertainty dGa is assumed negligible and will therefore be ignored. The uncertainty

dGq is assumed bounded by the transfer function

q
150(s + 20)(s + 20)(s + 20)

(s + 2000)(s + 2000)(s + 2000)
(4.4)

Figure 4.5 showthe bode plot of the two weighting functions used for this example.
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Figure 4.6 Maximum vs. Structured Singular Value

An Hoo algorithm supplied in the g-Tools software package [25] was used to determine

the optimal Hoo solution. For the problem of figures 4.4 and 4.5 the minimum y

achievable was 1.3164. This result is not sufficiently close to the required performance

and robustness specifications.

The uncertainty structure is represented as a three block diagonal perturbation so the

closed loop system of Figure 4.4 was analyzed using the ssv. Figure 4.6 shows the

plot of the maximum versus structured singular value. As Figure 4.6 demonstrates, the

maximum singular value provides a slightly conservative measure of the robust

performance for this problem: The maximum singular value being 1.3164 while P is

.9685. Despite the fact that the closed loop transfer function satisfies the small gain

theorem, it would be interesting to see what improvement in performance can be

achieved when the optimal scales from the ssv analysis are incorporated into the design

procedure.
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Figure 4.7 Three Iterations of g-Synthesis

For this purpose, the D-scales determined in the g-analysis were fit with 3rd order

stable transfer functions. Since this specific problem had three uncertainty blocks, it

was necessary to determine two sets of D scales: These scales normalized two of the

input/output sets to that of the third set.

After appending the D-scales to the open loop plant, a second iteration of Hoo was

performed. This time, the minimum value of y was .7578. Figure 4.7 shows the

value of px for three successive D-K iterations.

Table 4.1 shows the value of y and g for each iteration.

Iteration I I
1 1.3164 1 .9685

l 2 l .7578 l .7489 l

3 .7256 .7251 1
Table 4.1 D-K Iterations (Ex I)
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Figure 4.8 Complementary Sensitivity (Ex I)

The final value of g was .7251, this represents a 45% improvement over the original

H,,o performance measure, and a 24% improvement over the first value of g. The final

controller has 20 states, 12 more than the original Ho design. The 24% improvement

in performance may or may not warrant the increase in state order.

Figures 4.8 and 4.9 show the maximum singular value plot for the complementary

sensitivity and the sensitivity functions. Figure 4.10 shows the step response to a lg

command signal. As 4.10 shows, the closed loop system meets all the necessary

performance criterion.
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Figure 4.9 Sensitivity (Ex I)
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4.2.2 Example two

During the D-K iterations, an interesting phenomena was observed. One of the D-

scales appended to the open loop plant was noticed to be almost the exact inverse of the

uncertainty weight, Wq.

The fact that the A scale seemed to invert the uncertainty weight Wq, indicated there

may be a better way of formulating the problem. It was commented earlier that the

order of the uncertainty WA or AW was arbitrary. In example one, the order was

chosen to be WA. In this case, the weight Wq was placed on the input channel as

shown in Figure 4.4. Since the optimal D scale took on the inverse of this filter, it

appeared that the problem might be better formulated if the uncertainty were arranged as

AW. In this case, the weight Wq would be placed on the output channel as shown in

Figure 4.11.

The minimum y achievable for this problem using the Hoo algorithm was 1.1453.

Moving the weight Wq immediately resulted in a 13% improvement. After determining

the first Ho solution, the g-synthesis procedure was carried out using constant D

scaling matrices; no additional states were added to the system.

Figure 4.12 shows the plot of the three successive D-K iterations. The values of y for

each iteration are listed in Table 4.2. Since no additional states were used for the D-

scales, the total size of the controller was 8 states.
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Iteration Y 

1 1.1453 .9183
2 .7695 .7577

3 .7695 .7656
Table 4.2 D-K Iterations (II)
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It is important to comment at this time that the constant D scaling procedure was

attempted for example one with no improvement in performance. The relocation of the

weight Wq made it possible to perform all necessary scaling with constant D scales.

The final value of g for the second design was .7654. This represents a 20%

improvement from the initial value of . in example one without any increase in state

order. The results of example one with increased state order only achieved a 24%

increase in performance: by properly formulating this problem, it was possible to

recover most of the increase in performance without any additional increase in state

size.

Figures 4.13 and 4.14 show the maximum singular value plots for the resulting

complementary sensitivity and the sensitivity transfer functions. Figure 4.15 shows the

step response to a g command signal. According to Figure 4.15, the closed loop

system meets all the necessary performance criterion.
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Figure 4.13 Complementary Sensitivity ( Ex II )
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The effect of moving the uncertainty weight, Wq, has been a substantial increase in

performance without an increase in the order of the system. In fact, some cases were

developed where moving the uncertainty weight actually provided better results than

using the dynamic scales to invert the uncertainty weight. This is probably due to the

fact that a curve fitting algorithm approximates the optimal D-scale whereas if the

change is done by the designer, no approximation takes place.

In order to avoid this problem, the control systems engir eer should pay close attention

to the shape of the D-scales with each iteration. If the D-scales begin to take on the

same shape as one of the uncertainty blocks, then the problem may be better

formulated, without increasing the final order of the controller, by rearranging the

location of the uncertainty weights.
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4.3 Hoo Designs and Parametric Uncertainty

The following sections discuss the development of a longitudinal autopilot using four

different problem formulations. While each is required to satisfy the same performance

specifications, the approach to handling parametric variations is different. The four

design methods which will be compared are:

* Design I: H. Optimization

* Design II: H, Optimization with Parameter Uncertainty

* Design III: Classical

· Design IV: H. Inner Loop.

The performance requirement for the four designs as developed in section 4.1 is:

=.2(s +20) (3Wp = (4.3)
(s+.04)

In order to insure that the missile will be stable in the presence of unmodelled

dynamics, each control system must have at least -20 db of attenuation in the open loop

pitch actuator branch and at least a two pole roll off. This criterion is derived from

classical designs to insure that high frequency signals generated by the body bending

modes are adequately attenuat,?d.

For the Ho designs, a multiplicative input error, Wu, was chosen to provide the -20 db

of attenuation at 200 rad/sec with a two pole roll off. The performance and model

uncertainty weights are illustrated in Figure 4.16
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Figure 4.16 Weighting Functions

4.3.1 H Optimization

The first problem to be addressed is the classic Hoo mixed sensitivity problem. The

objective of the mixed sensitivity problem is the minimization of the weighted

sensitivity function subject to the constraints placed on the system by the unstructured

multiplicative input uncertainty model. In this case, the optimal solution is the one

which provides the best sensitivity performance while maintaining stability in the

presence of unstructured multiplicative perturbations. The problem is formulated as a

two block small gain problem since it is desired to maintain nominal performance in the

presence of the unstructured uncertainty.

After specifying the weights, the optimal solution is achieved by minimizing the

sensitivity as much as possible while satisfying the unstructured uncertainty

requirement. This is accomplished by iteratively reducing y in the Hoo solution until

the minimum y is achieved. Because the problem is formulated with a block diagonal

structure, the results of the previous section demonstrate the importance of utilizing the
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Figure 4.17 Hoo Problem Formulation Design I

optimal scaling procedure ( pg synthesis ) to reduce the conservatism of the H.,

solution. The improvement in performance of the optimal scaling procedure will then

be evaluated against the increase is state order.

Figure 4.17 shows the block diagram of the H., problem. The minimum y achievable

using normal Hoo techniques was .8340. This value of y satisfies the performance and

robustness requirements. Figure 4.18 shows the plot of the maximum singular value

along with the structured singular value. In this case, there is not a significant

difference between the maximum singular value and g at low frequencies. There is

however, a slight difference between the maximum singular value and g for high

frequencies. For this reason, the R-synthesis algorithm was used to reduce the

difference between the two norms.
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Maximum Singular Value vs Structured Singular Value
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Figure 4.18
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Figure 4.19 shows the reduction of the A-bounds for three D-K iterations. The D-scale

was approximated using a 3rd order stable transfer function.
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Figure 4.19 g Plots for Three D-K Iterations
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The values for each successive Y and maximum g value are listed in Table 4.3.

Iterations _ 'Yo_
1 .8340 .8328
2 .7922 .7916

_Li 3 .7740 .7739
Table 4.3 D-K Iterations (Design I)

In the H problem, robust performance is measured by the Iloloo norm of the closed

loop system. In any problem, the Illloo norm is guaranteed to be less than y. In the

limit as y goes to o, y is identically the Illoo norm. Considering the first iteration, the

minimum y achievable is .8340. Using the optimal scaling procedure to reduce the

conservatism of loIloo, the g robust performance index is .8328. Since the system is

fairly well scaled, and the 1111oo is not much larger than the . robust performance index.

By applying the optimal scaling procedure, the g robust performance index was

reduced to .7739. This represents a 7.1% improvement over the original value of g.

Of course, the increase in robust performance came about by increasing the order of the

controller from 7 states to 13 states; an addition of 6 new states.

The singular value plot of the final controller is shown in Figure 4.20. According to

Figure 4.20, the controller is attempting to invert the lightly damped poles of the short

period mode. This can also be seen by examining the poles and zeros of the

compensator listed in Appendix B.

Figures 4.21 through 4.23 show the singular value plots of the complementary

sensitivity, the sensitivity, and the open loop pitch actuator branch respectively. As

Figure 4.23 indicates the open loop pitch actuator branch has the required -20 db of

attenuation and at least a two pole off. According to Figure 4.23, the crossover
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frequency is 26.83 rad/sec. At the crossover frequency, there is 113° of phase margin

and at the phase crossover, there is a downward gain margin of .0016. These are

excellent margins for robustness to unmodelled gain and phase.
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Figure 4.20 Maximum Singular Value of K(s)
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Figure 4.21 Complementary Sensitivity (Design I )
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Figure 4.22 Sensitivity (Design I)
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Figure 4.23 Open Loop K(s)G(s) (Design I )
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Figure 4.24 Acceleration Step Response Design I

Figure 4.24 shows the step response of the nominal design. The missile achieves a g

acceleration in approximately .3 secs, with a maximum deflection rate of about 35

deg/sec. This response meets all the necessary time domain performance

specifications.

Figure 4.25 plots the step response of the closed loop system for three different values

of angle of attack: 00, 100, and 20° . The closed loop system responds fairly well for 10°

and 20° angle of attack, but the system becomes unstable at 0° . Figure 4.26 shows a

plot of the low frequency closed loop poles for the range of 0° to 20° angle of attack. At

about 3° the system becomes unstable.

Although the closed loop system has excellent nominal performance, it is not stable in

the presence of parametric variation. The system becomes unstable for small angles of
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attack. This is not surprising since [14] showed that Ho designs are sensitive to

parametric variations which affect the location of lightly damped pole pairs.

2.
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Figure 4.25 Step Variation with Angle of Attack (Design I)
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Analysis (Design I)

The graphs of Figure 4.27 provide an analysis of the robustness properties of the

closed loop system to various perturbation structures. As it was mentioned in section

2.1, there are three specific problems of interest in the analysis of the closed loop

system: nominal performance, robust stability, and robust performance. There are two

forms of uncertainty which are accounted for in this analysis: parameter uncertainty,

and multiplicative input uncertainty. As Appendix A indicates, of the four parameters

that make up the state space of eqs 3.25 and 3.26, the stability derivatives Ma and Zo

have the most significant variation throughout the range of angle of attack from 0° to

20° . The parameter Ma varies by as much as 124%, while Za varies by 40%.

Therefore, in determining the stability of the system to variations in angle of attack, the

analysis will be restricted to the variations of Ma and Za.
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The first graph in Figure 4.27 provides a measure of how robust the closed loop

system is to variations in the parameter Ma. This measure is obtained by applying the

small gain theorem to the closed loop system with the uncertainty structure of equation

4.5.

Ma = (1 + 1.24A)Ma (4.5)

In equation 4.5, A represents the possible phase characteristics of the Ma variation.

For real parameter uncertainty this represents the sign of the parameter variation. The

value of 1.24 was chosen to normalize the perturbation to cover the entire range of

angle of attack under consideration. In this case, since Ma varies by as much as

124%, the normalizing weight is chosen to be 1.24. Variations in the uncertainty of

Ma are discussed as fractions of the total variation throughout the flight regime.

The transfer function between the input and output of A is analyzed using the small gain

theorem. Since this analysis is formulated with uncertainty in Moa alone, there is one

input and one output in the transfer function; because of this, the ssv is identically the

maximum singular value. If the maximum singular value of the transfer function

between A is exactly one, then the system will be guaranteed stable for a 124%

variation in Mo. If the maximum singular value is less than one, then the system can

withstand a perturbation, A, greater than one before an instability will result. The

maximum possible perturbation for the system before an instability will result is 1/4.

Therefore, if g is equal to 2, the system remains stable for perturbations less than .5. A

perturbation of less than .5 is equivalent to a 62% (.5x 1.24=.62) variation in Ma

The maximum singular value for the first graph is approximately 1.8, so the closed

loop system is stable for 55.6% (1/1.8) of the total variation of Maot or a 69%

(.556xl.24) variation in Ma. The closed loop system is most sensitive to Mao

92



variations at around 13 rad/sec. It should not be surprising that the nominal location of

the lightly damped poles are at 12.65 rad/sec. This result indicates that the lightly

damped poles may be the reason why the closed loop system is sensitive to variations

in angle of attack. This phenomena was predicted by [14].

The second graph provides a measure of how robust the system is to variations in Za

alone. The uncertainty structure for Zao is represented by equation 4.6.

Z. = (1+.40A)Za (4.6)

where .4 represents the total variation of Za over the range of angle of attack from 0° to

20° . The second graph represents the transfer function around A. Similar to that of

Ma variations, the transfer function is represented by a single input and a single output.

As the second graph indicates, the maximum singular value is .5. Therefore, the

system can handle perturbations in A up to 1.5 or 2. This represents twice the total

variation of Zoc or 80% of Z(a.

Based on the results of the first two graphs, it is obvious that the system is more

sensitive to variations in Ma than variations in Z . This result is not surprising since

it is known in the field of flight dynamics that the short period mode is most sensitive to

Ma variations [27], [28].

The third graph of Figure 4.27 provides a measure of how robust the closed loop

system is to simultaneous variations of Mao and Zao assuming dependant and

independent variations. The parameters Mao and Za vary nonlinearly with angle of

attack. To make the assumption that their variation is independent of one another

would be overly conservative, however, to assume that they vary-in a linearly related

fashion would be a mistake as well. Therefore, both plots are provided to serve as an

upper and lower bound for the stability margins to variations in angle of attack.
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The uncertainty structure for the dependant variation can be represented as

(Ma °) = (I + A1.24 0 JMa °] (4.7)
0 Z)-(2Al 0 .40 j 0 Z.]

where 1.24 and .40 represent the total variations of Ma and Za respectively. A2 is

represented as a two dimensional repeated scalar block. Since this repeated scalar block

is the only uncertainty present for this particular analysis, the ssv is again equivalent to

the maximum singular value.

The robustness of the closed loop system to the dependant variation of Moa and Za can

be seen by the lower plot in the third graph of Figure 4.27. According to Figure 4.27,

the graph is very similar to the stability of the Ma variation represented in the first plot.

This is not surprising since it has already been shown that the system is much more

sensitive to variations in Ma than variations in Za. Like the first plot, the closed loop

system can withstand up to 1/1.86 or .54 times the total variation of eq 4.7.

The uncertainty structure for the independent variations can be represented as

(MU O (l 1 24A 0 1rMa 0 1 (4.8)
(M= 1 (4.8)0 0 .40A L 0 Z]'

Equation 4.8 represents a two block uncertainty structure since both parameters are

assumed to be varying independently. In this case the structured singular value is used

to measure the stability margins for this uncertainty structure. The larger plot in the

third graph represents the robustness of the closed loop system to independent

variations of Ma and Za. Again, the instability occurs at the frequency of the short

period mode eigenvalues. According to this plot the system can withstand 1/2.33 or
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.43 times the uncertainty structure of eq. 4.8. As expected this plot is slightly larger

than that of the dependant variations.

It is expected that the stability of the system to angle of attack variations lies somewhere

within the bounds of these two graphs. Since both uncertainty structures, 4.7 and 4.8,

have values of g greater than one the system will definitely become unstable at some

point in the range of angle of attack under consideration. This was indeed evidenced in

Figures 25 and 26.

The final graph in Figure 4.27 provides a measure for the performance and robust

performance of the closed loop system to two different uncertainty structures. The

smallest plot is a measure of the nominal system's performance. Since this plot is well

below one, the system has exceeded the nominal performance requirements. The

middle plot represents the robust performance () of the system to the simultaneous

effect of the unstructured multiplicative uncertainty as well as a dependant variations of

Ma and Za. Since there are three blocks under consideration: performance,

multiplicative input uncertainty, and dependant parametric variation, the problem is

represented as a three block uncertainty, A. The measure provided by this g-analysis is

the robust performance of the system with all three blocks occurring simultaneously.

As the figure shows, the system does not satisfy the robust performance requirements;

the largest degradation again being exhibited at the location of the lightly damped pole

pair. The largest plot in the last graph represents the robust performance () to the

simultaneous effect of the unstructured uncertainty and independent variations of Ma

and Za. This problem is represented by a four block uncertainty since Ma and Zoa are

considered independent. As the figure shows, the system does not satisfy this

uncertainty structure as well. Again, the greatest degradation in performance is

experienced at the frequency of the short period poles.
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The above robustness analysis of Figure 4.27 clearly shows that the system is quite

sensitive to parameter variations which affect the location of the short period mode.

The next design will attempt to desensitize the Ho controller to variations in Ma by

explicitly modelling uncertainty in this parameter.

4.3.2 H Optimization with Parameter Uncertainty

The results of section 4.3.1 indicate that the nominal Ho controller is extremely

sensitive to variations of Ma when considering robustness to changes in angle of

attack. The following design is similar to the nominal Ho design, however this time,

uncertainty in Ma will be modelled explicitly in the problem formulation. This will

hopefully reduce the sensitivity of the controller to variations of Ma, thereby producing

a control system which will maintain stability over the prescribed range of angle of

attack. This will be done by expressing the coefficient Ma as

Ma = (1 + kA)Ma (4.9)

where k represents the maximum variation of Ma. After modelling the uncertainty in

Ma, the Hoo problem is formulated as the three block uncertainty problem of Figure

4.28; where Ap represents the performance requirement, Au represents the unstructured

uncertainty, and Ama represents the variation of Ma. The weights Wq and Wu are the

same as those of design I.

This new H., problem was initially formulated with k=1.24; this represents a 124%

variation in Ma. The solution to this problem could not produce a g of less than 1

even with high order dynamic scaling. Therefore, it is impossible to achieve robust

performance with that significant a variation in the parameter Mxa.
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Figure 4.28 Ho Problem Formulation Design II

The value of k was reduced until a solution could be found that had a g of less than

one. The final choice of k was chosen such that a third order D scale could reduce the

value of p. to less than one in three iterations. This value was 57% of Ma (k=.57).

Since the final value of g was less than one, the robust performance of the system is

guaranteed for up to 57% of the variation in Ma as well as a simultaneous variation in

the dynamics of the model as represented by the multiplicative input error. This

represents a variation in angle attack of about 12°, or from 3 ° angle of attack to 15° angle

of attack.

Figure 4.29 shows a graph of the maximum singular value for the first design iteration

along with subsequent p. bounds for each of the three iterations of pg synthesis.
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Figure 4.29 Maximum vs. Structured Singular Values (Design II)

Without the reduction in the conservatism provided by the optimal dynamic scaling, it

would have been impossible to achieve robust performance for the 57% variation of

Moa. The values of yo along with their associated structured singular values are listed

in Table 4.4

Iteration L[ i 
1 I 5.3242 l 1.840

2 j 1.0088 1.005 
3 l .9929 .9929

Table 4.4

Since there are three uncertainty blocks, it was necessary to build two separate D-scale

transfer functions. These scales were fit using third order filters. Use of these D-

scales increased the final order of the controller from 13 states in Design I to 19 states

for the method considered in this section. The use of the 12 states for dynamic scaling

improved the robust performance measure () by 53.96% over the first Hoo iteration.
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For this case, the use of dynamic scaling has had a remarkable improvement in the

robust perfonrmance as measured by g.

The maximum singular value plot of the final controller is shown in Figure 4.30. As

the plot shows, the valley which was present in Design I is no longer present in this

design. This shows that the controller is no longer trying to invert the lightly damped

poles of the short period mode. Appendix C has a list of the poles and zeros of the

controller.

Figures 4.31 through 4.33 show the singular value plots for the complementary

sensitivity, the sensitivity and the open loop pitch actuator plant respectively. As

Figure 4.33 shows, the open loop pitch actuator branch has the required -20 db

attenuation and two pole roll off. According to Figure 4.33, the crossover frequency

is 34.3 rad/sec. This provides 123° of phase margin at crossover, and a gain margin of

.0018 at the phase crossover.
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Figure 4.30 Maximum Singular Value of K(s) (Design II )
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Figure 4.31 Complementary Sensitivity (Design II)
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Figure 4.32 Sensitivity (Design II)
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Figure 4.33 Open Loop K(s)G(s) for Design II
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Figure 4.34 Acceleration Step Response Design II

Figure 4.34 shows the step response of the nominal model. The missile achieves a one

g acceleration in about .3 secs, with a maximum deflection rate of about 21 deg/sec. It

is obvious that the addition of Ma uncertainty has added more damping into the system

from the slightly less oscillatory nature of the system as well as from the slight

reduction in the actuator rate. The above time response clearly meets all time domain

performance specifications.

Figure 4.35 plots the step response of the closed loop system for three different values

of angle of attack: 00, 100, and 20° . The closed loop system responds extremely well

for 10° and 20° angle of attack. The instability of the closed loop system at low angles

of attack has been eliminated, although there is a slight degradation in performance.

This degradation is represented by the oscillatory nature of the response. The response

however, is fairly well damped and will settle quickly. The inclusion of parametric
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uncertainty directly into the design process has eliminated the inversion problem

inherent in the Hoo optimization. The variation of the lightly damped poles has less of a

destabilizing effect on the closed loop system as can be seen by the root locus of Figure

4.36.
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Figure 4.35 Step Variation with Angle of Attack (Design I )
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Analysis of Design II

The robustness analysis of Design II as illustrated in Figure 4.37 shows the excellent

benefits of modelling parameter uncertainty in the Hoo design process. As the first

graph indicates, the system is stable to 185% of the total variation of Ma. This

amounts to Ma varying by 229%. The previous Hoo design was stable for variations

of 69%. The increase in the order of the controller by 6 states has resulted in a system

which has 3.3 times as much stability to variations in Ma.

The second graph reveals only slight improvement in robustness to Za. This is as

expected since uncertainty to Za was not taken into account in the design process. The

system is robust to approximately two times the total variation, or 80% of the variation

of Zoc.
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The improved parametric robustness is again evidenced in the third plot of independent

and dependant variations of Ma( and Z(X. Both these plots indicate that the system is

stable for the entire range of angle attack for both uncertainty structures. This was

evidenced as well in the stable responses of the unit step command for the three angles

of attack.

The last plot shows the performance and robust performance. As expected, the

nominal performance is similar to that of the previous design. The robust performance,

on the other hand, shows a substantial improvement. The plot of robust performance

for the dependant uncertainty structure with unmodelled dynamics indicates that the

system has almost complete robust performance for the entire variation of angle of

attack with only a slight degradation in performance.

The independent variation is remarkably improved, however, it still does not indicate

satisfactory robust performance. This is, however, a conservative estimate since the

variations of Ma and Zoa are coupled.

In general, the inclusion of the parametric variation has shown significant

improvements in the robust performance of the Hoo design with only a slight penalty in

the increase of the number of states ( 6 states). It should be remembered that achieving

high performance over such a significant variation of open loop poles is truly a

challenging problem.
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Figure 4.38 Classical Block Diagram

4.3.3 Classical Design

In the following section, a control system is developed using classical design

techniques. This design will serve as a comparison for the modemn control techniques.

The design of a longitudinal autopilot using classical methods is not a complicated task

since the missile is considered to be a single input multi-output design problem. If the

missile problem were a true multi-input multi-output system, the synthesis of a

controller using classical methods would be extremely difficult.

Figure 4.38 shows the block diagram of the missile formulated as a classical design

problem. The desired classical control architecture is shown in the block diagram of

Figure 39.

I I

4

I I

Figure 4.39 Desired Classical Architecture
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The inner loop is considered to be the transfer function between the deflection dq and

the pitch rate q. The transfer function of the inner loop is

q(s) (s+.9591) (4.10)
dq(s) (s 2 + 1.103s + 160.1)

The lightly damped poles of the short period mode appear in the transfer function of the

inner loop. In the following classical design, a high bandwidth inner loop is developed

to reject the parameter uncertainty associated with variations in angle of attack. The

sensitivity transfer function of the loop is a measure of the closed loop system's ability

to reject parameter variations. Therefore, it is desired to develop a classical design that

has a small sensitivity gain at low frequencies.

The inner loop will be designed using a proportional plus integral feedback architecture.

The choice of gains for the proportional and integral feedback will be based on root

locus techniques.

The first loop to be closed will be a proportional gain feedback. The lightly damped

poles are located at -. 5516±12.653i. Figure 4.40 shows the roots locus of the low

frequency poles as the feedback gain gl is decreased from zero to -.4. As Figure 4.40

shows, one of the poles is migrating towards the zero located at -.95913, while the

other increases in frequency towards infinity.

The feedback gain, gl, is chosen based on the fact that it is known that when the

integrator pole is closed in the loop, the two poles of the inner loop will begin to

approach each other and break away from the real axis somewhere in between their

locations of Figure 4.40. The integrator pole in the mean time will approach the zero

located at -.95913. The gain gl is therefore chosen to sufficiently move the point

where the breakaway will occur. This will determine the bandwidth of the inner loop.
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After choosing the gain gl, the next step is to include an integrator in the loop to

decrease the sensitivity gain at low frequencies. Figure 4.41 shows the root locus for

the integral feedback around the inner loop.
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Figure 4.41 Integral Inner Loop Root Locus
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The feedback gain, g2, was varied from 0 to 12.9. The gain was chosen to provide the

maximum inner loop bandwidth without excessive use of control energy. It should be

remembered that there is the requirement that the open loop pitch actuator have -20 db

attenuation at 200 rad/sec. The gain g2 was selected to be 12.9 because this brought

the poles together, but was not sufficiently large enough to have them breakaway from

the real axis.

At this point, Figure 4.42 shows the closed loop bode plot of the inner loop while

Figure 4.43 shows the inner rate loop sensitivity function. As Figure 4.42 and 4.43

show, the sensitivity function has a very small gain at low frequencies. This should

provide the necessary sensitivity to reject parameter variations.
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Figure 4.42 Inner Loop Complementary Sensitivity
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The final part of the classical design synthesis is the development of the compensator to

be placed in the outer loop; this is designed to provide the necessary performance

requirements. For this case, a proportional plus integral compensator is designed to

provide the required performance. The integrator was placed at -.001 (as an
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approximation to an integrator) while the zero was placed at -.8 rad/sec. Figure 4.44

shows the root locus for the feedback gain, g3, from 0 to 5.5. The feedback gain g3

was chosen to provide the required amount of sensitivity in the outer performance loop.

This value was 5.5.

After choosing this feedback design, evaluation of the resulting Bode plots revealed that

the -20 db requirement was not satisfied at 200 rad/sec. An additional 10 db attenuation

was required. This was accomplished by placing a low pass filter at the actuator input

to provide the required attenuation.

Wf -( 90 (4.11)

(The locations of the poles for the closed loop system are listed in Table 4.5.90)
The locations of the poles for the closed loop system are listed in Table 4.5.

real imaginary 1 frequency damping i
-.80362 0 .80362 1
-11.225 -7.8699i 13.709 .8188
-11.225 +7.8699i 13.709 .8188
-21.902 -47.565i 52.365 .4182
-21.902 +47.565i 52.365 .4182
-212.10 -198.50i 290.50 .7301
-212.10 +198.50i 290.50 .7301

Table 4.5 Closed Loop Poles (Design III)

The classical feedback architecture for this design is shown in Figure 4.45, and the

maximum singular value plot of the controller is shown in Figure 4.46. The high gain

at low frequency is indicative of the two low frequency poles.

Figure 4.45 Classical Feedback Architecture
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Controller K(s) Singular Value Plot
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Figure 4.46 Maximum Singular Value K(s) (Design Ill)

The closed loop bode plot for this design is shown in Figure 4.47, while the sensitivity

and loop transfer functions are shown in figures 4.48 and 4.49. As Figure 4.48

shows, the sensitivity transfer function satisfies the performance specifications

established in section 4.1.

According to Figure 4.49, the open loop pitch actuator branch has the required -20 db

attenuation at 200 rad/sec along with the required two pole roll off. The system also

has 147.66° of phase margin at a crossover frequency of 43.29 rad/sec and v significant

amount of gain margin.
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Figure 4.47 Complementary Sensitivity (Design III)
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Figure 4.48 Sensitivity (Design III)
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Figure 4.49 Open Loop K(s)G(s) (Design III)

Figure 4.50 shows the step response of the nominal design. The missile achieves a lg

acceleration in about .3 secs, with a maximum deflection rate of about 20 deg/sec. This

response has excellent transient response as well as satisfaction of all the necessary time

domain performance criterion.

The above classical design has provided an excellent nominal controller. The favorable

results of this classical design should be balanced with the realization that this problem

was a simple formulation of a single input single output system. In cases where the

system is a true multi input multi output system, such an efficient classical design

formulations may not be possible.

Figure 4.51 plots the step response of the closed loop system for the variation in angle

of attack. As Figure 4.51 shows, the system performs exceptionally well for all angles

of attack. The worst case is at 0°; but even this response is outstanding. The inner loop

pitch rate design has provided a system which has excellent robust performance to

variations in angle of attack.
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(Design III)

The plot of Figure 4.52 shows the low frequency closed loop poles as the angle of

attack is varied form 0 to 20° angle of attack. As the plot indicates, the closed loop

pole variation is significantly far enough from the imaginary axis to prevent instabilities

from resulting over this range of angle of attack. In fact, it is their distance from the

imaginary axis that also provides the exceptional performance demonstrated in Figure

4.51.
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Analysis (Design III)

The outstanding stability of Figure 4.52 can be seen in the robustness analysis of

Figure 4.53. The first graph shows the robustness of the classical design to variations

in Ma. The system is extremely robust to Ma variations. The controller can handle up

to approximately 3.3 times the total variation of McC before instability may occur, or

409.2% variation in Ma. This result is extremely satisfying. The result of the inner

loop design has been almost a total desensitization of the system to parametric

variations of Ma.

The second plot shows the robustness to variations of Za. This result is exactly the

same as previous results. There has been no significant improvement in the robustness

of the system to Za.
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The third plot demonstrates that the closed loop system has excellent stability margins

due to independent and dependant variations of Zo and Ma simultaneously. These

results are a simple extension of those seen in the two previous plots.

The final plot shows the measure of performance and robust performance for the closed

loop system. These results are not quite as favorable as those of the previous three

plots. The smallest plot indicates that the nominal performance has been satisfactorily

met. The two larger plots, however, show that the robust performance of the system is

not satisfactorily met at high frequencies.

There is a simple explanation for these poor results. Actually, the system has

satisfactory robust performance when one considers the performance in the presence of

parametric uncertainty without the addition of unmodelled dynamics. This robust

performance measure is illustrated in the graph of Figure 4.54. As the graph indicates,

the system has excellent robust performance when the uncertainty is modelled as a

dependant variation, and only a slight degradation below desired levels when the

uncertainty is modelled as an independent variation (the upper plot).

The decrease in robust performance of the system as indicated by the fourth graph of

Figure 4.53 is a consequence of the fact that the system does not satisfy the unmodelled

dynamic uncertainty requirement at the crossover point of the control transfer function

R(s). The system, despite this violation, is considered stable to unmodelled dynamics

because it has the required -20 db of attenuation at 200 rad/sec with a two pole roll off.
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Figure 4.54 Robust Performance due to Ma/Z7 (Design III)

The error model chosen to quantify the stability robustness requirements in this case

turn out to be excessively conservative. This model was chosen to reflect uncertainties

at high frequencies, while the violation of stability due to this model error is in the mid

frequency range.

It is questionable as to whether or not this degradation in performance is an important

problem. The violation occurs when one considers the simultaneous satisfaction of

model uncertainty and performance. It is not certain if the results of Figure 4.53 are

significant in terms of robust performance since the performance criterion is meant to

be applicable primarily at the lower tracking frequencies. The violation of robust

performance occurs above the 10 rad/sec bandwidth of the system. Therefore, the

tracking performance of the system does not degrade in the presence of this uncertainty

structure.
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Figure 4.55 Ho, Inner Loop Design

4.3.4 H Inner Loop Design

The final design to be considered is the Hoo inner loop design methodology. This

design was proven to provide excellent robustness to parametric variations by

[14],[15], and [16]. The design procedure combines the results of Hoo theory with that

of classical and full state feedback theory. As Craig demonstrated, by providing an

inner rate feedback loop, the damping of the lightly damped open loop poles can be

increased to provide the extra parametric robustness. An Hoo outer loop can then be

designed to provide the additional controller structure necessary to satisfy the

performance and stability robustness criteria.

Based on the results of [14] and [16], an inner pitch rate loop using constant gain

feedback will be designed using the classical results of sectior 4.3.3. The problem

formulation is similar to that shown in Figure 4.55. T feedback gain, g, was chosen

using the root locus technique of Figure 4.40. It was d, '-ed to use just enough gain in

the inner loop feedback path to move the lightly damped poles from their open loop

location to the real axis. The gain g, was therefore chosen to be -.19.
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Figure 4.56 Maximum Singular Value Plot

The plot of the maximum singular values of the new plant obtained by closing the inner

loop, along with the singular values of the original open loop plant are shown in Figure4.56. As Figure 4...6 indicates, the plants are similar except that the damping of the.....

short period mode has been substantially increased. For frequencies above 200rad/sec, the two plots are exactly equivalent.
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feedback architecture directly into the H,~ problem formulation. The second problem is

formulated similar to [ 14]: the feedback gain is provided to the nominal plant and all

uncertainty and performance requirements are placed on the new plant. The subtle

difference between the two formulations is the location of the unstructured uncertainty.

In the first case, the unstructured uncertainty is placed inside the inner loop; thereby~~~~~................. .......... ... . . . .

placing the constraint on the "old "plant and the sirounding controller architecture,104 : ::2 
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Figure 4.56 Maximum Singular Value Plot

The plot of the maximum singular values of the new plant obtained by closing he inner

loop, along with the singular values of the original open loop plant are shown in Figure

4.56. whereas in thgure 4.56 second case, the planunstructus re similar exncertainty requirement is placed as athe

short period mode has been substplantially increased. For frequencies above 200rad/sec, the two plots are exactly equivalent.

Two Ho designs were investigated. The first design is formulated to include the rate.-

feedback architecture directly into the H,, problem formulation. The second problem is

formnulated similar to [4]: the feedback gain is provided to the nominal plant and all

uncertainty and performance requirements are placed on the new plant. The subtle

difference between the two formlulations is the location of the unstructured uncertainty.

In the filrst case, the unstructured uncertainty is placed inside the inner loop; thereby

placing the constraint on the "old " plant and the surrounding controller architecture,

whereas in the second case, the unstructured uncertainty requirement is placed as a

constraint on the "new plant".
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Figure 5.57 H Inner Loop Design IVa

Figure 5.57 shows the block diagram for the first design. The results of the first

design are similar to that of the nominal Hoo design ( I ) of section 4.3.1. Figure 4.58

shows the singular value plot of the controller K(s). As Figure 4.58 indicates, the

controller is attempting to invert the poles of the open loop plant. This can also be seen

by the poles and zeros of the compensator in Appendix D. Despite the addition of the

inner rate loop, the Hoo process is still attempting to invert the lightly damped pole pair.

The inner rate loop can be seen in Appendix D as the feedthrough term in Dc. Careful

observation of the compensator gains shows that despite the dramatic difference in

gains between Design I and Design IVa, the resulting controllers have very similar

pole/zero locations.
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Controller K(s) Singular Value Plot
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Figure 4.58 Maximum Singular Value of K(s)

The plot of the closed loop transfer function, sensitivity transfer function, and open

loop pitch actuator transfer function is shown in Figure 4.59 though 4.61. Figures

4.59 through 4.61 also verify that this design is similar to the first Hoo mixed

sensitivity problem.

Figure 4.62 shows the step response of the nominal closed loop plant, while Figure

4.63 shows the step response at various angles of attack. Like design I, the closed

loop system becomes unstable at low angles of attack. This can also be verified by

Figure 4.64 which shows the measures of robustness to the various perturbation

structures. The use of the inner loop has done nothing to improve the robustness

characteristics of this Hoo design.
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Figure 4.59 Complementary Sensitivity (Design IVa)
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Figure 4.60 Sensitivity (Design IVa)
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Open Loop Pitch Actuator
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Figure 4.61 Open Loop K(s)G(s) (Design IVa )
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Figure 4.65 Hoo Inner Loop Design IVb

Figure 4.65 shows the block diagram structure for the second Ho, inner loop design.

In this problem, an H., controller is designed around a "new" plant model. The "new"

plant model is simply the "old" plant with the pitch rate feedback loop closed around it.

The performance specifications and stability robustness requirements are applied to this

new plant directly.

Using this architecture, the minimum y achievable utilizing normal H,,oo techniques was

.8340. This value of y satisfied the necessary performance and robustness

requirements. Despite the fact that the robust performance requirement was satisfied,

the optimal scaling procedure was used to see what improvements in performance could

be achieved. Figure 4.66 shows a plot of the maximum and structured singular values

for three D-K iterations.
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The D-scale used in the synthesis procedure was approximated using a 3rd order stable

transfer function. The values for each successive y and maximum p for each iteration

are listed in Table 4.6.

1

0.8

0.6

0.4

0.2

n
10-2 10-1

Figure 4.66 Maximum
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103

(Design IVb)

Iteration
1

2
3

Table 4.6 D-K

.8876

.7780
.7606

Iteration

9
.8360
.7778
.7604

(Design IVb)

I

The use of dynamic scales improved the performance of the system by 9.04% with an

increase of six new states in the controller. With the addition of the six new states, the

final controller has thirteen states. The singular value plot of the controller is shown in

Figure 4.67. According to Figure 4.67, the valley which was present in the first Hoo

design is no longer present in this H. inner loop design. This indicates that no pole

zero cancellation of the lightly damped mode is occurring. This can also be evidenced

by the location of the poles and zeros of the compensator in Appendix E.
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Figure 4.68 through 4.70 show the singular value plots for the complementary

sensitivity, the sensitivity, and the open loop pitch actuator branch respectively. As

Figure 4.70 shows, the open loop pitch actuator branch has the required -20 db

attenuation and two pole roll off. According to Figure 4.70, the crossover frequency is

31.81 rad/sec. There is 148.88° of phase margin at the crossover point. The system

has upward gain margin of 24.3 and a lower gain margin of .0011. Just as in the

previous designs, these margins are excellent for robustness to unmodelled gain and

phase characteristics.

Figure 4.71 shows the step response of the Ho, inner loop design. The missile

achieves a lg acceleration in approximately .3 sec, with a maximum deflection rate of

about 38 deg/sec. The addition of the inner loop feedback has resulted in a system with

better transient response since the rate loop added damping to the system. This increase

in damping is offset by the fact that the actuator rate is slightly larger than desired

magnitudes. Except for the slightly larger control rates, the step response of the closed

loop system meets all time domain performance specifications.

Figure 4.72 plots the step response of the closed loop system for variations in angle of

attack. The closed loop system responds extremely well for 10° and 20° angle of

attack. The instability of the closed loop system at low angles of attack has been

eliminated; although there is a slight degradation in performance. This degradation can

be seen as a small overshoot in the step response of the system. The inclusion of the

inner loop pitch rate feedback has eliminated the inversion problem experienced in

normal Hoo problem formulations. The variation of the lightly damped poles has less

cf a destabilizing effect on the system as verified by the root locus of Figure 4.73.
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Figure 4.68 Complementary Sensitivity (Design IVb)
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Figure 4.70 Open Loop K(s)G(s) (Design IVb)
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Figure 4.74 shows the robustness analysis of the Hoo inner loop design. The first plot

shows the stability robustness of the closed loop system to variations in Ma. This

design procedure has produced the best results in terms of robustness to variations in

Ma. The system will remain stable to approximately 4.54 times the total variation of

Ma, or 563% variation in M(X. These results are quite substantial. The addition of the

inner rate loop has done an exceptional job of reducing the sensitivity of the closed loop

systems to variations of Ms.

The robustness to variations in Za are similar to subsequent results. The system can

handle a 200% change in the total variation of Za or 80% variation in Zc.

As expected, the robustness to simultaneous variations of Max and Za have also

improved substantially. The system is stable for up to a 1.5 times the total variation of

Ma and Zoc simultaneously.
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The final plots shows the measure of performance and robust performance for the Hoo

inner loop design. The nominal performance of the system satisfies the performance

requirements, but like design III, the robust performance degrades substantially at high

frequencies. The cause of the degradation in performance is almost identical to design

III. The unstructured uncertainty and performance criterion violate the small gain

theorem for high frequencies.

It should be commented that this violation is the result of the fact that the inner rate loop

was not included in the uncertainty weight during the Hoo synthesis process. The

inclusion of the inner rate loop in the uncertainty weight produced the results of design

IVa. The test of stability here, however, places the uncertainty directly at the actuator

input.

Like the third design, it is uncertain as to whether or not this degradation in

performance at high frequencies is an important problem. The system is nominally

stable to the unstructured uncertainty as represented by Figure 4.70 where it was

shown that the system had the required -20 db attenuation and two pole roll off, and the

robust performance is satisfied over the tracking bandwidth of the system.

Like design III, the Hoo inner loop design has excellent robust performance when one

considers the variations of Mot and Zo alone - without the inclusion of the unmodelled

dynamic weight. The plot of robust performance to parameter variations can be seen in

Figure 4.75.
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4.3.5 Discussion

A comparison of the four design examples should provide some interesting results

about the robust stability/performance of H. designs in the presence of parametric

variations. In analyzing the structure of the compensator for the nominal H, design (I)

it is obvious that the H., methodology is inverting the dynamics of the open loop plant.

Since the lightly damped poles of the open loop vary substantially with changes in

angle of attack (Figure 3.3), the pole/zero cancellation of the first design becomes

ineffective; in fact, for small angles of attack, the closed loop system becomes unstable.

The addition of parametric uncertainty into the design process has effectively eliminated

the pole/zero cancellation problem. Examination of the maximum singular value plot

for the compensator, K(s), (Figure 4.30) verifies the absence of the lightly damped

mode. Although the stability of the system to variations in Ma has been substantially

improved, the system does not have the desired robust performance capabilities.

The H. inner loop design (IVb) provided even more interesting results. The addition

of the inner rate loop to the controller architecture provided a closed loop system which

exhibited outstanding robustness to parametric variations. The inner rate loop has

effectively eliminated the system's sensitivity to variations in Ma. This is not a

surprising fact when one considers what the inner rate loop does to the design plant.

By feeding back the proportional rate, the inner rate loop increases the damping of the

system thereby producing a "new" plant model which is significantly less sensitivity to

parameter variations. This make the job of the H. controller easier.
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Figure 4.76 shows the variation of the frequency response for the "new plant" as angle

of attack varies from 0 ° to 20° . According to the figure, the variation of the new plant's

poles are substantially less than the actual design plant model. Because the new plant

model is less sensitive to parameter variations, the pole/zero cancellation of the resulting

Hoo controller is more effective.

The control signal generated by the nominal Ho. controller of design I is developed

using a state feedback matrix in combination with a state estimator. In thinking about

the estimation problem, when the open loop poles of the plant vary significantly, it is

difficult to provide an accurate estimation of the plant's dynamics. When the plant is

provided with direct feedback of the rate loop, the estimation problem becomes

considerably easier since the rate loop eliminates much of the plant's variation.

Therefore, the direct feedback of the rate loop would probably work equally as well for

a variety of design problems.

137

102

101

100

10-1

10-2

10-3

10-4
ic

................................................ ............................................................
....................... ............................................... ..................... ....... .................

............ ...................... ...................... .......................... .................. ........................................................................... ............................................................................ ............

. . .. .. . . . . ... .. . . .. . . . .. .. . . . . .. . ... . . . .. . . . . . . .. . . . . . . . ... .. . . . . . .. . . . . . . .. . . . . .
. .. . . . . .. . . . . . . .. . . . . . . . . .. . . . . . .. . . . . .. . . . .

. . . .. . . . . .. .. . . . . .. . . . .. . .. .. . . . . . .. . . . . . . . .. . . . . . . .. . ..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . .

)-3



There is a fundamental difference between the Hoo design with parameter variation and

the Hoo inner rate loop design. In the first case, the Hoo algorithm develops a controller

that acknowledges the potential variation of the plant poles and optimally places the

poles and zeros of the controller to account for this potential variation. This

optimization takes into account all the disturbance rejection and stability robustness

requirements placed on the "old" plant model. In the second case, the inner loop is

used to reduce the variation of the plant poles. The Hoo controller is developed for the

"new" plant, so the pole zero cancellation becomes more effective. The algorithm does

not find the optimal solution taking into account the disturbance rejection and stability

robustness requirements of the "old" plant; to do so would produce the results of

design IVa.

It is important to intuitively try to understand what is being done to to the controller

architecture in order to provide the better robustness properties. One of the leading

indicators of robustness to parametric variations as well as rejection of external

disturbances is the sensitivity plot of the closed loop system. Since the parameter

variation is most predominant in the inner loop, it would be interesting to see what the

inner loop sensitivity is for each design. The sensitivity function for the inner loop is

def'ined as the transfer function from the gyro measurement to pitch rate output with the

acceleration loop broken.

It is a widely known fact that increasing the loop gain reduces the closed loop

sensitivity to plant parameter uncertainty [29]. Therefore, it is desired to have small

sensitivities wherever there is significant parameter uncertainty. This desire, of course,

is constrained by the fact that the complementary sensitivity must be small in regions

where there exist significant high frequency unmodelled dynamics and noisy
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measurements. As stated earlier, this is the fundamental tradeoff between performance

and stability robustness.

This particular problem is an inherently difficult one since the location of the lightly

damped poles is right around the required crossover frequency of the closed loop

system. Because of this, it is difficult to achieve small sensitivities at and around the

frequency of the lightly damped poles.

Upon examination of the inner loop sensitivity function (see Figure 4.77), the results of

the parameter robustness become more obvious. The nominal H. controller of Design

I has the largest sensitivity at the location of the lightly damped poles. The nominal

design has a slight valley near the frequency of the short period mode. This valley

provides a small increase in the sensitivity near the critical region.

The addition of uncertainty in Ma( in the second design has resulted in an increase in the

width and depth of this valley as shown by Figure 4.77. This decrease in the

sensitivity around the critical frequencies results in the improvement of the robust

stability of the closed loop system to parameter variations as demonstrated by figure

4.37. The decrease in sensitivity around the critical frequency is important because it

allows the frequency of the lightly damped mode to vary, yet still remain in a region

that has some small sensitivities.

The improvements in the stability of the closed loop systems of Designs III and IVb

may be manifested by the substantial increase in the depth and width of the valley of the

sensitivity plot as indicated in Figure 4.77. This decrease in sensitivity is what

produced the complete desensitization of the system to variations in Mox. It is

interesting to note that while the sensitivity of the classical design in significantly

smaller at low frequencies, the Hoo inner loop design actually has greater robustness to
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variations in Ma. This result seems to indicate that for this problem, the inner rate loop

integrator may not have been necessary.
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Figure 4.77 Inner Loop Sensitivities

The final question that remains unanswered is which design, II or IVb, provides the

best robust performance for the given problem. This is a difficult comparison since the

two designs have different strengths and weaknesses. The H. design with modelled

parametric variation has excellent performance and robust performance in the presence

of the unstructured multiplicative input error, but only marginal robust performance to

presence of parametric variations. The Hoo inner loop design, on the other hand, has

poor robust performance in the presence of the multiplicative error but excellent

robustness to the parametric variations.

In trying to answer this question, the role and importance of the multiplicative input

model must be addressed. The procedure of Design II was such that the satisfaction of
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robustness to unstructured uncertainty was more important than the requirement for

robust stability/performance in the presence of parameter variations. The resulting

controller was therefore limited by the constraints of the uncertainty model. The

development of the Ho inner loop was such that it ignored the robust performance

constraints of the error model at certain frequencies. If the error model was not

conservative, and the stability robustness criterion was a necessary and sufficient

condition for stability, then there would be no doubt that Design II was the better

design. If, however, the error model was conservative, then there may be a strong

argument for the Hoo inner loop. The Hoo inner loop satisfies the nominal requirement

for robust stability,- it does not satisfy the requirement placed on the robust

performance of the closed loop to variations modelled by the input uncertainty error.

Even then, the violation of robust performance occurs at frequencies well above the

tracking bandwidth of the system where the importance of the performance weight is

not significant.

The above results may lead one to believe that perhaps the Hoo inner loop provides the

best robust performance. It is difficult to say since the Hoo inner loop explicitly ignored

requirements that the HoJMo design tried to satisfy; the robust stability in the presence

of unmodelled dynamics. Figure 4.78 may actually shed some light on this difficult

comparison. The Hoo inner loop controller amplifies high frequency signals much

more than that of the Hoo/Ma controller. It is this high frequency response that is

responsible for the improved robustness to parametric variations. By satisfying the

robust performance constraints of the unstructured uncertainty model, the second

design formulation produced a controller with a slightly smaller bandwidth. It is the

increase in bandwidth that is responsible for the improvement is parameter robustness.
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It seems that the fairest conclusion that can be made is that while the Hoo inner loop

design provides excellent robustness to parametric variations with no significant

increase in the order of the compensator, the Hoo g- synthesis procedure provides the

best framework for the simultaneous satisfaction of multiple uncertainty requirements.

This procedure, however, results in an increase in the number of states in the

compensator.
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Chapter Five:

Conclusion

As the previous examples have shown, the application of the structured singular value

(g) to the analysis of linear systems with block diagonal perturbation structures results

in stability margins that are less conservative than those obtained by strictly applying

the I-.lloo norm. The degree to which conservatism can be reduced is a function of how

poorly the original problem is scaled.

When the Hoo problem is formulated with input/output sets that are unrelated, the

relative scaling difference between sets may result in a solution that is also

conservative. By applying the optimal scaling technique used in the evaluation of the

structured singular value, the conservatism of the Hoo problem is reduced. This

reduction in conservatism is approached in a stepwise manner by iterating on the

solution of the optimal Hoo controller and the optimal dynamic scaling. This is the

celebrated D-K iteration.

Although the optimal scaling procedure produced results which increased the order of

the compensator, the benefits of utilizing the structured information compensated for
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the increase in state order. In one case, the g-synthesis procedure increased the

performance measure by 54% while only increasing the order of the compensator by

six states. In certain cases it was essential to apply the scaling procedure, while in

others, no significant improvement could be realized.

One example was produced where the optimal D-scale inverted the uncertainty weight.

This effectively moved the uncertainty weight from the input to the output of the

system. It was shown that when this rearrangement of the uncertainty weight ocurred,

the problem could be better formulated if the designer changed the location of the

uncertainty weight in the original problem formulation. Such a restructuring may result

in similar improvements in performance as those realized using g-Synthesis techniques

without the excessive increases in state order.

The development of a control system robust to variations in angle of attack proved to be

a difficult problem. Conflicting requirements between sensitivity optimization and

stability robustness impeded the synthesis of controllers which exhibited robust

performance in the presence of structured and unstructured uncertainties. The

minimization of the sensitivity function around the frequencies of the lightly damped

poles of the open loop appeared to be a salient feature of controllers robust to

parametric variations which affect the location of the lightly damped pole pair.

The Hoo optimization with modelled parametric uncertainty provided the best

framework for the simultaneous satisfaction of multiple uncertainty and performance

objectives. In the case where it was desired to provide robust performance in the

presence of structured and unstructured uncertainties, the design was iterated on the

magnitude of the expected parameter variation until a value of gR=l was achieved. This

iterative technique provided the largest allowable parameter variation capable of

satisfying robust performance constraints on the nominal plant.
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The Hoo inner loop demonstrated the best robustness to parameter variations, but

exhibited poor robust performance in the presence of unmodelled dynamics. This

result was due to the fact that the uncertainty was not specified inside the pitch rate

feedback loop. When the problem was formulated as such, the solution was similar to

the nominal Hoo mixed sensitivity formulation of Design I.

The extension of g-analysis to the synthesis of robust control systems is one in many

steps towards mechanizing the development of complex control systems. Although the

benefits of utilizing such a technique are great, overly conservative and/or unnecessarily

high order systems may result if the method is applied blindly. As always, the best

control systems are developed when the control engineer makes use of all his/her

resources and applies them intelligently to the problem at hand.

5.1 Directions For Future Research

The HoJlg-Synthesis theory proved to be an excellent tool for simultaneously satisfying

multiple uncertainty requirements. By explicitly modelling parameter uncertainties, Hoo

controllers that are robust to structured parametric variations were synthesized. It

should be possible, however, to obtain the results of the robust design by formulating

the Hoo problem with performance specifications on both the inner and outer loops,

rather than by modelling parameter uncertainties. At present, most Hoo designs place

performance specifications only on the outer loops.

By explicitly formulating an inner loop performance requirement, robustness to

parameter uncertainty may be achieved without directly modelling parameter

uncertainty. This particular problem is important because it is in the formulation of

additional performance requirements that controllers with more sophisticated
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architectures are developed. For example, if it was necessary to have an integrator in

the inner loop, as was done in the classical design, the modelling of parametric

variations will not produce the additional architecture necessary for providing the

integrator. Therefore, utilizing parameter uncertainty as the only method for achieving

robustness may produce controllers with limited capabilities.
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Appendix A: Aerodynamic Data

The Table below is a listing of the variations of the stability derivatives used in this

design example. These values are based on the following parameters:
Altitude 6 kilometers
Velocity ( V ) 947.7 m/s
Mach (M)
Speed of Sound
Density ( p )
Sref
dref
Mass ( m )
Moment of Inertia (Iyy)

3
315.9 m/s
.6601 kg/m3

.040876 m2

.2286 m
203.968 Kg
247.36 Kg-m2
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Alpha ZM Mog

0 -577.27 -115.05 +32.721 -132.04
2 -701.24 -114.98 -15.784 -132.04
4 -815.67 -114.77 -60.975 -132.04
6 -920.19 -114.42 -102.85 -132.04
8 -1014.5 -113.93 -141.41 -132.04
10 -1098.3 -113.30 -176.66 -132.04
12 -1171.4 -112.53 -208.60 -132.04
14 -1233.8 -111.63 -237.21 -132.04
16 -1285.4 -110.59 -262.52 -132.04
18 -1326.1 -109.41 -284.51 -132.04
20 -1356.1 -108.11 -303.19 -132.04

mean values -1045.5 -112.61 -160.09 -132.04
% variation +45% -2% +120% 0%

-30% +4% -89.0% 0%

center values -966.685 -111.58 -135.23 -132.04
% variation 40% 3% 124% 0%
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Appendix B: Design I Data

Ac=
Columns I through 6

5.7942e+05
1.5006e+05
6.2152e+05
1.2574e+05

-2.1574e+04
1.0335e+01

-5.3485e+01
7.7832e+00

-5.6810e+01
2.3800e+01
1.9477e-08
5.0215e-09
1.9375e-08

1.6875e+05 2.9341e+04 -2.6668e+06 2.6226e+06 -9.1104e+05
4.3703e+04 7.6090e+03-6.9070e+05 6.7925e+05-2.3596e+05
1.8100e+05 3.1247e+04 -2.8606e+06 2.8132e+06 -9.7726e+05
3.6619e+04 6.3706e+03-5.7526e+05 5.6562e+05-1.9771e+05

-6.2826e+03 -1.0930e+03 1.0281e+05 -1.0121e+05 3.3916e+04
3.0098e+00 5.2362e-01 -4.8140e+01 4.0058e+01-7.5163e+03

-1.5576e+01 -2.7098e+00 2.4912e+02-2.0728e+02 3.8914e+04
2.2666e+00 3.9433e-01 -3.6250e+01 3.0112e+01 -5.7021e+03

-1.6544e+01 -2.8782e+00 2.6457e+02 -2.1959e 02 4.1775e+04
6.931 Oe+00 1.2058e+00 -1.1078e+02 9.0933e+01 -1.8312e+04

5.6591e-09 1.0107e-09-1.2300e+00 2.2259e+01 1.6955e+04
1.4590e-09 2.6057e-10-3.1760e-01 5.7474e+00 4.3779e+03
5.6296e-09 1.0054e-09-1.2210e+00 2.2095e+01 1.6830e+04

Columns 7 through 12

7.3368e+04 8.8380e+04 1.3382e+03 -4.9271e+02 4.5731e+05 -1.8205e+05
1.9002e+04 2.2890e+04 3.4658e+02 -1.2761e+02 -1.1844e+05 -4.7152e+04
7.8700e+04 9.4803e+04 1.4354e+03 -5.2852e+02 -4.9054e+05 -1.9528e+05
1.5935e+04 1.9180e+04 2.7634e+02 -1.1113e+02 -9.9243e+04 -3.9508e+04

-2.2794e+03 -3.2885e+03 -5.3408e+02 -1.2666e+02 1.7027e+04 6.7783e+03
6.7397e+05 3.1252e+03 -7.2096e+05 -2.1590e+05 2.9742e+02 -8.2393e+01

-3.4893e+06 -1.6178e+04 3.7326e+06 1.1177e+06 -1.5415e+03 4.2698e+02
5.1132e+05 2.3689e+03 -5.4695e+05 -1.6378e+05 2.3265e+02 -6.4293e+01

-3.7461e+06-1.7354e+04 4.0071e+06 1.1998e+06-1.7153e+03 4.7373e+02
1.6422e+06 7.6074e+03 -1.7565e+06 -5.2625e+05 9.0815e+02 -2.4756e+02

-1.5237e+06-7.0553e+03 1.6299e+06 4.8807e+05-7.0369e+02 1.9370e+02
-3.9342e+05-1.8217e+03 4.2085e+05 1.2602e+05-1.9370e+02 4.6048e+01
-1.5125e+06 -7.0033e+03 1.6179e+06 4.8448e+05-7.6206e+02 1.8765e+02

Column 13

-1.9847e+04
-5.1404e+03
-2.1290e+04
-4.3071e+03
7.3918e+02
3.2744e+02

-1.6969e+03
2.5588e+02

-1.8861e+03
9.9349e+02

-7.6206e+02
-1.8765e+02
-1.0433e+03
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Appendix B: Design I Data

Bc=

-5.1229e-13 -3.8763e-08
-1.2859e-13 -1.0046e-08
-5.5228e-13 4.1047e-08
1.7982e-04 8.5701e+00
6.1941e-03 2.9522e+02
-2.2731e+00 4.3953e+05
-5.0526e+01 -2.2755e+06
6.5437e+00 3.3344e+05
-5A.4709e+01 -2.4430e+06
2.5412e+01 1.0710e+06

-2.2045e+01 -9.9365e+05
-5.6982e+00 -2.5657e+05
-2.2410e+01 -9.8635e+05

Cc =

Columns 1 through 6

6.3472e-01 1.8484e-01 3.2157e-02 -2.8177e+00 2.8906e+00 -9.9798e-01

Columns 7 through 12

8.0372e-02 9.6813e-02 1.4659e-03-5.3973e-04-5.0095e-01 -1.9943e-01

Column 13

-2.1741e-02

Dc=

0 0
Poles of the Compensator

real imaginary frequency damping

4.0000e-02
-9.5913e-01
-1.1572e+01
-3.5192e+00
-3.5192e+00
-7.8313e+01
-9.9503e+01
-2.4275e+02
-1.611 le+03
-3.7652e+03
-3.7652e+03
-7.5323e+03
-2.0328e+04

0.0000e+00
0.0000e+00
0.0000e+00

-1.3382e+01
1.3382e+01
0.0000e+00
0.0000e+00
0.0000e+00
0.0000e+00

-6.4243e+03
6.4243e+03
0.0000e+00
0.0000e+00

4.0000e-02
9.5913e-01
1.1572e+01
1.3837e+01
1.3837e+01
7.8313e+01
9.9503e+01
2.4275e+02
1.611 le+03
7.4464e+03
7.4464e+03
7.5323e+03
2.0328e+04

1.0000e+00
1.0000e+00
1.0000e+00
2.5432e-01
2.5432e-01
1.0000e+00
1.0000e+00
1.0000e+00
1.0000e+00
5.0565e-01
5.0565e-01
1.0000e+00
1.0000e+00
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Appendix B: Design I Data

Zeroes of the Compensator

real imaginary frequency damping

-3.5192e+00
-3.5192e+00
-2.4275e+02

-1.3382e+01
1.3382e+01

-9.0436e-14

1.3837e+01
1.3837e+01

2.4275e+02

2.5432e-01
2.5432e-01
1.0000e~0

Poles of the Closed Loop System

real imaginary frequency damping

-9.4544e-01
-5.3813e+00
-5.3813e+00
-3.5191e+00
-3.5191e+00
-1.7714e+01
-1.7714e+01
-7.2135e+01
-7.2135e+01
-2A275e+02
-2.0013e+02
-2.0013e+02
-1.6110 e+03
-3.7654e+03
-3.7654e+03
-7.5324e+03
-2.0327e+04

0.0000Oe+00
-1.1363e+01
1.1363e+01

-1.3382e+01
1.3382e+01

-1.4292e+01
1.4292e+01

-1.6279e+01
1.6279e+01
0.0000e+00

-1.9996e+02
i.9996e+02
0.0000e+00

-6.4242e+03
6.4242e+03
O.OOe+00
O.0000e+00

9.4544e-01
1.2573e+01
1.2573e+01
1.3837e+01
1.3837e+01
2.2761e+01
2.2761e+01
7.3949e+01
7.3949e+01
2.4275e+02
2.8291e+02
2.8291e+02
1.6110 e+03
7.4463e+03
7.4463e+03
7.5324e+03
2.0327e+04

1.0000e+00
4.2801e-01
4.2801e-01
2.5432e-01
2.5432e-01
7.7828e-01
7.7828e-01
9.7547e-01
9.7547e-01
1.0000e+00
7.0741e-01
7.0741e-01
1.0000e+00
5.0567e-01
5.0567e-01
1.0000e+00
1.OOOOe+00
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Appendix C: Design II Data

Ac=

Columns 1 through 6

-2.5771e+02 9.1962e+02 1.7514e+00 2.1591e-12 1.6127e-13 -4.3442e-14
-9.1957e+02 -4.8925e+02 -3.5432e+00 -9.7250e-13 -7.2636e-14 1.9567e-14
1.7884e+00 3.5081e+00-1.3382e+00 2.4943e-13 1.8630e-14-5.0185e-15
1.2381e+01 -2A513e+00-1.4772e+02 5.5647e+03 4.8787e+02 3.2235e+02
1.2100e+00-2.3957e-01 -lA436e+01 5.3784e+02 4,6436e+01 lA686e+01

-1.3593e+01 2.6912e+00 1.6217e+02 -6.0892e+03 -5.1420e+02 -5.9470e+02
2.3551e+00 -4.6628e-01 -2.8098e+01 1.0627e+03 9.1251e+01 5.2878e+01

-4.0403e-01 7.9979e-02 4.8207e+00 -1.8232e+02 -1.5656e+01 -9.0722e+00
3.4264e-02-3.2207e-02-2.8976e-03 1.0521e-01 9.0338e-03 5.2350e-03

-1.3880e-01 1.3053e-01 1.0783e-02-3.9004e-01 -3.3492e-02-1.9408e-02
1.3563e-02-1.2273e-02-8.7502e-03 3.2928e-01 2.8275e-02 1.6385e-02

-9.8959e-02 9.2725e-02 1.3050e-02 -4.8093e-01 -4.1297e-02-2.3931e-02
-1.9140e-02 1.8422e-02-5.2535e-03 2.0121e-01 1.7278e-02 1.0012e-02
-1.2249e+00 1.1576e+00 4.1720e-03 -3.8176e-11 -2.8513e-12 7.6810e-13
6.0031e-01 -5.6732e-01 -2.0446e-03 3.0616e-1 1 2.2867e-12 -6.1598e-13
1.0543e+00 -9.9641e-01 -3.5910e-03 8.2286e-12 6.1459e-13 -1.6556e-13

-2.0205e-01 1.9095e-01 6.8816e-04 9.9478e-10 7.4299e- 1 -2.0015e-1 1
2.9621e-01 -2.7994e-01 -1.0089e-03 1.0425e-10 7.7867e-12-2.0976e-12
2.6621e-02 -2.5158e-02 -9.0668e-05 -1.0973e-09 -8.1960e- 11 2.2079e- 11

Columns 7 through 12

-2.7880e-03
1.3672e-03
1.3929e-04
3.0259e+04
2.9572e+03

-3.3220e+04
2.2360e+03

-4.5522e+03
-1.7226e+00
6.3899e+00

-5.3946e+00
7.8504e+00

-3.1038e+00
-8.6130e-01
2.6862e-01
9.6204e-02
1.2535e+01
1.3234e+00

-4.4175e+01 3.1470e+02 1.8564e+02-1.6160e+02
-3.5249e+01 1.1841e+02 2.8690e+02 9.9864e+01
3.5950e-01 -6.7726e+00 2.8931e+00 8.5710e+00

*-1.2422e+04 1.2529e+03 9.3676e+02 1.3269e+01
-1.2140e+03 1.2245e+02 9.1549e+01 1.2967e+00
1.3638e+04 -1.3755e+03 -1.0284e+03 1.4567e+01

-2.3630e+03 2.4470e+02 1.7430e+02 -7.1110e+00
3.9699e+02 1.9392e+02 -1.7675e+02-3.3245e+02

-9.8227e+03 2.7073e+05 -1.6863e+05 -3.8206e+05
3.6420e+04 -1.0038e+06 6.2525e+05 1.4166e+06

-3.0748e+04 8.4748e+05 -5.2789e+05 -1.1960e+06
4.4891e+04 -1.2373e+06 7.7071e+05 1.7459e+06
-1.8488e+04 5.0958e+05 -3.1742e+05 -7.1891e+05

-1.4016e+03 3.8620e+04 -2.4052e+04 -5.4503e+04
4.3765e+02 -1.2058e+04 7.5087e+03 1.7017e+04
1.5621e+02 -4.3035e+03 2.6798e+03 6.0726e+03
2.0336e+04 -5.6052e+05 3.4915e+05 7.9102e+05
2.1471e+03 -5.9180e+04 3.6863e+04 8.3516e+04

5.8303e-01 -1.2442e+01 -2.0186e+04 5.5639e+05 -3.4658e+05 -7.8520e+05
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1.3248e-04
-6.2344e-05
-6.4764e-06
-3.0827e+04
-3.0127e+03
3.3844e+04

-2.3890e+03
4.5257e+03

-1.6423e+00
6.0863e+00

-5.1378e+00
7.4960e+00

-3.1447e+00
4.0410 e-02

-1.2609e-02
-4.5085e-03
-5.8736e-01
-6.2013e-02



Appendix C: Design II Data

Ac=[

Columns 13 through 18

-6.0148e+o01 -3.6193e-13 -1.7522e- 13 5.3117e-14 -2.1554e-12 -3.0941e-13
1.8703e+01 1.6302e-13 7.8919e-14 -2.3925e-14 9.7081e-13 1.3936e-13
2.5956e+00 -4.1811e-14 -2.0241e-14 6.1363e-15 -2.4900e-13 -3.5744e-14
-4.3916e-00 -9.9721e+02 -4.8276e+02 1.4635e+02 -5.9386e+03 -8.5251e+02
4.2918e-01 -9.7457e+01 4.7180e+01 1.4303e+01 -5.8038e+02 -8.3315e-01
4.8214e+00 1.0948e+03 5.3001e+02 -1.6068e+02 6.5199e+03 9.3595e+02

-3.7158e-00-1.8968e+02-9.1829e+01 2.7838e+01-1.1296e+03-1.6216e+02
-9.9156e+01 3.2545e+01 1.5753e+01 4.7761e+00 1.9395e+02 2.7807e+01
-1.1427e+05 2.1908e+00 -2.0972e+00 -4.7696e-03 1.6740e+02 -1.6386e+01
4.2367e+05 -7.3975e+00 7.0905e+00 1.5215e-02 -6.201 le+02 6.0703e+01

-3.5769e+05 5.7410e+00 -5.5096e+00 -1.1128e-02 5.2859e+02 -5.1743e+01
5.2204e+05 1.6198e-01 -3.0391e-02-1.2858e-02 -8.0342e+02 7.8641e+01

-2.1529e+05 -2.2991e-03 -4.9157e-02 5.1565e-03 4.2258e+02 -4.1350e+01
-1.6309e+04 2.1146e+02 4.7623e+02 1.5348e-01 3.8110e-11 5.4708e-12
5.0929e+03 -4.7623e+02 -9.0823e+02 -5.0532e+00 -3.0562e-11 -4.3873e-12
1.8163e+03 1.5348e-01 5.0532e+00-1.3327e+00-8.2143e-12-1.1792e-12
2.3658e+05 -1.6675e-10 -8.0727e-11 2.4473e-11 -3.8429e+02 4.3551e+01
2.4978e+04 -1.7476e-11 -8.4603e-12 2.5648e-12 -4.3551e+01 3.0125e+00
-2.3484e+05 1.8395e-10 8.9050e-11 -2.6996e-11 4.4204e+02 -2.6384e+01

Column 19

-1.8532e-14
8.3469e-15

-2.1408e-15
-5.1060e+01
-4.9900e+00
5.6057e+01

-9.7170e+00
1.5060e+00

-1.8390e+02
6.8126e+02

-5.8071e+02
8.8262e+02

-4.6418e+02
3.2766e-13

-2.6277e-13
-7.0625e-14
4.4204e+02
2.6384e+01

-7.2610e+02
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Appendix C: Design II Data

Bc=

-1.2131e-03 1.7498e+02
-9.7082e-04 -8.9712e+01
-2.8504e-02 -8.7020e+00
-1.9242e-12 -1.0442e-07
-1.9126e-13 -1.0780e-08
1.9295e-12 1.0097e-07
1.4945e-04 9.7271e+00
5.1513e-03 3.3529e+02

-1.1601e+01 3.8583e+05
-2.6599e+01 -1.4306e+06
1.9484e+01 1.2078e+06

-3.0828e+01 -1.7633e+06
1.2549e+01 7.2623e+05

-2.3776e+01 5.5036e+04
1.0545e+01 -1.7183e+04
1.1662e-01 -6.1325e+03

-1.5632e+01 -7.9883e+05
-1.7043e+00 -8.4341e+04
1.3841e+01 7.9295e+05

Cc=

Columns 1 through 6

7.1643e-06-1.4185e-06-8.5476e-05 3.2327e-03 2.7759e-04

Columns 7 through 12

4.4567e-02 2.8216e-02-7.1885e-03 7.2665e-04 5.4071e-04 7.6887e-06

Columns 13 through 18

-2.5422e-06-5.7703e-04 -2.7935e-04 8.4686e-05 -3.4364e-03 -4.9330e-04

Column 19

-2.9545e-05

Dc=

0 0
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Appendix C: Design II Data

Poles of the Compensator

real imaginary frequency

4.0000e-02 0.000e+ 4.00OOe-02
-1.1051e+00 -1.3525e-01 1.1133e+00
-1.1051e+00 1.3525e-01 1.1133e+00

-1.3516e+00 O.0000e+OO 1.3516e+00
4.8619e+00 O.OOOOe+00 4.8619e+00

-7.3507e+00 -8.0862e+00 1.0928e+01
-7.3507e+00 8.0862e+00 1.0928e+01
-5.4267e+01 O.0000e+OO 5.4267e+01
-7.5479e+01 O.00Oe+OO 7.5479e+01
-1.1678e+02 O.0000e+OO 1.1678e+02
-2.9589e+02 O.0000e+OO 2.9589e+02
-6.4304e+02 O.0000e+OO 6.4304e+02
-7.0625e+02 O.0000e+OO 7.0625e+02
-3.7345e+02 -9.1227e+02 9.8575e+02
-3.7345e+02 9.1227e+02 9.8575e+02
-1.0270e+03 O.0000e+00 1.0270e+03
-2.8862e+03 4.4683e+03 5.3194e+03
-2.8862e+03 4.4683e+03 5.3194e+03
-5.8976e+03 Q.OOOOe+00 5.8976e+03

damping

1.0000e+OO
9.9259e-01
9.9259e-01
1.0000e+00
1.0000e+OO
6.7265e-01
6.7265e-01
1.0000e+00
1.0000e+OO
1.0000e+00
1.0000e+00
1.0000e+OO
1.0000e+OO
3.7885e-01
3.7885e-01
1.0000e+OO
5.4258e-01
5.4258e-01
1.0000e+00

Zeros of the Compensator

real imaginary frequency damping

-1.2373e+00
-7.8744e+00
-7.8744e+00
-2.9625e+02
-1.0000e+04
-1.0000e+04

5.8492e-17
7.1854e+00

-7.1854e+00
-7.3722e-14
4.8023e-03

-4.8023e-03

1.2373e+00
1.0660e+01
1.0660e+01

2.9625e+02
1.0000e+04
1.0000e+04

1.0000e+OO
7.3868e-01
7.3868e-01
1.0000e+OO
1.0000e+OO
1.0000e+OO

154



Appendix C: Design II Data

Poles of Closed Loop System

real imaginary frequency damping

-1.0082e+00 O.0000e+00 1.0082e+00 1.0000e+00
-1.2184e+00 O.0000e+00 1.2184e+00 1.0000e+00
-1.3411e+00 O.OOOOe+00 1.3411e+00 1.0000e+00
-8.8437e+00 O.0000e+00 8.8437e+00 1.0000e+00
-5.2012e+00 -8.8448e+00 1.0261e+01 5.0690e-01
-5.2012e+00 8.8448e+00 1.0261e+01 5.0690e-01
-1.0294e+01 -2.8488e+00 1.0681e+01 9.6377e-01
-1.0294e+01 2.8488e+00 1.0681e+01 9.6377e-01
-4.0430e+01 O.OOOOe+00 4.0430e+01 1.0000e+00
-5.2018e+01 O.0000e+00 5.2018e+01 1.0000e+00
-5.4142e+01 O.0000e+00 5.4142e+01 1.0000e+00
-7.3609e+01 O.0000e+00 7.3609e+01 1.0000e+00
-2.0012e+02 -2.0023e+02 2.8309e+02 7.0691e-01
-2.0012e+02 2.0023e+02 2.8309e+02 7.0691e-01
-2.9593e+02 O.0000e+00 2.9593e+02 1.0000e+00
-64300e+02 O.0000e+00 6.4300e+02 1.0000e+00
-7.1335e+02 O.0000e+00 7.1335e+02 1.0000e+00
-3.7345e+02 -9.1227e+02 9.8575e+02 3.7885e-01
-3.7345e+02 9.1227e+02 9.8575e+02 3.7885e-01
-1.0271e+03 O.0000e+00 1.0271e+03 1.0000e+00
-2.8862e+03 -4.4683e+03 5.3194e+03 5.4258e-01
-2.8862e+03 4.4683e+03 5.3194e+03 5.4258e-01
-5.8975e+03 0.0000e+00 5.8975e+03 1.0000e+00
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Appendix D: Design IVa Data

Ac

2.8019e+06 8.3015e+05 1.4849e+05-1.2991e+07
7.0875e+05 2.0999e+05 3.7572e+04 -3.2863e+06
3.0366e+06 8.9969e+05 1.6071e+05 -1.4080e+07
6.0334e+05 1.7876e+05 3.1978e+04-2.7939e+06

-9.6367e+04-2.8553e+04-5.1060e+03 4.5034e+05
-7.8451e+04 -2.3234e+04 -4.1763e+03 3.6366e+05
4.0642e+05 1.2036e+05 2.1636e+04 -1.8840e+06

-8.3885e+04 -2.4843e+04 -4.4656e+03 3.8885e+05
8.0075e+05 2.3715e+05 4.2628e+04 -3.7119e+06

-3.0286e+05-8.9694e+04 -1.6123e+04 1.4039e+06
1.9758e+05
4.9885e+04
2.0237e+05

5.8514e+04
1.4774e+04
5.9932e+04

1.0518e+04 -9.1588e+05
2.6556e+03 -2.3124e+05
1.0773e+04 -9.3808e+05

1.2776e+07 -4.1634e+06
3.2319e+06 -1.0532e+06
1.3847e+07 -4.5123e+06
2.7477e+06 -8.9658e+05
-4.4300e+05 1.4330e+05
-3.5765e+05 1.1554e+05
1.8529e+06 -5.9857e+05

-3.8243e+05 1.2356e+05
3.6506e+06 -1.1797e+06

-1.3807e+06 4.4641e+05
9.0076e+05 -2.9101e+05
2.2743e+05 -7.3475e+04
9.2259e+05 -2.9812e+05

Columns 7 through 12

-7.0824e+05 -5.4669e+05
-1.7914e+05 -1.3829e+05
-7.6563e+05 -5.9251e+05

6.6039e+04 -8.3068e+05
1.6695e+04 -2.1014e+05
7.0125e+04 -9.0149e+05

-2.2146e+06 -8.8608e+05
-5.6021e+05 -2.2415e+05
-2.4002e+06 -9.6032e+05

-1.2508e+05 -1.1793e+05 -6.1072e+03 -1.9586e+05 -4.7688e+05 -1.9080e+05
-2.6082e+04 1.9174e+04 3.5178e+04 5.9802e+04 7.6155e+04 3.0480e+04
5.1880e+05 1.1612e+04 -3.7192e+05-2.8577e+05 6.2243e+04 2.4741e+04

-2.6979e+06 -6.0081e+04 1.9343e+06 1.4868e+06 -3.2245e+05 -1.2818e+05
5.4815e+05 1.2461e+04-3.9277e+05 -3.0146e+05 6.6564e+04 2.6453e+04

-5.1540e+06 -1.1953e+05 3.6909e+06 2.8290e+06 -6.3550e+05 -2.5249e+05
1.8285e+06 4.6100e+04-1.3061e+06-9.9530e+05 2.4053e+05 9.5455e+04

-1.303 le+06 -2.9264e+04 9.3405e+05 7.1751e+05 -1.5677e+05 -6.2297e+04
-3.2870e+05-7.3909e+03 2.3561e+05 1.8097e+05-3.9594e+04-1.5733e+04
-1.3061e+06-3.0184e+04 9.3553e+05 7.1723e+05 -1.6062e+05-6.3816e+04

Column i3

-9.7180e+04
-2.4583e+04
-1.0532e+05
-2.0927e+04
3.3254e+03
2.9908e+03

-1.5479e+04
3.2068e+03

-3.0722e+04
1.1799e+04

-7.5508e+03
-1.8970e+03
-7.9993e+03
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Appendix D: Design IVa Data

Bc=

-5.5044e-01 -4.9978e+04
-1.3925e-O1 -1.2635e+04
-5.9465e-O1 -5.3091e+04
7.5815e-02 4.3336e+03

-5.4157e-01 -2.6044e+04
-3.6902e+00 2.7603e+05
-3.0526e+01 -1.4356e+06
6.0760e+00 2.9151e+05

-6.0207e+01 -2.7395e+06
2.2861e+01 9.6966e+05

-1.4818e+01 -6.9324e+05
-3.7414e+00 -1.7486e+05
-1.5202e+01 -6.9434e+05

Cc=

Columns 1 through 6

4.0336e+00 1.1951e+00 2.1379e-01 -1.8565e+01 1.8417e+01 -5.9940e+00

Columns 7 through 12

-8.8888e-01 -7.8799e-01 -2.0183e-03 -1.2768e+00 -3.1882e+00 -1.2756e+00

Column 13

-1.3990e-01

Dc=

0 -1.9000e-01

Poles of the Compensator

real imaginary frequency damping

-4.OOOOe-02
-9.5913e-01
-1.1368e+01
-3.5412e+00
-3.5412e+00
-7.5939e+01
-9.9318e+01
-2.4A146e+02
-1.4IA935e+03

-3.7425e+03
-3.7425e+03
-7.4671e+03
-1.0236e+05

0.0000e+00
O.0000e+00
0.0000e+00

-1.3285e+01
1.3285e+01
O.0000e+00
O.OOOOe+00

O.0000e+00
0.0000e+00

-6.3092e+03
6.3092e+03
O.0000e+00
O.0000e+00

4.0000e-02
9.5913e-01
1.1368e+01
1.3749e+01
1.3749e+01
7.5939e+01
9.9318e+01
2.4146e+02
1.4935e+03
7.3357e+03
7.3357e+03
7.4671e+03
1.0236e+05

1.0000e+00
1.0000e+00
1.0000e+00
2.5757e-01
2.5757e-01
1.0000e+00
1.0000e+00
1.0000e+00
1.0000e+00
5.1017e-01
5.1017e-01
1.0000e+00
1.0000e+00
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Appendix D: Design IVa Data

Zeros of the Compensator

real imaginary frequency damping

-3.5412e+00 1.3285e+01 1.3749e+01 2.5757e-01
-3.5412+00 -1.3285e+01 1.3749e+01 2.5757e-01
-2.4146e+02 6.6486e-14 2.4146e+02 1.0000e+00

Poles of the Closed Loop System

real imaginary frequency damping

-9.5913e-01 O.0000e+00
-2.2226e+00 -1.2069e+01
-2.2226e+&0 1.2069e+01
-3.5412e+00 -1.3285e+01
-3.5412e+00 1.3285e+01
-1.4003e+01 O.0000e+00
-3.8717e+01 O.0000e+00
-6.2068e+01 O.0000e+00
-6.8115e+01 O.0000e+00
-2A146e+02 O.0000e+00
-2.0019e+02 -2.0018e+02
-2.0019e+02 2.0018e+02
-1.4935e+03 O.0000e+00
-3.7426e+03 -6.3091e+03
-3.7426e+03 6.3091e+03
-7.4671e+03 O.0000e+00
-1.0236e+05 O.0000e+00

9.5913e-01
1.2272e+01
1.2272e+01
1.3749e+01
1.3749e+01
1.4003e+01
3.8717e+01
6.2068e+01
6.8115e+01
2.4146e+02
2.831 le+02
2.831 le+02
1.4935e+03
7.3356e+03
7.3356e+03
7.4671e+03
1.0236e+05

1.0000e+00
1.8112e-01
1.8112e-01
2.5757e-01
2.5757e-01
1.0000e+00
1.0000e+00
1.0000e+OO
1.0000e+00
1.0000e+00
7.0712e-01
7.0712e-01
1.0000e+OO
5.1019e-01
5.1019e-01
1.0000e+00
1.0000e+00
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Appendix E: Design IVb Data

Ac=

Columns through 6

2.8060e+05 4.3163e+04
-2.7726e+05 -4.2757e+04
-7.8104e+05 - 1.2078e+05
5.5399e+04 8.5054e+03

-9.5046e+03 -1.4593e+03
4.1071e+00 6.3057e-01
-2.1381e+01 -3.2826e+00
3.6717e+00 5.6372e-01

-2.3161e+O1 -3.5559e+00
1.0857e+01 1.6669e+00

2.8532e+03 -1.1018e+06 1.0844e+06 -7.1616e+05
-3.3943e+03 1.0888e+06-1.0716e+06 7.0773e+05
-1.4A066e+04 3.0673e+06-3.0189e+06 1.9937e+06
5.1277e+02 -2.1402e+05 2.1054e+05 -1.4137e+05

-8.7975e+01 4.0834e+04 -4.0290e+04 2.4254e+04
3.8015e-02 -1.6806e+01 1.4572e+01 -7.1826e+02
-1.9790e-01 8.7480e+01 -7.5848e+01 3.7411e+03
3.3986e-02 -1.5022e+01 1.3016e+01 -6.4411e+02
-2.1438e-01 9.4757e+01 -8.2082e+01 4.0665e+03
1.0049e-01 -4.4409e+01 3.8358e+01 -1.9266e+03

-4.5854e-08 -6.8636e-09 7.4108e-12 -7.8386e-01 9.9170e+00 1.7046e+03
4.0075e-08 5.9984e-09 -6.4767e-12 5.5322e-01 -6.9992e+00 -1.2031e+03
7.4350e-08 1.1129e-08-1.2016e-11 -1.3711e-03 1.6825e-02 3.0446e+00

Columns 7 through 12

-3.6927e+04 -3.9921e+04 -6.4122e+03 2.6737e+03 -2.1160e+05 -3.5749e+04
3.6492e+04 3.9451e+04 6.3367e+03 -2.6422e+03 2.091 1c05 3.5328e+04
1.0280e+05 1.1114e+05 1.7851e+04 -7.4434e+03 5.8908e+05 9.9522e+04

-7.2888e+03 -7.8803e+03 -1.2664e+03 5.2756e+02 -4.1770e+04 -7.0568e+03
1.2705e+03 1.3521e+03 1.9539e+02-9.8197e+01 7.1663e+03 1.2107e+03
3.5529e+05 1.4367e+03 -3.8953e+05-1.3678e+05 3.3939e+02-3.3898e+02

-1.8507e+06 -7.4812e+03 2.0291e+06 7.1247e+05 -1.7506e+03 1.7486e+03
3.1867e+05 1.2851e+03 -3.4936e+05 -1.2267e+05 3.1479e+02 -3.1429e+02

-2.0118e+06 -8.1088e+03 2.2055e+06 7.7430e+05 -2.0068e+03 2.0034e+03
9.5329e+05 3.8414e+03 -1.0449e+06 -3.6720e+05 1.1691e+03 -1.1648e+03

-8.5582e+05 -3.4547e+03 9.3829e+05 3.2946e+05 -9.9786e+02 1.0138e+03
6.0401e+05 2.4381e+03 -6.6221e+05-2.3252e+05 1.0138e+03 -1.1042e+03

-1.5170e+03 -7.3053e+00 1.6648e+03 5.8712e+02 2.8988e+03-3.4393e+03

Column 13

8.0246e+01
-7.9301e+01
-2.2340e+02
1.5839e+01

-2.7710e+00
-9.5345e+02
4.9184e+03

-8.8407e+02
5.6354e+03

-3.2774e+03
2.8988e+03

-3.4393e+03
-1.4193e+04
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Appendix E: Design IVb Data

Bc=

1.7156e-12 9.6320e-08
-1.3814e-12 -7.3544e-08
-1.6063e-12 -5.2275e-08
-4.2504e-07 3.4426e-01
-1.4826e-05 1.1854e+01
-6.3468e+00 2.1207e+05
-2.1463e+01 -1.1047e+06
3.4960e+00 1.9020e+05

-2.3714e+01 -1.2008e+06
1.2004e+01 5.6900e+05

-1.0180e+01 -5.1083e+05
7.6355e+00 3.6053e+05
4.0937e+00 -9.0560e+02

Cc=

Columns 1 through 6

3.3812e-01 5.1912e-02 3.1297e-03 -1.2022e+00 1.3280e+00 -8.6284e-01

Columns 7 through 12

-4.4490e-02 -4.8097e-02 -7.7254e-03 3.2213e-03 -2.5494e-01 -4.3071e-02

Column 13

9.6682e-05

Dc =

0 -1.9000e-01

Poles of the Compensator

real imaginary frequency

4.0000e-02
-9.5913e-01
-9.3849e+00
-1.9649e+01
-9.9601e+01
-1.0478e+02
-5.9684e+02
-5.2606e+03
-3.4878e+03
-3.4878e+03
-1.4150e+04
-1.5679e+04
-1.5771e+04

O.0000e+00
0.0000Oe+00
O.0000e+00
O.OOOOe+00
O.0000e+00
O.0000e+00
O.0000e+00
O.0000e+00

-5.2225e+03
5.2225e+03
O.0000e+00
O.0000e+00
O.0000e+00

damping

4.0000e-02
9.5913e-01
9.3849e+00
1.9649e+01
9.9601e+01
1.0478e+02
5.9684e+02
5.2606e+03
6.2800e+03
6.2800e+03
1.4150e+04
1.5679e+04
1.5771e+04

1.0000e+00
1.0000e+00

1.0000e+00
1.0000e+00
1.0000e+OO
1.0000e+00
1.0000e+00
1.0000e+00
5.5538e-01
5.5538e-01
1.0000e+00
1.0000e+00
1.0000e+00
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Appendix E: Design IVb Data

Zeros of the Compensator

real imaginary frequency damping

-1.0478+02
-9.3849e+00

.0000e+0O 1.0478e+02 l.OOOOe+OO
O.0000e+OO 9.3849e+00 l.0000e+OO

Poles of the Closed Loop System

real imaginary frequency damping

-9.4464e-01
-7.4894e+00
-9.3849e+00
-2.4022e+01
-2.4022e+01
-4.6860e+01
-4.6860e+01
-1.0478e+02
-1.8572e+02
-1.8572e+02
-5.9661e+02
-5.2607e+03
-3.4880e+03
-3.4880e+03
-1.4A150e+04
-1.5679e+04
-1.5771e+04

O.0000e+OO
O.0000e+OO
O.0000e+OO

-1.6734e+01
1.6734e+01

-6.2883e+00
6.2883e+00
O.0000e+OO

-1.8643e+02
1.8643e+02
O.0000e+OO
O.0000e+OO

-5.2223e+03
5.2223e+03
O.0000e+OO
O.0000e+OO
O.0000e+OO

9A464e-01
7.4894e+00
9.3849e+00
2.9276e+01
2.9276e+01
4.7280e+01
4.7280e+01
1.0478e+02
2.6315e+02
2.6315e+02
5.9661 e+02
5.2607e+03
6.2800e+03
6.2800e+03
1.4150e+04
1.5679e+04
1.5771e+04

1.0000e+OO
1.0000e+OO
1.0000e+00
8.2053e-01
8.2053e-01
9.9112e-01
9.9t 12e-01
l.0000e+OO
7.0576e-01
7.0576e-01
1.0000e+OO
1.0000e+OO
5.5541e-01
5.5541e-01
l.0000e+OO
1.0000e+OO
1.0000e+OO
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