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ABSTRACT

THE OPTICAL PROPERTIES OF A FAR INFRARED RADIOMETER

Frank James Wentz III

Submitted to the Department of Physics on November 5,
1970 in partial fulfillment of the requirement for the
degree of Master of Science.

A mock-up version of a balloon-borne far infrared radiometer
flown by Muehlner and Weiss1 was studied. The radiometer employed
a conical horn to collect the radiation, and an InSb crystal served
as a detector. The radiometer's angular response was measured for
various situations.

It was found that the angular response of the conical horn
could be closely represented by the geometric response with the
addition of a weak tail at large angles to account for diffraction.
Furthermore, the radiometer's angular response was shown to be
considerably broadened by reflections off metallic apertures used
in the radiometer. Finally, the angular distributions for the
SR-2 and SR-3 arrangements used in the balloon-borne radiometer
were measured and found not to differ significantly.

Thesis Supervisor: Rainer Weiss
Title: Associate Professor of Physics
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Chapter 1: Introduction

The experiment discussed in this thesis is an investigation

of the optical properties of a far infrared radiometer. This

radiometer was a mock-up version of a balloon-borne radiometer

flown by Muehlner and Weiss1 in 1969 to investigate the night

sky brightness in the spectral region below 20 cm . In the pro-

posed flight for 1971, they will use a modified version of the

same radiometer. The balloon-borne radiometer was completely im-

mersed in liquid helium. It employed an aluminum cone to collect

the radiation and an InSb crystal , located near the cone's apex,

to detect the radiation. The major difference between this radi-

ometer and the mock-up version was that in the latter the cone

and detector were separated by a 15 in. light pipe and the cone

was at room temperature.

The balloon-borne radiometer had a 1.75 in. dia. aperture

at the large opening of the cone, and above this aperture was

an objective lens. Above the lens was an area where filters

were inserted into the path of the incident radiation by a solenoid

driven cam mechanism. The purpose of the experiment to be discussed

was to determine what effect the aperture, lens, and filters had on

the angular response of the radiometer. This information would be

useful in designing an improved version of the radiometer and in

interpreting the data from the 1969 balloon experiment. To deter-

mine this effect, ten runs were made in which the angular response
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of the radiometer was measured for different combinations of the

aperture, lens, and filters. The measured angular response curves

for some of the runs were compared with derived curves.

The derived curves were found by using geometric optics; that

is, diffraction was not considered. These curves corresponded

closely to the data except for large angles where the geometric

response was zero. In this region the radiometer response was

not zero although it was down by a large factor. Diffraction is

one cause for this non-zero response. A solution that takes into

account diffraction requires solving the boundary value problem

for a multi-mode conical horn. The exact solution to this problem

could not be found in the literature, and it was thought to be

too complex to be solved in this thesis.



Chapter 2: The Source

To test the radiometer it was necessary to have a source

of far infrared radiation. The source first used was a General

Electric MV400 multivapor lamp which had the outside glass en-

velope removed thereby exposing the inner quartz bulb. The glass

was removed because it absorbs infrared radiation. Later when

this bulb burnt out, it was replaced by a mercury vapor lamp made

in our glass shop. Both bulbs were operated near 400 watts using

a 125 volt D.C. power supply in series with a current limiting

resistor. After a one half hour warming up period, the emissions

from the bulbs were very stable. Fluctuations with a period of a

few seconds were measured to be less than 1, and the drift in

emission over several hours was less than 5%. These bulbs were

chosen primarily for the large size of the arc which was about 5

cm long and .5 cm wide. The large arc has a large emitting surface

thus producing a strong total emission. The emission was measured

and found not to be constant over the cross section of the arc

seen by the radiometer. It varied by about 15%, being strongest

at the center of the arc.

The mechanism by which these bulbs radiate in the far infrared

is discussed by Cano and Mattioli 2 and by Papoular 3. The spectrum

of emission can be divided into three regions: above 40cm 'l where

emission from the quartz bulb is larger than the arc emission; be-

tweem 20 cm-1 and 40 cm 'l where the arc emission behaves like that
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from an optically thin plasma and competes with the quartz bulb

emission; and below 20 cm where the combined emission from the

bulb and arc behaves like the emission from a black body near

3500 K. The radiometer is sensitive to radiation in this last

region.

The Optics

Fig. 1 shows the optical setup for the experiment. A chopper

was placed 1.5 in. from the source. It had eleven evenly spaced

1 in. dia. holes and was driven by a synchronous motor at 1800 rpm,

thus chopping the light 330 times per second. The chopped light

then passed thru a 1 in. dia. aperture and onto the field lens made

of polyethylene with a dia. of 4 in. and a focal length of 6 in.

The source was at the focal point of the field lens. A mirror was

located 65.5 in. from the field lens. It consisted of a flat piece

of aluminum mounted on a turntable, and could be rotated about an

axis perpendicular to the incoming light while maintaining a constant

45© angle with respect to the axis of rotation. The axis of rota-

tion coincided with the axis of the radiometer cone. The distance

between the large opening of the cone, to be called the flare

aperture, and the point where the cone axis intersected the mirror

was 3 in. The incident angle that the reflected light made with

the cone axis was then equal to the angle thru which the mirror

had been rotated from = 0 . This proved to be the simplest ar-

rangement because it avoided having to move either the source or

the radiometer. The dimensions of the aluminum cone are shown
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in Fig. 2. At the small end of the cone, called the apex aperture,

was attached a small brass cone which flared out to fit a .5 in.

dia. light pipe made of stainless steel with a gold-coated interior.

The light pipe led down into a dewar of liquid helium at 4.2°K.

Another small brass cone was attached to the bottom end of the

light pipe. It tapered down to a .2 in. dia. opening which led

into an aluminum cavity containing the infrared detector. Immedi-

ately in front of the detector was a 3/32 in. thick Fluorogold

disk. The Fluorogold, a glass-filled Teflon, acted as a low-pass

filter cutting off near 25 cm , thereby isolating the region of

·interest.

The Detector

The detector, known as a "hot electron bolometer" or Rollin

detector ,' 5 consisted of a crystal of high purity n-type InSb.

The crystal was cut to 5x7x mm size with gold leads soldered to

the short ends. The preparation of these crystals is described

by Muehlner . In the crystal free electrons are loosely coupled

to the crystal lattice and are at thermal equilibrium with the

lattice in the absence of incident radiation. The absorption of

radiation by the electrons raises their effective temperature and

in this peculiar semiconductor increases their mobility. As a

consequence InSb is a photoconductive radiation detector.

This type of detector was used for several reasons. First,

it has its highest sensitivity, about 120 V/W, below 20 cm-1 which

is the region of interest. Also it has a low noise equivalent
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-12 1
power of about 10 W/Hz2. Lastly, unlike bolometric detectors

of the doped germanium types, it may be immersed in liquid helium.

The detector used in this experiment was one of several tested.

It was chosen because its sensitivity was the highest and its cur-

rent noise was comparable, within a factor of two, to the Johnson

noise at 4.2 K of a resistor of 100 ohms which is the resistance

of the cold detector.

The Electronics

An impedance transformation was needed to match the low im-

pedance detector to a high impedance, low noise preamplifier. A

RIC circuit, shown in Fig. 3, which was resonant at 330 Hz, the

chopping frequency, accomplished this. The Q of the circuit was

measured to be 33, thus giving an impedance step-up of Q2 = 1089.

The Johnson noise of the cold detector is about .15 nV/Hz2. The

RLC curcuit increased this by a factor of Q to a value of 5 nV/Hz2

at the input of the preamplifier. This was comparable to the

input noise of the preamplifier which was measured to be 4 nV/Hz2.

The 2.6 H coil in the circuit was placed in the liquid helium

to make the Q as high as possible. Its resistance at 4.20 K was

40 ohms. The coil was wound in opposite directions on two D-shaped

nylon cores to reduce coupling with external magnetic fields, and

was shielded by two layers of superconducting lead sheet. To re-

duce microphonics, the coil was suspended on a soft spring. Also

in the liquid helium was a 1.2 K resistor which set the detector

current at 1 ma. This was the detector current which was determined

experimentally to give the highest detectivity.
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The rest of the electronics shown in Fig. 3 was outside the

liquid helium. A 1.35 V Hg cell was the detector current source.

The differential preamplifier had a low noise FET input stage, and

integrated circuit operational amplifiers provided additional gain.

The total gain was 4000. The preamplifier fed into a differential

lock-in amplifier which employed a reference signal derived from

a photocell that received the chopped light from the source. Most

of the readings taken from the amplifier were for a one second time

constant. For each run the reading was a maximum when light entered

the cone at a 0° incident angle. Noise, coming mostly from micro-

phonics in the coil, was measured to be a factor of two above the

Johnson noise of the cold detector. The maximum signal to noise

ratio is given in Table 1 for each run.



Chapter 3: Cone Channel Optics

The basic problem to be discussed in this and subsequent

sections is to determine what fraction of light entering the flare

aperture of the cone will pass thru the apex aperture. The as-

sumption is made that the response of the radiometer is directly

proportional to the intensity of light passing thru the apex

aperture. The justification of this assumption is twofold. First,

as discussed in Appendix 1, the transmission of the light pipe

connecting the cone to the detector is only slightly dependent

upon the incident angle of the light. The maximum variation in

transmission as a function of incident angle was shown to be 2.

Secondly, the detector responds linearly to the intensity of

radiation incident upon it. Therefore, to determine the angular

response of the radiometer, one only needs to express the intensity

of light passing thru the apex aperture as a function of the inci-

dent angle 0.

To begin the discussion on the optical properties of the

cone, first consider the axial rays, those rays which intersect

the cone axis at some point. Fig. 4 shows a simple ray tracing

method described by Williamson 7 for determining which axial rays

will pass thru the apex aperture. Any given axial ray can be

traced by projecting the ray into image space and rotating the

conical figure about the reflecting surface. This procedure

is repeated for all subsequent reflections, thereby generating

Fig. 4. Using this method it is a simple matter to determine
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that ray A will be reflected back out of the cone and ray B will

pass thru the apex aperture. The polygon formed by the apex

aperture can be approximated by a reference circle with radius

r = c/sin , where c is the radius of the apex aperture and 

is the flare angle of the cone equaling 150° . For the cone used

in this experiment r = .78 in. Any ray which intersects the

reference circle passes thru the apex aperture, and all other rays

are reflected back out of the cone.

In considering skew rays one must use a tridimensional

ray tracing picture described by White8 . The idea is basically

the same as shown in Fig. 4 except that now a reference sphere

is produced by the apex aperture when the cone is rotated about

the reflecting surface. The reference sphere has the same radius

as the reference circle, and as before all rays intersecting the

reference sphere pass thru the apex aperture. Fig. 5 shows ray

tracing done for the entire cross section of light entering the

cone at incident angle . Plane M is perpendicular to the incident

light and passes thru the reference sphere center. The. area A

represents the area of intersection of the reference sphere, the

entering light, and plane M. The intensity of light passing

thru the apex aperture is directly proportional to this overlap

area A. The projection of light onto plane M is an ellipse with

major axis equaling R, minor axis equaling Rcose, and area equaling

nR2 cosG , where R is the radius of the flare aperture. In the

following analysise will never exceed 16°, and therefore the ellipse

can be nicely approximated by a circle of radius Rcos2 9, thereby
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making the areas of the ellipse and circle equal. With this ap-

proximation area A simply equals the overlap area of two circles

of radius r and Rcos2 i, whose centers are separated by a distance

Lsin 6, where L is the distance from the flare aperture to the

reference sphere center. In Appendix 2 area A is found as a function

of 0. This function normalized to one for = 00 is shown in Fig. 6

and indicates how the intensity of light Io passing thru the apex

aperture varies with 0. For 6>12.7 all the light is reflected

back out of the cone. Note that Io(Q) is the angular distribution

for incident light which is parallel and of even illumination.

The Optics of the Source and Field Lens

In the experiment the light entering the cone was neither par-

allel nor of even illumination. In order to compare the geometric

response of the cone with the experimental results, it is necessary

to analyze the cone in conjunction with the source and field lens

used in this experiment. For this analysis let the observation

point be at the reference sphere center. Looking out of the cone

towards the source, one sees the flare aperture and behind this

the lens which acts as an aperture for light coming from the source

image located at infinity. Refering back to Fig. 1 one finds that

at the reference sphere center the flare aperture subtends a solid

angle of .053 steradians; the lens, .0021 steradians; and the

source image, .0218 steradians. The intensity of light at the

observation point is proportional to the solid angle subtended

by the visible portion of the source image which, in this case,

equals the solid angle subtended by the lens. As the observation
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point is moved away from the reference sphere center along a line

perpendicular to the cone axis, the intensity stays constant as

long as the lens can be seen completely. At a distance of 1 in.

from the center, the lens begins to become partially hidden by

the flare aperture, and at a distance of 1.5 in. , it can not be

seen at all. The solid angle subtended by the visible portion

of the lens in the region between 1 in. and 1.5 in. can be expressed

by the function derived in Appendix 2 for the overlap area of two

circles where, in this case, the two circles are the lens and flare

aperture. LetA represent the solid angle subtended by the visible

portion of the source image, and let t represent the perpendicular

distance from the cone axis at the reference sphere. Fig. 7 shows

fLas a function of t normalized to one at t = 0 as seen from the

reference sphere. Note that o(t) can be closely approximated by

I

yjLt) : i 3--t I 4 t' 1.5 Et. 
0O t .

The source in this experiment did not provide even illumination.

To determine the brightness distribution of the source, a .125 in.

dia. aperture was placed over the flare aperture. The source and

field lens were then moved along a line perpendicular to the axis

of the cone's image in the mirror, keeping a constant incident angle

of 0. The small aperture was used so that all the light entering

the cone would reach the reference sphere. Fig. 8 shows the situ-

ation where the lens and source have been moved a distance y from
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the axis of the cone's image. If the source image was of even

illumination, the radiometer response would be unaffected when

the source and lens were moved over small distances of a few inches

or less. The response, however, does change, decreasing with in-

creasing y. Since the total area of the source image hich is

visible at the reference sphere is constant, independent of y,

this change in response is solely due to the uneven illumination

of the source image. Fig. 9 shows the brightness of the source B'

as a function of a, the angle shown in Fig. 8. The results in-

dicate that B'(oc) is approximately symmetric about the center of

the source.

The intensity of light striking the reference sphere at a

distance t from its center is proportional to the solid angle .. o(t)

multiplied by the corresponding brightness B(t) of that solid

angle. Refering to Fig. 10 one see that tancK= t/77, where t

is always given in inches. Since t will not exceed a few inches,

the approximation can be made that c t/77, and the following re-

lation is obtained

B(t) - B(t/77). Et. 1

Fig. 11 shows the intensity distribution I(t) over the reference

sphere for = 00, where

l(t) Bt)Olt). Et. 3
To determine the total intensity reaching the reference sphere

one must integrate IM(t) over the reference sphere. The integral
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takes the form

1(o) j Lo O(t) Bt) n t t 

where r is as usual the radius of the reference sphere. Note that

4 (t) = 1 over the entire range of integration. The total intensity

It of light passing thru the flare aperture for = Q0 is given by

the same integral except the integration is over all space. Thus

It is given by

it t o nL(t) Bt) ont dt Ed 5
Doing these two integrals numerically one finds that

It/I1o) - . Et
Fig. 12 shows the cone image rotated about point B such that

the incident angle of light equals . The = 0 axis coincides

with the cone image axis before it was rotated. The brightness

distribution and solid angle L can no longer be represented. solely

as functions of the perpendicular distance from the cone axis.

Since the flare aperture has be translated, the center P1 of the cross

section of light reaching the reference sphere is a distance 3.4sinG'

from the G - 00 axis, where '= 1.05. It is, therefore, conven-

ient to express and the brightness distribution in a coordinate

system whose origin is at P. Call this the prime system. Con-

struct plane M, as before, normal to the incident light and con-

taining the reference sphere center. Then the projection of light

onto plane M is an ellipse with minor axis along line A and major

axis perpendicular to A. It has already been determined that for
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e= 00 the ellipse becomes a circle with radius equaling the width

of the solid angle distribution JL(t), that being 1.5 in. Therefore,

for non-zero 9, the resulting ellipse has a major axis equaling

1.5 in. and a minor axis equaling 1.5cosG in. As before this can

be closely approximated by a circle of radius equaling 1.5cos2O

in. Let t' represent the radial distance measured in plane M from

the origin of the prime coordinate system. Q, when expressed as
a function of t', has the same shape as shown in Fig. 7 except now

its width equals the radius of the circle approximating the projec-

tion of light onto plane M. Therefore,A is given by

nL.(t'bl Q o(t'Ico5 se) . Et 7

To find the total intensity of light reaching the reference

sphere, 3 (t') must be multiplied by the brightness distribution

expressed in the prime coordinates. Then the product must be in-

tegrated over the reference sphere. Appendix 3 discusses approx-

imations made so that the brightness distribution could be expressed

as a function of t', and gives the details of the integration over

the reference sphere. The final result I(@), the total intensity

of light passing thru the apex aperture for the specific source

and field lens used in this experiment, is shown in Fig. 13.

The Aperture

The balloon-borne radiometer had a 1.75 in. dia. aperture at

the flare aperture of the cone. To investigate its effect, several

runs were made using such an aperture. Placing a brass aperture at
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the flare aperture changes the function for L. Let A (t) represent

fl as a function of t for B = 00 when the brass aperture is present.

I(t) can be found in the same manner as 1,(t), noting that in the

calculation, the radius of the flare aperture is replaced by the

radius of the brass aperture, this being .875 in. Doing this one

finds

A(t) = fD)l lat) E. 8

where 1.25 is the ratio of the flare aperture radius to the brass

aperture radius. Let IA(9) represent the intensity of light passing

thru the apex aperture when the brass aperture is present. IA()

is found in the same manner as was I(q) except that fl(t) is replaced

by (t) everywhere in the calculation. IA(e) is shown in Fig. 13.

Note that

(o )

since both AO(t) and (t) equal one over the range of integration.

Therefore, the brass aperture should have no effect on the 0 = 00

response of the radiometer.

The angular distribution IA(() will be altered by reflections

off the aperture. Some of the light which was reflected out of the

cone will reflect off the aperture and re-enter the cone. The light

is given a second chance to reach the reference sphere. Fig. 14 is

a ray tracing disgram employing the same concepts as in Fig. 4
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except that the aperture has been included. It was found that for

8°0 <1 <2.50 and 18 9< 210 part of the re-entering light reaches

the reference sphere. For all other e the re-entering light misses

the reference sphere on the second try. The rays shown in Fig. 14

are extreme rays which reach the reference sphere. Ray A has an

incident angle of 80; ray B, of 12.50; ray C, of 180; and ray D, of

21 . The possibility of multiple reflections off the aperture occurring

before the light enters the reference sphere was not taken into ac-

count because such an effect was considered to be insignificant.

For incident angles lying in the two ranges. stated above, there will

be an enhancement of light entering the reference sphere which was

not considered in the calculation of IA(0). Therefore, the response

of the radiometer should be greater than IA(@) predicts for these

two regions.

The Objective Lens

The balloon--borne radiometer employed an objective lens to

sharpen the angular distribution. The plano-convex lens was made

of Teflon, had a radius of curvature of 3.7 in., and had a focal

length of 9.2 in. The lens was used in several runs:sothat its

properties could be investigated. When the lens is placed over

the flare aperture, a real image of the source image is formed

near the reference sphere. The diameter of this image is about

.5 in. Finding IL(9), the intensity of light passing thru the

apex aperture when the lens is present, is simplified because

the image is much smaller than the reference sphere. The bright-

ness of the image can be nicely represented by the average of the
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brightness distribution over the objective lens. Let BL(G) repre-

sent this average. Refering to Fig. 9 and Eq. 2, one finds a

good approximation for the brightness distribution at the reference

sphere is

B(zJ) -,o8. 8. lo

where z is the perpendicular distance from the = 00 axis in Fig.

12. The brightness distribution as a function of z only changes

slightly when the observation point is moved from the reference

sphere to the flare aperture. Therefore the expression for B(z)

in Eq. 10 can also be used to represent the brightness distribution

at the flare aperture. Refering to Fig. 12, BL(9) can be written

as

L(eI) e i ) d / nR
3 s i n e'+ RcosO'

- r -(I ,oO8 d|2 R o-5

= I o- (qinJRLo5 )Ct . "
where the approximation for BL(6) is within 1% of its actual value.

For e< 3.80 , the .5 in. dia. image and the reference sphere

completely overlap and thus IL(0) is simply proportional to BL().

For 9> 7.3° , the image and the reference sphere do not intersect

and IL(6) = O. For the in between region the image and the reference

sphere partially overlap. To calculate IL(o) in this region re-

quires knowing the intensity distribution across the image. The

intensity distribution is very sensitive to the distance between
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the lens and where the image intersects the reference sphere, and

for this reason it was not determined exactly. The approximation

was made that the intensity was constant over the image. With this

approximation IL(G) is simply proportional to the overlap area of

the image and the reference sphere times BL(9). The function for

the overlap area is given in Appendix 2. IL(O) is shown in Fig. 15.

For = 00 all the light passing thru the flare aperture is

focused onto the reference sphere. The total intensity of light

passing thru the flare aperture is given by Eq. 5. Since It = IL(O)

one has from Eq. 6

IL(o)/I(o) = E. I

The Filters

Several runs were made in which the filters used in the balloon-

borne radiometer were investigated. These filters were capacitive-

grid, low-pass interference filters described by Ulrich9. In making

these filters, silver was evaporated thru a wire mesh onto pieces

of polyethylene, thus producing an array of metallic squares. Four

such pieces were then fused together, making one filter. The size

of the squares and the spacing of the polyethylene pieces determined

the cutoff frequency of the filters. In this experiment filter A

cut off at 8 cm- 1 , filter B cut off at 12 cm , and filter C, con-

-1
sisting of two filters placed in series, cut off atl0 cm . The

filters should reduce the = 0 redponse of the radiometer. This

reduction should vary inversely as the cube of the cutoff frequency

because the intensity of the source goes as the square of the frequency

in the region of interest.
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Diffraction

To determine if geometric optics provide an accurate model

for the optics of the cone, the diffraction properties of the cone

must be considered. To solve exactly for the diffraction in a

cone involves solving Maxwell's equations in a conical horn with

the appropriate boundary conditions imposed at the flare aperture

to account for the incident radiation. Schorr and BecklO did this

for low order modes by an approximation method for cones with a

flare aperture diameter D comparable to the wavelength A of the

observed radiation. Fig. 16 shows the angular distribution of a

cone with a flare angle of 100 and D/ = 4. This distribution

differs considerably from that shown in Fig. 6 for geometric optics.

In this experiment D/A was greater than 25 for 95% of the measured

radiation. For ratios this large there exist a large number of

possible modes, and the approximation method of Schoor and Beck

cannot be used. All that can be said is that the distribution

shown in Fig. 16 becomes much sharper for larger D/ .

The most important parameter affecting diffraction is the size

of the flare aperture, not the apex aperture. As radiation goes

down the cone, the cone's cross section decreases which results

in greater spreading of the light due to diffraction. However,

the increased spreading is offset by the fact that it occurs closer

to the reference sphere. With this in mind, diffraction by the

cone was considered to be solely a result of diffraction from the

flare aperture. This diffraction would spread out the light passing

thru the flare aperture, thus slightly broadening Qo(t). o(t)

Il_---LII_·l- ----- - ___�___II�-----------·^- �
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would no longer be zero for t 1.5 in. although its value in this

region would be of the order of 10 '5 or less. Therefore, a small

portion of the entering light would still reach the apex aperture

for angles where geometric optics perdict a zero response. How-

ever, the intensity for these large angles would be down by at

least a factor of 10- 5 from the 9 = 0 ° response.



Chapter 4: The Results

The response of the radiometer was measured as a function of

incident angle for various combinations of filters, objective lens,

brass aperture, and polyethylene cover. Table 1 lists the combin-

ation used in each run. The mirror used to vary the incident angle

could be turned both clockwise and counterclockwise from the = 00

setting, thereby providing two readings for each value of 0. Let

V(O) be the radiometer response for an incident angleD in the nth

run. The ratio V(O)/Vk(O) is given in Table 1 for each run. Let

Vn(t) stand for the response VA(0) which has been normalized to one

at = 0°

In Run 1 nothing was placed over the flare aperture. The circles

in Fig. 17 indicate V1(8), and the .error brackets for large angles

indicate the uncertainty caused by noise. The solid curve is the

calculated function I(@). For 0 (160, I(@) and Vl (9) compare nicely

although I() is a somewhat broader distribution. For >160,

where I(e) is zero, V1(Q) is not zero. When the field lens was

covered by a sheet of metal, the signal did go to zero thereby in-

dicating that the non-zero response for large angles was due to

radiation coming from the source. It would appear that the geometric

analysis used to derive I(@) does not provide an accurate picture

for large angles, and that diffraction does have a measurable effect

on the angular distribution. Note that I(q) is dependent upon the

source described by B(t) and no(t) and upon the intrinsic properties

of the cone. B(t) is solely a property of the source, independent

of diffraction effects. Furthermore, as discussed in the last sec-

tion,1L(t) is only slightly changed by diffraction occurring at the
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flare aperture. This slight change cannot explain V1(9) being so

large for large angles. Therefore, the non-zero response must be

an intrinsic property of the cone and not a property of the particular

source used. From Fig. 17 it appears that the angular response of

the cone can be nicely represented by the geometric response with

the addition of a tail at large angles resulting from diffraction.

The tail in Fig. 17 begins where the geometric response goes to

zero with a value of .005 of the = 0 response, and falls off

by a factor of 10 over 10 . By adding such a tail to Io(O) in

Fig. 6, one obtains a very good approximation of the angular re-

sponse of the cone, independent of the particular source used

in this experiment. This intrinsic angular distribution is shown

in Fig. 17 by the broken curve.

In all subsequent runs a 2 mil polyethylene cover was placed

over the flare aperture. The effect of this cover is shown in Fig.

18 where the crosses indicate V2(e), the response when the flare

aperture was covered only by the polyethylene. The circles in Fig.

18 represent V1 (O). The response for = 0 decreased by 7 when

the covered was placed over the cone. This decrease is what one ex-

pects from the reflection properties of a thin piece of polyethylene.

There are no significant discrepancies in the data for Rn 1 and

Run 2 until the response fall below 1%. At this point V2(9) begins

falling off slower than Vl(9). It is believed that this is a result

of light being reflected back into the cone by the cover, thus

having a second chance to reach the apex aperture.
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In Run 3 a second cone was used. The goemetry of the second

cone was identical to the first; however, the second cone had cir-

cular grooves about 1 mil deep on the interior surface, whereas

the first cone's interior was polished. The "x's" in Fig. 18 show

V3 (O). There is no significant difference in the data for Run 2

and Run 3. It appears that the effect of scattering from the rough

surface is too small to measure.

An objective lens described previously was placed over the

flare aperture in Run 4. V(O)/V'(O) was 2.1 whereas Eq. 12 pre-

dicts that this ratio should equal 2.4. The reflection properties

of the lens will make this ratio less than predicted. The reflection

from the surface of the lens is given by (n-l)2/(n+l)2, where n is

the index of refraction of Teflon. Because the reflection is small

and there are two surfaces, the total reflection by the lens is

twice the above quantity. From this it was found that the trans-

mission of the lens was .94 which reduces the perdicted ratio to

2.25 which is within 7 of the measured ratio. For 8 = 20 the

lens was turned upside down so that the flat side of the lens was

away from the flare aperture. This resulted in a 5 increase in

signal, thus indicating that there is an asymmetry in the reflection

or focusing properties of the lens. V(0) is shown as circles in

Fig. 19. The solid curve in Fig. 19 is the calculated function IL(S).

The data corresponds closely to the predicted values up to 60. At

this point the experimental distribution begins to broaden in a

manner similar to the data for Run 2. This is attributed again

to light being reflected back into the cone by the polyethylene

cover and the lens.
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A 1.75 in. dia. brass aperture was at the flare aperture in

Run 5. The aperture had no measurable effect on the 0° response

as is predicted.by Eq. 9. V5(9) is shown by crosses in Fig. 20.

The solid curve in Fig. 20 is the derived function IA(9). As was

the case for Run 1, the theoretical curve is somewhat broader than

the experimental one for small angles. At 14°0, where IA(6) goes to

zero, the radiometer signal has fallen only by a factor of 50 from

the 0 signal. Light which is reflected by the aperture back into

the cone is probably the chief cause for the signal being so strong

at large angles. It was predicted that these types of reflections

would occur for 80c e< 12.50 and 18< e< 210. There is no indication

in Fig. 20 of reflections for the lower range; however, an obvious

bumb occurs for 16 < e< 200 which corresponds closely to the upper

range.

When the objective lens was placed over the brass aperture in

Run 6, the angular distribution was sharpened considerably. Further-

more, the effect of aperture reflections was made very pronounced.

The circles in Fig. 21 show V6(O). Two large bumbs occur at 9°c12 0

and 160< 6 < 19°0 which correspond to the predicted ranges for aperture

reflections. A third bumb occurs for 23< (< 27° which is left un-

explained.

In Run 7 the brass aperture was covered with a .125 in. layer

of Apiezon, a black vcuum sealing compound. It was hoped that the

compound would be optical black for the far infrared and absorb the

incident light thereby eliminating aperture reflections. The crosses

in Fig. 21 show the results of Run 7. The first two bumbs that
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appeared in Run 6 completely disappeared indicating that the Apiezon

did reduce the reflections. The bumb for 23. < 0(270 was somewhat

reduced but did not completely disappear, leading one to believe

that it is caused by something other than aperture reflections.

In Rns 8, 9, and 10 filters were used in conjunction with the

lens and aperture. The filters were held above the lens by another

1.75 in. dia. brass aperture. In Run 8 filter A was placed .5 in.

above the lens, and the data is shown by circles in Fig. 22. Filter

B was placed 1 in. above the lens in Run 9. V() is shown by "x's"

in Fig. 22. In Run 10 filter C was .75 in. above the lens, and the

results are indicated by crosses in Fig. 22. The arrangement of

apertures, lens, and filter in Run 9 was the same as the SR-2 ar-

rangement in the 1969 balloon-borne radiometer, and the arrange-

ment for Run 10 duplicated the SR-3 arrangement. Note that the

angular distributions for the three filters are very similar.

The bumbs in the distributions are probably due to aperture re-

flections.

Let the antenna function of the radiometer be defined as

the angular response multiplied by sing. Fig. 23 shows the

antenna function for Run 7, and Fig. 24 shows it for Run 10.

The integrals of the antenna functions normalized to one for

= r/2 are given in Figs. 25 and 26 for Run 7 and Run 10 respec-

tively.
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Conclusions

After comparing the results of the experiment with the theory,

several basic conclusions can be made. First, the intrinsic angular

distribution of the cone can be well represented by the geometric

angular distribution with the addition of a weak tail at large angles

resulting from diffraction. Furthermore, it was shown that the

objective lens does considerably sharpen the angular distribution

as was expected. This is useful to know because it is desirable

to have a sharp distribution for the balloon experiment. The aper-

ture had the opposite effect on the distribution. It resulted in

broadening the distribution because of reflections from it. To

achieve a sharp angular response, the aperture and anything else ·

which might reflect light back into the cone should be made of a

absorbing material if possible. Finally, it was found that the

SR-2 and SR-3 arrangements had nearly the same angular distribution.

The importance of this is that it rules out one possible explanation

for the ratio anomaly measured in the 1969 balloon experiment.
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Appendix 1

Stratton ll derives the following approximations for the re-

flection coefficients of a metal. These expressions are correct

to the second order of x.

R COS_ o - .)(Cos + X E S.

P a '+ZK COst + x.
R, I - ax cos r El i

where x = (2ewp), w is the angular frequency of the light, P is

the resistivity of the metal, and r is the angle of incidence. The

s and p refer respectively to the polarizations perpendicular and

parallel to the plane of incidence. For the highest frequency ac-

cepted by the radiometer, the value of x for gold is 1.3 x 10-3

at room temperature and 1.1 x 10-4 for temperatures around 10 K.

Both values are such that x,< cos ' except for Iz900 which is an

isolated point. Since x/cosc<<l, Rp and Rs can be well approximated

by

RfZ l-ZX/osa e.X/sos
~R e~ax£oS EEt

Axial rays entering a light pipe of length H and diameter d at

an incident angle with respect to the pipe's axis will make (HtanG)/d

reflections in the pipe. The rays will make an incident angle with

respect to the pipe's walls of r= 90 - 9 . The total amount of trans-

mitted radiation is then given by

T ep L(- -X/Sin )( Mt an)d EdI 17

To exp Ll-asi0)lltoo)lJ]. At. I8
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The light pipe in this experiment can be divided into two regions,

the top 3 inches at room temperature above the liquid helium and the

bottom 12 inches at liquid helium temperature. The total transmis-

sion of the light pipe is equal to the product of the transmissions

of the two regions. Putting the appropriate values in for H, d, and

x, one obtains

-. o; /cos 0
Tr e Et. I

T- . ..

A ray of light just making it thru the apex aperture of the cone

will be reflected by the brass cone leading into the light pipe in

such a manner that it will enter the light pipe at = 220. All other

rays enter the light pipe at smaller angles. This was determined by

simple ray tracing. Therefore , minimum transmission occurs fore = 22 .

Letting 9 = 220, one finds that Tp= .98 and Ts=.997. Thus the trans-

mission of the light pipe varies by no more than 2% as a function of

incident angle.



Appendix 2
1

Fig. 27 shows two circles of radii r and R'= Rcos2 '. Their

centers are separated by a distance of d = Lsin 0. The overlap

area A of the two circles is easily found. From the geometry of

Fig. 27,

X(Rrd) Pp
,r d -

Dividing area A into two areas, A1 and A2, one finds

F (R' r, Jd) f 

Fa(R J r, d) 2.

R(

X(r',rI

X(R' r,d)

J-3 (vra- (T-W)

-r

Substituting y = d - x into Eq. 23 one obtains

F (R'r,.) I EtE.-X ard)

r

and using the following relationships

-k(r, R'd = X (R', r, d)

?q

E.

- d, X(r. 4)
d y(;at'--y )

R

one finally obtains

EL(R (, R', ) F, (R' r, d) .17

Ee ;E az

Ey z3

F(r', 1)

61

=(d:+ R' r/ad 4. z/~

4,



62

F wre a7

Inte rersectan of Reference Sophere ond Incident Lghf



63

There fore,

F(Rr,) - FR= F(',r,) + F;.(r,R'd). E. 

The result of the integration gives

The above expression for F( d) holds for R+r. For

The above expression for F(R',rd) holds for R'-r dR'+r. For

de R'-r the two circles completely overlap and F(R',r,d) =r 2

For d> R'+r the two circles do not intesect and F(R',r,d) = 0.



Appendix 3

Fig. 28 shows the intersection of the solid angle distribution

11(t') with the reference sphere. Refering to Eqs. 1 and 7, one

has

(f 'I :t 'c3 8tIo
A@{t 1) - 3 3 -At' /c=4s ) ap5+ 6 t 1 5 GOON 9

0 t'> 1.5 cost 

Et. 30
Let A'(@) equal the overlap area of the circle of radius cos29

with the reference sphere. Then from Appendix 2 one has

e)'( F(cos9I,, ,r rp ) Et. 31

Refering to Fig. 12, one sees that PP 2 = 8.lsine. l.(t') = 1

everywhere in A'(@). The brightness distribution over A'(e) can

not be easily expressed in terms df the prime coordinates. To

avoid having to do this, the following approximation is made. Let

the brightness distribution be replaced by its average value B(8)

over A'(G). Refering to Fig. 12 and Eq. 10, B(O) can be written as

Om J(i-.ouz)ci' / 0 a))
'(e)

t-.o ,) |-. s,;n',-S. ) E 31.
where b represents the maximum value of z in the region A'(). The

above approximation for B(9) is within 1% of its actual value.

Therefore, the total intensity of light incident on A'(B) is

't)B d B) .
'e)
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Let A"(9) represent the overlap area of the circle of radius

1.5cos20 with the reference sphere minus the area A'(). Fur-

thermore, let dA" be an area element in A"(9) such that

d dt, E.31
where, refering to Fig. 26,

[ - (PY) E.s
P, - + t 2 .I

In the region A"(@),f l(t') is given by the second expression in

Eq. 30. The brightness distribution is not constant over dA"

0
because B(z) is not symmetric about P1 except for = . How-

ever, B(z) varies only a few per cent over dA", and it can be

very well approximated by its value along line A in Fig. 28.

Therefore, let the brightness of dA" be given by

B (t')= I -.o s(t'+3 ,ns i) f. 37

The total intensity of light impinging on A"(9) is given by

.r e) = Ba(t') QLC(t') s1R

= (3 - -t'. oet'43A1 sai et

Et. 3g
where c is the lower limit of integration and is given by

.CO 0 3. q se,w- r < Cos9 

3 ,qsg0'-r o;EtI .o 3I
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The total intensity.equals

I()=- I( + I ) El o

These integrals were done numerically on a IBM 360, and the results

are shown in Fig. 13.
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