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ABSTRACT

As air traffic congestion grows, ground-holding (or "gate-holding") of aircraft is
becoming increasingly common. Ground-holding is the practice of delaying the
departure of a flight due to anticipated congestion at the airport of destination,
because it is both less expensive and safer, for aircraft to wait on the ground, prior to
take-off, than in the air.

The problem of developing strategies for deciding which aircraft to hold on the
ground and for how long (the "ground-holding policy problem," GHPP) is a difficult
one. The GHPP is: combinatorial, because of the large number of aircraft and landing
periods ("slots"); stochastic, because there is often a large amount of uncertainty
about the acceptance rates ("landing capacity”) of the airports of destination; and
dynamic, because the state of information regarding airport capacity and expected
delays is updated throughout the day.

Since ground-holding is only a relatively recent phenomenon, little has been
done to date on developing sophisticated solutions to the GHPP which could
potentially result in very large cost savings to the users of the ATC system. Research
on probabilistic models of the GHPP has been limited to static solutions, producing
“once and for all" ground-holds at the beginning of daily operations. The
computational complexity of such models requires heuristic approaches in order to
solve practical instances of the problem.



In this thesis, we present first a dynamic solution to the probabilistic GHPP
based on a dynamic programming algorithm that exercises control on individual
planes by deciding whether or not flights should be allowed to depart at each time
period. The computational complexity of the algorithm limits its practicality. We
were able to solve only small problems using a CRAY-2 supercomputer. However,
the exact modelling approach provides insights which lead to a simplified model
that captures the key elements of the real system and through which high quality
solutions can be obtained.

This new model simplifies the structure of the control mechanism by exercising
ground-holding on groups of aircraft instead of individual flights. Static and
dynamic optimal solutions to the simplified model are derived using stochastic
linear programming with recourse. The algorithms allow for general ground-hold
cost functions for several aircraft classes and the cost of air delays is assumed to be
identical for all planes. The resulting linear programs are manageable for practical
size problems. We have been able to solve problem instances for one of the largest
airports in the U.5 using just a powerful PC.

Both, the static and dynamic stochastic programming formulations, indicate
cost advantages when compared with deterministic solutions under different
weather scenarios. The dynamic stochastic programming algorithm performed
significantly better than the static motivating the development and implementation
of a very fast dynamic heuristic that works with a deterministic forecast. This
heuristic also gave solutions which are better than those obtained through the static
stochastic programming algorithm. We also compare performance of the algorithms
tested to the passive strategy of no ground-holds, i.e. to the strategy of taking all
delays in the air.

Finally, we discuss the GHPP for the entire air traffic network. Possible
approaches to exact and heuristic modelling are explored and new research
directions are proposed.

Thesis Supervisor: Professor Amedeo R. Odoni
Title: Professor of Aeronautics and Astronautics
and of Civil Engineering
Codirector, Operations Research Center
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CHAPTER 1

1. INTRODUCTION
1.1 The Need for Air Traffic Control (ATC)

The US air traffic network started to experience significant congestion during
the decade of the 80's. Currently, 450 million airline passengers a year travel in the
US [1] generating approximately 100,000 operations every 24 hours [2], with at least
18 hub airports exceeding their practical annual capacity and 13 additional major
airports expected to be fully congested by the early 1990's [3].

Since the system is operating under significant congestion, flow must be
managed so that it can proceed without risk to safety. The ATC system does a very
good job in this regard. However, there is room for improving the efficiency of
operations. During 1986, ground delays alone averaged 2000 hours per day,
equivalent to grounding 250 airplanes which represents a carrier about the size of
Delta Airlines at the time [4]. Capacity shortages are likely to continue during the
next decade, even under the most ambitious airport development scenarios as the
number of operations and of passengers are forecast to grow by factors of 1.5 and 2.5
respectively by the year 2010 [5]. Providing enough capacity to accommodate ail
demand even under severe weather conditions and/or in the face of airlines' peak
scheduling practices is not cost efficient as it would result in low system utilization.
Thus, improved air traffic flow management tools will be one of the keys in

accommodating the expected growth in the number of operations.
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In 1988, IBM was granted a $3.6 billion contract to start development of the
Advanced Automation System (AAS), which will be the foundation of the ATC
system by the year 2010 [1]. The AAS will offer automated decision making. Thus,
the controller's function will advance to a more managerial role from that of a

tactician responding to individual targets on a radar screen.

The software functions that will be incorporated into the AAS include
advanced traffic management (ATMS), automated en route ATC (AERA), terminal
ATC automation, and automatic dependent surveillance [5]. ATMS software
functions will help air traffic managers anticipate and resolve imbalances between
traffic demand and system capacity. Algorithms that assign optimal ground-hold
strategies, such as the ones developed in this thesis, will eventually become a key
component of the AT:4S. For a detailed description of the AAS the reader is
referred to [5].

1.2 Centralized Approach to ATC

Any attempt to improve the efficiency of the air traffic network requires a
coordinated approach as the interests of individual ATC units are frequently in
conflict with network wide optimization. Fortunately, the structure needed to effect

this type of coordination in the US is already in place.

The 1981 ATC controllers' strike laid the ground for a more active control and
coordination of air traffic volumes, with the ATC Central Flow Control Facility
(CFCF) in Washington DC regulating traffic flow between key airports, when
needed, on a daily basis. The CFCF continues to be a vital part of the ATC system
today. Assigning ground-holds to flights that would otherwise be delayed at the
arriva! airport is one of the CFCF's main functions.

-13-



In Western Europe, where air traffic congestion problems are also significant, it
is estimated that 35 of the key commercial airports are experiencing capacity
problems [6]. Air traffic congestion in Europe is intensified by the lack of
coordination among the 42 different control centers situated in 22 countries. A study
by the West German Institute for Technology puts the avoidable cost of air traffic
delays and deficiencies to European airlines at $5 billion in 1988, of which $1.5
billion resulted from delays, $1.8 billion from inefficient routing and $700 million
from use of non-optimal flight profiles [7]. It is estimated that unifying the ATC
system in Western Europe would result in adequate capacity through the 1990's at
most key airports [8] (similar views are expressed. in [7]). One of the key elements of
the proposed unified ( or, at the very least, tightly coordinated) system is a Central
Flow Management Unit whose role will be analogous to that of the CFCF in the
United States.

1.3 Current Flow Management Practices in the US ATC System

In order to exercise effective flow management, traffic volume and the capacity
of the different elements in the ATC system must be assessed on a daily basis. The
CFCF, in coordination with the Traffic Management Units (TMUSs) in key terminals
and the Air Route Traffic Control Centers (ARTCCs), attempts to manage efficiently
the flow of air traffic by insuring that airport and airway capacity are not exceeded,
while trying to maximize utilization of available capacity. The key traffic
management tools in US ATC are comprised of the following programs [2]:

1.3.1 Expanded Quota Flow (EQF)

EQF is a ground delay program administered by the CFCF which controls the
flow of traffic by holding the aircraft on the ground. This is one of the most
effective and economical traffic management tools as it reduces air congestion,
limiting the duration of airborne delays which are more expensive and less safe.

-14-



Implementing efficient ground-holds is difficult as uncertainties in weather affect
airport capacity significantly. Currently, the EQF program uses a deterministic
landing capacity forecast for each of the major airports. It assigns forecasted
capacity on a first-come first-served basis with all expected delays exceeding 15

minutes assigned as ground-holds.

Due to the probabilistic nature of airport capacities, even under optimal
assignment of ground-holds, there will be instances in which airport landing
capacity is lost while planes sit waiting on the ground. However, these occurrences
may currently be more frequent than necessary when bad weather is expected, as
airports tend to provide conservative capacity forecasts to protect their airspace
from saturation. As a result, carriers are often advocating more "liberal” ground-
holding strategies, even to the extreme of returning to the procedures used previous
to the 1981 strike [4], when lower congestion levels made it possible to absorb most
delays in the air. The trade-off in establishing ground-hold delays is betweer
conservative policies that may at times assign excessive ground-holds and optimistic

ones that may result ir more expensive air holds.

We see that an effective EQF program should: i) consider the cost structure of
ground and air delays; ii) improve forecasting practices in order to reflect the
uncertainties in airport capacity due to weather; and iii) be able to respond to a
constantly changing system. The algorithms developed in this thesis will begin to

address these key issues.
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132 En Route Spacing (ESP), Departure Spacing (DSP), and Arrival Spacing
(ASP) Programs

These three programs are real-time tactical ATC tools that interact closely in
order to control traffic flow so as to decrease congesiion and improve capacity
utilization at the arrival airports. ESP is implemented during periods of peak arrival
demand and consists of path stretching, speed control and rerouting of airborne
aircraft in order to provide appropriate spacing between aircraft proceeding to the
same airport. DSP controls departure flow during severe weather conditicns and
releases departing aircraft taking into consideration the number of en route aircraft
already bound for the same airport. ASP is used to limit arrival rates into a terminal
area so that these rates match the maximum airport capacity for the given weather
conditions and runway configuration. ESP, DSP, and ASP are "fine-tuning" tools
and should be part of an ATC system that utilizes an efficient EQF program as its

strategic foundation.

1.4 Systematic View of the Congestion Problem in ATC

Due to the complexities associated with the congestion problem in ATC and the
possibility of dealing with it in different ways, a systematic approach to the problem
is necessary. The following discussion is based on a paper by Odoni [9], which to
our knowledge offers the first systematic discussion of the problem. We start by
classifying the different approaches to deal with the problem and then focus on

describing the one relevant to this thesis.

Possible actions for dealing with the congestion problem in ATC can be

classified according to time span.

* Long-term appreaches are aimed at increasing network capacity through
improved ATC technologies which result in a more efficient utilization of
airspace and runways; and construction of new facilities such as new
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airports and /or additional or better airways in existing airports. These
actions typically have a time horizon of 5 to 10 years, require significant
capital investment and may encounter public opposition since new facilities
are frequently needed close to large metropolitan areas.

* Medium-term approaches try to modify demand patterns in order to
alleviate congestion and have a time span of 6 months to 2 years. Possible
actions include imposition of time-varying landing fees and user charges to
encourage off-peak use of airports and imposition of quotas on airport use
[10]. These types of actions are effective in reducing congestion to the extent
that airlines are willing/able to modify current scheduling practices, which
tend to cluster landings and take-offs due to the hub/spoke system of
operation and trying to accommodate passenger preference for flying
during peak hours.

* Short-term approaches deal with congestion on a daily basis and comprise
the ATC practices described in section 1.3. Such actions try to optimize
operations for a given daily schedule of flights and network capacity. The
objective is to best match demand with available capacity of the various
components ¢ the ATC network on a daily basis. This is known as the ATC
Flow Management Problem (FMP).

14.1 Classification of Short Term ATC Practices

The ATC practices described in Section 1.3 can be classified as being either of a
strategic or of a tactical nature. Implementing optimal ground-holds, as in the EQF
program, requires anticipating network capacity, assessing the effects of current
ground-holds as well as trying to determine future ground-holds. Thus, the EQF
program can be seen as a strategic tool. On the other hand, actions taken under ESP,
DSP, and ASP respond to real-time requirements of the ATC network and can be
classified as tactical.

This thesis addresses strategic aspects of the FMP as they play a more

important role in reducing the cost of operations. Thus, we concentrate on trying to
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resolve the most important strategic choice in ATC, namely the trade-off between
ground-holding delays and airborne delays. We refer to this as the Ground-hoiding
Policy Problem (GHPP). Next, we describe the model of the air traffic network used

as the basis for solving the GHPP in its most generic form.

142 Model for The GHPP

The generic model presented here is discussed in [9]. The model is
macroscopic in nature, yet it captures the essential elements needed to solve the
GHPP. It avoids excessive detail by introducing reasonable assumptions that
simplify the problem without affecting significantly the quality of the solution. For
example, we assume constant flight times, ignoring the effect of tactical actions such
as 1.’ ~tering, speed control and path - stretching which have a lesser impact on

operating costs than the ground-hold versus air delay trade-off.

A E= &)

Queue

Figure 1.1 "Star" Configuration Network
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The air traffic network considered under the GHPP can be described with

reference to the single-destination network shown in Figure 1.1. It is understood

that in the complete network all airports handle arrivals as well as departures.

Assumptions are as follows:

@)

(ii)

(iif)

(iv)

(v

(vi)

N aircraft are scheduled to arrive at the "arrivals" airport Z from the
"departures" airports.

Airport Z is the only capacitated element of the network and thus the only
source of delays. All other elements in the network (departure capacities,
airways, etc.) have unlimited capacity.

Departure and travel time of each aircraft is deterministic and known in
advance.

The time interval of interest is [0, L], with the earliest departure scheduled
at 0 and the latest arrival scheduled at L. The time interval [0, L] is
discretized into T time periods numbered 1,2, ... T.

At each t, we have access to the joint probability mass function (PMF) of
airport Z capacities, K¢+1,..., KT: Py, ;... Ky (). Capacity for each

period t (with t=1, 2, . . . T) becomes known at the beginning of t. Also,
the capacity, Kt,1, at period T+1 is infinity.

Ground and air delay cost functions for each flight are known:

- Cgi() is the marginal cost of delaying Flight i for the jth time period,
on the ground.

- ¢4 (i, k=) is the marginal cost of delaying Flight i for the (k—j)th time
period in the air where j is the time period of the scheduled arrival of
Flight i to airport Z.

The relevance of the above assumptions is discussed in [9] and in [11].
From this generic model we see that the following aspects must be
considered in solving the GHPP:

-19-



* The problem is stochastic. Airport capacity is affected
significantly by adverse weather conditions. Due to the uncertainty
in the weather, a probabilistic forecast of airport capacity must be
considered.

¢ The problem is dynamic. The probability distribution of airport
capacities evolves through time. Moreover, even for a static
probability distribution of airport capacities, a dynamic approach to
problem solution may result in better strategies as the history of
airport capacities is considered when making ground-held
decisions.

¢ The problem is combinatorial. Because ground and air delay costs
may differ among aircraft, the composition of the flow arriving at
airport Z must be determined.

e Network dependencies complicate the problem. In the complete
network, the effect of delays on departure times of connecting and
continuing flights must be considered.

1.5 Research to Date

Interest in solving the GHPP developed recently as congestion of the ATC
network became more significant during the decade of the 1980's. Thus, the
literature dealing with the problem is limited. Odoni presents the first systematic
description of the GHPP in [9] and discusses the full complexity of the most generic
version of the problem. Due to the complications arising in trying to solve the
generic version of the problem, initial research has focused on simplified versions.
The networks considered so far consists of the single destination network of Figure
1.1 which we refer to as the "star configuration” problem. Following is a review of
research to date on the star configuration problem, including current CFCF ground-

holding practice.
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1.5.1 Current CFCF Practice

As described in Section 1.3, the CFCF assigns ground-holds using a
deterministic landing capacity forecast for each airport. Available capacity is then
assigned on a first-come first-served basis with expected delays, above a threshold of
15 to 20 minutes, assigned as ground-holds. We see that, if the delay threshold were
zero, this approach would certainly minimize operating costs of the "star" network

under the assumption of deterministic capacities and constant marginal ground and

air delay costs (c, and ¢;) equal for all planes, with ¢, > cg.

1.5.2 The Deterministic Problem With Known Delay Cost Functions For Each
Flight
In his PhD thesis "Ground-Holding Strategies For Air Traffic Control" [11],
Terrab showed that this problem can be formulated as a minimum cost flow
problem and can be transformed to the assignment problem solvable in time O(N3).
Terrab also developed an algorithm that solves the problem in O(N In N) steps for a

special class of cost functions.

These algorithms take into consideration the differences in operating costs for
different types of aircraft. However, they do not consider the probabilistic nature of

airport capacities.

1.5.3 The Single Time Period Probabilistic Problem

The first attempt to solve a probabilistic version of the GHPP appears in a 1987
paper by Andreatta and Romanin-Jacur [12]. Capacity is assumed to be limited
during a single time period according to a specified probability distribution. The
algorithm developed is based on dynamic programming (DP) with flights ranked in
decreasing priority order as the stage variable. The algorithm is polynomial in the
number of flights with complexity OIN2).
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This algorithm has an advantage over a deterministic approach in that it
considers the stochastic nature of airport capacities. However, the analysis is limited
to a single congested period. The solution is static since it determines a "once and
for all” ground-hold policy at the time of the first take off, ignoring the evolution of

the capacity forecast over time.

1.54 The Multi-Period Static Probabilistic Problem

Terrab [11] solved the multi-period version of the static probabilistic problem
through a dynamic programming algorithm which is an extension of the algorithm
developed by Andreatta and Romanin-Jacur. The algorithm uses flights ordered
according to a fixed landing priority rule as the stage variable. The complexity of
the algorithm is ON C (T +1)2MT), where C is the number of capacity cases in the
capacity forecast and M is the maximum number of possible capacity values for a

single time period.

The magnitudes of N, M and T found in practice limit the use of the exact
formulation. For example, at Boston's Logan Airport N is in the order of 500 to 600
flights; for a time span of 15 hours, with 15 minute duraticn periods, the number of
periods T is 60; and M is as high as 15-16 landings per 15 minute period. This
algorithm produces a static solution for a time invariant capacity forecast, and a
static landing priority rule. A dynamic approach to solving the problem may
improve the solution as the history of airport capacities is considered when making
ground-hold decisions. A dynamic approach also allows landing rules that reflect
ATC landing practices such as first-come first-served landing, and landing according

to decreasing marginal cost.

1.5.4.1 Heuristic Solutions to the Multi-Period Probabilistic Problem



Due to the limitations of the static dynamic programming algorithm in solving
practical problems, Terrab considered heuristic approaches to problem solution
[11]. Here we discuss briefly the two best performing of these heuristics. Both were
tested with a sample problem generated using the operations profile for a typical

1987 day at Logan Airport.

-  Limited Look-dhead: The time period of interest is divided into Q
subproblems, each with R time periods (R = T/Q). The dynamic
programming algorithm is then used to solve each subproblem. The
complexity of this heuristic is O(Q N C (R+1)2 (M+1)R), and we see that
the heuristic is of practical value only for small values of R. Since each
subproblem is solved assuming unlimited capacity for future time
periods, we see that the performance of the heuristic deteriorates for
problem instances showing significant congestion.

-  Greedy Heuristic: This heuristic assigns ground-holds for each flight
independently, according to a fixed landing priority rule. It starts with the
highest priority flight and assigns to it a ground-hold that minimizes the
expected cost of delay for that flight. It then moves down the list of flights
according to decreasing priority. The complexity of this heuristic is O(N
C(T+1)2) and it performs as well and often better than the Limited Look-
ahead heuristic for a special class of cost functions.

1.6 Thesis Objective

This thesis focuses on solving probabilistic versions of the GHPP for a star
configuration network. The model used is basically the one described in Section
1.4.2 modified to include operational aspects of the ATC system such as forecasting
capacities, equal access policies, and air delay cost structures that are in line with the

macroscopic nature of the model.

The primary objective of this thesis is to develop static and dynamic algorithms
that provide high quality solutions to practical instances of the GHPP for the largest



airports in the US. The secondary objective is to set the stage for future research on
problems involving complete networks of airports.

1.7 Thesis Content

In Chapter 2 we will look at a dynamic optimal solution to the GHPP on a star
configuration network in its most generic version. The algorithm presented is based
on dynamic programming, using the beginning of time periods as the stage variable.
An improvement over the static dynamic programming solution [11] is possible
even for the case of a time invariant PMF for airport landing capacities, as the
history of past capacities is considered when making decisions at each stage. The
algorithm also allows for landing rules which reflect current ATC practice and are in
line with the macroscopic aspects of the model. The algorithm was implemented on
the CRAY-2 supercomputer. Although the complexity of the algorithm limits
application to small problems, it has provided some valuable insights on how to
revise the original model in order to develop optimal algorithms with practical

relevance.

Chapter 3 presents an optimal static solution to the GHPP based on stochastic
programming with single recourse. The resulting algorithm yields a linear program.
Problem size is essentially independent of the number of flights. Thus, practical
problems can be solved even for the largest airports in the network. The
formulation allows for general ground-hold cost functions with aircraft grouped in
up to three cost categories. All planes are assumed to have identical air delay cost
function. We discuss why this is a sound assumption given the macroscopic nature
of the model. We also present a decomposition algorithm that exploits the block
angular structure of the constraint matrix for this stochastic linear programming
model.
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Chapter 4 presents an optimal dynamic solution based on stochastic
programming with recourse. Ground-holds can be assigned up to three times
during the day, resulting in an improvement over the static solutions obtained in
Chapter 3. The algorithm yields a linear program of larger size than in the case of
the static solution but still manageable for practical problems. The algorithm allows
for generel ground-hold cost functions for several aircraft classes. The cost of air

delays is assumed to be identical for all planes.

In Chapter 5 we assess the performance of the stochastic programming models
developed in Chapters 3 and 4 using 1988 airline schedule data for Logan Airport
under a variety of weather conditions. Both, the static and dynamic stochastic
programming formulations, indicate cost advantages when compared with
deterministic solutions. The dynamic algorithm performed significantly better than
the static motivating the development and implementation of a very fast dynamic
heuristic that works with a deterministic forecast. This heuristic also gave solutions
which are better than those obtained through the static stochastic programming
algorithm. We also compare performance of the algorithms tested to the passive
strategy of no ground-holds, i.e. to the strategy of taking all delays in the air.

Finally, in Chapter 6 we present the conclusions from the modeling and
experimental work performed in this thesis and discuss possible approaches for
solving the GHPP for the entire air traffic network. Possible approaches to exact and
heuristic modelling are explored and new research directions are proposed.



CHAPTER 2

2. DYNAMIC SOLUTION TO THE GHPP

As discussed in Section 1.4, the GHPP has a dynamic nature. Therefore, a
dynamic approach to solving the problem should yield an improvement vs. a static
solution. Terrab solved the GHPP on a star configuration network through a
dynamic programming algorithm that uses flights in increasing priority order as the
stage variable [11]. The choice of stage variable does not address the time dynamic
nature of the problem. Thus, the algorithm produces a static optimal solution for a
time invariant PMF for airport landing capacities. Also, the algorithm requires the
assumption of a fixed (i.e., static) landing priority rule while the real system operates
closer to a first-come first-served (FCFS) fashion. This affects the quality of the
solution, generating "truly” optimal static solutions only in the case of constant
marginal air delay costs identical for all planes, for which the cost of air delays is
independent of the landing rule.

In this chapter, we present the fully dynamic solution to the GHPP on a star
configuration network, in its most generic version, by exercising ground-hold
control on individual flights at the beginning of each time period. The algorithm
developed is based on dynamic programming and uses the beginning of time
periods as stage variable. An improvement vs. the static solution is possible even for
the case of a time invariant (i.e., static) PMF as the history of airport capacities is

considered when making decisions at each stage. Also, the algorithm allows for
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dynamic landing rules which are closer to current ATC practice (e.g., FCFS, landing

according to decreasing marginal cost, etc.), improving the quality of the solution.

The chapter is organized as follows: Section 2.1 describes the dynamic problem
and illustrates the advantage of solving the GHPP dynamically through a simple
example. Section 2.2 specifies problem inputs, develops notation and presents the
algorithm. In Section 2.3 we discuss an extension of the algorithm covering cases for
which, in addition to limited landing capacity, we can also have capacity constraints
at the departure airports. In section 2.4 we discuss algorithm complexity, C
language implementation on the CRAY-2 supercomputer to solve small problems,
and discuss the practical limitations of the fully dynamic algorithin. Finally, in
Section 2.5 we suggest modeling approaches that would facilitate solution of

practical problems even for the largest airports in the US ATC network.

21 The Dynamic GHPP in ATC

The dynamic GHPP in ATC differs from the static problem in the approach to
solution. In the dynamic problem, the expected cost of ground plus air delays is
minimized by deciding whether eligible! flights are allowed to depart or held on the
ground at the beginning of each time period, while the static solution produces
"once and for all" optimal ground-holds at time zero (i.e., at the beginning of the first

time period).

The advantage of the dynamic solution over the static is illustrated by the

following two flight - three time periods example. Figure 2.1 shows a diagfam of the
flight schedule. Fy is scheduled to depart at time 1 and arrive at time 3; while F; is

scheduled to depart at time 2 and arrive at time 3.

1 Aflightis eligible to be delayed during time period i if it is scheduled to depart during or before i
and it has not yet departed.
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Figure 2.1
Flight Schedule

Landing capacity during the arrival period, time 3, is limited to one or two flights
according to the probability tree shown in Figure 2.2. Notice that capacity during
time 4 is unrestricted, and we recall that in our model landing capacity becomes

known at the beginning of each time period.

We see that landing capacity during time 3 depends on the capacity during
time 2. If time 2 capacity is 2 (i.e., the weather during time 2 is good), then there is a
greater chance of having a high capacity during time 3; while if time 2 capacity is 1,
the probability of having limited capacity during time 3 increases.

Next we specify the ground and air delay costs for F; and F,. Since F; and F,

are both scheduled to arrive during time 3, and time 4 capacity is unrestricted (i.e.,

equal or greater to 2), we only need to consider the cost of one period delays:

Flight Ground Delay Cost Air Delay Cost
F cgp = $1000 cap = $2000
F, cgp = $1100 cap = $2200



Time Period: i Probability

K=2 .36
e
K=2\
K=1 24

_eK=2 .08

K=1
\3\‘
K=1 32

Figure 2.2
PMF of Airport Landing Capacities

In line with what we would expect in a real situation, the cost of air delays is higher
than that of ground delays reflecting the higher operational cost of airborne aircraft.2
Also, the aircraft have different cost structure reflecting factors such as aircraft type,

passenger load, fuel efficiency, connection schedules, etc.

The static solution assigns optimal ground-holds at the beginning of time 1.

Thus, we cannot use information on the state of the weather (i.e., capacity) during

2 Air delay cost considers factors such as fuel consumption and risk of operation. It could also
include other factors such as noise levels and cost to the environment.
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time 2, when making decisions. Since the probability of having capacity limited to
one landing during time 3 is .56, the optimal static strategy is to let F, depart

according to schedule and delay F; one time period for an optimal static cost of

$1000.

Now we explore the optimal dynamic swrategy. In the dynamic problem we
make ground-hold decisions on a period by period basis, using the history of airport
capacities to produce an update capacity forecast in the form of a conditional PMF of
future airport landing capacities based on the original static forecast. Consider the

following dynamic strategy:

Let Fq depart‘at the beginning of time 1 (i.e., according to schedule). At time?2,
delay F; departure one time period if time 2 capacity is 1; but let F, depart according

to schedule if time 2 capacity is 2.

By conditioning on the value of airport capacity at time 2 we see that the
expected delay cost of this strategy is $928 (i.e., .6 (.4 x $2200) + .4 x $1100),
representing a significant cost improvement vs. the optimal static strategy. We can

see that this strategy is also the optimal dynamic strategy.

This example illustrates three important points:

1. A dynamic solution results in an improvement vs. the static solution. An

improvement is possible even for the case of equal cost structure for both
flights. Suppose F, delay costs are identical to those of Fy; the strategies

above yield $1000 and $880 for the static and dynamic optimal strategies
respectively.
2. The dynamic solution results in an improvement vs. the static solution

even for the case of a static capacity forecast supplied at the beginning of
time 1.
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3. Anoptimal ground-hold strategy may be counter-intuitive even for the
simplest problem. In this example the more expensive flight, F,, is the one

subject to ground delays under the dynamic strategy.

Observations 1-3 above point out the advantage of solving the GHPP
dynamically and highlights the importance of automating the ground-hold
assignment process as intuition or even intelligent heuristics may result in

suboptimal ground-holds.

2.2 Problem Inputs, Notation and Algorithm

The network under considcration is the one described in Section 1.4.2 with a
single "destinations" airport Z to which N aircraft are scheduled to arrive from the
"departures” airports. Assumptions for the dynamic GHPP are as follows:

1.  Congestion at airport Z is the only source of delays. Departure and travel
times are deterministic and known in advance.

2.  Alanding rule is specified. This rule may be static, such as the fixed
landing priority rule used by Terrab's static algorithm, or dynamic such
as: FCFS, landing according to decreasing marginal cost or any other
dynamic landing scheme.

3. Thetime interval of interest, [0, L], starts with the earliest departure time
and ends with the latest scheduled arrival time, and is discretized into T
periods of equal duration (1, . . ., T). Capacity for each period becomes
known at the beginning of the period. Period T+1 capacity is infinite (i.e.,
adequate to land any aircraft unable to land during 1, ..., T). This
assumption is needed to limit the time horizon for the problem. Itis a
realistic assumption since traffic declines significantly during the last
hours of daily operation.
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2.2.1 Problem Inputs

Since capacity is unrestricted at the departure airports we do not need to keep
information on the airport of departure; thus we refer to the N flights as:
Fy, ..., Fy (In Section 2.3, where we develop a dynamic algorithm that considers
capacity constraints at the departure airports, we will need to consider the airport of
departure when making ground-hold decisions on flights). Based on this

observation we see that inputs needed for the problem are as follows:

- LA scheduled departure and arrival times for each flight F;.

- cgi): ground marginal cost of delaying F; for the jth time
period.

- Gl air marginal cost of delaying F; for the jth time period on
the air.3

- PiyKp...kp Thestatic joint PMF of airport Z landing capacities.4

2.22 Notation, Dynamic Programming Recursion, and Algorithm

The dynamic programming recursion presented here is based on the principle
of optimality. The reader is referred to the book Dynamic Programming by Dimitri
Bertsekas [13] for a proof of the dynamic programming recursion and a good
reference on the subject. Before presenting the DP recursion, we establish the

following notation.

-  Stage Variable: stage i is the beginning of time period i.
Stagesare: 1,2,...,T+1.

3 In order to facilitate notation, the cost of air delay for F; is considered independent of ground-
holds previous to departure. This may not be the case in practice. Notation is easily modified to
incorporate a two dimensional air cost function which considers ground-holds previous to

departure.

4 Allowing for time dependency (i.e., Pg; ...kt is possible. An optimal dynamic solution for
this case can be found as explained in section 2.2.3.
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~  State Variable: for stage i, the state variable X; = {Kj, .. ., Ki;D}, cen, D{"}
is a vector that fully reflects the state of the system at stagei. Kj, ..., K;

are the airport capacities up to stage i, and D},...,DN are the ground
delays for each flight up to, but excluding, period i delays.

-~  Decision Variable: for each stage i and state X, the decision variable

uj = {u,l, e, um is an 0-1 vector:

ug =1 if Fjis delayed on the ground during period i, and 0
otherwise. Notice that ug = 0 for non-eligible flights.

- 8i(Xj, up: The ground plus air cost from stage i to stage i+1, given state X;
and decision y; (i.e., this is the ground plus air cost for period i given state
X; and decision uy).

- Ji(Xp): Optimal value of delay costs for stages i through T+1 given state X;.

- PKi+1/K;...K; Probability of having airport landing capacity K;, during

period i+1 given capacities K3, . . ., Kj during periods 1, . . ., i respectively.
This is a conditional PMF that can be obtained frorn the joint PMF Py, =

KT

Using the principle of optimality we arrive at the following DP recursion:

i

JilX) = Nflin {gi i, ui) + 3, (PKM/K, i Jiv1 [Xisn (Xi,ui)]}} 2.1)
Ki+1

This dynamic programming recursion gives rise to the following algorithm

(superscript "*" denotes the optimal ground-hold strategy):
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Step 0: INPUT:
Input the joint PMF of airport capacities: P; .. kg
For each F input, Ly, Ay, cg, Gy

Step1: INITIALIZE:
Let i=T,Jry; (XT41) = 8141 K741) =0 for all Xp,y.

Step 2:  For each state X; find the optimal ground-hold strategy u; and the

optimal cost J;(X;):
- Let:
uj =0; Ji (6) = (gi (Xi, 0) + 2, {Pkis 1. g K41 Xiw1 (X5, O]}
ki+1
~  For every feasible u;:

if {gi (Xi, ui) + Y, (P k1.4 +1 D1 G, udll < Ji (X5
ki+1

Then:
uy i) =uj; Ji X)) = (g Xi, i) + Y, (Pkisrzer s ko1 Xia (Xi, uil

ki+1
Step3: TERMINATION CHECK:
Fi=1goto4;else:i=i-1,goto2.

Step4: Find the optimal dynamic policy and cost:
For each stagei =1, ..., T; given state X; retrieve: u; (X;), Ji (X;).



2,2.3 Observations on the Algorithm

()

(i)

(iii)

We need to find the state space previous to the execution of Step 2. To
generate the state space we notice that for state

Xi ={Ky,...,Ki; D}, D¢, ..., DN}, given the capacity for stage i+1, Kj,1,
and the ground-hold decision for stage i,uj = {u}, u?, ..., uN}, wecan

find state Xm:

Xi-l-l = {Klr ..., Kj, Ki+1; D;l + uil/ D? +u121 RN DN -H.IN} (2.2)

The one period cost g;(X;, u;) has a ground component and an air
ccmponent calculated as follows:

N . . .
- ground-cost of g; (X;, u;j) = ,-21 ul ¢ (D} + ul) (2.3)
- air-cost of gi(Xj, up = 2 Caj (time of air delay for Fj).
planes Fj waiting
onair duringi
(2.4)

Both costs components of g;j(X;, u;) are deterministic. (2.3) is simple to
calculate. To implement calculation of (2.4), we notice that, given X;, we
can determine the time of arrival at airport Z for each aircraft. Then, by
implementing a queue managed according to the landing rule specified,
we can determine which aircraft land each period, which aircraft wait in
the air during period i, and for how long each one of these aircraft has
been waiting to land.

The terminal cost, J1,1(XT+1) = g1+1(XT+1) = 0 since the capacity of period
T+1 is infinity.
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(iv) We can find the dynamic solution to the dynamic problem (i.e., for a time
dependent PMF, PKI---Kp(t» by applying the algorithm at the beginning of

each time period t at which the PMF is updated, with Pk, xy(t) and the
current state, X, as inputs.

2.3 Dynamic Solution to the GHPP with Limited Departure Capacity

Before dealing with implementation of the algorithm developed in Section 2.2,
we will discuss how the dynamic programming recursion is easily modified to cover
the case of limited capacity at the departure airports, in addition to limited capacity

at the arrivals airport Z.

Suppose there are L departure airports with limited departure capacities. Then,

the airports of departure for each flight need to be identified. We now use a double
subscript to identify flights: Fj; indicates that flight i is scheduled to depart from

airport [, withl € {1,...,L, L+1}; I =L+1 indicates the flight departs from an airport

with unconstrained capacity. Also, the inputs for the problem become: Ly, Aj;,
Cgyi(j), Cay(j) for every flight Fj;; and, the joint PMF of airport capacities is now
PK,... Ky WhereK; = {K,l, ...KE K,z} is a vector with K{ denoting the period i
departure capacity for airportl, [ € {1, ... L); andK denoting airport Z landing
capacity during period i.

2.3.1 Notation and DP Recursion
The notation presented in Section 2.2.2 is modified as follows:

—  Thestate variable is X; = {'Kl, ... K;DH,..., Dl DN
where Ei = {K,l, . K!‘, K,z }, is the capacity vector described above; and,
D? is the ground delay for each flight up to but excluding period i ground

delays.
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- The decision variable is uj {u,“, ceel u?, ..., ul*INV 2 0.1 vector with

u? =1 if Fy; is delayed on the ground, 0 otherwise. Notice thatugj = 0 for
non-eligible flights, and the control space v; is restricted further due to the
departure capacity constraint. Specifically, u; € S;, where S; is the set of
feasible controls uj given state X;, which now takes into consideration
limits on the number of aircraft capable of departing from the airports

with limited capacity.

- Writing the dynamic programming recursion for the limited departure

capacity case is now straightforward.

Ji(X;) = u?’gnsi {gi (Xi:ui)'*'; {pﬁi K. KU [Xi+1 (X5, ui)]}} (2.5)

i+1
Notice that the DP recursion above is analogous to (2.1). However, we see that the
computational complexity and size of the state space increases exponentially with
the number of capacity constrained airports. As we will explain in Section 2.4.,
practicality of the algorithm, even for the case of capacity constrained at the arrivals
airport Z only, is limited to solution of small problems. Therefore, we will not
present the algorithm that follows from equation (2.5). However, the analysis
presented in this section provides valuable insights for dealing with the network-

wide problem.

2.4. Algorithm Implementation and Complexity
The algorithm of Section 2.2 was implemented on the CRAY-2 supercomputer

facilities at MIT, using the C programming language . Aside from speed
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performance, the CRAY-2 supercomputer features 256 million words of RAM

memory (one word equals 8 bytes).

The size of the problem that could be solved was limited by the strong
exponentiality of the algorithm. If we let N be the total number of flights, T the
number of time periods, and M the number of possible capacities for any given time
period; we see that the complexity of the state space size is O( MT TN+1), This is
because the complexity of Pk, .. kris O(MT), the complexity of the ground delays

for period T is O(TN) and we have T periods.

The computational complexity of the algorithm is determined by the

computational complexity of the state space and the computational complexity of

step 2 of the algorithm ( OIN2N) since, for a given state, X;, we must find the

ground-hold strateg}", u;, that minimizes expected cost). Thus, the computational

complexity of the algorithm is ONN MT 2NTN+1),

The maximum problem size that we were able to solve on the CRAY-2, with no
further restriction on inputs, was 5 (i.e., N, M, T < 5), for which the cardinality of the
state space was 2,087,260. Table 2.1 below shows the exponential increase in state

space size with problem size.

.

Problem size
(N, M, T < Problem Size) State Space Size

2 12

3 464

4 34,105

5 2,087,260

Table 2.1
State Space Size For DP Solution
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The program developed can handle larger parameters when the PMF of airport
capacities is sparse. However, notice that we must still consider O(2N) ground-hold
strategies at each stage as we exercise ground hold control on individual planes.

We see that the modeling approach of this chapter would be impractical for real
problems for which the number of flights can be in the order of one thousand per

day.

The C program developed takes inputs from a file with format as specified in
Appendix 1. The landing rule implemented lands aircraft according to decreasing
priority numbering of flights. However, dynamic landing rules are easy to
implement. Appendix 1 also lists the C program code for the size 5 problem and a

sample run for the size 5 problem>.

The program outputs the optimal ground-hold strategy, uj (X1), and the
optimal cost, J1(X1) for period 1 and asks if we want to obtain results for the next

period. If yes, the program requests to input the period's capacity K;; outputs

u; (X)), Ji(X;) and asks if we want to try another period. When period T is reached,
the program asks if we want to try another capacity sample path starting with
period 1. As we can see, the program generates an optimal ground hold policy for
any feasible capacity sample path. Thus we are able to answer "what if" questions.
Worth mentioning, if the initial capacity forecast gets updated at any period i the
problem must be solved again using the updated capacity forecast and information

on the current state.

5 Notice that the size of the program code grows exponentially with problem size as for N planes
each of the 2N possible ground-hold strategies must be implemented.
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2.5 Simplifying the Model

From the analysis in Section 2.4 we see that the sources of complexity in the

dynamic programming algorithm are:
1. The number of time periods.
2. Thenumber of capacity sample paths.

3. The number of aircraft.

The number of time periods could be reduced by increasing the duration of the
discrete time intervals. However, this does not have a significant impact on
complexity (notice that doubling of the time interval duration to 30 minutes reduces
the number of time periods from 60 to 30). Therefore, new algorithms should

concentrate on reducing the complexity of items 2 and 3 above.

In regards to the number of capacity scenarios, current state of the art weather
forecasting limits the capacity forecast for airport Z to a few capacity cases. Thus,
we can greatly simplify the PMF for airport landing capacities without affecting the
quality of the solution.

Regarding the number of aircraft, modeling approaches that control ground-
holds by taking decisions on groups of planes should have a significant impact on

reducing computational complexity.

Chapters 3 and 4 present algorithms for the static and dynamic probabilistic
GHPP that can solve practical instances of the problem even for the largest airports
in the US ATC network. This is made possible by using capacity forecasts limited to

few capacity cases and grouping planes into at most three cost categories.



CHAPTER 3

3. STATIC STOCHASTIC PROGRAMMING SOLUTION TO THE GHPP

As discussed in Section 1.5.4, Terrab solved the multi-period static probabilistic
GHPP through a dynamic programming formulation which uses flights ordered
according to a fixed priority rule as the stage variable. The computational
complexity of the algorithm is OONC(T+1)2 MT), where C is the number of capacity
cases in the forecast, M is the maximum number of possible capacity values for a
single time period, and T is the number of time periods in the time interval of -
interest. The complexity of the algorithm is exponential in the number of time
periods T and we see that reducing the number of capacity cases has only a small

impact on improving computational complexity.

Since our ultimate goal is to solve problems for the largest airports in the US
ATC network, we need to consider alternatives that reduce computational
! complexity. One possibility is the development of heuristics based on the optimal
algorithm, some of which were reviewed in Section 1.5. The major disadvantages
with this approach are: (i) some of the heuristics are themselves exponential in
complexity (e.g., the limited look-ahead hetiristic); (ii) performance of the heuristic
may not be adequate under conditions such as significant congestion (e.g., the
limited look-ahead heuristic which solves each subproblem assuming unlimited
capacity for future time periods); (iii) it is difficult to assure a performance warranty
(i.e., an acceptable deviation from optimality). An alternative is trying to simplify
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the model of the problem so that: (i) the model still captures key features of the
problem needed to assure gocd solutions, (ii) the model yields algorithms that are

solvable for practical instances of the problem without having to resort to heuristics.

In this chapter, we choose the later alternative in trying to simplify the
complexity of the algorithm used to solve the static GHPP. We present a model that
can be solved using stochastic linear programming with one stage. Our formulation
allows for airport capacity forecasts with up to three capacity scenarios, in line with
current forecasting technology. Also up to three different aircraft classes, with their
associated ground-hold cost functions, are possible. The formulation proposed here
yields linear programs of size solvable on a personal computer even for the largest

airports in the US ATC network.

The chapter is structured as follows: Section 3.1 presents key assumptions in
developing the simplified problem, inputs to the model and decision variables. In
Section 3.2, we develop the stochastic programming formulation, starting from a
deterministic linear programming modei for a single class of aircraft. Section 3.3
discusses how to incorporate into the model constraints such as maximum ground-
hold delay allowed, limits on air delay for particular times of the day; and the
possibility of choosing between "conservative" and "liberal" ground-hold policies by
varying a single parameter in the model. Section 3.4 presents a decomposition
algorithm that exploits the special structure of the constraint matrix. In Section 3.5,
we extend our formulation to include up to three classes of aircraft; followed by an
analysis of constraint matrix size in Section 3.6, confirming the possibility of solving

practical size problems on a personal computer.
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3.1 Model Assumptions, Inputs, and Decision Variables
Some of the assumptions in this model are similar to those presented when
discussing the dynamic case in Section 2.2. For completeness, we will present here a

full set of assumptions and the rationale behind them.

3.1.1 The Basic Network and Sources of Congestion

The network under consideration is the one discussed in Section 1.4.2 with a
single "destination"” airport Z (i.e., star configuration) to which a total of NTOT
aircraft are scheduled to arrive from the "departures” airports. Congestion at airport

Z is the only source of delays. Departure and travel times are deterministic and

known in advance.

3.1.2 Discretization of Time

The time interval of interest [0, L] comprises a full day of operations at airport
Z, starts with the earliest departure time and ends with the latest scheduled arrival
time. The interval [0, L] is discretized into T periods of equal duration. Typical
period durations are in the 15-20 minutes range resulting in total number of periods,

T, in the 50-70 range.

3.1.3 Classification of Aircraft

Aircraft are classified into three classes: small (S), large (L) and Heavy (H);
denoted classes 1, 2, and 3 respectively. This is in line with ATC practice in the US
which defines the three classes as: Small Aircraft: less than 12,500 pounds MTOW
(maximum take-off weight); Large Aircraft: between 12,500 and 300,000 pounds
MTOW; and Heavy Aircraft: over 300,000 pounds MTOW.

3.1.4 Input Schedule for Daily Operations
Since we are considering the static problem, we are able to ignore departure

times, defining the input schedule as:
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(i) For a single aircraft class:
Nj: the number of aircraft scheduled to arrive at airport Z during
periodi. i=1,...,T.

(ii) For three aircraft classes:

Nyi: The number of aircraft of class k scheduled to arrive at airport

Zduring periodi. k=1,2,3 i=1,...,T.

T 3 T
For (i) wehave ), Nj=NTOT; and for (i) wehave ) ) Nyi=NTOT.
i=1 k=1i=1

3.1.5 The Cost of Ground-Delays
We allow for arbitrary ground-hold cost functions. Thus we have:

(i) For a single aircraft class:
Cg(i): cost of delaying one aircraft for i periods on the ground. i=1,.

.., T-1

(i) For three aircraft classes:
Cg(k, i): Cost of delaying one aircraft of <lass k for i periods on the

ground. k=1,2,3; i=1,...,T-1.

Notice that these costs are total costs of delay for one aircraft during i periods and

not the marginal cost for the ith period.

3.1.6 The Cost of Air Delays
Since ATC lands aircraft in a sequence that approximates FCFS, we see that
within reasonable levels of air delay (i.e., maximum air delays in the 30 to 45 minute

range) the marginal cost of air delay can be considered constant for each class of
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aircraft. Thus, we assume that the cost of delaying one aircraft of any class one time
period in the air is a constant, c,, equal to the weighed average of the marginal air

delay costs for each class of aircraft, with weights equal to the proportion of each
aircraft class in the schedule. In general we set ¢, so that ¢, > Cg (k, i) - Cg (k, i~1)

for all classes of aircraft (i.e. k =1, 2, 3) and i S T; in order to assure that marginal air

delay costs are higher than marginal ground-hold costs for all aircraft.

Once we develop the stochastic linear programming model, we will see that
we can incorporate constraints assuring that the maximum air delay criterion
mentioned above is met. Also, it will become clear that the relative difference
between ground and air delay costs affects ground-hold policy more significantly
than modeling air delay costs in greater detail.

3.1.7 Capacity Forecast
Let airport Z landing capacities be Ky, . . ., Kt for periods 1, . . ., T respectively.

We limit our attention to forecasts with three capacity scenarios. Thus, the forecast

for airport Z landing capacity is of the form:

K,;l ye KqT: with associated probability Pq for q=1,2,3;

and we let Kq’r+1 = NTOT (for q = 1, 2, 3); in order to assure that all aircraft are able

to land at Z within T+1 periods. Limiting the time horizon for the problem to T+1
time periods is reasonable since air traffic declines significantly towards the end of
the day, avoiding extreme congestion at airport Z during T+1, even under cases of
low capacity. Important to discuss is the assumption regarding the number of

capacity scenarios in our forecast.
1%

Currently, the assignment of ground-holds is based on a deterministic capacity
forecast, ignoring the effect of weather uncertainties on landing capacity. At the
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beginning of daily operations, each one of the major airports in the US provides the
CFCF with a deterministic landing capacity profile which reflects expected weather
conditions for the day. CFCF then proceeds to assign ground-holds as described in

section 1.5.1.

The probabilistic forecasting system we are proposing represents an
improvement versus a deterministic forecast. However, we need to justify limiting
the forecast to three capacity scenarios. Our argument below is based on the fact
that the predictive accuracy of weather forecasts has improved to the point that the
type/severity of weather conditions on a geographical area can be forecast with

reasonable accuracy; however, the timing of weather fronts is uncertain.

Suppose we are told that a weather front that will reduce landing capacity by
50% for the rest of the day will reach the vicinity of airport Z between 12:00 and
17:00 hours. With no further information on the weather front, we can assume that
the weather front is equally likely to reach Z at any time during this time period.
Given the discrete nature of our model, we would then originate a capacity forecast
consisting of scenarios showing a 50% reduction in landing capacity starting at each
of the periods P comprised in the interval 12:00 to 17:00 hours, each with probability
1/P.

Based on the macroscopic nature of our model, we see that hourly intervals are
adequate to approximate the uniform distribution. Since we are limiting our
forecast to three capacity cases, we would originate instead a capacity forecast
consisting of three capacity scenarios, each with equal probability and airport
landing capacity reduced by 50% starting at around 12:00, 14:30 and 17:00
respectively. Naturally, the closer we approximate the uniform distribution for the

arrival time of the weather front, the more accurate our model will be. The point we
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are trying to make here is that reasonably good capacity forecasts for airport Z

comprise few rather than many capacity scenarios.

Throughout this thesis we limit our attention to forecasts consisting of three
capacity scenarios, keeping in mind that solving models that require inclusion of a
few more capacity cases, is within the capacity of a computer work- station if not a

personal computer.

3.1.8 Model Variables

Finally, we describe the variables in our model. The ground-hold decision

variable is:

(i) For one class of aircraft:

Xgij The number of aircraft originally scheduled to arrive at Z during

period i which are now rescheduled to arrive duringj  (i.e.,
following a ground delay of j - i time periods) under capacity case q.
q=1,2,3 i=1,...,Ti <j < T+L

T+1
Notice that for each q and i we have: Z Xqij = Ni; where Nj is the input

j=i

schedule defined in Section 3.14.

(ii) For three classes of aircraft:

Xgkijt The number of aircraft of class k originally scheduled to arrive at

Z during pericd i, and rescheduled to arrive during j under capacity
case q, due to a ground delay of j-i time periods. q=1,2,3; k=1,2,3;
i=1,..,T;, i Sj< T+l
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T+1

In this case we notice that for each g, k, and i we have: Z Xgkij = Ny where Ny is
j=i

the input schedule for three classes of aircraft.

Another set of variables is defined by the airborne queueing process at airport
Z. Since the marginal cost of air delays is constant and equal for all aircraft, we only
need to consider the number of aircraft that are unable to land during any period.

Thus we define:

Wit The number of aircraft unable to land at airport Z during period i under
capacity case q (i.e., the number of aircraft incurring airborne delay during period i).

q=1,2,3 i=1,...,T.

3.2 Formulating the Stochastic Programming Model

In this Section, we formulate the static GHPP as a stochastic linear
programming problem with one stage. We follow the framework presented in the
book, "Principles of Operations Research,”" by H. M. Wagner [14], which provides a
good introduction to stochastic programming. Here we limit our attention to the

case of a single class of aircraft, and extend the formulation to cover three classes of

aircraft in Section 3.4.
3.2.1 Formulate the Deterministic Problem

Suppose capacity case q, with capacities K, . . -, Kq'r+1: occurs with
probability one. Since the optimization criterion is to minimize total delay cost

(ground plus air) the objective function is:

T+1
Minimize: zl Zlcs(l-l)xqu*'zwaca
i=lj=i+



Subject to:

(i) All aircraft scheduled to land during i must be rescheduled to arrive
during i, i+1,..., T+1:

T+1
Y, Xqij = Ni i=1,2..,T
=i

J

(ii) The flow balance at airport Z at the end of each period yields:
i
wqizjzlxqﬁ+wqi_1 —in i=1,...,T+1;

(i) Xgjj Wqi 2 0 and integer.

The formulation above is an integer programming problem with linear cost
function. In the next Section we show that for the deterministic problem the
constraint set has a network structure, reducing the problem to a minimum: cost flow
problem for which the integrality constraint can be relaxed. Also, notice how
constraints (ii) model the queueing process at airport Z:

If the RHS of (ii) is less than or equal to zero (i.e., capacity Kg; is adequate to
land all aircraft waiting to land during i), then Wg; = 0, by constraint (iii) and the
positive cost coefficient c, for W; in the objective function.

Both the linearity of the objective function and the simplicity of the model
result from the assumption on the cost of air delays in Section 3.1.6.
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3.22 Reduction to Minimum Cost Flow in an Uncapacitated Network

Figure 3.1 shows how the formulation of Section 3.2.1 is transformed to a

minimum cost flow problem in an uncapacitated network (for clarity, subscript q

has been omitted from all variables in Figure 3.1). An additional node S with supply

T
2 Kgi, and arcs Sqi i=1,..., T+l,is introduced. The resulting problem has the

i=1

same objective function, since the flows on S; arcs have zero cost, and the following

constraint set:

1.

Supply nodes:

(i) Xqﬁ+Xqﬁ+1...+XqiT+l=Ni; i=1,

T
G) D, Sq¢ = 2 Kgi

i=1

Demand nodes:

i
(iii) Wqi - (qu-l + Y, Xgi +Sqi) =

i=1

(with Wgg = W41 = 0)

(iv) quy qu, Sqi 2 0.

R

—in; i=1,...



Figure 3.1

Network Diagram for Minimum Cost Flow Problem

Notice that the constraint matrix for the network formulation is totally
unimodular and supply/demands are integer. Thus, we relax the integrality
constraint in (iv). The deterministic formulation provides an interesting

interpretation of the current CFCF practice for the assignment of ground-holds.
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Suppose we have constant marginal ground and air costs, ¢g and c, respectively,
with ¢ < ;. Then the optimal solution to the minimum cost flow problem above

has Wi=0 fori=1,..., T (since the cost on the vertical arcs, c,, is greater than cg). xij
flows are constructed by assigning available capacity according to earliest scheduled

arrival time at airport Z.

3.23 Formulate the Distribution Problem
In solving the distribution problem we consider the probabilistic nature of
airport capacities but assume that airport capacities for all periods, Kq1, . . ., Kqr
become known before we make the ground-hold decisions. The optimal solution to
the distribution problem is a complete policy consisting of optimal ground-holds
X:Iii with associated w:lii variables for each one of the capacity scenarios q =1, 2, 3.
The distribution problem becomes easy to understand once we present its
formulation:
o 3 T T+1 o T \
Mnimize Y, pq{ X, 2, Cg(j —i) Xqij +ca ), Wi
q=1 i=1j=i+1 i=1 I
Subject to:
Foreachq=1,2,3:
() Xgii + Xgii+1 - - - XgiTe1 =N i=1,2,.., T+l

T+1
0w

@ 3 sg= 3 Ke

i=1 i=1

i
(iii) Wi —(qu_1+z qui"'sqi) = —Kqﬂ i=1,...,T+1
j=1

(with qu = qu+1 =0)

(iv) Xqiy qu, Sqi 2 0. .
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We see that the solution to the distribution problem is equivalent to solving three
separate minimum cost flow problems (i.e., one for each q = 1, 2, 3), since the
constraint matrix above consists of three separate network components.
Unfortunately we must assign ground-hold decisions before knowing airport
capacities. Thus, we need to modify the distribution problem formulation.

3.24 Formulate the Static GHPP

In the static solution to the GHPP, we make ground-hold decisions at the
beginning of period one, before knowing airport capacities. Since we make a single
set of ground-holding decisions for the day, we see that we need to introduce the

following set of constraints in the formulation above:
W) Xli]-=X2ij=X3ii; i=1,..., T;iSj<sT+1

Figure 3.2 shows that after adding these constraints the structure of the constraint

matrix becomes block angular. Elements outside the rectangles are equal to zero.

Coupling Constraints:

(X5 = Xoi5 = Xgy )

Network Component
forq=1
Network Component
forq=2
Network Component
forq=3
Figure 3.2
Constraint Matrix Structure

-53-



In Section 3.4 we will present a decomposition algorithm that exploits the
special structure of the constraint matrix. Worth noticing, the network structure of
the constraint matrix is lost since variable Xgj; now appears with additional +1 or -1
coefficients in the equations of type (v). We could still have integer solutions if the
constraint matrix were unimodular. This is because total unimodularity (i.e.,
network structurej is a sufficient condition, while unimodularity is a necessary
condition for integrality of basic feasible solutions to linear programming relaxations

of integer programming problems with integer RHS.

Since the solutions to all the practical problems solved in Chapter 5 are integer
we tried to prove unimodularity of the constraint matrix. We were not successful in
either proving unimodularity (which requires verifying that the inverse, B-1, forall
basis matrices B of the constraint matrix are integer) or generating a counterexample

with non-integer solutions.

Although unimodularity of the constraint matrix remains an open question,
this is not critical to the results in this thesis. This is because, even if the solutions
were not integer, rounding would produce good practical solutions because the

ground-hold decision variables are not limited to 0-1 values.

3.3. Restating the Model and Introducing Important Modeling Constraints
Before proceeding further, we restate the stochastic programming formulation
for the static GHPP. After substituting the constraint (v), introduced in Section 3.2.3,
into the formulation for the distribution problem we obtain:
T T+1 3 T
Minimize Y, Y, Cg(-D)Xij+cal Y pq 2 Wgi
i=lj=i+1 q=1 i=1

Subject to :



@ Xﬂ+Xﬁ+1...+XiT+1=Ni; i=1,...,T

Foreach q:

T+1 T
@ 3 Sq = Kgi/

i=1 i=1

i
(iii) Wqi - Wgi-1- z Xj - Sqi = -Kgi i=1,...,T+1;
j=1

(with Weo = qu+l =0)

(iv) Xjy Wi, Sqi 2 0, and integer.

We have omitted the subscript for the capacity case, q, from ground-hold variables

Xqij since we make a unique set of ground-hold decisions (i.e., Xy = Xjj = X33)-

3.3.1 Important Model Features
Objective Function Parametric Programming
By examining the objective function we see that by changing a single

parameter, c,, we can adjust the bias of the model towards conservative (liberal)
ground-holding policies. A higher value for c, will result in a greater emphasis on
ground-holds since ground delays become less expensive vis-a-vis air delays.
Conversely a lower c, will result in more liberal ground-hold times. We will
illustrate this point in Chapter 5. Notice also that it is possible to let the marginal air
delay cost depend on the time of the day.

Introducing Additional Modeling Constraints

We see that planners using our model will be interested in more than just
minimizing expected costs. They may, for instance, be interested in safety
considerations which limit the degree of congestion at the afrivals airport. Our
model easily allows for constraints of this type. For example, suppose the duration
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of the discrete time intervals is 15 minutes, and we want to limit airberne queueing
delay under capacity case q to at most 30 minutes at the end of time period i. The

corresponding constraint is:

Wqi S Kgi+1+ Kgis2:

Notice how the constraint above can also be interpreted as limiting the queue
length at airport Z at the end of period i, under capacity case g, to the total capacity

for the next two periods, i+1 and i+2.

Suppose now that we want to limit ground delays during certain period i to at
most P periods. Then the constraint in the original model:
T+1 i+P

E Xij = Nj, becomes: z Xjj = Nj.

j=1 j=i

Obviously by introducing limits on the duration of airborne queueing delays at
Z and ground delays at the departure airports simultaneously, we could generate
infeasible problems. If this is the case, we may need tc relax some of the constraints

cn maximum air delays, or even cancel some flights in order to render the problem

feasible.

3.4 Decomposition Algorithm

In Section 3.2 we saw that the constraint matrix had primal block angular
structure. Due to the simplicity of the coupling constraints in these matrices, in
Section 3.3 we eliminated the coupling constraints through substitution into the
subproblem constraints. The resulting linear program has a significantly lower
number of constraints and variables but lacks the network structure that would
make it suitable for solution using faster algorithms. An alternative to this approach

is the use of decomposition methods. Despite the higher number of equations and
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variables, the advantage of decomposing the problem is that the subproblems have

network structure.

The algorithm we present is based on Dantzig-Wolfe's Decomposition. A good
treatment of the subject can be found in the book Applied Mathematical Programming
by Bradley, Hax and Magnanti [15].

3.41 Step 1: Formulate the Master Problem

For ease of notation, we will focus on the static stochastic programming model
for a single class of aircraft presented in Section 3.2. Extending the decomposition
procedure to the case of several aircraft classes discussed in Section 3.5, and the
dynamic stochastic programming models presented in Chapter 4 is straightforward

due to the similarities in the structure of the constraint matrices.

When restating the static GHPP formulation in Section 3.3, we substituted
constraints (v) of Section 3.2.4 into the model. If instead, we retain the coupling
constraints, the resulting stochastic linear program shown below has primal block
angular structure, we refer to it as the "Master problem":

3 T P+1 T
Minimize ), pql X, 2, Cg§-i)Xgij+ca 2, Wgi 3.1)
q=1 i=1lj=i+1 i=1

Subject to:
- Coupling (Global) Constraints:

(1) X~ Xg§=0; i=1,..,T; i<j<T+1
@) X2j-X3;=0; i=1,...,T; iSjST+

— Subproblem Constraints:
Foreachq=1,2,3:
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() Xqu+xqﬂ+1...xq{T+1=Ni; i=12,...,T+1
T+ 1

T
@ 3 Sq= 3 Ky
i=1

i=1

i
(iii) Wai - (qu-1 +2 xqji*‘sqi) = Kqi; i=1,...,T+1
j=1
(with qu = qu+1 =0)
(iv) Xqiy qu, Sqi 2 0.

A feasible solution ! to subproblem q is denoted | Xf], Wﬁy S ), where X§, Wi, Si, are
suitably defined vectors. We see that due to the coupling constrains, ! may or may
not be feasible for the master problem. Thus we refer to it as a subproblem proposal.
In the material that follows we assume that the first proposal from each one of the q
subproblems (i.e., {X}l, wi, S}l } for q = 1,2, 3) is feasible for the master problem.
Such first proposals can be generated by finding a basic feasible solution for the

master problem using phase one of the simplex method.

3.4.2 Step 2: Formulate and Solve the Restricted Master Problem
The restricted master problem consists in choosing optimal weights for a given
set of subproblem proposals within the framework of the master problem objective

funcdon and global constraints.

In the restricted master problem, presented below, there are g proposals for
each q subproblem; denoted (X3, W, S1},..., (X4, WY, S}, for q=1,2,3. Notice
that the cardinality of lq is not necessarily equal for each q. Also, the vector
Aq={A}, ..., A% ) represents the weights for the proposals from each of the

subproblems.



Minimize i {z quq(i . » Cs(i-'i)x&ii"'ca.ilwai)}

qul k=1 imlj=i+l

T T+1 T
by letting =Pq(z Cg(i—i)x%ij"'ca Z W‘éi) we obtain:
=] i+1 i=1

3 g
Minimize ), 3 A§P§ (3.2)
q=lk=1

Subject to:
i .
Dual Price:

/)
(1) 2 l* Xll.l 2 AE xlz‘ij=0; Ttlly i=1,...,T ISJST+1

) 2 Ak xk; - 2 Af x5, =0, TE i=1,...,T; iSjST+1

k=1
]1
(3) A=1; G  a=L23.
k=1
(4) AE20

Observations on the restricted Master Problem:

1. Notice that kq is a variable while Xq,,, W ; are known data for the restricted

master problem. Also, we can interpret P‘.; as the unweighted cost
contribution to the objective function of proposal k from subproblem q.

2. We can always obtain the solution to the restricted master problem in terms
of the variables in the original problem:

(X5, W SH)= 2 A% (xk, Wk, SK) forg=1, 2, 3.
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3. Constraints (1) and (2) are satisfied for A} =AJ = A} = 1 since the first

subproblem proposal from each subproblem is feasible for the master
problem. Thus, the restricted master problem is feasible. Also, the solution
to the restricted master problem satisfies the global constrains in the master
problem; and, since this solution is the convex combination of subproblem
proposals, it satisfies the subproblem constraints. Thus, the restricted
master problem solution is feasible for the master problem.

Having determined optimal weights and optimal dual prices associated with

the constraints in the restricted master problem, we consider how to improve the

solution by adding new proposals. From linear programming theory, we know that

adding a new proposal will improve the solution to the restricted master problem if

its reduced cost is strictly negative (since we are dealing with a minimization

problem). Let {Xg, W

q Sql be a new proposal from subproblem g, then the reduced

cost for the new proposal is given by® :

where:

—_ T T+1

Pg="Pq - Y, Znamﬂtzrz -0q
i=1] (3.3)

-
L}
[

S
II

T+1
Pg= pg(z 2 Cg G - 1) Xqij + ca 2 Wi );

i=1j=i+1

rlij=xlij, rlij='X2ij: dij=0; and

ij=0, 13ij=Xajj, 13ij=- X3,

6 We recall from linear programming theory that the reduced cost, Cj, for a new activity j, is given

by the equation: g = ¢ - yTAi ; where ¢j is the cost coefficient in the objective function, y the
optimal dual prices and A; the "column" of constraint matrix coefficients for the new activity.
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Next, we see how to generate new subproblem proposals that improve the
solution to the restricted master problem by solving a minimization problem subject

to the subproblem constraints.

3.4.3 Step 3: Generate New Subproblem Proposals
To determine whether any new proposal will improve the solution to the

restricted master problem, we seek to minimize the reduced cost from equation (3.3)
subject to subproblem q constraints. vis denotes the objective function value for the

minimization problem below:
vflq =min '15q
Subject to:

Constraints for subproblem q from the master formulation.

Notice that the optimization problem above is a minimum cost flow problem in
an uncapacitated network. Thus we can solve the problem using faster specialized

network algorithms. There are two possible outcomes:

i if v;‘l < 0, we can improve the solution to the restricted master problem by
adding the optimal solution to the subproblem { x}lqﬂ, w}lq‘*l, s}]qﬂ} as the
14+1 proposal in the restricted master problem. Then, we solve the
restricted master problem with the additional proposal and we repeat the

subproblem proposal generation procedure: Step 2.

() If v;‘l 20, forq=1,2,3, then no new proposal from the subproblems can

improve the solution and the procedure terminates. The optimal solution

to the original (i.e., master) problem is then:
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1
(X:PW:PS:I)= Zq 15' (Xﬁ,wﬁ, Sa‘) forq=1,2,3.
k=1

Where XE‘are the optimal weights in the last solution to the restricted master

problem.

3.44 Computational Considerations
—  Key Decomposition Advantages

There are several advantages to the decomposition algorithm presented here.
By breaking the problem into subproblems the algorithm provides significant
computational savings. This is because the computations for linear programs are
quite sensitive to the number of constraints, in practice growing proportionally to
the cube of the number of constraints. For our problem there is the additional
advantage of having subproblems with a network structure which can be solved
faster than generic linear programs. Also, since the subproblems can be solved

independently, the algorithm lends itself to parallel computation.

-  Approximate Solutions

In practice, the decomposition algorithm develops a good approximation to the
solution relatively quickly and then "tails off" approaching optimality slowly. Thus
we can use the followin'g bounds in order to establish termination criteria. At the

end of each iteration J we define:

ZJ: optimal objective function value of the restricted master problem at
iteration J.

Z : optimal objective function value for the master problem.
vl optimal objective function value of subproblem q at iteration J.

ol optimal dual price for "weight" constraint q at iteration J.
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We know that Z' 2 Z", Also, by weak duality:

3 3
Z-Y o+ Y vhsZ.
d=1 " q=1

Thus we have:

3 3
Zd272' 22 - ) of+ Y v
q=1 q=1
These bounds allow us to stop the decomposition procedure when we are

reasonably close to optimality.

~  Finite Termination 4

We see that the subproblem calculation ensures that the variable introduced
into the basis for the restricted master problem has a negative reduced cost. Thus,
the optimal solution is reached by solving the restricted master problem a finite

number of steps.

- Resolving The Restricted Master Problem and Tre Subproblems

Every time we need to resolve the restricted master problem, after addition of a
new proposal, the optimal basis from the previous solution can be used as a starting
point. Similarly, the optimal basis for the last time we solved the subproblem can be

used to initiate the solution to the subproblem when it is considered next.
~  Dropping Nonbasic Columns

After many iterations the number of proposals (i.e., columns) in the restricted
master problem may become large. Any nonbasic proposal in the current iteration
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can be dropped for the next iteration. If it is required, it is generated again by the

subproblem.

3.5 The Stochastic Programming Model for Three Aircraft Classes

Once we have developed the formulation for the case of a single aircraft class, it
is easy to extend the formulation to cover the case of several aircraft classes. The
notation for several classes of aircraft was introduced in Section 3.1. Here we
present the stochastic programming formulation for the static GHPP with three

aircraft classes:

For several aircraft classes, the objective function is to minimize total expected

delay costs across aircrait classes thus we have:

1. Objective Function:

3
Minimize Y, Y, Y Cgk,j-i) Xkij+ ca

k=1li=1j=i+1

T T+1
=1 i=1

3 m 5wl

Notice how we now add ground delay costs across aircraft classes. The term
accounting for the expected cost of air delays remains unchanged as air delay costs
are identical for all aircraft.

2. Subjectto:

(i  Aircraft of class k scheduled to arrive at Z during period i must be
rescheduled to arrive during i, i+1, .. ., T+1:

T+1
Y, Xkij = Nyi; k=123 i=1..,T

j=i

For each q:



T+1

T
@ X Sqj= X Kei
im1l fm1

(iii) The flow balance at airport Z during period i must account for the
different aircraft classes arriving at Z during period i:

3 i
qu-qu_p- Z Xkﬁ—Sqi=-in; i=1,...,T+1;
k=1j=1

(iv) Xy Wgi Sqi 2 0 and integer.

The discussion on modeling constraints of Section 3.3.1 applies here, with the
additional possibility of limiting ground-holds on a specific class of aircraft.

Being able to differentiate among aircraft classes in our model allows for a
more efficient operation of the ATC system as we take into consideration cost
differences among aircraft classes. However, this will result in greater ground delays
for aircraft classes with lower costs. Therefore, practical application of our models
may be limited to the case of a single aircraft class since currently the FAA has a
policy of "equal access" to all users of the ATC network that meet the navigational

requirements of any sector in the system.

3.6 Constraint Matrix Size
Here we calculate the size of the constraint matrix for the models of Sections 3.3

(one aircraft class) and 3.5 (three aircraft classes). We assume 15 hours of operations
and 15 minute duration for time periods, yielding T=60.

3.6.1 Constraint Matrix Size for One Aircraft Class

1. Number of Variables:



*  Xjvariables: We have thati=1,..., T and jis such thati sj< T+1. Thus
the number of X;; variables is (T+2) (T+1)/2-1, yielding 1890 X;; variables.

®  5gvariables: q=1,2,3 and i=1, ..., T+l. Thus, the number of Sy
variables is 183.

® Wy variables: q=1,2,3and i=],..., T. Thus the number of Wgi
variables is 180.

From above we see that the total number of variables is 2253.

2. Number of Constraints:
e  Type (i) constraints: The number of type (i) constraints is T.

e  Type (ii) constraints: The number of type (ii) constraints is 3 since there is
one type (ii) equation for each q.

e  Type (iii) constraints: The number of type (iii) constraints is 3(T+1). Since
for each q we perform a flow balance at airport Z for periods 1, .. ., T+1.

From above we see that the total number of constraints for T=60is: 60 + 3 + 3 x
61 = 246. yielding a matrix of size 246 x 2253 for the single aircraft class static

problem.

3.6.2 Constraint Matrix Size for Three Classes of Aircraft

1. Number of Variables

e Number of Xy variables: The number of Xy;; variables is 3{(T+2) (T+1)/2-
1}, since we now have three classes of aircraft.

*  Number of Sy; and W; variables: The number of these variables remains
at 183 and 180 respectively.



From above we see that for T=60,the number of variables is 1890 x 3 + 183 + 180
= 6033.

2. Number of Constraints:

The number of type (i) constraints is now 3 x T since we now have 3 aircraft
classes. The number of type (i) and type (iii) constraints remains unchanged. Thus
the total number of equations is: 60 x 3 + 3 + 183 = 366. The matrix size for the three

aircraft classes case is then 366 x 6033.

The constraint matrix size for both, one class and three classes of aircraft
models, yields problems that can be solved on a personal computer using available
linear programming software packages. Since the number of constraints is large, a
modeling language is needed to input the model. In Chapter 5, we give details on

the software/hardware combination used to solve problem instances for Boston's
Logan Airport.

Worth mentioning, introducing the additional modeling constraints of Section
3.3 results in problems that still can be solved on a personal computer. These
formulations have a significantly lower number of ground-hold variables, and at

most 180 additional constraints, if we introduce constraints for aircraft air delay

limits for each capacity case-period.
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CHAPTER 4

4. DYNAMIC STOCHASTIC PROGRAMMING SOLUTION TO THE GHPP
In Chapter 2, we discussed the need of simplifying the model for the GHPP as
application of the dynamic programing algorithm developed in Section 2.2 was
limited to solution of small problems. Through the simplified model presented in
Chapter 3, we were able to provide static solutions to the GHPP for any airport in
the US ATC network using stochastic linear programming with one stage. In this
chapter, we solve the model of Chapter 3 through a stochastic linear programming

with recourse formulation, achieving the goal of solving real instances of the GHPP

dynamically.

In Section 4.1 we show that for airport landing capacity forecasts consisting of
three scenarios, an optimal dynamic strategy assigns ground-holds at most three
times during the time interval of interest (i.e., a day's operation). In Section 4.2, we
discuss how the input schedule and decision variables, for the static solution
presented in Chapter 3, are modified in the dynamic case. Section 4.3 develops the
stochastic programming with recourse formulation for a single class of aircraft,
which we extend to cover the case of three classes of aircraft in Section 4.4. Finally,
in Section 4.5, we explore the size of the constraint matrix for the stochastic
programming with recourse formulation, and verify that the resulting linear

programs can still be solved on a personal computer.



4.1 Number of Stages in the Dynamic Solution
Figure 4.1 shows that, for a capacity forecast consisting of three scenarios, the

joint PMF of airport Z landing capacities gets updated at most three times during the
interval [0, L]. These three instants (denoted t;, t and t3 in Figure 4.1) define three

stages comprising the time intervals [t;, ty), [ty, t3), and [t3, L]. We see that within
each stage the conditional PMF for future airport landing capacity does not change.
Therefore a dynamic solution to the GHPP assigns optimal ground-holds at the
beginning of each stage.

Capacity Casell

Capacity Case 2

Stage |

Capacity Case 3

& (time)

Figure 4.1

Number of Stages Defined by the PMF of Airport Capacities
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We recall that in the static solution presented in Chapter 3, the time interval [0,
L] comprised a single stage, resulting in a "here-and-now" solution which assigned
ground-holds at t;. In the dynamic case there are up to three stages at which we
make ground hold decisions. Thus, we need to incorporate information on aircraft

departure times, in addition to arrival times, as described in the next section.

4.2 Modifying the Model for the Dynamic Case

The model for the dynamic case is similar to the one presented in Section 3.1,
except for the input aircraft schedule and the ground-hold decision variables (which
must be modifyed in order to consider the stage during which aircraft are scheduled
to depart as well as the arrival period at airport Z), assumptions for the dynamic
model are exactly as described in Sections 3.1.1 through 3.1.6.

In the notation introduced below, t, refers to the time period at which stage s
starts. Notice that tgis defined by the profile of the capacity forecast, and that in

general we can have three or fewer stages” .

4.21 Input Schedule for Daily Operations
In the dynamic problem we need to consider at which stage the aircraft are

scheduled to depart as well as the scheduled arrival period. Thus, we have:

7 Throughout this chapter we assume that the capacity forecast generates three stages. The case of
one stage is equivalent to the static problem discussed in Chapter 3, while the case of two stages

is easily derived from the three stage solution.
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(i) For One Aircraft Class:

Ngi: The number of aircraft scheduled to depart during stage s and
scheduled to arrive at airport Z during periodi; s=1,2,3;i>t,.

(ii) For Three Aircraft Classes:

Nyt The number of class k aircraft scheduled to depart during stage s
and arrive to airport Z during periodi; k,s=1,2,3;i>t;.

3 T
Notice that for (i) wehave », 3, Nsi=NrTOT;

s=1 i=t3+l

and for (ii) i i i Nisi = NTOT-
k=1s=11i=tg
We see that in order to generate the input schedule defined above; first, we
generate the time periods at which each stage starts using the capacity forecast,
noticing that for stage one we have t; = 1 for all capacity forecasts. Then, we use the
information on individual flights (i.e., scheduled departure period, arrival period,
and aircraft class) in order to assign each flight to its corresponding departing stage,

arrival pericd and class.

4.22. Ground-Hold Decision Variables
From the input schedule above, we see that the ground-hold decision variables
are:
(i) For One Aircraft Class:
Xgsij The number of aircraft originally scheduled to depart during stage s
and arrive at airport Z during time period i, which are rescheduled to

arrive during period j, under capacity case q;
qs=1,23 i>ty i £j ST+l
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(ii) For Three Aircraft Classes:

Xqksiji The number of aircraft of class k scheduled to depart during stage
s and arrive at airport Z during time period i which are rescheduled to
arrive during j, under capacity case q.

q ks=1,23; i>ty isjs T+l

We notice that for (i) we have that :

T+1
Z Xgsij = Nii,

j=i

where N is the input schedule defined in Section 4.2.1, and for (ii):

1
Y, Xqksij = Nisis

T+
Py’

)

where Ny is the input schedule defined in Section 4.2.1.

Worth mentioning, the set of variables defining the queueing process at airport
Z is identical to the one in the static model since our assumption regarding the cost

of air delays requires that we only consider the number of aircraft unable to land at

the end of any period.

4.3 Stochastic Programming With Recourse Model
In this section we formulate the dynamic GHPP as a stochastic linear

programming problem with three stages, in which ground-holds are assigned at the
beginning of each stage. We follow the framework presented in Section 3.2, where



we developed the stochastic programming with one stage formulation. Initially, we

limit our attention to a single class of aircraft.

4.3.1 Formulating the Deterministic Problem

This is the formulation that would result if we knew with certainty that
capacity case q, with capacities Kqy, . . ., Kg141; would occur. We see that the
following integer programming formulation defines the optimization problem of

minimizing total delay costs:

T+1

Minimize: Z z Y, Cgl—i) Xgsij+ ca Z Wi (4.1)

s=li=tg41j=i+1

subject to:

(i) All aircraft scheduled to depart during stage s and arrive during period i
must be rescheduled to arrive at airport Z during periods i, . . ., T+1:

T+1
Xgsij=Nsi; $=1,23; i=tgq,...T

j= i

(ii) The flow balance at arrivals airport Z at the end of each period yields:

Wa 2 2 2 Xgsii + Wgi-1 - Kgi;i=1,...T+1

3
( such that) J = tse1
tg <i

(with qu qT+l =0)

(iii) qu]’, W;20 and mteger



The formulation above is similar to the one presented in Section 3.2.1, and can
be transformed to a minimum cost flow problem in an uncapacitated network.
Thus, we can relax the integrality constraint. The resulting problem has the same

objective function and the following set of constraints.

T+1

@ Y Xgsij=Nsi; §=1,2,3 i=tg,...,T
j= i

. T+1 T

(if) 2 Sq= X Kg;
i=1 i=1

i
(iii) Wei-Wga- 2, Y. Xqsi-Sqi=-Kqgi: i=1,..., T+l
(s s;rl:t_hat) j=tse1
s<1

(with Wg = Wty = 0)

(iv) quij, qu Sqi 20

Before we proceed further we make an important observation. The models
developed throughout this chapter assume that ground-holds assigned at each stage
are final. Therefore, at stage s+1 we do not revise ground-holds for aircraft
scheduled to depart during stage s and still waiting to depart at the beginning of
stage s+1 due to previous ground-holding. This assumption has only a small impact
on the quality of the solution because the number of stages is small compared to the
total number of periods. Therefore, the number of aircraft delayed in previous
stages and still waiting to depart at a future stage is small compared to the total
number of flights. In practice, we are likely to limit the magnitude of ground-holds,
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further reducing the "overlap" of aircraft between stages. Also, this assumption is in
line with ATC practice of trying to assign firm ground-holds whenever possible in
order to facilitate schedule adjustment planning by the airlines.

4.3.2 The Distribution Problem

As mentioned in Chapter 3, the distribution problem assumes that we find out
the capadities for all the periods before we make the ground-hold decisions. Under
this assumption, the solution to the GHPP is a complete policy consisting of optimal
ground-holds for each capacity case. We notice that the distribution problem is
static in nature. Still, we refer to stages in the formulation below since the

distribution formulation is an intermediate step in developing the recourse

formulation.
L 3 3 T T+1 T
Minimize: ), Pq > X X Cgl - 1) Xgsijt ca Y W gi (4.2)
q=1 s=li=tgyj=i+1 i=1
subject to:
Foreachq=1,2,3:
T+1
@ Y Xgsij=Nsi; $=1,2,3 i=tgy,..,T
j=1
T+1 T
(i6) Y Sq= X Kg
i=1 i=1l
i
(i) Wgi - Wgi-1 - 2 z Xgsii —Sqi=-Kgg i=1,..., T+l;
s such that)j = tg+1
tg <i

(iv) Xgsiy Wair sqi 20.
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Notice that the solution to the distribution problem is equivalent to solving
three separate minimum cost flow problems, one for each q, since the constraint
matrix consists of three separate network components. Unfortunately, when we
assign ground-holds at the beginning of stages 1, 2, and 3 we have limited
information on future airport capacity (i.e., we only have access to the conditional
PMF of future airport landing capacities); thus, we need to modify the distribution

problem formulation in order to solve the multistage problem.

4.3.3 Formulating the Three Stage Problem

The dynamic solution to the GHPP, for the capacity forecasts under
consideration, reduces to solving a stochastic linear programming problem with
three stages. Ground-holds are assigned at the beginning of stages 1, 2 and 2.
Referring to Figure 4.1, we see that in stage 1 we define a single set of ground holds
thus we need to introduce the following set of constraints to the distribution

problem formulaticn:
v) xllij = x2lij = x31ij; i=2,..,T, isjsT+1

At stage 2, we assign ground-holds conditioned on being on the upper branch

or lower branch of the tree in Figure 4.1. If we are on the upper branch we are in

capacity case 1 and assign ground-holds X;y;;. If we are in the lower branch we

assign a single set of ground-holds corresponding to capacity cases 2 and 3. Thus

we need to introduce constraints:

(vi) x22ij=x32ij; i=th+1,..., T, isjsT+

Finally, at stage 3 all uncertainty has been resolved. We know exactly which
capacity case will define future airport capacity. Thus, no further constraints on
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ground-holds are needed as ground-holds are defined for each of the three capacity

cases.

We see that after adding constraints (v) and (vi) to the distribution problem, the
constraint matrix becomes block angular as shown in Figure 4.2. This structure is
similar to that of the single stage formulation of Chapter 3, making the problem

suitable for decomposition techniques.

Coupling Constraints:
X116~ X215 = X314
Xo2ij = X3ij
Network Component
forq=1
Network Component
forq=2
Network Component
forq=3
Figure 4.2

Constraint Matrix Structure for the Multistage Problem

The coupling constraints introduced in the multistage formulation break the
network structure of the problem. However, as was the case with the single stage
formulation, optimal solutions generated for the practical problems in Chapter 5 are
integer. After substituting constraints (v) and (vi) into the distribution model:

(keeping variables with the lower stage index), we get:



T T+1 T T+1
Minimize: Y, Y Cgﬁ-i)x1u)+ 1 Y X Cgf-i) Xy

imljmi+ i=t1j=i+1
T T+1 3 T T+1
+P2+p3) 2 X Cgf-DXenp X pg X X Cgf-i) Xy
i=taj=1+1 q=1 i=taej=i+l
i T
+ca ), Pq 2, Wgi 4.3)

q=1 i=1
subject to:

T+1
@) 2 X11ij = Nii; i=2,..,T

j=i

T+1
(i) Y Xqij = Na; i=ty41,...,T; q=1,2

j=i

T+1
(i) 2, Xq3ij = N3i; i=tye1,...,T;q=1,2,3

j=i

T+1 T
(iv) Sqi = X, Kqi q=1,2,3.

j:l j=l

i
) Wi -Wia- 2 Y X - Su = Kii;
(Ss-t )] =tg+1
ts+1 <i

i i i
(V) Wai - Wai - X Xiji - Y, Xeoi — 2, Xogji — Szi = -Kai;
j=2 j=tan1 j=t3+1

i i i
(viil) W3 - Waii1 - X Xagi - 2, Xaz — 2, Xassi - S3i = -Kais
j=2 j=t2+1 j=t341
With equations (v), (vi) and (vii) for i =1, ..., T+1; with Wgg = Wyt =0)
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We see that the formulation above does not have a network structure as
variables X4 appear with a -1 coefficient in three different constraints and variables

Xasij appear with a -1 coefficient in two different constraints. In addition to the
constraints in the model above, we could introduce constraints that limit congestion
at Z by specifying the maximum number of aircraft allowed to queue at the end of
any period under any capacity case. Also, we can limit the number of ground-hold
periods by limiting the summation on the j index for constraints (i) - (iv).

4.4 Multistage Formulation Covering Three Aircraft Classes
Once we have derived the single aircraft class formulation, we can immediately
extend the model to several aircraft classes by using the notation developed for

multiple aircraft classes.

In the objective function we minimize expected delay costs across aircraft

classes:
Minimi
3 T Tx+1 T T+1
Y { Y Y Cekj-DXmupF p1 2, 2, Cgk,j-i) Xikaij
k=1 Ti=1lj=i+1 i=t41j=i+1
T T+1 ) 3 T T+1 o
+(p2+pa) 2, Y Cgk,j-i) Xaaij+ X, Pq 2 Cg(k,)-l)qusij}
i=ty1j=i+1 q=1 i=t31j=i+1
3 T
+a ) Pq X Wqi
q=1 i=1 4.4)

subject to:



T+1

(i) z X1k1ij = Ny k=1,2,3i=2,...,T
jmi
T+1

(if) Y, Xqzij = Niai; k=123 i=tyq,...,T q=12
j=i

. T+1

(iii) Y, Xqusij = Niai; k=123 i=t3;q,...,Tq=123
j=i
T+1 T

(iv) Y, Sqi = X, Kqis q=1,2,3.
j=1 j=1

3 i
M Wi-Wia- 2 X Y Xusi-Su=Ki

k=1(3 s-t.. j=ts+]
ts <1

3 (4 i i
(vi) Wz - Wai1 - D, (}: Xikiji+ 2, Xokgji+ 2, Xausji )- Sa2i = -Kaj
. k=1)\j=2 j=ton j=tan

3 (i i i
(vii) W3i-W3j1- Z ( Z Xikiji + Z Xok2ji + Z X3k3iji )- S3i = -K3;
k=1\j=2 j=t2s1 j=t3+1
Equations (v), (vi), (vii) arefori=1,...,T + 1 with qu = Wq-r+1 =0).
(viii) qus,y qu, Sqi 20 and integer.

We see that the size of the problem to be solved increases with the number of stages
as well as with the number of aircraft classes. In the next section, we explore

constraint matrix size for practical problems.



4.5 Constraint Matrix Size

We determine the approximate size of the constraint matrix for the single
aircraft class and three aircraft classes models developed in Section 4.3 and 4.4
respectively. In our calculation, we assume forecasts consisting of three capacity

scenarios, three aircraft classes, three stages, and sixty time periods (i.e., T = 60).

4.5.1 Constraint Matrix Size for One Aircraft Class
First we determine the total number of constraints in the optimization model

(4.3):

Constraint Number of equations
i) 60
(ii) 60x2=120
(iii) 60 x3 =180
(iv) 3
(v) - (vi) 1x3)=183
Total 586

If we introduce limits in the maximum airborne delay (i.e., queue length at the
end of every period) for every capacity case as described in Chapter 3, we would
increase the total number of equations by 3 x 60 = 180 for a total of 766 equations.

In order to calculate the total number of variables we assume that ground-holds
are limited to 20 time periods (i.e., 5 hours). This results in the following

approximate number of variables.)

To calculate the number of X g; variables we assume that stages 2 and 3 start at

ty =20, and {3 = 40. The approximate number of Xgg;; variables is then:

2x{20x 20 +2x20x 20 + 3 x 20 x 20} = 6 x 800 = 4800.
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The number of W variables and Sg; variables is as in the static case: 180 + 183
= 363.

From the analysis above, we see that the constraint matrix size for the three

stage problem with a single aircraft class is approximately 766 x 5163.

4.52 Constraint Matrix Size for Three Aircraft Classes
The number of equations as well as the number of variables increases
significantly vis a vis the single class problem.

The total number of constraints in the optimization model (4.4):

Expression Number of equations
) 3x 60=180
(i) 3x120 =360
(iii) 3x180 =540
(iv) 3
(v) - (vi) — 183
Total: 1266

Again, introducing limits in the maximum airborne queueing delay for each capacity

period we obtain a total number of equations of 1266 + 180 = 1446.

The total number of variables assuming a maximum of 20 periods of ground-
hold is:

- number of Xgisij variables (3 x4800) : 14,400
- number of Sg; and Wy; variables: 360
Total: 14,760

The constraint matrix size for the three stage problem with three aircraft classes is

1446 x 14760.
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We see that even for the case of three aircraft classes, the resulting linear
program can be solved on a personal computer as will be confirmed by the
experimental results of Chapter 5.

The dynamic models developed in this chapter yield a significant improvement
in the solution vis. a vis. the static model and current ATC practices. Chapter 5

presents a detailed analysis of experimental results for Boston's Logan Airport.



CHAPTER 5

5. EXPERIMENTAL RESULTS

In this chapter we assess the performance of the static and dynamic stochastic
programming models developed in Chapter 3 and 4. The algorithms tested include
a very fast heuristic that showed performance comparable to that of the dynamic
stochastic programing models. We provide a detailed analysis on how the airport
capacity forecasts and air costs affect the relative performance of the algorithms. The

chapter is organized as follows:

In Section 5.1 we present the data that define the instances of the GHPP for
Logan airport to be solved (i.e., the aircraft schedule data, the airport capacity
forecasts, and the ground/air cost functions). In section 5.2 we describe the different
algorithms that will be evaluated, and in 5.3 we give an example of a "complete
experiment”, consisting of an instance of the GHPP for Logan to be solved using the
algorithms described in 5.2. In Section 5.4, we discuss performance of the static and
dynamic stochastic programming algorithms and of a fast heuristic as compared to a
deterministic solution. As a final exercise, in Section 5.5, we compare the
performance of the algorithms tested to the "passive"strategy of no ground-holding
which minimizes total expected delay.

The choice of algorithms for testing was based on results from preliminary runs

for static and dynamic stochastic programming models for a single class of aircraft.



Both models showed an improvement vs. the deterministic solution. However, the
dynamic algorithm performed significantly better than the static, suggesting a
greater potential for dynamic approaches to solving the GHPP. Thus, in addition to
the static and dynamic stochastic programming models for a single class of aircraft
we explored two dynamic algorithms: a heuristic based on dynamic use of the
deterministic algorithm for a single class of aircraft and the dynamic stochastic
programming model for three classes of aircraft . The deterministic dynamic
heuristic perfcrmed remarkably close to the optimal stochastic dynamic solution in
the majority of cases. Discriminating among aircraft classes improved the solution
versus the single aircraft class model as ground-holds are assigned to the least

expensive aircraft class eligible for ground-holding.

Regarding comparison to the "passive" strategy of no ground-holding, the
dynamic algorithms, including the heuristic, performed remarkably better; showing
total expected delays within 10% of the passive strategy, with the advantage that
over 95% of the delays are on the ground. As well, the overall cost performance of
all the algorithms tested, including the deterministic solution, was better than for the

"passive" strategy except for cases with low air delay cost premiums versus ground

costs.

51 Defining the GHPP for Logan Airport
In order to solve realistic problems using the algorithms developed in this
thesis, we must obtain the input data and put 1t into the format described in Sections
'3.1and 4.2 for the static and dynamic models respectively. Next, we provide details
on how the instances of the GHPP for Logan airport were generated.



5.1.1 Aircraft Schedule

The aircraft schedule data represent a typical weekday of operations at Boston's
Logan Airport during the Fall of 1988 based on information taken from the
November 1988 issue of the Official Airline Guide, including scheduled direct
international flights ( a total of 5 flights). Worth mentioning, there are
approximately 50 unscheduled daily flights into Logan which are not subject to
CFCF ground-holding. This does not affect the quality of our solutions
significantly as these unscheduled flights represent less than 19 percent of the total
number flights.

Appendix 2a contains information on the airport and time of departure, arrival
time and aircraft type for each direct (i.e, last leg) scheduled flight into Logan.
There is a total of 551 scheduled flights. The earliest scheduled departure is at 5:45
AM and the latest scheduled arrival at 11:58 PM, yielding 73 fifteen-minute time
intervals. Appendix 2b shows the schedule with flights classified according to the
three classes described in Section 3.1.3, the departure and the arrival period.
Appendix 2c shows the static input schedule for one and three aircraft classes as
defined in Section 3.1.4.

The dynamic schedules are determined from the flight schedule in Appendix
2b and the capacity forecasts which define the starting times for the stages as shown
in Figure 4.1. Table 5.1 shows flight duration statistics by aircraft type for the Logan
schedule data. We see that small and medium aircraft, each with approximately
45% of the scheduled flights, account for about 90% of Logan traffic. Also, we see
that over 80% of the flights have duration of two or less hours. This reflects the
_importance of short range traffic, such as flights from New York and Washington;
and Logan's role as "The New England Hub," collecting short range commuter
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flights and funnelling the passengers from these flights into the main air traffic

network.

The high proportion of short range flights highlights the importance of

dynamic approaches to solving the GHPP. We also see that if the system was able

to differentiate users into three cost classes (i.e., according to aircraft type),

substantial savings would be obtained by assigning ground-holds to the lowest cost

aircraft eligible for delay.
Flight
duration (lws)  TYPE1

L£-05 54 (9.8)
05-1.0 179 (32.5)
10-2.0 16 (3.3)
20-3.0 —
3.0-40 —
40- —_—

251 (456)

Number of Aircraft and Percent (%)

IXPE2 IYPE3
2(0.4)

97 (17.6) 6(1.1)

91 (16.5) 6(1.1)

36 (6.5) 8(1.5)

213.7) 1934
2(04) 122.2)

249 (451) 5193)
TABLE 5.1

Flight Duration Statistics

-87-

JOTAL
56 (10.2)
282 (51.2)
115 (20.9)
44 8.0)
40(7.1)
14 (2.6)
551 (100)
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Figure 5.1
Hourly Landings By Aircraft Type for Scheduled Flights

Figure 5.1 shows hourly landings by aircraft type for scheduled flights. We see
that during the busiest periods (8 to 11 and 16 to 19 hours) landing demand for
scheduled flights averages 36 and 43.5 landings per hour respectively, representing
60% and 74% of the "good weather" maximum landing capacity of 60 aircraft per
hour. Thus, in a good weather day this schedule yields little congestion. However,
as we will discuss shortly, bad weather can significantly reduce landing capacity,
and it is precisely during bad weather days that landing capacity is more uncertain.
This is why probabilistic approaches to solving the GHPP yield a significant

improvement in the efficiency of operations during periods of restricted airport
capacity.

Regarding the landing profile by aircraft type, we sc2 that the most significant

deviation versus the average class split occurs for type 1 aircraft, which show
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significantly reduced activity towards the end of the day; and for type 3 aircraft
which show greater activity after 15:00 hours.

5.1.2 Airport Capacity Forecast

We studied a total of 10 different capacity cases consisting of three capacity
profiles each. We explore four different probability scenarios for capacity cases 1-3,
and a single probability scenario for capacity cases 4-10, for a total of 19 different

capacity forecasts.

The capacity forecasts cover a wide variety of conditions in regard to the levels,
timing and duration of restricted capacity periods, and reflect operating conditions
prevailing at Logan during bad weather days. Figure 5.2 shows the capacity profiles
for capacity case 1 (with stages 1, 2, and 3 starting at 6:00, 14:00, and 15:00 hours;
corresponding to times t1, t, and t3 in Figure 4.1 respectively), and Table 5.2 the
corresponding 4 probability scenarios. For example, for capacity case one, under
probability scenario 1, profiles 1, 2, and 3 have probabilities of .5, .3, and .2
respectively. Capacity cases 2-10 with the corresponding probability scenarios are

shown in Appendix 3.
Probability Scenario
Erofile # 1 2 3 4
1 5 3 3 34
2 3 5 2 33
3 2 2 5 33
Table 5.2

Probability Scenarios for Capacity Case 1
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Figure 52
Capacity Profiles for Landing Capacity Case 1



The capacity levels used in preparing the forecasts were 60, 40, and 28 landings
per hour, corresponding to VFR1, VFR2/IFR1, and IFR2/IFR3 conditions
respectively. VFR stands for visual flying rules and IFR for instrument flying rules.
Airport landing capacity under IFR conditions decreases versus VFR conditions as
aircraft minimum separation rules are enforced increasing the time between
landings. As well, some landing runways available for VFR operations may not be
equipped with instrument landing equipment, further reducing capacity during IFR
conditions. Worth mentioning, Logan historical data indicate that VFR1 weather
conditions prevail about 80% of the time, VFR2/IFR1, 12% of the time, and IFR3 and
higher during the remaining 8%. Thus, we have not included extreme congestion
cases such as shut down of operations, that are likely to require flight cancelations,

due to unacceptable delay levels.

5.1.3 Ground and Air Delay Costs
- Ground Delay Costs

In order to assure FCFS within an aircraft class, the ground delay cost functions
used were slightly increasing. For the case of a single aircraft class (i.e., the
"average" case) ground-hold costs were scaled to $1,000/ period for the first period of
ground-holding and then increased by $10/period. Since we can multiply the
objective function of a linear program by a constant without affecting the solution
cost figures can be scaled so that they reflect actual operating costs for aircraft.

In the case of three aircraft classes, two different ground-hold cost functions
were used, both yielding the average ground-hold cost, of $1,000 per period, for a
single class of aircraft based on a 45%-45%-10% aircraft class split. The cost for the
first period of ground delay by aircraft class for each cost function is shown in Table
5.3. The marginal rate of ground-hold cost increase is $10/period. The second

-91-



function reflects a cost difference among aircraft classes which is closer to what we

would expect in reality.
Aircraft Type
cathudtn @ ) )
1 $800 $1,133 $1,300
2 $430 $1,300 $2,225
Table 53
First Period Ground-Hold Delay Cost
-  AirDelay Costs

As discussed in Section 3.3.1 we can adjust the bias of our models towards

conservative (liberal) ground-holding strategies by increasing (decreasing) the cost

of air delay, ca. We explore marginal air delay costs of $1,200, $1,600, $2,000, and

$3,000, representing cost premiums of approximately 20%, 60%, 100% and 200% vs.

the average cost of ground delays. We solved the GHPP for each one of the

problems defined in Table 5.4, using the algorithms described in Section 5.2.

Capacity
Case
1-3

4-9
10

Number of Probability Number of Air Delay Number of
Scenarios Forecasts Costs Problems*
4 12 1200, 1600 48
2000, 3000
1 6 1600 6
1 1 3000 1
19 55

* A problem is defined as a capacity forecast - air delay cost combination

Table 54

Problems Generated by the Different Capacity Forecast- Air Cost Combinations
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5.2 The Algorithms

We evaluaied the performance of 5 algorithms in the solution of the GHPP's

defined above. Algorithms 1-4 are for a single class of aircraft, while 5 is for three

classes of aircraft.

1.

Deterministic: this algorithm provides a static deterministic solution to the
GHPP by taking the most likely capacity profile in the probabilistic forecast as
the deterministic capacity profile and disregarding completely all other
profiles. Available capacity is then assigned on a FCFS basis with all delays
assigned as ground-holds. This algorithm is labeled DETERM.

Static: This algorithm is based on the model developed in Chapter 3. It
provides the optimal probabilistic static solution for the GHPP using stochastic

linear programming with one stage. This algorithm is labeled STATIC.

Dynamic: This algorithm is based on the stochastic linear programming model
with three stages described in Chapter 4. It provides the optimal dynamic
solution to the GHPP under the assumptions described in Section 4.3.1. The
algorithm is labeled DYNAMIC.

Deterministic Dynamic Heuristic: Based on preliminary results showing a
significant advantage for the DYNAMIC vs. the STATIC solutions, we

developed a heuristic that combines the speed of DETERM with the good
performance of DYNAMIC. The algorithm establishes ground-holds
dynamically (i.e,, at the beginning of each stage defined by the probabilistic
forecast) using DETERM. Worth noticing, some of the information conveyed
by the probabilistic forecast is incorporated into the heuristic by utilizing the

most likely capacity case at the current stage as the deterministic forecast input
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for DETERM. The procedure is described below (please refer to Figure 4.1
which shows the stages defined by the probabilistic forecast) :

At the beginning of stage 1, the capacity case with the highest probability is
taken as the deterministic forecast. We then solve the GHPP using DETERM
and assign ground-holds for stage 1.

At the beginning of stage 2, we are at either the upper or lower branch of the
probabilistic forecast shown in Figure 4.1. If we are at the upper brarich, the
deterministic forecast to be used as input for DETERM is capacity case 1; if we
are at the lower branch, the deterministic forecast is given by the capacity case
with the highest probability between capacity cases 2 and 3. Stage 2 ground-
holds are assigned solving the GHPP using DETERM, with the ground-holds

previously assigned for stage 1 as initial conditions.

Finally, at stage 3 uncertainty has been resolved and we use the capacity
case we find ourselves at (i.e., capacity case 1,2 or 3) as the deterministic
forecast. Stage 3 ground-holds are assigned using DETERM with the ground-

holds determined in stages 1 and 2 above as initial conditions.

The dynamic heuristic described above is denoted DYNAMICH, and we see
that its computational complexity is O(T2) since in order to reassign demand
for any given period we need to scan O(T) periods, and there are T periods.
Worth mentioning, the modeling constraints described in Section 3.3.1 (e.g.,
limiting ground-hold durations) can be introduced without affecting the

complexity of the heuristic.



5. The Dynamic Algorithm for Three Aircraft Classes: \
This algorithm is based on the stochastic linear programming model with three
stages of Chapter 4, with three aircraft classes. This algorithm is denoted
DYNAMIC3C for the first ground hold function defined in Section 5.1.3, and
DYNAMIC3C2 for the second function.

5.3 Describing a "Complete Experiment"

As shown in Table 5.4, the different capacity forecast - air cost combinations
define 55 GHPP instances for Logan airport. Each one of these problems was solved
using the following algorithms: DETERM, STATIC, DYNAMICH, DYNAMIC, ard
DYNAMIC3C. Additionally, problems with air delay cost of $3,000/ period were
solved using DYNAMIC3C2 for a total of 288 solutions generated for the different
algorithms. Next, we present a particular instance of the GHPP for Logan airport:

- The aircraft schedule presented in Section 5.1.1 is fixed for all GHPP instances.

- The capacity forecast is composed of a capacity case (e.g., capacity case 1 composed
of three capacity profiles as shown ir. Figure 5.2) with an associated probability
scenario (e.g., the first column of Table 5.2 which assigns probabilities of .5, .3, and .2

to capacity profiles 1,2, and 3 respectively).

- The ground-hold cost function for solutions with a single class of aircraft is as
described in Section 5.1.3 and is fixed for all GHPP instances. For cases with three
aircraft classes, one of the two cost functions in Table 5.3 (e.g., cost function 1) is

specified.

- The marginal cost of air delays (e.g., $1600) is specified out of the four possible
values presented in Section 5.1.3.
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Once a GHPP instance has been formulated we generate solutions for each of
the algorithms described in section 5.2. The algorithms were implemented as

follows:

DETERM and DYNAMICH were implemented using C programming
language code that utilizes the input schedule and the deterministic landing capacity
forecast in order to assign available capacity on a FCFS basis, with delays assigned
as ground-holds. However, In order to obtain the expected cost and expected delay
statistics necessary to evaluate perforinance of the algorithms tested, we used static
stochastic programming versions of the algorithms to solve the instances of the

GHPP in this thesis.

STATIC, DYNAMIC, DYNAMIC3C, and DYNAMIC3C2 are stochastic linear
programming algorithms. As discussed in Sections 3.6 and 4.5, the size of the
stochastic linear programs we will consider can be solved on a personal computer.
We used LINGO on a 386 machine with a 80387 co-processor and 4mb of RAM
memory. Our version of LINGO is able to solve systems with a constraint matrix

size of up to 5000 x 15,000, for moderately dense matrices.

54 Performance Evaluation

As described above, each GHPP instance - algorithm combination generates a
solution. We will evaluate performance of the different algorithms based on the
following statistics for each solution: total expected costs, expected cost of ground
and air delays, expected ground delay and air delay measured in aircraft-periods.
Appendix 4 shows these statistics for each solution, including the "passive" strategy
of no ground-holding to be discussed in Section 5.5.

5.4.1 Overall Performance



Figures 5.3 and 5.4 show the average performance of the algorithms. Figure 5.3
is on a percentage basis (i.e., equal weight for each solution) while Figure 5.4 is
average expected total delay cost.

In Figure 5.3, we see that DYNAMIC provides close to 30% savings in expected
total cost vs. DETERM, while STATIC provides only a modest 6.6% savings. The
performance of DYNAMICH is remarkably close to that of DYNAMIC showing 25%
savings. We also see that DYNAMIC3C and DYNAMIC3C2 show 37% and 62%
savings vs. DETERM. These savings are achieved by assigning ground-holds to the

lowest cost aircraft eligible for delay.
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Figure 5.3
Average Cost Performance (% basis)

Figure 5.4 shows that the average cost savings provided by the dynamic
algorithms (i.e., DYNAMICH, DYNAMIC, DYNAMIC3C, DYNAMIC3C2) are
traceable mainly to significant reductions in the expected cost of air delays. On the
other hand, STATIC shows an increase in expected air delay costs which offsets

most of the savings in ground-holding cost. The reason for the significant
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improvement in the expected cost of air delays for the dynamic algorithms is that, by
updating the capacity forecast at each stage, these algorithms generate ground-

holding policies that reduce expensive air delays significantly.
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Average Cost Performance ($ basis)

5.4.2 Effect of Air Delay Costs

Figure 5.5 shows the average relative performance of the algorithms for each
marginal air delay cost value tested. With no exception, the performance of the
dynamic algorithms improves as the air cost increases. For example, DYNAMICH
and DYNAMIC show 24% and 27% savings for marginal air delay cost of
$1,600/period; while for marginal air delay cost of $3,000/ period the savings are
33% and 39%.

On the other hand, the performance of STATIC seems to deteriorate as the cost
of air delays increases. We see that for air delay cost of $1,200/period STATIC
provides 12% savings while for $3,000/period savings are reduced to 5%. This is
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an important observation as the advantage of STATIC over DETERM diminishes
within the range of air cost premiums we are likely to find in real problems. Thisis
because as we increase the marginal air delay cost - particularly for cases with the
most pessimistic capacity profile as the most likely profile - the solution for
DETERM improves (we recall that for high enough marginal air delay cost the
optimal static solution is the strategy of assigning available capacity for the most
pessimistic capacity profile on a FCFS basis with all delays taken in the form of
ground-hokds).

We reach similar conclusions by looking at individual solutions rather than
averages. Figure 5.6 shows solutions for each of the four probability scenarios in
capacity case 1, for air delay cost of $1,200, $1,600, $2,000, and $3,000/period (from
left to right, solutions within a given air delay cost correspond to probability
scenarios 1,2,3, and 4 respectively). Again, theimprovement for the dynamic

solutions as the air delay cost increases is evident.
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Alr Delay Cost: $3000/period
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Capacity Case 1 Cost Performance ( Air Delay Cost $3000)

5.4.3 Effect of Uncertainty

Observing the capacity profiles for capacity cases 1,2, and 3 in Appendix 3, we
see that the main congestion periods occur during stages 3, 2, and 1 respectively.
Figure 5.7 shows the average relative performance of the algorithms for the
problems in capacity cases 1,2, and 3. We see that while the performance of STATIC
is comparable for the three capacity cases, the performance of the dynamic
algorithms improves as the uncertainty on congestion increases. For capacity case 1,
for which congestion occurs mainly during stage 3, the stage of greatest uncertainty,
we see the best performance as the dynamic algorithms assign ground-holds at the
beginning of stage 3, when uncertainty in the forecast is resolved. On the other
hand, capacity case 3, for which congestion occurs mainly during stage 1, the stage

with the least uncertainty, we observe the worst relative performance.
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5.4.4 Effect of Marginal Air Delay Costs on Ground and Air Delays

Figure 5.8 shows the average expected number of aircraft-periods of air and
ground delay for all problems; while Figure 5.9 shows expected air and ground
delay for each marginal air delay cost value tested.

From Figure 5.8 we see that the key advantage of the dynamic algorithms is a
significant reduction on the magnitude of expected air delays with no increase on
ground-holds compared to DETERM. Expected air delays for DYNAMIC and
DYNAMIC3C represent only 16% and 23% of air delays for DETERM respectively,
with the added advantage of having average ground-holds slightly below those for
DETERM. Notice that DYNAMIC3C2 cannot be compared to DETERM in Figure
5.8 since DYNAMIC3C2 applies only to problems with air delay cost of
$3,000/pericd.
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In Figure 5.9 we see that, as we had anticipated, average expected ground-hold
and air delays for STATIC, DYNAMIC and DYNAMIC3C show declining expected
air delays as air delay costs increase; while DETERM and DYNAMICH are
insensitive to the cost of air delays since these algorithms assign available landing

capacity on a FCFS basis regardless of the cost of air delays.
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5.4.5 Effect of Ground-Hold Cost Function For Three Aircraft Classes

Figure 5.10 shows the average expected ground delay for each aircraft class for
DYNAMIC3C and DYNAMIC3C2 for problems with air cost $3,000 within capacity
cases 1-3. Unlike algorithms for a single aircraft class, those that make distinctions
among aircraft classes result in ground-holds that assign the lower cost classes
ground-holds which are substantially higher than the 45%-45%-10% split for aircraft
classes 1,2, and 3 respectively. Specifically, for DYNAMIC3C and DYNAMIC3C2
class 1 aircraft account for 80% of total ground-hoids, while classes 2 and 3 - which
comprise 55% of the total number of aircraft - account for only 20% of total ground-
holds, well bellow their proportion in the schedule. Notice also how the lower

ground-hbld cost for class 1 aircraft in the second ground-hold cost function ($430
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vs. $800 for the first cost function) results in higher expected average ground-holds
for DYNAMIC3C2 (284.9) vs. DYNAMIC3C (277.2).
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55 Comparing the Algorithms to the "Passive" Strategy

Total expected delay is minimized if all aircraft are allowed to depart as
scheduled. This is because under this strategy there are no ground-holds and
airport landing capacity utilization is maximized by letting aircraft arrive as early as
possible (i.e., according to the original schedule). As a last exercise we compare the
algorithms tested to the "passive" strategy of no ground-holds. The reason why
ground-holding makes sense is that the cost of air delays is significantly higher than
the cost of ground delays. Figure 5.11 shows average total expected delay (ground
plus air) for the algorithms tested and the passive strategy. We see that the passive
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strategy indeed has the lowest expected delay. Unfortunately, these delays are all in

the form of air delays.
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Average Expected Ground Plus Air Delay Including "Passive" Strategy

Figure 5.12 provides a breakdown of expected ground and air delay. In this
figure it is evident that the dynamic algorithms have the advantage of producing
remarkably low expected air delay while maintaining total delays within 10% of the

minimum.
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Regarding cost performance, Figure 5.13 shows that, except for the case of a
marginal air delay cost of $1200, the lowest air delay cost tested, the passive strategy
performs worse than all the algorithms tested. This indicates that even simple
ground-holding practices improve the efficiency of operations vis-a-vis a strategy

that uses no ground-holds.
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Key conclusions from the model development and experimental work
performed in this thesis are summarized in the next chapter. We will also discuss

possible practical solution approaches to the "complete network" GHPP.
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CHAPTER 6

6. CONCLUSION

The primary objective of this thesis was to develop static and dynamic
algorithms that provide high quality solutions to practical instances of the
probabilistic GHPP for the largest airports in the US ATC network. In this chapter
we summarize key results in light of our primary objective, and bring these results
into perspective by discussing conditions under which solutions based on the "star
configuration" network are adequate when considering the complete air traffic
network. Following this exercise, we address, in a preliminary way, the GHPP for
the complete network by presenting a possible solution approach that uses one of
the dynamic algorithms developed in this thesis as the key "building block". Finally,

we suggest directions for future research.

The chapter is structured as follows: Section 6.1 summarizes key results
obtained through model development and experimentation and discusses issues
related to implementation of the algorithms developed. In 6.2, we discuss
important characteristics of the Network GHPP that need to be considered when
solving the network-wide problem. Section 6.3 presents a procedure to solve the
GHPP for the complete network using the deterministic dynamic heuristic

developed in Chapter 5. Finally, in Section 6.4 we propose future research steps.
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6.1 Key Results

The principal contribution of this thesis is the development of algorithms that
consider the probabilistic nature of airport landing capacity when solving the "star
configuration” GHPP in air traffic control. Specifically, we developed static and
dynamic algorithms capable of providing solutions to the GHPP, even for the
largest airports in the US air traffic network. As mentioned in the early stages of this
thesis the ground-holding strategies resulting from ground-holding algorithms are
strategic in nature. An efficient ATC system should also utilize real-time, "fine
tuning" ATC tools (such as the En Route Spacing , Departure Spacing and Arrival
Spacing Programs, described in Chapter 1) as complements to an effective ground-
holding program. In this section we start by providing a summary of the key results
from the modelling and experimental work performed in this thesis. Then, we
assess the practical limitations of the algorithms developed and discuss

implementation issues.

6.1.1 Summary of Modelling and Experimental Results

In the early s.. ~es of model building we realized the advantages of dynamic
solutions to the GHPP. The dynamic programming algorithm presented in Chapter
2 provides the exact solution to the dynamic probabilistic GHPP by exercising
ground-hold control on individual aircraft at the beginning of each time period. The
practicality of the algorithm was limited to small problems due to the exponentiality
of the control variable (i.e., if n flights are eligible for delay, 2" ground-hold
strategies must be considered) and of the sample space size for the joint PMF of
airport capacities. However, the exact modeling approach provided valuable
insights, leading to a simplified model that captures the key elements of the real

system.
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The static and dynamic stochastic linear programming models developed in
Chapters 3 and 4 are the counterparts to Terrab's static dynamic programming
algorithm and the dynamic solution of Chapter 2 respectively. The main feature of
the stochastic programming models is that they simplify the structure of the control
mechanism and the airport capacity forecast by making ground-hold decisions on
groups of aircraft (i.e., on aircraft classified according to cost class, and schedule)
rather than individual flights; and considering few rather than many landing
capacity profiles, in line with current weather forecasting technology. These models
are able to provide sclutions for realistic instances of the GHPP using just a personal
computer. Another important aspect of these models is that important constraints,
such as limiting maximum ground-holds and airborne queueing delays, are easily

introduced.

The experimental work of this thesis yieided interesting findings. Overall, the
probabilistic algorithms tested performed better than a deterministic algorithm
roughly approximating current practice (Figures 5.4 and 5.8 provide overall cost and
delay performance of the algorithms tested). However, the dynamic stochastic
programming algorithms performed significantly better than static algorithms,
highlighting the importance of dynamic approaches to solving the GHPP . This
finding led to the development and testing of a "fast" heuristic (i.e., O(T2), where T is
the total number of periods) which performed remarkably close to the dynamic
stochastic programming solution, yielding over 20% savings by comparison to the
deterministic algorithm.

Another important finding came from comparing the algorithms tested to the
policy of no ground-holds, which minimizes total delay. Interestingly, the dynamic
algorithms tested, including the heuristic, performed remarkably well compared to
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the "passive" strategy of no ground-holds. Total expected delays for these
algorithms were within 10% of the minimum expected delay, with the advantage
that over 95% of the delays are on the ground.

6.1.2 Practical Limitations and Implementation Issues
- Dealing with the GHPP for the US Air Traffic Network

When trying to use the algorithms developed in this thesis in the context of
the complete air traffic system we need to consider the effect of network
dependencies. These dependencies affect the aircraft schedule for daily operations,
and - by implication - the quality of solutions to the GHPP for a "star configuration"
network. However, under certain conditions, solutions provided by the algorithms

for the single congested airport model are robust.

First, consider the case of a single congested airport in the network. A
practical example of this case would be a day during which bad weather is expected
at Chicago's O'Hare Airport, while relatively good weather is expected in the rest of
the country. We see that since only a quite small fraction of the connecting flights
through O'Hare will return back to O'Hare the same day, the solutions provided by
the single airport model applied to O'Hare are adequate.

Suppose now that there are several congested airports in the network but only
a relatively minor number of connecting flights between any pair of these airports.
We see that in this case single airport models can again be used to solve the
problems for each congested airport independently. However, when there is
significant connecting flight traffic between congested airports, we need to consider
network dependencies. In the Section 6.2 we will discuss important characteristics
of the network-wide problem that must be considered in the development of exact

and approximate solutions.
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- Assigning Ground-Holds to Specific Flights

The algorithms for the single airport GHPP developed in this thesis assign
ground-holds to groups of aircraft classified according to cost class and "last leg"
flight schedule (i.e., the schedule for the flight segments into the congested airport).
In order to assign ground-holds to specific flights we must refer back to the original
schedule data for individual flights. In the absence of network dependencies,
ground-holds are assigned randomly among the group of aircraft eligible for ground
delay. However, when network dependencies are significant we need to consider
these dependencies when assigning ground-holds. In Section 6.3 we present an
approximate solution to the network GHPP that assigns ground-holds from the
single airport solutions to specific flights by considering expected queueing delays at
the congested airports within the ATC network.

- Updating Solutions to the Dynamic GHPP

When solving the GHPP dynamically, ground-holds are implemented several
times throughout the day. Due to the probabilistic nature of airport landing
capacities, the actual history of airport capacities will not coincide exactly with the
airport capacities in the initial forecast. The forecast of airport landing capacities
may also have been updated by the time we need to assign new ground-holds. Since
the ground-holds resulting from the dynamic algorithms we have developed need to
consider the current state of the ATC system and landing capacity forecast, we may

be required to resolve the GHPP before implementing ground-holds for the next
stage. ‘

Worth noticing, taking a dynamic approach to ground-holding does not
preclude the use of tactical ATC since, due to the stochastic environment, "fine

tuning" ATC tools further improve the efficiency of operations.
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- Real-time Requirements

Since ground-holding decisions must be implemented in reai-time the speed of
solution to the GHPP is critical. Running times for STATIC and DYNAMIC (the
optimal static and dynamic algorithms for a single class of aircraft) were for most
cases under 10 minutes and 70 minutes respectively. This is remarkable considering
that we made no attempt to optimize the software/hardware combination used in
solving the problems. Even with LINGO, the generic linear programming software
we used, running times can be improved by at least 50% to 60% by using a Weitek

co-processor and a 486 machine.

The deterministic dynamic heuristic should exhibit running times below one

minute when implemented in the real ATC system3-

The running times for DYNAMIC3C and DYNAMIC3C2, the optimal dynamic
algorithms for three aircraft classes, were substantially higher than for the single
class models, averaging 3.8 hours. However, the FAA's policy of "equal access" to
all users of the ATC network that meet the navigational requiremerts of any sector
in the system may limit application of our models to the faster single aircraft class

algorithms.

- Information Requirements

Fortunately most of the information required by the algorithms developed in
this thesis (i.e., input data) is available within the current US ATC system. We can
readily access information on air traffic demand since updated airline schedule data

is already being used by the CFCF in their EQF program. Updating the state of the

8 In order to obtain the expected cost and expected delay statistics necessary to evaluate
performance of the algorithms tested, the versions of the deterministic algorithm and dynamic
heuristic implemented had running times comparable to STATIC (i.e, under 10 minutes).
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system is also possible since real time information on the location of every aircraft

within the ATC system is available.

Regarding the probabilistic landing capacity forecasts, these could be
constructed using weather forecast information provided by the National Weather
Service facilities at key ATC centers. Currently, weather forecast information is
translated into a deterministic landing capacity forecast for key airports in the
network. However, in order to incorporate probabilistic elements into the ground-
hold assignment process, ATC management needs to be convinced about the
advantages of a probabilistic approach to the problem. Assuming this is can be
achieved, we believe that, in principle, the traffic management units within the ATC
system should be able to adopt the simple forecasting system required by the
probabilistic algorithms we have developed.

6.2 Important Features of the Network GHPP
- Combinatorial Nature of the Network GHPP

One of the complications arising in trying to build a model of the GHPP for the
complete air traffic network is that we cannot group aircraft into broad cost classes
when establishing ground-holds. We need to keep track of the identity of individual
aircraft as they travel through the network. The following example illustrates this

point.

Suppose two Boeing 747 aircraft are scheduled to arrive at Logan Airport at
2:00 PM and the next destinations in their schedules are Miami and Los Angeles,
respectively. Suppose operating conditions at Logan Airport require that one of the
two aircraft be delayed on the ground prior to its departure for Logan. In order to
decide which aircraft is delayed into Logan, we need to consider expected air delays
at Miami and Los Angeles as we should favor delaying the aircraft bound for the
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most congested terminal area. We see that in order to build a model for the GHPP
that reflects network dependencies we must consider the combinatorial nature of the

problem.

- The Cost of Air Delay

Since aircraft land in a fashion that approximates FCFS, the discussion of
Chapter 3 regarding the cost of air delays holds for the network GHPP. Thus the
marginal cost of air delay can be considered a constant - not necessarily identical for

each congested airport.

- The Effect of Time Horizon on Network Dependencies

The effect of network dependencies diminishes as the time horizon for the
GHPP is shortened. This is because the number of connections per aircraft declines
as we reduce the time span for the problem. We see that for a one hour time
horizon, network dependencies are practically non-existent. While for time horizons
of two to three hours network dependencies are probably limited to airport pairs,
depending on the proximity and traffic patterns between congested airports.

From the discussion above we see that solutions to exact models for the
network GHPP have a combinatorial nature. However, by periodically updaﬁng
the state of the system in regards to aircraft schedule, we could use one of the
dynamic algorithms developed in this thesis in order to produce reasonably good
solutions for the network GHPP. In the next section we present a possible procedure
to solve the network GHPP using the "fast” dynamic heuristic developed in this

thesis.

6.3 Approximate Solution to the Network GHPP
The four step procedure discussed here is based on the deterministic dynamic
heuristic developed in Chapter 5. It is applicable to instances of the GHPP that
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cannot be modeled by a "star configuration" network. The rationale for the

procedure is provided by the discussion in Sections 6.2. This first proposal for

solving the network GHPP is a simple heuristic procedure. As is the case for all

heuristics, it might be improved by introducing refinements following

experimentation.

Step 1:

Step 2:

We identify a set of airports for which weather-related congestion is
anticipated for the day of operations and which exhibit a significant degree
of connecting flight dependency. A probabilistic capacity forecast of the
form described in Chapter 4 is provided independently for each congested
airport. We also define stage durations. For example we may decide on
three-hour stages which would result in 5 to 7 instances during the day at
which ground-holds are determined. The rationale behind choosing a
relatively short stage duration is trying to limit network dependencies

within any given stage to airport pairs.

We calculate expected air queueing delay for every time period of
operations for every congested airport independently. This is easily done
using the capacity forecast and the original landing schedule (i.e.,
assuming no ground-holds) for each congested airport. The information
on expected air delays at congested airports will help in the assignment of
ground-holds by the deterministic heuristic to specifir. flights by
considering expected congestion on the next leg of a flight eligible for
ground-holding (i.e., ground delays are assigned to flights expected to

encounter the greatest air queueing delays in their next leg).
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Step 3:

At each stage:

- we generate a solution to the GHPP for every congested airport in the

Step 4:

network independently, using the deterministic dynamic heuristic of
Chapter 5. Inputs to the algorithm are based on the current state of the
system (i.e,, an updated demand profile for each congested airport derived
from information on current aircraft‘ current location in the network, past
ground hold decisions and the original schedule), and an updated landing

capacity forecast.

we update expected air queueing delay at each of the congested airports for
the remaining time periods using an updated demand profile for each
congested airport - derived from information on aircraft current location
in the network, ground hold decisions for previous stages and the original

schedule - and an updated landing capacity forecast.

The deterministic dynamic heuristic determines ground-holds for groups
of aircraft. Therefore, at each stage we need to assign ground- holds to
specific aircraft. For this we use the information on expected air queueing
delay at congested airports found in step 3. Due to the relatively short
stage duration, we can limit our horizon to the next leg of a connecting
flight eligible for ground-holding as determined by the deterministic
dynamic heuristic solution. Once ground-holds for the current stage are
assigned to specific flights we proceed with step 3 for the next stage. The
example below illustrates this procedure:

If in the two Boeing 747 example mentioned in Section 6.2, we assume that
Logan, Miami, and Los Angeles are the congested airports in the network
which exhibit connecting flight dependencies. The deterministic dynamic
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heuristic, applied to Logan, would only indicate that one of the two
aircraft into Logan must be subjected to ground delay (e.g., 30 minutes of
ground delay prior to departure for Logan). We then use the information
on expected air queueing delay at the arrival airport in the next leg of these
flights in order to assign the ground delay to a specific aircraft. For
example, suppose that for the aircraft continuing to Miami, and for the
originally scheduled arrival time, the expected air queueing delay in Miami
is 30 minutes; while for the Los Angeles flight there is not expected air
queueing delay at the scheduled arrival time. Then, the aircraft going to
Miami in the next leg would be the cne subject to the 30 minute ground-

holding prior to its departure for Logan.

We notice that limiting the time horizon for the network GHPP may
significantly affect the performance of the proposed heuristic as we only consider
the next leg of connecting flights when assigning ground-holds to specific aircraft.
Therefore, we should not rule out the development of exact models for the network
GHPP. Even if these exact models can not be implemented in practice, they can help
in the assessment of heuristics based on single airport models. Furthermore,
heuristics derived from exact network algorithms may show better performance
than heuristics based on single airport models by providing a better model of the
ATC network. In the next section, we propose possible research directions for the
GHPP.

6.4 Future Research
Future research on the GHPP can be classified as ongoing research on the "star
configuration” problem and initial modelling/experimentation on the network-wide

problem.
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- Continued Research on the Single Airport GHPP

We have made substantial progress on solving probabilistic static and
dynamic versions of the single airport GHPP for practical size problems. The
experimental results in this thesis indicate that, if implemented, these algorithms
could generate substantial savings vis-a-vis current ground-holding practices.
However, the algorithms need to be validated through testing in the actual US ATC
system. In addition, the implementation issues discussed in Section 6.1 must be
assessed. An experimental program at one or several airports in the US ATC
network can provide a test bed for the single airport probabilistic algorithms we
developed. Notice that since the forecasts of airport landing capacity for each
airport are provided independently, we can use probabilistic ground-holding
algorithms for the airports in the test while maintaining the current CFCF ground-

holding program at other airports.

- Possible Research Directions for the Network GHPP

Future research on the network GHPP can be classified according to the
approach to modelling. As discussed in section 6.3, one possibility is the
development and testing of heuristics that use the single airport probabilistic
algorithms as "building blocks". The advantage of this approach is that it provides
simple solutions to the network problem capitalizing on previous research results.
However, these heuristics may not provide an adequate model for the network

problem since they are based on algorithms that ignore network dependencies.

On the other hand, we can try to develop exact models of the network GHPP
that fully reflect the combinatorial nature of the problem. and then develop
simplified versions of these algorithms that can solve problems of realistic size.

Once exact models are developed, research should concentrate on producing
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algorithms that can be used in the soluticn of practical instances of the network
GHPP.

Given the complexity of the network problem, initial efforts should probably
concentrate on solving deterministic versions of the problem - similar to the research
program for the "star configuration" network that led to the successful solution to
the fully dynamic probabilistic solution to the problem presented in Chapter 2 and

the development of algorithms capable of solving large problems.

We believe that future research efforts should not rule out any cf the directions
mentioned above as all of them have the potential of providing significant
contributions in solving the GHPP for the complete ATC network. From the
discussion in this chapter we conclude that in order to implement effective ground-
holding policies for the complete ATC network future research should: (i) develop
algorithms that address probabilistic aspects of the problem, have a dynamic nature,
and consider network dependencies; (ii) consider issues such as ease of
implementation, information requirements and speed of solution; and (iii) integrate
decision support/data management systems that complement any optimization

algorithms implemented within the ATC system.

-125-



10.

11.

References

Gish, J. "FAA Hopes Technology Can Increase Capacity." Airline Executive
International, March 1990.

Kulikowski, A. ]J. "Traffic Flow Management in Today's ATC System."
Journal of ATC, January-March 1987.

Reilly, D. J. Presentation During Second Working Session at the 27th ICAA
World Congress, Airport Forum 5, 1987.

Donoghue, J. A. "A Numbers Game." Editorial published in Air Traffic
World, December 1986.

Del Balzo, J. M. "The US National Airspace System for the Year 2010."
Journal of ATC, July-September 1989.

Mornberger, M. "Exit: A Decade of Aircraft Purchases Enter: The Decade of
the Airport." Editorial published in Airport Forum, January 1990.

Wolley D. "Pressure Building To Free Eurocontrcl From Political
Constraints." Airline Executive International, March 1990.

Bjorek, A. Presentation during the October 1989 European Civil Austrian
Conference (ECAC) Symposium, Airport Forum, January 1990.

Odoni, A. R. "The Flow Management Problem in Air Traffic Control." In
Flow Control of Congested Networks, A. R. Odoni, L. Bianco and G. Szego (eds.),
Springer Verlag, New York, pp. 269-288, 1987.

Cohen, D. and Odoni, A.R. "A Survey of Approaches to the Airport Slot
Allocation Problem.” Flight Transportation Laboratory Report 85-3, MIT,
Cambridge, MA, 1985.

Terrab, M. "Ground Holding Strategies in Air Traffic Control." Operations
Research Center Technical Report No. 196, MIT, Cambridge, MA, February
1990.

-126 -



12

13.

14.

15.

Andreatta, G., and Romanin-Jacur, G. "Airport Flow Management Under
Congestion." Transportation Science 21:249-253, 1987.

Bertsekas, D.P. Dynamic Programming, Prentice-Hall Inc., NJ, 1987.
Wagner, H. M. Principles of Operations Research, Prentice Hall, Inc., NJ, 1975.

Bradley, S. P, Hax, A. C., and Magnanti, T. L. Applied Mathematical
Programming, Addison-Wesley Publishing Company, Inc., 1977

-127 -



APPENDIX1

DYNAMIC PROGRAMMING ALGORITHM:
1A, INPUT FILE FORMAT:

=Start with four integers:
-Period 0 capacity kg (0 to 5)
-Number of planes N (0 to 5)
-Maximum capacity M (0 to 5)
-Number of periods P+1 (0 to S)

-Conditional PMF's (f1 bers. Need iod after i jes):

for i =0,1,...M write:
p(0)/i p(1)7i ... p(M)y/j

D {acrival limes f b flight (i y

for i=1,2,....N write:
departure time of i arrival time of i

G { and air del ‘ h flight (i )
for i=1,2,...N write:
cgi(1) cay(1) cgy(2) cay(2) ... cgj(P) cay(P)

1B. C CODE:

/*Dynamic DP algorithm for the FMP size S problem*/
/‘tll"l""8“’.!""““!!‘ttGlobal sectionll'.‘l'tttttttxt"‘/

#include «stdio.h>

#include «stdlib.h>

/t‘3'!"‘ﬁﬂtttllt!"tlttttclwal Maa-osllttlltttt'ttl‘t!’ltttl'ttt/

#define MALLOC(x) ((x*)malloc(sizeof(x))) /*use:ptr=MALLOC(type)*/
lttttttl"'tllt’lﬁtltlttclobal constant declarationsllttﬁll.ltlt'ttl/
#define MAXN S /*number of planes 0,1,2,3,4.(3 has highest priority)*/
#define MAXM 5 /* max airport capacity*/

#define MAXP S /* number of finite capacity time periods*/
/'tltt'tt'ttltllt‘ttltclobal Type mclaraﬁonsttllttttt't“‘i‘tttlttt/
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typedef struct state
(char cap{MAXPI;

char g_hold[MAXNI;
char feasible]M AXNI;
float opt_cost;

struct state * next_stage;
struct state * next_state;
)

state;

typedef struct queue
{char f_number;

struct queue * next;

)

queue;

typedef struct feas_cap
(char cap;

struct feas_cap * next;

)

feas_cap;

/"l..!’t‘l‘l"’"“’ll"lclobal Variable declarations""l“l."tlt.tllt/

long int states_n=0; /*number of states*/

int first_cap,N.M P; /*period 0 capacity, #planes, max capacity,*
periods*/

float p[MAXM+1][MAXM+11]; /*conditional PMF's. plilljl=p(i)/j*/

int LIMAXNI, A[MAXN]; /*departure and arrival times®*/

int cgl MAXNIIMAXP],calM AXNI[MAXPI; /*ground and air marginal costs*/

state first_state[ MAXPI; /*first state in each stage*/

feas_cap *head_ptr[MAXM+1]; /*pointers to nonzero prob. capacities list*/

char counter[MAXM+1]; /*number of non-zero prob. capacities*/
queue * head=NULL; /*ptr to first in queue to land*/

/’.'t'..‘.ll“lt..‘ll‘."lFuntions Se‘:zimtil‘tl!.lt“'lllt‘ﬁlt‘tltl!llt‘/

FILE * openfile (filename, type, defaultfile, defauitname)
/*opens file, performs validation*/

char *filename, *type, *defaultname;

FILE *defaultfile;

(FILE *temp;

if (Istrcmp(filename,defaultname))
temp~defaultfile;

else

temp-fopen(filename, type);

if (temp==NULL)

(printf("\nError - can't open \"%s\"", filename);
printf("\nUsing default:\"%s\"", defaultname);
temp=defaultfile;

)

return(temp);

)

void create_state_space(void)

{char i,j.k;

state *current, *current_next, *prev_next;
feas_cap *cap._ptr, *current_cap._ptr;
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/'generate linked list of non_zero capacities®/
for (1=0; {¢<=M:i++)

(counter(i]=0;

for (j=0:j<=M;j++)

it (plillj1>0)

(counterlil++;

head_ptrlil=MALLOC(feas_cap);
ifCthead_ptrlil==NULL)

{printf("run out of memory. Exit program\n");
scanf("%d" first_cap);

)

hrad_ptrlil->cap=j;

head..ptrli]->next=NULL;

break;

)

current_cap_ptr=head_ptrlil;

for (j=j+ 1;j<caM;j++)

ir (plillj1>0)

{counter[il++;
current_cap._ptr->nextsMALLOC(feas_cap);
if(current_cap_ptr->next==NULL)

{printf("run out of memory. Exit program\n");
scanf("%d" first_cap);

)

current_cap_pir=current_cap.ptr->next;
current_cap_ptr->capsj;
current_cap_ptr->next=NULL;

)

)

/*start with first_statel0]*/
first_state[O0].caplOl=firsi_cap;
for(i=0;i<=N-1;i++)
(first_state[0].g_hold[i]-0;
if(Lli]==0)

ficst_state[0] feasiblelil=1;

else

first_state[0) feasiblelil=2:

)
first_state[Ol.next_state=NULL;
for (i=0; i<=P-2:i++) /*generate states for stage i+1*/
(/*start at top of stage*/
curient=&first_statelil;
current_next-&first_state[i+1];

/*Create states for each feasible strategy. One for each nonzero capacity*/
while(currenti=NULL)

{/*start with strategy 0.handle first state separately®/

if (currentl=&first_stateli])
current_next=prev_next->next_state=M ALLOC(state);
if(curreni_next==NULL)

{printf("run out of memory. Exit program\n");

scanf("%d" first_cap);

)
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states_n++;
current->next_stage=current_next;
cap.pir=head_ptrlcurrent->caplill;
for(j=0;jcmizj++)
current_next->capljl-current->capljl;
current_next->capli+1]«cap_ptr->cap;
current..cap_ptr=cap_ptr->next;

for(k=0:k<aN-1:k++)
{current_next->g_hold[k}=current->g_hold(k];
if(LIk]==i+1)

current_next->feasible(k]~1;

eise

current_next->feasible(k]=0;

)

current_next->next_state=NULL;
prev_next=current_next;

while(current_cap_ptri=NULL) /*do all nonzero caps*/
(current_next-prev_next->next_state-MALLOC(state);

if(current_next-=NULL)

{printf("run out of memory. Exit program\n");
scanf("%d" first_cap);

)

states_n++;

for(j=0:jc=ij++)
current_next->capljl=current->capfjl;
current._next->capli+1]=current_cap_ptr->cap;
for(k=0:k<eN-1:k++)
{current_next->g_hold[k]=prev_next->g_hold{k]:
current_next->feasiblelk]-prev_next->feasible[k]:
)

current_next->next_state=NULL;
prev_next=current_next;
current_cap_ptr=current_cap_ptr->next;

)

/*strategy 00001*/
if(current->feasible[0])==1&&((current->g_hold[0]+A[0])<=P-1))
(current_cap_ptr=cap_ptr; /*move c'rrent cap ptr back*/
current_next=prev_next->next_state-M ALLOC(state);
if(curreat_next-~NULL)

{printf(“run out of memory. Exit program\n");
scanf("%d" first_cap);

)

states_n++;

for(j=0;j<=ij++)

current_next->capljl=current->capljl;
current_next->capli+1]«current_cap_ptr->cap;
for(k=0:k<=N-1:k++)

{if(k==0)

{current_next->g_holdlkl=current->g_hold[k]+1;
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current_next->feasibie{k]=1:

)

else
{current_next->g_hold[k]-current->g_holdlk};
if{LIk]==i+1)

current_next->feasible(k]=1;

else

current.next->feasible[k]=0;

)

)

current_next->next_state=NULL;
prev_next=current_next;
current_cap_pir=current_cap_ptr->next;
while(current_cap_ptri=NULL) /*do all nonzero caps*/
{current_next-prev_next->next_state~MALLOC(state);
if(current_next==NULL)

(printf("run out of memory. Exit program\n");
scanf("%d" first_cap);

)

states.n++;

for(j=0;jc=ij++)
current_next->capljl=current->capljl;
current_next->capli+1]=current_cap_ptr->cap;
for(k=0:k<=N-1:k++)
{current_next->g_hoidlk}=-prev_next->g_holdlk];
current_next-feasible[k]=prev_next->feasiblelk];
)

current_next->next_state=NULL;
prev_next=current_next;
current_cap..ptr=current_cap_ptr->next;

)

)

if(N>=2)

{

/*strategies : 00010, 00011, 00100, 00110,00111,01000,01001,01010,01011,01100,
01101,01110,01111, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111,
11000,11001, 11010, 11011, 11100,11101, 11110, 11111 have been ommited as they have a
similar structure*/

)

)

void delete_queuve( char cap)

{queue * temp;

char i;

for (i=1; ic<=cap; i++)

(if (head !=NULL)

(

temp=head->next;

free((void*)head);

head=temp;

)

else

return ;

)
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return ;

)

void add_queue( char j) ,

{queue * current,* current_next, * temp;

if (head==NULL) /*an empty queue®*/
{head=M ALLOC(queue); .
if(thead==NULL)

(printf("run out of memory. Exit program\n");
scanf("%d" first_cap): .

)

head->f_number=j;

head->next=NULL;

)

else /*not an empty queue*/
(current=head;
while(current->nextl=NULL&&current->f_number>j)
(

current=current->next;

)

if (current->next==NULL)

{

if (current->f_number<j)

(temp=current;

current=MALLOC(queue);

if(current==NULL)

{

printi("run out of memory. Exit program\n");
scanf("%d" first_cap);

)

if(temp==head)

head=current;

current->nexi=temp;

current->f_number=j;

)

else

{

temp=current->next;
current->next=MALLOC(queue);
if(current->next=-NULL)

{ ¥

printf(“run out of memory. Exit program\n");
scanf("%d" first_cap);

)

current->next->next=-temp;
current->next->f_number=j;

)

)

else

(

temp=current;

current=-MALLOC(queue);

if(current==NULL)

{

printf("run out of memory. Exit program\n");
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scanf("%d" first_cap);
)

if(temp==head)
head=current;
current->next-temp;
current-f_number-j;
)

)

)

int find_air_cost (int period, state * current)
{

int cost=0;

char ij;

queue *q_current;

for {i=1:ic=period;i++)

(

for (j=N-1; j>=0:j--)

if {Aljl+current->g_hotd[jl==i)
add_queue (j);

if (current->capli}>0)
delete_queue(current->caplil);
)

q.current=head;
while(q_currenti=NULL)

(
cost+=calg_current->f_number]iperiod + | - (Alq_current->f_numberj+current-

>g_holdlg_current->f_number))];
g-current=q_current->next;
delete_queue(1);

)
return cost;

)

void find_optimal_cost(void)

{

char ij;

slate *start, *current, *current_next, *first_next,*min:
int air_cost;

float min_cost,cost;

/*calculate opt_cost for last siage*/
current=&first_siate[P-1];

while (currentl=NULL)
f:urrent-mpL.oost-find_air_cos t(P-1,current);

current=current->next_state;
)

/* find opt_cost for other stages*/
for( i=P-2; i>=0;i--)
{
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current=&first_statelil;
current.next«current->next_stage;
if(current->next_state==NULL)
first_next=NULL;

else
first_nexti=current->next_state->next_stage;
while(curreati=NULL)

(

/*air cost same for all strategies*/
air_cost=find_air..cost(i,current);
min_cost=air_cost;
in=current_next;

/*look strategy 0 set it to min. notice ground cost is zero*/

for (j=1; j<=counter[current->caplill;j++)

(
min_cost+=current_next->opt_cost*plcurrent_next->caplilllcurrent_next->capli+11};
current_next=current_next->next_state;

)

while(current_next!=NULL&&current_nexti=first_next)
{

cost=air..cost;

/*add ground cost*/

for(j=0:jc=N-1;j++)
if(current->feasibleljl*current._next->feasibleljl==1)
cost+=cgljllcurrent_next->g_holdljll;

/*add exp opt cost all cap cases*/

start=current_next;

for (j=1; je=counterlcurrent->caplill;j++)
{
cost+=current_next->opt_cost*plcurrent_next->caplilllcurrent_next->capli+1]l;
current_next=current_next->next_state;
)

if(cost<min_cost)

{

min_cost=cost;

min=start;

)

)

current->opt_cost=min_cost;
current->next_stage=min;
current=current->next_state;
current_next=current->next_stage;
if(current->next_state==NULL)
first_next=NULL;

else
first_next=current->next_state->next_stage;
)
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)
)

main()

(

char in_filel20],0ut_file[20];

int i,j.k,l,period=0,cap, count;

FILE * fpo;

FILE * fpi;

¢.ate * current, * temp, *prev;

printf("\n input filenames for inputs and outputs respectively\n");
scanf("%Xs%xs" in_file out_file);
fpi=openfile(in_file, “r", stdin, “stdin");
fpo=openfile(out_file,"w", stdout, 'stdout");

/*read input data*/

fscanf(fpi, "%d%ded%d” &first_cap,&N,&M,&P);

printf("Inputs are:\nPericd 0 capacity is: ¥d.\nThe number of planes is: ¥d"
“\nThe maximum capacity is: ¥d \nThe number of periods is: %d" first_cap N,M,P};

fprintf(fpo,"Inputs are:\nPeriod 0 capacity is: ¥d.\nThe number of planes is: ¥d"
“\nThe maximum capacity is: ¥d \nThe number of periods is: ¥d" first_cap,NM,P);

printf("\n\nThe conditional PMF'S are:");
fprintf(fpo,"\n\nThe conditional PMF'S are:\n");

for(i=0:ic=aM;i++)
{

printf("\n");
fprintf(fpo,"\n");
for(j=0;jc=M:j++)
(

fscanf(rpi,” %1, &plilljl);

printf("\t p(xd/%d)=%.21"j.i,plilljl);
fprintf{fpo,"\t p(%d/%d)=%.2f",j.iplilli});
)

)

printf("\n\n\nThe scheduled departure and arrival times are:\n\n");
forintf(fpo,"\n\n\nThe scheduled departure and arrival times are:\n\n");

for(i=0; i<=N-1:i++)

{

fscanf(fpi,"$d%d" &LI[i),&Alil);

printf{("Plane Xd: departure time is: ¥d.\t Arrival time is: ¥d\n\n",i+1,L[il, Alil);
fprintf(fpo,"Plane %d: departure time is: ¥d.\t Arrival time is: ¥d\n\n",i+1,L[il, Alil);
)

printf("\n\nThe ground and air marginal costs for each plane are (plane, # of periods):\n");
fprintf{(fpo,"\n\nThe ground and air marginal costs for each plane are(plane, # of
periods):\n");

for(i=0; i<=N-1:i++)

-136 -



(

printf("\n");
fprintf(fpo,"\n");
for(je1:jcmP~1:j++)
(

fscanf(fpi," % d%d", &cglilljl, &calillj));

printf("ground cost(%d, Xd)=%6d\t air cost(%d, ¥d)=%6d\n\n" i+1,j,cglilljli+1,j.calillj]);
fprintf(fpo,"ground cost(%d, %d)=%6d\t air cost(%d, ¥d)=%6d\n\n"i+1 jcglilljli+1,j.calil(j]):
)

)

fclose(fpi);

create_state_space();

find_optimal_cost();

/*retrieve solution®/

fprintf(fpo,"\n\nSolution:\n\nThe number of states is: %x1d\n\nThe exp. cost for =pt. dynamic
sirategy is: $%.20\n\n" states_n[first_state{0].opt_cost);

printf("\n\nSolution:\n\nThe number of states is: X1d\n\nThe exp. cost for opt. dynamic
strategy is: $%.2\n\n" states_n first_state[0]l.opt_cost);

fprintf(fpo,"The optimal delay strategy for period 0 is(0 is do not delay, 1 is delay):\n\n");
printf("The optimal delay strategy for period 0 is(0 is do not delay | is delay):\n\n");

for{i=0;i<=N-1:i++)

{

fprintf(fpo,"\nPlane %d strategy:

xd.\n",i+ 1 first_state[0).feasible[il*first_state[Ol.next_stage->feasible[i]);
printf("\nPlane %d strategy: %d.\n",i+1 first_state[0]feasible[i]*first_state[O]next_stage-
sfeasiblelil);

)

fprintf(fpo,"\n\n");

printf("\n\n");

I=1;

printf("\n do you want to get results for next time period? (enter 1 if yes 0 if no).\n");
scanf("%d" &j);

while(le=1)

{

prev=&first_state[0];

current-first_state[0l.next_stage;

period=0;

whife(j==1)

(

if(period==P-1)

(

printf("\n sorry previous period was the final period\n");
break:)

period+«+;

k=1;
temp=current;
whife(k==1)
{current=temp;
count=0;
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printf("\n enter capacity lor period %£d:",period);

scanf("%d",&cap);

while(current->caplperiod]i=cap)

(current=current->next_state;

counts+;

if(count>=counterlprev->caplperiod-11])

{curcent~temp;

printf("\nSorry. Capacity of %d is not valid here (i.e. prob 0 event). Try again.\n", cap);
break;)

)

if(count<counteriprev->caplperiod-1l])

{fprintf(Fpo,"\n\nThe exp. cost for opt. dynamic strategy for period %d capacity of %d is:
$%.2M\n\n",period,cap,current->opt_cost);

printf("\n\nThe exp. cost for opt. dynamic strategy for period %d capacity of %d is:
$%.21f\n\n",period,cap,current->opt_cost):

fprintf(fpo,"The optimal delay strategy is: \n\n",period);

printf("The optimal delay strategy is:\n\n");

for(i=0;i<=N-1;i++)

{(if(period==P-1)

(fprintf(fpo,"\nPlane %d strategy: 0.\n",i+1);

printf("\nPlane %d strategy: 0.\n",i+1);

)

else

(fprintf(fpo,"\nPlane %d strategy: %d.\n".icurrent->feasibielil*current->next_stage-
sfeasiblelil);

print{("\nPlane %d strategy: %d.\n",icurrent-feasible{il*current->next_stage->feasiblelil);
)

) .
printf("do you want to try another capacity for period Xd? (enter 1 if yes 0 if
not):\n",period);

scanf("%d",&Kk);

)

)

prev=current;

current=current->next_stage;

fprintf(fpo,"\n\n");

printf("\n\n");

printf("\n\n do you want to get results for next time period? (enter 1 if yes 0 if no.\n");
scanf("%d",&j);

)

printf("\nDo you want to try another capacity sample path starting with period 1?7. (enter 1 if
ves 0 if not)\n");

scanf("%d".&l):
j=1;
)

)
1C. "SIZE 5" EXAMPLE: LARGEST SOLVED ON CRAY2

Inputs are:

Period 0 capacity is: 4.

The number of planes is: 5
The maximum capacity is: 4
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p(0/0)=0.60
p(0/1)=0.20
p(0/2)=0.10
p(0/3)=0.10
p(0/4)=0.10

The number of periods is: 5

p(1/0)=0.10
p(1/1)=0.50
p(1/2)=0.10
p(1/3)=0.10
p(1/74)=0.10

p(2/0)=0.10
p(2/1)=0.10
p(2/2)=0.60
p(2/3)=0.20
p(2/4)=0.10

The scheduled d { arcival ti .

Plane 1: departure time is:
Plane 2: departure time is:
Plane 3: departure time is:
Plane 4: departure time is:
Plane 5: departure time is:

coooo0

Arrival time is:
Arrival time is:
Arrival time is:
Arrival time is:
Arrival time is:

—t et Boh b bt

p(3/0)=0.10
p(3/1)=0.10
p(3/2)=0.10
p(3/3)=0.50
p(3/4)=0.20

p(4/0)=0.10
p(4/1)=0.10
p(4/2)=0.10
p(4/3)=0.10
p(4/4)=0.50

11 { and ai inal [ hol (olage. * of periods):

ground cost(1, 1)=
ground cost(1, 2)=-
ground cost(1, 3)=
ground cost(1, 4)=

ground cost(2, 1)=
ground cost(2, 2)=-
ground cost(2, 3)=
ground cost(2, 4)=

ground cost(3, 1)=
ground cost(3, 2)=
ground cost(3, 3)=
ground cost(3, 4)=

ground cost(4, 1)=
ground cost(4, 2)=-
ground cost(4, 3)=-
ground cost(4, 4)=

ground cost(S, 1)=
ground cost(S, 2)=-
ground cost(5, 2)=
ground cost(S, 4)=

Solution:

10
11
12

13
14
15
16

air cost(1, 1)=
air cost(1, 2)=
air cost(1, 3)=
air cost(1, 4)=

air cost(2, 1)=
air cost(2, 2)=
air cost(2, 3)=
air cost(2, 4)=

air cost(3, 1)=
air cost(3, 2)=-
air cost(3, 3)=-
air cost(3, 4)=

air cost(4, 1)=
air cost(4, 2)=
air cost(4, 3)=
air cost(4, 4)~

air cost(S, 1)=
air cost(S, 2)=
air cost(S, 3)=
air cost(S, 4)=

The number of states is: 2087360
The exp. cost for opt. dynamic strategy is: $158.00
The optimal delay strategy for period 0 is(0 is do not delay, 1 is delay):

Plane 1 strategy:
Plane 2 strategy:
Plane 3 strategy:
Plane 4 strategy:
Plane 5 strategy:

1.

el
« e e e

1000
1100
1200
1300

2000
2100
2200
2300

3000
3100
3200
3300

4000
4100
4200
4300

5000
5100
5200
5300

The exp. cost for opt. dynamic sirategy for period 1 capacity of 2 is: $126.00
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The optimal delay sirategy is:
Plane O strategy: 1.

Plane 1 strategy:
Plane 2 strategy:
Plane 3 strategy:
Plane 4 strategy:

. . - .

The exp. cost for opt. dynamic strategy for period 2 capacity of 2 is:

The optimal delay strategy is:
Plane O strategy:
Plane 1 strategy:
Plane 2 strategy:
Plane 3 strategy:
Plane 4 strategy:

. . . .

The exp. cost for opt. dynamic strategy for p=riod 3 capacity of 2 is:

The optimal delay strategy is:
Plane O strategy:
Plane 1 strategy:
Plane 2 strategy:
Plane 3 strategy:
Plane 4 strategy:

. . . . .

The exp. cost for opt. dynamic strategy for period 3 capacity of 4 is:

The optimal delay strategy is:
Plane O strategy:
Plane 1 strategy:
Plane 2 strategy:
Plane 3 strategy:
Plane 4 sirategy:

. . . . .

The exp. cost for opt. dynamic strategy for period 4 capacity of 2 is:
The optimal delay strategy is:

Plane 1 strategy:
Plane 2 strategy:
Piane 3 strategy:
Plane 4 strategy:
Plane S strategy:

eeooepe
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APPENDIX 2

PROBLEM DATA
2A. OFICIAL AIRLINE GUIDE DATA FOR LOGAN (NOVEMBER' 88):

COLUMN 1: EQUIPMENT;

COLUMN 2: AIRCRAFT TYPE;

COLUMN 3: DEPARTURE TIME;
COLUMN 4: DURATION;

COLUMN 5: ARRIVAL TIME;

COLUMN 6: AIRPORT OF DEPARTURE;

P 2 3 4 3 [+]
DO8 1 5.75 0.5 6.25 MHT
DO8 1 6 0.67 6.67 LEB
DO8 1 6 0.67 6.67 PWM
BE1 1 6.36 0.67 7.03 LEB
D08 1 6.75 0.5 7.25 MHT
BE1 1 6.82 0.5 7.32 MVY
D9s 2 6.38 1 7.38 BTV
SH6 1 6.75 0.67 7.42 HYA
PAG 1 6.92 e.5 7.42 PVC
BE1 1 6.95 0.5 7.45 MHT
BE1 1 6.62 0.88 75 BDR
DO8 1 6.67 0.83 75 ALB
BE1 i 683 0.67 75 HYA
CNA 1 6.83 0.67 7.5 LCI
SH6 1 6.77 0.75 752 ACK
72S 2 6.52 1 7.52 BGR
728 2 6.52 1 7.52 LGA
SF3 1 6.07 1.5 7.57 POI
725 2 69 0.67 7.57 PWM
BEC 1 7.08 0.5 7.58 MVY
D9S 2 6.65 1 7.65 EWR
DO8 1 6.67 1 7.67 ISP
728 2 6.5 1.17 7.67 PHL
SF3 1 6.73 1 773 BTV
SHé6 1 6.73 1 7.73 HPN
L10 3 6.98 0.75 773 BDL
BEC 1 6.75 1 775 AUG
SF3 1 6.75 1 775 BTV
CNJ 1 7 0.75 775 BDL
D9s 2 6.61 1.17 7.78 BUF
728 2 6.7 1.08 778 YUL



BEC
BEC
BEC
SF3
SH6
SF3
72§
BE9
L10
733
D9s
M80
ATR
BE1
728
DH8
BE1
F28
DH8
DO8
73S
738
HS7
738
M80
CNA
M80
72§
SF3
BE1
733
733
BE1
SHé6
F28
733
728
ATR
BE9
SF3
D9S
BE1
SF3
DO8
757
757
728
BE1
733
D9s
SHé6
DO8
BE1
BE1

—pt st NN = NN e e N e e DN = NN = NN = NRNNNN = N e D) m e NN G v N o ot bt bt ot s

6.92
7.09
717
6.48

7.33
7.07
7.08
7.08
693
7.13
7.15
7.17
7.34
7.03

7.25
7.25
7.08
7.66
7.16
7.16
7.16
5.92
7.28
7.83
7.41
7.65
7.34
7.8

7.2

7.7

7.42
7.75
7.36
7.4

7.92
7.92
8.09
7.42
8.31

8.17
6.67
7.25
8.13
851
8.2

775
8.42
875
8.95
8.83

1.17
1.25

1.25
0.67
1.17
1.17
1.17
25

1.17
0.67
1.17

1.33
0.88
1.5

1.33
1.42

1.42
1.83

0.83
1.5
0.67

0.83
233
1.75
0.67
1.5

0.67

0.5
0.67
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RKD
ALB
ACK
PQI
ISP
PWM
LGA
UCA
JFK
PHL
ROC
EWR
HPN
ALB
DCA
ABE
SYR
SYR
ABE
PWM
IAD
BWI
YOow
ORF
DCA
Lcl
DCA
LGA
BGM
BDR
CLE
EWR
BGM
ISP
RIC
PIT
CVG
JFK
SYR
ALB

PWM
BGR
ALB
ATL
DTW
LGA
PWM
EWR

HPN
LEB
MHT
LEB



733
728
ATR
BE1
PAG
M80
BE1
BE1
DH8
D9s
767
D9s
Do8
BEC
BE1
BE1
D9s
DH8
728
738
728
BE1
728
BE1
D9s
D10
733
DO8
73S
DO8
BE1
SHé6
757
BEC
BEC
BEC
SF3
D9sS
SHé6
SH6
D9S
728
SF3
728
DO8
D9s
D9s
SF3
CNA
DO8
DC9
SF3
D9s
728

NN = N o ot s DN = N e DR et ot D) et bt et bt D) et bt bt D) e NDUD N = N o= NN v N v it s bt D)W N = ot s D) ot o e NN

8.46
8.65
8.67
8.92
9.17
8.7

8.72
8.72
9.17
861
6.47
7.32

9.16
8.97
9.12
8.47
892
8.03
9.07
891
9.63
9.13
9.15
6.84
6.87
6.9
9.75
8.25
9.33
9.5
9.66
858
9.42
9.92
9.5
9.5
9.11
9.58
9.91
9.41
9.6
9.65
9.65
9.84
9.7
9.56
10
10.08
10.08
8.75
10.08
8.83
10.21

1.17

0.75
0.5

0.58
1.17
3.33
25

0.83
0.67
0.88
0.83
1.5

1.08

1.17
0.5

3.33
3.33
3.33
0.5

0.83
0.67
1.75

0.5

1.42

0.67
1.17

0.83
1.i7
0.75
0.67
0.67
0.75

0.67
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9.63
9.65
9.67
9.67
9.67
9.7
9.72
9.72
9.75
9.78
9.8
9.82
9.83
9.83
9.85
9.95
9.97
10
10.03
10.0/
10.08
10.13
10.13
10.15
10.17
10.2
10.23
10.25
10.25
10.33
10.33
10.33
10.33
10.42
10.42
10.5
10.5
10.53
10.58
10.58
10.58
10.6
10.65
10.65
10.67
10.7
10.73
10.75
10.75
10.75
10.75
10.83
10.83
10.88

BWI
LGA
JFK
HVN
PVC
EWR
HPN
HPN
Ys)
DCA
ORD
YHZ
ALB
PWM
BDR
ALB
CLE
YUL
CLT
SYR
PHL
MVY
LGA
BGR
MDW
ORD
DAY
MHT
CLT
ISP
ALB
PWM
DTW
BHB
MVY
AUG
ROC
PIT
HPN
HYA
DCA
JFK
BTV
LGA
ALB
EWR
PHL
ACK
PWM
LEB
MKE
BDL
MKE
PWM



SH6
DH?7
ATR
DC9
BE!
738
72S
DO8
728
72§
BEC
757
SF3
767
72s
CNJ
SHé6
D9s
BEI
M80
DO8
767
D9s
SH6
BEC
728
D9Ss
BE1
PAG
Dio
M80
737
D9Ss
M80
728
725
M38o
D9S
BE1
728
DO8
728
L10
D9s
757
BE1
BEC
BE1
BE1
SF3
SF3
BE1
728
DH8

) st et et et et et et NDNWEN == N=NNDNNDNDNNWNW s NN N e Nt Nt DWW e Nt NN = NN = N e o o

9.92
9.98
10

104
9.07
10.07
1041
10.12
9.98
10.5
10.09
9.7
875
10.13
10.33
10.66
10.21
10.92
10.26
10.5
8.22
9.07
10.58
1091
10.58
10.63
10.67
1117
8.35
92.08
10.28
10.7
10.13
1093
1098
9.69
9.75
1148
10.4
11.42
8.5
9.6
11.3
9.99
115
11.42
11.42
11.45
11
11.17
11.57
11.58
11.35

[ (=
~N ~

1.17
0.67
1.08
1.5
2.5
1.17

0.67
1.17
0.5

1.17

3.33
25

0.67

0.5
3.33
2.67
1.5
1.17
1.75

2.33
2.33
0.67
1.83
0.83
375
2.67

233
0.83

—

W
w

— et gt et Bt gt s
.
N
wi

:

1092
10.98
11

11
11.07
11.07
11.07
11.08
11.12
11.15
11.17
11,17
11.2
11.25
11.3
11.33
11.33
11.38
11.42
1143
1.5
11.55
11.57
11.58
11.58
11.58
11.63
11.67
11.67
11.68
1175
11.78
11.87
11.88
1193
1198
1202
12.08
12.15
12.23
12.25
12.25
1227
12.3
12.32
12.33
1242
12.42
12.45
12.5
125
12.57
1258
12.6

ISP
JFK
HPN
MKE
LEB
CLT
LGA
PWM
BGR
IAD
HYA
YUL
PQI
ORL
BWI
JFK
HYA
MDT
MHT
DCA
ISP
DFW
YHZ
ISP
PWM
LGA
EWR
BHB
PVC
ORD
STL
CLE
PHL
RDU
LGA
LGA
BNA
ATL
PWM
CVG
ALB
Mcl
STL
ROC
ATL
ALB
RKD
JFK
BTV
PQI
AlV
BGR
LGA
YQI



733
BE9
BE1
CNA
BEC
73S
728
SF3
SF3
D9s
M80
BE1
BE9
BEC
DIM
ATR
L10
BE1
SH6
D9S
DH7
BEl
D10
BE1
DO8
734
BE1
SF3
728
728
728
M80
PAG
733
D9s
D9s
757
DO8
DO8
D08
728
733
728
SHé6
D08
733
SF3
SHé
AB3
767
SH6
BE1
757
747

O D) vt bt ) Q) it e D) bt ot NN N e e = DD N DN B = NN NN ot o N oot e 00 e bt N bt bt O 0t ) ot ot bt NI N vt et D) N et bt e e N)

11.63
11.67
12
12
12
11.76
11.98
12
12
11.58
12.41
11.84
12.17
12.5
3.87
12.25

12.73
12.9
11.98
12.42
11.98
10.15
12.5
12.5
12.38
12.57
13.07
11.08
12.58
12.52
12.63
13.17
12.53
12.23
10.42
12.05
13
13.16
13.25
12.8
12.98
12.98
13.33
13.5
12.83
13.33
13.33
10.17
11.72
13.25
13.28
11.58
7.08

1

0.67
0.67
0.75
1.17

1.5
0.67
1.33

0.67
9.3

7.25
0.67
0.5

1.42

1.5
3.33

1.17

0.5
25

1.08

0.5

1.17
1.5

333
1.75
0.83
0.67
0.67
1.17

0.67
05

1.17
0.75
0.75

25

275
7.25
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12,63
12.67
12.67
12.67
12.75
1293
1298
13
13
13.08
13.08
13.17
13.17
13.17
13.17
13.25
13.25
134
13.4
13.4
13.42
13.48
13.48
13.5
13.5
13.55
13.57
13.57
13.58
13.58
13.6
13.63
13.67
13.7
13.73
13.75
13.8
13.83
13.83
13.92
13.97
13.98
13.98
14
14
14
14.08
14.08
14.17
14.22
14.25
14.28
14.33
14.33

EWR
UCA
PWM
LCI
ACK
DCA
LGA
BGR
ISP

PWM
BGM
SYR
HYA
BRU
JFK
LHR
LEB
MVY
PIT
JFK
PQI
ORD
BTV
ISP
BWI
BGR
MHT
ORL
LGA
YUL
EWR
PVC
PHL

MDW
DTW
ALB
PWM
LEB
PHL
SYR
LGA
HYA
MHT
IAD
ACK
BDL
sju
ORL
HPN
BTV
MEM
LHR



BE1
733
BE1
BEC
DH7
SH6
733
D9S
BE!
M80
728
M80
BE1
BEC
BEC
D08
728
SF3
D10
757
M80
728
757
728
D08
BE1
728
728
SH3
BE9
CNA
DO8
DO8
D9s
BE1
D9s
BEC
757
D9s
728
D9s
D9s
728
L10
PAG
BEC
D9S
767
734
BE1
M8o
BE1
DHS8
D9s

N =t N = NWN= = WNNNRNNN =N =N~ DN == DNDNNNNOG =N et s DN N = NN = s s e N e

13.6
13.18
13.59
13.5
13.5
13.
12.53
13.4
13.58
11.25
13.58
13.62
14
14
14
14
12
15.92
11.45
11.83
13.48
12.18
14.3
13.98
14
14.25
12.05
14.08
14.25
14.5
14.58
14.66
14.83
14.16
149
129
14.92
12.59
14.31
14.33
14.33
14.03
14.58
798
15.17
14.75
14.75
13.42
14.63
15.16
14.41
15.09
15.34
14.97

233
1.17
0.67
1.42
0.83
0.58
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14.35
14.35
14.42
14.5
14.5
14.5
14.53
14.57
14.58
14.58
14.58
14.62
14.67
14.67
14.67
14.67
14.67
14.75
14.78
14.83
14.9
14.93
14.97
14.98
15
15
15.05
15.08
15.25
15.25
15.25
15.33
15.33
15.33
15.4
15.4
15.42
15.42
15.48
15.5
15.5
15.53
15.58
15.58
15.67
15.75
15.75
15.75
15.8
15.83
15.83
15.92
15.92
15.97

ACK
PHL
ALB
BHB
JFK
ISP
CLT
DCA
BTV
DFW
LGA
EWR
PWM
HYA
PWM
PWM
STL
ALB
ORD
TPA
PIT
PBI
PWM
LGA
ISP
BDL
MIA
BGR
HPN
ACK
PWM
LEB
MHT
PHL
MVY
YHZ
MVY
FLL
DCA
BDA
DCA
CLE
LGA
PAR
pVC
AUG
EWR
ATL
BWI
LEB
PIT
ALB
Ys)
ROC



72S
CNA
DO8
757
D9S
728
SH6
M80
M80
D9s
SF3
SHé6
BE1
SF3
D10
ATR
SF3
BEC
757
D9S
DO8
D9s
D9s
728
BE1
733
DO8
BE1
728
767
728
D10
D8S
D08
BEC
D9s
728
BEC
SF3
BE1
767
M80
728
728
D10
L10
BEC
DO8
SHé
M8&o
M80
SHé6
728
BE1

0 NN e e e GO N NN e NN e e I NN e et N NN NN et e ) s e e e NI NDOND e BN D) e e N

1498
15.33
15.33
11.67
15.05
13.07
15.08
12.27
14.35
1495
15.17
15.17
15.29
15.67
8.17
15.23
15.23
15.5
14.5
15.25
15.83
14.83
13.88
14.38
15.73
15.3
15.5
15.57
13.57
11.35
1563
12.88
12.15
15.84
16
13.34
14.85
15.75
15.75
15.92
11.52
15.8
15.77
14.54
13.54
12.42
16
16.17
16.08
13.33
1475
16.65
16.15
16.5

0.67
0.67
4.33

3.83
1.75
1.17

0.88
0.5

0.75
1.75

0.5
1.5
25

0.67
1.17

5.25

375
4.5

0.83
0.67
3.33
1.83

083
5.25

1.08
233
3.33
4.5

0.83
375
233
0.5

0.67
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1598
16
16
16
16.05
16.07
16.08
16.1
16.1
16.12
16.17
16.17
16.17
16.17
16.17
16.23
16.23
16.25
16.25
16.25
16.33
16.33
16.38
16.38
16.4
16.47
16.5
16.57
16.57
16.6
16.63
16.63
16.65
16.67
16.67
16.67
16.68
16.75
16.75
16.75
16.77
16.8
16.85
16.87
16.87
16.92
17
17
17.08
17.08
17.08
17.15
17.15
17.17

LGA
PWM
PWM
SLC
BTV
TPA
ISP
IAH
RDU
BUF
BGR
HPN
BDR
MVY
FRA
JFK
BTV
ACK
DTW
EWR
MHT

ORL
CLT
PWM
BWI
ISP
BGR
MIA
LAX
LGA
DEN
SFO
ALB
PWM
MDW
VG
RKD
BTV
ALB
LAX
EWR
YUL
ATL
ORD
SFO
AUG
ALB
HPN
DEN
BNA
MVY
LGA
HYA



738
L1O
BE1
728
D8S
DH?7
SH6
SH6
733
BE1
SH6
BE1
F28
728
CNA
D9S
BE1
DC8
728
D9S
BE1
747
PAG
SF3
DO8
Ms80
SF3
733
BE9
SF3
757
728
DH8
DO8
72s
L10
BE1
728
BEC
SF3
728
SF3
D9S
733
SH3
DC9
D9s
ATR
DO8
BE1
DO8
D10
733
BE1

N W e e e et NN = NN N e et N e N e s NN e e D) e D) e e e Q0 e BN e e D) e DN s e s N e e e O3 N = 3N

16

14.5
16.53
13.89
13.89
16.25
16.25
16.52
16.3
16.33
16.33
16.49
14.54
14.63
16.75
15.92
16.75
17

16.77
16.03
16.57
16.65
17.17
16.42
17.08
16.8
17

16.68
16.92
17.25
14.59
16.75
16.92
17

16.27
16.85
17.53
17.03
17.08
17 .41
17.12
17.48
16.7
16.78
17.25
16.25
17.11
17.33
17.5
17.09
18

16.78
16.57
17.75

1717
17.17
17.2
17.22
17.22
17.25
17.25
17.27
17.3
17.33
17.33
17.37
17.37
17.38
17.42
17.42
17.5
17.5
17.52
17.53
17.57
17.65
17.67
17.75
17.75
17.8
17.83
17.85
17.92
17.92
17.92
17.92
18
18
18.02
18.02
18.03
18.03
18.08
18.08
18.12
18.15
18.2
18.2
18.25
18.25
18.28
18.33
18.33
18.42
18.5
18.53
18.57
18.58

PHL
STL
HYA
ORD
ORD
JFK
HPN
ACK
EWR
BTV
ISP
BDR
GSO
MEM
LCI

HVN
MHT
BDL
CLE
BGR
JFK
LGA
BGM
DFW
EWR
ALB
I1AD
UCA
PWM
DFW
PHL
YUL
ISP
DTW
BDA
MHT
SYR
BHB
HYA
LGA
PWM
CLE
PIT
HPN
MKE
PHL
JFK
ALB
BGM
MHT
DTW
CLT
ALB



HS7
D9S
757
BE9
DO8
738
725
728
728
D9s
DH7
SF3
BEl
BEC
M380
SH6
728
D9S
BEC
CNA
DO8
738
BE1
DHS8
SHé6
728
D9S
728
D10
F28
D08
D08
SH6
725
767
M80
M8o
D9s
738
BEC
728
L10
BEC
BE1
D9s
BE1
SF3
SHé6
PAG
728
728
BE1
733
728

NN = NN e QWON= NRNNNWN === NDNWNNN == N e DN =N e DNNNN—=—=NNN

17.41
17.46
17,63
17.67

16.59
17.55
17.73
15.42
17.25
17.83
17.83
17.95
18
17.87
17.92
18.17
17.76
18.25
18.33
18.33
17.83
18.55
17.83
18.08
17.96
18.15
15.84
13.92
17.86
18.33
18.5
18.66
16.54
16.1
18.28
18.45
17.47
18.31
18.5
16.17
17.17
18.58
18.75
18.6
18.9
18.67
18.92
19.17
16.67
18.67
19.2
15.95
18.7

1.17
1.17

0.67
208
117

333
1.5

088
083

0.75
117
0.75
067
067
1.17
0.5

1.25
1.17
3.33
5.25
1.42
083
0.67
283
333
1.17
1.17

333
233

0.83
0.75
0.75
0.5

0.5
375
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18.58
18.63
18.63
18.67
18.67
18.67
18.72
18.73
18.75
18.75
18.83
18.83
18.83
18.83
18.87
18.92
18.92
18.93
19
19
19
19
19.05
19.08
19.08
19.13
19.15
19.17
19.17
19.28
19.33
19.33
19.33
19.37
19.43
19.45
19.45
19.47
19.48
19.5
19.5
19.5
19.58
19.58
19.6
19.65
19.67
19.67
19.67
19.67
19.67
19.7
19.7
19.7

YOW
MDT
LGA
SYR
PWM
DAY
DCA
LGA
ORD

JFK
BGR
BDR
ALB
EWR
ISP
BDL
PHL
ACK
LCl
LEB
BWI
MVY
YoI
HPN
DCA
LGA
ORD
LAX
RIC
ISP
ALB
DTW
FLL
DFW
DCA
EWR
MKE
I1AD
RKD
ORD
ATL
BHB
ALB
ROC
BDL
BTV
ACK
PVC
MIA
BGR
MHT
DEN
LGA



CNJ
767
728
SF3
733
733
733
728
SHé
SHé6
SF3
72S
728
ATR
BEC
D9s
73S
F28
D10
BE1
SHé
D9S
D9s
D8S
DH7
D9s
728
D10
D9s
D9s
DO8
767
D9S
D8s
728
D9S
728
728
M80
AB3
733
728
728
767
ATR
738
728
M8o
AB3
D10
757
728
ATR
733

N= NN WLWNMNNW=LWNNNMNOLODNNONRONRONDDWNW = NNWNN=SWNONN= = QCQGNNND =N e NDNNRN == NG -

19.08
18.77
189
19.09
18.95
16.15
18.98
19.31
19.05
19.08
19.33
18.91
19.15
19.25
19.75
19.1
19.11
17.8
17
19.5
19.58
19.08
19.46
15.38
19.67
19.17
19.67
174
18.42
19.77
19.83
18.43
19.61
17.3
20.08
19.68
20.25
19
18.86
17.55
19.57
18.25
20.63
16.48
20.75
20.58
18.02
20.8
18.82
18.54
18.92
20.95
21
18.72

19.83
19.85
19.9
19.92
19.95
19.98
19.98
19.98
20.05
20.08
20.08
20.08
20.15
20.25
20.25
20.27
20.28
20.3
20.33
205
20.58
20.58
20.63
20.63
20.67
20.67
20.67
20.73
20.75
20.77
20.83
2093
21.03
21.05
21.08
21.18
21.25
21.33
2153
21.55
21.57
21.58
21.63
21.73
21.75
21.75
21.77
21.8
21.82
21.87
2192
2195
22
22.05

BDL
YUL
JFK
ALB
EWR
1AH
SYR
PWM
HPN
ISP
ACK
DCA
LGA
JFK
MVY
DCA
BUF
ORF
ORD
BGR
HPN

PHL
LAX
JFK

LGA
ORD
ATL
EWR
ISP
ORL
PIT
DEN
LGA
CLE
JFK
ATL
STL
sju
CLT
DFW
LGA
LAX
JFK
BWI
McI
EWR
MIA
DFW
TPA
LGA
JFK
ORD



D10
D9S
72s
72S
733
734
D9S
M80
725
728
738
767
M80
D9s
733
757
728
M80
757
SF3
757
757
D10
733
D10
AB3
733
ATR
733
M80
767

WNN==NWLWNWNRD=OWLNNNNNDNWNNNNNNNNDNDNDNDW

17.73
18.92
19.75
21.08
20.78
21.13
20.17
20.75
21.53
19.83
20.57
20.84
21.07
21.66
21.73
18.59
21.92
20.62
2195
21.92
20.5

21.05
20.1

22.06
21.88
2273
19.97
22.83
21.87
2295
20.64
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22.23
22.25
22.25
22.25
22.28
22.3

22.5

225

2253
22,58
22.65
22.67
22.82
2283
229

2292
22.92
2295
2295
23.25
23.33
23.38
23.43
23.48
23.63
23.73
23.8

23.83
23.87
23.95
23.97

SFO
MDW
ORL
DCA
CLE
BWI
ATL
DTW
LGA
PBI
DAY
CVG
RDU
DCA
IAD
SLC
LGA
BNA
LGA
AIV
FLL
ATL
ORD
PIT
DTW
JFK
1AH
JFK
CLT
EWR
ORD



2B. DATA BASE SHOWING AIRCRAFT TYPE, DEPARTURE, AND
ARRIVAL PERIOD :

:
M
:

OCODOOCTO0OO0OO0OOOO O ™ v wu
Vet et gl oy e gt gt ot v v v gum et

MY TONDNNNNINOC 0000 00 60 60 60 60 00 00 00 00 0 WV W VO NP PO OO

SN ANONMNNNNNOATTIEYETNMNNOTYETTANANAQNNINDO OO YOO ONNNDOOWOWOO OIS

11‘&11111‘!2111‘11111122222311111112211111222223111
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W N NN = s r m m NN N = ot s it s N s e et DR NN = ot it DO NN = et msopm e 00 st DN NN ot me DN NNN N =

\l\l\la\-—soocO\Iw@ﬂO\OvD\l\l\la\O\a‘—w
—t

Lo
NOO

U e st N et bt et et bt gt e et et et bt et ban et D) et tmo mes e s N A
N - BB R NN= DWW NNN N =00

11
11
11
11
11
11
11
12
12
12
12
12
12
12
13
13
13
13
13
13
i3
i3
13
13
13
14
14
14
14
14
14
14
15
15
i5
15
16
16
16
16
16
16
16
16
16
17
17
i7
17
17
17
17

17

17



N—‘-—-—-NNNNNN-—:.—-—-.—-.—-NNN—-—-—o--o—-u-NNNMNN—o-——-—-——QNN——-—-—-——Q)NNh)NNN——-—

13
14
16

10
13
14
14

15
15
16
16
17
17
11
12
16
16
16
16
17
17
14
15
16
16
16

‘16

17
17
18
18
18
18
13
13
18
16
18
19
19
20
14
14
17
18
18
18
19
20
21
18

18
18
18
18
18
18
18
18
18
18
19
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
22
22
22
23
23
23
23
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e et N N et et st bt et NN e NN e e s e e e e O NN e e e e = NN =W NN NNNWWNNDRN — e NN

18
19
13
20
20
20
21
22
14
20
20
10
11
14
18
20
21
21
19
23
16
17
19
23
23
23
23
24
12
17
23
16
22
22
23
24
24
26
26
24
24
26
25
25
25
26
26
26
28
24
27
25
27
27

23
23
23
24
24
24
24
24
24
24
24
24
24
25
25
25
25
25
25
26
26
26
26
27
27
27
27
27
27
27
27
27
28
28
28
28
28
28
28
28
28
29
29
29
30
30
30
30
30
30
30
31
31
31
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=N NNNNN = = -
bt et a0
NN oot st W N = = NDNNNNN -
et NN N NN NN o e
a3 W N e e

28
29
23

18
28
28
28
30
30
22
26
27
28
28
28
28
30
30
31
19
26
29
29
29
31
31
31
32
29
18
24
31
31
32
32
24
30

32
32
32

. 32

34
34
34
34
23
26
28
31
32
32
33
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- N
NN
NN e e
- et gt pes
Lo 91 )
NN
[ ]
N e = W NN
NN -
NDNN
N »e m
L Y
e N N = oma
W NN
NN

25
26
31
33

23
34

26
34
35
36
36
36
37
37
37
28
29
34
35
38
34
35
35
36

37
38
38
39
35
36
37
37
37
31
38
38
38
38
38
39
39
39
40
24
27
30
35
37
38
10
40

37
37
37
37
37
37
38
38
38
38
39
39
39
39
39
39
39
39
39
39
39
40
40
40
40
40
40
41
41
41
41
41
41
41
41
41
41
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
43
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-t NN NN e e e et e DWW NDNNNDN = et oot e DWW NN = = et W N NN = e e DR RN NN N o e

40
41
33

36
37
39
39
40
40
41
42
31
32
37
40
23
26
29
41
41
41
36
11
41
24
27
32
42
42
42
44
44
44
31
33
37
42
42
33
36
43
43
43
43
43
44
45
36
36
41
43
44
45

43
43
43
43
43
43
43
43
44
44
414
44
44
14
44
14
414
44
44
45
45
45
45
45
45
45
45
45
46
46
46
46
46
46
46
46
46
46
46
46
46
47
47
47
47
47
47
47
47
47
47
47
48
48
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NN N e e e e e )
NNNNNNN
bt bt s pma N N e pet et e QDD NN NN N e e e e e e GO NN)
NN st oot s s e DN
NN e e

46
46
42
414
45
44
43
45
46
46
47
36
44
45
45
35
45
46
46
47
47
48
43
44
45
46
46
45
46
47
47
48
43
46
48
49
50
50
44
44
47
47
48
48
48
45
49
49
49
49
50
39
47
49

48
18
48
48
48
18
49
49
49
49
49
49
49
49
49
49
50
50
50
50
50
50
50
50
50
50
50
50
51
51
51
51
51
51
52
52
52
52
52
52
52
52
52
52
52
52
53
53
53
53
53
53
53
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o DN D) et e e 0NN
NN - -
NNNNNN= e == tWNNNNNNDN
N oo e QONN
NN = e e e e = N)
N

49
50
49
50
51
51
51
52
11
49
49
50
33
51
52
52
44
47
48
49
51
51
51
42
52
52
52
53
53
53
54
54
41
42
44
52
52
52
46
54
54
42
53
53
53
55
53
54
54
55
53
54
S5
57
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NARNNMNWNNNNNNRNNNNONNNDNON=WWWNONNNN~=~WOWNNNNNNWNRNNWRNN=WORONRRNDN — =D NN

49
54
54
46
56
56
56
54
54
55
56
39
47
57
51
57
51
56
56
58
47
54
59
51
53
56
60
43
48
61
50
53
61
61
52
53
60
62
52
48
53
57
61
62
62
57
58
60
61
64
61
52
60
62

59
59
59
59
60
60
60
60
60
60
60
60
60
61
61
61
61
62
62
62
62
63
63
64
64
64
64
64
64
65
65
65
65
65
65
65
65
66
66
66
67
67
67
67
67
68
68
68
68
68
68
69
69
69
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2 64 69
2 64 69
2 65 69
3 65 69
1 65 71
2 60 71
2 62 71
2 66 71
3 58 71
3 65 72
3 68 72
1 69 73
2 57 73
2 65 73
2 69 73
3 60 73

2C. STATIC SCHEDULE FOR ONE AND THREE AIRCRAFT CLASSES

The static schedule for 1 aircraft class, period 1 through T+1=74 s :

N=-0,0,1,2,0,1,6,16,9,11,10,7,11,7,499,10,8,129,11,7,10,6,4,9,9,3,7,
8,12877,147,411,6,10,169,11,9,13,11,8,10,12,6,12,10,11,11,15,8,5,6,9,
4,4,2,6,8,3,5,6,7,0,5,2,5,0.

The static schedulefor 3 aircraft classes, period 1 through T+1:

N,=0,0,1,2,0,1,5,10,7,5.4,3,7,3,3,6,5.3.6,6,6,5.3,5,0,1,5,7,1,5.5.5.3 .4,
1

48,1.27,149343,6,74,56,445,6,338,2323,1,0,0,0,1,1,0,0,0,0,1,0,1,0.

N,=0,0,0,0,0,0,1,5,2,5,6.4,4,4,1,3,3,6,2,6,3,6,3,3,5,3,3,.2,2,2,1,7,5.1,2,6,5.2,4
.4.5,66,4,3.54.3,4,5.275,4.7.65,2,3,4,2,3,2,4.4,1,5,5.6,0,3,0,3,0.

N3=0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,1,2,1,0,1,0,0,0,2,0,0,2,1,
6.1,00,,1,1,0,33,2,0,1,1,1,0,1,0,1,1,1,1,0,1,2,1,1,0,2,3,1,0,1,1,0,1,2,1,0.
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APPENDIX 3
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CAPACITY CASES
Capacity Case 1:

Scenario .
Until (hour) capacity (landings/1Smin) 1 2 3 4
12.0 15
16.0 10 5 3 3 34
18.0 7
20.0 10
24.0 15
12.0 15
16.0 10 3 5 2 33
24.0 15
24.0 15 2 2 5 33
Scenario .
Until (hour) capacity (landings/1S min) 1 2 3 4
24.0 10 .6 R B 34
18.0 10 3 6 3 33
24.0 15
14.0 10 N 3 6 33
24.0 15
C .! C 3'

Scenario .
Until (hour) capacity (landings/1Smin) 1 2 3 4
10.0 7
15.0 15 6 . 33 3
18.0 10 ,
24.0 15



1.0 7

15.0 10 3 3 33
24.0 15
12.0 7 <
16.0 10 B 6 .34
24.0 1S
Capacity Case 4
Scenario
Until (hour) =~ capacity (Jandings/1S min) L1
10.0 15
18.0 10 .3
24.0 7
12.0 1S
24.0 10 3
12.0 15
16.0 10
18.0 7 4
20.0 10
24.0 15
: ity Case S:
§cenario
Until (hour) capacity (Jandings/15 min) 1
9.0 15
12.0 10
16.0 15 3
24.0 10
16.0 15
24.0 10 6
12.0 15
16.0 10
18.0 15 B
20.0 10
24.0 1S
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10
15
10

10
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Scenario




13.0 10

18.0 15 2
24.0 10
13.0 7
16.0 10
20.0 15 5
24.0 10
Capacity Case 9.

Scenario
Until (hour) capacity (Jandings/15 min) 1
10.0 10
15.0 7
18.0 10 3
24.0 15
7.0 10
12.0 15
14.0 10
18.0 7 2
20.0 10
24.0 15
12.0 10
16.0 7 S
24.0 10
uUntil (hour) capscity (dandings/15 min) 1
9.0 7
12.0 10
14.0 7 A
24.0 10
10.0 7
i5.0 10
18.0 15 3
24.0 10
12.0 7
18.0 10 6
24.0 15
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APPENDIX 4

SPREADSHEET FOR SOLUTION STATISTICS

HEADING: DESCRIPTION:

CAP.CASE Capacity case number

PROBS. Probability scenario number for given capacity case.

AIRCOST Marginal cost of air delays ($/period)

SOLUTION Name of algorithm used to solve problem defined by
CAP.CASE, PROBS., AIRCOST above.

EXPCOST Expected total delay costs (ground +air) ($)

EGNDCOST Expected ground delay cost ($)

EAIRCOST Expected air delay cost ($)

EGD1 -~ 'Expected ground delay for type 1 aircraft

(aircraft-periods)

EGD2 Expected ground delay for type 2 aircraft
(aircraft-periods)

EGD3 | Expected ground delay for type 2 aircraft
(aircraft-periods)

EGDT Expected ground delay for all aircraft
(aircraft-periods)

EAD Expected air delay for all aircraft (aircraft-periods)

% VSDETERM % of total expected cost for DETERM. solution
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