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Abstract

The application of linearizing transformations for the control of nonlinear mecharnical systems
with particular emphasis to underactuated systems was investigated. Within the framework
of canonical transformation theory a new set of transformations were derived. These trans-
formations, termed orthogonal canonical transformations, also preserve Hamilton's equations
and characterize a special class of Hamiltonian systems that admit a linear representation in
the transformed coordinate system. Using this approach, the solution to the original nonlin-
ear equations are obtained from the inverse transformation. The general conditions for such
a transformation were derived, and an example was presented that illustrates this linearizing
property.

The Riemann Curvature Tensor was introduced as a computational tool by which it can
be determined whether a given mechanical system admits a coordinate system in which the
equations of motion appear linear. It was shown that the curvature tensor can be used to
test for the existence of point transformations such that in the transformed coordinates the
nonlinear system appears as a double integrator linear model. An example was presented that
admits such a coordinate system, and the linearizing transformation was computed.

An existing control design methodology was adopted as an approach to control underactu-
ated nonlinear systems. This approach expands the operating region of linear control designs by
constructing a linear approximation about an equilibrium point accurate to second or higher or-
der. A computational method to test for the order of linearization was derived. This approach
was applied to an underactuated example problem. Simulation results showed a substantial
improvement in the range of operation of the linear control design.
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Chapter 1

Introduction

For the control of systems described by linear, time-invariant dynamics there exist powerful

design methods . The field has matured to the point where standard computer-aided design

packages now allow the control engineer to design compensators using the latest theoretical

developments in linear system theory. In contrast, the development of control design method-

ologies for nonlinear systems have lagged their linear counterparts. As most physical systems

behave in a nonlinear fashion, there exists a strong incentive to develop nonlinear controller

design methods.

The usual approach to controlling nonlinear systems is to linearize, about an operating

point, the nonlinear dynamics and apply proven linear control design approaches. The design is

then verified and validated by exhaustive computer simulations of the response of the nonlinear

dynamics with the linear controller over a variety of initial conditions and disturbances. Such

an approach is practical for only a small range of operating conditions. However, there are

instances where the nonlinear terrr cannot be ignored. In high performance applications

where a wide range of operating conditions are encountered, linear control design based on

local approximations may be inadequate, and in the worst case fail.

Another case when linearized analysis is inadequate is when "hard" or discontinuous nonlin-

earities are present. It is not unusual to encounter "hard" nonlinearities T: practice. Examples

are saturating actuators, on-off actuators such as reaction or thruster control systems for space-

craft, unidirectional thrusters where thrust can only be applied in one direction, backlash in

geared systems caused by gaps, dry friction where the friction force is dependent on the velocity

direction etc. Linearized analysis fails because it is inherently a "continuous" analysis tool and
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it is not possible to approximate discontinous nonlinearities by linear functions at the points of

discontinuity.

At the other extreme are the so called "soft" or continuous nonlinearities. A common source

of "soft" nonlinearities is when a system is described in a non-inertial frame. When describing

the rotational motion of a rigid body, it is common practice to express the equations of motion

relative to a rotational frame attached to the body. Observing the equations of motion from

body-fixed coordinate frame results in the well known Euler's equations which are quadratic

in velocities. Other examples of non-inertial frame induced nonlinearities are the centrifugal

and coriolis effects present in rotating systems such as robotic manipulators, planar linkage

mechanisms like four-bars, planetary gear-trains etc. Sch nonlinearities may be refered to

as kinematic since they originate or are induced by the kinematical structure of the system.

Another example of "soft" nonlinearity is that of a softening or hardening spring that can be

modeled by a polynomial expression of the state.

A further complication arises when the nonlinear system to be controlled is underactuated.

When there are less actuators than degrees of freedom the system is defined as underactuated.

A common occurence is when a fully actuated system experiences a failure in one or more

actuators. For this type of system a general control design methodology does not e..st. Most

established nonlinear control design methods require "square" or fully actuated systems.

The objective of this thesis is to investigate the problem of continuous nonlinear system

control design with particular emphasis to underactuated systems. The general approach with

which this problem is addressed is the use of transformation techniques that simplify the non-

linear equations such that existing results in linear control theory can be applied.

1.1 Properties Of Linear Time-Invariant And Nonlinear Sys-

tems,

In this section, a brief overview of the main properties of linear and nonlinear systems is

presented. The objective is to highlight and contrast the complicated behaviour that nonlinear

system can exhibit as opposed to the response of linear systems. For this purpose let the linear

time-invariant dynamics be defined as,

= Ax + Bu

5



and the nonlinear time-invariant dynamics as:

x = f(x, u)

First, let us consider the properties of the linear system. The main features to be considered

are equilibrium points, stability, and forced response.

(a) Equilibrium: For the unforced system (i.e. u = 0) the equilibrium point is unique

if A is nonsingular. Then x,,q = 0 is the only equilibrium point. If A is singular there

exist an infinite number of equilibrium points.

(b) Stability: Stability about the equilibrium point is solely defined by the spectrum

of A. The system is stable if all eigenvalues of A have negative real parts. The

definition of stability is independent of initial conditions, forcing functions, and the

concepts of local or global behaviour.

(c) Forced Response: Linear systems satisfy the property of superposition,

x( uI(t) + u2(t) ) = X( U(t) ) + x( u2(t) )

and homogeneity.

x( au(t) ) = ox (u(t) )

Additionally, if the impulse response of the system is known the response to any input

can be constructed using the principle of convolution. This defines linear systems as

integrable.

For nonlinear systems, no general statements like the above can be made. Their behaviour

is much more complicated and cannot be captured by a few simple characteristics.

(a) Equilibrium: For the unforced system (i.e. u = 0) there may exist none, 1, or

multiple equilibrium points.

(b) Stability: Stability about an equilibrium point is dependent on initial conditions

and forcing functions as well as having a local or global property. Furthermore,

nonlinear systems may exhibit limit cycles which are closed, unique trajectories or

orbits. These equilibrium manifolds may be attractive or repulsive.
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(c) Forced Response: Nonlinear systems do not satisfy the principles of superposition

and homogeneity. The response can also be non-unique, exhibit chaotic behaviour

etc. Also, in general they are non-integrable.

Another interesting property is that of bifurcation where a change in a system parameter can

alter stability and equilibrium points. In conclusion, nonlinear systems exhibit a plethora of

behaviors which makes their analysis a difficult task. Usually, each system must be studied

separately as there are very few properties that are shared by all nonlinear systems. As a

consequence, in general, there does not exist a systematic approach to analyze or predict their

response, let alone to alter it. This situation, however, has forced the development of particular

nonlinear control design techniques that are applicable to certain systems. In the next section,

currently available control synthesis methods are presented.

1.2 Current Nonlinear Control Synthesis Methods

In this section, a brief summary of available nonlinear control design methods is presented.

As can be surmized from the previous section, there do not exist any general nonlinear control

design methodologies. However, there exist a multitude of powerful methods applicable to

certain classes of nonlinear systems. Consequently, this is a thriving research area that has

attracted the attention of many researchers from disparate scientific disciplines. The most recent

decade has witnessed a rejuvination of interest in nonlinear control techniques and substantial

effort has been expended to overcome some of the impediments to designing practical controllers.

This new wave has been driven by ever increasing sophisticated applications requiring stringent

performance specifications and the advances in computer technology.

Essentially all of the control design tools for nonlinear system control design methods can

be thought of as providing in one form or another a way to generate the control action as a

function of system states. This mapping may be linear or nonlinear, static or dynamic. One

way to classify the controller design approaches is according to the method used in compensator

design:

1. Compensator design based on linear methods:

(a) Linear Control: The nonlinear system is linearized about an equilibrium point, and
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a linear controller using a variety of techniques is designed. Using fecently developed

synthesis tools, robustly stable compensators can be designed to account for norm-

bounded model uncertainty. However, such designs have a limited operating region

where the linear approximation is valid.

(b) Gain Scheduled Linear Control: This approach attempts to expand the region of

linear control operation by linearizing the dynamics about different operating points

and designing linear controllers for each point. In between operating points, the

control action or the gains are interpolated or "scheduled". Some of the drawbacks

of such an approach are that there are no stability guarantees during transition

between operating points, and is computationally intensive if many operating points

are considered as well as when the dimension of the nonlinear system is high.

2. Compensator design using Lyapunov stability criteria:

(a) Sliding Mode Control: This is an example of a robust nonlinear tracking control

design method applicable to systems that can be put in a controllable canonical form

(see for example Slotine [41] Chapter 7). This is a powerfull method that provides

stability robustness to parametric modeling uncertainty and unmodeled dynamics.

The approach is to define a so called "sliding surface" in state space that represents

the tracking error. The control action is then chosen such that the system remains

on the "sliding surface" in the presence of model uncertainty. The main features are

that the undesirable nonlinear dynamics are robustly cancelled and desirable linear

dynamics inserted. This approach which was originally developed in the Soviet

Union, was pioneered by Slotine [39] by eliminating undesirable chattering and large

control authority that plagued previous designs. The smoothing is achieved by using

proportional control inside an attractive region about the "sliding surface" known

as a boundary layer. Inside the boundary layer there are no stability or robustness

guarantees. This approach requires that the system can be expressed in control

canonical form [41], the number of outputs equals the number of inputs, and exact

state measurement information is available.

(b) Adaptive Control: This is a control methodology applicable to linear or nonlinear

systems with unknown or uncertain parameters [3]. One approach known as indirect
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adaptive control, is to estimate on-line the unknown system parameters using mea-

surements. Another method is direct adaptive control which adjusts the controller

parameters such that a desired closed-loop behaviour is achieved. Note that the

uncertain parameters are treated as time-varying. This may cause degradation in

performance if the actual parameters are state dependent. A recent development

in the field is the method developed by Slotine and Li [40] which exploits the La-

grangian and linear in parameters structure of rigid manipulators. The drawbacks

of such an approach for nonlinear as well as linear sytems is the stability issue in the

presence of disturbances, measurement noise and unmodeled dynamics.

3. Compensator design using transformation methods:

(a) Input-Output Feedback Linearization: This approach utilizes state and control

transformations coupled with feedback to realize an equivalent linear representation

of the nonlinear system from the inputs to the outputs and was introduced by Isidori

et al., [22]. The main concept in this and the following methods is the use of trans-

formations in the state and control variables to alter the nonlinear dynamics to a

nearly linear form such that the remaining nonlinearities can be cancelled by feed-

back. The state and control transformations must be constructed in such a manner

that the remaining terms appear in the path of the control action in order to be

cancelled. Like Sliding Mode control, the nonlinear system is put in controllable

canonical form [41]. Once the linear input-output relationship is obtained, linear

theroy can be used to design a controller. The drawbacks of tlhis approach are the

sensitivity to parameter uncertainty and unmodeled dynamics, the requirement of

full state measuremeit and can only be applied to certain nonlinear systems.

(b) Input-State or Exact Feedback Linearization: This is a similar approach to

Input-.Output linearization except that the linear equivalence is established between

the inputs and the complete state. The dimension of the linear equivalent system is

identical to the nonlinear one, whereas for the Input-Output approach it is less than

or equal to. Originating with the work of Krener [27] (1973), and Brockett [5] (1978),

the problem was completely solved by Jacubczyck and Respondek [23] (1980), Su [46]

(1982), and Hunt, Su, Meyer [21] (1983). The existence conditions for this approach
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are fairly restrictive, and evaluating them is computationally intensive requiring

symbolic mathematics software. Even when the existence conditions are satisfied,

finding a solution requires solving a nontrivial set of partial differential equations.

Implementing this approach requires full state information and is also sensitive to

modeling errors. The existence conditions usually fail for underactuated systems.

(c) Approximate Feedback Linearization: This approach attempts to construct a

linear approximation about an equilibrium point accurate to second or higher order as

opposed to all orders for input-state linearization. This approach was formulated by

Krener [28] (1984), [29] (1987). The existence conditions for this approach are similar

to those for input-state linearization, yet are much less stringent. The computation

of the requisite transformations requires a solution to a set of algebraic equations

instead of solving partial differential equations. However, it does require full state

information and is sensitive to modeling errors.

It should be noted that most of the above approaches cannot be applied to underactuated

problems. They require the system to be fully actuated. As a consequence, one controller

design candidate for nonlinear underactuated systems is the extended feedback linearization

approach.

1.3 Thesis Contributions

As stated previously, the objective of this thesis is the development of linearizing transfor-

mations for the control of nonlinear mechanical systems, with particular emphasis to underac-

tuated systems. This problem was addressed by exploiting the special properties of mechanical

systems. Such systems obey the principles of analytical dynamics, for which there exists an

extensive and very rich literature. One of the major thrusts of classical dynamics has been the

search for general methods of solution to nonlinear differential equations of motion. Since the

form of the equations of motion depend on the particular choice of coordinates employed, one

approach to simplifying these equations has been the selection of a suitable coordinate system.

To achieve this goal a systematic coordinate transformation theory was developed within the

framework of Hamiltonian dynamics. These approach is referred to as canonical transformation

theory.
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The historical development of canonical transformation theory has proceeded from the view-

point of dynamics, where the possibility of control action was not considered. Cast in the control

framework, these transformations attempt to linearize the nonlinear dynamics via coordinate

and control transformations only. A feedforward signal is not employed to cancel any remaining

nonlinearities. It is apparent that such an approach is much more restrictive with more strin-

gent requirements than the feedback linearization approaches. In effect, the nonlinearities are

eliminated by proper choice of coordinates. This requires the existence of a coordinate system

in which the nonlinear equations appear linear. Thus, given a nonlinear mechanical system, the

objective is to determine whether the system admits such a coordinate system, and construct

the transformation when this is possible. With this in mind, the main contributions of this

thesis can be summarized in the following.

(a) Orthogonal Canonical Transformations: These are a new set of transforma-

tions that preserve Hamilton's canonical equations and which are not canonical by

the classical definition. These transformations lead to a special set of Hamiltonian

systems that admit a linear representation in the transformed coordinate system.

The general conditions for such a transformation are derived and an example illus-

trating the linearizing property is presented. It is shown that the solution to the

general conditions results in the generation of a linearizing coordinate transforma-

tion. Furthermore, the solution to the original nonlinear equations is obtained from

the inverse transformation.

(b) Linearizing Transformations For Mechanical Systems: The Riemann Curva-

ture Tensor is introduced as a computational tool to test whether a given mechanical

system admits a coordinate system in which the equations of motion appear linear.

It is shown that the curvature tensor can be used to test for the existence of a

point transformation such that in the transformed coordinates the system appears

as a double integrator linear model. An example is presented that admits such a

coordinate system, and the linearizing transformation is computed.

(c) Control Of Underactuated Systems: The approach of Krener [2J], extended

feedback linearization, is applied to the control of underactuated systems. A com-

putational method to test for the order of linearization is derived from the general
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existence conditions. This approach is applied to an example problem. Simulation

results show a substantial improvement in the range of operation of the linear control

design.

1.4 Thesis Organization

In Chapter 2, the Hamiltonian formulation of dynamics is introduced, and the framework for

canonical transformations is developed. A general condition for the preservation of Hamilton's

canonical equations is derived, and the three most prevalent definitions of canonical trans-

formations appearing in the literature are reviewed. It is shown that all three definitions are

equivalent. A new set of canonical transformations that preserve Hamilton's canonical equations

are derived, which lead to a special set of Hamiltonian systems that admit a linear represen-

tation in the transformed coordinates. The general conditions for such a transformation are

derived. For a system defined by two generalized coordinates, an example is presented that

illustrates the linearizing property.

In Chapter 3, linearizing point transformations are investigated for mechanical systems.

It is shown that one approach to transform a nonlinear system to a double integrator linear

model in the transformed coordinates involves the use of point transformations. The well

known properties of point transformations, preservation of Lagrange's equations of motion and

the fact that all point transformations are canonical, are reviewed. An alternative derivation

of an existing result on the "square-root" factorization of the inertia matrix in terms of the

transformation Jacobian matrix is presented. Tlhis factorization leads to a double integrator

linear model in the transformed coordinates. To test for the existence of such a factorization,

the Riemann Curvature Tensor is introduced as a computational tool. The cart-pole example

is shown to satisfy the curvature conditions, and the linearizing transformation is computed.

Euler's rotational equations of motion are shown to violate the curvature conditions for an

axi-symmetric inertia distribution.

In Chapter 4, the approximate feedback linearization methodology is presented. Feedback

equivalence for linear and nonlinear systems is presented. The method of exact feedback lin-

earization is presented, where a transformation in state and control variables is used to generate

a linear equivalent system. The approach of extended feedback linearization is reviewed. For

12



approximate linearization, a computational approach to test for the order of the linearization is

derived. This method is applied to the cart-pole problem. It is shown that this example is not

exactly linearizable, and a second order linear approximation is constructed. Simulation results

show that for the same closed loop pole locations a substantial improvement in the range of

operation of the linear control design is achieved.

Finally, in Chapter 5 concluding remarks and recommendations for future research are

presented.
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Chapter 2

Canonical Transformations

In this chapter, the Hamiltonian formulation of dynamics is introduced. Starting from the

Lagrangian framework, the canonical equations of Hamilton are derived. The main features

of these equations are that they result in first-order differential equations, employ two sets of

independent variables instead of one, and allow the development of a systematic coordinate

transformation theory. The objective is to integrate the equations of motion by identifying

ignorable coordinates or finding a coordinate system in which the equations of motion appear

linear. Within the Hamiltonian framework, canonical transformations are investigated with a

goal of generating linearizing transformations. The main feature of such transformations is that

Hamilton's equations are preserved in the transformed coordinate system.

In Section 2.1, Hamilton's canonical equations are introduced followed by an overview of

coordinate transformations. In Section 2.3 the framework for canonical coordinate transforma-

tions is developed. A general condition for preservation of the canonical equations is derived,

and the three most prevalent definitions appearing in the literature are reviewed. It is shown

that all three different definitions are equivalent in that they require the preservation of a

skew-symmetric quadratic form.

In Section 2.4 a novel set of transformations that preserve Hamilton's canonical equations

is derived. This approach is termed orthogonal canonical transformation and leads to a special

set of Hamiltonian systems that admit a linear representation in the transformed coordinate

system. The general conditions for such a transformation are derived. An example is presented

for a system defined by two generalized coordinates that illustrates the linearizing property.
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2.1 Hamilton's Canonical Equations

One approach to the Hamiltonian formulation of the equations of motion is to start from

the Lagrangian description. By means of a Legendre transformation, a Langrangian system

of second-order equations is transformed into a system of first-order equations, referred to

as Hamilton's canonical equations. For a dynamical system with n degrees of freedom, the

Lagrangian, in general, is expressed as

L = L(q, , t)

where q is the n-vector of generalized coordinates. By contrast, the Hamiltonian description

utilizes 2n first-order equations in 2n variables. For the Hamiltonian framework a new variable,

the momentum conjugate (dual) to the generalized coordinate qi, is defined as:

aL(q, , t)
Pi =

04i

The set (q,p) is usually referred to as canonical variables.

The procedure of transforming from the Lagrangian set (q,4,t) to the Hamiltonian set

(q,p,t) involves the Legendre transformation. This transform provides an approach to change

the independent variable to the independent variable p without loss of information. The

Legendre transform H(q,p,t) of the Lagrangian function L = L(q, q, t) with respect to q is,

n

H(q,p,t) = p4i - L(q,, t) (2.1)
i=1

where the new function H(q,p, t) is the Hamiltonian of the system. One approach to deriving

Hamilton's equations involves the total differential of the Hamiltonian:

[HHn OH(q, p, p,t) 1 H(q,p, t) dt
dH = dq + dpi + dt

i=[ 9qi Opi t

From (2.1), however, this is equal to:

n O L(q, 4, t) OL(q, , t) L(q, 4, t)
dH = Pi dqi + i dpi - dqi - dt (2.2)~~i=l B4;.a0i aqt
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OL(q,4,t)
From the definition of pi = , the first and fourth term on the right- hand side of (2.2)

04i
cancel:

n aL(q, q, ) L(q,4,t) q, t)
dH= i dp - dqi - dt

i=l . qi at

Equating coefficients results in:

OH(q,p,t)

api

aL(q,, t) OH(q,p, t)

aOi Oqi

OL(q, , t) OH(q,p, t)

Ot at

OL(q,4,t)
The expression for Pi is determined next. This is accomplished by expressing in

04i
terms of p. To this end, one reverts to the Lagrangian formulation of the equations of motion.

In the case of a holonomic, conservative system described by a set of independent generalized

coordinates q, the Lagrange equations in standard form are:

d OL(q,4,t) L(q,,t) (2.3)

OL(q,4,t) d (OL(q,4, t)

Using (2.3), =i - ,) = pi by definition. This leads to the so-called
Oqi dt 094

Hamilton's canonical equations:

OH(q,p,t)

api

OH(q,p,t)

Oqi

These equations can be written in compact form using matrix notation. Let x denote the

extended state of 2n coordinates x = [ql,. .,qn,l,... ,p ]T. Then, the canonical equations

16



can be written as

where

OH OH H OH

Oql Oqn Op Op 

Z nxn nxn (2.4)
-lnxn Onxn

and lnxn, Onxn denote, respectively, the n x n identity and zero matrices. In most instances the

Lagrangian or Hamiltonian functions are not explicit functions of time, and this will be assumed

in the following. If the dynamic system in question involves non-conservative generalized forces

ui, the Lagrangian equations in standard form become

d &L(q,) OL(q,)
_ _. = lui

The canonical equations in this case become:

OH(q,p)
qi =

api

OH(q,p)
+ui

Oqi

In the most general case, the impressed action on a system may have the form of a velocity

(flow source in bond-graph terminology [20]) rather than a force or torque (effort source). In

this case, the most general form of Hamilton's equations is written in the form [20]:

OH(q,p)T
cq= ,_____ - F(q,p,t)

op ~~O~~p~~~~~ ~(2.5)
p= H(q,p) + E(q,p,t)

Oq

Up to this point, no mention has been made about the explicit expression of the Lagrangian

function. Let q denote the n-dimensional vector of independent generalized coordinates of a

holonomic system, in which a kinetic energy T(q, q) quadratic in generalized velocities, and a
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potential energy V(q,t) dependent on generalized coordinates is defined. The exp'ession for

the kinetic energy is defined:
1T(q, ) - TB(q)4

where B(q) is the symmetric and positive definite inertia matrix. For a system where all the

generalized forces are derivable from a potential function V(q,t), the standard definition of

the Lagrangian function is L(q,,t) = T(q,4) - V(q,t). It should be noted that this is not

the primitive form of the Lagrangian because we can dispense with the artifact of finding a

potential function from which the generalized conservative forces are derivable. Instead, all the

generalized forces, be they conservative or non-conservative, are treated on an equal basis as

applied forces. Then, the Lagrangian can be defined L(q,4,t) T(q,4) which results in the

primitive form of the Lagrange equations [13],

d OT(q, ) - T(q, )
_I_ = Ui

dt a4i Oqi

where ui represents the effect of all conservative and nonconservative forces.

2.1.1 Transformed Hamilton's Equations

In this section background material needed in the remainder of this chapter will be presented.

Specifically, the general form of Hamilton's equations with respect to coordinate transformations

will be derived. This result will be needed when coordinate transformations which preserve

Hamilton's equations are considered. To derive the transformed dynamics the most general

Hamiltonian description will be considered. Rewriting (2.5) in matrix notation,

= Z HT + ii (2.6)

where = [-F(q,p) ET(q,p)] . Consider the most general coordinate tranformation

where the new variables are:

Q = Q(q,p)

P = P(q,p)

The transformed equations can be written compactly using matrix notation. Let X denote

the extended state of 2n transformed coordinates X = [Q1, ..., Qn, P1, ... , Pn T. Dif-

ferentiating X(x) with respect to time and utilizing (2.6), the equations of motion in the new
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coordinates assume the form,

= N Z HT + Nu (2.7)

ehere N is the transformation Jacobian matrix given by:

OQ(q,p) OQ(q,p)

N = X - Oq Op
OP(q,p) OP(q,p)

Oq Op

To obtain the transformed equations in terms of the new coordinates, HT must be expressed

in terms of H T . This can be accomplished using of the following lemma.

Lemma 1 Consider the real-valued function H(x) E 7R, x E Z2" , and the coordinate change

X(z): 1Z2 n z R2n with nonsingular Jacobian matrix N(x). Then:

HT = NTHXT (2.8)

Proof: It is desired to show that the gradient of any real-valued function transforms under

a coordinate change according to the rule (2.8). The partial of H with respect to xi is:

OH n OXj OH 2n OXk OH
E ,--= + 

Oxi j=1 Oxi aXj k=n+l axi OXk
(2.9)

Substituting generalized co

OHT

a-
OHT

p

ordinates and momenta, ('

OQj 0 OHT

Oq, Oq OQ

OQj OPj OHT

aOPi p [OP

2.9) can be w:ritten in matrix form as:

Vi,j = 1,2,...,n (2.10)

where the Jacobian matrix has been partitioned into 4 sub-matrices of dimension n x n. For

0Qj
example, the (j, i)-element of the first sub-matrix is given by -. Similarly, the coordinate

Oqi

change X = N(x) can be written as:

OQi 04

. _pi a

aj O

pi

Pi
Pi

iPi

[

.Vi,j = 1, 2, ... , n

19
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9Qi
where the (i,j)-element of the first sub-matrix is given by . Comparing the transformation

Oqj

Jacobian matrix for the gradient (2.10) with the one for the velocity vector (2.11), the Lemma

is established, since transposition reverses the order of the elements, i.e. the (i,j)-element

becomes the (j, i)-element..

Substituting (2.8) in (2.7) results in the desired form of the transformed Hamilton's equa-

tions, where all quantities have been expressed in terms of the new coordinates:

X = N Z NT H + N ii (2.12)

The utility of this result will be evident when coordinate transformations preserving the Hamil-

tonian framework are investigated. This will lead to necessary and sufficient conditions that

must be satisfied by the coordinate transformations and the Hamiltonian functions.

2.2 Coordinate Transformations In Hamiltonian Dynamics

Thus far, an alternative means of expressing the equations of motion through the Hamilto-

nian formalism has been introduced. It should be noted that this formulation does not contain

any more information than the Lagrangian approach. As such, it does not provide a material

improvement over the Lagrangian approach in solving the equations of motion. The advantage

of the Hamiltonian formalism, however, is not its use as a computational tool but rather in the

deeper insight it provides in understanding the structure of dynamical systems. In Arnold's

words [1] "Hamiltonian mechanics is geometry in phase space". In this framework the equal

status afforded generalized coordinates and conjugate momenta as independent variables allows

complete freedom in the choice of "coordinates" and "momenta". This degree of freedom can

be exploited to provide a more abstract picture of the underlying dynamics and in search of

methods/tools to analyze and simplify the equations of motion.

One of the major thrusts of classical dynamics has been the search for general methods to

solve nonlinear equations of motion. Since the form of the equations depend on the coordinates

employed, one approach to simplifying these equations has been the selection of a suitable

coordinate system that simplifies the problem at hand. Given the original coordinates, it

is desired to transform them to a set in which the equations of motion appear in a simpler

form, e.g. linear or even constant. Within the Lagrangian framework, a transformation of the

20



generalized coordinates qi to a new set Qi is defined by:

Q = Qi(q,t) i = 1,...,n

Such transformations are known as point transformations. In the Hamiltonian formulation,

transformations of both the coordinates q and momenta p to a new set (Q, P) via

Q = Q(q,p)

P = P(q,p)

can be considered. These equations define a transformation of phase space, whereas point

transformations define transformations on configuration space.

To characterize coordinate transformations in Hamiltonian dynamics from other forms of

transformations, requires the satisfaction of certain proerties. The standard approach is the

require the preservation of Hamilton's equations in the transformed coordinates. To derive

the requisite conditions, consider the transformed Hamilton's equations which were derived in

Section 2.2 (see equation (2.12)) and will be repeated here:

X = NZNTH + N ii (2.13)

For (2.13) to satisfy the Hamiltonian framework, however, the transformed equations must

appear as:

X - Z HT + N (2.14)

Setting (2.13) equal to (2.14), leads to the following general condition for the preservation of

Hamilton's canonical equations:

[ Z - N Z NT] - 02nxl (2.15)

This result is summarized in the following definition.

Definition 1 Let the transformation X(x) : Z2" . T2 n be differentiable, with nonsingular

Jacobian matrix N(x). The transformation preserves Hamilton's canonical equations if and

only if:

[ Z - NZNT]H = 02nxl (2.16)

A transformation which satisfies (2.16) is defined as a coordinate transformation.
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Within the Hamiltonian framework, two such transformation methods exist:

Canonical Coordinate Transformations: These are (usually) time-independent coor-

dinate transformations to a new set of position and momentum variables which exhibit certain

desirable properties. A consequence of such a transformation is that in the new coordinates

Hamilton's canonical equations are preserved or remain invariant.

Hamilton-Jacoby Theory: This approach provides a systematic method whereby the

equations of motion can be directly integrated. The solution is expressed as a time-dependent

mapping from initial conditions to future states. This approach can be thought of as a special

canonical transformation in which the transformed coordinates are constant.

It may be noted that in the above discussion, a rigorous definition of canonical transforma-

tions was not presented. The reason for this is that in the mechanics literature, there does not

seem to be an agreement as to what constitutes a canonical transformation. Various authors

have adopted different and, in general, non-equivalent definitions. For a short summary of

alternative definitions (8 definitions to be exact) see Santilli [38]. However, there seem to exist

two fundamental and universal properties that apparently permeate all definitions of canonical

transformations. These are:

(a) Transformations preserving Hamilton's canonical equations. This means that the

equations of motion satisfy Hamilton's canonical equations in the new coordinate

system. That is:

X= Z HX

(b) Metric preserving transformations. The metric preservation property is defined in

terms of a special skew-symmetric quadratic form:

1 dxT Z dx = 1 dXZdXdXzT Z dX T Z dX

It should be noted, however, that the two definitions are not equivalent. Metric preserving

transformations preserve Hamilton's canonical equations. The converse is not true, as will

be shown in the sequel by an example. The metric preserving property is adopted here as

definition for canonical transformations, since this is the most primitive characteristic that

most definitions satisfy.
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2.3 Canonical Coordinate Transformations

In this section, the framework for canonical transformations is developed, and the three most

prevalent (in the opinion of this author) definitions appeaing in the literature are reviewed.

The three different (but to be shown equivalent) definitions are:

(a) Generating Functions

(b) Canonical 2-Form

(c) Poisson Brackets

In the steps leading to the definition of a canonical transformation, two very important

ideas are used. The first key concept is that in the transformed coordinate system, Hamil-

ton's equations appear in the canonical form. The second key concept underlying canonical

transformations is the requirement that Hamilton's equations are preserved for all Hamilto-

nian functions H(q,p). Stated in another manner, a transformation is canonical if for every

Hamiltonian H(q,p) there exists a transformed Hamiltonian H(Q, P) such that:

al(Q.P)
Qi = (2.17)

9Pi

OH(Q,P)
Pi = - (2.18)

aQi

Consequently, the gradient of the Hamiltonian must also be arbitrary. Then, to satisfy (2.16)

requires that:

NZNT = Z

This condition is also the requirement for metric preservation. The definition of a canonical

transformation follows.

Definition 2 Let the transformation X(x) : 2n --, I2n be differentiable, with nonsingular

Jacobian matrix N(x). The transformation is canonical if and only if:

NZ NT = Z (2.19)
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It should be noted that the nonsingularity of the transformation Jacobian matrix N(x) is a

direct consequence of this definition. This can be seen by taking the determinant of (2.19):

det[NZNT] = det [N]2 det [Z]

= det [Z]

Then:

det[N] = 1J

This proves the nonsingularity of N(x). It can actually be shown (see for example Pars [34])

that det [N] = +1. Since the transformation Jacobian matrix, N(x), is nonsingular, its inverse

can be explicitly constructed [44]:

N- = - Z NT Z

This identity can be verified by considering it as a left-inverse:

N-1N = -Z (NT ZN) = _Z 2 = lnXn

The definition (2.19) can also be cast in an alternate but equivalent form NT Z N = Z. To

accomplish this, right multiplication by N of N-1 results in:

lnxn = - Z ( NT Z N )

Finally, left multiplication by Z of the above results in the desired result:

NT Z N = Z (2.20)

This result could have also been obtained from left multiplication of (2.19) by Z, NT, and right

multiplication by N -T, Z. It should be noted that in this context N is a square matrix and as

such the two definitions (2.19) and (2.20) are equivalent.

The classical canonical transformation theory has also been extended to allow for the pos-

sibility of increasing the degrees of freedom in the transformed coordinate system by Stiefel et

al. [44]. An example in the dynamics literature where a redundant coordinate system is used

involves using the 4 element quaternion to represent the orientation of a rigid body which can

also be expressed using 3 Euler angles. Finally, it may be noted that (2.20), albeit under the

guise of the canonical 2-form (which will be introduced in the following), is adopted as the
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definition for a canonical transformations by Arnold [1], Dubrovin et al. [11], and Rasband

[35]. Alternatively, the preservation of Hamilton's canonical equations (2.18) is adopted as the

definition of canonical transformations by Landau et al. [30], Goldstein [12], and Groesberg

[14].

Canonical theory can be further extended by allowing transformations over the complex

domain. Such a transformation can be defined as X(x) = XR(X) + i Xl(x) with X(x):

Z2, -, C2,. The Jacobian matrix of this transformation can likewise be defined as N(x) =

NR(X) + i Nl(x). One possible definition for a complex canonical transformation would be:

Re[NZNT] = Z

2.3.1 Generating Function

In this section, the generating function approach is introduced as a means to establish a

systematic method of constructing canonical transformations. Once this function is determined,

the desired transformation equations can be obtained. This approach is not a definition of a

canonical transformation, but rather is the machinery or computational tool used to generate

such transformations, hence the name. This approach can be derived from various principles

such as metric preservation by Stiefel et al. [44], Rasband [35], or preservation of Hamilton's

variational principle by Goldstein [12], Landau et al. [30], Groesberg [14]. A brief presentation

of the variational approach to generating functions follows.

An alternative method for obtaining the equations of motion involves variational principles.

The original generalized coordinates satisfy a modified version of Hamilton's principle [12]:

6 a [p4 - H(q,p) ] dt = 0 V t 1, t2 (2.21)

For (Q, P) to be canonical variables, they must also satisfy a transformed modified Hamilton's

principle:

:2 [ - H(QP)] dt = 0 Vt, t2 (2.22)

To simultaneously satisfy (2.21) and (2.22), the integrands in these equations need not be

identical. This is because by definition of Hamilton's principle, the variation of the independent

variables is zero at the end points. They can be related up to an additive, arbitrary, exactly

differentiable function S:

x(p - H(q,p)) = PQ - H(Q,P) + dS(q,p,Q,P) (2.23)dt
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Here A is a scaling constant which can be interpreted as a simple scale transformation where

the magnitude of the units of the independent variables is changed. Such scale transformations

will not be considered here, and in the following it will be assumed that by appropriate scaling

A =1.

There is no contribution to (2.22) from the additional S term because

$t2 dS d It2 dS I 2t 2 E9S t 2 I2 S t2L -- dt = 6S1 a 6q+ as + a6 + -P =0Tdt t, a t, ap t, aQ t, OP tj

and the variation of all independent variables is zero at the end points of the interval of inte-

gration by definition of Hamilton's principle. Using (2.23) leads to the required transformation

equations, and it can be seen that it represents a sufficient condition for a canonical transfor-

mation. Four possibilities exist for the form of the generating function relating the old to the

new coordinates [14]:

S = Sl(q,Q)

S2 = S 2(q,P) (2.24)

S3 = S3 (P,Q)

S4 = S4(p,P)

To show how the generating function can be used to specify the equations for a canonical

transformation, suppose S2 is chosen as a generating function. Substituting S = S2 (q, P) - QP

into (2.23) in order to introduce a term involving P, (2.23) becomes:

p - H(q,p) = -QP - H(Q,P) + S q + aSp

Equating coefficients, the following equations are obtained

aS2

OP

H(Q,P) = H(q,p)

An interesting question is whether such transformations are indeed metric preserving. It

has been shown by Stiefel et al. [44] that generating function transformations satisfy (2.19)

and (2.20). This fact allows for an alternate derivation that dispenses with the variational

approach. The central component to the proof is the equality of mixed partial derivatives, i.e.
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partial differentiation of a function is independent of the order in which the partial derivatives

are computed. This is a very important property because of its implication to integration

theory that will be encountered in later chapters. Simply stated, if one is presented with the

task of integrating a set of first order partial differential equations, this property can be used

to test whether the given set is integrable. The set is integrable when there exists a function

(the integral) which when differentiated will generate the given equations. Indeed most of the

results in this thesis require this property in one form or the other.

2.Z.2 Canonical 2-Form

An alternate definition of metric preserving transformations can be given ill terms of the

so called canonical 2-form. This definition uses the mathematical machinery of forms. For a

readable survey of the subject from a geometric viewpoint see Tabor [47]. Loosely speaking,

a form can be viewed as a functional with certain special properties, i.e. linearity and skew-

symmetry. Recall that a functional is defined as a transformation from a vector space into the

space of real (or complex) scalars. Similarly, a k-form operates on k-vectors to return a real

scalar. Differential forms are similar to forms except that they operate on vector fields instead

of vectors. A simple visualization of a differential 1-form is the directional (or Lie) derivative

operator on a real-valued function. Once a direction or a vector is specified, taking the inner

product of the gradient of the function with the vector results in a scalar. For example, a

differential 1-form denoted by wl in two dimensions is given by

W = a(zl,X 2 ) d + a2(xi,x2) d 2

where al, a2 are the component scalar fields along the basis dxl, dx 2.

For k-forms there exists a product operation, "\", called the exterior (wedge) product to

form higher rank forms from lower ones. This product operation is different from the regular

product operation in that it is skew-symmetric:

dxi A dxj = - dxj A dxi (2.25)

A direct consequence of this definition is that the wedge of a quantity with itself is zero:

dxi A dxi = 0
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This product operation may be written without the welge as long as it is remembered that it

satisfies skew-symmetry. For example, (2.25) could have just as well been written as:

dxi dxj = - dxj dxi

Now consider forming a 2-form from the product of two 1-forms w1 = al(xl,z2) d +

a2(xl,x2) dx2 and al = bl(xl,X 2) dxl + b2 (xl,x 2 ) dx2. Applying the wedge product:

w1 A al = (a,(xi,x 2) dxi + a2(x1,X 2)dx 2 ) (bl(xix 2 )dxZ + b2 (x1,x 2 )dx 2 )

= a(x,x 2) b2 (xI,x 2) dx1 A d 2 + b2(xi,x 2 ) a(x 1,x 2) d 2 A dx1

= ( al(,zx 2) b2(x,x2) - b2(,zX2) ai(xl,X2) ) d d 2

In this context, a metric preserving canonical transformation is defined by Arnold [1]:

Definition 3 Let 4b be a differentiable mapping of the phase space : 2n = (q,p) -- 72 n =

(Q,P). The mapping is called canonical, or a canonical transformation, if l preserves the

2-formn:
n

w2 = . dqi A dpi (2.26)
i=1

The meaning of this definition is that under a transformation to a new coordinate system

Q = Q(q,p), P = P(q,p), the canonical 2-form, w2 , is invariant, that is:

n n
2 = di A dp = dQi A dPi

i=l i=1

The geometric interpretation is that the sum of the (qi,Pi) unit planes is equal to the sum of

the (Qi,Pi) unit planes.

However, this definition can be recast into the somewhat more transparent setting of

quadratic forms. To accomplish this, first note that (2.26) can be written as:

2 N n
w2 E dqi A dqj + zi, dqi ̂  dpj + zidp d + dpi dqj + dpj (2.27)

j=1 i=l1

where zij is a weighting coefficient that is selected such that (2.27) equal (2.26):

-1 fordpi A dq.
ziJ,(dqi, dqj) = 1 fordpdq

+1 otherwise
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The sign change on dpi A dqi is employed to generate two dqi A dpi terms which coupled with

the one-half scaling factor results in (2.26) since the remaining terms sum to zero. To show this

note that

n n

E dqiAd = 0
j=l i=1
n n

E E dpi dpj = O
j=1 i=1

from the skew-symmetry property of the wedge product. All repeat terms are zero, i.e. dqi A

dqi = O and dpiA dpi = 0 Vi. The remaining terms sum to zero because e.g. dqi Adqj +dqj Adqi =

0 And dpi A dpj + dpj A dpi = 0. Similarly, for the mixed wedge terms (i.e. dqi A dpj etc.) the

unlike ccefficient terms sum to zero (from skew-symmetry) and the effect of the sign change

and the scaling by one-half generates the desired result. That is:

in 1
2 zij dqi A dpi + zij dpi Adqi = 2 dqi A dpi - dpi A dqi

i=l i=l
i n

= 2 dqi dpi + dq A dpi
i=l

n
= E dqi A dpi

i=1 -

Finally, (2.26) can now be written as a quadratic form with appropriate weighting weighting

coefficients as:
n 1

. = Edqi A dpi = d T Z d

where Z is the skew-symmetric matrix as in (2.4), x is the extended state of 2n coordinates

X = [ql,.,qn,pl,...,pn] T , and dx = [dq,...dqn,dpl,. .. ,dp, T. It is evident that the

canonical 2-form is just a quadratic form with metric Z. Thus a canonical transformation is

just an isometry (metric preserving transformation) of phase space.

Now, consider a transformation to a new coordinate system Q = Q(q,p), P = P(q,p). Let

X denote the extended new state of the 2n coordinates X = [Qi,...,QnP,..., Pn]T, and

dX = [dQ1 ,...,dQn,dP 1,...,dP,] T . It may be noted that the coordinate transformation is
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X = X(x). The Jacobian matrix N(x) of this transformation is defined by:

N(x) = D[X(z)]=

OQ(q,p) OQ(q,p)

Oq Op

OP(q,p) OP(q,p)

Oq Op

The invariance condition of the canonical 2-form in the quadratic formalism can now be ex-

pressed as:

w2 dxT Z d x dXT Z dX

From this i can be concluded that a canonical transformation defined by the canonical 2-form

is equivalent to metric preservation:

NT(x) Z N(x)= Z

Even though the definition of a canonical transformation using the 2-form initially appears to

be different from that of a generating function approach, it is seen that both definitions are

equivalent.

An interesting result in the case of a scalar systenm is the following which shows that the

preservation of the 2-form w2 = dq A dp is equivalent to preservation of area in phase space.

Theorem 1 Fr n = 1, a transformation is canonical if and only if the transformation Jacobian

determinant is unity, i.e.
OQ P QP= 1 (2.28)
Oq Op Op 9q

Proof: Let P = P(q,p), Q = Q(q,p). For a canonical transformation, we have to show

that

W2 = dp A dq = dP A dQ

By the chain rule of differentiation

OQ OQ
dQ = -dq + -dp

Oq op

aP .OP
dP = -dq + -dp

Oq Op

30



Substituting, and utilizing the anti-symmetry property of forms (i.e. dq A dq = 0, dq A dp =

-dp A dq)

dp A dq = -da+ - dpA (-d + -dp

aP OQ OP OQ--dqAdp - dpAdq
Oq ap Op Oq

/OP Q aOPQ= -- dpdq
dp Oq Oq p 

The equality is satisfied if and only if (2.28) holds.

Note, however, that this property cannot be extrapolated to higher dimensions. A property

of canonical transformations is that they are volume preserving transformations (i.e. det[N] =

Ill). However, the converse is not true. Volume preserving transformations are not in general

canonical. In conclusion it has been shown that an initially complicated definition of canonical

transformations expressed using the machinery of 2-forms can actually be expressed in terms

of a quadratic form.

2.3.3 Poisson Brackets

Yet another method to express the conditions for metric preserving transformations is

through the use of the so called Poisson brackets. This bracket notation proves to be a conve-

nient way of formulating the total time derivative of functions defined in phase space. In the

Hamiltonian description of dynamical systems, consider the total time derivative of a function

F(q,p, t):

F=- + E k + -k
at k=1 Oqk Opk

Substituting the expressions for 4k and Pk from Hamilton's canonical equations results in

OF n /F OH OF OH OF
- = + = + {F, H}
at k = Oqk pk OPk Oqk Ot

where {f,g} is called the scalar Poisson bracket. A precise definition is presented in the follow-

ing.
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Definition: The scalar Poisson bracket of two scalar fields f(q,p),gj(q,p) defined on a

2n-dimensional phase space with respect to a set of canonical variables (q,p) is defined as:

n af, Ogi Of Ogj
{fi,g( i (q,p) E

k=l aOk 'pk 9Opk Oqk

In matrix notation using x to denote the extended state, this becomes

{fi,,gj} () = D [f,(x)] Z D.[g1(z)]T

9f()
where DT[fi(x)] = O() denotes the gradient of the scalar field fi(x). Using this definition,

ox
the scalar bracket is seen to satisfy the following properties [11]:

1. {fi,gj} = - {gj,fi} (skew-symmetric)

2. {alfi + a2fj,gk} = al {ff,gk}+a2 {fj,gk} (bilinear), where al,a 2 are arbitrary constants.

3. {fi,{gj,hk}} + {hk,{fi,gj}} + {gj,{hk, fi}} = 0 (Jacobi's identity)

4. {figj, hk} = fi {gj ,hk} + gj {fi, hk}

5. D{fi,gj} = -[Dfi, Dgj], where [,] is the operation of taking the commutator (Lie

Bracket) of vector fields.

A consequence of the skew-symmetry property is that the bracket of a scalar field with itself is

zero, i.e.

{fifi} =0
Similarly, the matrix Poisson bracket for vector fields is defined in the following.

Definition: The matriz Poisson bracket of two vectorfields f(q,p),g(q,p) E 2n defined

on a 2n-dimensional phase space with respect to a set of canonical variables (q,p) is defined as:

{f,g} () = Dx[f(x)] Z Dx[g(x)]T

This result certainly has appeared in the mechanics literature previously. In lieu of a reference,

a brief computation shows that this is indeed the matrix generalization of the scalar Poisson

bracket. Carrying out the indicated operations:

{f,g}(x) = Dq[f(q,p)] Dp[f(q,p)]] -l Onxn 0 Dp[g(q,p)]T

Dq[f( p)]Dp[g(q p)]- n O Dp[f(q p)]Dq[g(q, ) ]T

= Dq [f(q,p)]Dp[g(q, p)]T - Dp[f(q,p)]D 9 [g(q,p)]T
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Now, the i,j-element of this matrix is

{f,g}i,j (x) = Dq[fj(q,p)] Dp[gj(q,v)]T - Dp[fi(q,p)] Dq[gj(q,p)]T

= D,[f,(x)] Z D,[gj(z)]T

= fig} (X)

which is seen to be identical to the scalar Poisson bracket of fi(x),gj(x). For the matrix case,

the skew-symmetric property still applies but in the following form:

{f,g} = _{g,f}T

An immediate consequence is that {f, f} 0. For example, let Q(q,p). = [Ql(q,P), Q2(q,P)]T

and computing {Q, Q} one obtains,

Q, Q} (,p)= [ {QI, l} fQI,Q2} 0 =Q1,Q2}
-{Q2,QI} {Q2,Q2} -{Q2, Q1} 0

where the scalar skew-symmetric property has been used to eliminate the two terms on the

main diagonal. It is seen that unless {Q2,Q1} = 0, {Q,Q} 0.

Metric preserving transformations can also be defined using matrix Poisson brackets [34].

Let Q = Q(q,p), P = P(q,p) denote a new coordinate system in some neighborhood of phase

space.

Definition: The transformation Q = Q(q,p), P = P(q,p), is canonical if and only if it

satisfies the Poisson bracket relations:

{Qi,Q} (q, p) = IPi, Pj} (q,p) = 0 IQ, P3}(q, p) = ij Vi,j = 1,...,n

In matrix notation, using the matrix Poisson bracket, this condition can be written as:

{X, X} (x,x) = Z

From the definition of the matrix Poisson bracket it is seen that this condition is the same as

that given in the previous section for the canonical 2-form, i.e.:

NZNT = Z

In conclusion, it has been shown that all three different definitions of canonical transforma-

tions i.e. Generating Function, Canonical 2-Form, and Poisson Bracket relation are equivalent
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in that they all preserve a skew-symmetric metric. Even though at first these definitions appear

not to be identical, it was shown that the fundamental and unifiying property underlying these

definitions is the preservation of a simple quadratic form. This result should help in aleviating

the ambiguity in the mechanics literature as to what constitutes a canonical transformation.

2.4 Orthogonal Canonical Transformations

From the previous discussion on metric preserving canonical transformations it was seen

that the necessary and sufficient condition for (2.16) to be satisfied for an arbitrary Hamilto-

nian H was the preservation of the metric, i.e. N Z NT = Z. However, if the requirement

for arbitrariness of the Hamiltonian is relaxed then.metric preservation is not required. This

assumption that the Hamiltonian function is not arbitrary leads to a new set of transforma-

tions, termed orthogonal canonical transformations. In this section the implications of this

new approach are explored, with a secondary goal of deriving linearizing transformations for

nonlinear Hamiltonian systems.

Recall that the general condition for preservation of Hamilton's canonical equations was

given by (2.16), which for convenience will be repeated here:

[ Z - NZN T ] =2n (2.29)

The definition of orthogonal canonical transformations follows.

Definition 4 A differentiable coordinate transformation X(x), even dimensional in both gener-

alized coordinates and momenta and with nonsingular Jacobian matrix N(x), for which N Z NT 

Z is called an orthogonal canonical transformation if it satisfies (2.29) for some Hamiltonian

.H(q,p).

To satisfy (2.29) for nontrivial HT , without having N Z NT = Z for all x, requires that

the characteristic matrix [Z - N Z NT] be singular. To see this, let A(x) = [Z - NZNT]

and y = Hx. Then (2.29) can be written as:

A(x) y = 0 (2.30)

It is obvious that if A is the zero matrix, then y is an arbitrary vector. On the other hand,

from linear algebra (see e.g. Strang [45]), if A(x) is nonsingular for all x then the only solution
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to (2.30) is the zero solution, y = 0. For (2.30) to be satisfied by a nonzero y for all x, A(x)

must be singular for all x. Thus, the only way a nonzero y can satisfy (2.30) without having

A(x) = 0 2nX2n is that A(x) is singular for all x. Computing the characteristic matrix using

matrix Poisson brackets:

[Z - NZNT] [
{Q,Q} (q,p)

-lnxn - {P,Q}(q,p)

lnXn - {QP}(q,p)

{P, P} (q, p)

Using the identity {Q, P} (q,p) = - {p, Q}T (q,p), the above reduces to:

r 1
(Q, Q} (q,p) lnxn - {QP}(qp)

[z - NZNT] -1x. + {Q,p)T(q,p) {P,P}(q,p)

It has been established that for a transformation to be canonical, the characteristic matrix must

equal the zero matrix. This is accomplished if and only if:

(a) {Q,P} (q,p) = nxn

(b) {P, P(q,p) Onxn

(c) {Q,Q}(q,p) = 0. x

To construct an orthogonal canonical transformation, the transformation Jacobian matrix

must be selected in a manner that annihilates the characteristic matrix. Two cases in which

the characteristic matrix is singular will be derived.

1. The characteristic matrix [Z - N ZNT] = n
O Onxn

(a) {Q, P (q,p) = 1n. 

(b) {P,P}(q,p) = Onxn

(c) {Q, Q} (q,p) = *nxn Onxn

2. The characteristic matrix [Z -N Z NT] = Onxn
Lnxn

(a)

(b)

(c)

nXn when:

OnXn

OnXn 1 when:
*nXn

{Q,P) (q,p) = lnxn

Q, Q} (q,p) = Onxn

{P, P) (q,p) = *nxn Oxn
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In the above, *nxn represents an arbitrary rank-n skew-symmetric even dimensional matrix.

This is because of the skew-symmetry property of the matrix Poisson bracket. It should be

noted that the dimension of the arbitrary matrix must be even, since odd-dimensional skew-

symmetric matrices are singular. To prove this, let S = _ST be any n x n skew-symmetric

matrix. Then, the skew property can be expressed as S = -lnxn ST, where -lnxn is the n x n

identity matrix. Taking the determinant of both sides:

detS = det [- lnxn T]

= det [-1nxn] det [ST]

= (-1)n detS

This results in:

[1 - (-1)n] detS = 0 (2.31)

It is evident that if n is odd, (2.31) is satisfied if and only if det S = 0 or S is singular. When

n is even, (2.31) does not impose any constraints on the rank of S.

To show that the above two requirements are necessary and sufficient for the characteristic

matrix to be singular, first the expression for the determinant of a partitioned matrix is needed

[32].

Definition 5 If A, D are nonsingular matrices of orders m, n, and B, C are m x n, n x m,

respectively, then:

det[ = detA det[D - CA -' B]

= detD det[A - B D C]

Using this identity, the determinant of the characteristic matrix becomes:

det [Z- NZNT] = det Q,Q} det [(P P})-({Q,T -l nxn) Q, Ql(lnxn-{Q,P))]

= det {P, P} det [ {Q, Q}- (lnxn _ {Q, P}) {P, }- ({Q, p}T_ - lnxn)]

It is evident that the characteristic matrix is singular if either {Q, Q} or {P, P} is singular. This

establishes the sufficiency of the conditions. Another possibility is for the second determinant

on the right-hand side to be zero. However, determining general conditions for which the second
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term is singular is nontrivial due to the complicated nature of these expressions. One approach

is to simplify these terms by assuming:

{Q, P} (q,p) = 1xn 

This assumption establishes the necessity of the conditions. Substituting this in the determinant

expression for the characteristic matrix:

det[Z - NZNT] = det{Q,Q} det{P,P}

=det P,P} det{Q, Q}

This is satisfied if either det{Q,Q} = 0 or det{P,P} = 0 or both. However, since for a

canonical transformation both must be zero, one can choose either one to be zero while the

other is nor,-zero. Thus, this leads to two possible cases for which the characteristic matrix is

singular and is not identically equal to the zero matrix. This proves that the two cases for the

singularity of the characteristic matrix presented previously are indeed necessary and sufficient.

A comparison with metric preserving canonical transformations can now be made. From

the definition of a canonical transformation, Z - NZNT = 0, and the general condition (2.29) it

is seen that the gradient of the Hamiltonian is arbitrary. That is, a transformation is canonical

if for every Hamiltonian, H(q,p), there exists a transformed Hamiltonian H(Q,P) such that

N Z NT = Z. From a linear algebra perspective, since Z - N Z NT = 0, the characteristic

matrix has a 2n dimensional nullspace. Since Hx is of the same dimension (2n x 1) it is

completely arbitrary because it is an element of this nullspace. That is, all 2n entries or

elements of Hx can be assigned arbitrarily.

On the other hand, for the general condition (2.29) to hold when N Z NT $ Z the Hamilto-

nian is not arbitrary and only special Hamiltonians satisfy (2.29). Starting from the form of the

transformed Hamiltonian, and the conditions for N Z NT # Z the original Hamiltonian func-

tion can be retrieved. This approach somewhat resembles the inverse of the canonical method.

Instead of beginning from a Hamiltonian and computing the coordinate transformation by solv-

ing the metric preservation property to generate the transformed Hamiltonian, here one starts

with a specific form of transformed Hamiltonian and solves the orthogonality conditions to

compute the coordinate transformation from which the original Hamiltonian can be retrieved.

With N Z NT $ Z the general condition [Z - N Z NT ] HT = 0 2nx can be written in two

equivalent alternate forms:
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1. The transformed Hamiltonian is a function of P only, i.e.

*nXn OnXn

Onxn nXn

a T

OQaQ

aHT

OP

OnXl ] (2.32)

for which a solution has to have the form H = H(P).

2. The transformed Hamiltonian is a function of Q only, i.e.

OHT

nxn *nxn OHT xl (2.33)

OP

for which a solution has to have the form H = H(Q).

In both of these cases, it is seen that the nullspace of the characteristic matrix is of dimension n

and therefore only n elements of Hx can be assigned arbitrarily. To see why the Hamiltonian is

a function of either the transformed generalized coordinate or momentum, first consider (2.32).

Carrying out the indicated multiplication:

OHT
[*nxn -] = Onxl (2.34)

OQ

Since, by assumption, the arbitrary matrix *nx is full rank the only solution to (2.34) is:

OHT
= OnXl VQ

OQ

OH
This result implies that H is not a function of Q, since - = 0, i = 1,..., n for all values of

aQt
Q. Using the same arguments, it can be shown that for (2.33) to hold for all P the Hamiltonian

must be a function of Q only.

In conclusion, it has been shown that preservation of Hamilton's equations can be accom-

plished by two distinct set of transformations; canonical or metric preserving transformations

38



which annihilate the characteristic matrix, and orthogonal canonical transformations. It is

clear that transformations which preserve Hamilton's equations need not be canonical. In this

section a new set of transformations were derived which preserve Hamilton's equations but are

not canonical. The key idea in this new transformations is that it has been derived for some

special Hamiltonians. That is, the new approach is not valid for all Hamiltonian functions. It

has been shown that preservation of Hamilton's equations for a set of special, non-arbitrary

Hamiltonian functions can be accomplished using orthogonal canonical transformations. A set

of general conditions similar to those for a canonical transformation were derived in terms of

matrix Poisson brackets. One consequence of the existence conditions is the restriction to even

dimensional systems. That is, the transformation must be even dimensional in both the gener-

alized coordinates and momenta. Another consequence is that the transformed Hamiltonian is

only a function of either the transformed generalized coordinate Q or momentum P. However,

its form is arbitrary and can be selected at will.

Once an orthogonal transformation has been obtained and the form of the Hamiltonian func-

tion in the transformed coordinates has been selected, the original or untransformed Hamilto-

nian can be obtained by direct substitution of the coordinate transform. Finally, the equations

of motion in the original coordinates can be obtained from the untransformed Hamiltonian func-

tion. Of course the choice of transformed Hamiltonian influences the form of the equations of

motion in the original coordinates. A particular choice for the transformed Hamiltonian is one

that results in a set of linear equations of motion in the transformed coordinates. The solution

for the transformed variables is particularly simple in this case and by the inverse transforma-

tion the solution to the original, in general, nonlinear equations of motion is obtained. Thus,

the utility of orthogonal transformations is that they generate linearizing transformations and

as a consequence provide a means to integrate the original equations of motion. They also

provide a method of parametrizing a class of linearizable Hamiltonian systems.

2.4.1 Orthogonal Transformations For A Second Order System

In this section, the constraint (partial differential) equations resulting from the singularity

of the characteristic matrix will be derived for a system defined by two generalized coordi-

nates. This system will be used to illustrate the process of generating orthogonal canonical

transformations and the resulting Hamiltonian systems to which they apply.
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Consider the case where the transformed Hamiltonian is a function of P only. The derivation

for the case when the transformed Hamiltonian is a function of Q only is analogous to this one,

and for this reason will not be presented. In this case, the conditions for the characteristic

matrix to be singular were previously stated as:

1. The characteristic matrix [Z - N Z NT] = *2x2

Ta0 2x2

02x2

0 2x2

2. Q,P)(q,p) = 12x2

3. {P,P}(q,p)= 02x2

4. {Q,Q} (q,p) = *2x2 $ 0 2x2

For a two state system, the first expression is written as:

]
when:

{Q, }(q, p)= ( {Q1,P} (q,p)
{Q2 ,P1 } (q,p)

{Q1,P2} (q,p)

{Q2, P2 } (q,p) ] [1iI0
The second condition is:

{P, P} (q,p) =

[

0

- {P, P2} )q,p)

{PI,P2 (q,p) ]0 0

0 0 0

The third condition is:

{Q, Q (q,p) =

[

0

- {Q1, Q2} (q,p)

Collecting all the conditions together results in:

. {Q1,PI} = 1

2. {QI, P2 }=0

3. {Q2 ,P 1} = 1

4. Q2,P2 }=0

5. {(P,P 2 }=0

6. {Q1,Q2} 0
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These six Poisson bracket relations must be solved for the four unknown variables Q1, Q2, , P 2

in order to determine the orthogonal canonical transformation. Writing out the bracket rela-

tions, the following six partial differential equations are obtained:

1. {Q1,P = -- + ----- -- - -- 1
aql p, pl, aql aq2 0p2 aP2 aq2

OQa1 OP2 Q1 P2 Q1 azP 2 Q1 OP 22. Q1,P2} = -- --- + -- --- = 0
qil aOp ap, ql Oq2 OP2 9P2 0q2

OQ2 OP2 _:Q2 9P1 OQ2 1P1 9 Q2 OP1
3. { Q2, PI ---- + = 0

Oql ap ap, ql 9q22 cP2 aP2 aq2

Q2 OP2 0Q 2 OP2 Q2 OP2 Q2 OP24. Q2,P2 = -- + ---- ----- = 1
aq, a aPI 1 aq, a P2 02 aq2

OP1 OP2 OP1 OP2 OP1aP 2 P1 9P25. {P, P2} = --- - + -- --- = 0
aql p, ap, Oql Iq2 aP2 a2 0q2

OQ aQ2 OQ1 aQ2 OQ1 aQ2 OQ1 9Q26. {Q,Q2 =---- + ---
aOq ap, a OPaql aq2 OP2 Op2 0q2

These 6 constraint partial differential equations must be solved for the 16 unkown partials of

the transformed coordinates. These equations represent an underconstrained set of nonlinear

equations. Thus, there exists a certain freedom in obtaining a solution, that is, to pick 10 of

the partials and then solve 6 equations in 6 unknowns. In this manner auxiliary constraints

can be appended to fully specify the solution. For example, it may be desirable to require that

the kinetic energy in the original coordinates be positive-definite. Once the solution has been

obtained and the form of the transformed Hamiltonian has been selected, the original Hamil-

tonian can be recovered by direct substitution. This approach is illustrated in the following

example.

2.4.2 Second Order System Example

In this section a simple example of an orthogonal canonical transformation is presented.

Consider the following transformation for a dynamical system defined by two generalized coor-
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dinates. This transformation was obtained as a solution of the 6 constraint partial differential

equations.

Q1 = - 2P2 - ln(pl)

Q2 q2p2 + ln(q2)

P1 = ql pi

P2 = 2 P2

In order for this transformation to be well defined, the coordinates q2,pl must be assumed to

be strictly positive, since the natural logarithm function is only defined in this range. The

transformation Jacobian matrix is computed as:

-P2 - p- - q2

Po 0 ql 0

0 P2 0 q2

Since q2 $ 0, pi 0, by assumption, this matrix is nonsingular with determinant +1 and thus

invertible. This is established by expanding the determinant about the last row:

Pi q2 Pi

Since N(x) is nonsingular, from the Implicit Function theorem [37] this is a 1-1 mapping, i.e.

to every (Q, P) there corresponds a unique (q,p). The nonsingularity of N(x) also guarantees

the existence of a differentiable inverse map with Jacobian matrix N - 1 (X) since the forward

map (or transformation) is differentiable [31]. The Jacobian matrix of the inverse map also has

determinant equal to +1 since N(x) N-(x) = 14X4. For this example the inverse transforma-

tion is also easy to obtain. From the coordinate transformation, expressions for q2 and Pi can

be obtained from Q1,Q2 first, while the remaining variables are obtained from P1, P2 :

q = PI e(Q +P2 )

q2 = e(Q2-P2)

p = e-(Q1 +P2)

2 = P2 e- ( Q2 - )
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The Jacobian matrix of the inverse transformation is:

P1 e( Ql + P2 )

N (X) = 0
- e Q +P2)

0

0

e( Q2 - P2 )

0 '
- P2 e(- Q2 +P2 )

e(Q + P2) P1 e(Q + P2)

- e( Q2 - P2 )

-e( eQ (Q+ P2)e(
0 e(-Q2+P2) + P2e(-Q2+P2)

Explicitly computing the determinant of N-(X) it can be verified that indeed it is +1 as ex-

pected, and expanding the deteriminant about the third column the required result is obtained.

det [N-'(X)] = e(Ql+P2) [-1 {-e(Q+P2)}

{ e(Q2-P2) (e(-Q2+P2) + P2e(-Q2+P2))- P2e(Q2+P2)e(Q2P2)}]

= 1

Before proceeding any further, first it will be verified that indeed this is an orthogonal

canonical transformation. Computing the requisite Poisson bracket relations results in:

(a) Q,P}(q,p)=

(b) P, P} (q,p)=

(c) {Q, Q} (q,p) =

1 0

0 1

O 0

0 0

[ 0 1

-1 0
]

It is seen that the orthogonality constraints in terms of Poisson bracket relations are all satisfied

and hence this is a valid orthogonal tranformation. It is also seen that this transformation is

not canonical (metric preserving) since the condition {Q, Q} (q,p) = 0 2x2 is not satisfied. Note

that the other two conditions i.e. (a) and (b) ae satisfied.

To recover the original Hamiltonian, the form of the transformed Hamiltonian must be

selected. Since the candidate transformation satisfies the conditions for an orthogonal trans-

formation of the first kind, the transformed Hamiltonian must be a function of P only, i.e.

H = H(P). Choose this Hamiltonian as

H(P) = 2{ P + P2}
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which would result in linear dynamics in the transformed coordinates. By substituting the

coordinate transformation in the transformed Hamiltonian, the original Hamiltonian can be

retrieved.

H(q,p) = i + q2 2 }

In terms of generalized coordinates, the equivalent Lagrangian can be written as:

L(q,4) = { + 2i

The linearizing property can now be used to solve the equations of motion in the original

coordinates. Recall that the particular choice for the transformed Hamiltonian results in linear

dynamics in the transformed coordinates. This is evident from Hamilton's equations in the

transformed coordinates:

Qi =Pi

Pi = O

However, computing the equations of motion in the original coordinates results in nonlinear

dynamics, as can be seen from Hamilton's equations in the original coordinates:

1i = qi p,

Comparing the original and transformed dynamics, the utility of the orthogonal transformation

is evident. The solution to the orthogonal transformation problem has resulted in the generation

of a linearizing coordinate transformation. The original dynamics can be solved very simply by

solving the transformed problem and back substituting (i.e. the inverese transform computed

previously).

2.4.3 Solution Using Canonical Transformation

In this section, the second order example is solved using a transformation that is canonical.

This problem could be solved using the generating function approach and as a byproduct the

transformation is known to be canonical. However, the generating function must be known

first before the transformation can be constructed. Determining the generating function is

tantamount to solving the problem. One approach to finding the generating function is by
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the Hamilton-Jacobi integration theory [44]. To solve the problem, a novel solution method

will be employed. This approach will be developed in detail in the next chapter. The solution

method hinges on finding a point transformation where the transformed Lagrangian function

is coordinate independent.

For the two state example, the Lagrangian function in the original coordinates was:

1

1- o
1

2

1 I= T B(q) 422
The key concept is to find a coordinate transformation such that in the new coordinate system

the transformed inertia matrix is a multiple of the identity matrix, e.g. B(q) = 12X2. To this

end consider the following transformation:

Q1 = ln(ql)

Q2 = In(q2)

It is seen that in the new coordinate (Q1, Q2) system the Lagrangian function becomes:

L(Q) = { Q + Q }

In the transformed coordinates, Lagrange's equations are:

Q1 = 

Q2 = 0

This is just a linear set of double integrators that are easy to solve. The solution in the original

coordinates is constructed form the inverse transformation:

q = eQl

q2 = eQ2

To show that this transformation is indeed a canonical transformation, the required Poisson

brackets must be evaluated. The transformed generalized momentum is obtained by definition:

aL(Q)

aOQ1
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OL(Q)
P2 = =q2P2

aQ2

1

0

0

[0

0

[0

The requisite Poisson brackets

(a) Q,P} (q,p) =

(b) P, P} (q,p) =

(c) Q, Q} (q,p) =

It is seen that the above satisfy

transformation is canonical.

are:

0

1

0

0

the requirements for metric preservation, and thus the candidate

2.5 Conclusion

In this chapter canonical transformations were introduced as a systematic coordinate trans-

formation theory. Three different definitions, common in the dynamics literature, for canonical

transformations were presented. Even though at first these deffinitions appear not to be iden-

tical, it was shown that indeed they are equivalent in that all three preserve the same metric.

The general condition for preservation of Hamilton's equations and canonical transformation

theory were exploited to derive an alternative, new set of transformations termed orthogonal

canonical transformations. This approach leads to a restricted set of Hamiltonian systems that

admit a linear representation in the transformed coordinate system. The general conditions

for such transformations were derived. Finally, an example of the application of orthogonal

canonical transformations for a system defined by two generalized coordinates was presented.

It was shown that the solution to the transformation problem resulted in the generation of

a linearizing coordinate transformation. The transformed dynamics were linear whereas the

original dynamics where nonlinear. The solution to the nonlinear problem was obtained from

the inverse transformation.
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Chapter 3

Linearizing Transformations

One approach to devising control schemes for nonlinear systems, is the use of transformation

techniques that render the nonlinear dynamical equations amenable to existing results in control

theory. One such approach is the concept of linearizing transformation or feedback linearization,

where a change of coordinates in the state and control space coupled with feedback applied to

the nonlinear system results in a controllable linear system. Once this has been achieved, one

can apply existing linear controller design methods to the transformed linear system. In this

chapter the application of canonical transformation theory to the feedback linearization problem

is investigated.

In Section 3.1 linearizing transformations are investigated. These are transformations that

generate a linear system in the transformed coordinates. In Sections 3.2 and 3.3 the well known

properties of point transformations are reviewed. The two properties are the invariance of

Lagrange's equations of motion and the fact that all point transformations are canonical.

In Section 3.4 an alternative derivation of a result on the decomposition of the system

inertia matrix is presented. To achieve an equivalent linear double integrator representation

of the nonlinear system using point transformations, the inertia matrix must be expressed as

the "square" of the transformation Jacobian matrix. This decomposition is termed canonical

factorization.

In Section 3.5 the condition for the canonical factorization of the inertia matrix is shown to

be the same as that for a point transformation from a Riemannian metric to a Euclidean m.et-

ric. The Riemann Curvature Tensor is introduced as a computational tool to test for existence

of such a transformation. The speci& factorization exists if and only if all components of the
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curvature tensor are identically zero. In Sections 3.6-3.8 examples illustrating this methodology

are presented. In Section 3.6, the cart-pole problem is shown to possess a canonical factoriza-

tion, and the linearizing transformation is computed. In Section 3.7, it is shown that a 2-link

planar manipulator does not admit such a decomposition. In Section 3.8, Euler's rotational

equations of motion are investigated and shown to not be linearizable for an axi-symmetric

inertia distribution.

3.1 Linearizing Point Transformations

The basis of canonical transformation theory is to provide the ability to obtain alternative

generalized coordinates and conjugate momenta which preserve the Hamiltonian form of the

equations of motion. Among all possible canonical transfomations, it is desirable to find the

ones that result in the simplest transformed Hamilton's equations. The goal is to make the inte-

gration of Hamilton's equations as simple as possible. The most elementary form of Hamilton's

equations is one in which the transformed coordinates are constant. Starting with initial coor-

dinates (q,p) and Hamiltonian H(q,p), it is desired to find a canonical transformation to yield

transformed coordinates (Q,P), such that the transformed Hamiltonian H(Q,P) is constant.

Then, the equations of motion reduce to:

Q = Onxl

P = Onxl

This type of transformation can be found using the Hamilton-Jacobi integration theory [12].

This approach generates the solution to the original equations of motion via a time varying

transformation between the constant transformed variables and the time varying original coor-

dinates. The time evolution of the original system is generated by the transformation mapping.

At the next level of complexity is the case in which the equations of motion are linear in

the transformed coordinates. Consider the most general form of Hamilton's equations [20] in

matrix notation,

- Z HT() u (3.1)

where u = [FT ET]T represents the control action. The requirement that the transformed
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equations appear linear can be expressed as

X(x) = A X(x) + v (3.2)

where X = X(z): Z2n _- Z2n is the transformed or new coordinate, A is a constant 2n x

2n coefficient matrix and v is the transformed control action. Differentiating the coordinate

transformation, (3.2) can be written as

X(x) = N(x) Z HT(x) + N(x) u (3.3)

where N(x) = is the transformation Jacobian matrix. To solve for the transformation
OX

X(x) that takes (3.1) to (3.2), set (3.3) equal to (3.2):

N(x) Z HT(x) + N(x) u = A X(x) + v (3.4)

To simplify (3.4), the transformed control action can be selected as v = N(x) u. Then (3.4)

reduces to:

N(x) Z HT(x) = A X(x) (3.5)

To obtain the linearizing transformation, (3.5) must be solved for X(x). Note that (3.5) rep-

resents a set of first order partial differential equations in X with non-constant coefficients. To

visualize this, let f(z) = ZHT(x). Then the i - th element of (3.5) is

Oxi
[fk(x) - - ai,k Xk 0 i=1,...,2n (3.6)

k=l OXk

where ai,k is the i, k element of A. In general, the solution to (3.6) is dependent on the form of

f(x) and in general is complicated even in the case of low dimensional systems. For this reason,

this approach will not be pursued further.

Another approach is to use canonical transformations to achieve the linearization. In Chap-

ter 2, Section 2.1.1, it was shown that HT(x) = NT(x) HX(X). Using this result, (3.5)

becomes:

N(x) Z NT (x) HX(X) = A X(x) (3.7)

Substituting in (3.7) the metric preserving property of canonical transformations, N(x) Z NT(x) =

.Z, (3.7) reduces to:

Z HT(X) = A X(x) (3.8)
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Multiplying both sides of (3.8) by -Z results in:

HXT (X) = - ZA X(x) (3.9)

The i - th element of (3.9) is,

OH 2n

-- E Ci,k Xk = 0 i= 1,...,2n (3.10)
OXi k=1

where Ci,k is the constant weighting coefficient obtained from the i,k element of C = -ZA.

Furthermore, the matrix C must be symmetric. From (3.10):

02H
= Ci,k

OXi OXk

02 H
= Ck,i

OXk OXi

However, from the equality of the mixed partials of H:

02 H 02 H

OXi aXk OXk OXi

Thus, Ci,k = Ck,i which establishes the symmetry property of the C matrix. The solution to

equation (3.10) is:
1 2n

H = 2 Ci,k XiXk
i,k=l

However, this approach requires a transformation that not only satisfies the canonical constraint

N(x) Z NT(x) = Z but also solves the gradient transformation rule HzT(x) = NT(x) HXT(X)

which also represents a set partial differential equations. Its i - th element is:

2n OXk(X) OH(x)Z Xk(X) ( = 0 i= 1,...,2n
k=l Oxi Oxi

In general, solving this set of partial differential equations is difficult at best and a solution

may not exist. Hence, this approach will not be pursued further. It may be observed that

a simpler expression for the Hamiltonian in the transformed coordinates can be obtained by

setting A = Z in which case the C matrix is diagonal.
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To further simplify matters, the form of the target linear system will be specialized to that

of a double integrator. To accomplish this, the A matrix is defined in the following manner:

On xn nXn 

OnXn nXn J
The linear equations in the transformed coordinates appear as:

(. = P + vl~Q ~~~= ~P ~+v a(3.11)
P = v 2

Differentiating the coordinate transformation:

OQ AHT OQ OHT OQ OQQ = - - -U + ul + u2
aq p ap q eq Op

(3.12)
aP HT aP OHT aP oP

P + -U 1 + - + U2
Oq Op ap q Oq p

Setting (3.11) equal to (3.12) results in the required constraint equations that the coordinate

transformation must satisfy. One possible solution approach is to set:

OQ OHT OQ OHT

P
9q p ap Oq

OQ aQ
V1 = - U1 + -U 2

Oq Op

V2 = P

However, there still remains the task of computing the coordinate transformation. One approach

would be to select the generalized coordinate transformation Q(q,p), and the expression for P

can then be obtained from the time derivative of Q. The transformed control v2 is then used

to cancel all the dynamics appearing in P. The number of terms that are cancelled by v2

depends on the choice of coordinate transformation Q(q,p). A judicious choice of coordinate

tranformation would be one that minimizes the number of cancelled terms. A desirable choice

is not to cancel any terms, which in turn requires that v2 is just a control transformation, i.e.

OP OP
V2 = -U 1 + -U 2

Oq Op
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OPOHT OPOHT

aq Op Op Oq

It was seen in the above that state and control transformations play an important role in

determining the extent to which nonlinearities are required to be cancelled by the control action.

The spectrum of linearizing transformations ranges from one extreme where all nonlinearities

are cancelled exclusively by state and control transformations. In this case cancellation is not

required since there are no nonlinearities that have remained after the transformations. In

general such a transformation has the form:

X = T(x)

= T(x) u

At the other extreme are examples where an identity state transformation is employed, and all

the nonlinearities must be cancelled by the control transformation. This is an example where all

the nonlinearities appear in the control path and thus can be cancelled. In between these two

extremes are transformations where some of the nonolinearities are distributed over the state

transformation with the remaining terms cancelled by the control transformation. In general

such a transformation has the form:

X = T(x)

v = TI(z) + T2(z)

It should also be pointed out that the state transformation must be constructed in such a

manner that the remaining nonlinear terms appear in the path of the control action in order

to be cancelled.

To simplify matters even further, it will be assumed that ul = 0. The physical significance

is that the control variable is a force rather than a velocity source. In many, if not most, real

world applications the control action is either a force or a torque and thus this is a reasonable

assumption. In the following the notation u = u2 will be employed. In this case, u represents

the control variable which has already precompensated forcing terms arising from the system
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potential function. In the transformed system the equivalent control is:

OQ

ax ap
v = u = u (3.13)

op OP

ap

Note that v E j72n while u E 1R. It has been implicitly assumed that an independent control

OX
variable in the transformed system is assigned to every element of -u. From the control

Op

perspective, however, the dimension of the transformed control variable cannot be larger than

that of the original control because the inverse transformation will not be solvable. Equation

(3.13) represents a system of overconstrained equations which cannot be solved for u. That is,

ax
given an arbitrary v a solution u cannot be found. Since the matrix - is 2n x n and its maximal

Op

rank is n, u can be exactly retrieved from an n dimensional subspace of v only. Thus the map

from u to v is not onto and is an example of an overconstrained set of linear equations. It is

apparent that the entries of v cannot be treated as independent variables in control synthesis

for the transformed system. The solution is to assign transformed control variables only in the

dX
range space of an n x n full rank submatrix of -. This can be accomplished by selecting

op

Ox
n rows of - to be zero such that the remaining n rows are linearly independent for all q,p.

ap
Linear independence of this submatrix is required for the mapping to be invertible. From

(3.13) it is seen that the tradeoff in the coordinate transformation is the dependence on p.

OQ aP
Since the dimension of both - and - matrices is n, a similar dimensioned submatrix can

p ap
be constructed by requiring a total of n transformed variables, Qi and Pi, to be independent of

p.

One approach to generating an invertible control transformation is to choose:

OP
= Onxn

op
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In this case Q = Q(q,p) and P = P(q). Another solution is:

OQ
- = Onxn

op

Thus, Q can only be a function of q, i.e. Q = Q(q) a point transformation. For the map between

OP(q,p)
the transformed control and original control variable to be invertible the matrix must

op
be nonsingular for all q,p. For a point transformation, the transformed dynamics appear as:

= P
(3.14)

P = v

Additionally, if the transformation is canonical, then the transformed equations can be obtained

from the Hamiltonian framework. In the following sections, it will be shown that all point

tranformations are canonical. Thus, the target linear dynamics (3.14) are obtained from the

Hamiltonian function:
1

H = pp
2

This can be verified by direct application of Hamilton's canonical equations.

In summary, the process of linearization can be thought as one where first a target or

desired transformed representation of the dynamics is selected and then one searches for a

transformation that will recover this target system. The constraints imposed by the particular

choice of target system are then incorporated in the search for an appropriate transformation.

3.1.1 Point Transformations Using Generating Functions

A canonical point transformation may also be constructed using the generating function

approach. It should be noted, however, that usually one has to assume the form of the generating

function a priori, and, for this reason, the expertise of the practitioner is crucial when applying

this approach. This fact notwithstanding, for point tranformations a type-1 (i.e. S(q,Q))

generating function is not a viable candidate since q and Q are not independent variables. A

type-4 (i.e. S4(p,P)) generating function is also not valid. To show this, first note that the

dependent variables are q, Q and are obtained from [12]:

0S4(p, P)
qi = p --

Opi
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OS4 (p, P)

i =A
Then,

Oq.

op ap

Oq OHT Oq sq
= - -u+ + V

Op Oq Op OP

OH(q,p)

Op

since

OHT
pi = _ ----- + u

P=vq
P = V

For to be independent of the controls (original and transformed), it must not be a function of

(p, P), which leads to a contradiction. These results are summarized in the following definition.

Definition 6 A canonical transformation to the linear form (3.14) can only be realized by a

type-2 or type-3 generating function, i.e.

S2 = S2(q, P)

S3 = S3(p,Q)

3.2 Point Transformations Preserve Lagrange Equations

In this section, a study of the properties of point transformations is initiated which will be

continued in the next section. A well known fact in mechanics states that the Lagrangian equa-

tions of motion are preserved or are invariant under a point transformation. This preliminary

result will help pave the way to the ultimate goal of finding linearizing transformations. In lieu

of a reference, a proof of this statement is presented in the following.
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Let q denote the n-dimensional vector of independent generalized coordinates of a system,

for which a kinetic energy T(q, q) quadratic in generalized velocities is defined,

T(q, ) = TB(q)

where B(q) is the symmetric and positive definite inertia matrix. For the purpose at hand, the

original or primitive form of the Lagrange equations [13] will be employed:

d ATT OTT---u (3.15)
where, by abuse of notation, u represents the effect of all generalized forces, disturbances and

control actuators. Now, consider a point transformation:

Q = f(q)

= J(q) 

Here, J(q) is the coordinate transformation Jacobian matrix, i.e.

Of(q)
= J(q)

Oq

Under such a transformation the kinetic energy is invariant and can be written in either coor-

dinates as:

T=1 4TB(q) = QTJ-T(q) B(q) J(q) Q

It will be assumed that f(q) is a differentiable mapping with non-singular Jacobian matrix

J(q) for all q. These requirements are necessary and sufficient to guarantee the existence of a

differentiable inverse [31]. The Jacobian matrix of the inverse transformation q = f- 1(Q) is

[31]:

Oq
- = J-l(f-(Q))
OQ

Before proceeding further, a preliminary lemma is required.

Lemma 2 Given Q = f(q), Q = J(q) 4, with det [J(q)] $ 0, Vq. Then:

9Q
= J(q)

Oq
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Proof: First note that Q = Q(q, 4). Differentiating this expression results in:

= -· q +-I
aq 04

= J(q) 4 + J(q) 

Combining like terms on both sides results in:

[0 J(q)] ( = Onxl

oq

aQ
For the equality to hold for arbitrary 4 requires that - = J(q) which proves the identity. This

Oq

is the easiest and quickest approach to prove the identity. Alternatively, the same result can be

obtained using a derivation that is more insightfull and which uses a property that will appear

repeatedly. This derivation is now presented. From the definition, the i-th element of Q is:

n

Qi = E Ji,k(q) 4k
k=1

Note that Ji,k(q) = (q). The j-th partial of i is:
Oqk

aQi n Jk(q)
= k (3.16)

Oqi k=l aqj

Now, the time derivative of the (i,j) element of the Jacobian matrix is expressed as:

0 n Jj(q)
J1,j(q)E= z Ji,3 (q) (3.17)

k=l aqk

At this point the equality of mixed partial derivatives is employed [31], i.e. the order of partial

differentiation can be reversed. It will be assumed that f(q) is a sufficiently smooth function

(i.e. f(q) E C 2 or f(q) has continuous partial derivatives to second order) then:

02fi(q) 2fi(q)
= ¥8 Oq7qij,k

qj Oqask aOqk qj
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This is the key property that will be evident throughout this document and will appear in a

multitude of instances. It is a necessary and sufficient condition for exactness of differential

equations; i.e. it is a test of whether a solution exists. Rewriting (3.16) and (3.17) in terms of

f(q) results in:

aQi n a Hi (q)

E qk
Oqj k=l Oqj Oqk

n 02 f(q)
Ji,j(q) =

k= Oqak Oqj

It is dearly evident that the application of equality of mixed partials results in,

aQi
-= Ji,(q) V i,j

Oqj

which proves the property:

= J(q)
Oq

At this point the question of whether Lagrange's equations are preserved under point trans-

formations is addressed. The goal is to show that in the transformed coordinates Lagrange's

equations are of the form,

d OT dTT
-t T = ii (3.18)

where = j-T(q) u. The approach is to use (3.15) and compute its entries in terms of the

transformed variable and show that the resulting expression is (3.18). As a first step, compute

aTT
-- using Lemma 2 to obtain:
Oq

T
OTT (Q),Q(q,)) OT Q OT aQ '1

Oq OQ Oq aQ Oq

OTT OTT
JT (q) - + T (q) -

aQ OQ
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Proof: First note that Q = Q(q, 4). Differentiating this expression results in:

aQ aOQ
Q = a f a

i9q i04

_ J(q)q + J(q)i

Combining like terms on both sides results in:

Oq

OQ
For the equality to hold for arbitrary 4 requires that = J(q) which proves the identity. This

Oq

is the easiest and quickest approach to prove the identity. Alternatively, the same result can be

obtained using a derivation that is more insightfull and which uses a property that will appear

repeatedly. This derivation is now presented. From the definition, the i-th element of Q is:

n

Qi = E Ji,k(q) k
k=l

Of (q)
Note that Ji,k(q) = (. The j-th partial of Qi is:

9 qk

OQi n 8Ji,k(q)
= E qk (3.16)

Oqj k=1, Oqj

Now, the time derivative of the (i,j) element of the Jacobian matrix is expressed as:

n J,(q)
Jij(q) = E k (3.17)

k=l Oqk

At this point the equality of mixed partial derivatives is employed [31], i.e. the order of partial

differentiation can be reversed. It will be assumed that f(q) is a sufficiently smooth function

(i.e. f(q) E C2 or f(q) has continuous partial derivatives to second order) then:

. 2fi(q) O2fi(q)

0qj Oqk Oqk Oqj
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OT
Next, compute -:

04

aTT (Q(q), Q(q, 4)) OT O

OQ 04

oTT= JT(q) -

OQc

OTOQ OQ
Note that there is no - term since - = 0nXn because Q is not a function of . Now,

aQ 4 04
the time derivative of the i-th row of this quantity is given by:

d O aTT
dt 04 i

d n OTE Jki(q)-7 |
dt k=l aQk 

= ) Jk,i(q) -
dt OQk

OT
+ Jk,i T

OQk 

In matrix form, this can be written as:

d TT d (TT

_d \ = JT(q) -
dt 41 dt Q

-TT

+ jT (q) 
io

Utilizing the above resuts, Lagrange's equations in the original coordinates becomes:

d OaTT\ eaTT- -I- = 
dt 04 Oq

d (OTT OTT OTT OTTjT T)_ j
-(q) I- + JT (q) j T (q) - T(q)__

dt Q oQ OQ OQ

= JT (q) _
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Finally, the desired result is obtained by equating the two right-hand sides of the above:

d OaTT A ATT j-T( O )_ - = J T (q) u
dt a J a Q

Summarizing, an alternative derivation of the invariance of Lagranges equations under point

transforamtions has been presented. This result will be useful when linearizing transforma-

tions for mechanical systems are considered by providing an alternative approach to deriving

linearizing transformations.

3.3 Point Transformations Are Canonical

In this section, the investigation into the properties of point transformations will be further

pursued. In the previous section it was shown that point transformations preserve Lagranges

equations. Here, these transformations are examined from the point of view of canonical trans-

formations. It will be shown that all point transformations Q = f(q) are canonical or metric

preserving, i.e. Z - N Z NT = 0,nXn This result certainly has appeared in the mechan-

ics literature previously. However, in lieu of a reference, a proof of this result is presented in

the following. Recall that the requirements for a canonical transformation in terms of Poisson

brackets were:

(a) {Q,P} = 1nxn

(b) {Q,Q} = 0 xn

(c) {P,P} = °nxn

As a preliminary step, the expression for P is first determined. For a point transformation

Q = f(q), Q = J(q) q, the expression for the Kinetic energy is:

T T B(q) 4 QT j- T (q) B(q) J'l(q)Q

Since mechanical or natural systems are considered here, the momenta in both the original and

transformed system are denoted by p and P. Just as the momentum in the original system is

defined by,

OTT

p = - = B(q) 
04 
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the momentum in the transformed coordinates is similarly defined by:

P = - = J-T(q) B(q) = j-T(q) p

Whereast the expressions for the transformed generalized coordinates and generalized momenta

have been explicitly defined, the canonical criteria can be evaluated.

The first canonical requirement, in expanded form, is written as,

aQ aP T aQ aOPT
{Q,P} = 

Oq Op Op Oq

OQ apT

J(q) Op

= J(q) (q)

= lnXn

where the property that Q is not a function of p has been used to annihilate the second term

on the right-hand side, and the definition of P = j-T(q)p has been used to obtain the final

result. It is concluded that the first requirement is satisfied. Similarly, writting out the second

canonical requirement the following expression is obtained where the property that Q is not a

function of p has been used to annihilate all terms in the right-hand side.

OQ OQT OQ_ OQT

{QQ} =
Oq 8 p Op Oq

= OnXn

It is evident that the second requirement is also satisfied. Finally, the third canonical require-

ment in expanded form is given by:

a aOpT ap OPT
{P,P} = - _

Oq Op Op Oq

OP OPT

- J-1 (q) - J-T(q) (3.19)
Oq Oq

To further simplify this equation, a preliminary result utilizing the chain rule of differentia-

tion in matrix form to P is required to elliminate the Jacobian matrix. First define the inverse
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map to the point transformation by g(Q) = f 1 (Q) = q. Let the Jacobian matrix of the inverse

transformation be denoted by G(Q), i.e. = G(Q) Q. From the fact that a necessary and

sufficient condition for the existence of a differentiable inverse to f(q) is the nonsingualrity of

J(q), and the Jacobian matrix of the inverse transformation is given by J-(g(Q)) [31] the

expression for G(Q) is G(Q) = J-1(g(Q)). Now, the expression for P can be written as:

P = -T (q)p = GT(Q)p

The expression for Pi becomes:
n

Pi = EGi(Q) p
l=1

The partial of Pi with respect to Qk is given by:

aP- pE (3.20)
OQk 1=1 OQk

Hence, the partial derivative of (3.20) with respect to qj takes the form

OPi n n G,i(Q) OQk

qj 1=1 k=l OQk Oqj

n n OGI,i(Q) OQkES p
k=l 1=1 OQk Oqj

n OPi OQk

k=1 OQk Oaq

aQ1

aOq

where the order of summation has been exchanged and use has been made of the expression

api OP
for - . Finally, by induction it can be seen that the matrix form expression for can be

9Qk Oq
expressed as:

OP OP OQ
q (Q,P)

Oq OQ Oq
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P
= -(Q,p) J(q)

OQ

(3.21)

This result can now be used to simplify the third canonical requirement. Substituting (3.21) in

(3.19):

Dd~~~P qbPT
{p,p} = -(Q,p) J(q) J-'(q) _ J T (q) JT(q) -(Q,p)

OaQOQ

aP apT
(3.22)

aQ OQ

Now, the i,j-th element of (3.22) is:

api aP,
{P, P}ij = -

OQj OQi

On 0G1,j(Q)

1=1 OQj

Ogl(Q)
Since Gl,i = , the i,j-th

aQi

0 aGi,j(Q)
E Pi
1=1 OQi

element becomes:

n

(PP},j = E
1=1

But since by assumption g(Q) E C2, i.e.

are equal [31]:

829g (Q) 02sl(Q)
I__. Pi (3.23)

OQj aQi aQi aQj

it is twice differentiable, its mixed partial derivatives

a2g(Q) _a
2gl(Q)

aQj aQi aQi aQj

Substituting this in (3.23) annihilates the right hand side, which is the desired result. Finally,

since {P, P})i, = 0 independent of i,j it is evident that:

{P,p} = 0nxn

Thus, the third requirement for a canonical transformation is also satisfied. In conclusion, it

has been shown that all point transformations are indeed canonical transformations.
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3.4 Canonical Factorization

In this section, the canonical transformation methodology will be applied to the problem of

linearizing general nonlinear equations of motion expressed in the Hamiltonian framework. This

approach is an example of feedback linearization where a change of coordinates in the state and

control space coupled with feedback applied to the nonlinear system results in a controllable

linear system.

Starting with the kinetic energy expression and Lagrange's equations as in (3.15), the Hamil-

tonian is defined as:

H= pT B-'(q)p

where
9T

P = OT = B(q)Q

H is the Kinetic energy expression, and p is the generalized or conjugate (i.e. the dual variable

to the generalized coordinate) momentum. The Hamiltonian equations of motion become:

= B-l(q)p

0 PT (3.24)
= - 2 pT B (q) p + u (3.24)

The objective is to choose a point tranformation Q = Q(q) to obtain a Hamiltonian that is

a function of the generalized momentum only, i.e.

H = 1PTP

which will result in the linear double integrator system in the transformed coordinates. Note

that the restriction to point transformations is known a priori to be canonical. With Q = f(q),

assume that f E C1 with det [f'(q)] $ 0, Vq (i.e. f is a diffeomorphism). Differentiating Q

results in

Q = J(q) = J(q) B-1(q)P

where J(q) is the Jacobian matrix of f(q). In order to have the transformed equations appear

linear in their arguments, it is necessary that Q = P as in (3.14). Then,

P = J(q) B-l(q)p
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and the Hamiltonian becomes:

H = 2 pT J-T(q) B(q) J4-(q) P
2

To obtain the target linear description requires that:

J-T(q) B(q) J-l(q) = lnxn

To generate the transformed control variable it is noted that

from the virtual work principle 6W = uT 6q. Since q = f-l(Q

the original control is obtained

), this can be written as:

6W = T f-(Q) bQ
OQ

= uT J- (q) 6Q

= vT bQ

Therefore, the transformed control variable, v, is given by v

leads to the desired target linear description.

L Q LJ-T(q)u 

This result can be summarized in the following theorem.

Theorem 2 Define the point transformation Q = f(q) with

This is a linearizing canonical transformation if and only if:

B(q) = JT(q) J(q)

= j-T(q) u. Satisfaction of (3.25)

(3.26)

f E C1 and det [J(q)] 0, Vq.

(3.27)

The transformed linear dynamics are given by (3.26)

This special factorization of the inertia matrix is refered to as a canonical factorization. It should

be noted that this factorization has been independently obtained by Koditschek [26] and by Gu

[15]. However, the existence question of this factorization were not addressed in these references.

The existence conditions for this factorization are presented in the next section. The above

derivation is an alternative to the previous derivations cited in the literature. The meaning of

this factorization in physical terms is that there exists a coordinate system in which the inertia

matrix is coordinate independent. Also note that the full power of canonical transformations
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has not been utilized. This is because of the restriction to point transformations which are a

subset of canonical transformations. In the most general case the coordinate transformation

would be a function of both generalized coordinates and momenta.

An alternative approach to linearize (3.24) is by the so called computed torque" approach

[41] pioneered in the robotics literature. The simplest choice of coordinate transformation that

linearizes (3.24) is to choose zl = q, z2 = q. Then:

zl = z2

z2 V= 

The transformed control variable, v, is used to cancel all the nonlinearities that appear in the

expression for 2. This approach can be expanded to include point transformations z = f(q).

For nonredundant manipulators (the number of links equal the dimension of the end-effector)

it has been shown [48] that setting z = f(q) where f(q) is the forward kinematics describing

the end-cffector location, results in decoupled input output linear dynamics. This approach,

however, is not an example of a canonical transformation and Hamilton's equations are not

preserved.

3.4.1 Lagrangian Feedback Linearization

In this section it will be shown that the special decomposition of the inertia matrix (3.27)

can be obtained using the Lagrangian framework without recourse to canonical theory. As was

observed previously, the Hamiltonian framework is more general in that canonical transforma-

tions that are not restricted to point transformations can be employed. The key concept in

the Lagrangian based derivation is the realization that only nonlinear terms arising from the

kinetic energy can be simplified; the kinetic energy is the most significant system summarizing

quantity, and Lagrange's equations in their most primitive form are derived from the kinetic

energy.

Now suppose that there exists a point transformation Q = f(q) such that the kinetic energy

in the new coordinate system can be written as:

T 1QTQ 1 ~T
T 2T = T B(q) 

Substituting this expression for T(Q) in Lagrange's equations in transformed coordinates results
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in

where the transformed control v = j-T(q) u. Thus in the transformed coordinate and control

space the equations of motion appear in a double integrator linear form which is the desired

result. Again, the main equirement for realizing such a transformation is the special decom-

position of the inertia matrix (3.27).

3.5 Existence Of Canonical Factorization

Up to this point, it has been shown that a canonical transformation to a double integrator

linear description is possible if and only if the special (canonical) factorization of the composite

inertia tensor exists. Thus, the key to any simplification of the nonlinear control problem rests

on the existence of such a factorization. To this end, this section addresses the question of what

conditions are required for such a transformation to exist.

From the previous development, the central concept in deriving the canonical factorization

is the system kinetic energy. This is an example of an inner product endowed with a metric, in

this case the composite inertia tensor, which is an example of a Riemannian metric. Canonical

transformations are an example of coordinate changes that seek to alter this metric into a

particularly useful form: the identity matrix. If such a transformation is possible, the original

nonlinear system can be globally transformed to a linear system. To set this discussion in a

geometric perspective the following definitions are required [11]:

Definition 7 A Riemannian metric in a region of the space ZRn is a positive definite quadratic

form defined on vectors originating at each point P of the region and depending smoothly on P.

Consider the vector v, originating from a point P, and the quadratic form

n

, i,j Vi = TGv
ij=1

where gi,j depends on P and the co-ordinate system, and G is the matrix G = [gi,j]. If one were

to choose an arbitrary coordinate system (Yl,..., Yn), then the Riemannian metric is a family

of smooth functions gi,j = gi,j(yl,..., Yn), i,j = 1,..., n such that:

(a) G > 0, i.e. G is positive definite.
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(b) The Riemann metric G transforms under a co-ordinate change y = yi(z), i =

1,...,n according to G = JT(z) G J(z), where J(z) = Y(Z) is the Jacobian
Oz

transformation matrix.

From this definition, the kinetic energy is a Riemannian metric since the inertia tensor is positive

definite. Next consider the definition of a Euclidean metric.

Definition 8 A metric gi,j = gij(z) is said to be Euclidean if there exist coordinates x =

[x, 1 .. n]T, xi = xi(z), such that

det J(z) $ 0, G = JT(z) J(z)

where J(z) = is the Jacobian transformation matrix, and G = [gj(z)] is the metric
Oz

expressed in matrix notation.

Relative to the coordinate system 1, ... ,x,, the Euclidean metric transforms under a co-

ordinate change zi = zi(x) to:

= J-TGJ-1 = j-TjTjj-1 = 1 x

In these coordinates, the Euclidean metric is the identity matrix.

From the above discussion, it is evident that a canonical factorization is just a Euclidean

metric. That is, a new co-ordinate system is desired such that a Riemannian metric is trans-

formed to a Euclidean metric. Under such a transformation the metric remains invariant. This

is referred to as an isometric transformation [11].

Definition 9 The transformation xi = xi(zi,..., z,n) is called an isometry (or an isometric

transformation) if:

G(zi,.. ,z) = G((xi(z), , (z))

Returning to the original problem of the existence of the inertia tensor's special factorization,

one can summarize the existence question associated with linearizing canonical transformations

by the following:
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Existence Question: Let B(q), q E TVn be a Riemannian metric. Under what conditions

does there exist a point transformation Q = f(q) such that:

42 B(q)4 = QT Q

The objective is to find a transformation Q = f(q) such that B(q) = JT(q)J(q). This

definition can be utilized to provide an approach to answer the existence question. It is noted

that the inertia tensor is expressed i terms of the transformation Jacobian matrix elements.

But the elements of a Jacobian matrix satisfy certain rules. So the key to the solution of the

problem is to find these rules and apply them to B(q) thereby establishing a method to check

for existence once a specific inertia tensor has been supplied. The key property that a Jacobian

matrix satisfies turns out to be the integrability condition or equality of mixed partials. Writing

out an arbitrary element (say i,j) of the inertia tensor in terms of the Jacobian matrices one

obtains:

BE(q n Ofk(q) fk(q) (3.28)

k=l o9qi 0qi

The approach to deriving existence conditions lies in differentiation of the Bi,j(q)'s in order to

express them in terms of second-order mixed partial derivatives of f(q), whence the equality of

mixed partials can be applied to obtain the desired conditions.

To illustrate how the equality of mixed partial derivatives can be used to generate conditions

for the existence of solutions to a set of linear partial differential equations, consider the following

example. Suppose one is interested in determining whether a solution exists to the following

system of first order partial differential equations

- - fi,j(x,q5(x)) (3.29)
OXj

where x E Rn, and E 1Zm. Equation (3.29) can also be written as a system of totaldifferential

equations

d = fi(, +(z)) dj

or

Xj - fij(x,,(x)) dx = 0
L xi 
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Now, differentiate (3.29) with respect to Xk to obtain:

a _ Ofi,(x,.(x)) E fi(S, x (x))f,,k(X, k(x))
Oxj Oxk axk 1=1 Oat(z)

Interchanging the order of differentiation results in:

_a2 i Ofi,k(x, (zX)) m Ofi,k(z, zX)) f1 ( q(x))

Xak Oxj Oxj t=1 ()

Applying the equality of mixed partials principle requires that

Oxj axk ask Oxj

which results in the necessary and sufficient conditions [7] for integrability of (3.29):

Oaf,j aOf,k m af,jf aOf ,+ f,k - fij = 0
OXk Oxj =1 aOq aOc

It turns out, however, that the answer to the existence question was derived by Riemann.

In an unpublished paper, submitted to the Paris Academy in 1861 associated with a heat

conduction problem, Riemann considered transformations y(x) such that:

n n

gij(y) dyi dy, = E dxi dxj
i,j=1 i,j=l

The necessary and sufficient conditions for the existence of such a transformation are given

in terms of the so called Riemann Curvature Tensor, denoted Rik,, by the following theorem

[42](Chapter 4C):

Theorem 3 A Riemannian metric can be transformed to a Euclidean metric if and only if:

Rijkl = 0 V i,j,k,l = 1,...,n

where the Riemann Curvature Tensor is defined by

02Bi,k(q) O2B,l(q) 2Bi,l(q) o2Bj,k(q) 1 -1
Rijkl = -+ + Z B, '(q) [crjl caik - Cril Csjk]

Oq aqj Oqk aqi aqqk Oqj ag Oq r,e=l
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where

aBij (q) OBi,k(q) &Bj,k
Cijk = +

'9 qk iqj Oqi

axe known as Christoffel symbols of the first kind, and BR,(q) denotes the (r, s) element of

B-(q). Note that this definition of the Christoffel symbols is different from that commonly

found in the literature. Using the common definition for these symbols, rijk [25], Cijk = 2 rjki.

Based on this theorem, the existence question about canonical factorizations is answered in the

following.

Corollary 1 A linearizing canonical transformation exists, if and only if all elements of the

Riemann Curvature Tensor are identically zero.

If all elements of the curvature tensor for a mechanical system are zero, then that system is

defined to be Euclidean in that there exists a coordinate system in which the equations of

motion appear linear. The fact that the equations appeared nonlinear is due. to an unfortunate

choice of coordinates.

It can be seen that, without a significant reduction, the number of curvature tensors elements

that need to be computed to test for existence of a canonical factorization quickly expand

according to n4, where n indicates the system degrees of freedom. To reduce the burden of

computing extraneous curvature tensor components, use is made of the symmetry properties

that this tensor satisfies [25]:

1. Rijkl = - Rjiki (first skew-symmetry)

2. Rijkl = - Rijlk (second skew-symmetry)

3. Rijk = Rklij (block symmetry)

4. Rijkl + Riklj + Rljk = 0 (Bianchi's identity)

A consequence of the first and second skew-symmetry properties is that Rijkl = 0 if i = j

or k = . Using the above symmetry properties the number of non-redundant or non-zero

curvature tensor components can be reduced to a minimal set. It is shown in [25] that for an n-

dimensional configuration space there exist a total of n2 (n2 - 1) /12 independent and non-zero

components of the curvature tensor. For example, for a 2-dimensional configuration space one
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only needs to compute one curvature component R1212. Similarly, for a 3-dimensional space

the number increases to 6 components R1212, R 1213 , R 1223, R 1313, R1323, R2 323. Finally, to

solve for the transformation requires integrating the n (n + 1) /2 partial differential equations

in (3.28).

Another application of the curvature tensor is in addressing the problem of optimal design

of physical systems. Since this tensor is a function of not only the system states but also of

the system parameters, annihilation of the tensor can also be attempted by a proper choice of

physical parameters. Such an approach would generate dynamic design criteria as opposed to

kinematic criteria. For example, one area where optimal design has been considered is in the field

of robotic manipulators. The optimal dynamic design of manipulators has been investigated by

a number of researchers. The main approach has been to redesign the manipulator structure

and redistribute the mass in order to make the inertia matrix invariant [2], [51]. Link inertia

redistribution was employed to minimize the configuration dependency of the system's kinetic

and potential energies in [50]. Finally, [16] proposed the decomposition of the inertia metric into

a Euclidean and a constant part using the concept of an imaginary robot model. Essentially all

these design approaches have defined an optimal design as one that is "closest" to behaving in

a linear fashion. In general, one can define the distance of a transformation from an isometry

to be a measure of the defect of a mechanism from behaving in a linear fashion. This distance

can be defined as:

II J- T (q) B(q) J-1 (q) - lnxn II
Minimizing this measure over the system parameters would result in an optimal design. Opti-

mality can also be defined in terms of the curvature tensor. The optimal choice of parameters

is defined as one for which all the components of the Riemann curvature tensor are zero. This

requirement can also be written as the minimization of IIRIi, where R = [R1212, .. , Rijk] i.e.

R is a vector of all the independent non-zero curvature elements. The advantages of such

an approach is that it results in relaxed conditions on the inertia matrix, when compared to

existing mass balancing or inertia redistribution methods, by not requiring diagonalization or

invariance. In the following section, the concepts introduced in this and previous sections are

illustrated via examples.
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U -X x

Figure 3.1: The cart-pole

3.6 Example: The Cart-Pole

In this section the n ethodology of linearizing point transformations is illustrated with a

simple example that admits a solution. Consider the inverted pole on a cart, referred to as

the cart-pole proMwerd shown in Figure 3.1. The pole is modeled as a uniform density beam

with center of mass za th pole center (i.e. at 1). For this system the expression for the kinetic

energy is:
1 1 ( 2\ t2+'' (M + m) $2 + 12 2+ Ml os() i

The inertia matrix B(x,O) is:

B(xa) =M + m ml cos() 
( ml cos(O) 4 m12

The equations of motion are as follows:

(M + m) + ml cos(O) - ml sin(#) 82 = U
4..

l + cos() - g sin(O) = 0
3

Note that this is an example of an underactuated system since there is only one control action

for two degrees of freedom.

The first requirement is to test for existence of a canonical factorization via the Riemann

Curvature Tensor. For computational purposes, the curvature tensor was implemented in the
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symbolic mathematics software MathematicaT M . Since the system is 2 dimensional there exists

only one non-zero curvature tensor element, R1212. Computing this component for the given

inertia matrix it can be shown that:

0 2B 1,1 92B2,2 2B1,2 82B2,1
R1212[B(Z,) + +

002 Ox2 Ox 00 00 ax

1

- [ ( X:22 Cl1l - C112 C121 ) Bl + ( C12 2 C2 11 - C112 C221 ) B-,2 +
2

C222 C111 - 212 C121 ) B,1 + ( C222 - C212 221 ) B, ]
= 0

In the above expression the generalized coordinates have been numbered according to q =

x1, q2 = . It should be noted that the Christoffel symbols are not all zero as would be

the case if the inertia matrix was constant. Indeed, the only nonzero Christoffel symbol is

C122 = -2ml sin(O). This result is obtained regardless of system constant parameter choices, i.e.

cart mass, length of pole, and pole center of mass location. This result guarantees the existence

of a canonical factorization or a coordinate system in which the inertia matrix is invariant.

Note that linearization is achieved without any mass redistribution. The linearization methods

based on mass or inertia redistribution e.g. [2] or [50] would require that the center of mass of

the pole be placed at the pivot. In principle, this could be achieved by an appropriate selection

of a counterweight.

To construct the point transformation that will result in the canonical factorization of the

cart-pole inertia matrix, let the new coordinates Q1 and Q2 be defined by:

Q1 = f1, l (x) + f,2(0)

Q2 = f2(0)

The reason for this particular choice is that since the inertia matrix has only 3 indepen-

dent components, setting B(x,0) = JT(x, 0) J(, ) results in only three independent equa-

tions. Then, one can solve for at most three unknown transformation components, in this case

fi,l(x), fl,2(0), andf2(0). The Jacobian matrix for this choice is:

J(x,0 ) = D[f, 1] D[f,2]
0 D [f2] 

74



The expression for JT(z, ) J(x,) becomes:

D0 [= Lfi,i]2 D [fi,] De [fi,2 1
JT(z,e) j(z,-)

D [fi,l] De [fl,2] De [fl,2]2 + De [f2] 2

Setting B(z,e) = JT(z,)J(x,O) results in:

(a) D.[fl, 1]2 = M + m

(b) D. [fi,l] De [fi,2 = ml cos(0)

(c) DO [fi,2]2 + D [f2]2 = m12

The first condition is solved to yield fi,l(x) = v/M+ m . Substituting this result in the

ml
second condition and integrating results in fl,2(0) = sin(O). Combining these two

terms results in the first coordinate transformation:

ml
Q1 (X, ) = v/M + m + sin(O)

The physical interpretation of the transformed coordinate Q1 is that it represents, modulo a

scaling constant, the center of mass of the cart-pole in the x direction. The center of mass in

the x direction is:
ml

x = z + sin(O)
M+m

Dividing Q1 by f/AM+ m results in Xcm

Q1 (x,8 ) ml
= a + - sin(O)

/M + m M + m
= Zcm

The third condition, however, does not have a closed form solution. It is an elliptic integral of

the second kind and must be evaluated numerically. The second coordinate transformation is

then:

Q2(o) = o a - M + m212
Q2() ( ml2 - m1 2 cos2(0) dO

75



The physical interpretation of Q2 is more complicated. The term under the square root sign

can be written as:

4 m2 12
1

-ml 2 - cos2(0) = - det [B(x,0)]
3 M+m M+m

The physical significance of the second coordinate transformation is apparent if one considers

its time derivative Q2.
4

3
Mm 12 (0)

M+m
The expression for Q1 is:

ml
Q1 = /M+M + m + --- cos(O) 

.- _ A r73. -

Then, the expression for the kinetic energy can be written in terms of

1 4
T = - + - 2

2 2

Q1 as:

212
- cos2(0)

M+m 

1 _2 1

2 2

It is seen that the expression for Qz0 accounts for the difference T - 1 2

The Jacobian matrix of this transformation

J(x, ) =

ml
vx/ vM I cos(8)

0
4
-ml 2

3

m212- --- cos2(0)
M+m

is non-singular since

4
det [J(x, 0)]

3

m212
~- -- cos2(0)
M+m

= /det [B(z,0)]
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and det [B(G)] > 0 by positive definiteness of inertia matrices for physical systems. The non-

singularity of J(x,O) immediately establishes the fact that the mapping Ql(x,#), Q2(0) is 1-1,

i.e. for every Q1, Q2 there exists a unique x, . Finally, in the new coordinate system the

equations of motion are linear

where:

v = -de[Jx,) JT (X,) [ 
det[J(x, )] 0

1

det[J(,O)]

0

- cos(O) M
VM + mn

det[J(x,O)]

4 m212

-ml 2 - cos2(0)
3 M+m

ml
- ml M_~+ M~cos(O)

./M T

U (3.30)

It is apparent that the transformed control variable v is 2-dimensional whereas the original

control u was 1-dimensional. Also, for an independent choice of vl and v2 there does not exist

a solution for u since (3.30) represents an overconstrained set of equations. In general, the

matching condition dim v < dim u must be met for solvability of the inverse transformation.

When a compensator is designed for the transformed system (Q, v) using linear design without

taking into account the fact that vl and v2 are not independent control actions, this compensator

cannot be implemented because the actual control signal cannot be retrieved from the linear

design. For this reason this approach cannot be applied to underactuated systems such as the

cart-pole.
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3.7 Example: Planar Manipulator

In this section, planar manipulators are investigated for the possibility of linearizing point

transformations. Consider a 2-link planar manipulator with generalized coordinates defined by

the absolute link angles xl,x2. The manipulator parameters are; ml,m 2 link masses, I1,12

link inertias, 11, 12 link lengths, 4lc, l,2 link center of mass locations. The inertia matrix for this

manipulator is:

B~,~2 )(xi, ml l, + m2 l 12 2 os(x2 - x l ) (3.31)

L B(l) 1 2 COS(X2 - 1) I2 + m2 c2 (3.31)

Note that the diagonal entries of the inertia matrix are constant as a consequence of the em-

ployment of absolute instead of relative angles.

The curvature tensor for this inertia matrix is:

R1212 -

CI 1 2 2 2 ,22 2(21i12Z1m2 + 2I21 1clm 1m2 + 212 m2 + 2Illlc2mZ + 21C 2 mim) 1c2 cos(x2 - x)

1112 + I2lc2lml + 2 1 m2 + 1m2 + 2 mm2 + m sin( -- x1)

It is evident that for arbitrary values of system parameters, the curvature tensor is not zero.

The denominator term is the determinant of the positive definite inertia matrix and thus is

nonzero. It is seen that R1212 = 0, V if and only if Ic2 = 0, i.e. the center of mass of the

second link is located at the second joint. Such a choice makes the inertia matrix constant since

its state dependent off-diagonal terms are annihilated by this choice. The only other solution

for the curvature tensor to be zero is x = 2 when 1c2 O. Physically this corresponds to

a single-link manipulator and the inertia matrix is seen to be constant. It is obvious that a

general 2-link planar manipulator cannot be linearized by point transformations only.

Since the 2-link manipulator does not possess zero curvature except for a special inertia

distribution or configuration, an alternative is to approximately annihilate it. The objective is

to find an inertia matrix that has zero curvature and is a good approximation for the system

inertia. As an example, consider the inertia matrix of the form

B(X2)= bl bl 2 (X2 )

b12 (X2 ) b22 (Z2 ) 
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where bl2(x2) and b22(z2) are arbitrary functions of x2, and b is an arbitrary constant. It

can be shown that R1212[B(z 2)] = 0. Such an inertia matrix is a good approximation for the

2-link manipulator. This can be seen when (3.31) is expressed in a coordinate system where

the orientation of link 2, 02, is expressed relative to link 1:

B(xl,x 2) = B(82)

[ I + 12 ml + m2 [2 + MI 1 + 2 [ + 12 + 221c2 COS(X2)] 2 + I2 + m2122 + m2111C2 cos(2)

L I2 + m2 l2 + m2112 cos(X2) m2122

The only difference is the cos(x2) term in the 1, 1 element of (3.31). In conclusion, when this

analysis is extended to spatial manipulators the curvature tensor elements will in general be

non-zero.

3.8 Example: Euler's Rotational Equations

Consider the rotational motion of a rigid body. The orientation of the body is expressed in

terms of Euler angles, and the body fixed frame of reference is aligned with the principal inertia

axes. Let x represent the vector of Euler angles (generalized coordinates, in yaw, pitch, roll

sequence) and w the angular rate vector expressed in body coordinates. The control torque u

is expressed along the generalized coordinates. The Lagrangian identical to the kinetic energy

of the body is given by

L =T= TlB w

where B = diag(Iii) is the constant diagonal inertia matrix. The angular rates in terms of the

Euler angles are given by:

w = A(z) x (3.32)

where
1 0 - sin(x 2 )

A(x)= o cos(lx) sin(x) cos(X2)

0 -sin(zx) cos(xl) cos(X2)

It is implicitly assumed that the system is restricted from attaining the orientation z2 = 7r/2

for which A(x) is singular. Now the kinetic energy can be expressed in terms of generalized
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coordinates,

T =1 TB(xz) 2

where B(z) = AT(x)IB A() is the composite inertia matrix in terms of generalized coordinates.

The complete equations of motion for this system are

i = A-'(z) w Kinematic equations

IB i = lB w X w + r Dynamic equations

where r represent the external forces on the body.

Applying the results obtained in the previous section, it is required that B can be factored

as:

B(z) = JT (X)J(X) (3.33)

One possible choice for J could be obtained from the decomposing IB = ITKB, such that:

J(x) = KBA(x) (3.34)

However, the factorization (3.34) cannot be accomplished because A(x) is not a Jacobian of

any function. This can be shown by applying the equality of mixed partials test. For example,

consider the case j = 1, i = 2, k = 3:

aA1,2( ) OA,,3(z)
=- = - cos(X2)

OX3 Ox 2

except when x2 = ir/2.

To test for the existence of a canonical factorization the Riemann Curvature Tensor test

is applied to B(x). Since the inertia matrix is 3 by 3, there exist 6 non-zero and independent

tensor components. These six components are presented in the following.

R1212 * (I22 I33) =

-0.51112122cos(x(1)) 2 + (1.11222 - 1.1111 22133) cos((l)) 4 +

(-0.5I223 - 1.1222133 + 1.51221332) cos(x(l))6 - 0.51112133sin(x(1))2 +

(1.1 1222 - 2.1 I22133 + 1.Ill I332) cos(xz())2sin(x(1))2 +

(-1.I223 - 0.51222133 + 21221332 - 0.5133) cos(x(1))4sin(x(1))2 +

(-1.11 I22133 + 1.11 I332) sin(x(1))4 +
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(-0.5I223 + 2I222133 - 0.5122I$32 - 1.1333) cos(x(1)) 2 sin(x(1)) 4 +

(1.5122 Is3 - 1.122s332 - 0.51333) sin(x(l)) 6

R1213 * (122 133) =

(-0.5Ill 2I22 + 0.51233) cos(x(1)) cos(z(2)) sin(x(l)) +

(1.ll I222 - 1.1111332) cos((1)) 3 cos(x(2)) sin(z(l)) +

(-0.5223 - 2.51222I33 + 2.5122I332 + 0.51333) cos(x(l))5 cos(x(2)) sin(x(l)) +

(1.111I222- 1.1111332) cos(x(l)) cos(x(2))sin(x(1))3 +

(-1.I223 - 5.I222133 + 5.I221332 + 1.1333) cos(x(l))3 cos(x(2))sin(x(1))3 +

(-0.51223 - 2.51222 I33 + 2.5I22 1332 + 0.51333) cos(x(l)) cos(x(2))sin(( 1)) 5

R1223 * (I22 I33) =

-0.5ll12I22cos(x(1)) 2 sin(x(2)) + (1.Ill 222 - Il 1 I2233) cos(z(l)) 4 sin(x(2)) +

(-0.5I223 - 222I33 + 1.5I22I332) os(z(l))6 sin(x(2)) -

0.511 2133sin(x()) 2 sin(x(2)) +

(1.I11122 - 2I111122133 + 1.11 1332) cos(x(l))2sin(x(1))2 sin(x(2)) +

(-1.1223 - 0.51222133 + 2.I22 1332 - 0.51333) cos(x(1))4sin(x(1))2 sin(x(2)) +

(-( I1122133) + 1.1111332) sin(x(1))4 sin(x(2)) +

(-0.5I223 + 2.I222133 - 0.51221332 - 1.1333) cos(x(l))2sin((l1))4 sin(x(2)) +

(1.5I222I33 - I22I332 - 0.5I333) si (T(1))6 sin(x(2))

R1313 * (I22 I33) =

-0.511 2 33cos(X(1)) 2 cos(x(2)) 2 - (.1 1122I33 - 1.111 332) cos(z(l)) 4cos(x(2)) 2 +

(1.5I22213 - l.I22 332 - 0.5Is33) cos(X(l)) 6 cos(x(2)) 2 -

0.5 Il1 2 122cos(x(2))2sin(x(1)) 2 +

(1.111 I22 - 2.Il I22133 + 1.111Il332) cos(x(l))2cos(x(2))2sin(x(1))2 +

(-0.51223 + 2122233 - 0.51221332 - 1.1333) cos(x(l))4cos(x(2))2sin(x(1))2 +

(1.Il I22 - 1.Il11122133) cos(x(2))2sin(x(1))4 +
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(-1.223 - 0.5I222I33 + 2122I332 - 0.51333) cos(X(l)) 2cos(x(2))2sin(x(1)) 4 +

(-0.51223 -1.I22233 + 1.51221332) cos(x(2)) 2 sin(x(1))6

R1323 * (122 133) =

(-0.5i1222 + 0.51112133) cos(x(l)) cos(x(2)) sin(x(1)) sin(x(2)) +

(1.II I I22 - 1.Ill 1332) cos(z(l)) 3 cos(x(2)) sin(z(l))sin(x(2)) +

(-0.5I223 - 2.51222133 + 2.51221332 + 0.5133) cos(x(1))5 cos(x(2)) sin(x(l)) sin(x(2))

+ (1.Ill I222 - 1.111I 1332) cos(x(l)) cos(x(2))sin(x(1))3 sin(x(2)) +

(-1.1223 - 5.I222133 + 5.I221332 * 1.1333) cos(x(l))3 cos(x(2))sin(x(1))3 sin(z(2)) +

(-0.51223 - 2.51222133 + 2.51221332 + 0.51333) cos(x(l)) cos(x(2))sin(x(1))5 sin(x(2))

R2323 * (Ill I22 133) -

1.51112122133cos(X(1))4 cos(x(2)) 2 +

(-1.I1I222133 -1.111122332) cos(x(1))6cos(x(2))2 +

(-0.5I223133 + 1.1222I332 - 0.51221333) cos(x(1))8cos(2(2))2 +

3.112 I22I33cos(x(1)) 2cos(x(2)) 2.in(x(1))2 +

(-3.Ill I222133 - 3.11 11221332) cos(x(l))4cos(x(2))2sin(x(1))2 +

(-2.I223133 + 4.1222I332 - 2.I22I333) cos(x(l))6cos(x(2)) 2sin(:x(1) 2 +

1.51 12 22133cos(x(2))2sin(x(1))4 +

(-3.Ill I222133 - 3.1111221332) cos(x(1))2cos(x(2))2sin(x(1))4 +

(-3.I223133 + 6.12221332 - 3.I221333) cos(x(1))4cos(x(2))2sin(x(1))4 +

(-1.Il11 I222133 - 1.Il11 I221332) cos(x(2)) 2sin(x(1)) 6 +

(-2.1223133 + 4.I2221332 - 2.I22I333) cos(x(1))2cos(x(2))2sin(x(1))6 +

(-0.5223133 + 1.I222 1332 - 0.51221333) cos(x(2)) 2sin(x(1)) 8 -

0.511 3 1I22cos(x(1))2 sin((2)) 2 +

(.121222 _ 1.112 I22133) cos(x(1))4sin(x(2))2 +

(-0.5I1l I22 - 1.111122 2133 1.5I 111122132) cos((1)) 6sin(x(2)) 2 -

0.5II1 3133sin(x(1)) 2sin(x(2))2 +
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(l.11121222 - 2.1112122133 + 1.11121332) cos(x(l))2sin((1)) 2sin(x(2)) 2 +

(-1.Il I223 - 0.5111 I222133 + 2.111 1221332 _ 0.5111 333) cos(x(1)) 4 sin(x(1)) 2 sin(x(2)) 2 +

(-1.l12122133 + 1.11121332) sin(x(1))4sin(x(2))2

+ (-0.51 I223 + 2.11I222I33 - 0.511 122I332 - 1.111333) Co(z()) 2lsjn(()) 4sin((2)) 2

+ (1.51111222133 - 1.1111221332 - 0.5111 333) sin(x(1)) 6sin(x(2)) 2

It is readily apparent that the computation of the curvature components is far from trivial.

Note, however, that these expressions already reflect a significant simplifying assumption of a

diagonal inertia matrix. For a non-diagonal inertia the expressions are even more complicated,

i.e. there are more terms in the expression for each tensor element. It is evident that the

tensor elements are non-zero and thus a linearizing canonical factorization does not exist for

this general diagonal inertia distribution.

Finally, consider the simplified problem of axi-symmetric inertia distribution, i.e. diago-

nal inertia matrix with all diagonal entries of the same magnitude say K., The 6 curvature

components for this case reduce to:

R1212 = - 0.5 K

R1213 = 0

R1223 = - 0.5 sin(x2) K

R1313 = - 0.5 cos2
2 ) K

R1323 = 0

R2323 = - 0.5 K

It is obvious that the curvature components are not all zero. Also, there does not exist a

constant choice of K that would annihilate all curvature components. It is interesting to note,

however, that such a choice of inertia distribution results in linear Euler's dynamical equations

in body frame. To see this, recall that the dynamics expressed in the body frame which is

aligned with the principal axes are [8]:

II 1, + (13-1 2) W2 W3 = 71

I2 W2 + ( -13) W3 W1 = 72

I3 C3 + (12 - I ) 1 W2 = 73
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Setting Ii = I2 = 13 = K resvlts in the annihilation of all Euler torques (e.g. (13 - I2) W2 W3 )

which leads to linear dynamics. However, the kinematics are still nonlinear. It is somewhat

surprising that the key (or obstacle) to linearizing the rotational equations of a rigid body

via point transformations lie in the nonintegrable relationship between body angular rates and

generalized coordinate rates. Indeed, it is not possible to find a set of attitude parameters which

specify the orientation of a rigid-body and simultaneously have w as their time derivative [13].

3.9 Conclusion

In this chapter linearizing (canonical) point transformations were introduced as a means to

simplify nonlinear dynamical systems for control system design. This change of coordinates in

the state and control space coupled with feedback applied to the nonlinear systems results in a

linear system to which existing results in linear control theory can be applied. One approach to

achieve a target double integrator linear design was through the use of point transformations.

The well known properties of point transformations, preservation of Lagrange's equations of

motion and the fact that all point transformations are canonical, were reviewed. An alternative

derivation of an existing result on the special decomposition of the inertia matrix to achieve

the target double integrator linear system was presented. The Riemann Curvature Tensor

was introduced as a computational tool to test for the existence of the special decomposition.

Finally, this approach was illustrated by three examples. For the cart-pole problem it was shown

that such a decomposition was possible and the linearizing transformation was computed. Since

this problem was an example of an underactuated system, this approach cannot be used to

design compensators because it requires a fully actuated model. It was shown that a general

2-link planar manipulator does not admit such a decomposition. For the rotational equations

of motion of a rigid body it was shown that the curvature condition was violated for a constant

diagonal inertia distribution.
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Chapter 4

Approximat e Linearization

In the design of control systems there are situations in which nonlinear terms cannot be

ignored. A common approach is to linearize the nonlinear dynamics and apply linear control

theory to design appropriate controllers. However, the operating region of a linearized design is

limited. When the system is required to operate over a wide range of conditions and meet high

performance requirements linear controller designs are inadequate. These type of conditions

may be encountered in 6 degree-of-freedom underwater vehicle control, sattelite attitude control,

high angle-of-attack aircraft control, and magnetic field applications.

A further complication arises when the system to be controlled is underactuated. This

situation occurs when there are fewer control actuators than degrees of freedom. For these

types of systems a general control design methodology does not exist. Most established design

methods require "square" systems [41], that is systems where the number of control actuators

equals the degrees of freedom of the system. Examples of "square" design methodologies are

Sliding Mode control, Lyapunov based Adaptive control, and "computed-torque" control [41].

For gain-scheduled linear controllers there exist potential stability problems when the scheduling

variable is "fast" and are limited to systems which are nonlinear in only a few states.

A recent development in nonlinear control design is that of feedback linearization which

transforms the nonlinear system to an equivalent controllable linear system. This is accom-

plished via a nonlinear state and control transformation. Subsequently, linear control theory

can be applied to the equivalent linear system to design appropriate compensation. However,

when this approach is applied to underactuated systems, existence conditions are usually not

satisfied. One approach is to extend the operating region of linear designs by constructing linear
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approximations accurate to second or higher order [28]. Another approach is to approximate

the nonlinear dynamics by a linearizable nonlinear system [28], and this approach will be used

to solve the underactuated control problem.

In Section 4.1, the concept of feedback equivalence is introduced as a precursor to exact

feedback linearization. The operations of state and control transformations are used to define an

equivalence class of linearizable nonlinear systems. Preliminary mathematical concepts required

for exposition of exact linearization are presented in Section 4.2. In Section 4.3, the method of

exact feedback linearization is reviewed in abridged form.

In Section 4.4, the method of extended feedback linearization is reviewed. A computational

approach to test for the order of an involutive distribution is derived. .In Section 4.5, approx-

imate feedback linearization is reviewed. Instead of solving for an exactly inearizing output

function, an approximate output function is computed that transforms the nonlinear system to

a certain order linear system. In section 4.6 this approach is applied co the cart-pole problem.

Simulation results show a substantial improvement in the range of the linear control design.

4.1 Feedback Equivalence

Before proceeding to the subject of feedback linearization, the notion of feedback equivalence

is introduced. Feedback equivalence is intimately connected with linearization of nonlinear

systems in that the concept central to feedback linearization is the generation of solutions to the

nonlinear system via the solution to an equivalent linear system. The most general application

of feedback equivalence involves nonlinear transformations of the state and control variables.

First, feedback equivalence for linear systems will be reviewed, and then extended to nonlinear

systems. It is hoped that by taking this approach to introducing feedback linearization the

subject will become transparent to the reader.

For linear systems, it is known that any controllable linear system can be transformed into a

controller canonical form via a linear coordinate change of the system state. Further, if a linear

coordinate change in the input variable is coupled with linear state feedback, any controllable

linear system can be transformed to a special form where all poles of the tranformed system

are at the origin [24]. Such a representation is usually refered to as a Brunovsky canonical

form after its originator [6]. To establish notation, let the state and input transformations and
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feedback be defined by

y = Tx (4.1)

v = ax + pu

where y E 1Rn and v E 7Z are respectively the new state and control variables, T is a nonsingular

n X n constant real matrix, a is a 1 x n row vector and 3 is a nonzero real constant. This result

can be summarized in the following theorem [24].

Theorem 4 Consider the single input, time-invariant controllable linear system:

x = Ax + Bu

Using the transformation and

4=

feedback (4.2), this linea:

0100...00
0 1 0 ... 00

00 00...01
00 00 ... 00

r system

Y+

can be transformed to:

7
0

0O'O

O
1
1

= y + v (4.2)

Note that the characteristic polynomial is det [sI - A] = s, i.e. all poles of the transfomed sys-

tem are at the origin and there are no system zeros. This resulting decoupled set of integrators

is by no means restricted to single input linear systems [24].

This notion of feedback equivalence can naturally be extended to nonlinear systems. The

objective is to characterize all nonlinear systems that are feedback equivalent to controllable

linear systems [46]. Starting from the single-input nonlinear system

= f(X, )

assume that it can be transformed via

y = T(x)

= (X,u)
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to the linear system (4.2). Further, assume that T(x) is a differentiable function with nonsingu-

lax Jacobian matrix for all x. Such a transformation is also refered to as a diffeomorphism, i.e.

it is differentiable with differentiable inverse. Then, the following result establishes the class of

feedback iinearizable nonlinear systems [46].

Theorem 5 If a nonlinear system is in the feedback equivalent class of linear controllable sys-

tems, then it has the form

= f(x) + g(x) (x,u)

where f(O) = 0, and is a scalar function with q(0, 0) = 0 and -- V 0 x.
Ou

The reason for the requirement f(O) = 0 and 0(0,0) = 0 is that the origin (in the state and

control space) is an equilibrium point for both the linear and nonlinear systems. It is just an

origin matching condition. The final condition - $ 0 Vz is required for retrieving u from 0.
au

It is just the conditiont for the inverse function theorem [37]. In particular, this-result can be

specialized to the following useful and practical defintion:

Definition 10 Consider the single-input nonlinear systems affine in the control variable

i = f(x) + g(x) u (4.3)

where f(x) and g(x) are smooth vector fields, x E Rn, u E , and f(O) = O. Then, (4.3) is

feedback equivalent to a controllable linear system if there exist a region Q E ZRn containing the

origin, state and input transformations and feedback

y = T(x) (4.4)

v = a(x) + (X) v

where T(x) is a diffeomorphism and P(x) $ 0 for x E 2, such that the transformed coordinates

satisfy (4.2).

If such a transformation exists, (4.3) is said to be feedback linearizable. Note that the assumption

f(O) = 0 is not necessary. It is an origin matching condition, i.e. the origin is an equilibrium

point for both systems. In practice the only requirement for T(x) is that it be a differentiable
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mapping with nonsingular Jacobian matrix. It is seen that (4.5) is just a nonlinear generalization

of (4.2).

Before proceeding to the next section, it may be worthwhile to pause and reflect on this

notion of feedback equivalence. First, Definition 1 and Theorem 2 above specify the class of

nonlinear systems which are feedback equivalent to controllable linear systems. Second, the

mechanism by which this is accomplished is the following. The transformation T(x) can be

thought of as a nonlinear coordinate transformation where the remaining nonlinearities after

athe transformation are shifted or "pushed" such that they only appear in the derivative of the

last transformed variable. Note that the nonlinearities remaining after the state transformation

have been placed in the path of the control action and thus can be cancelled. Another property

of the state transformation is that the control variable does not appear except in the derivative

of the last transformed variable. Once this has been accomplished, the original control action

can cancel these nonlinearities and inject the transformed control variable for compensator

design in the transformed linear domain.

4.2 Preliminary Mathematical Concepts

Before proceeding with the development of feedback linearization, a few preliminary math-

ematical tools are introduced in this section. Only the essential definitions required for the

exposition of feedback linearization will be considered here. In the following, various operations

on scalar (e.g. h(x) : R1 - Z) and vector functions (e.g. fx) : 7n -- R) will be defined.

Such functions are also refered to as fields in that a scalar or vector assignment (or map) is

made at every point x. Also, it will be usual to assume that these fields are smooth, that is

they admit continuous partial derivatives of arbitrary higher order.

The first concept is that of the Lie derivative or directional derivative.

Definition 11 For a smooth scalar field h(x) : ' - R and a smooth vector field f(x) : R1n --

17R, the Lie derivative of h with respect to f, denoted by Lfh, is a new scalar field defined by:

Lf h = Vh(x) f(x)

= -f(x)
i=1 OXi
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The notation Vh(x) indicates the gradient of h(x). It is evident that the Lie derivative is

just the directional derivative of the scalar function h(x) in the direction f(x). Repeated Lie

derivatives are defined recursively by:

Lo h = h

L h = L (L'- h)

Next consider an operator on vector fields called he Lie bracket.

Definition 12 For two vector fields f(x) : Z - 17Z and g(x) : Z" - Vn , the Lie bracket of

f and g, denoted by [ f, g ], is a new vector field defined by:

[ f, g] = Dx[g] f - D.[f] g

Of(x)
The notation Dx[ ] is used to denote the derivative operator, i.e. D [ f(x)] = (. The Lie

Ox

bracket satisfies the skew-symmetric property, i.e. [ f, g ] = - [g, f ] and the Jacobi identity

[41]:

Ladfg h = Lf Lg h - Lg Lf h (4.5)

A geometric interpretation of the Lie bracket is presented in Section 4.2.1. Iterated or repeated

bracket operations are defined in terms of the notation adf g = [ f, g ]:

ado g = g

ad g = f, ad- g]

Finally, the last mathematical construct is the notion of involltive vector fields which is

required in order to establish integrability of certain vector fields.

Definition 13 A linearly independent set of vector fields Xl(x), ... , Xm(x) } is said to be

involutive if and only if there are scalar fields aijk(x) such that
m

[X, Xj ] () = A ijk(T) Xk(z)
k=1

for all i,j.

Since the Lie bracket is skew-symmetric, when testing for involutivity one need only consider

values of i < j. A simple example of involutivity is that of constant vector fields. The Lie

bracket of such vectors is zero, and a trivial solution for the weighting coefficients is aijk(x) = 0.

Integrability of vector fields is established by the following definition [46].
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Definition 14 A linearly independent set of vectorfields { X(x), ... , X m(X) } on 7n is said

to be completely integrable if and only if there exist n - m linearly independent scalar functions

hi(x), ... , hn-m(x) such that:

Lxj(z) hi (x ) = for 1 < i < n - m, 1 <j m

The connection between involutivity and complete integrability of linearly independent vector

fields (which will be required in the construction of the linearizing transformation) is given by

the classical Frobenius theorem [4].

Theorem 6 A set of linearly independent vectorfields is completely integrable if and only if it

is involutive.

To provide an intuitive understanding of the involutivity condition, the equivalence of the

equality of mixed partial derivatives and involutivity as integrability criteria is highlighted by

a simple example in Section 4.2.2.

4.2.1 Geometrical Interpretation Of The Lie Bracket

In this section a geometrical interpretation of the Lie bracket is presented with the purpose

of providing an intuitive understanding. In the context of differential equations, it will be shown

that the bracket represents a direction in state space that the solution of these equations can

move. To give a geometrical interpretation to the Lie bracket, consider the following two input

dynamical system:

= ui(t) fi(x) + u2(t) f 2(x) (4.6)

It is evident that starting from any point x(O) = xo, the system can move in any direction

spanned by the vectorfields f(x) and f 2 (x), denoted F(xo) = span fi(xo), f 2(xo)}. However,

it may be possible to move in other directions by switching between inputs. Suppose that

starting from x(0) the system moves along fi (x) for t units of time, then along f2 (x) for t units,

then along -fi(x) for t units and finally along -f 2 (x) for t units of time. This path is shown in

Figure 4.1. After this circuit has been made, is the difference between the starting and terminal

points x(4t) - x(0) E F(x(O))? If this direction is not a linear combination of f (xo) and f 2 (xo)

then it represents a new direction in which the solution can move.
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x(3t)

-- \-,

Figure 4.1: Solution trajectory for Lie bracket interpretation

To compute the terminal point along this circuit, first set u1 = 1, u2 = 0 for t units of time.

Using a Taylor series expansion, the solution to (4.6) can be written as:

1

X(t) = (O) + i(O) t + -(O) t2 + O3(t)
2

1 f ((0))
= (0) + fi(x(0)) + fi( ((0)) t2 + 3 (t)

2 Oz

To reduce the notational complexity, in the following all functions are evaluated at z(0) unless

stated otherwise. Next, set ul = 0, 2 = 1 for t units of time to obtain (using a Taylor series

expansion):

x(2t) = x(t) + f 2(x(t)) t + 2(x(t))f 2 (x(t)) t2 + 0 3 (t)
2 Ox

It is desired to express x(2t) in terms of the starting point. To accomplish this expand the

vector fields evaluated at t in a series using the previous series expression for x(t):

0f(x())
fi(x(t)) = f2(x(0)) + (x(t)- x(0)) + 02 (x(t)- X(0))

Ox

of2
= f2 + fi t + o()

Of2 (x(2t)) a + o(t)

Ox ax
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Substituting the above in the expression for x(2t) and using the series expansion for T(t)

obtained previously:

= (t) + [f2
af2 1 af2+ --ft t + --f2t2+ (t)
Oax 20x

= () + fi t +
1Of 02 ]P+O 1 02--fi t2 + [f2 + fi t t + -- f 2
2 Lx Oxx 2 ax

t2 + 3 (t)

1iOh
= x(o) + [ + f2 t + 2- fi

2 x

af2
+ +

ex

1 02
1 f2j1 t2 + (t)
2 ax

Next, set ul = -1, u2 = 0 for t units of time and using the series expansion for x(2t) obtained

previously:

x(3t)
1 ofh(x(2t))

x(2t) - fi(x(2t)) t + f (x(2t)) 12 + 3 (t)
2 Ox

aOi
= x(2t) - f + -(f

Ox

Of2
= x() + f 2 t + -- f

aOx

1 (9 f
+ f2) t t + - -- fi t2 + (93(t)

2 ax

Ofi
- - f2

Ox

1 af2+ -- f2
2 Ox ]

t2 + o3(t)

Finally, set ul = 0, u2 = -1 for t units of time using the same approach:

= x(3t) - f 2(x(3t)) t + --
2

a f2
= (3t)- f2 + -f2t

a:

)f12(x3 (3t))f((3t) t2 + 03(t)

Ox

1 0f2t + ---f2 t2+ 03(t)
2 x

af2
= x(0) + - fi

Ox

ofi-- f2
Ox ]

t2 + 03(t)

x(4t) = x(O) + [fi, f2 ](xo)t 2 + 03(t)

It is seen that the difference between the initial and terminal points to second order is:

x(4t)- x(O) = [fi, f ](xo)t 2 (4.7)
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Note that the Lie bracket is evaluated at the starting point x(0). Thus, [ fl, f2 ] (xo) represents

the direction in which the system can move and if it is not an element of F(xo) it represents a

new direction in which the solution can move. It is evident that higher order brackets can also

be defined for example by including the direction (4.7) in the switching sequence. It is seen

that the Lie bracket is a measure of the commutativity of the vector fields. A common example

of non-commutativity in dynamics are finite rotations of a rigid body.

The relevance of the Lie brackets in nonlinear control theory is apparent when one considers

such issues as controllability and integrability of vector fields. For controllability analysis, the

bracket represents a direction the solution may move along even though it may not be in the

linear span of the vector fields. Another important application is in determining integrability

of vector fields. That is, given a set of arbitrary vector fields is it possible to find a curve (the

integral curve) such that at each point its tangent space is spanned by the given vector fields.

4.2.2 Involutivity And The Equality Of Mixed Partials

In this section, the connection between the involutivity condition and the equality of mixed

partial derivatives is highlighted using a simple example of first order partial differential equa-

tions. It will be shown that the equality of mixed partials condition for integrability is identical

to the involutivity requirement. This example is adapted from [43], and the presentation is

developed in a similar manner. Consider the set of equations:

Oz
-= f(x,y,z)

ax
(4.8)

az
-= g(x,y,z)

Oy

A solution z = (x, y) is desired for this set of partial differential equations. From the equality of

mixed partial derivatives, it is known that the necessary and sufficient conditions for a solution

are:

a2 a2 Of Og

ad ay ay x ay Ox

An alternative approach to establish conditions for integrability is to use the involutivity

criteria. As a first step, appropriate vector fields must be determined for this problem. To
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accomplish this, consider the solution z = O(x, y) as defining a surface in 7 3 with coordinates

(x, y, z). This surface can be characterized by the function (x, y): T2 -, Z3 [43]:

(X,y) = y

Then, the tangent plane at each point (, y) is spanned by the partial derivatives of 4 [43]:

1

0fAX, , qb(x, ))

= X =
Ox

I

= X2= 1

g(x,y, (x, y))

In geometric terms, solving (4.8) is equivalent to finding a surface, the integral surface or

manifold, such that at each (x, y) its tangent plane is spanned by X1 and X2. This requirement

can be established by using the involutivity condition. For X1 and X2 to be involutive vector

fields requires that they satisfy:

[ X1 (, y, z), X2(x, y,z)] = a1 ( Y, y,) X1(x, Y, Z) + a 2(x, y, Z) X2 (x, y, Z)

Note that for the computation of the Lie bracket X1 and X2 are assumed to be functions of

JZ3, that is (x, y, z). Let w = [ x y z ]T. Computing the indicated Lie bracket:

[ Xl(x,y,z), X 2 (x,y,z) ] = D [ X 2(w) ] XI(w) - D [ X(w) ] X 2(w)

0 0 0 0 0 0

0 0 0 0 0 0

0 O o

Ox 0y ex ay

0

Og of

Ox Oy
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Applying the involutivity condition:

0

Ag a f a2 (4.9)
al + a2 

ax ay

From (4.9) the constraint equations are:

1= 0O

2 = 0

9Og Of
a f + a2g = -

ax &y

It is evident that to satisfy involutivity, al = a2 = 0 which requires:

Og of

This is exactly the equality of mixed partial derivatives. Thus, the equivalence of the involutivity

condition and the equality of mixed partials is established for this simple example.

The solution to (4.8) can also be obtained by an alternative approach that has a more

geometric flavor. Recall that solving (4.8) was equivalent to finding a solution surface such that

its tangent plane is spanned by X1 and X2 at each point. Since the solution can be written as

z = +(x, y), the solution surface (or level surface) is parametrized by the function h(x, y, z) = 0

where:

h(x,y,z) = z - qS(z,y)

One property of such surfaces is that its gradient or normal derivative is orthogonal to the

surface at each point. Thus, at each point (x, y) the gradient of h(x, y, z) is orthogonal to the

tangent plane defined at that point. Since the tangent plane is spanned by X1 and X2:

VhX 1 = 0
(4.10)

VhX2 = 0

Substituting Vh = [ f g - 1 ] in (4.10), it is evident that it is satisfied. The existence of

,,tx,y, z) is a necessary and sufficient condition to guarantee the integrability of the vector
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fields X 1, X 2 } [46]. To show the existence of such a function, (4.10) can be arranged in

matrix form as:

[-X1T - ] | |
VTh 

-XT -, 0

Thus, the required gradient function is the nullspace vector of the matrix with rows X1 and X2.

This nullspace vector can be explicitly computed from the cross product of X1 and X2 since it

would be orthogonal to both X1 and X2 . Computing this cross product:

Vh = (X 1 x X2)T = [__f _g 1]

The existence of h(x, y, z) hinges on whether the expression for Vh can be integrated. This

requires solution to:

Oh

Ox

Oh

Oy

A solution exists if the mixed partials agree:

i 2 h 02h Of Og

Ox y ay x ay Ox

Thus, it is seen that the integrability of the vector fields X1 and X2 is established by the

application of the equality of mixed partials.

4.3 Exact Feedback Linearization

In this section the feedback linearization problem is further explored. In particular the

conditions for the existence of such transformations are examined. In the case where they

exist, the construction of the transformations is presented. The development of this section

is restricted to single-input nonlinear systems. The main reason for this is that all of the

underlying concepts and machinery are exhibited in this case, and as such, provide the simplest

and most transparent introduction to the subject. The reason for the choice of the title to

97



this section is that only transformations are considered that exactly render linear the map

from the input to the full state in some region of the state space. Feedback linearization has

received much attention in the last decade and has emerged as a mature nonlinear control

design methodology. Originating with the work of Krener [27] (1973), and Brockett [5] (1978),

this problem was completely solved by Jacubczyck and Respondek [23] (1980), Su [46] (1982),

and by Hunt, Su, Meyer [21] (1983).

Starting with a nonlinear system of the form,

= f(x) + g(x) u (4.11)

the objective is to transform it using a coordinate and control transformation

z = T(x)

v = (x) + (x) u

to a linear system in Brunovsky form:

1 =

2 =

=

T 2

(4.12)

V

To derive the necessary and sufficient

the approach of Su [46] is used in the

(4.12):

conditions for the existence of such a transformation,

following. Substituting the coordinate trasformation in

aT
T = -x

I

aT1
= f+

aT 2
T2 = - xi

OT 2

xf+Xs

aT
gu = T2

Ox

6T2
-9 gu = T3
Ox
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OT.

Ox

OT. OT,- f + - gu = v
ax Ox

Because the state transformation is independent of the control u, to satisfy the above equations

requires:

Lg T = 0

Lf T = TI+j for i= 1,..., n-1 (4.13)

Lg T # 

Using the Jacobi identity for Lie brackets (4.5), the conditions (4.13) can be expressed in terms

of T1 only. To see this, first consider:

Ladfg T1 = Lf ( Lg T1 ) - Lg ( Lf T1 )

= -Lg T2

= 0

In the above use is made of L. T1 = 0, Lf T1 = T2 and Lg T2 = 0. Similarly:

= Lf (Lad,, T1 ) - Ladfg ( Lf T1 )

= - Ladjg T2

= -Lf (LgT 2 ) + L (Lf T2 )

= L T3

= 0

Continuing in this manner, the general form of this iteration is:

Ladkg T1 = (-1)k Lg Tk+l
fg

for k=0,1,...,n-2

Thus, the conditions (4.13) can be imbedded in:

Ladkg T1

Ladn-1g T 1

= 0 k =O,...,n-2

0
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Equations (4.14) and (4.15) represent the necessary and sufficient conditions for feedback lin-

earization to the Brunovsky canonical form [46]. A consequence of (4.14) is that the vector

fields { g, adfg, ... , ad-'g } are linearly independent. To see why this must be true, first

consider the case when ad7'-lg is linearly dependent on the other vector fields:

n-2
ad'-lg = Z ak () ad g

k=O

Then, computing
n-2

Ladn-lg T = E ak(X) Lad T = 0
k=O -

since Ladk T1 = 0 for 0 < k < n - 2 from (4.14), and thus condition (4.15) is violated. For any
d1

other vector field to be dependent, let:

n-1
adg - ck(x) ad g 0 j < n-2

k=O, kj

Then, computing

n-1
Ladg T1 = E ak(X) Ladk T = L dfn- T # 0

k=O, kfoj

since Ladn-lg T1 0 by (4.14), and thus condition (4.15) is violated. It is concluded that

to satisfy conditions (4.14) and (4.15) the vector fields { g, adfg, ... , adf-'g } must be lin-

early independent. Finally, the existence of T1 satisfying (4.14) is guaranteed if and only if

{ g, adfg, ... , adj- 2g } is involutive. Summarizing, the necessary and sufficient conditions

for the existence of a feedback linearizing transformation are presented in the following theo-

rem by Su [46]:

Theorem 7 The nonlinear system (4.11) is input-state linearizable if, and only if, there exists

a region Q such that:

(a) The vector fields { g, adf g, ..., adfl g } are linearly independent for x E .

(b) The vector fields { , ad g, ... , a 2 g } are involutive for x E Q.

To construct the linearizing transformation requires solving for T (x) from (4.14) or:

VT1 ad g = 0 i ='0,1,..., n - 2 (4.16)
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Once a solution for TI(x) is obtained, the other transformed variables can be obtained in a

recursive fashion via:

Tk(x) = L- ' Tl(x) for k = 2,...,n

v = Lf T(z) + L Lf Ti(x) U

When this approach is applied to underactuated control systems, however, the involutivity

condition is usually not satisfied. In general, this method is more amenable to fully actuated

systems. Also, for higher dimensional nonlinear systems, evaluating the existence conditions

is computationally intensive usually requiring symbolic mathematics software. Even when the

existence conditions are satisfied, finding a solution requires solving a set of partial differential

equations. Implementing a control design based on this methodology also requires full state

information. Finally, due to the complicated transformations which may have no physical

meaning, the linear compensator design process is complicated. An alternative is not to globally

linearize the dynamics, but rather, to expand the region of applicability of a linear model. This

approach is presented in the next section.

4.4 Approximate Feedback Linearization: Version I

In this section, the topic of approximate feedback linearization is presented. As opposed to

exact feedback linearization which attempts to transform a nonlinear system to a linear system

in some regin without any error, extended feedback linearization, as formulated by Krener

in [28] (1984), [29] (1987) attempts to construct a linear approximation about an equilibrium

point accurate to second or higher order. This method can be implemented in two distinct ways,

since the proof of the method [28] provides another approach by which the approximation can

be constructed. For this reason, in this presentation the higher order linear approximation is

refered to as Version I, while the method of the proof which constructs a linearizable nonlinear

approximation is refered to as Version II. A benefit of this approach is that the necessary and

sufficient conditions are similar to those for exact linearization, yet are much less stringent, and

the computation of the requisite transformation requires a solution to a set of linear algebraic

equations instead of solving first order partial differential equations. Another advantage is that

the target linear system is not the Brunovsky form but rather the first order linearization of

101



the system about an equilibrium point. This method can be thought of as bridging the gap

between standard linearization (i.e. first order approximation) and exact linearization.

For this presentation of approximate linearization only single-input nonlinear systems affine

in the control variable will be considered. It should be noted that the theory has been developed

for multi-input nonlinear systems [28). The restriction to single-input systems is made to

simplify this presentation. Consider the following nonlinear system

= f(x) + g(x)u

where x E Rn. The system is assumed to be in equilibrium for x',u* = 0, i.e. k(x*,u*) =

0 = f(x*) = 0. The restriction of the equilibrium control action u* = 0 can be relaxed to

include non-zero steady state control action .vhen it is desired to apply this approach about a

non-equilibrium point. Towards this end, consider the state and control variable transformation

z = T(x)

v = a(x) + 3(x) u

which transforms the nonlinear system to the order p approximate linear system

= .4 z + b v + OP+l(,u) (4.17)

where:

A = b = g(x*) = x - x*

Here the order of the approximation error OP+l(i, u) implies errors of O(P+l(:) or OP(:) u.

As formulated by Krener [28], the general approach to realizing the linear system is to expand

the state and control transformations in a Taylor series about the equilibrium point. The next

step is to compute the constant coefficients in these series expansions by direct substitution in

the equations of motion. As an example, consider a second-order approximation for a scalar,

single-input nonlinear system of the form

= f(x) + g(x) u (4.18)

with f(x ) = 0, u* = 0 and x, u E R. It is desired to transform (4.18) to the order 2 approximate

linear system,

= az + b + 0 3(,u) (4.19)
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where:

a = O b = g(x*)

The coordinate and control transformation is approximated as,

1
z(x) =- + -z= 2 + o3(i)

2

1
v(, U) = U + -V 2 + oVa 2 U + 3 (, U)

2

where:

92z(x)I 2 v(x,u) 02v(x, u) 
z,, = Vxx = Vxu =

Ox2 Ox2 Ox Oua
X=X* X=X* X=X*

To compute the unknown constant coefficients in the series expansions requires differentiating

the coordinate transformation and equating it to the linearized dynamics. Differentiating the

coordinate transformation and expanding(4.18) to second order results in:

= + rs XX

= f() + g(x) + f(x) z X + g(x) z=X xu

= a + g(x*)u + - + g()z= + 3( )
2 ax 2 AOx Ox

Substituting the coordinate and control transformation in (4.19):

= ai + g(x*u + - zXV + (*) v + + 3(, u)
2 Ox

Setting these two equations equal to each other, the unknown constant coefficients of the series

expansions are determined such that the second order errors (i.e. u and 2) vanish.

2 f( *) af(X*)
For 2: + f(x - g(x*) v = (4.20)

Ox2 Oa

ag(x*)
For u: + g(x*) z - g(-z*) vU = 0 (4.21)

Ox

103



Note that (4.20) and (4.20) are constant algebraic expressions. The procedure for constructing

the transformation has been reduced to a linear algebra problem as opposed to a problem

involving partial differential equations. Equations (4.20) and (4.21) can be written in matrix

form as,

Ac=b

where:

Of(X')
g(x*) 0

A = ax b=

-g(x*) 0 g(x*)

02f(x*)

ox2

g(x' *)

.OX

C = VXX

vxu

Since both the A matrix and b vector are constants, it is easy to solve for the unknown coeffi-

cients zx, vr, vu using standard linear algebra techniques. This example highlights another

desirable characteristic of this approach in that there may be a possibility for multiple solutions.

For this example, if rank[A] = 2 there exists a one dimensional parametrization of the family of

solutions. The general solution is c = cp + ch where cp is the particular solution and Ch is the

homogeneous solution. Since only the direction of ch is constrained, its magnitude is arbitrary

and can be used to parameterize the one dimensional family of solutions. The general solution

can then be tailored to achieve secondary objectives such as minimizing T(x), a(x), /(x) etc.

For a more realistic example, the reader is refered to [9] where this method is applied to a

continuous stirred tank reactor and for which a robust linear controller is designed.

Before proceeding to the conditions for extended feedback linearization, a few preliminary

definitions [28] are required. Essentially these definitions are the approximate versions of the

ones presented for exact linearization which are required in order to define approximate con-

trollability and involutivity conditions about an equilibrium point. The definition for order p

controllability is.fairly simple. Let Dc = { ,ad g, ... , ad - 1 g} denote the controllability

distribution or the vectorspace spanned by all linear combinations of its entries. Also, let its

entries be denoted by Xi(x), i = 0,..., n -1, that is Xi = af g. The definition of approximate

controllability is [28]:

Definition 15 )cD has an order p local basis around x* if it is full rank at x* and for every
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Y E6 D there exist functions ck(x) such that:

n-1
Y = E Ck(X)Xk(Z) + QP+i( ) (4.22)

k=O

The full rank requirement at x* is identical to linear controllability. To se t'his evaluate D3c at

x*. The first column is just g(x*) = b. The second column is,

[ f, g ](x*) = D [ g ] (x)fx* - D[ff((x*)g(x* ) = -D [ f ] (x*)g(x*) - -A b

since f(x*) = 0. The third column is,

[f, [ f, g]() = D[[ f, g ]](x*)f(x*) - D [f](x*) [ f,g] (x*)

= -DX[f](x*) [f, g ](x*)

= -A2 b

because f(x*) = 0. It is seen that a pattern is established for the successive columns of the

controllability matrix given by;

adf g(x*) = -D. [ f](x*) adk-l g(x')

Thus, the expression for the linearized controllability matrix is,

Dc(X*) - [ b, -A b, -A 2b, -A3b, ... , -An-lb]

which when premultiplied by a full rank matrix to remove the negative signs becomes:

D,(x*) = [b, A b, A 2b, A3b, ... , An-lb]

This is the linear controllability matrix associated with the order 1 linearized system. It is seen

that the linearized system must be controllable in order for D, to have an order p basis around

x*. For exact feedback linearization, it is seen that the error term OP+l(f) in (4.22) must be

zero for x E Q.

Similarly, let D1 = { g, adf g, ... , ad - 2 g9) be the involutivity distribution, and recall

that Xi = ad; g. The definition for approximate involutivity is [28]:

Definition 16 D1 is said to be order p involutive at x* if there exist functions cijk(x) such

that:
n-2

[Xi,xj](x) = E Cijk() Xk(x) + OP($) (4.23)
k=O
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Finally, the classical Frobenius integrability theorem can also be stated in an approximate

version [28].

Theorem 8 (Frobenius with remainder) Let D be a distribution with orderp basis { X 1, X2, ... , XI}

at x*. ) is order p integrable at x* if and only if 7D is order p involutive at x*.

The necessary and sufficient conditions for extended feedback linearization of single-input non-

linear systems can now be stated [28].

Theorem 9 The nonlinear system (4.3) can be transformed into the order p linear system

(4.17) where (A,b) is a controllable pair if and only if:

(a) )c has an order p local basis at x*.

(b) DI is order p involutive at x*.

The multi-input version of this can be found in [28]. Comparing the above requirements with the

conditions for exact feedback linearization it is seen that they are the same except for the error

term. The term exact linearization arises from the fact that there is no error in the linearization.

Note that it is always possible to solve the approximation problem for p = 1. It is just the

common practice of linearizing the nonlinear dynamics. In this case the transformation is just

z = i, and v = u. In practice, if the linearization about the equilibrium point is controllable

the controllability test is not required since it is known [41] that the nonlinear system is also

controllable and thus D will possess a higher order local basis. The converse of this statement,

however, is not true. The nonlinear system may be controllable while its linear approximation

is uncontrollable. However, to a priori determine the order of the linearization the order of

approximate involutivity must be determined. A method to accomplish this is presented in the

next section.

4.4.1 Computational Test For Involutivity Order

In this section, a computational test to determine the approximate involutivity order is pre-

sented. To that end, consider the meaning of (4.23) in terms of the error from exact involutivity.

Let this error, eij, be defined as:

n-2
eij (x) = [Xi,X]j(X) - Cijk(X) c Xk(X)

k=O

106



To simplify matters, introduce the following notation. Let the vector field Xij = [Xi,X] (x),

and the weighting coefficient vector cij = [ cij,(x), ... , cij ,n- 2 (z) ]T. Then, the error equation

can be written as:

ei(z) = Xij - DI(z) cij(x)

Expanding the error term in a Taylor series about the equilibrium point x*, say to first order,

results in:

eij(z) = eij(x*) + E e,() :k + O2(x) (4.24)
k=1 Ozk

This expansion can now be expressed in terms of its constituent elements.

eij() = Xij(x*) - VI(x*) c;j(*) +

n O tXij () ,, j(DI(X ) _ D J ij ) k + o2(x)XE [ )- °I(x*) *))°cJ +(')° v('(X)) 
k=1 sk Oak azk J

For order 1 involutivity, there must exist coefficients cj(z*) such that the constant term in

(4.24) is annihilated, i.e. solve

Xij(x*) - VDI(x*) cij(x* = OnXl

for cij(x*). Note that this is just a linear algebra problem since all terms are just constants.

Thus, a solution exists if and only if

rank[ DI(z*)] = rank [i(x*) Xi(x*)]

Similarly, for order 2 involutivity, the constant and first order terms must be annihilated. In

this case a solution to,

Xi j (X*) - Z)I(x*) Cij(x*) = Onxl (4.25)

) D(x*) acij(x*) - D(*) Cij(*) = Onx (4.26)

aXk Isk (zk

must be obtained in terms of the constant coefficients cij(x*) and i(X*) Note that (4.26)
Ozk

need only be computed when k 74 . Also, (4.25) and (4.26) are necessary and sufficient for
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order 2 involutivity since xk are independent of each other for all k and thus the first order term

in (4.24) can only be zero if and only if the coefficients of the non-zero xk are annihilated. Note

that these two equations can be solved successively, that is, (4.25) can be solved independently

of (4.26) for each cj(x*). The result can then be substituted in (4.26) to solve for
9 xk

The requirement for existence of a solution to (4.26) is:

ox j(*) o (x*)
rank[DI(x') = rank rDI(x*) ) 9 ij(x*)

Oxk 9Xk

This analysis can be extended in similar fashion to higher orders.

4.5 Approximate Feedback Linearization: Version II

The approach of Krener can be applied to obtain an approximate version of the exact lin-

earization approach. Indeed, in the proof of the necessary and sufficient conditions for the

existence of approximate linearization, Krener used the Brunovsky form [28]. Although the

proof of Theorem 6 will not be presented here, the key point in the derivation will be high-

lighted. In effect, the proof offers an alternative method for constructing the approximate

transformation. Because the choice for the target linear system is the Brunovsky form, this ap-

proach is refered to as approximate feedback linearization. Approximate linearization methods

for nonlinear systems have received considerable attention recently. The method of pseudolin-

earization [36], [49] attempts to find a transformation such that in the transformed coordinates

its linearization is independent of the operating point. For tracking problems, an approximate

input-output linearization approach was proposed in [19]. Also, an approach based on the

approximate version of exact linearization was used in the Acrobot example [18], where the

approximation is in terms of a linearizable nonlinear system.

As mentioned above, the key point in the proof of approximate linearization is the existence

of approximate output functions that annihilate the involutivity distribution to certain order.

That is, there exists an approximate output T1 (z) such that it annihilates )iD(x) to order p:

VTi(x) adf() g(x) = OP+'(x) i = 0, 1 2,...,n- 2

Here, the inner product is expanded in a Taylor series about the equilibrium point x*. For
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contrast, one can compare this with the requirement for exact linearization:

V7TI(z) af(x) g(x) = 0 i= 0, 1,2,...,n - 2

Note that the requirement for exact linearization must hold for all values of x, whereas the

approximate version relaxes this condition. It is noted that exact linearization corresponds to

the case where p -+ oo and OP+'l() - 0.

To construct this approximate output function T1(x) requires the annihilation of as many

higher order terms in the Taylor series expansion of DI(x) about the equilibrium point. This

implies that the solution can be constructed from the nullspace of the expansion. Note that

the approximate version of the Frobenius theorem guarantees the existence of such an output

function. The series expansion of the involutivity distribution can be expressed as:

n DI(x) I 1 n 02,(x*)
DI(x) = Di(x*) + E ik + - Z ik X + 3 (X)

k=1 Ozk 2 k,=l a9Xk OaX

The approximate output function is computed from the p - term annihilator of DI, i.e.

[ Do + Th + ... + DIp]T VT1 = 0 n-lxl

where

Do = D(x*)

n a(x*)

k=l OXk

2= 1 E 2(X*)

k,l=l OXk OX1

Once Tl(x) has been computed, the remaining state and control transformation variables are

obtained from [28]:

Tk(X) = Lf T(x)

V = Lk T(x) + Lg L" 1 T(x) u
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In these coordinates, the transformed equations appear as [28]:

Ti = T+1 + OP+1 (f,u)

Tn = v + OP+l(i,u)

In the following section, this control design approach is applied to the underactuated cart-pole

problem.

4.6 Example: The Cart-Pole

In this section, the feedback linearization methods presented in this. chapter will be applied

to the cart-pole problem introduced in Chapter 3.6. The objective here is to control this un-

deractuated system over large regions of the state space. First exact linearizat;on is attempted.

It will be shown that this approach fails and hence approximate feedback linearization will be

applied. For comparison purposes, the standard linearization based design will be used as a

benchmark.

As a first step, the state space representation of this system is required to cast the problem

in the standard form (4.3). Recall that the equations of motion for this system were:

(M + m) i + ml cos() - ml sin(O) 0 2 = u (4.27)

4 1 + cos(6) - g sin(@) = 0 (4.28)
3

Letting xl = x, X2 = 0, 3 = , and X4 = 0, the equations of motion can be written as

: = f(x) + g(x) u

where

f(x) =

X3

24

4
- { ml x2 sin(X2) - 0.75 mg cos(X2 ) sin(X2) }
a

- -(M + m)g sin(x2) - m 4 Cos(X2) sin(X2)
a I
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9() =

0

0

4

a

3
-- cos(z 2)

al

ml
and a = 4(M + m) - 3m cos2 (x2). Note that -a is just the determinant of the inertia matrix,

3

and thus a > 0, Vx2. It can be verified that ( 0, 0, O) is the equilibrium set (i.e the system is in

equilibrium when the pole is vertical and this is independent of cart location). To test whether

exact linearization can be applied requires checking the controllability and involutivity criteria.

However, for the given f and g, computation of both of these distributions results in extremely

complicated expressions that are prohibitively difficult to test. To test controllability, however,

an alternative exists in that controllability of the linearized system guarantees controllability

for the nonlinear system. However, the testing of the involutivity criteria is still required. The

culprit for the complexity is the presence of the trigonometric and quadratic terms in f and g

which breed further complicated expressions with successive differentiation.

To adress the problem of the computations encountered in testing for the controllability and

involutivity criteria, feedback will be employed to reduce the complicated equations of motion.

That is, the system will be first precompensated via feedback to cancel as many nonlinear terms

as possible in order to obtain a simplified model. This is accomplished in the following manner.

First not that (4.28) is a constraint equation that relates with , and thus can be used to

elliminate i from (4.27). From (4.28):

41
i = g tan() - (4.29)

Substituting (4.29) in (4.27), can be eliminated resulting in an expression that is a function

of 0 and u only

-1
~ = - [ 3ml cos(O) sin(O) }2 _ 3(M + m)g sin(O) + 3 cos(O) u] (4.30)

al

Canceling all the nonlinearities from (4.30) results in a double integrator relation. This is

111



accomplished by choosing the control action

1

3 cos(e)

where:

u = -3ml cos(8) sin(@) 2 + 3(M + m)g sin() - a I v

Of course, the relationship between U and u is unbounded at = +r/2. Using this transfor-

mation, the system is not controllable at = ±r/2 since the pole is horizontal and the line

of control action passes through the pole center of mass and thus is unable to exert a torque

on the pole. This fact will be apparent in the subsequent controllability analysis. Using this

expression for u, equations (4.29) and (4.30) become:

8=zV
41

= g tan(8) - v
3 cos(8)

It is apparent that this set of equations is much simpler than the original, and should result

in substantial reduction of the computational overhead. The state space equations for this

simplified model are:

f() = 2 x4 (x) =
g tan(X 2 )

0

0

0

41

3 cos(xr2 )

1

The simplified equations of motion appear as:

= f(X) + 9(X) v

Note that in the simplified model the equilibrium set has remained invariant.

The next step is to check the controllability and involutivity conditions for the simplified

model. The nonlinear controllability distribution is much simpler when compared to the original

equations, however, it will not be presented here since the conditions for controllability can be
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ascertained from linear analysis. Computing the linear controllability matrix:

[b, Ab, A2 b, A3b] =

0

41

3 cos(x 2 )

0

g

41
0 - 1

3 cos(x 2 )

1 0 0

O 0O

cos 2 (X2)

U U U
CO2(X2)

It is evident that this matrix is unbounded at x2 = ± r/2 and thus the system is controllable

locally everywhere except at this point. The next requirement that needs to be verified is the

involutivity condition. This distribution, DI = { g, ad- g, ad} g } is:fJ

0

0

41

3 cos(x 2 )

1

41

3 cos(x 2 )

-1

41 sin(x 2 )-- 34
3 cos 2(x2 )

0

3g cos(z 2 )

For this system to be involutive requires that [ , ad ], [ ,

can be expressed as linear combinations of the columns of DI.

expression:

81 sin(x 2 )
34

3 cos2 (x 2 )

- 81 xs2 + 41 cos 2 (X2 ) 42

3 cos3 (x 2)

0

adf-g], and [ad! , adf g]

Computing the first bracket

[g, adjg] =

It can be verified by inspection that [ , ad 1 i

rank [ DI ] 4 rank

0

0

81 sin(x 2 )

3 cos2 (x2 )

0

i f span DI. This is determined from:

[DI [, ad # ]
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It is evident that the distribution DI is not involutive, and as a consequence, this system

cannot be exactly feedback linearized. Computing the remaining bracket expressions it can

also be shown that,

[, ad2] =

81 sin(z 2 )

3 cos 2 (x 2)

0

81 ( cos2( 2) - 2 )

3 cos2 (x 2 )

0

[ad! , ad ] =

81 ( Cos2 (X2) - 2)
-4

3 cos2(x2 )

-2 sin(x2) ( 3gcos(x2) - 12t~ + 2Jcos2(2)x )
3 Cos4(X2)

O

Since the conditions for exact linearization were violated, it is logical to attempt the approx-

imate version of this method. Because the linearized controllability matrix is full rank (except

when the pole is horizontal) it is known that the nonlinear controllability matrix (or distribu-

tion) is nonsingular (or controllable) [41]. This implies that the system is order p controllable

for arbitrary p and thus does not present a constraint on the order of linearization. Next, the

involutivity condition is investigated. Computing the first order Taylor series expansion of DI:

4 ODt(x)
DI(X) = Di(X*) + v X

k=1 OXzk

The first order term is found to be zero, i.e.

ik + 02(i)

9E | X ) k = 04x3
k=l k9 Xk

To first order, the involutivity distribution is constant, i.e. D(x) = DV(x*) + 0 2(x) and

therefore it is order 1 involutive. The reason for this is that for order 1 involutivity, it must
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be shown that the constant term in (4.24) can be annihilated by proper choice of constant

coefficients. The Lie bracket operation involves a differentiation, so at most only the first order

term in the Taylor series expansion of DI need be considered, since it will contribute a constant

term to the error equation after differentiation. But DI to first order is constant, so a Lie

bracket of any combinations of its columns will be zero and thus it will be involutive to first

order. Note that in this case the solution for the weighting coefficients is cij(z*) = [ 0 0 0 T.

Next, it is desirable to determine whether the system is order 2 involutive. Since cij(x*) = 03x1,

the condition (4.26) reduces to:

iXij(*) aCj(x*)
- Dl(x*) = 0nx k = 2,...,4 (4.31)

OXzk aXk

Note that in the above, the index k begins at 2. This is because xl = 0 and so the first order

term associated with Xl is annihilated regardless of its coefficient. For computational purposes,

let:

xj(x*) = [, ..., () O x]

xi,.·'> ,...,OX2 9X4
Ox2 OX4

Then, (4.31) can be put in the form:

VDI(*) C 2 (X*) = X 2(x*)

DI(X*) C3(X*) = X13(X*)

Di(X*) C23 (X*) = X23(x*)

Computing DI(x*):

VI(x*) =

41
O -

3

O -1 0

41
-- O g
3

1 0 o
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The expressions for the bracketed terms are:

I2(*)=12 19 =

X 13( ) =

X23(X*) =

For a solution to exist, the rank condition can

0

0

81

3

0

81

3

0 0
0 0

0 0

0 0

0 0

00 0O

81
O --

3

0 0 0

81
0 0 --

3

00 0

-2g 0 0

00 0

be used.

rank[DI(x*)] = rank[VDl(x*) X~2(X*)]

rank[DI(x*)] r rank[D(x*) Xl3(X*)

rank [DI(x*)] $ rank I(x*) X23(X*)

It is evident that the condition for order 2 involutivity is not satisfied, and it is concluded that

DI is order 1 involutive. However, note that there exists a quality to the degree of violation

of the involutivity condition. That is, one can also assign a degree of violation to the order

p involutivity condition according to the number of distinct permutations of (4.26) that were

violated. For the example at hand, one can define the system as order 1, degree 1 involutive

since one of the three order 2 conditions was not violated. If two were not violated, it could be

referred to as order 1, degree 2 involutivity etc. A linear system would then be defined as an
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order 1, degree 0 system. In general, one would expect better performance from an approximate

linearization design of the same order but higher degree involutivity than for the corresponding

linear design.

The next step is to compute the approximate output function from which the linearizing

transformation is obtained. Recall that it is required to solve for an output function that

approximately annihilates the involutivity distribution to first order,

V0 + iT VTT = 03x1

where:

Do = DI(x*)

D 4 )( Xk')
k=1 OXk

However, since D1 = 04X3 the construction of VT1 only requires the computation of the

nullspace of DT(x*). Note that this is just a linear algebra problem. Computing this nullspace:

VT = [l oo

Integrating this expression results in the approximate output function T1.

3
Ti(x) - + 2

41

It should be noted that VT1 is orthogonal to g(x) for all x. Thus, this output function annihi-

lates the first column of DI(x) for arbitrary order p. The approximate coordinate transformation

is:

3
T (x) = -X1 + X2

41

3
T2(x) = -X 3 + X4

41

3g
T 3(x) = -- tan(x 2 )

41

3g
T4(z) = -seC2 ( 2 ) X4

41
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The approximate control transformation is:

3g 3g
v = -tan(x 2 ) sec2(X2 )z42 + - sec2 ( 2) U

41 41

In the transformed coordinates the equations of motion appear as:

T1 = T2

T2 = T3

T3 = T4

T4 = v

Before proceeding further, consider the effect of the neglected terms in the transformed

coordinate system. It can be shown that differentiating the coordinate transformation results

in the following set of transformed equations

T1 LI ijL 0

'2 L T L L T1 u
TiL T.1 f L1 1 L1 (4.32)

T3 L: T LIL L LL iL

T4 LA T1 + L L T1 LZ L L T1 u + L L L L T1 U2f f f I
as it can be verified by direct computation that:

L§ T 1 = 0

L LiT = 0

L L T = 0

The second column in the right hand-side of (4.32) represents the neglected terms in the trans-

formed system. The neglected terms are:

1
Lg Ll = 1-

cos(X 2 )

sin(x2)
L44LyLT1 = - 2_X4

Cos 2 (X2)

2L 2 sin 2 (x 2 ) 42

OLZ = - .__I1 __4

COS(X2 ) cos 3 (z2X)
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sin(x2 )
L f L Lo T1 = -

cos2 (X2)

A further improvement in the approximation can be accomplished by redefinition of the new

control. From the expression for T4 the original control appears linearly in the additional term

L L§ LI T1 u that is not accounted for in v. Thus, the new control variable could be defined

as:

v = L4 T1 + L L T1 u + L L L T u

Since not just the order but also the form of the remainder is important, this redefinition may

allow for ellimination of undesirable dynamics. For some problems it may be apparent that

certain states have significant influence on the behaviour of the system, while others do not.

This observation leads to assigning a quality to the error term, where certain errors may be more

significant than others. Even though an improvement in the error order cannot be accomplished

by redefining the new control variable, an improvement in quality of error may be possible.

To third order, O3(z) or ( 2(i)u, the full equations of motion in the transformed coordinates

appear as:

2T2 T3 x2 u /2

T3 T4 X2 4 U

T3 v 2 + 2 U

It is evident that the approximation is second order since the error terms, 0 2(i)u, are third

order in the combined state and control coordinates. For comparison purposes, consider the

third order linearization of the simplified equations of motion,

= Ax + bu +

0

0

9 3
-:2
3

O

+

0

0

212

3

0

U
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where:
00010

aOf(x*) 0 0 1 
A = = b = b (*)= 41

Ox 0 0 0 0 1

0 0 0 0

The main difference between the two representations is the fact that the linearized system is

third order in the pole angle whereas the approximate linearization is second order in the same

term multiplied by the control. For large pole angles (i.e. > 1 radian) the effect of tifis third

order term in the linearized dynamics will dominate whereas in the transformed dynamics this

effect is absent. Both systems are second order linear, however, with significant differences in

how the third order terms manifest themselves. Here, the crucial point is that the decomposition

of the higher order error terms may be more important than just merely the order of the error.

In the following simulation, the profound difference in the response of the two systems will serve

to highlight this point.

Finally, a simple simulation of the closed loop behaviour for initial condition response fol-

lows. A compensator was designed to place the closed-loop poles of both the linearized and

approximate linearized models at (-3,-3,-3,-3). Note that the choice of compensator and

closed loop poles was dictated by the requirement of highlighting the differences in the response

rather that optimizing the closed-loop behaviour. In Figure 4.2 the response of the linear model

is presented for initial condition (400, 1,0,0). For an initial pole angle of approximately 430

the linear system fails. Now, consider the response of the approximately linearized system for

initial condition (80, 1, 0, 0), shown in Figure 4.3. It is readily apparent that this design has in-

creased the range of operation of the linear control design by 100%! In Figure 4.4 the response

of the linear and approximate designs is presented for initial pole angles ranging from 20 to

600 and initial cart displacement of m. It is apparent that the approximate design smoothly

interpolates the linear response over an expanded operating region. Also, it is apparent that

the approximate design delivers superior performance (in terms of overshoot) over the entire

operating range (including the region where the linear design is valid). It is interesting to look

at the response of both designs via animation of the cart-pole. response. The initial and final

conditions for the simulation are shown in Figure 4.5. The animation of the linear response
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Figure 4.2: Linear design

50

0

-50

IIj

10

5x

0

0 1 2 3 4 0 1 2 3 4

Figure 4.3: Approximate feedback linearization design
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Figure 4.4: Comparison of linear and approximate designs (Solid line - Approximate design,

Dashed line = Linear design

is shown in Figure 4.6. Similarly, the animation of the extended linearization design is shown

in Figure 4.7. It is evident from Figure 4.7 that to bring the pole back to vertical, from such

a large initial deviation, requires a complicated sequence of maneuvers. The linear controller

for the approximately linearized system is able to smoothly adjust the system gain in order to

accomplish the task whereas it fails for the linear system.

4.7 Conclusion

In this chapter, Krener's [28] extended feedback linearization was adopted as a design

methodology for underactuated systems. This approach expands the operating region of linear

control designs by approximately linearizing the original nonlinear dynamics. This is in contrast

to the exact, feedback linearization technique that attempts to globally transform the nonlinear

dynamics which is much more difficult to apply in practice due to the stringent existence con-

ditions. For approximate linearization, a comput-:Ional approach to test for the order of the

involutivity distribution was derived. For the cart-pole with one actuator it was shown that

it is not possible to exactly linearize the system. This is due to the fact that only one input

was available. If a second input were available the system would be exactly linearizable. It
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Figure 4.5: Initial and final configuration for approximate design

-1 0 1 2 3 4

Figure 4.6: Animation of linear design
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Figure 4.7: Animation of approximate linearization design

was also shown that this example was order 1 involutive. An approximately linear system was

constructed and its response was compared to the linear model based design via computer sim-

ulation. It was shown by example that for the same closed loop pole locations the approximate

design increased the range of operation of the linear compensator by 100%.
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Chapter 5

Conclusions And Recommendations

The objective of this thesis was the development of linearizing transformations using meth-

ods from analytical dynamics for the control of nonlinear mechanical systems with particular

emphasis to underactuated systems. Using coordinate and control transformations, the special

properties of mechanical systems were exploited to derive an equivalent linear representation of

the nonlinear equations of motion. Once a linear equivalent model is obtained, existing results

in linear control theory can be applied to design appropriate controllers. Within the framework

of canonical transformation theory, which preserve Hamilton's canonical equations of motion, a

new set of transformations were derived. These transformations, termed orthogonal canonical

transformations, also preserve Hamilton's equations and parametrize a class of Hamiltonian

systems that admit a linear representation in the transformed coordinate system. The Rie-

mann Curvature Tensor was introduced as a computational tool by which it can be determined

whether a given mechanical system admits a coordinate system in which the equations of motion

appear linear. It was shown that the curvature tensor can be used t tct for the existence of a

point transformation such that in the transformed coordinates the system appears as a double

integrator linear model. Finally, an existing control design methodology, extended feedback

linearization, was adopted for the control of underactuated systems. A comnputational test for

the order of linearization was derived from the general existence conditions. An example was

presented that highlights the efficacy of this approach.

In Chapter 2, the framework for canonical coordinate transformations was introduced. A

general condition for the preservation of Hamilton's equations was derived, and it was shown

that three standard definitions for canonical transformations were equivalent. A new set of
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transformations, termed orthogonal canonical transformations were derived that characterize

a special class of Hamiltonian systems that admit a linear representation in the transformed

coordinates. With this approach, the soluticn to the original nonlinear Hamiltonian equations

of motion are obtained from the inverse transformation. The general conditions for such a

transformation were derived, and an example was presented that illustrates this linearizing

property.

In Chapter 3, linearizing transformations wc.e investigated for mechanical systems. It was

shown that one approach to transform a nonlinear mechanical system to a double integrator

linear model in the transformed coordinates involves the use of point transformations. An al-

ternative derivation of an existing result on the "square-root" factorization of the inertia matrix

in terms of the transformation Jacobian matrix was presented. This factorization leads to a

double integrator linear model in the transformed coordinates. The Riemann Curvature Tensor

was introduced as a computational tool to test for the existence of such a factorization. The

cart-pole problem was shown to satisfy the curvature conditions, and the linearizing transfor-

mation was computed. Euler's rotational equations of motion were shown not to violate the

curvature conditions for an axi-symmetric inertia distribution. This approach was shown to be

applicable to fully actuated control systems only.

In Chapter 4, Krener's [28] methodology of extended feedback linearization is adopted as

an approach to control underactuated systems. This approach expands the operating region

of linear control designs by constructing a linear approximation about an equilibrium point

accurate to second or higher order. The notion of feedback equivalence and the methods of exact

and extended feedback linearization were reviewed. For approximate feedback linearization, a

computational method to test for the order of the linearization was derived. Approximate

feedback linearization was applied to the underactuated cart-pole problem. It was shown that

this nroblem is not exactly feedback linearizable. A second order linear approximation was

constructed. Simulation results showed that for the same dosed loop pole locations a substantial

improvement in the range of operation of the linear control design was achieved.
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5.1 Recommendations For Further Research

Computing the existence conditions for orthogonal canonical transformations for a two state

system, it was shown that these resulted in an underconstrained set of nonlinear equations. For

this example, 6 constraint partial differential equations must be solved for the 16 unkown coor-

dinate transformation partials. Thus, there exists a freedom in picking a solution and auxiliary

constraints can be appended to fully specify the solution. Since the orthogonal transforma-

tion approach represents a class of linearizable Hamiltonian systems, it would be desirable to

parametrize the family of solutions to the existence conditions. In this manner, a class of lin-

earizable Hamiltonian systems can be specified. Also, efficient means of solving the constraint

partial differential equations are required to further explore the implications of this approach.

With respect to linearizing transformations, the double integrator linear model in the trans-

formed dynamics can be obtained without the restriction to point transformations. One avenue

for furter research is to derive general conditions for non-point transformations realizing the

double-integrator dynamics. It appears, however, that pursuing linearizing canonical transfor-

mations may be more useful for its theoretical insight in light of the increasingly practical re-

sults being developed in feedbaack linearization. One area in which research using the Riemann

Curvature Tensor may prove fruitful is in constructing linearizable nonlinear approximations

to given nonlinear mechanical systems. As it appears that most mechanical systems do not

satisfy the zero curvature condition, approximate nonlinear systems may be constructed that

satisfy this condition. The application of the curvature tensor to the optimal design of mechan-

ical systems appears attractive. A recent result by Brockett et all [33] uses harmonic maps to

measure the distortion caused by mapping spaces of different curvature to derive optimal link

lengths for planar manipulators. However, the application of the curvature tensor to optimal

mechanism design is presently limited to lower dimensional systems due to its complexity.

A promising approach to controller design for nonlinear systems, including underactuated

systems, appears to be the extended feedback linearization method of Krener [28]. However,

further work is required to account for plant uncertainty, and when full state measurement is not

available. The effect of the neglected terms in any approximation require further research in that

certain state variables may have a substantial impact on the system response while others may

not. The application to tracking controller design for nonlinear systems also requires further
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research. Nonlinear system approximation whether it be higher order linear approximants or

nonlinear linearizable approximations appears to offer a profitable approach to nonlinear control

as evidenced by recent research activity. For example the recent work of Hauser [17] on uniform

system approximation attempts to find a linearizable nonlinear system that approximates a

nonlinear system uniformly on an equilibrium manifold.
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