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Abstract

In order to transmit a video signal over a limited bandwidth channel many techniques have been
developed which can reduce the quantity of data required to represent moving image sequences.
Almost all current coders use techniques based on reducing the statistical redundancy of the
signal and psychophysically less significant details. Such coders are relatively successful for
coding signals at bandwidths of 1 Megabit/second and higher but below this level purely signal
based techniques become much less robust.

This thesis will attempt to use an analysis of the structure of the image, the components
from which it is composed, in order to gain greater image compression. The input material
is examined and divided into elements representing the background, the actors and any other

significant independent objects. The background image is stored as a model at the receiver and
animated according to estimates of the motion in the original scene. Actors and other fore-

ground objects are segmented out of the scene, compressed and transmitted using conventional
signal based methods. This technique typically leads to reductions in bandwidth of greater than

70%. In addition, enabling the computer to distinguish the components of the picture allows for

forms of post-shoot modifications of the picture not possible with conventionally represented
signals.

Thesis Supervisor: Andrew Lippman
Title: Associate Director, MIT Media Laboratory

The work reported herein was supported by a contract from the Movies of the Future con-
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Chapter 1

Introduction

1.1 Structured Video

Structure within video could be defined in many different ways depending on the perspective

of the author. In this thesis the term video structure is used to refer to the content of a scene.

What are the components which make up the image, what is their relationship to one another

and what is the position and motion of the camera? The aims of this investigation are twofold:

one is to establish whether analysing the image sequence from this perspective can aid us in

creating more efficient and more usable video coding systems; the other is to explore ways in

which this can help us to modify scene content or to create entirely new scenes, 'synthetic

movies'.

This thesis will address the reasons for doing this, the methods that can be used to make it

possible, the problems that were encountered in so doing and what can be achieved as an end

result of the process.

1.2 Script to film: Local models.

The process of creating a film can be seen as a process of data expansion. The idea of a writer

becomes a script which gets enacted and recorded onto film. The quantity of data in the film is

greater than that in the script which in turn is greater (we guess) than the data composing the

idea in the writer's head. The reason why the script holds less data but can convey as much



information is because the reader is expected to possess a certain level of knowledge about the

world. Take this description of a room in a play:

"It is very large and looks formal because it is underfurnished. There are double

doors at left-back... The room is painted white, walls and ceilings. There is a low

wide divan, covered in rough black material, in the right back corner; a window,

with dark red curtains, in the right wall; a large round, ornate mirror on the left

wall; a low shelf of books under the window. ... The life of the room is concentrated

around the divan. A low table by its head has a telephone, and is loaded with books

and papers and a small reading light." [27]

This description leaves much unsaid. How much furniture is 'underfurnished'? What does

a divan look like? What colour is the telephone? Although none of this is stated we each are

able to interpret these statements and conjure up a vision of the scene. The author does not

need to present us with a photograph in order for us to visualise the picture. Also, if there

is an ambiguity, if a detail is not stated, it is probably either unimportant or can be derived

from other details. In fact, one of the beauties of a play is that it lends itself to constant

reinterpretation by each director who chooses to perform it. We also understand that the room

will not change over the course of time. There is no need to present 30 images each second to

describe how the scene will appear in a filming of the room. All that is required is a description

of the motion of the camera.

This discussion is not very enlightening while movies are stored on film. However, the

advent of computers and the digital storage of video offers us the opportunity to take a different

viewpoint. The computer allows us to devise means of manipulating images which diverge from

those which are traditional. It is possible to create models of reality which can be animated

according to the wishes of the user. These models become the implicit knowledge that is used

to expand a script into a movie. The more knowledge that can be stored locally, the less we are

required to transmit. In a movie this knowledge would be local databases of different rooms

which appear in the duration of the action. Also models could be stored of tables and chairs

and similar commonly occurring objects. A particularly sophisticated system would be able to

store and animate models of the people appearing in the movie, knowing their appearance and

perhaps their characteristic walking and talking patterns. The objects at the receiver acquire



some knowledge of themselves and can therefore act 'intelligently'. The job of the transmitter

moves from one comparable to the animator who must draw each frame laboriously, to the

director who can issue orders to actors and objects intelligent enough to acceptably portray a

scene from incomplete information.

1.3 Scene Modification

The last section referred to the extremely flexible nature of the script for a play or film. This

script lays down the essentials of the story but leaves many decisions up to the director. By

moving from a signal-based representation of images to a model-based representation we move

a step towards allowing each individual user (or a computer) to create a different and unique

rendering of a scene according to their own needs or tastes.

The desire to modify a scene can arise in many situations. One is in the one-off modification

of an existing movie or television show. A global change to the material would be a desire to

colorize the movie, or to change the aspect ratio to match a new medium. Alternatively, more

local changes might be desired to correct mistakes in the original: removing an object that

should not have been present, closing a door or changing the camera lens or view direction.

A different situation is the creation of entirely artificial film clips. These could be to convey

information by the use of video objects, perhaps indicating the status of a system. A remotely

monitored site could generate video of its current state without the need for a camera. Sensor

readings would translate into video representations, a water flow meter would translate into

video of water flowing through a pipe at different speeds or even water bursting out of a hole

in the pipe if that event occurred.

The availability of the people and scenes in a movie as a form of 'clip art' creates the possi-

bility that people might also want to use these elements to create entirely new film sequences.

Actors could be swapped or placed in novel situations. There are many examples in art where

new pieces are formed from collages of existing objects. A model-based representation of video

would encourage this practice in the film domain.

An alternative perspective is to view this as a merging of computer graphics and photog-

raphy. In computer graphics images are stored as models and parameters for their animation.

These models can be altered at will and provide a very compact representation of the image.



However, the rendering of photorealistic scenes is highly processor intensive and often fails to

accurately imitate reality. In photography we have images that are relatively good mirrors to

reality but which are data dense and hard to manipulate. The computer graphics community

have been tuning their models such that more and more realistic images can be generated. This

work is an approach from the opposite direction, an image processing approach to generating

more and more manipulable photographic images.



Chapter 2

2-D Image Modeling

2.1 Rationale

The software work of this thesis concerned itself with a subset of the task of analysing image

structure: modeling image sequences in two dimensions. The principal aim was to take material

from the 1950's television show 'I Love Lucy' and encode it at low bandwidths (64Kbit/s -

300Kbit/s). The reasons for wishing to encode video at such bandwidths can be seen in two

domains. One is due to the introduction of the new ISDN' telephone technology which has a

data bandwidth of 64Kbit/s. If this becomes a ubiquitous technology it would be desirable to

make it possible to receive and maybe transmit video in addition to other types of data. The

other domain is perhaps more interesting, and that is to consider using CD or similar technology

in a novel way. In the entirety of the 'I Love Lucy' series the number of sets used is in the low

hundreds. Creating models of these sets and storing them in a database on the CD allows these

models to be shared between scenes and even episodes. If the actors are subsequently encoded

at a bandwidth of less than 10OKBit/s then over 20 hours of 'I Love Lucy' could be stored on

a single CD. "The Complete I Love Lucy" would be a small CD box set.

Transforming the image into models also allows for the exploration of picture modification.

When the perseverant fan club has watched each episode twenty times they can start creating

their own versions using the raw material of the sets and the actors available on the CD. In

particular this work highlighted a technique for 'scene-widening', an important task required

'Integrated Service Digital Network - The next generation of telephone technology currently being introduced



for converting current television footage to the wider aspect ratio High Definition Television

(HDTV).

2.2 Image Modeling

The basic premise for bandwidth reduction by image modeling is that the model need only be

sent once, not thirty times each second. All that needs to be sent each frame is the parameters

for animating the model and information about the movement of the camera in the intervening

time. The extent to which this is possible is dependent on the quality and completeness of the

model at the receiver. Ideally we would like a full three dimensional database of the scene.

If this was the case the image could be re-rendered in any way the user chose and the data

representation would be very compact. However, the disadvantage of attempting to pursue this

goal is that existing footage does not contain 3-D information and so considerable effort has to

be used to extract depth information from the 2-D scene, a very hard, sometimes impossible,

task. The aim of this work is to concentrate on discovering how much one can achieve using

only two-dimensional models.

What is meant by two-dimensional models is flat images of specific scene components such

as a room, a table or a person. In some cases depth information was included, but only to

the extent of specifying the relative depths of the different image planes: Lucy is behind the

table but in front of the wall. Mostly the scene was simply divided into 'background' and

'foreground'. The foreground was the actors and any other moving objects and the background

was the set. This is an effective model for image coding since the set is usually a rigid object

which does not change over the course of a scene and so should not need to be sent more than

once. The models were stored as cylindrical projections so that, once captured, a model will

be valid for any camera angle or lens size so long as the pivot point of the camera does not

move. If the pivot point of the camera does move then the images can be distorted but will

need updating when the distortion becomes too great or too much new scene detail is revealed.

The efficiency of an image coder which uses these principles will therefore be dependent on the

amount of camera pivot movement and the amount of the scene which it can effectively model

as a rigid body. Complicated camera movements or close-ups of faces are both very difficult to

model within this framework; more static scenes where the picture area is not dominated by



people are amenable to compression.

2.3 Coder Design

The way in which the low bandwidth coder was constructed was to create a single image of

the background set. This image was stored locally at the receiver. The original sequence was

then analysed and the actors removed from the background. In the main body of the work the

actors were considered to be objects which could not be modeled and therefore were coded using

conventional image coding techniques. This code was transmitted to the receiver, decoded and

placed into the background set model to recreate the original sequence. Three sequences were

chosen for research, one where the background was still, and two where the background was

panned across by the camera. In each case the actors constituted about 20%-30% of the picture

area and therefore this is the proportion of the picture that required transmission each frame.

Many different strands of image processing had to be integrated in novel ways in order to

create the coder. These strands can be categorised into several domains:

" Signal-Based image compression.

" Image Compositing.

" Motion analysis.

" Foreground/Background Separation.

" Image Reconstruction.

The way in which the model is assembled is detailed in figure 2-1.

There are several parts to this. The transmitter can be divided into analysis and encoding

stages. In the analysis stage the model of the background set is created, the motion of this set in

the original ascertained and the segmentation mask of foreground and background determined.

The encoding stage uses the segmentation mask to separate out the foreground which is then

encoded using conventional signal coding techniques. This code is transmitted, along with side

channels for the segmentation mask and the camera motion parameters.

At the receiver the camera motion parameters are used to animate the background, already

available in local storage. The foreground data is decoded and formed into a coherent image
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Figure 2-1: Elements of a model-based image coder



using the mask. The final stage is to blend the actors back into the animated background as

seamlessly as possible. The result of this operation is the image ready for display.

The transmission of the background image itself can occur in several ways. In the CD

application the backgrounds will be placed as a database on the disc appended to the foreground

data. In the case of 64Kbit/s video for transmission over a telephone, the background must

either be sent in parallel with the foreground, shared between as many frames as possible prior

to its first required use, or it could be downloaded in advance.

The details of the workings of each of these units is described in more detail in the following

chapters. However, at this stage several issues should be considered in overall coder design.

The image coding model suggested here is one which is designed to perform very efficiently with

certain types of sequence. The efficiency that is gained by accurately modeling the 'I Love Lucy'

sequence is offset by the losses which will arise when the coder is faced with an image which it

cannot interpret. In addition, the individual components which make up this coder are tuned

to their task. If an image coder is required which will efficiently tackle many different types of

image sequence it will be necessary to incorporate several different types of encoding methods

into the system. In such a case at least one must succeed in encoding the picture but others

will often be able to encode particular sections more effectively. Depending on picture content

different coder designs will perform in varying ways and the best coder and best module for

the current task must be chosen. Image coding systems such as this one and those that follow

it must address complex systems issues in chosing optimum encoding methods. The problem

is one of adapting intelligently to changing circumstances and coordinating a semi-distributed

system to choose an optimum configuration. Each unit (such as one which segments out actors

or attempts to create background sets) must be able to monitor its own performance such that

it can indicate to others whether its output is useful. Several alternative paths will exist to take

the data from the original to the reconstructed image, some tuned to particular picture types

and some more general. If all the modules in a particular valid path were active then that path

would be chosen. If more than one path indicated that it could encode the picture successfully

then greater weight would be attached to paths considered desirable according to current goals,

for instance ones which achieved low bandwidths. A model of a multi-path image coding system

is shown in figure 2-2. This figure shows a possible set of components but does not indicate



the means of control. This control could either be centralised, a module would ascertain which

units are functioning well and choose the path accordingly, or the system could be distributed

with each unit outputting activation and suppression signals which acted together such that

the most successful path under the current goals would show up with the highest energy and

by that means be chosen to perform the encoding.
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Figure 2-2: Model for a general multiple-approach image coder



Chapter 3

Signal-Based Coding

3.1 Digital Video

Ever since the mid 1960's and particularly following the advent of the FFT1 , researchers have

realised the possibility of using a computer to store, analyse and manipulate video sequences.

The advantages of being able to do this are similar to the advantages associated with storing

and manipulating text on a computer. Essentially they fall into two categories. One is the ease

of replication and distribution of digitally represented information and the other is enabling

individuals and small companies or research groups to perform tasks previously only possible

with expensive equipment and skilled technicians. Writing and formatting this thesis to its

current presentation fifteen years ago would have been a very considerable undertaking. It is

possible that in fifteen years time it will be as easy for ordinary people to edit and manipulate

a video sequence as currently it is to edit this text document. It will be possible to access

information in video form over networks and telephone lines, thereby considerably increasing

our choice in possible viewing material. It is hard to envisage to what extent the technology

will allow individuals to manipulate the content of a film (and to what extent they will wish

to) but it seems reasonable to expect that when technological barriers to creativity are broken

more people will see themselves as possible creators. Witness the remarkable increase in the

number of people who are willing to produce documents and posters on computers for public

distribution. Every Macintosh user sees him or herself as a graphic designer. Naturally, we

1Fast Fourier Transform, invented by Cooley and Tukey in 1965 [8]



should sometimes question whether this is a good thing...

These are the possible incentives for storing video in a digital form. However there are some

significant barriers which have made digital video long in coming. The fundamental barrier

is the sheer volume of data that is required to represent even a very short sequence of video.

The resolution of RS-170A (component NTSC) when stored digitally is typically 640 points

horizontally by 480 lines by 30 frames per second. To represent a full palette of colours about

3 bytes are required per pixel. These numbers mean that a single minute of raw digital video

requires 550 Megabytes of memory, an average film over 50 Gigabytes of memory. Even by

today's standards this is an enormous amount. From this has grown the field of image data

compression, better known as image coding.

3.2 Signal Based Image Coding

There are many different ways in which the quantity of data required to represent an image

can be reduced, all of which are based on one of two principles: either they are attempts to

reduce the redundancy in the representation or attempts to exploit knowledge gained about the

psychophysics of image perception in order to place less emphasis on visual detail which the

eye finds less significant. Techniques which exploit redundancy do not discard any information

and are therefore called lossless. The other techniques are lossy by definition, in that they

discard data which is considered to be less visually important. In addition, a distinction can be

made between intraframe techniques, which independently encode each frame, and interframe

techniques in which the correlations between frames are exploited.

An image coder can typically be split into four elements. A predictor, a de-correlator,

a quantizer and a code assigner. A particular image coder might have one or all of these

components and some techniques overlap these functional boundaries; however, in most cases

this distinction is a helpful tool for analysis. These elements will be discussed in the following

sections.



3.2.1 Prediction

The aim of the prediction component of a coder is to reduce the energy of the signal by encoding

the difference between the current value and a predicted value rather than the current value

itself. If the prediction is good the values to be encoded will often be close to zero and require

few bits. The prediction can be linear, for instance a particular pel might be predicted from

the weighted summation of a set of preceding pels (this is known as Differential or Delta Pulse

Code Modulation (DPCM)); or nonlinear, for instance a pel being adaptively predicted from

the previous pel horizontally, vertically or temporally depending on which provides the lowest

difference energy.

Temporal prediction can be particularly effective. Image sequences tend to have a great

deal of temporal redundancy. To exploit this, coders often encode the difference between the

current frame and the last frame. If the two frames are well correlated the signal energy to

be coded will be considerably reduced. A refinement of this technique is motion compensated

prediction. Motion compensated prediction is the name given to the method whereby an image

is predicted not by the previous frame but by a two-dimensional warping of the previous frame

designed to account for the motion of objects in the image during the interframe interval. This

is a non-linear extension of DPCM. Prediction loops of this kind have a canonical form, shown

in figure 3-1.

A very important part of this design is the manner in which a model of the decoder is

built into the encoder. This is done so that the difference image is created from the difference

between the current original and the predicted frame constructed in the decoder, rather than

a frame predicted from last original. If the previous original were to be used for comparison

quantization errors would accumulate in the image in the receiver. The signal flow can be

thought of as follows. First, the current image to be encoded 1(0) is compared with a motion

compensated version of the previous frame Imc(-). This comparison results in a difference

image which is encoded (by any intraframe technique) and the codes S passed on to both the

channel and also to a the model of the decoder in the encoder. The decoder has several elements.

First it must decode S into the difference image and then add this to the motion compensated

previous frame. This is the image that will be displayed, Id(O). A motion estimator compares

the current input frame 1(0) with the previous displayed image Id(-1), and creates a set of



Motion Motion Vectors
Estimator ....................... ................................

Figure 3-1: Motion Compensated Prediction Loop

motion vectors to be transmitted down a side channel. These vectors are also used to warp

Id(-1) to create Imc(-1), the image used to predict the next frame. All encoders which use

this type of loop must have an image with which to start the cycle. This is known as the key

frame and is encoded using an intraframe technique.

This type of model is used in the image compression standards set by CCITT 2 and its

successor MPEG3 . Details of these models can be found in [16, 11]. In MPEG the original

sequence is prefiltered and then divided into groups of typically 15 frames. The first frame

of such a group is the key frame and then subsequent frames are either predicted frames or

interpolated frames (see figure 3-2).

MPEG uses a transform coder based on the DCT (see below) as the signal encoder. This

technique has been shown to produce "near vcr" quality pictures at 1.2 MBit/s and is being

proposed as a standard for image coding at this bandwidth. Image coders which work at band-

widths below 1Mbit/s tend to use the same principles as MPEG to achieve their compression.

2 Committee Consultatif International de Telephonie et Telegraph
aMotion Picture Experts Group
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I - Key Frames
P - Predicted Frames
B - Interpolated Frames

Figure 3-2: The MPEG 'Group of Frames'

The CCITT videoconferencing standards from which MPEG grew are based on bandwidths of

n x 64Kbit/s (n = 1-30). An example of a coder within this framework is provided by Pereira

et. al. [11]. Variants on these exist which use additional techniques such as vector quantization

and conditional replenishment, for examples of these see [53, 40].

3.2.2 De-correlation: Subbands and the DCT

Images are not random signals. Usually there is a great deal of correlation between samples

in the image. If this correlation can be identified then grouping together correlated pixels will

lead to a concentration of signal energy. This concentration can be exploited by later stages

of a coder which will allocate more bits to the energy dense parts of the picture and fewer

bits to the energy sparse portions. In particular real images tend to have a concentration of

signal energy in the low spatial and temporal frequencies and psychophysical evidence indicates

that the human visual system is less sensitive to noise in the higher frequency components of

an image over the lower frequencies [46, 14]. The combination of these two facts leads to the

proposition that the higher frequency components of an image should be coded with many

fewer bits than the lower frequency components. Identifying these frequency components will

allow for more efficient encoding of an image. Two common methods for performing this are



subband decomposition and transform coding.

In a subband decomposition a complete image is divided into its spatial and temporal fre-

quency elements, the sub-bands of that image. The Media Laboratory has been working for

several years on a hybrid coder which vector-quantizes (see below) these sub-band representa-

tions of images [5, 44, 6]. The different sub-bands are quantized in varying degrees depending

on the significance attributed to those bands, and the variation in bit allocation is performed

by changing the parameters of the quantizer in each band. This algorithm has been shown to

code images successfully at a range of bandwidths, although the image quality at equivalent bit

rates is slightly worse than MPEG coded sequences. The main advantage of the subband coding

technique over the MPEG technique is that it is scalable; since it is a pyramidal representation

it naturally supports image representation at multiple temporal and spatial resolutions.

In transform coding, a block of pels in the image is transformed into a different domain with

the aim of minimizing the statistical dependency between the transform coefficients; this leads

to many coefficients being small enough that they either need not be coded or only require

few bits. Many different types of transform exist but one of the most common is the Discrete

Cosine Transform, a specialisation of the fourier transform for cases of purely real signals.

One example of implementing the DCT within an encoder is offered by the JPEG4 still picture

coding standard. The DCT outputs an array of coefficients that roughly represent the frequency

components of the signal. In the JPEG standard three operations are subsequently performed

which exploit the characteristics of the picture in the transform domain. Firstly, the matrix of

coefficients is multiplied by a visual weighting matrix which amplifies the low frequencies more

than the high frequencies; the aim being that subsequent bit allocation will be biased towards

the more visually important coefficients. Secondly, the result is scalarly quantized to different

degrees depending on the desired output bandwidth. Thirdly, the block is scanned in a manner

which bunches together the predominantly zero-valued high frequency coefficients. The output

of this scan can be compressed by run-length encoding to a degree which would not have been

possible had the picture been represented in the spatial domain.

'Joint Picture Experts Group



3.2.3 Quantization

In any coder, the actual compression only occurs through the action of the quantizer and the

code assigner. Prediction and decorrelation prepare the signal such that few bits are required

for encoding but do not actually reduce the quantity of data by themselves. Quantization can

either be scalar or vector, scalar quantization being a specialisation of vector quantization.

In scalar quantization, the number of signal values which a signal may take is reduced. For

instance, luminance values in an image are often represented by an 8 bit number, allowing a

total of 256 distinct possible luminance values. A scalar quantizer might limited this range to

64 values. The result would be a less faithful rendition of the image but only 6 bits would

be required to represent each pixel rather than 8. Vector quantization is an extension of the

idea of scalar quantization, and has been explored by many researchers [15, 9, 37]. Rather

than limiting the number of discrete levels that a single pixel can take, the number of different

combinations of a set of pixels is limited. This set of pixels, typically a 2x2 or 4x4 square block

of pixels in the image, can be viewed as a vector in N-dimensional space where N is the number

of elements. The task is to find a small set of vectors which together minimize the total error

measure between themselves and the actual vectors that they are to represent. The image is

then encoded as indices to the chosen vectors (blocks of pixels). The vectors themselves are

stored in a 'codebook' which is transmitted along with the encoded image. Compression is

gained through the fact that the codebook is only a fraction of the size of a codebook of all the

possible combinations, allowing each vector to be represented by a low precision number.

3.2.4 Code Assignment

Having passed through all the preceding elements a signal emerges as a set of numbers. At

this stage each number could be transmitted and decoded at the receiver, allowing faithful

reproduction of the image. However, the entropy of the signal would not have been exploited.

A signal's entropy represents the information content of that signal, and can be expressed in bits

per sample. A commonly occurring sample does not carry much information and therefore has a

low entropy; conversely, a rare sample contains much more information and has a high entropy.

Code assignment is performed by an entropy coder which uses a knowledge of the statistics of

the incoming number stream to assign codes with few bits to commonly occurring symbols and



codes with more bits to rarely occurring symbols. The Huffman coder is an example of such a

system. The problem with the Huffman coder is that it only exploits the entropy of individual

samples, and ignores correlation between sequences of samples. Two solutions exist to this. The

first is to combine Huffman coding with run-length encoding. In run-length encoding the value

of a sample is encoded in parallel with the number of sequential occurrences of that sample.

This is an effective method for efficiently encoding long runs of zeros for instance. The second

is to use a more sophisticated entropy coder, the Arithmetic Coder, which assigns codes based

on the statistics of sequences of samples rather than individual samples. These entropy coders

translate the lower energy of the signal into fewer bits.

3.3 Model Based Coding

The last few years has seen the growth of a new technique known as model-based coding [41].

Model-based coding is the name used for the technique of building a model of the image at the

receiver and animating this model using control information gained by image analysis performed

on the input image. To date this work has concentrated on the modeling of faces for videophone

and teleconferencing applications [29, 34]. In these coders, a 3-D wireframe model of a human

head is stored at the receiver and the image of the sender's face is texture mapped onto the

model. The sending machine tries to follow salient portions of the senders face such as several

control points on the mouth, eyes, chin etc. This information is then transmitted (at very low

bandwidth) and animates the computer graphic at the recipient end.

Other approaches to model based coding have been conducted at the Media Laboratory.

Michael Bove [3] worked on using a 'range camera' to create images with 2iD depth information,

i.e. at every pixel not only was the luminance known but also the distance of the object from

the camera. This information was used to convert the image into a 3-D database, both a more

compact representation and also a representation which allowed the image to be viewed from

angles different from that at which it was shot or with different lighting conditions. This is

a powerful representation, but somewhat hampered by the requirement for the range camera.

No such analysis could be performed on existing footage. John Watlington [54] also worked on

synthetic movies, in this case from a 2-D model perspective. He developed a system known as

'VideoFinger', a variant on the Unix 'finger' command which created an artificial video sequence



to represent the users logged into a computer system. Models of individual users were stored

locally and animated according to information derived from the finger information.

It is systems such as these which are the closest precedents to the work in this thesis since

they attempt to view the video image as consisting of objects rather than just signal levels.

This approach allows for a much more compact and manipulable representation of information.

3.4 Implementation

Since the foreground objects such as Ricky and Lucy could not be adequately modeled in

this work, standard signal techniques were drawn upon to compress them. Experiments were

performed using models based on the JPEG and MPEG reference models, with the eventual

architecture acting like a hybrid of these two. Only monochrome images were tested and issues

of compressing colour information were not explored. Frames from the original were broken into

groups of 12 or 24 frames. In this group the first frame was intraframe coded as the key frame.

This key frame is used to provide a means of searching to a specific position within the movie

without having to reconstruct too many intermediate frames to achieve this. It also is required

to refresh the prediction loop; if this is not done then the energy of the difference images will

rise as errors accumulate. The remaining frames were all predicted from the previous frame

using a motion compensated prediction technique working at single pel accuracy. The difference

image between the original and the reconstructed image was transformed using a DCT and the

resulting coefficients multiplied by a visual weighting matrix and quantized. The output of the

quantizer is the bit-stream. When used to code foreground images this coder works sometimes

like a JPEG coder and sometimes like an MPEG coder. This is because for each block there

may or not be a previous block from which to make a prediction. If there is no previous block,

we are acting like JPEG and coding an ordinary picture; if there is a previous block then we

are coding a difference image and therefore acting like MPEG. In addition to the above, in

some instances the image was filtered and subsampled in order to achieve further reductions in

bandwidth.

The MPEG type model can achieve considerable compression of the video signal. It is

able to compress pictures down to approximately 0.5 bits/pel with little degradation. Further

compression is achievable at the expense of gradually diminishing quality. In order to fit the



foreground signals into a 64Kbit/s channel the foreground must be compressed into 0.1 bits/pel,

assuming that it takes up 25% of the picture. This number is arrived at by comparing the

channel capacity with the image dimensions to be transmitted:

picture size 368 x 240

frames per second 24

pels per second 368 x 240 x 24 = 2100000

75% gain from modeling 2100000 x 0.25 = 530000

Bits/pel for 64Kbit/s 64000 / 530000 = 0.1

This describes a particular situation. There are several variables involved, some of which

can be controlled and others which cannot. The primary indeterminate variable is the gain

from modeling which can vary anywhere between 0 and 100% depending on the nature of the

image. The spatial and temporal resolution of the image to be coded and also the bits/pel of

the coding are variables which can be controlled. These interact in that after a certain point it

is better to degrade the image by reducing the resolution rather than decreasing the bits/pel of

the MPEG encoder because the MPEG coder begins to produce extremely ugly artifacts when

it is made to work under 0.1 bits/pel. If bandwidth is available, sometimes it is also beneficial

to send a larger halo around the actors such that the blending can work more effectively.



Chapter 4

Scene Widening

The underlying principle in this work is the separation of the components of the scene and

the creation of models for each component. In particular the background set is to be modeled

and stored in the receiver. In order to do this a scene from the original is scanned by the

computer. Often, in the course of shooting the stage will have been wider than what is visible

in a single shot. At one moment we might be viewing the left half, at the next, the right (in

fact, in 1950's TV shows there is very rarely a longshot that reveals the full width of the set,

they were not constructed with enough height and support for such a shot). However, all the

material has been derived from the same stage and we can create a single 2-D model of the set

if certain conditions are met, most significantly that the pivot point of the camera should not

move. If the camera pivot point does move then several background images must be stored,

each representing a different viewpoint. When the scene is to be rendered, the closest view is

chosen and transformed appropriately to model any differences in perspective. It can be seen

that in such a situation there is a clear tradeoff between picture quality and bandwidth. If more

bandwidth is available then many different viewpoints are modeled, if not then a smaller number

of views are used to create an approximate rendering. However, there are many situations when

the camera pivot does not move significantly and in these cases only a single model is required

for the background and no extra distortion is added. This was the case for the material used.

We call the process of creating the single complete background set scene widening. This

is an idea which could be useful for modern HDTV systems where the aspect ratio is greater

than current television. If current television material is to be shown on an HDTV system then



there is a problem of what to do with the extra width. This is the inverse to the problem of

displaying movies on television today, where the original aspect ratio must be reduced. In the

movies to television case, data must be cut from the image. In the television to HDTV case

data must be synthesised. By modeling the set beyond the extent of what is in view in the

current shot we have the data which is required for filling in those parts of the image. This will

not always be the case, if we are at one of the extremes in a pan situation then we will not have

extra data for beyond the edge we see. In such a case we must either offset the view centre,

look to another scene from the movie where that area was seen, or perform an extrapolation.

However, for much of the time the extra information required to synthesise the edges of the

wider picture is readily available in the extended model of the background set.

4.1 Optical Issues

An optical representation is required for the extended scene which facilitates the mapping of the

input sequence into the extended scene and eliminates distortion in this mapping. Conversely

it must also facilitate the rendering of the extended scene into a particular requested view.

The different forms of anamorphic optical mapping and the relationships between them are

discussed by Yelick [55] and optics texts such as [19, 10]. For our purposes, the aim is to find

an objective representation, independent of camera position, lens type, and angle of view.

The only representation to satisfy the first requirement is a full three-dimensional model of

the set with complete lighting information. However, in two dimensions it is possible to make

approximations to the ideal. A significant change in camera position will reveal new areas and

occlude old areas. A 2-D model cannot completely account for this, but guesses can be made

based on previous views or intelligent extrapolation. The success of such a scheme depends on

the number of views available, the accuracy of the transformations used to generate the new

view and the nature of the extrapolation procedures. Success at this is possible, but by no

means guaranteed.

Combining images which have been shot using lenses of different focal lengths and from

different angles is tractable, since the image that arrives from the world at the camera does not

change, only the transformations which map that image onto the film plane change. Consider

first the case of changing the focal length of the lens. It is sometimes considered that a telephoto



lens distorts the perspective of an image, making objects appear flatter than they really are.

An image taken with a telephoto lens is identical with an enlarged portion of the center of a

ordinary image. The apparent distortion is due to the fact that the size of objects in the frame

make you feel as if you are close to the content of the image while the perspective lines of the

content are those of a distant objects [25]. This disparity appears as a flattening of depth, but

the same disparity will occur when an ordinary picture is enlarged. Therefore, if we wish to

combine images taken with lenses of differing focal lengths, or if we wish to render a scene with

the appearance of a shot taken with at a particular focal length, we merely need to magnify or

shrink the images around their centres.

When the camera direction changes the situation becomes a little more complicated. At

this stage it would be useful to introduce a model of the optics. If we assume that the distance

to the scene is significantly greater than the focal length of the lens and that lens distortions

are not significant then a pinhole camera is a suitable model which can be used to simplify

calculations. This world, shown in figure 4-1 is a cartesian space with the origin at the focal

centre of the lens, the pinhole, and the optical axis collinear with the z axis.

World

Pi
Z ..... ......... ........... L 2 i

L2W .................. ....

F Image
Plane

Llw Lens

Figure 4-1: Optics of Image Capture

We view light rays as coming from a point P.(x, yw, zw), in the world, passing through the



pinhole 0, and landing on the image plane at Pi(xi, yi, -F) (the image plane has a z coordinate

of -F, the focal length of the lens). In the diagram this has been simplified into two dimensions,

with the y dimension coming out of the page. The difference in lens focal length is reflected in

the model as a difference in the distance from the lens centre to the image plane. A point P.,

in the world will then be mapped onto a point Pi in the image according to:

F
Pi = FPW

P..z

It is not acceptable to merely place different frames from a film side by side and paste them into

one image since objects will appear different depending on whether they are viewed in the centre

of the image or on its perimeter. It can be seen from the figure that the image Li of the line

Lw will have a different dimension depending on its position relative to the optical centre of the

lens; L1, and L2w are of equal lengths, while the image of L12, Lli, is longer than L2i. We need

a projection in which image dimensions are independent of camera angle. A spherical projection

is an example of this. Such a projection is what would occur if a pinhole camera were to have a

sphere (or more realistically, a hemisphere) as its image plane. A simplification of the spherical

projection which is suitable in cases where the camera only pans horizontally is a cylindrical

projection with the axis of the cylinder being vertical. This is the image representation chosen

for the extended scene. Using this projection makes it possible to paste together elements from

different frames with no distortion and provides a reference projection from which all views can

be rendered with equal ease (or difficulty). In order to map from the planar projection of the

film image to our 'objective' cylindrical projection we need to perform a transformation, and

obviously we must perform the inverse on re-rendering. This nature of this transformation is

best understood by analysing the geometry of the situation in figure 4-2.
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Figure 4-2: Planar and Cylindrical Projections

Two transformations will occur, one in the height of vertical features in the image and one

in their width. The height of a feature in the image is proportional to the distance from the

image plane to the centre of the lens. This gives us an equation for changes in height:

he = hfr
rf

rf = re cos(6)

rc 1

rccos(O) hfos()

Here he and hf represent the height of a feature as it appears in the cylindrical and flat

projections respectively. The width of features is proportional to their distance along the arc

of the image plane:

Flat Image
Plane



IPC

IPc = rc 0

IPf = rc tan(9)

We = Wrtan(9) = Wf tan(9)

Here, we and wf represent the horizontal position of a point in cylindrical and planar

projections.

Combining changes in focal length and direction of view takes a little care. If we wish to

zoom in on an off-centre section of an image three steps must be performed. Firstly the image

must be mapped from the flat projection to a cylindrical projection. Second the image must be

mapped back to a flat image except with the centre moved to the new focus point. Now that

the viewpoint has changed it becomes valid to magnify or shrink the image about its centre in

order to simulate a change in lens focal length.

The above discussion avoids issues of resolution and aliasing. Whenever an image is resized,

enlargement necessarily entails a loss of image resolution (or rather no gain of resolution with

the increased size of the image) and reduction runs the risk of aliasing. Several approaches

to the issue of arbitrary scaling of images exist in the literature, for instance [45, 24]. The

algorithms employed in the transformations above used an averaging filter for reductions and

bilinear interpolation for enlargements. The issue of loss of resolution in enlargement cannot

be countered but aliasing was minimised by the filtering technique of the downsampler.

4.2 Automatic Scene Widening

To perform automatic background extraction three problems need to be addressed: compen-

sation for camera motion and zoom, elimination of camera noise and removal of the actors.

Compensation for camera movement was performed by analysing the input sequence and ex-

tracting a single pan vector for each frame. Details of this can be found in section 5.3. Work



was not performed on compensating for camera zoom. Removing camera noise is relatively

straightforward since we can assume that it is random and uncorrelated. If this is true then

averaging a large number of frames will lead to the content constructively contributing to the

average while the noise will randomly add and subtract intensity leaving a very small net value

in the final image. Removing the actors is more complicated since they may be uncorrelated

but are not random. A form of non-linear averaging is required which employs the heuristic

that pixels which do not change significantly over time are background pixels. This has been

explored in such applications as traffic detection where vehicles must be distinguished from

the background [47]. The most stable pixels are given strong confidence measures which are

propagated to neighboring pixels. The confidence measures of surrounding pixels is used to

choose in cases where there there is less certainty about the value for the current pixel. A

problem is in distinguishing differences due to camera noise, which should be averaged out, and

differences due to occlusion, where no averaging should take place since we do not wish the

occluding object to contribute to the intensity at that point. The most difficult areas are those

where an object occludes the background for a long period of time. In such cases it is extremely

difficult to judge what the background pixel value should be. What is needed in such cases is

a means of distinguishing spatially that certain objects might belong to certain categories, for

instance a 'people detector'. Currently this is not a feasible task.

An automatic scene extender was created which performed well for the majority of the

image but failed in cases where a particular person was stationary for a long period of time.

For instance, figure 4-3 shows the results of running the algorithm on two Lucy living room

scenes. The first is taken from a sequence in which Ricky moves very little, revealing no

background in a significant area above the icebox. In the second the majority of the image is

sharp and free from noise with the exception of the area to the right of the sofa where Ethel

was standing for a long period of time and a similar region above the left side of the sofa.



Figure 4-3: Automatic Scene Widening.
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The problems are in the areas where people never



4.3 Manual Scene Widening

Although the automatic scene widener worked well for the majority of the image, the problem

of actors who do not move remaining in the image is a serious one. The segmentation software

relies on having a background scene without any actors and will fail if this is not the case. Due

to this, the scene widening had to be manually assisted. A tool was built which presented images

from a sequence (predistorted into a cylindrical projection) to the user. The user can cut any

part of any frame out and paste them together in a single background image (see figure 4-4).

In addition to this, the same tool can be used to artificially create detail for the areas where no

detail is revealed. This is done by extending spatially adjacent areas. Although the result of

this shows obvious artifacts, it allows the segmentation software to succeed in these areas and

in the reconstruction the region will normally be occluded (see figure 4-5).

In a typical sequence the final image will have components drawn from ten to twenty source

frames. An image created in this way tends to show edge artifacts where elements from different

frames have been placed adjacent to one-another. In order to deal with this problem, the tool

was modified such that it also created a history list of the actions of the user. After a full picture

was manually created the computer made a second pass, performing the same operations as the

user but blending each piece together according to the multi-scale blending algorithm described

in chapter 7.



Figure 4-4: Manual Scene Widening - Cut and Paste!

Figure 4-5: Manually extended living room scene. The area above the ice box is entirely

artificially created since Ricky never revealed the background behind him



Chapter 5

Motion

An estimate of the motion of the objects in the scene is very important for several parts of

the thesis. Firstly, the motion of the background set must be found so that the model can be

animated correctly at the receiver. This animated scene is also required for use as an actor-

free background for the segmentation algorithm. Also, in some instances the segmentation of

the actors from the background relied on using the difference in their motion from that of the

background. Several different methods for motion estimation and analysis were investigated,

which will be discussed below.

5.1 Motion Estimation Techniques

A motion estimator is attempting to determine the optical flow field of an image sequence. This

is the projection of the three dimensional motion of the scene onto the image plane, resulting

in a 2-D field of 2-D vectors, each one indicating the translational motion in the image plane

of the object at that point.

If we make the assumption that lighting is not directional and temporally and spatially

uniform (a strong assumption, but one that is often an acceptable approximation in small

regions) the optical flow field can be defined by the optical flow equation:

I(x, y, t) = I(x + dx, y + dy, t + dt)



Expanding the right hand side using the Taylor series and dropping the high order terms we

get:
OI Ox + I 0y dI

TX-a y _t dt
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Intensity gradients x 2-D velocities = Frame difference

This is a single equation with two unknowns and therefore underconstrained. This problem

is known as the aperture problem and heuristics must be applied to obtain a solution, a common

one being assuming that the motion field is smooth. There are several classes of technique for

finding a solution:

" Gradient techniques. These search for a solution to the above equation by determining

the local spatial and temporal gradients.

" Energy based techniques. These are biologically based models which use filters tuned to

detect oriented motion energy.

" Token matching techniques. These attempt to trace the motion of key features in the

image such as edges.

" Block matching techniques. These compare two images on a blockwise basis looking for

the set of local displacements which will maximise the correlation between the images.

" Frequency Domain Correspondence. These search for phase changes in the frequency

domain to indicate motion in the spatial domain.

A number of factors are important to consider in comparing these methods. What is the density

of the motion fields they produce? How well do they perform within and at the edges of moving

objects? What is the complexity of the algorithm and could it be realised in real-time hardware

(important for an image coder)?



5.1.1 Image Gradients

A popular method class of motion analysis techniques is based on the computation of image

gradients in space and time. The earliest such implementation was performed by Limb and

Murphy [28] which computed the sum of the frame difference signal of the whole image and

divided this by the element difference where this was non-zero (moving areas). The frame

difference is an approximation to the temporal derivative of the image a and the element

difference is an approximation to the spatial derivative M. Applying the chain rule leads to

the equation for determining image velocity ! = a a. This is somewhat simplistic since

it assumes only a single moving object within the frame but the central idea is common to

all gradient based techniques. The method was extended to deal with multiple motions by

Fennema and Thompson [7]. The problem here is that using only the first derivatives one

can only compute the component of the 2-D velocity parallel to the image gradient. They

reformulated the problem, showing that the derivatives constrain the velocity to lie in a cosine

curve in polar velocity space in which one axis represents direction and the other magnitude. If

many image points belong to the same object then their velocity constraint lines will intersect

and uniquely specify both components. The intersections were found by drawing these curves

into an accumulator array and searching for peaks. This is the fault of this method in that

peak finding only assigns a single vector for each object, a result that will be inaccurate in all

but cases of simple translational motion.

Horn and Schunk [221 formed an elegant and concise solution to the incompleteness of the

gradient equation and described clearly when the algorithm could be expected to work. They

made two main assumptions. The first is that Tt = 0, the brightness of any point in the

world does not change. The second is a continuity constraint that the image intensities must

be differentiable in both space and time. Both of these assumptions are problematic, the first

because lighting conditions will change and the second because discontinuities are common in

images at the borders of objects. In addition to highlighting these necessary assumptions they

proposed a smoothness constraint that guaranteed a solution to the matching problem. Their

technique was iterative and may not have been the most efficient approach but it formalised

several important issues in gradient based techniques and indicated clearly when they would

fail.



Image gradients can be approximated using finite difference methods such as the above

as long as the signal is bandlimited and noiseless. However, real images contain significant

noise levels which are enhanced by simple differentiation schemes such as Horn's. A variant on

the above techniques was developed by Martinez [32] and Krause [26] which tackles some of

these problems. Theirs is a parametric approach; a region of the image is approximated by a

polynomial of a much lower order than the degrees of freedom of that region. This polynomial

is of the form:
N

I(x, y, t) e I(x, y, t) = Si#i(x, y, t)

I are the real image intensities while I are the intensities as approximated by the model. The

signal model is defined by the basis functions #i which Martinez proposed as a set of three-

dimensional polynomials:

#1 = 1 02 = X 03 = y

04 = t 5 = X2  k6 = y2

#7 = XY #8 = Xt 49 = yt

The matrix of coefficients S is calculated by minimising the error between the actual intensity

values I and those predicted by the model I. The desired gradients of I can then be calculated

from the symbolic differential of # and the coefficients Si.
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and can be found in a similar fashion. Typically a small spatiotemporal region (a

5x5 block x 2 frames) is modeled resulting in an overconstrained set of linear equations: 50

samples to estimate 9 parameters. Because the system is overconstrained in this way, its noise

immunity is considerably increased over other techniques. In addition, Krause showed that the

computations could be effectively implemented in hardware.



5.1.2 Energy Based Models

Recent progress in neurophysiology and perception has spawned a number of techniques at-

tempting to replicate the organisation of the eye into spatio-temporal frequency bands. Adelson

and Bergen [2] look at motion as orientation in the three dimensional x-y-t space and propose

filters that are sensitive to these orientations. The first stage consists of linear filters oriented

in space and tuned in frequency. These are organised in quadrature pairs and their outputs

summed to provide a measure of motion energy in a single direction. These can be further

combined as opponents to produce energy detectors which respond positively to motion in

one direction and negatively to motion in the opposite direction. Heeger [20] demonstrated a

motion energy model which combines the outputs of twelve motion-sensitive Gabor filters in

each spatial frequency band. He also formulates a measure of image-flow uncertainty which he

postulates can be used to recognize ambiguity due to the aperture problem.

5.1.3 Token Matching

Token matching was first proposed by Marr and Poggio [30] with regard to stereo matching,

a computationally similar problem to motion estimation. Marr considered the human visual

system to be operating on the "2 .- D sketch" occupied by image tokens such as oriented lines and

blobs. Ullman [52] also argued against using raw image data rather than tokens as the elements

for correspondence (however, he and Marr later presented a model closer to the gradient and

energy models described below [31]). Such schemes have not been continued in their basic form

but rather integrated into grey level matching schemes either by performing block matching on

the edge image or using edge data as a confidence measure in the motion estimator.

5.1.4 Block matching

Block matching is the most common technique for estimating the optical flow field in image cod-

ing, mostly because computationally it is relatively simple. Current techniques for determining

this field usually make three assumptions:

1. All motion is assumed to be 2-D translation in a plane parallel to the plane of the camera.

2. Lighting is both spatially and temporally uniform.



3. There is no revealed or occluded area.

These assumptions do not hold over lengthy periods of time but are accurate enough on a frame

to frame basis to justify their use.

Block matching techniques were first proposed for image coding by Jain and Jain [231, and

are well described by Netravali and Haskell [38]. The current image is analyzed on a block by

block basis against the preceding image with the aim of finding which block in the preceding

image most closely resembles the current block. The block of pels is shifted across an area of

the previous image and a difference measure taken at each displacement. The motion vector is

derived as the displacement shown to yield the lowest difference measure. There are several error

measures which can be used, for instance the correlation coefficient, mean squared difference

or absolute difference. These three are in decreasing order of computational complexity and

accuracy. Experimentally it has been observed that the choice of method does not have a

significant effect on the amount of searching or the final estimate for motion so the absolute

difference value is usually chosen for reasons of simplicity.

A naive scan method is to scan all the blocks within a given range. However the amount of

computation required can be considerably reduced by using methods which assume a uniform

image gradient as an aid to finding the vector. Three common schemes exist: 2-D logarithmic

search, N-step search and conjugate search. The motion estimator used for this work employed

a 4-step search whose operation is as follows. Eight pels in a square of side 2N around the

search center are tested in the first step (see figure 5-1). In the second step eight pels are

similarly searched but centered on the minimum of the previous step and with a narrower

search width. This process is repeated until the search width reaches zero. The vector is chosen

as the minimum point of the final scan.

The accuracy of the above methods is limited to a single pel. It is possible to perform

fractional-pel motion estimation by creating a grid in the search frame which contains interpo-

lated values at intervals of the accuracy of the desired result. To do this requires a considerable

increase in computation time and has been shown by Girod [12] to exhibit decreasing marginal

returns; half pel accuracy estimation is an improvement over full pel accuracy but at a quarter

pel accuracy little further gain can be seen.



Figure 5-1: Block Matching. N-Step Search Pattern

5.1.5 Frequency domain techniques

Block matching is a localized operation. A disadvantage of this is that only a single vector is

produced for any single block in the image and displacement is hard to measure at discontinuities

in the optical flow field. An alternative approach to estimating displacement vectors discussed

by Girod [13] is to estimate the probability density function (PDF) of the displacement vectors.

The PDF can convey important information about the global motion: if the image contains

only a single moving object, the PDF will display only one impulse, multiple moving objects are

seen as multiple peaks. The PDF of the displacement vectors can be derived from the spectra

of two images using the relation:

P(w ,wY) = 10(WX, WY)
0o0(We, WY) 4D11 (W, WY)

4oo and 1ii are the fourier transforms of images 0 and 1. Gio is the cross spectrum of the

two images, the fourier transform of one is multiplied by the complex conjugate of the transform

of the other. Essentially, P(wx, wy) represents the difference in phase between the two images.

In a situation where there is solely translation within an image then there will be no change

in the overall energy of the signal, merely a change in phase. The output probability density

function will indicate how many objects are moving within the frame and with what velocities.

However, in order to find out where these objects are in the frame it is necessary to return to



a localized technique such as block matching.

5.2 Implementation

The motion estimation for this thesis was performed by an N-step search block matching

method. The reason for this was that it is computationally straightforward and proved to

provide adequate results for the estimation of the motion of the background, the most impor-

tant measure required for this work. It is not surprising that it was successful since only a very

coarse estimate of motion is being searched for. However when motion was used to segment the

images into individual elements (as described below) the performance was considerably poorer

and this may in part be due to the inaccuracy of the output of the motion estimator at finer

scales and at the edges of the moving objects. Greater success might be gained by implementing

some of the other motion estimation techniques described above and analysing their relative

abilities to identify motion boundaries,

5.3 Extracting Camera Pan

Once an approximation to the optical flow of the image was available attempts were made to

derive the motions of the various objects in the set from this. Most important is the extraction

of a single pan figure for the predominant motion, assumed to belong to the set. Since the

motion was derived from a localised technique, it had to be scanned in order to create the

histogram of the probability density function. Each coordinate of the histogram represents a

direction of motion, and the height of the histogram at that point represents the number of

vectors in the image judged to be moving at that velocity (see figure 5-2).

The histogram is analysed for peaks by using an algorithm which uses the analogy of a

draining lake. The water level is iteratively dropped and as each new peak appears it is checked

to see if it is a distinct peak or whether it is part of an already exposed peak. The process is

stopped when a predetermined number of peaks have been found or when the water level drops

below a threshold.

Performing this analysis on histograms from the Lucy sequence derived by block matching

proved to find the predominant motion of the set with some accuracy but not other parts of the
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Figure 5-2: 2-D Histogram of motion vectors

scene. People moving in the foreground do not conform well enough to the assumption of rigid

body translation to create a coherent enough peak in the histogram to identify them accurately

by this method.



Chapter 6

Segmentation

In order that models can be created of the individual components in the scene it is necessary

that these components be identified. This is the segmentation problem. A great deal of research

has been performed in machine vision to tackle this problem, some of which will be discussed

in relation to how it might assist this work. However, much of the difficulty of segmentation

has been sidestepped by extracting the background set by methods described earlier. Once

we have an image of the set without any actors then we only need to compare the original

against that background and where we are confident that the two differ we describe those

components as the actors. This is a much simpler task than performing an analysis within the

frame and attempting to group together areas with similar characteristics, the basis of most

segmentation algorithms. However, if machine vision techniques are used in parallel with the

background comparison this makes the segmentation more robust and better able to deal with

some ambiguous situations which exist for background comparison alone.

What are the characteristics of a good image segmentation? Regions should represent

consistency in some characteristic, either in a signal sense representing perhaps uniform texture,

or in a content sense representing uniform 'Ricky-ness'. Regions should be contiguous without

small holes and their boundaries should be simple, unragged and spatially accurate. Achieving

these aims is difficult because strictly uniform regions will tend to be ragged and dotted with

small holes. Also, sometimes separate items will have similar characteristics causing a merging

of regions which are distinct. Image segmentation techniques tend to be heuristic in nature and

vary in the compromises they make and properties they emphasise.



The segmentation masks needed for this work must have several characteristics. A spatially

accurate division of the image is the most important. In addition, assumptions about the nature

of the expected masks can be a great help, such as assuming that the edges should be smooth

and the mask should not contain internal holes. Sometimes these requirements conflict. If Lucy

has her hand on her hips then there will be a hole between her elbow and her body. In such

a situation the requirement for spatial accuracy conflicts with the requirement for no holes.

Another important point concerns what is to be considered a component. Ideally we wish to be

able to distinguish each independent item in a scene. However, is the bottle of champagne in

Ricky's hand a part of Ricky, or independent from him? I guess we should ask. For the initial

segmentations this point bore little relevance since the only distinctions made were between

'background' and 'foreground'. However more sophisticated versions of the coder ought to

have a more complete understanding of the scene. Since it is difficult to define a homogeneity

measure for 'Ricky-ness' or 'Lucy-ness', attempts at reaching these goals were tackled mostly

in image rather than measurement space.

6.1 Machine Vision approaches to segmentation

6.1.1 Clustering and Region Growing

Haralick and Shapiro [18] have classified segmentation techniques and distinguished between

techniques that look to find clusters in the measurement space and those that look to find regions

in the image space. There is an interplay between these two domains which can be exploited

in different ways. An emphasis on clustering in measurement space will result in more uniform

and homogenous segmentations but will also display unwanted spatial characteristics such as

holes and ragged edges. An emphasis on the spatial domain will conversely lead to smoother

regions but which contain more widely varying data.

The most straightforward method for clustering in measurement space is by creating a

histogram of some measurable feature of the image, such as grey level. Groups are searched

for in the histogram, divided and then this division is mapped back into the image space.

This method works in cases where the image consists of a small set of distinct objects but will

fail in more complex cases because the measurement characteristics of objects will sometimes



overlap and important spatial distinctness relationships are being ignored which might otherwise

disambiguate the overlapping data.

To take advantage of spatial relationships in the image a technique called region growing

is used. In single linkage region growing schemes, at each pixel every neighbouring pixel is

searched and joined to the current pixel if its properties match a similarity criterion. The

image segments are the complete set of pixels belonging to the same component. This scheme

is attractive due to its simplicity but is very susceptible to creating false merges due to the

localisation of its operations. Some hybrid techniques have been developed which make the

measurement value of a pixel be dependent on its neighbours such that they represent some

aspect of their region rather than solely their own value. In particular an edge operator is passed

over the image and whether a pixel is considered an edge or otherwise affects the way in which

it propagates its value to others. Like many other techniques the performance of this varies

with the type of image being analysed and the quality of the edge operator. Centroid linkage

region growing is another technique where a table of all current segments is stored and updated

as the image is scanned in a regular manner. If the new pixel value matches a known adjacent

segment, it is added to that segment and the segment value is updated, if it does not a new

segment is created. This can be a memory intensive operation but takes a more global view of

each segment and has the advantage of being able to place boundaries in areas of weak gradients

since it is not comparing pixel values against their neighbours but against the average for the

whole region. A different technique again for spatially based segmentation, first suggested by

Robertson [51], is the split and merge algorithm. Initially the whole image is considered to

be a single segment. This segment is recursively split if the region exceeds a homogeneity

threshold. A last pass is then made merging regions which are similar but were never tested by

the region-splitting. Lastly, it is possible to determine image segments by combining clustering

in measurement space with spatial region growing. Haralick and Kelly [17] suggest that this

should be done by first mapping all the peaks from the measurement space histogram into the

image domain. These points are then propagated using spatial region growing while ensuring

that it does not grow into a region belonging to another peak. Aach et. al. [1] have a similar

technique which first implements an object detection scheme in measurement space and then

performs a contour relaxation in image space to obtain a better mask. A similar technique is



also used by Ohlander et. al. [39].

6.1.2 Detecting Motion Boundaries

All of the above techniques are based on still image analysis. Another set of segmentation

methods look to the task of identifying objects by their motion, i.e. segmenting the optical

flow field. Here the assumption is that moving rigid bodies will show up as regions of distinct

velocity in an optical flow field. The methods for detecting boundaries can be classed as those

which detect boundaries before, simultaneously with, or after the calculation of the optical flow

field.

There is a important reason for detecting motion boundaries before computing the optical

flow field. This relates to a paradox inherent in current methods for computing visual motion,

between intensity based methods and block-matching methods. Intensity-based methods have

to integrate the local motion measurements due to the aperture problem (see section on motion)

and this is typically performed by assuming the flow field varies smoothly. This assumption is

true everywhere but at motion boundaries such that errors are highest at the very locations we

are attempting to find. Block-matching schemes produce sparse flow fields. These flow fields

must be interpolated such that edge detectors can be used to locate the motion boundaries.

This process, however, can smooth over the fields to such an extent that the boundaries are no

longer evident. This is the dilemma: in order to detect boundaries with edge detectors we need

an error free and dense motion field; however, to compute such a field we require a knowledge

of the boundaries. Spoerri and Ullman [48] suggest methods for the early detection of motion

boundaries to solve this problem. One is bimodality tests, where a local histogram is created

for each point. If this histogram displays two peaks then it indicates that the pixel is on a

motion boundary. Another is the Kolmogorov-Smirnov test, which uses a statistical test based

on the fact that the populations of motions are different on each side of the boundary. A third

method, the Dynamic Occlusion method, is based on the fact that motion boundaries tend

to be areas where background area is occluded and revealed regularly. Other methods have

been proposed, such as that of Reichardt and Poggio [43] where direction selective movement

detectors inhibit flicker detectors when the same movement appears in the center and surround

of the movement detectors. Flicker detectors with significant activity then indicate the presence



of motion boundaries. Hildreth [21] uses the flow component in the direction of the intensity

gradient, the normal flow component to detect motion boundaries. This is based on the fact

that if two adjacent objects have different motions then their normal flow components will

change in sign or magnitude across the boundary.

Several techniques exist to detect discontinuities after the computation of the flow field.

Nakayama and Loomis [36] detect motion boundaries using a center-surround operator. Potter

[42] uses region growing techniques to group features of similar velocity, making the assumption

of translational motion. Thompson et. al. [50] show that object boundaries can give rise to

discontinuities in the image flow field and these could be detected as zero-crossings in the

Laplacian of the components of the flow field. Terzopoulos [49] detects discontinuities in sparse

surface representations by marking locations where the thin plate used to interpolate between

the sparse data points has an inflection point and its gradient is above threshold.

6.1.3 Segmentation by comparison against the background set

Machine vision approaches to segmentation such as those described above tackle the segmen-

tation problem with few clues as to what is being searched for. However, if a model of the

background set exists and we are trying to extract foreground objects then the task is made

considerably simpler. The task becomes one of performing a comparison between two images

and extracting those parts which differ. The problems which arise in performing this task are

threefold. One is that the original image sequence has considerable time-varying camera noise

such that individual pixel values in the original will rarely exactly match their partners in the

set image. The second is that the background set construction process does not guarantee

the creation of a perfectly accurate model such that some image features will be misplaced or

contain pasting artifacts. The third problem is in many ways more serious, this is the problem

that variations in the intensity values in the picture arise not only from objects moving within

the set but also from their shadows. If we are searching for significant differences between our

set image and our current image then shadows will often show up as being distinct objects.



6.2 Segmentation results

Two methods were explored to perform the segmentation: analysis of correlation measures

between the current frame and the stored background image and analysis of the motion field

of an image. The output of both analyses are extremely noisy, so work was also performed on

filters to reduce the noise in the segmentations. When combined, the output of the segmenting

software and the noise reduction software almost always would catch the actors, the main

problem being that it would also catch much of the background surrounding them.

6.2.1 By motion

One method of segmenting out foreground from background is by looking for regions of distinct

velocity in the image and making the assumption that each of these belongs to a different

object. The original image sequence was analysed and a sparse motion field output using a

block-matching motion estimation technique. A histogram was created from the motion vectors

and this histogram searched for peaks. These peaks were mapped back into the image space

and the results of this fed into the noise filters described below. The results of this process

had many problems. The most obvious is that when the actors are not moving they become

invisible, something of an undesirable trait. Also, people do not fit into a rigid body model

and so their motion fields do not form into distinct areas. They can however be identified when

compared with a non-random field, such as a still background. In such cases the actors were

easily identifiable and formed clear segmentation masks. However, there are enough instances

where this technique is incapable of accurate identification that it was not considered to be

useful as a general tool.

6.2.2 By correlation

The main technique used to create the segmentation mask which distinguishes between back-

ground and foreground is the measure of the correlation between blocks in the original image

and blocks in the actor-less 2-D background model. Once a single image of the background

exists and is animated according to the analysis of the motion in the original, two sequences

are available for comparison. These two sequences ought to be identical in every way except



for the fact that the reanimated sequence has no actors. Extracting the actors is then per-

formed by the process of comparing these two and where they differ we assume that we are

seeing the foreground image. In reality, of course, many problems arise. The animated back-

ground contains lighting errors and distortion errors and the original contains noise. Simply

subtracting the two images from one another creates an image with significant energy in parts

of the background. However, if rather than calculating absolute differences we calculate the

correlation coefficient between the two images on a blockwise basis the ability to distinguish

between genuine differences and noise is considerably increased. The correlation coefficient r is

the normalised covariance between two images, defined as follows:

C
r =

oOOr1

C = E{(zo - 7o)(zii - 71)}

where Yb is the average value of block b

Ob is the standard deviation of block b

Xbi are the pixel values in block b

This equation returns a value representing the difference between two blocks but which is

independent of the strength of the values being compared; the judged difference between two

images will not be affected by their lighting conditions. The output of this stage yields a

segmentation such as that in figure 6-1. The actors are captured but so is a great deal of the

background. This creates the requirement for post-filtering the masks (see below).

6.2.3 Combining Multiple Resolutions

Both the motion based segmentation and correlation based segmentation experiments were

performed using different values of block size and threshold. The more significant of these two

variables is undoubtedly the block size. If a small block size is chosen then a high resolution

mask is created but the image contains a great deal of noise where the algorithm has been

mistaken in its decision. The reason for this is that with a small blocksize it is much more

probable for two images to randomly correlate than with a much larger blocksize. At the larger

blocksizes the noise could be completely eliminated but only a very crude segmentation mask



Figure 6-1: Segmentation output of the Correlation Stage

would be created with poor spatial accuracy. Obviously what is needed is somehow to combine

the noise immunity of the large block size method with the high resolution of the small block

size method. Two different solutions were explored.

In the first the image was analysed at a range of blocksizes, starting with the largest. At each

iteration the image was only analysed in the vicinity of the regions indicated by the previous

pass. For instance, the image would be analysed looking at correlations on a 32x32 blocksize

grid. As was previously mentioned this produces a crude but noise free image. The next pass

will look at a 16x16 grid, but only in the vicinity of the areas marked by the previous pass.

This carries on down to 4x4 or 2x2 by which time a mask has been created which combines

the characteristics of the noise immunity of the high blocksize correlation measure with the

resolution of the low blocksize measure.

In the second all measurements are done at large blocksizes (16x16, 32x32) but rather than

tiling the image as is done by the approaches previously mentioned the block slides along a

small number of pixels at a time, typically 2. This approach is highly intensive on processing

power and provides reasonable results, except that it has the property of integrating the mask

at a boundary. A smooth mask is created but it surrounds all foreground objects with a 'halo'

with a width equal to half the blocksize.



6.2.4 Filtering the masks

Whatever the technique used to make the initial segmentation decisions, the resulting mask

tends to have several undesirable properties which can be considered as noise. Several heuristics

were applied to reduce this noise and these are listed below:

* Removal of regions below an area threshold. This only allows large objects to be consid-

ered as viable segmentations. This is very effective at extracting the people but means

that small objects will always be ignored.

e Flooding of holes surrounded by larger regions. This creates much cleaner masks by

assuming that random holes were created by noise rather than correlation. Usually this

is very effective but there are situations where real objects contain holes, the filter is a

disadvantage at such times.

9 Applying a time constraint that only allows the mask to move a limited distance from

frame to frame (a momentum constraint). This is very useful in supressing temporal

noise and is almost always consistent with the behaviour in the real image. Its only

disadvantage is that if it is initially fed with a bad mask then it will perpetuate the initial

errors. Manually touching up the key frames will stop this from occurring.

* Removal of apparent artifacts of the analysis methods, e.g. thin vertical and horizontal

lines.

The application of these filters was essential in creating usable masks for the coder, and in

most cases the filters led to a net improvement of the mask. This can be seen by comparing

figure 6-2 which is an example of the foreground as seen after filtering with the same figure

before filtering in figure 6-1 earlier.

6.3 Encoding the segmentation

The reason for segmenting the image is to reduce the bandwidth in a video encoder. For this

reason it is important to consider how the segmentation information is to be encoded in such

a way as to add minimal extra bandwidth to the bitstream. One method might be to encode



Figure 6-2: Segmentation output after filtering

the segmentation implicitly within the codes for image intensities as formulated by Mok [35].

Another is to merely code the segmentation mask at a much lower resolution than the image.

This makes sense if the foreground is being encoded by a fixed-block size block based encoder

such as JPEG. Only one bit is required for each 8x8 block to indicate whether it is being

transmitted or otherwise. This code itself can be run length encoded to reduce bandwidth

further, adding very few bits to the data stream.



Chapter 7

Reconstruction

7.1 Issues

The encoder has divided the picture into parts. The receiver has the job of putting these parts

back together again. There are two issues which make this problematic. The first concerns

placement, the second lighting. The estimates of motion in the original will not be completely

accurate. In scenes where there is a large amount of conflicting motion, the motion estimates

might be several pixels in error and even in the best cases there is a limit to the accuracy of

the estimator (one pixel in the case of the implementation for this thesis). It is possible to

perform motion estimates at sub-pixel accuracies; this was experimented with and gave results

that were an improvement over single pixel estimation (at a much greater computational cost)

but other errors tend to render the measurement accuracy less significant. The problem with

lighting is that the single model of the background set which is constructed does not contain

changing lighting information. As the actors walk about the set they cast shadows and this is

not accounted for. If the foreground image of the actors carries around a halo of the background,

as is usually the case, then the lighting conditions in this halo will not be consistent with the

lighting conditions in the static image of the set. The result of this is a very visible discontinuity

surrounding the edge of the foreground image when it is placed against the background. In the

case where an actor is being placed against a background from which he or she was not derived,

performing a good blend is even more important.



7.2 Placement

The placement problem was tackled by using the halo of background surrounding the actors to

our advantage. This halo contains useful registration information which can help to indicate to

the software from where in the background the actor was actually taken such that she or he can

be placed back in that same spot. A strip was taken around the outside of the foreground image

and this strip was moved in a search around the vicinity indicated by the motion estimate. The

actual point of placement was chosen to be the point where the correlation of the foreground

strip with the background was maximised. Using this method had variable results for two

reasons. The first is that the strip only roughly represented parts of the foreground image

that were actually background halo. If a more accurate mask could be made around the actor

then the assumption that the surrounds represent background would be more valid. The main

problem with this method is that random erroneous placements will lead to the actor jumping

about in the scene in a most unnatural manner. An attempt at a solution to this would be to

take a more global approach. The current software checks the position of the actor at every

frame. A better approach would be to average results over a number of frames and place a

continuity constraint on the motion.

7.3 Blending

The lighting problem displays itself as discontinuities in the recreated frame at the edges of

the replaced actor. This is a blending problem. There are several approaches which one can

take to blend one picture into another which vary in their complexity. The simplest is to use

a weighted average of the two images in a transition region. The question that arises is what

is a good width for a transition region. If the width is too small the boundary is distinct as a

discontinuity in the DC value of the image. If the width is too large then small features will

appear doubly exposed. What is required is a transition width of the same order as the feature

size of the objects being merged. In an average scene there will be objects at many scales being

merged, making a single transition width fail. One answer to this, and the technique used, is to

use a method developed by Burt and Adelson [4] in which they divide the image into a laplacian

pyramid. Forming a laplacian pyramid is a means of bandpass filtering an image; the image is



divided into its components, each of which span one octave of spatial frequency. This fact can

be exploited for the purposes of blending by merging the two images separately at each level

of the pyramid. The transition width is kept constant for each image but the fact that the low

frequency images are at a lower resolution than the higher frequency images means that they

have a much wider effective transition width. This technique allows one to match transition

width to the spatial frequency of the feature, creating a final blend with neither of the problems

mentioned above concerning a blend using a single weighting function.

An example of a scene reconstructed in this way is shown in figure 7-1.

Figure 7-1: Reconstructed Widened Scene

7.4 Scene Modification

In addition to performing an accurate reconstruction of the original, several sequences were

created which explored issues of picture modification. Three areas were approached: modifying

the camera parameters; modifying the background set and changing the motions of the actors.

Two camera parameter variables were altered, one being the pan and the other the zoom.

If the background set is large in comparison with the picture area, then there is the flexibility

for altering the camera path or enlarging the picture. In particular, this alteration would be

important at the edges of a pan across a widened set where the extents of the pan will need to

be limited in order that the picture area is always filled. The addition of different zooms would

be an artistic judgement. A sequence refilmed in this way is shown in figure 7-2.



Figure 7-2: Sequence with zoom added

Changing detail in the background set might be desirable for a number of reasons. The

issue explored here was in changing details. In one of the scenes a door at the back of the set is

left open. This might have resulted from a mistake during the filming and if this was the case

then being able to close the door without a reshoot would be desirable. All that is required

is that the one shot of the background set needs to be retouched, rather than every frame of

the sequence. A similar situation would occur if the film was to be colorized. A problem that

arises from this is that any background surrounding the actors when they pass in front of the

altered scene will become invalid. This can be solved in one of two ways, either segmenting

the actors out accurately so that they carry no background with them, or placing an artificial

halo around them which will blend more cleanly with the new background. An example of a

sequence retouched in this way is shown in figure 7-3.

Changing the action of the actors is the hardest task in scene modification, and cannot

currently be performed very gracefully. However, several ideas were considered concerning this

problem. First the issue must be divided up into analysis and synthesis. The computer must

be able to ascertain who is performing what, transmit that information and then synthesise a

similar scene at the receiver. The analysis problem is extremely hard with current tools. All

that could be ascertained were details such as how many people were in the scene and roughly

where they were placed. This information was interpreted and an attempt made at ascertaining

a single clean path. In some previous work [33], scenes were shot of actors performing various

'quanta' of action. For instance walking was divided into single paces and a continuous walk



Figure 7-3: Modified sequence with closet door closed

made up by concatenating paces. A basis set of actions was built up for each individual which

could subsequently be used to simulate larger actions. This approach was considered for the

current work; however, the task of animating human action cannot be properly tackled in a

2-D model. The way forward is to create 3-D models of people which can then be conformed

with the people in the original sequence, i.e. heights and proportions changed appropriately,

face texture mapped on and clothes added. Such work was beyond the scope of this thesis.



Chapter 8

Results, Discussion and Conclusions

8.1 Results of the software work

An image coding model was designed and implemented in software which utilised the idea of

creating a 2-D model of the background set to improve the efficiency of compression. This model

was shown to be able to achieve bandwidths of down to 64Kbit/s with the material chosen. The

resulting video showed considerable artifacts for which there is no easily quantifiable measure.

Since the picture is being treated from a semantic point of view signal-based measures of quality

are not appropriate. At very low bandwidths the most apparent artifacts were due to the coarse

MPEG-style coding of the foreground. As the bandwidth was increased, the foreground image

gained in quality and the artifacts at the boundary of the foreground and background images

became more apparent. Tapes were created which demonstrated sequences coded at 64Kbit/s

and 370Kbit/s. Other sequences were also animated which demonstrated picture modification,

and in particular scene-widening (and some of its problems).

8.2 Discussion

This work raised many issues which are interesting to consider in order to gain an insight into

the viability of applying methods such as those presented in this thesis to image coding. These

will be discussed under the headings of low bandwidth video, scene-widening and object-based

motion compensation.



8.2.1 Low Bandwidth Video

The coder was shown to be able to encode the chosen material down to 64Kbit/s. A considerable

proportion of the bandwidth reduction was achieved by the MPEG coder and sacrifices in

resolution. The gain resulting from the foreground/background separation in the instances

chosen was to reduce the bandwidth to approximately } of what it would otherwise have been.

A judgement of the technique should address its robustness in dealing with a variety of source

material and the nature of the artifacts it produces.

In order for bandwidth gains to be achieved, a reasonably substantial portion of the picture

must be susceptible to modeling. This means that it must satisfy several requirements. One

is that the background must be relatively static. A generalisation of this would be to make

a distinction between material shot indoors and outdoors. In an indoor scene the model of a

static set in which the actors move is usually relatively valid. In an outdoor situation this is

likely to fail for several reasons, either the background contains moving objects such as cars,

people or trees waving in the wind, or the camera might be in constant motion such as when it is

tracking a person walking about a town. In the tracking case a great deal of new detail is being

revealed each frame, rendering the gains of storing a background model insignificant. In such

a case however, it might be possible to improve the system by creating a more dynamic model

such as that discussed in the section on object-based motion compensation below. Another

requirement is that the modeled part of the picture must make up a significant portion of the

picture area. It gains us little to know how the background appears if a close-up of two heads

talking take up 80% of the frame and we cannot model the heads. A third requirement relates to

the temporal validity of the model. If a model of the set remains valid for a sequence of several

seconds or more then the overhead of transmitting the model becomes insignificant. However,

if the camera pivot is in rapid motion then the current model of the set will become rapidly

redundant. Obviously, even if a set is valid for only two frames rather than one then bandwidth

will have been reduced, but often the artifacts will not justify the gain. The break-even point

is dependent on the application and on the nature of the complete movie. If the movie is

mostly modelable then the coder can send high-bandwidth portions in advance during a low

bandwidth section of the movie thereby smoothing fluctuations in bandwidth requirements.

This technique makes considerable bandwidth fluctuation inevitable, which would disqualify it



from some applications.

The artifacts of utilising this technique are interesting to consider. One set of artifacts arises

from the compression of the foreground material. It is interesting to note that this technique

increases the point at which MPEG-type artifacts become truly unbearable. The reason for

this is because the artifacts do not take up the entire picture space. The actors look very dirty

while the background is clean. The resulting picture is ugly, but considerably better than the

sequence where the entire image had been coded using MPEG at the same foreground bits/pel.

The latter is very hard to watch since the entire picture contains high temporal and spatial noise.

Modeling the background gives the eye a rest from most of that noise. A second artifact relates

to the pasting of the actors back into the modeled background. The multi-resolution blend

performs a very good job of removing many of the most obvious problems associated with this.

However, sometimes lighting differences between model and foreground are too considerable to

be blended away and become apparent. In order to deal with this greater attention needs to be

placed on the lighting issue. The beginnings of an approach towards this would be to attempt

to identify which differences in luminance in the scene could be attributed to objects and which

to shadows. If this could be done then shadow information could be simulated in the model. To

transmit this shadow information would require more bandwidth, so it might be considered an

'optional extra', sent if bandwidth permitted to increase the quality of the picture. However,

this work on shadows was beyond the scope of this thesis.

8.2.2 Scene Widening

The work presented here showed a viable technique for performing scene widening for such

applications as HDTV. The investigation also revealed some of the less obvious problems that

are associated with attempting this. In a similar manner to the discussion above the technique

is dependent on the ability to model the scene, however it is more flexible in many ways. The

pitfalls of scene widening can be considered as those being associated with the set and those

associated with the people.

The first issue concerns rendering parts of the set not currently in view. We can think of

several situations: the middle of a pan or zoom, the edges of a pan or zoom, or a still shot. The

middle of the pan or zoom is relatively trivial situation; all that is required is a presentation



of a wider view of the extended set. The edges of a pan can be dealt with by offsetting the

center of view such that the extra area is not created equally on both sides but rather at the

edge where data is known. The most difficult problem is at the widest zoom or the still shot.

Here, no information is available of the surrounds of the picture. Two options are available,

either a search for the required material from a different part of the movie, or in the last resort

computer graphics could be used to render a guess at what would be at the edges of the set.

The second issue concerns modeling out of view people. Take the situation of the close up

of two heads. It is possible that this could be shot in such a way that the backs of their heads

would be out of view. If the heads can be modeled then the situation is solved by resorting

to the model to fill in the missing portions. If the heads cannot be modeled, manual methods

must be resorted to in order to fill in the missing pieces. A more complicated problem arises

if one individual is known to be in the room but is temporarily off-camera. In such a situation

we not only do not know what they look like but we also do not know what they are doing.

That must be up to the creativity of the scene widener...

8.2.3 Object-based motion compensation

When a motion-compensated predictive coder is made to operate at low bandwidths the artifacts

that appear are ugly and counter-intuitive. The edges of objects become ragged and this

raggedness changes each frame creating temporal as well as spatial noise. The problem is that

the objects which are being motion compensated are small blocks of the picture and often

blocks from parts of the same object will have been judged to move in different directions. An

approach towards a solution to this problem lies in the modeling work investigated in this thesis.

If the motion-estimator and compensator could analyse the picture in terms of determining the

motion of the objects within the picture rather than the blocks within the picture the resulting

image would not degrade so badly at low bandwidths. The boundaries and the internal detail

of each object would remain contiguous. The distortions which would arise would be in relative

placement and in differences due to object motion which is not-modeled, in most cases all

non-translational motion. An observation of such pictures indicates that such artifacts are

more visually acceptable than artifacts arising from ordinary motion compensation at the same

bandwidth.



8.3 Conclusions

A novel form of image coder was created which addressed the issue of using the structure

of a video sequence to aid in the coding process. Many problems were successfully tackled,

while others require further investigation and development. In particular improvements could

be made in the segmentation of the actors, addressing lighting issues and in temporal noise

reduction. Progress in these areas will lead to a more robust model and improved final picture

quality. The system would be radically improved if a method could be found to successfully

create models of the actors.

The techniques introduced in this thesis propose an interesting and productive approach

to representing images. In its current condition, the scope of images sequences which can be

modeled and encoded in this way is limited. Under the present paradigm for image coders this

would render it to be of little use. However, there is no ideal 'universal' image coder and it

is becoming clear that encoding techniques should be tuned and modified to suit the material

which they are attempting to encode. The techniques presented here worked very well with

'I Love Lucy' but would be highly unsuitable for many other pieces of film. What has been

created is an optimised 'Lucy encoder'.
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