
Design, Specification, and Implementation of a Movie Server

by

Nathan S. Abramson

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

at the Massachusetts Institute of Technology

May 1990

) Nathan S. Abramson, 1990

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Author
Department of Electrical Engineering and Computer Science

May 21, 1990

Certified by.
Walter Bender

Thesis Supervisor

Accepted by.
Leonard A. Gould

Chairman, Department Committee on Undergraduate Theses
I' A.S~3 C9SETTHS INST I iE i

OF ' TEHNg1 W'',Y

SE P 18 1990

ARCRIES

AR CHWIYVES

Design, Specification, and Implementation of a Movie Server

by

Nathan S. Abramson

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 1990

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

Abstract

Modern digital video representations have strong ties to their ancestor representations in
the analog film and video world, restricting digital video applications to those which can be
expressed in a manner consistent with the analog world - frame based and time ordered. A
new model for digital video is presented, which decouples representation from production,
transmission, and display. Movies are treated as intelligent objects in an object-oriented
system, giving the movies freedom to react or interact appropriately with viewers and the
environment. A network movie server is designed, specified, and implemented as an illustrative
application of intelligent and active movie objects. Movie objects are used to address the issues
facing a movie server and demonstrate their power and flexibility in doing so.

Thesis Supervisor: Walter Bender
Title: Principal Research Scientist, Media Laboratory

This work was supported in part by the IBM Corporation

ii

Acknowledgments

Pascal Chesnais is a knight in pink armor, a sage for confused minds and spirits, and a first

class friend. With the gentleness of a cattle prod, he was there to help the birth of many

good ideas and speed the burial of the rest. Without his continued presence, concern, and

dedication, I would never have reached the level of ambition and growth that went into this

document. For all this I am in deep gratitude.

Walter Bender was my advisor for this thesis, and I am grateful for his trust and confidence

in my ability to work on my own and search for my own solutions.

I would like to thank the Garden, and he people in it, for its atmosphere and its undying

hum, sometimes the only comfort in the strange hours of the morning.

I wish to thank James Tetazoo who drove me back to my thesis when other frivolities

called, and called frivolously when the thesis began to dominate.

I thank my family for their undying support and prayers for me, which often comes in

handy at a place like MIT.

iii

Contents

1 Movies as Objects

1.1 Movies of the Present and Future . . .

1.2 Problems with Modern Movies

1.3 Solution

1.4 Active Movies and Network Servers .

1.5 Movies as Objects

1.6 Networked Movie Objects and Related

1.7 Summary

2 Design of a Movie Application Server

2.1 Overview

2.2 Active Movies and Passive Data

2.3 Movie Application Model

2.4 Real-time Operation.

2.5 Concepts

2.5.1 Active Movies and the Server Kernel

2.5.2 Description of Passive Movie Data .

2.5.3 Communication Between Server and

2.5.4 Fluctuating Network Bandwidth . .

2.6 Designing Movies as Objects

2.6.1 Hierarchical Design of Movies

2

2

3

4

4

5

.e....e.e..ee....ee.e...

. . . e

Aplctos................ . . .

elee.e..eeeee..eee......

6

. 11

. 11

.C.i. .n. 14

Client 15

.................... 15
.................... 16

.................... 16

2.6.2 Using Standard Objects for Movie Design . 17

iv

1

1

2.6.3 Movie Objects and the Server Kernel

2.7 Operation

3 Specification of a Movie Application Server

3.1 Elements of the Movie Application

3.1.1 Server.

3.1.2 Client

3.2 Building the Movie Application

3.2.1 Source Files .

3.2.2 Building the Movie Application

3.3 Movie Object Design

3.4 Data Descriptor Language .

3.4.1 Overview

3.4.2 Data Types.

3.4.3 Specifying Files.

3.4.4 Labels

3.4.5 Constants

3.4.6 Data Descriptor Preprocessor

3.5 Object Oriented Descriptor Language

3.5.1 Object Oriented Model

3.5.2 Programming with the Object (

3.5.3 Sending Messages to Objects

3.5.4 Creating objects.

3.5.5 Defining a Class

3.5.6 Defining Methods .

.

.

from the

. . . .

.

.

.,,.,.-rene,,e.,,

.,*,*

.ee*,

e Source Files

.. ,.. .

.

.. .,,..

e. .,.*,

,. . .,,

,,.e...

Extensions .

,,,,,,,

. .e.ee,

,**e.,,

3.6 Communication Packet Extensions .

4 Implementation of a Movie Application Server

4.1 Data Description Language Preprocessor .

4.2 Object-Oriented Extensions .

4.3 Communication Packet Extensions

18

21

22

22

22

23

24

24

26

28

30

30

30

33

34

35

35

35

36

36

37

37

38

38

39

43

43

45

46

v

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4.4 Network Interfacing

5 uture Considerations and Conclusion

5.1 Future Considerations.

5.1.1 Multiple Servers/Clients

5.1.2 Machine Independence

5.2 Conclusion

A Examples

A.1 Sample Data Descriptor File

A.2 Sample Object-oriented Program ...

48

48

48

49

49

51

51

56

B Design and Implementation of a Reliable, Self-adjusting Network Protocol 60

vi

47

..

.....................

.....................

.....................

.....................

List of Figures

2-1 Intelligence Coded into the Server

Intelligence Interpreted from the Movie

Intelligence Coded into the Movie . . .

Active Movies and Passive Data . . .

Indirect Access to Passive Data . .

Active Movies and the Server Kernel .

Hierarchical Design of a Movie

"Splicing" with Linked Lists

"Circularizing" with Linked Lists . . .

Data Stub Objects Accessing Data . .

Structure of the Server

Structure of the Client.

Building the Movie Application

Structures of DataSackets and LabeLS

Example STRUCT I)efinition

Example ARRAY Definition

. *.

.e.

.

. . . .e.e.

.. e.

. e. . .e -.

.. . o.

. e

. e.

e e e e e . e e .e. e e e . ..

. e * . * e e e . . e.

e e e . .ee

ets

. e...I.. ... e...

. . . .e B

3-7 An ARRAY with VARIABLE size

vii

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

3-1

3-2

3-3

3-4

3-5

3-6

7

8

8

10

13

17

18

19

20

23

24

27

29

31

32

33

7

Chapter 1

Movies as Objects

1.1 Movies of the Present and Future

Film and video dominate the media in modern society and will likely grow in the near future

(through current technological trends). T'he majority of moving picture research is currently

directed toward improving quality, widening distribution, and enhancing production. Other

major directions of research aim to combine movies with computers in. a personal computing

environment.

Integrating movies into a computing environment will require that movies be stored, trans-

mitted, and displayed in a digital representation. While analog methods exist for combining

movies and computer output on a single screen, such techniques will quickly reach f;he end of

their utility because of the computer's inability to directly manipulate analog signals. By us-

ing a digital movie representation, computers will have far more control over the manipulation

and display of movies.

Numerous movie applications will become possible by making movies accessible to the

digital domain. Transforming movies into a digital representation will open the world of

computational video, in which all the power of computers can be applied to movies through

networks, storage, display, analysis. and interactivity.

1

1.2 Problems with Modern Movies

Current representations of digital movies are based on the implementation of movies in the

analog domain. In the analog domain, a movie is a time-ordered sequence of frames, stored

on a passive medium (e.g. film or videotape) which is made active by an interpreter or

projector. Current digital video representations adhere to this model by retaining the frame

based representation and passive media storage (e.g. CD's, data files).

While this approach attains some short term goals such as improved distribution, storage,

and manipulation, adhering to the analog movie model will preclude the creation of many

new digital video applications. Modern frame based representations (DVI, MPEG) tightly

couple production, distribution and display formats, limiting applications to those which can

be expressed in a frame based manner from production to display. While this is not a problem

for movie applications which are modeled after analog movies, there are other applications

for which the frame is a confusing or inappropriate representation. Synthetic movies [10], in

which sequences are constructed from many different movie and data sources, are difficult to

model in a frame-based system since the output frames are combinations of frames from other

sources. Model-based systems, which construct sequences from sources which are inherently

non-frame based, will be difficult to expzess in a frame-based standard. Interactive movies [6]

will also be difficult to design in a system where the movie representation is tied to a passive

medium that is inherently noninteractive. Frames are also a difficult basis for current systems

which require scalability and extensibility in space and time.

1.3 Solution

Rather than mapping the analog frame based standard onto digital video representations, a

new and more flexible representation must be chosen for digital video data. The representation

of the movie must be decoupled from the production, distribution, and display of the movie

[9]. A representation which is more open to non-franle based systems and interactive systems

must be incorporated. A model must be designed where digital movies may be described in

complex and meaningful structures, as opposed to the simpler frame representation which

physical film projectors require. Such a model should also allow digital movies to describe

2

their own behaviors, i.e. their reactions to changes in the viewer or distribution environment

or to viewer commands. The new model should be able to encompass a wider range of digital

video representations and will also be able to represent the intelligence necessary to govern

the behavior of a movie.

A movie which contains some intelligence about its own behavior is no longer a passive

entity like a file or a CD. The movie is an active element in is own presentation. The movie

can take on the roles of both film and film projector, and do so more effectively than the old

representation since the movie knows its own content and can react intelligently to outside

events. This new representation for intelligence in digital video data is called an active movie.

1.4 Active Movies and Network Servers

The cost of storing and manipulating computational video is prohibitive for individual work-

stations, but can be offset by concentrating the required resources in shared servers. These

servers can be connected to the workstations through a network, so movie applications will

inherently be distributed systems. The servers are the central nodes of the distributed system,

providing the resources for distributing movies to clients, and also serving as concentrators

for broadcast video such as entertainment or news.

Distributed systems face many problems created by the chaotic nature of the underlying

network implementation. The availability of bandwidth, a limited resource, may vary greatly

as servers and clients load the system. A distributed movie application must accommodate

these changes by attempting to maintain the quality of the display while remaining consistent

with the intentions and content of the movie.

Active movies allow a distributed system to react appropriately to a chaotic network. The

active movie model allows the movie to show itself, since the movie knows its own intentions

and content best. Thus an active movie can be programmed to know exactly what to do in

the case of a network load fluctuation. In the case of a passive movie, the server must bear the

responsibility of interpreting the movie and trying to react in an appropriate manner, which

is difficult for the server since the server knows little about the movie's content. The active

movie offloads this responsibility from the server to the individual movie, which knows best

how to handle a chaotic network environment for its own showing.

3

Thus the server acts as a resource manager kernel, which provides services to an active

movie. Rather than acting as a projector and interpreter for a passive movie, the server takes

the passive role and gives control to the active movie. While running, the active movie depends

on the server to be an interface to the physical world of clients, networks, and filesystems.

1.5 Movies as Objects

An active movie can be expressed as an object in an object-oriented system, as described by [2].

Objects are pieces of data which know how to operate on themselves in response to messages.

This concept fits the idea of the active movie, which contains structured digital video data

and the knowledge of how to display that data while responding to viewer commands or a

variable environment.

The object-oriented concept of hierarchical stxicturing applies well to recursively built

movies, e.g., scenes built of frames, sequences built of scenes, movies built of sequences.

Message passing also works well with interactive movie applications. Viewer commands or

notices about network load changes can generate messages sent to the movie objects which

know how to respond to those messages.

1.6 Networked Movie Objects and Related Applications

The goal of integrating networked movie objects into the workstation environment is illustrated

in part by several related works. While these applications do not pecifically address the

movies as objects concept, active movie objects will play a key part in bringing these works

together into the movie playing workstation of the future.

Networked movie objects will help in building distributed synthetic movie applications.

Synthetic movies act as a visual representation of the object-oriented paradigm perfectly

suited to implementation using movie objects. This illustrates the ease of transforming an

already object-oriented application into a movie application simply by adding movie sequences

to the workings of the application.

Networked movie objects will provide a good opening for future distributed movie appli-

cations that diverge from the modern view of movies, such as model-based systems. Model

4

based movies are produced from sources which are based not on two dimensional frames,

but on three dimensional models of a scene. Model based systems deal more concretely with

the content of a movie, and less so with the movie's form. These systems will illustrate the

flexibility of the movie object concept in building future applications.

1.7 Summary

Active movies are the representation needed to fully exploit the potential applications of

computational video. Active network movie objects will provide the flexibility and power

necessary to integrate distributed movie applications into the workstations of the future.

The remainder of this thesis will illustrate the advantages of active movies by describing

the design and construction of an active movie server. This illustration will include both the

design of an active movie representation, and speculations on the future development of the

active movie model.

5

Chapter 2

Design of a Movie Application

Server

2.1 Overview

A movie application is a distributed system with multiple connected elements, the servers

and the clients. Like all distributed systems, movie applications are faced with the question

of how to allocate the "intelligence" in the system. In the context of a movie application,

the intelligence determines what sequences to show, when to show them, what to do if the

network load changes, how to respond to user commands, etc.

Server machines will generally have more power and storage than client machines, which

means that the intelligence in the system will be concentrated in the server rather than

the client. It is possible that for some applications the client will actually be the more

powerful machine. In such cases, the extra power in the client can be applied to such tasks as

reconstruction, decoding, or analysis. However, the actual operations of the movie application

will still be determined by the server.

One way to concentrate the intelligence in the server is to implement all the behaviors of

the movie application in the server code, as shown in Figure 2-1. This approach suffers from

inflexibility, since a new server will have to be written for each new movie application. This

approach also suffers from a lack of clarity, since the behavior of the application is not clearly

specified in one particular place but is instead buried within the code of the server.

6

Server Movie

Figure 2-1: Intelligence Coded into the Server

Server Movie.

Figure 2-2: Intelligence Interpreted from the Movie

Another approach is to encode the behavior of the application into the movie data, and

have the server act as an interpreter which translates the encoded behaviors into actual op-

erations, as described by [5] (Figure 2-2). This approach is more flexible than Lhe previous

approach. However, this solution suffers from maintenance problems since new behaviors can-

not be encoded into the data unless the server is updated to recognize those new encodings.

This slution also suffers in performance, since a level of interpretation is required to turn

encoded data into actual operations.

A better solution is to directly incorporate the behaviors of the movie application into

the movie data, with no interpretation by the server (Figure 2-3). This solves the problem of

maintenance since the server is only overseeing the execution of the movie and is not actually

executing the movie itself. The extra level of interpretation is also eliminated, improving

performance. With this approach, the intelligence in the system is not concentrated in the

client, which simply forms the interface to the user, nor is it concentrated in the server, which

7

Figure 2-3: Intelligence Coded into the Movie

Filesystem

Figure 2-4: Active Movies and Passive Data

just acts as a resource manager and network interface. Instead, the intelligence is concentrated

in the movie data itself.

2.2 Active Movies and Passive Data

Incorporating intelligence into the movie data divides the movie data into two parts: the

"active" portion of the movie which contains the intelligence and behaviors of the movie, and

the "passive" portion of the data which is the original or encoded movie data. These two

portions are referred to as the active movie and the passive movie data, as shown in Figure

2-4.

The active movie and the passive movie data have different representations. The passive

movie data retains whatever representation it had when produced by a digital video source

8

i·
$
i

i
I

I
i

I I.......................

or coder, usually a series of structured files stored on the filesystem. The active movie is

represented as an object database which runs as part of an object-oriented system. The

server contains object-oriented support to interpret the object database representation of

active movies.

When an active movie runs, it must have access to the passive movie data. Access is

granted through a level of indirection which separates the active movie from the structure

and location of the passive movie data. This removes the burden of calculating offsets and

filenames from the active movie and allows the active movie to refer to data in more meaningful

terms. For example, the active movie can say "Give me frame 3" without knowing where the

frames are stored, what size the frame is, or what the frame's structure is. If the location,

size or structure of the data changes, the active movie can still refer to that piece of data as

"frame 3" without ever having to worry about the change.

To support this indirection, a translation mechanism stands between the active movie and

the passive movie data. This translator knows the details of the passive movie data structures

and locations, and thus can translate the conceptual references from the active movie into

physical locations and offsets in the filesystem. Figure 2-5 illustrates the translator's role in

making the structure and location of data transparent to the active movie.

The translator is informed of the structure and location of the passive movie data by a

human-readable descriptor file. This concentrates all definitions of the data structure into a

single source, providing the flexibility needed for a system where data formats or locations

may often be changing.

2.3 Movie Application Model

An operating movie application consists of servers which handle the data and operation of

the movie application, and clients which form the user interface of the application, displaying

output and receiving input. The servers and clients may be arbitrarily connected as described

by [3].

However, supporting such flexibility will complicate and obscure the basic design of movie

applications. Thus, the design presented here will support a subset of this model, where a

single client is connected to a single server. This one-to-one model simplifies the design of

9

Passive
Movie
Data

Figure 2-5: Indirect Access to Passive Data

10

certain features, such as protocols which require two way communication between server and

client, or interactive applications which assume that a single user is operating the application.

The assumption is that changing a single server/client model to support multiple servers/clients

will require only an expansion of the design presented here. However, this assumption may be

untrue and multiple servers/clients might require an entirely new movie application design.

This question is beyond the scope of this thesis, and remains to be answered elsewhere.

2.4 Real-time Operation

A movie application depends on synchronized real-time operation to support the narrow con-

straints of maintaining a particular frame rate [7, 8, 4]. However, a movie application cannot

assume that its implementation will support real-time operation and synchronization, be-

cause the operating system and communication network are not necessarily built for real-time

operation. While real-time operating systems and communication networks do exist, movie

applications will probably be built for more common systems such as UNIX and Ethernet.

Thus the movie application must be able to deal with a chaotic and non-real time implemen-

tation.

By communicating through a stream of many data packets, movie applications can account

for a chaotic network and operating system. Even though the movie application cannot detect

a timing problem until after the problem occurs, the application can correct the problem by

modifying the remaining packets in the stream. This modification takes whatever form the

application determines is appropriate, such as reducing the size of a few packets or eliminating

some packets from the stream. Thus, even though exact synchronous real-time operation is not

possible, real-time operation can be approximated by dynamically adjusting to unpredictable

changes in the system.

2.5 Concepts

2.5.1 Active Movies and the Server Kernel

The movie server design centers around the design of the active movie. All the behaviors

and operations of the movie applications are contained in the active movie. The active movie

11

communicates with the client to send movie data and receive viewer commands, and also

communicates with the filesystem to access and manipulate passive movie data.

Active movies contain only operations which are relevant to the behavior of the movie

application, such as how the application reacts to certain viewer commands, or how the

application deals with increased network load. Issues which are dependent on the underly-

ing implementation such as network communication and filesystem access are separated and

grouped into the movie server kernel. This separation simplifies the design of active movies,

allowing them to assume that the server kernel will be available to provide certain standard

services. This design also improves the portability of active movies, since the definition of the

active movie is separated rom the implementation running the active movie.

While separating the active movie from the supporting implementation, the server kernel

provides the active movie with an abstrac . model of the outside world with which the movie is

communicating. The active movie no longer sees the network or the client, but works instead

with virtual communication channels. The active movie also does not see the filesystem or

files containing the data it needs, but accesses data blocks only through a naming system.

The server kernel provides the services of translating virtual channels into actual network

communication, and data block names into physical disk locations. As long as the active

movie consistently uses the virtual channel and data block naming conventions, the active

movie is insulated from the underlying implementation, and that implementation may be

changed by changing only the server kernel and not the active movie.

Virtual Comrmunication Channels

The server kernel provides the active movie with access to several virtual channels which

represent communication with the client. The channels are unidirectional, running from server

to client or from client to server. The channels from server to client are reliable and designed

to carry large volumes of data such as video frames or lookup tables. The channels from client

to server are unreliable and designed to carry smaller data packets such as commands.

The channels from se:rver to client must be reliable to provide a reasonable abstraction to

the active movie. If the active movie sends a piece of data such as a lookup table, the active

movie must be able to assume that the data arrived at the client, otherwise following data such

12

Neti

Figure 2-6: Active Movies and the Server Kernel

as frame data may be meaningless. Conversely, the channels from client to server need not be

reliable. When the client sends a command to the server, there is no guarantee that the active

movie will choose to service that command even if it is received, so the client must already be

prepared to deal with command failures either through retries or error reporting. Placing a

reliable connection from the client to the server will not change this situation. Since reliable

connections are expensive to implement in terms of computational power (unless implemented

in hardware), the desire for a reliable connection from client to server is not enough to justify

the cost.

Reliability guarantees that data will be successfully transmitted, but the time required to

transmit that data is unconstrained. This is a major problem with chaotic networks such as

the Ethernet, especially for movie applications which inherently rely on real-time operation.

As mentioned previously, the burden of approximating real-time operation is put on the

movie application, not the communication system. The movie application must therefore be

intelligent enough to correct for fluctuations in the operation of the network, even though the

application is using a reliable communication channel.

Access to Passive Movie Data

The active movie accesses the passive movie data it needs through the server kernel, which

uses a translation index to translate data names into filesystem locations. This separates the

13

active movie from the structure and form of the passive movie data, allowing that structure

to change without changing the active movie. The active movie may also be configured to use

different sets of data by changing only the translation index. This feature can be extended

to use data so-rces other than a filesystem such as CD-ROMS or video cameras, all of which

would be transparent to the active movie.

2.5.2 Descript.on of Passive Movie Data

The translation ndex used by the server kernel is generated from a structural description of

the files containing the data. This description lists the locations of the files containing passive

movie data and defines the structures and formats of those files. The description is written

in a data description language which is a human-readable method for specifying file formats.

The data description can be created and edited using only a tcxt editor.

A data description file must be generated for any set of data that is to be used in a movie

application. To do this, the data must first be broken down into its basic organizational

elements. For example, a DAT file is broken down into datasets, channels, dimensions, and

primitive data types. Then, these organizational elements must be expressed using the data

types offered by the data description language. These data types are very general, such as

ARRAY and STRUCT, and so should be able to encompass any static data structure with

uniform size fields.

Several data formats exist which do not have uniform size fields. These formats may

be generated from sources such as variable bit rate coders, e.g. Huffman coders. The data

description language also has provisions for describing these formats, by assuming that the

data fields are tagged with headers which contain the size of the field.

Once a set of data has been specified in a data description file, labels may be added to

the file. These labels will correspond to regions of data which can be accessed by an active

movie. The active movie makes data requests by sending ,ut data names. If a data name

matches a label in the data descriptor file, then the active movie will be given the data region

corresponding to that label.

14

2.5.3 Communication Between Server and Client

Communication links between the server and client are modeled as several asynchronous uni-

directional virtual channels, rning from server to client and from client to server. As

previously explained, the channels from server to client are reliable, while the channels from

client to server are unreliable.

Communication is carried in discrete packets, as opposed to stream communication which

puts no natural boundaries around pieces of data. Packets which go from the server to the

client are called data buffers, while packets going from the client to the server are called

commands. The types and structures of packets are designed by the movie application and

are known to both the server and the client. There are no "built-in" packet types or structures,

although standard packet types may evolve with use.

While a movie application runs, packets are sent and received over the virtual channels.

The type of a packet is not determined by a tag attached to the packet, but is instead

determined by which virtual channel is carrying the packet. Thus only one packet type should

be assigned to a virtual channel, and that assignment should remain constant throughout the

movie application.

2.5.4 Fluctuating Network Bandwidth

Movie applications can be built on a shared network in which the usage of the network is

chaotic and unpredictable, completely beyond the control of server or client. It is important

that the movie application have some information about the network load at any point in time.

With this information, the movie application can make a prediction as to how difficult it will

be to get the next packet through, how much time it will take to get through, and whether

the required frame rate can be maintained. f the network load rises to a problematic level

where the application determines that packets will not go through in time, the application

can respond in a way that the application determines is most appropriate.

Because the network is a dynamic system, measuring the instantaneous network load can

be very difficult. Network performance is comprised of many factors, such as the number of

packets per second, collisions, electrical interference, etc. The physical network does not have

an easily defined set of state variables which can be put together to form the network load.

15

Even with the network load given, translating the network load into the predicted time for

a packet transfer is a difficult and unreliable task. Thus, the network load is an unwieldy

measurement for predicting packet transfer times.

A better measurement for predicting packet transfer times is a statistical combination of

past packet transfer times. By observing the trends of the past few packet transfers, the

future state of the network can be determined more accurately. This also has the advantage

of an end-to-end measurement, in which all relevant factors such as network load, machine

loads, device transfers, etc. are accounted for. A disadvantage of this scheme is that if the

loads change suddenly and unpredictably, at least one packet will take longer to transmit

while discovering this fact. However, once this condition is detected, the movie application

can react quickly and adjust.

This approach requires frequent packet traffic in order to get a reasonable sampling of

loads in the system. In a movie application, this will most likely be the case, since the

application will probably be sending data as fast as possible. Also, if packet transfers are

frequent, then sudden network changes will be less costly since the sacrifice of one packet will

not be expensive if there are many packets being transferred.

2.6 Designing Movies as Objects

Because active movies are modeled as objects, object-oriented design techniques should be used

for building movie applications. These techniques provide a standard basis for active movie

design, because many active movie concepts can easily be expressed in an object-oriented

manner.

2.6.1 Hierarchical Design of Movies

Hierarchical design is a fundamental tool of object-oriented prograning. A hierarchy pro-

vides a clear organization of levels in a system and establishes standards for passing messages

between levels. The levels also provide good abstract barriers for the system, making different

levels invisible from each other except for messages passed through the levels. This allows

an object which is ending a message to assume that the recipient will perform the desired

16

Figure 2-7: Hierarchical Design of a Movie

action, without the sender having to worry about how the action will be performed or knowing

anything else about the recipient.

Most movie applications can be expressed in a hierarchical form. The primitive elements

of the movie, usually the frames, will be placed at the bottom of the hierarchy. Each frame

will be an independent object which knows how to display itself and how to adjust to a

changing network load. Higher level objects such as scenes can be built out of the lower level

frames. Scenes can be grouped into sequences and sequences grouped into a movie. Figure

2-7 illustrates this hierarchical design of a movie. This is only one example of how a movie

can be organized hierarchically. If other organizations are appropriate, then it is likely that

those organizations can also be specified hierarchically.

Object-oriented programming does not require hierarchical organization, and movies may

be arranged in any arbitrary graph configuration if desired. In many cases, deviations from the

hierarchy will be necessary, to at least account for global objects. However, these deviations

should be kept to a minimum, since the hierarchical model does have several advantages as a

clear, modular organization for movies.

2.6.2 Using Standard Objects for Movie Design

Object-oriented languages often provide standard object classes which represent useful ab-

stractions. These abstractions can be applied to movie objects in building movie applications.

17

j Splice

Figure 2-8: "Splicing" with Linked Lists

The linked list is a standard abstraction which movie applications will use. Linked lists

are a good way to represent frame sequences. Operations on linked lists, such as splicing,

joining, and "circularizing", can also apply to frame sequences, demonstrating the strong

correspondence between frame sequences and linked lists.

Arrays, queues, and stacks are other typical standard object classes which can easily be

added to the standard object libraries. When possible, movie applications should be built

on these standard classes to provide a clear expression of concepts based on already existing

abstractions.

2.6.3 Movie Objects and the Server Kernell

Movie objects must be able to communicate with the movie server kernel in order to access

data from the filesystem or transfer packets to and from the client. Instead of using system

calls, this communication can be handled in an object-oriented manner, by sending messages

to objects.

Objects are used to represent the data which can be accessed on the filesystem. Each

data region the active movie can access is named by a <-label, dataset> pair. Every <label,

dataset> pair available is associated with a "data stub"' object, which is a standard object

18

4 Circularize

Figure 2-9: "Circularizing" with Linked Lists

class that acts as a handle for a data region. When a "data stub" object receives an "ACCESS"

message, it will make a request to the server kernel to locate and read the data the object

points to. The movie objects thus access the server kernel only through objects and messages.

Figure 2-10 depicts data stubs accessing data from the passive movie data.

An object is also used to represent the client. Conceptually, the client is just an object

which is operating remotely. Rather than going through system calls, the movie objects can

treat the client just like any other object. Packets are sent to the client by sending messages

to the client object, and packets are received from the client by polling the client object using

query messages.

Objects are used as an interface to the other global services or information provided by

the server kernel. This includes information such as network load or transmission statistics.

By encapsulating these services into a single global object, the movie need only send messages

to that object to receive services and information which would otherwise require system calls

to access.

19

Memory

Ssk
/S'v

I,-----------------I~I-I :
I - __ i

Passive
Movie
Data
i~~~~~~~~: :
i~~~~~~~~

' File A
i

,

I r
2i - - - - - - -

i
.. I

Figure 2-10: Data Stnb Objects Accessing Data

20

"ACCI

------------ ---t- ----------- --b- ------
----------- Xf .-.--.----.-.--------------

.Cnr�Tn r

I

-- ---------------------------- --...--..-.

2.7 Operation

Once the server kernel is built, an active movie application is designed, and the clients are

implemented, the system is ready to begin operation. Initially, only the server kernel is running

on the server machine. To begin a movie application, a client is activated and connected to

the server kernel, which performs all initialization and starts the active movie running.

When a client connects to a server, the client specifies the set of active movie objects

to be running as the active movie, and also specifies a data translation index to determine

which set of passive movie data will be used. The server kernel receives the connection from

the client, loads the specified data translation index, and starts running the objects in the

specified active movie.

As the active movie runs, it generates requests for data and sending packets to the client.

The server kernel intercepts the data requests and uses the loaded translation index to turn

those requests into physical locations in the filesystem. The server kernel also intercepts the

packets to the client and translates them into the proper protocols for transmission across the

network. Commands sent by the client are intercepted by the server kernel, which stores the

command packets until the active movie asks for them.

When the movie application decides to complete, it sends a termination message to the

client. The connection between the client and server is broken, and the client terminates. The

server kernel then removes the active movie objects and the translation index from memory,

and waits for another connection from a client.

21

Chapter 3

Specification of a Movie

Application Server

3.1 Elements of the Movie Application

A movie application consists of several subsystems, hardware and software. The major division

is between the server and client subsystems, which operate on separate machines connected

by an Ethernet network.

3.1.1 Server

The server consists of the server kernel, the active movie, and the passive movie data stored

on the filesystem. The server kernel interfaces the active movie with the client and the

filesystem. It contains a network interface which connects the virtual channels used by the

active movie to the Ethernet network. The server kernel also contains a translation index

which translates data name requests from the active movie into physical disk addresses on the

filesystem. The active movie contains definitions for all the objects that will be used in the

movie application. The active movie generates data name requests for the filesystem, sends

data buffers to the client, and receives commands from the client. The passive movie data

stored on the filesystem contains the raw or coded data generated by video sources and coding

algorithms. The structure of this data is specified in the translation index which the server

kernel uses to locate data requested by active movies.

22

'.,'V)a, (0)'a) Vh
:j O (a J1
4i O 4.3 F.a

I I

Server

Figure 3-1: Structure of the Server

3.1.2 Client

The client consists of the user interface devices, the network interface, and the client subsys-

tem. The user interface devices serve as input and output for the client subsystem. These

include frame buffers, display devices, keyboards, and mice. The network interface handles

all communication with the Ethernet, providing the client subsystem with access to the server

through a set of virtual channels like those used in the server. The client subsystem contains

the remainder of the client, such as the incoming and outgoing packet handlers, the user

interface operations, and any reconstruction algorithms or hardware.

Some hardware implementations will combine reconstruction hardware with output de-

vices, blurring the distinction between the client subsystem and the user interface devices.

However, the basic client model still applies in these systems.

23

0,

rk

Use
Devices

Client

Figure 3-2: Structure of the Client

3.2 Building the Movie Application

3.2.1 Source Files

Four sources are required for building a movie application: the active movie source fite, the

client source file, the data description file, and the data files.

Active Movie Source File

The active movie source file defines the operations and communication protocols of the movie

application. This file is programmed in C, with the object-oriented and communication packet

extensions described later in this chapter. All object classes and communication packet struc-

tures are defined in this file.

The active movie source must contain a procedure called runmovie(). When the server

kernel receives a connection from a client, the server kernel loads the requested translation

index and calls runmovie(). Runmovieo() creates and initializes all needed objects, then

starts the objects running. When runmovie() completes and returns to the server kernel,

the movie application terminates and the connection to the client is broken.

Client Source File

The client source file contains the program to be run on the client. This program is written

in standard C and compiled for the machine which will run the client. A typical client will

24

follow this procedure:

1. Check for an incoming packet from the server - If a packet arrives, handle the packet

by dispatching on the packet type. If the packet is a termination packet, exit the client.

2. Check for input from the user - If the user has entered a command, then send a command

packet to the server

3. Repeat

The client knows the communication packet structures defined in the active movie source

file. An include file produced from the active movie source file contains the structures of

all command packets and data buffer packets, and also contains routines for transmitting

command packets and receiving data buffer packets. This include file is used when compiling

the client, so the client's communication definitions are consistent with the server.

Data Description File

All data that will be used by a movie application must be described in a data description

file. Each data description file defines one entire set of data which can be used in the movie

application. A movie application may use different sets of data by reading different data

description files. Once a movie application has read a data description file, it will use that set

of data until the movie application terminates.

The data description file is written in the data description language described later in

this chapter. This language specifies the structure of data files in terms of simple recursively

defined data types. Labels may also be inserted into the description to indicate the positions of

data regions in the data files. When the active movie generates data name requests, those data

names are matched against the labels in the data description file. If a match is found, then

the position of the label in the data description file will correspond to the physical position of

the data region on disk.

Data Files

The data files are the files which the active movie uses for its digital video information sources.

These data files can contain information from digital video sources, data coded from digital

25

video sources, or any other data the movie application will require.

The data files must be stored in a format which is recognized by the data description

language. 'or most formats this should not be a problem since the data description language

encompasses many formats, especially those with uniform data field sizes. For data which con-

tains variable bit rates or nonuniform data field sizes, the data description language contains

specifications for how such data should be coded to be recognized by the data description

language.

Different sets of data files may be used with the same movie application, by changing only

the data description file. As long as the data description files contain the same labels, the

active movie will not know the difference.

3.2.2 Building the Movie Application from the Source Files

A movie application is built by compiling the active movie source file and the client source

file into the application code, and processing the data files and data description file into the

movie data. Figure 3-3 outlines this process.

The active movie is the most complicated source file to process. This file is written in C,

but also contains object-oriented material and communication packet definitions. An object-

oriented preprocessor examines the active movie source file and translates all object-oriented

and communication packet definitions into standard C code. This C code is then compiled with

a standard C compiler and linked with the server kernel routines to form the server program.

The preprocessor also produces a file called COMMPKT.H which is used in compiling the

client.

The client source file is compiled with a standard C compiler on the machine which will

run the client program. The client includes the file COMMPKT.H which was produced by the

object-oriented preprocessor, which means that COMMPKT.H will have to be copied from

the machine which processed the active movie source file to the machine which will compile

the client source file.

The data description file for each set of data must be run through the data description

preprocessor, which will produce a translation index for each data description file which the

server kernel can use. When the preprocessor is run, it must have access to all the data

26

I I -

Active Movie L Object-oriented :
Source File PreprocessorI X~w...

Active Movie
COMMPKT.H MESSAGES.H IC source file

I Data |

I......................I~~~~~~~~~~~

I~~~~~~~~~~~

!

Server

Network

Devices
I I

Client

Figure 3-3: Building the Movie Application

27

·e - - C_

I I
I

described in the data description file to allow the preprocessor to resolve variable size data

types.

3.3 Movie Object Design

There are several common approaches to designing a movie application as an object-oriented

system. Predefined object classes are provided to take support these common designs. These

predefined classes include arrays and lists. Another predefined class is the data_packet, which

is used to access data from disk. A datapacket object is a "stub" for a data region, addressed

by a data name (i.e., a <label, dataset> pair). Data names are translated into physical disk

regions by the server kernel using a translation index. Sending an "access" message to a

data-packet object causes the object to load the data region corresponding to its data name

and place the data in a buffer assigned to that object.

When the server kernel loads a data descriptor file, the server knows what <label, dataset>

pairs are available for us , and creates a data_packet object for each <label, dataset> pair.

The data-packet objects are grouped into a larger object class called labelset. A labelset is an

array of data-packets, all of which have the same label. The label-set objects are then grouped

into an array for all of the labels in the data descriptor file. Thus, all of the datapackets

available to the application are grouped into one central object as shown in Figure 3-4.

Most movie applications will be frame-based, so a frame class of object is a good place to

start for designing these applications. Each frame object should have the data and procedures

it needs to reconstruct itself, and be able to respond to requests to degrade based on lowered

bandwidth.

Not all frames need be the same. Some frames might degrade by dropping subbands,

So= .amo.....L, Ag,t Jegdl],ue Y % Lts ; . I -c 1 image, some frames might be color, some might

be grayscale. The important thing, though, is that all different types of frames appear the

same to the higher levels of the movie application. These higher levels should be able to send

any frame object a "display" message and expect that frame to know enough to be able to

send itself without the higher levels worrying about what kind of frame is involved. This is

where using the object-oriented extensions comes into play. Under this system, each different

kind of frame can be defined as a different class of object. However, all of the different classes

28

Data

Lahelsets

Da

Figure 3-4: Structures of Data-Packets and LabelSets

will be programmed to recognize the same "display" message, so to th: higher levels all the

different objects will look the same.

Once all the different frame classes have been defined and all the frame objects have

been created, the frames can be grouped into higher level objects. For examnple, most movie

applications involve linear sequences of frames, whicL are best expressed by the linked list

abstraction. Lists allow great flexibility, since frames can be arranged in any order, and lists

can be appended to each other or be made circular. Doubly-linked lists, which are predefined

in the system, can also be traversed in both directions which makes lists perfect for showing

a linear frame sequence.

Following this design method, it should be evident how to design higher abstraction layers

such as scenes and sequences, all the way up to the top of the application which should be a

movie object.

29

3.4 Data Descriptor Language

3.4.1 Overview

The purpose of the data descriptor language is specify the structure of files in a human-

readable format, which can then be interpreted by the server kernel to translate data requests

from the active movie into physical disk accesses. The data descriptor language specifies only

the structure of data, without attributing any meaning to the data.

* The data descriptor model assumes that each file is made of a continuously stored series

of datasets, where each dataset has the sarle structure.

* A dataset is made of data blocks which are stored continuously. Each data block is

specified by a data type.

* The data type of a data block determines the structure and size of that data block, and

also determines whether the data block is itself made of smaller data blocks (base or

compound data types).

* Data blocks may be "tagged" with labels, which the server kernel will use to match

against data requests from the active movie.

· Since a label represents a data block in all the datasets of a file, a <label, dataset> pair

is necessary and sufficient for identifying one specific data block on the filesystem.

3.4.2 Data Types

The data descriptor language provides only three general data type primitives: One base data

type called BASE, and two compound data types called ARRAY and STRUCT. Each data

type represents a certain storage format, and is specified with a particular syntax.

BASE data type

The BASE data type represents a single n-byte block of data, where n is any integer greater

than or equal to 0. A BASE type data block is primitive; it is not composed of smaller data

blocks. The syntax for specifying a BASE data type is:

30

STRUCT(
BASE2,
STRUCT(

BASEl,
BASE4))

Base2

STRUCT (
BASE1,
BASE4)

Figure 3-5: Example STRUCT Definition

BASEn

where n is the size of the base data type in bytes.

STRUCT data type

The STRUCT data type is a compound data type, meaning that it is composed of smaller

data blocks which are stored continuously. The data blocks may all be of different data types.

The data blocks are stored in the order specified by the STRUCT expression. The syntax for

a STRUCT data type expression is:

STRUCT(<data type 1>, <data type 2>, ... , data type n)

where each <data type> is a BASE,, STRUCT, or ARRAY data type. The total size of

the TRUCT data type is the sum of the sizes of the data types contained by the STRUCT.

Figure 3-5 shows an example of a STRUCT definition.

ARRAY data type

The ARRAY data type is a compound data type, composed of smaller data blocks which are

stored continuously. Unlike the STRUCT data type, all of the data blocks in the ARRAY

must be of the same data type. Each data block in the ARRAY is called an element. The

syntax for an ARRAY data type expression is:

31

Data

2

1

4

ARRAY (
3,
STRUCT(

BASE2,
STRUCT(

BASEl,
BASE4)))

STRUCT(
BASE2,
STRUCT(

BASE 1,
BASE4))

STRUCT(
BASE2,
STRUCT(

BASE,
BASE4))

STRUCT(
BASE2,
STRUCT(

BASE,
BASE 4))

Base2 [

STRUCT(-
BASE1,
BASE4)

I

Base2

STRUCT(
BASE1,
BASE4)

Base2

STRUCT (
BASE1,
BASE 4)

Figure 3-6: Example ARRAY Definition

ARRAY(<size>, <data type>)

where <size> is the number of elements in the ARRAY, and <data type> is the data type

of each element in the ifJtcAY. The elements are stored and numbered continuously and in

order, starting with element 0. The total size of the array is the sum of the sizes of each of

the elements in the array. Figure 3-6 shows an example of an ARRAY definition.

Size may be an integer greater than or equal to 0, specifying exactly how many elements are

in the array. There are two other possibilities for size, which are UNKNOWN and VARIABLE.

Specifying UNKNOWN for size indicates that the number of elements is not known, but the

32

Data

2

1

4

2

1

4

2

1

4

-

ARRAY (
VARIABLE,
STRUCT(

BASE2,
STRUCT(

BASEl, -
BASE4)))

STRUCT(
PASE2,
STRUCT(

BASEl,
BASE4))

STRUCT(
BASE2,
STRUCT(

BASEl,
BASE4))

Base2

STRUCT(
BASEl,
BASE4)

Base2

STRUCT (
BASE 1,
BASE4)

Figure 3-7: An ARRAY with VARIABLE size

array extends all the way to the end of the file, so the size of the file should be used to

determine the size of the array. Specifying UNKNOWN for size can only be done in certain

places, to be explained later. Specifying VARIABLE for the array size means that the size is

not determined statically within the data description. Instead, the size is specified within the

data itself. If the array size is VARIABLE, then the first four bytes of the array specify the

number of elements in the array. These four bytes store a long integer, arranged in network

order. Figure 3-7 shows an ARRAY with a VARIABLE size.

3.4.3 Specifying Files

The data specified by a data descriptor can span over several files. This is expressed in

a manner consistent with the other data type expressions, using a special data type called

33

Data

Value =
2

2

1

4

2

1

4

M

FILE. The syntax for a FILE expression is:

FILE("filename", <data type>)

where "filename" is the pathname of a file in the filesystema, and <Cata type> is the type

of data stored in that file. In the data descriptor model used, it is assumed that a file will

contain several datasets each of which must have the same structure. This is expressed by

requiring that the <data type> of a FILE be an ARRAY. The size of this array may either be

statically determined (by an integer), or VARIABLE, meaning that the number of datasets

is specified within the file, or UNKNOWN, meaning that the number of datasets is to be

determined by reading datasets until the end of the file is reached. Thus, a file is specified by

the expression:

FILE("filename", ARRAY(<size>, <data type>))

where <size> is the number of datasets in the FILE, and <data type> is the type of each

of the datasets.

A data descriptor will generally consist of several FILE expressions, listing all of the files

which contain relevant data, the structure of those files, and labels to find data within those

files.

3.4.4 Labels

Labels are pointers to data blocks within a dataset. Since data blocks are declared by data

type expressions, a label can be attached to a data block by associating the label with the

data type expression for that data block. The syntax for declaring a label is:

<label name>: <data type>

where <label name> is a string of up to 31 characters, containing upper/lower case letters,

numbers, or the underscore character (). <data type> is the data type expression (BASE,

STRUCT, or ARRAY) for the data block to be associated with the label.

34

3.4.5 Constants

Integer constants may also be inserted into the data descriptor file. This is done by associating

a label with a constant value. The syntax for a constant is:

<label name>: <value>

where <label name> is a valid label name as described above, and <value> is an integer

value. In this declaration, the value of the label is an integer, not a pointer to a data block

as with the other use of labels.

3.4.6 Data Descriptor Preprocessor

The data descriptor is stored in an ASCII file which is processed by a data descriptor prepro-

cessor. This preprocessor interprets the ASCII file and determines the physical disk locations

of the data blocks wvhich have labels associated with them. The preprocessor also reads

through the files specified in the data descriptor file to resolve locations and sizes determined

by information in those files, i.e., VARIABLE and UNKNOWN sizes for the ARRAY data

type.

The preprocessor ignores all white spaces and C-style comments (enclosed by /* */).

The body of the data descriptor file contains constant declarations and FILE data type

expressions. Labels are contained within the subexpressions of the FILE data type.

The end of the data descriptor file must be denoted by the END keyword.

Appendix A contains an example of a data description file.

3.5 Object Oriented Descriptor Language

Movie applications are written in C. To support the object-oriented movie model, an object-

oriented environment has been extended to the C language. A preprocessor translates these

object-oriented extensions into standard C code which can be compiled by a standard C

compiler.

35

3.5.1 Object Oriented Model

The object oriented extensions are based on a simple model of object-oriented programming,

using classes, methods, and message passing. An object is a set of data associated with a

class. An object is referred to by a C pointer, meaning that references to an object may

be passed around just like any other pointer. Objects are not operated on or modified by

"outside" procedures. Instead, messages are passed to objects, and the objects themselves

make modifications to their own data, return whatever data is requested, or perform side-

effects such as I/O.

The class of an object determines two things: first, the class determines what data is

stored by the object, and second, the class determines how an object will behave in response

to passed messages. Each class has a "repertoire" of messages it recognizes and handles. The

way those messages are handled are called the methods of the class. Each class has its own

separate set of methods, which means that different classes can handle the same messages in

different ways.

3.5.2 Programming with the Object Oriented Extensions

Since the object oriented extensions are just an addition to the C programming language,

object-oriented programming may be mixed in with normal C programs. When the prepro-

cessor goes through the file, the normal C material will be left intact, while the object-oriented

material will be translated into standard C code.

Object Data Type

A special data type called "object" is used to represent objects. It is not necessary to know

the actual structure of an object, but the object data type should be used to store objects and

pass them around. Procedures which create objects return the object data type. Procedures

used to pass messages take object types as arguments. Note that the object data type is used

to represent all objects, regardless of their class.

Object declarations look just like normal C declarations. For example,

object myobj;

36

declares an object called myobj. When first declared, myobj has no value, just like any

other C variable. Myobj can be given the value NULL, just like any C pointer:

myobj = ULL;

Or, myobj can be assigned to a new object by using an object creation procedure.

myobj = moviecreate(...);

3.5.3 Sending Messages to Objects

Messages may be sent to objects using the sendmessage() command. The syntax for

sendmessageis "sendmessage(obj, message, argi, arg2, ...)", where obj is the ob-

ject to receive the message, message is the name of the message, and argi, arg2, ... are

the arguments expected by that message (if any). When a message is sent to an object, the

object looks to its class to see if a method is defined for that message. If so, then the method

is executed on the object. A method may optionally return an object, which is the return

value of sendmessage ().

3.5.4 Creating objects

Objects are created by the <classname>_create() command, where <classname> is the class

of the object to be created. The return value of this procedure is an object. Thus,

myobj = moviecreate();

will create a new object of the movie class and assign it to the object variable myobj.

When an object is created, an "initialize" message is automatically sent to the object. Any

arguments included in the <classname>_create() command will be passed to the object when

the initialize message is sent. Thus, every class must have a method defined for the initialize

message.

For example, consider an account class, where an account object represents a bank account.

The initialize method for accounts might expect a starting balance for its argument, so the

command

37

myaccount = accountcreate(200);

would create a new object of the account class and assign it to myaccount, then send the

equivalent of a "sendmessage(myaccount, initialize, 200);"

3.5.5 Defining a Class

A class is defined using a special syntax to indicate to the preprocessor that object-oriented

material is being used. The expression "BEGINCLASS classname" will indicate to the prepro-

cessor that a class definition follows. The BEGINCLASS expression must be the first expression

on the line. After the BEGIN-CLASS expression, the data representation of the class is defined.

This is done the same way a struct is defined in C, where each field of the data is given a

name and type. After the representation is defined, the methods of the class are li3ted, each

beginning with a "DEFINEMETHOD message" expression. After all the methods are listed, the

class definition is terminated by a "END_CLASS" expression.

3.5.6 Defining Methods

A method is the set of instructions an object of a given class will execute upon receiving a

particular message. Within a class, one method must be defined for each message that class is

expected to recognize. A method is defined using the "DEFINE METHOD message" expression,

where message is a valid C name. This expression indicates to the preprocessor that the code

following represents a method for the given message. The method will include all the code

between the DEFINEMETHOD expression and either the next DEFINEMETHOD expression or the

next ENDCLASS expression. When an object receives a message, the system sees whether that

object's class has a method defined for that message. If so, then the method for that message

is executed.

A method has access to the data of the object which received the message. When a method

is invoked, it automatically has a variable defined called "obj". This variable refers to the

object which received the message, and can be used to access the fields of the data stored by

that object. The data fields were defined at the beginning of the class definition, right after

the BEGINICLASS expression. Obj is a pointer to a structure containing those fields, so the

fields can be accessed using the usual "->" C operator.

38

A method may return a value, which must be of type object. This value is returned to

the caller who sent the message to he object. A method may also return NULL if desired.

The value is returned through the usual C return() statement.

When a message is passed to an object, arguments may also be included with the message.

A method. can tell the preprocessor what arguments it is expecting in its message through the

"METHOD_ARGUMENT" command. The syntax for METHODARGUMENT is "HETHODARGUMENT (type,

name)", where type is a C type expression for the type of the argument expected, and name is

the name of a C variable which will contain the value of the argument. The METHODARGUMENT

commands must appear directly after the DEFINEMETHOD expression, before any other state-

ments in the method. The order of the METHODARGUMENT commnands must match the order

of the arguments in the sendmessage() command which sent the message.

Appendix A contains an example of an object-oriented program.

3.6 Communication Packet Extensions

Creating new packet types requires a sizeable amount of code overhead: declaring the structure

of the packet, writing code to transmit the new packet type, writing macros to access the fields

of the packet, etc. The communication extensions allow the user to specify the structure of

a packet type in C source code, and this specification will be translated into all the routines

and macros necessary to support the new packet type.

There are two types of communication structures: packets and commands. Packets are

sent from the server to the client, while commands are sent from the client to the server.

Packets contain a header followed by a data buffer. The header is made of fields, which are

either integers or strings. Each field of the header is named. The header of a packet is always

the same size and format, depending on what fields are in the packet. However, the data in

a packet may vary in size, and the interpretation of that data is up to the client. Commands

are similar to packets in that they contain a header. Commands, however, do not contain a

data section.

A movie application may have several different types of packets and commands. The type

of a packet or command is characterized by the type name, the fields in the header, and the

channel number along which the packet or command will be transmitted.

39

To construct a new packet or command type, the following information is needed: the

packet or command name, the channel assigned to that packet or command, the names of

each field in the header, and the type of each field in the header (integer or string). For

string fields, a size for the string nust also be specified. For packets, it is assumed that the

size of the data section will depend somehow on the data fields, so packets also need some

sort of mathematical expression which will specify the size of the data section based on the

header fields. For example, a frame packet might contain width and height as header fields,

and the data size expression might be (width*height). Since commands have no data section,

commands do not require a size expression.

To construct a packet or command, the following syntax is used:

for packets:

BEGINPACKET <packetname> <channel number> <size expression>

<header field 1>

<header field 2>

ENDPACKET

where the header fields are of the form:

for integer fields:

INTFIELD <fieldname>

for string fields:

STRFIELD <fieldname> <string size>

for commands:

BEGINCOMMAND <commandname> <channel number>

<header field 1>

40

<header field 2>

END_ COMMAND

where the header fields are the same as the packets.

Once the packet or command structure is specified, the preprocessor will create several

routines and macros for dealing with that communication structure. One routine created will

tran ;mit a packet or command. For packets, this routine is called

"send_<packetname>_buff er() ", and for commands the routine is called

"send_<commandname>_cmd()". The arguments to these routines are values to be copied

in to the packet or command header. One argument is expected for each field in the packet

or command header, and the arguments are expected to be in the order that they were de-

clared for the communication structure. In addition, packets require a final argument which

provides the location of the data buffer. This argument is actually an object as defined in the

object-oriented extensions. It is expected that this object accepts a message getdata, which

takes an argument char **buffer, and that this message will set buffer to point to a data

buffer containing the data to be sent.

The sendbuffer() and send-.. . cmd() routines will fill in a header with the data

specified in the arguments. All integers are converted to network order. The header is then

transmitted along the channel assigned to that packet or command type. For packets, the

header is followed by the data buffer. These routines depend on a couple of global variables.

The send buffer routines require there to be a global variable named client of type

udpconnect, which has been connected to the client. The send-.....cmd routines require

there to be a global variable named server of type int, which is a descriptor for a UDP type

socket connected to the server.

The preprocessor also creates several macros for accessing the fields of a packet or com-

mand. For packets, the macros are called <packetname>_packet_<fieldname>, and for com-

mands the macros are called <commandname>_cmd_<fieldname>. For integer fields, these

macros return the value of the field converted from network to host order. For string fields,

these macros return a pointer to the string. Packets also have an extra macro called

41

<packetname>_packetdata, which returns a pointer to the data field of the packet. All

of these macros assume that the packet or command has been put into a global buffer called

commbuffer.

42

Chapter 4

Implementation of a Movie

Application Server

4.1 Data Description Language Preprocessor

The data description language preprocessor is built from a lexical analyzer coupled with a

simple stack-based state parser, as described by [1]. The source code is written for the UNIX

lex program, which translates the specified grammar into a C code lexical analyzer. The

parser is also written into he source code.

The grammar for the data description language in Backus-Naur Form (BNF) is as follows:

<descriptor>: [<exp>]* END

<exp>: <comment> I <file_exp> I <constant,exp>

<integer>: [0-9]+

<comment>: /* [any character]* */

<type_exp>: <fileexp> I <arrayexp> I <structexp> I <baseexp>

<type_exp2>: [<label> <typeexp>] I type_exp>

<label>: [A-Za-zO-9_]+:

43

<baseexp>: BASE <integer>

<arrayexp>: ARRAY (<arraysize> , <typeexp2>)

<arraysize>: <integer> I VARIABLE

<datasetexp>: ARRAY ((datasetsize> , <typeexp2>)

<datasetsize>: <integer> I VARIABLE I UNKNOWN

<structexp>: STRUCT ([<typeexp2> ,]* <typeexp2>)

<fileexp>: FILE (<filenameexp> , datasetexp>)

<filenameexp>: " [any character except "]+ "

<constantexp>: <label> : <integer>

The states of the parser are as follows, with format <token expected> (next state). The

initial state is state 0.

0: FILE (1), label (26)

1: ((2)

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

i7-

"' [any character except "]+ " (3)

, (5)

) (0)

ARRAY (6)

((7)

UNKNOWN I VARIABLE I <integer> (8)

, (10, push 9)

) (4)

ARRAY (11), STRUCT (15), BASE (pop), label (25)

((12)

VARIABLE I <integer> (13)

· (10, push 14)

) (pop)

((10, push 16)

· (10, push 16),) (pop)

24: unused

44

26: ARRAY (ii), STRUCT (iS), BASE (pop)

26: <integer> (0)

As the parser interprets the data type expressions, it builds a tree structure of all the data

regions from FILES to BASE types. Each node of the tree represents a data region, and each

node has attributed to it a position and size. If the region is of a compound type (ARRAY

or STRUCT), then the node will have children which represent the data regions making up

the compound type. Each label encountered is put into a table with a pointer to the node it

identifies.

After the parser has built the structural tree, the parser goes through and assigns a location

and position to each node in the tree. For nodes which are of unknown size (VARIABLE size

ARRAYs), the parser searches the data file where the ARRAY is stored and retrieves the

ARRAY size from that file.

When all the nodes are filled in, the preprocessor generates an index file which matches

the labels with the positions and sizes of the data regions they point to. The index file also

contains the values of any constants defined in the data descriptor file.

4.2 Object-Oriented Extensions

The object-oriented preprocessor performs three basic operations: translating object class

structure definitions into C structure definitions, translating object class methods into C

routines, and assigning numbers to all defined messages.

Each object class method has a separate C routine generated for it, which performs some

initialization then directly executes the code in the source file specified for the method. Also,

each class automatically has generated an object crea.on routine and a dispatcher routine.

The dispatcher routine receives an object and a message, and redirects the call to the appro-

priate method handler routine.

The structure of an object is a header followed by the object data. The header contains

the size of the object, and also contains a pointer to the dispatcher routine assigned to that

object's class. The header fields are automatically initialized by the object creation routine.

When a message is sent to an object, the message is given to the dispatcher routine for the

45

object, which is identified in the object's header.

Each method is triggered by a message. As the preprocessor compiles the methods, it

collects the messages and assigns a number to each one. If a message is encountered twice,

only the first number assigned is used, and the message is not assigned a second number.

When all the messages have been collected, they are written out as #define statements in a

header file called MESSAGES.H.

4.3 Communication Packet Extensions

The same preprocessor which translates the object-oriented extensions also interprets the com-

munication packet extensions. To create a communication packet, several steps are required.

The structure of the packet must be designed as a C structure. The packet must be assigned

to a virtual channel number. A routine must be created to transmit the packet. Various

macros and pointers must be created to handle the packet. Some of this information, such as

the packet structures and their channel numbers, must be compiled into the client.

The preprocessor takes care of all the above steps. As the preprocessor interprets a

file, it produces a file called COMMPKT.H. When the preprocessor encounters a commu-

nication packet definition, all the necessary structures, routines, and macros are put into

COMMPKT.H. COMMPKT.H is then compiled with both the server and the client code. C

preprocessor switches are also included in COMMPKT.H so that only the appropriate portions

of code are included in the server or the client.

A major problem in defining structures which will be transported between machines is byte

ordering. Some machines will allow structures to be close packed, leaving no gaps between

the fields. Other machines will require that the fields be aligned to 4-byte boundaries. The

solution which was implemented was to make all fields have sizes which are multiples of 4.

Long integers are used for the integer fields, and string sizes are rounded up to the next highest

multiple of 4. Also, all the integer fields are placed before the string fields, although this may

have no effect on the problem.

46

4.4 Network Interfacing

The network interface is designed to work with the Ethernet network, using the UDP protocol.

The server/client model of connection is not used. Instead, when the server is idle it listens

onr an unconnected socket until a packet arrives. When a packet arrives, the server connects

to the sender of the packet and assumes that the sender is the client.

The virtual channels are implemented by tagging each packet with a header containing

the packet's size and its virtual channel number. This header is visible only to the network

interface.

47

Chapter 5

Future Considerations and

Conclusion

5.1 Future Considerations

5.1.1 Multiple Servers/Clients

The design presented in this thesis is built for a one server/one client model. This design will

not be sufficient to represent multiple server/multiple client models. In some cases, adding

multiple servers/clients will require a simple expansion of the design presented here. For other

cases, this desigi will be completely unworkable.

Some multiple server/client applications will be collections of single server/client links

operating synchronously. For these applications, the design in this thesis will require only

minor modification for building many single server/client links together and synchronizing

them.

However, some applications, such as broadcasting, will be difficult to model as a collection

of single server/client links. For these applications, the presented design will be insufficient or

inappropriate, and the most prudent route will be to redesign the system with the particular

needs of the application in mind.

48

5.1.2 Machine Independence

Machine independent representation is an important issue which is not addressed in the present

design. Different machines in the network will probably have different architectures and dif-

ferent low-level representations for data such as integers, floating point values, and structures.

If two different machines attempt to communicate, there must be some translation mechanism

which allows the machines to understand each other despite their differences.

Two issues are involved: detecting the need for translation, and performing the translation.

To detect the need for translation, the machines involved must compare their architectures to

see if they are different. More importantly, the architecture of the client must be compared

against the architecture of the machine which created the data about to the served to the

client. This exposes the need for tagging data with some indication of the architecture which

produced the data. The current design would require little modification to account for this

need.

The more open question concerns the actual translation between architectures. There are

many possibilities for selecting who and when the translation will occur. The data might be

preprocessed into a translated state, which would require more storage but would avoid the

need for real-time translation. On the other hand, the data might be translated in real-time,

by either the server or the client or both. The design presented in this thesis is open to all of

these possibilities.

5.2 Conclusion

This thesis has suggested a new approach for representing computational video in a way which

departs from the old frame-based standards imposed by the analog world. Digital movies in

a computational environment will be capable of intelligent representations, representations

which allow a movie to present and maintain itself without the need for a projector or inter-

preter. In light of currently developing applications and future ideas, digital movies must no

longer be thought of as streams of interpreted data, but as objects which contain data and

the ability to act on their own data.

Intelligent movie objects have demonstrated their power in the context of distributed

49

applications. The network movie server designed in this thesis illustrates the flexibility of using

a movie representation which dynamically and intelligently reacts to a chaotic enviroiment

like a network. The server design also demonstrates that the movie object representation is an

important step in the development of interactive digital video applications. Thus, intelligent

movie objects have the power and flexibility to realize the full potential of computational video

applications and are strong candidates for becoming the video representations of the future.

50

Appendix A

Examples

A.1 Sample Data Descriptor File

The following example illustrates all the features of the data descriptor language. The task is

to describe a set of files with the following properties:

* file "/pictures/goodpicture/lut" contains 40 lookup tables. Each lookup table has a

variable number of r,g,b triplets, where r,g,b are 8 bit values.

* file "/pictures/goodpicture/frames" contains 80 frames, together with "points of inter-

est". Each frame is 160x120 1-byte indices. Each frame has one "point of interest",

specified by an x,y pair of 2-byte integers. Each frame is preceded by the x,y pair for

that frame.

* file "/pictures/goodpicture/captions" contains an unknown number of captions, where

each caption is a variable size string of 8-bit characters. Each caption applies to a range

of frames, specified by a starting frame and an ending frame, which are 2-byte integers.

These values are stored following the string.

* There are three constant values: width, height, numframes. These specify the width

and height of each frame, and the total number of frames.

The data descriptor file for this example could look like the following:

51

/* Example data descriptor file

Describes three files, containing color lookup tables, frames,

and captions.

*/

/* Constant declarations */

width: 160

height,: 120

numframes: 80

/* Descriptor for file containing lookup tables. Each lookup table

is a variable size array of r,g,b triplets, where r,g,b are

I byte values. */

FILE("/pictures/goodpicture/lut",

ARRAY(40,

ARRAY(VARIABLE,

STRUCT(

BASEI,

BASEI,

BASE1))))

/* Descriptor for file containing frames. Each frame is 160x120 1-byte

index values. Each frame is preceded by an x,y pair specifying

a "point of interest". x,y are 2-byte integers. */

FILE ("/pictures/goodpicture/frames",

ARRAY(80,

52

STRUCT(

STRUCT(

BASEl,

BASEI),

ARRAY(120,

ARRAY(160,

BASE1)))))

/* Descriptor for file containing captions. Each caption is a variable

length string of 8-bit characters, followed by a starting frame,

ending frame pair made of 2-byte integers. */

FILE("/pictures/goodpicture/captions",

ARRAY(UNKNOWN,

STRUCT(

ARRAY(VARIABLE,

BASEl),

STRUCT(

BASEl,

BASEI))))

END

Now that the structure of the files has been specified, labels can be added to allow access

to the different data regions. Suppose the following labels are to be used:

lut points to the variable size color lookup table

frame points to the 160x120 frame

pointof-interestx points to the x value of the point of interest

pointofinteresty points to the y value of the point of interest

53

caption points to the variable length caption string

startingframe points to the starting frame value of a caption

endingfirame points to the ending frame value of a caption

The data descriptor file would then look like:

/* Example data descriptor file

Describes three files, containing color lookup tables, frames,

and captions.

*/

/* Constant declarations */

width: 160

height: 120

numframes: 80

/* Descriptor for file containing lookup tables. Each lookup table

is a variable size array of r,g,b triplets, where r,g,b are

1 byte values. */

FILE("/pictures/goodpicture/lut",

ARRAY(40,

lut: ARRAY(VARIABLE,

STRUCT(

BASEl,

BASEl,

BASE1))))

/* Descriptor for file containing frames. Each frame is 160x120 -byte

54

index values. Each frame is preceded by an x,y pair specifying

a "point of interest". x,y are 2-byte integers. */

FILE("/pictures/goodpicture/frames",

ARRAY(80,

STRUCT(

STRUCT(

pointofinterestx: BASEl,

pointofinteresty: BASEi),

frame: ARRAY(120,

ARRAY(160,

BASE))))))

/* Descriptor for file containing captions. Each caption is a variable

length string of 8-bit characters, followed by a starting frame,

ending frame pair made of 2-byte integers. */

FILE("/pictures/goodpicture/captions",

ARRAY(UNKROWN,

STRUCT(

caption: ARRAY(VARIABLE,

BASEl),

STRUCT(

startingframe:,BASEI,

endingframe: BASEl))))

END

55

A.2 Sample Object-oriented Program

This example will use the object oriented extensions to simulate a bank account. Bank account

objects will be of class account. They will contain a balance, and an owner name. Accounts

recognize the following messages:

initialize arguments int balance, char *name: sets balance of account to balance, and owner

name to name.

print prints the owner and account balance

getbalance argument int *ret: Places the account balance ;mJ ret.

deposit argument int amount: Deposits amount dollars into the account

withdraw argument int amount: Withdraws amount dollars from account

transfer arguments object recipient, int amount: Withdraws amount dollars from the ac-

count and deposits it into recipient

split Creates a new account with the same owner. The money from the original account is

split between the original and new account, and the new account is returned.

BEGINCLASS account

int balance;

char owner[33];

DEFINEMETHOD initialize

METHODARGUMENT(int, balance)

METHODARGUMENT(char *, owner)

obj->balance = balance;

strcpy(obj->owner, owner);

56

DEFINEMETHOD print

printf("owner: .s balance: .d\n",

obj->owner,

obj->balance);

DEFINEMETHOD getbalance

METHODARGUMENT(int *, ret)

*ret = obj->balance;

DEFIEEMETHOD deposit

METIODARGUNENT(int, amount)

obj->balance += amount;

DEFINEMETHOD withdraw

HETHODARGUMENT(int, amount)

obj->balance -= amount;

DEFINEMETHOD transfer

METHODARGUMET (object, recipient)

METHODARGUMENT(int, amount)

sendmessage(recipient, deposit, amount);

sendmessage(obj, withdraw, amount);

DEFINEHETHOD split

object nevaccount;

57

newaccount = accountcreate(O, obj->owner);

sendmessage(obj, transfer, newaccount, obj->balance / 2);

return(newaccount);

ENDCLASS

main()

object bobsacct, jonsacct, jonsacct2;

bobsacct = accountcreate(400, "Bob");

jonsacct = account..create(250, "Jon");

send_message(bobsacct, print);

sendmessage(jonsacct, print);

printf("Withdrawing $80 from Bob's account\n");

sendmessage(bobsacct, withdraw, 80);

sendmessage(bobsacct, print);

sendmessage(jonsacct, print);

printf("Depositing $70 to Jon's account\n");

sendmssage(jonsacct, deposit, 70);

sendmessage(bobsacct, print);

sendmessage(jonsacct, print);

printf("TransferTing $30 from Bob's account to Jon's account\n");

sendmssige(bobsacct, transfer, jonsacct, 30);

sendmessage(bobsacct, print);

sendmessage(jonsacct, print);

printf("Splitting Jon's account\n");

jonsacct2 = sendmessage(jonsacct, split);

58

send_message(bobsacct, print);

sendmessage(jonsacct, print);

sendmessage(jonsacct2, print);

printf("Withdrawing $60 from Jon's second account\n");

sendmessage(jonsacct2, withdraw, 60);

sendmessage(bobsacct, print);

sendmessage(jonsacct, print);

sendmessage(jonsacct2, print);

}

59

Appendix B

Design and Implementation of a

Reliable, Self-adjusting Network

Protocol

The goal for designing a reliable network protocol is to minimize overhead (extra packets on the

network) when network transfers are occurring without error, and increase the overhead only

when correcting for errors. TCP/IP, a standard reliable protocol, does not address this goal

well. TCP/IP requires an acknowledgement for every fixed number of packets transmitted,

thus assigning a fixed and expensive overhead even for perfect transfers. If errors occur, then

the cost goes up even more to activate the retry protocols.

The main problem with TCP/IP is that the receiver is too constrained about receiving

packets in order. The protocol makes sure that all the packets up to a certain point are

received before moving on to accept new packets. Too many things can go wrong with this

approach, e.g. a packet can easily get lost on the network, or the receiver may run out of

buffer space or may still be processing a previous packet when a new one arrives. In these

cases, the protocol demands that the lost packet be safely transmitted before accepting the

next packet.

A better approach is to be more lenient about the order in which packets arrive, and deal

with gaps only when absolutely necessary. By keeping a little state in the sender and receiver,

60

this is not very difficult to do.

For the Ethernet, the maximum packet size is around 1000 bytes, so large data buffers

must be broken into packets of size 1000, and each packet must be transmitted separately.

Ideally, the packets should all be sent as fast as possible, and the receiver will send a positive

acknowledgement if the packets arrived safely. If some packets were missed, then the receiver

should acknowledge by requesting those packets that were not received. This approach comes

closer to fulfilling the goal of minimal overhead for perfect transfers, and minimal overhead

increase for handling errors.

The solution implemented is based on these ideals. In this implementation, the server is

continually serving packets and the receiver is processing them as fast as it can. When the

receiver gets a chance, it sends back an acknowledgement message indicating what packets

were received. If the receiver sees the same packet twice, then the receiver automatically

sends the acknowledgement back. When the server receives an acknowledgement, it removes

the acknowledged packets from its queue of packets to be sent. When all the packets are

removed, then the server is finished serving its set of packets and may go on to serve the next

set of packets.

There are some synchronization problems which can happen if packets are lost at critical

times, such as when the receiver has received all the necessary packets but the server does

not think the receiver has received them all because the final acknowledgement was lost. To

add the needed synchronization, each group of packets is tagged with a buffer number. The

protocol can then detect problems by noticing discrepancies between what buffer number the

receiver thinks it is receiving and what buffer number is being sent. Once these problems are

detected, the sender and receiver can correct for these problems in such a way that deadlock

or livelock will not happen and communication can continue.

In this scheme, the correct timing is critical. Running everything as fast as possible will

not yield optimal results, since the sender will probably be sending data far faster than the

receiver can receive it and thus packets will be lost. There is, instead, a critical delay which

must be inserted between the transmission of packets. If correctly set, this delay will allow

just enough time for the receiver to process each packet before the next packet is sent, and

the receiver will be able to fit in its acknowledgement at the correct time. This is theoretically

61

the fastest transmission possible over the network.

Determining exactly what the delay should be is an extremely difficult task since the

conditions of the machines and network can fluctuate a great deal. Rather than predetermining

the delay, the delay can be determined dynamically, which will in fact make the protocol self-

adjusting to changing network conditions. The way this is done in the current implementation

is to change the delay a little bit for every buffer sent and watch the effect. If the transfer rate

increases, then keep changing the delay in that direction, otherwise start changing the delay

in the other direction. The hope is that there is some stable point of maximum throughput

around which the delay will settle. If the network conditions change, then the delay will settle

to whatever the new optimal point is. Note that for this protocol to work well, there must

be a large amount of data constantly being sent, so that the delay has a chance to "explore"

and find its stable point.

62

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison Wesley, 1986.

[2] Steve Gano. Forms for electronic books. Master's thesis, Massachusetts Institute of

Technology, 1983.

[3] Gunnar Karisson and Martin Vetterli. Packet video and its integration into the network

architecture. IEEE JSAC, 1988.

[4] Gunnar Karisson and Martin Vetterli. Subband coding of video for packet networks.

Optical Engineering, 1988.

[5] Andrew Lippman and William Butera. Coding image sequences for interactive retrieval.

Communications of the A CM, 1989.

[6] Ralph Mayer. Personalized movies. Master's thesis, Massachusetts Institute of Technol-

ogy, 1979.

[7] Robert Moorhead, Joong Ma, and Cesar Gonzales. Realtime video transmission over a

fast packet-switched network. In SPIE/SPSE Symposium on Electronic Imaging: Ad-

vanced Services and Systems, 1989.

[8] Kazunori Shimamura, Yasuhito Hayashi, and Fumio Kishino. Variable-bit-rate coding

capable of compensating for packet loss. In Proceedings of SPIE: Visual Communications

and Image Processing '88, 1988.

[9] V. Michael Bove, Jr. and Andrew Lippman. Open architecture television receivers and

extensible/Intercompatible digital video representations. IEEE ISCAS, 1990.

63

[10] John Watlington. Synthetic movies. Master's thesis, Massachusetts Institute of Technol-

ogy, 1987.

64

