MARINE PROPELLER BLADE TIP FLOWS
by
David Scott Greeley
B.S., Webb Institute of Naval Architecture

(1976)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January 1982

© Massachusetts Institute of Technology, 1982

Signature of Author

Depar@lent of Ocean Engineering

A January, 1982
Certified by en - - -
/yi o , Thesis Supervisor
Accepted by Ny oy = wemp o ~ - ——

Chairman, Departmehtal Committeg-on Graduate Students

ARCHIY
MASSACHUSETTS 'E§ """"

Pty

OF TECHNOLOGY
MAK 1§ 1562

LIBRARIES



MARINE PROPELLER BLADE TIP FLOWS
by
David Scott Greeley

Submitted to the Department of Ocean Engineering,
January, 1982, in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

ABSTRACT

A numerical lifting surface method is developed for the prediction
of the steady, non-cavitating flow around the tips of marine propeller
blades. An inviscid flow model is employed together with a local viscous
analysis of the leading edge flow behavior, and the major effects of
vorticity shed from swept leading edges are included.

The usual propeller analysis problem is solved using a vortex
lattice approach, which includes an efficient method for calculating
the correct geometry of the trailing vortex wake. The attached flow
analysis is broken down into "global" and "local" problems to yield
high resolution in the tip region without an undue penalty in computa-
tion time. A semi-empirical viscous analysis, based on airfoil and
swept wing data, is used to determine the amount of vorticity shed
into the fluid due to flow separation at the blade leading edge. A
first-order representation of the leading edge vortex sheet is employed
to solve the resulting boundary value problem.

Comparisons between computed results and available experimental
data are generally quite good. The theory qualitatively explains the
influence of skew on leading edge sheet cavitation inception, and also
predicts a substantial Reynolds number effect. Data at higher Reynolds
numbers are required to confirm the scale effects predicted by the
current theory.

Thesis Supervisor: Justin E, Kerwin
Title: Professor of Naval Architecture



"ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Professor Justin E. Kerwin
for his constant encouragement during the course of this thesis. His
physical insight and thorough knowledge of computational'techniques were
invaluable. The other members of the thesis committee - Professor Robert
Van Houten, Professor Eugene Covert, Professor David Burke, and Dr. Neal
Brown - also contributed their time and talent unselfishly. Special
thanks to Professor Van Houten for always finding time for our numerous
discussions.

Many thanks are extended to Dr. Sukeyuki Kobayashi and Mr. James
Uhlman for their useful suggestions and willingness to discuss experi-
mental results and theoretical procedures with the author.

The superb typing of the thesis manuscript was done by
Miss Joanne M, Sullivan. Her cheerful support during periods of
discouragement is greatly appreciated.

This work was begun while the author was a National Science
Foundation Graduate Fellow. Subsequent support was provided by the
David W. Taylor Néval Ship Research and Developﬁent Cénter and the

Office of Naval Research.



TABLE OF CONTENTS

PAGE
ABSTRACT 2
ACKNOWLEDGEMENTS 3
TABLE OF CONTENTS 4
LIST OF FIGURES 8
NOMENCLATURE 13
I. INTRODUCTION 20
II. FORMULATION OF THE PROBLEM 24
2,1 Fundamental Assumptions 24
2.2 Boundary Value Problem 24
2.3 Singularity Distributions 25
III, FORMULATION OF NUMERICAL LIFTING SURFACE THEORY 27
3.1 Blade Geometry 27
3.2 Discretization of Blade Singularity
Distribution ' 31
3.3 Geometry of Trailing Vortex Wake 33
3.4 - Vortex Sheet Separation from Blade Tip 39
3,5 Modeling of Other Blades and Wakes 41
3.6 Solution of Boundary Value Problem 42
3.7 Determination of Blade Forces 44
3.8 Formulation of Local Problem 45
3.9 Calculation of Attached Flow Tip Solution 48

3.10 Viscous Pitch Correction 51



Iv.

VI.

-5-

TIP REGION LEADING EDGE FLOWS

4.1

4,3

4.4

Types of Tip Region Flows

a., Classical Lifting Surface Theory

b, Side Edge Separation

c. Swept Leading Edge Flow (Sharp Edge)
d. Swept Leading Edge Flow (Rounded Edge)

Viscous Leading Edge Flows

Prediction of Leading Edge Flow Behavior-
Theory

Prediction of Leading Edge Flow Behavior -
Correlation of Experimental Data

MCDELING OF TIP REGION SEPARATED FLOW

5.1

5.2

5.3

5.4

5.5

NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENTS

6.1

Physical Description

Existing Methods for Solving Lifting
Wing Problems with Leading Edge Separation

a., Conical Flow Theories

b. Vortex Lattice Method of Kandil,
Mook, and Nayfeh

c. Vortex Lattice Theory of Mehrotra
and Lan

Separated Tip Flow Model

Tip Flow Solution Procedure

Determination of Blade Forces

Attached Flow Tip Solution

Prediction of Leading Edge Separation Point

Tip Solution Including Leading Edge Separa-

tion

PAGE

52
52
52
54
54
59

67

73

77

85

85

88

88

89

92

100

108

110
111

-Propeller Performance Analysis (Global Problem}lll

117

120

127



PAGE

VII. CONCLUSIONS AND RECOMMENDATIONS 140
7.1 Conclusions 140

7.2 Recommendations 142

REFERENCES 144



APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:

APPENDIX G:

LEADING EDGE SUCTION FORCE AND ITS.
CALCULATION

Al

A2

A.3

Leading Edge Suction Force in Thin
Wing Theory

Calculation of Leading Edge Suction

for Two-Dimensional Foils

Calculation of Leading Edge Suction
for Three~Dimensional Lifting Surfaces

CALCULATION OF TRAILING VORTEX WAKE PITCH

B.1l

B.2

Calculation of Ultimate Wake Pitch

Calculation of Transition Wake Pitch

TWO-DIMENSIONAL LAMINAR SEPARATION BUBBLES

C.l

C.4

Introduction
The Nature of Separation Bubbles

Separation Bubble Behavior and Stall

Environmental Effects on Two-Dimensional

Separation Bubbles

THREE-DIMENSIONAL FLOW SEPARATION AND
ATTACHMENT

FLOW AROUND INFINITE SHEARED WINGS

PARABOLIC LEADING EDGES

CALCULATION OF LATERAL VORTICITY MOVEMENT
IN LEADING EDGE VORTEX SHEET

G.l

Single Node Calculation
Node Marching Procedure

Determination of Leading Edge Horseshoe
Element Weights

" "PAGE

149

149

152

158

lel

161

165

173

173

175

180

182

185

189

193

198

198

201

202



Figure

Figure

Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

3.1.1

3.1.2

3.1.3
3.2.1
3.3.1
3.3.2

3'4.1

3.5.1

3.8.1

3.9.1
3.9.2
4.1.1
4.1.2
4.1.3

4.1.4
4,1.5
4;1.6
4.1.7

4.1.8

" "LIST OF FIGURES

Projected view of blade looking downstream

Longitudinal elevation of propeller blade
looking to starboard

Cylindrical section of blade
Discretization of blade singularities
Trailing vortex wake model

Radii of trailing vortices

Model of separation from blade tip
(global solution)

Discretization of other blades

Separation of problem into global
and local domains

Example of global vortex lattice
Example of local vortex lattice
Classical wake model

Wake model with side edge separation
Vortex cores over slender delta wing

Pressure distribution on upper surface
of delta wing

Surface flow visualization on upper
surface of delta wing (a = 14°)

Flow pattern in crossflow plane on
delta wing

Paint flow patterns on 3 propellers
at 30% slip

Formation of part-span vortex on swept wing

PAGE

28

28
30
32
34

36

40

43

47
50
50
53
53

56

56

57

58

60

63



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Tigure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

v

4.1.9

4,1.10

4.1,11

4.,2.1
4.2,2

4'3.1

4.,4.1
4.4,2
4.4.3
5.2.1
5.2.2

5.2.3

5.2.4

5.3.1

5.3.2

Pressure distribution on swept-back wing

Highly skewed propeller (#4498) operating

near design J (Tip vortex leaves tip of
blade)

Highly skewed propeller (#4498) operating
at 60% of design J (Tip vortex separates
from leading edge and passes over blade)

Crossflow boundary layer profile near
leading edge

Swept leading edge attachment line flow
(infinite sheared wing)

Flow past infinite sheared wing

Example of determination of RLE and Cs

at part-span vortex separation point’

V L]
cs S RLE

down (data)

at leading edge flow break-

CS vs. R__ at leading edge flow break-

LE
down (Best fit to data)

Vortex lattice arrangement in Kandil,
Mook, & Nayfeh model

Typical solution of wake shape for

a delta wing using Kandil, Mook, &
Nayfeh model

Wing geometry without leading edge
vortex system in Mehrotra & Lan

model (1/2 of delta wing)

Typical leading edge horseshoe vortex
in Mehrotra & Lan model

Free vortex sheet lattice arrangement

Typical leading edge horseshoe vortex

PAGE

64

65

66

69

71

76

79

80

83

90

a3

95

98

101

103



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

5.3.3

5.3.4
6.1.1
6.1.2

6.1-3

6,1.4

6.2.1

6.2.2

6.3°l
6.3.2
6.3.3

6.4.1

6.4.2
6.4.3

6.4.4

-10-

Roll-up of leading edge vortex sheet

First order model of leading edge
vortex sheet

Vortex lattice arrangement for propeller
4381 (8 x 8 grid)

Effect of wake gecmetry on predicted
thrust

Measured & calculated open water
characteristics of NSRDC propeller
4381 (0° skew)

Measured & calculated open water
characteristics of NSRDC propeller
4498 (72° warp)

Comparison of global and local solution
bound circulation distributions for
propeller 4498

Comparison of global and local solution
chordwise loading distributions @ r/R = .835
for propeller 4498

Comparison of calculated & observed leading
edge separation points

Schematic of suction side flow on model
propeller blade

Schematic of suction side flow on full-
scale propeller blade

Comparison of predicted bound circulation
distributions for attached and separated
flow

Predicted strength of leading edge
vortex sheet

Prediéted chordwise loading at r/R «637

Predicted chordwise loading at r/R = ,709

PAGE

105
107
112

113

115

116

118

121

123

125

126

128

129

130

131



Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

6.4.5
6.4.6
6.4.7
6.4.8
6.4.9

6.4.10
A.l.l

A.3.l
B.l.1
B.2.l

B.2,2
B.2.3

C.l.l

C.2.1
C.2.2
C.2.3
C.2.4
C;2.5

C.4.1

-11-

Predicted chordwisg loading at r/R = ,778
Predicted chordwise loading at r/R = .841
Predicted cherdwise loading at r/R = ,896
Predicted chordwise loading at r/R = .940
Predicted chordwise loading at r/R = .973
Predicted chordwise loading at r/R = .993

Two-dimensional flat plate at angle of
attack

Plan view of swept wing
Velocity diagram at ultimate tip vortex
Velocity diagram in transition wake

Assumed variation of wake convection
velocities in downstream direction

Variation of axial convection velocities
with radius and distance downstream

CL vs. o curves for three types of stall
Flow with short bubble near leading edge
(Height of bubble exaggerated)

Flow with long bubble (Height of bubble
exaggerated)

Completely stalled flow with dead-air
region

Pressure distribution on foil with
short separation bubble

Upper surface pressure distribution on
foil with long separation blade
Relationship between RG and P at bubble
burst s

PAGE
132

133

134

135

136

137

149

159

163

166

le8

170

174

177

177

177

179

181

184



Figure

Figure

Figure
Figure
Figure
Figure

Figure

D.1l

D.2

D.3

D.4

E.l

F.1l

G.l.l

~12-

Limiting streamlines for ordinary separation
and reattachment

Limiting streamlines for singular separation
and reattachment

Vortex separation

Bubble separation

Portion of an infinite sheared wing
Parabolic leading edge

Typical node in discretized free
vortex sheet

PAGE

186

186
187
187
190

195

199



a,.
i3

AR

=13~

"NOMENCLATURE

influence coefficient matrix, defined in Eg. 3.6.1

planar wing aspect ratio, AR = b/T
span of planar wing

blade section chord length

mean chord of planar wing

unit vector in chordwise direction

two dimensional drag coefficient, c drag/% chi

d
2

©

two dimensional 1ift coefficient, c¢ lift/% pcU

1

two dimensional leading edge thrust coefficient,
defined in Eq. A.3.3

leading edge singularity parameter, defined in Eq. A.3.1l
pressure coefficient, Cp = (p—pw)/%-pui

leading edge suction force coefficient, defined in

Eq. 4.3.1

propeller diameter

blade camber function

maximum blade section camber at a given radius

vector force on blade surface

suction force per unit length of leading edge,
defined in Eg. A.l.5

advance coefficient. In this thesis, J = JA = Js

advance coefficient based on speed of advance,

JA = VA/nD
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advance coefficient based on ship speed, JS = VS/nD

number of propeller blades

force coefficient for one blade, KF = E_/pnzD4

. 2
moment coefficient for one blade, KM = M/pn D5

torque coefficient, KQ = Q/pnzD5
relaminarisation parameter, defined in Eqg. 4.2.3

.. 2 4
thrust coefficient, KT = T/pn D

lift force

unit vector along spanwise vortices

number of chordwise panels over radius

vector moment on blade surface

propeller rotational speed, revolutions per unit time
unit vector normal to blade camber surface

number of spanwise vortices within a chordwise strip

number of discrete vortex segments in ultimate tip vortex

pressure

ambient pressure

pressure gradient parameter, defined in Eg. C.2
propeller pitch

strength of concentrated line source per unit length
propellef torque

radial coordinate
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leading edge radius

inner radius of local tip solution, Fig. 3.9.1

hub radius

control point radii in tip solution, Eq. 3.9.2

leading edge radius of section in plane normal to leading
edge '

radius of ultimate tip vortices
radius of hub vortex at end of transition wake

propeller radius

Reynolds number for leading edge flow, defined in Eq. 4.3.2

Reynolds number based on attachment line boundary layer
momentum thickness, defined in Egq. 4.2.2

Reynolds number based on boundary layer momentum thickness
at separation, defined in Eq. C.4.1

fraction of chord from leading edge

distance along surface

unit spanwise vector on blade

transformed chordwise coordinate, see Eq. 3.2.2
blade thickness function

maximum blade section thickness at a given radius

propeller thrust

perturbation velocities in x,y,z coordinate system

axial and tangential velocities induced b
helical tip vortices ;
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axial and tangential induced velocities due to propeller
and wake singularity system

s
axial and tangeritial induced velocities just behind
blade trailing edge

axial and tangential induced velocities at end of
transition wake

tangential velocity induced by ultimate hub vortex

component of inflow velocity normal to leading edge;
see Fig., 4.2.2 or 4.3.1

component of inflow velocity parallel to leading edge;
see Fig. 4.2.2 or 4.3.1

free stream velocity

total velocity vector
volumetric mean inflow velocity,
5 1

V., & ——————— V_{r) r dr
A r 2 J A
[1-("H/R) 1 rH/R

chordwise velocity at free vortex sheet node
radial component of inflow wvelocity

spanwise velocity at free vortex»sheet node
ship speed

tangential component of inflow velocity
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distance along chord for two dimensional foils

axial distance downstream of blade trailing edge along a
given streamline

distance downstream of blade trailing edge at which wake
pitch stops changing

rake, x-coordinate of midchord line, positive in direction
of positive x (see Fig. 3.1.2)

axial extent of transition wake, measured from blade
trailing edge

cartesian coordinate system fixed on propeller: x-positive
downstream, y positive radially outward, and z being
determined to complete the right handed system

cartesian coordinate system fixed on planar wing:
x-positive downstream, y to starboard, and z up.

angle of attack
undisturbed flow angle

pitch angle of transition wake leaving blade tip
pitch angle of ultimate wake tip vortex helix

pitch angle of tip vortex separated from leading edge
in global solution; see Eg. 3.4.1

pitch angle in transition wake
strength of vortex sheet

strength of bound vortex sheet
strength of leading edge shed vortex sheet

strength of discrete vortex segment or horseshoe vortex

circulation around blade section (bound circulation)

strength of chordwise vortex in discretized free vortex sheet
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Fs strength of spanwise vortex in discretized free vortex sheet

Ft strength of ultimate tip vortex

60 contraction angle of tip vortex; see Fig. 3.3.2

Gk angular coordinate of k'th blade

66tw angular extent of discrete vortex segment in transition wake

A maximum displacement of separated tip vortex in global
solution

n open water propeller efficiency, n = (J.. KT)/(Zn KQ)

8 angular coordinate in propeller fixed coordinates,

6 = tan_l(z/y)
6 transformed chordwise coordinate; see Eq. A.2.1

eal attachment line boundary layer momentum thickness,
defined in Eq. 4.2.1

6 skew angle: angular coordinate of mid-chord line as
measured from y-axis, positive clockwise when looking
toward positive x-axis (See Fig. 3.1.1)

8 momemtun thickness of boundary layer at separation;
see Eqg. C.4.1

A leading edge sweep angle; see Fig. 4.3.1
v kinematic viscosity of fluid‘
&,n,t coordinate system for sheared wing: see Fig. 4.3.1

and Fig. E.l

X_.
& x'/ final
p mass density of fluid
P radial coordinate of chordwise vortices, defined in

Eq. 3.2.1 and Egq. 3.9.1
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o, chordwise position of concentrated vortex, defined in
Eqg. 3.2.2

) nose~tail pitch angle of propeller blade section

w propeller rotational speed, radians per unit time

w vorticity vector

'SﬂPERSCRIPTS

I inflow velocity, see Eq. 3.6.2

q source

SUBSCRIPTS

c camber surface

1,t leading and trailing edges

m midchord

m spanwise index

n normal section

n chordwise index

w ultimate wéke
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I. Introduction

The hydrodynamic analysis of marine propellers has progressed
greatly since the introduction of the digital computer approximately
twenty years ago. It is now possible to predict the steady performance
characteristics of most propellers with engineering accuracy, and to
calculate unsteady loads acting on propeller blades when the propeller
is operating in a spatially non-uniform inflow. It is also possible
to predict the behavior of unsteady sheet cavitation on propellers
operating in a wakefield, as shown by Lee (1979).

Yet despite the tremendous amount of progress made in the predic-
tion of the unsteady performance of marine propellers, both cavitating
and non-cavitating, the steady flow analysis problem is still far from
being completely solved. ﬁesigns incorporating significant amounts
of skew, rake, and radial pitch variation not infrequently fail to meet
the desired thrust, power, and RPM relationships in both model- and full-
scale. And as more ships, both civilian and military, come to rely on
underwater acoustic sensors to fulfill their mission, the accurate pre-
diction of cavitation inception on their propellers becomes very important
since a cavitating propeller is invariably the loudest underwater noise
source on a ship. Model tests are no panacea because of the large
Reynolds number ("scale") effects on propeller cavitation, even in steady
flow. Many techniques for delaying cavitation inception may lead to a

reduction in propeller efficiency, so that a real need exists for the
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analytical and computational tools to_éiiew—the propeller designer to
make a rational choice of propeller characteristics based on both
efficiency and cavitation criteria.

The ultimate objectives of the research described herein are two-
fold: the accurate prediction of both steady and unsteady loadings on
arbitrary propeller blades operating in a specified inflow; and the
prediction of cavitation inception in both sieady and unsteady flow,
over a range of Reynolds numbers encompassing both model—'and full-scale
propellers.

The>goals of the current thesis are more modest, but form a necessary
first step toward the ultimate objectives described above., They are:

i) Correctly model the main features of the flow near the tip of

a propeller blade over a range of advance coefficients in steady,
non-cavitating flow. In particular, the form and location of
the tip vortex will be of major concern,
ii) Improve the prediction of blade loading-in the tip region.
iii) Explain both qualitatively and quantitatively the observed
effects of skew and Reynolds number on the inception of
leading edge sheet cavitation.
No attempt is made here to predict the occurrence of tip vortex cavitation,
since recent data (Arndt, 1981) suggest that boundary layer characteristics
on both sides of the blade may influence tip vortex cavitation; and
theoretical solutions for propeller blade boundary layers are not yet

routinely available.
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The basic approach utilized in this thesis is to decompose the tip
flow prediction problem into a series of simpler problems, and solve these

new, simpler problems successively. The primary reason for doing this is

economic: the numerical calculations are far less expensive when done
this way; In addition, it is easier to think about the flow prediction
problem when it is broken down into its component parts.
There are four major sections in the tip flow analvsis scheme described
in this thesis:
a) A "global" splution, which consists of solving for the flow
around the propeller as a whole, assuming attached flow on
the blades. The results of this solution yield the overall
forces and moments aéting on the propeller blades.
b) A "local" tip flow solution, which gives a very detailed pre-
diction of the loads on the tip of the key blade under the

assumption of normal attached flow (trailing vorticity leaving

blade trailing edge and tip edge only).
¢) A local viscous analysis of the flow near the leading edge of
the blade tip.
d) A local tip flow solution which allows for the possibility of
a leading edge or part-span vortex separating from the leading
edge and passing over the blade tip, profoundly altering the
load distribution in the tip region.
Although there would appear to be strong interactions between these four
segments of the tip flow analysis problem that would require a tremendous

amount of iteration, it is shown that useful predictions of tip flow
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behavior can be obtained without iteration. This helps keep the cost of
the calculations described herein within reason, so that the theory can

be used regularly as a design tool.
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II, Formulation of the Problem

2.1 Fundamental Assumptions

The propeller is assumed to consist of K identical blades symmetri-
cally arranged about a common axis. The blades rotate about the axis
at a constant angular velocity ® in an unbounded, incompressible fluid.
The presence of the hub is ignored. The inflow velocities to the pro—
peller may vary with radius only, so that the flow seen in a propeller-
fixed coordinate system is steady in time.

The blades are assumed to be thin and operate a small angle of attack,
so that they may be modelled as source and vortex sheets on the mean
camber surface of the blade (the separated flow tip solution requires
special treatment, discussed in Chapter V). The trailing wakes leaving
the blades are also assumed to be thin, so that they may be represented
by vortex sheets. The perturbation velocity due to the presence of the
propeller is considered irrotational outside the blade boundary layers
and the trailing vortex wake.

The presence of boundary layers on the blade surface is not expli-
citly taken into account in the current work. Slight empirical corrections
are made to account for the loss of lift caused by boundary layers

altering the "effective" shape of the blade.

2.2 Boundary Value Problem

The solution to the propeller steady flow problem must satisfy the

principle of mass conservation everywhere. The following boundary
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"conditions are imposed to make the solution unique:

a) The flow must be tangent to the blade surface. In a blade
fixed coordinate system, this is expressed as V « n = 0
on the blade, where V is the total fluid velocity and é_
is the local normal vector

b) The flow must leave the blade trailing edge tangentially'
(Kutta condition)

¢) Circulation is conserved (Kelvin's theorem)

d) The trailing vortex sheets must be force-free (no pressure
jump across wake) .

e) The perturbation velocity due to the propeller must vanish

sufficiently far upstream of the propeller.

2.3 Singularity Distributions

The steady flow problem is solved by distributing sources and
vortices on the blade camber surface and vortices on the trailing
wake and finding the correct strengths of the singularities by imposing
the above boundary conditions, which leads to a surface integral equa-
tion. This technique is ideally suited to numerical computation since
integral equations can be readily approximated by a system of linear
algebraic equations.

The source distribution is used to represent the jump in normal
velocity at the camber surface due to the blade thickness; The strength
of these sources are computed from the stripwise application of thin wing

theory at each radius.
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The vortex distribution is employed to represent the jump in
tangential velocity across the camber surface and across the trailing
vortex sheets. Since the vortex strength is a vector lying in the blade
camber surface, it is convenient to resolve it into a spanwise and a
chordwise component at each point. The determination of the vortex
strength everywhere so that the boundary conditions are met requirés
the solution of an integral equation on the blade camber surface. In
the present work the vortex sheets are discretized and the integral
equation is solved at a limited number of control points on the blade

camber surface.
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III. Formulation of Numerical Lifting Surface Theory

3.1 Blade Geometry

The propeller geometry problem consists of finding the cartesian
coordinates of points on the camber surface of the blade, given the
. usual propeller geometric descriptions.

The geometry is specified with respect to a right-handed, bléde-
fixed coordinate system, with the x-axis pointing downstream and the
y-axis at some arbitrary angular orientation relative to the key blade.

Cylindrical coordinates (x, r, 8) are defined as usual, with

r=/3252% (3.1.1)

and 0 being measured clockwise from the y-axis when viewed looking
downstream.

The skew angle em(r) is defined as the angular position of the
section midchord at radius r. Bm(r) may contain an arbitrary additive
constant, due to a non-unique specification of the position of the y-axis.
A projected view of a blade looking downétream is shown in Fig. 3.1.1l.

The x coordinate of the section midchord (Fig. 3.1.2) is defined
by the rake, xm(r), which may also contain an arbitrary additive constant.

The leading and trailing edges of the blade are found by passing
a helix of pitch angle ¢ (r)} through the midchord point at each radius r.

The length of the blade chord along this helix is c(r), and we get from

simple geometry:
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Figure 3.1.1 - Projected view of blade looking downstream

Y A

\j
x

Figure 3.1.2 - Longitudinal elevation of propeller blade
looking to starboard
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where the subscripts &, t refer to the blade leading and trailing edges.
A non-dimensional chordwise variable s is defined such that s=0

at the blade leading edge and s=1 at the trailing edge, s being measured

aiong the pitch helix. The cylindrical blade section camber and thick-

ness are specified as a function of s; f(s) and t(s) respectively.

(see Fig., 3.1.3).

To identify blades other than the key blade, a blade indexing angle

is defined,

_ 2m(k-1)

8, - , k=1,2, .. .K (3.1:3)

where k is the identifying index and K is the number of propeller blades.
The coordinates of a point on the camber surface of the k'th blade

may now be specified in terms of the usual propeller geometric quantities

(skew, rake, pitch, chord, and camber):

1l .
X, =x + c(s - 50 sin ¢ - £ éés ¢
8 =0 +c(s-x) 08¢, 50, (3.1.4)
c m 2 r x k
yc = r cos ec
z =1r sin ®
c c

where the subscript ¢ denotes blade camber surface.
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Figure 3.1.3 - Cylindrical section of blade
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3.2 Discretization of Blade Singularity Distribution

The continuous distribution of sources and voftices used to repre-
sent blade thickness and loading is replaced by a lattice of concentrated
straight line elements. The elements are of constant strength, and the
endpoints of each elements are located on the blade camber surface.

The velocities induced at any point in space by these concentrated
singularities may be easily computed from formulas given by Kerwin and
Lee (1978).

The element arrangement used in the present work is shown in Fig.
3.2.1. The radial interval from the hub Iy to the tip R is divided
into M equal intervals, with the extremities of the lattice inset one
quarter interval from the ends of the blade. The endpoints of the
discrete vortices located at radii

(R = r) (4m-3)
m - aM + 2 '

o] m=1, 2, .. ., M+1 (3.2.1)

. Kerwin and Lee (1978) discussed several chordwise distributions
of singularities and concluded that a uniform chordwise distribution
of singularities, with an explicit Kutta condition, was the best com-
promise for solving botﬁ the steady and unsteady problems with the
same spacing. But since this thesis deals only with steady flow, this
choice was re-examined. For the current work a "cosine" chordwise
spacing of sinqularities is chosen, in which the vortices and control

points are located at equal intervals of s, where the chordwise variable

s is given by

s=% (1 -coss), (0< s<m (3.2.2)
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Figure 3.2.1 - Discretization of blade singularities



-33=~

If there are N vortices over the chord, the positions of the vortices,

cn, and control points, s;r are given by

1
1 T (n-2) T
Gn = —2' {l - COs —""N_'—:I} y = l' 2, o e ep N. —
=Lil1- co -—il i=1,2 N (3.2.3)
Si - 2 S _N r - ’ 7 ® o egp ] o o

Note that with this arrangement last control rvcint is at the trailing
edge, and two dimensional calculations show that this forces the dis-
tribution of vorticitf over the chord to have the proper behavior near
the trailing edge (implicit Kutta condition). This'chordwise singularity
distribution is also useful in that it enables the magnitude of the
leading edge singularity (leading edge suction force) to be readily
calculated (See Appendix A).

The sensitiviéy of the computed glcbal solution to the parameters

M and N is shown in Chapter VI.

3.3 Geometry of Trailing Vortex Wake

The geometry of the trailing vortex wake greatly influences the
calculation of induced velocities on the blade, and hence the calculation
of blade loading. The current wake model was originally developed by
Kerwin (1981) and is extended in the present work.

The propeller wake is divided into two parts (Fig. 3.3.1):

a) A transition wake region where the contraction and deformation

of the slipstream occurs, and
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b) An ultimate wake region which is composed of K concentrated
helical tip vortices and a single rolled up hub vortex.
Although an earlier wake model (Kerwin and Lee, 1978) included a
strong rolling-up in the transition wake region, laser velocimeter
measurements in the M.I.T. propeller tunnel indicate that the trailing
vortex wake does not roll-up completely, so that the current transition
wake model is probably more realistic.

' The radii of the discrete vortices representing the trailing wake
are determined by a limited set of parameters, chosen in accordance
with experimental data. (Fig. 3.3.2):

a) The radius of the rolled up tip vortices, r.
b) The radius of the hub vortex at the end of the transition
wake, er
c) The length of the transition wake region, X
d) The contraction angle of the tip vqrtex as it leaves the blade
tip, 6c
The trailers comprising the transition wake region are extensions of the
chordwise vortices on the blade. The radii of the innermost and outer-
most trailers in the transition wake region are set by smooth curves
consistent with the above wake descriptors, and the radii of intermediate
trailers are obtained by interpolation at any downstream location.
Since the trailing vortex wake is modeled by a series of short,

straight vortex segments, it is also necessary to specify the angular

extent subtended by each vortex segment. 1In the transition wake the
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anqgular subdivision is specified by the parameter setw. The ultimate
wake tip vortex from each blade is composed of three complete turns of
a helix, and the angular extent of each straight vortex element is
determined by specifying the number of points in the ultimate tip
vortex, Nuw' These two parameters are set by considering the trade-
off between accuracy and computational cost.

Kerwin and Lee (1978) demonstrated that the wake pitch is the most
critical parameter in determining the wake geometry, since this sets
the distance between the ke& blade and the wake of the blade immediately
ahead of it. Because this is such a crucial parameter, it was decided
to calculate the correct wake pitch, rather than providing it as input
data,

The pitch of the ultimate tip vortices is calculated first, using
the theory of Loukakis (1971). Using an estimated strength of the
ultimate tip vortex (obtained by solving the boundary value problem
with an approximate wake geométry) and an estimated tip vortex core
radius size, the pitch of the ultimate tip vortex may be calculated as
shown in Appendix B. This calculation also yields the axial and tangential
induced velocities at the ultimate tip vortex.

The pitch of the transition wake is allowed to vary in both the
radial and downstream directions. The correct pitch is that which
results in the wake being force-free, i.e., no pressure jump across the
trailing vortex wake. For the steady flow case considered here, this

condition is met if the total velocity vector is parallel to the local
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vorticity vector everywhere on the trailing vortex sheet. Since the
‘laser velocimeter measurements of Min (1978) indicate that the wake
pitch varies smoothly in the downstream direction, it appears reasonable
to calculate the correct wake pitch at a limited number of points in the
transition wake and assume a smooth variation in pitch between these
points. In the present work the correct pitch is calculated at a series
of points just downstream of the blade trailing edge and at another
series of points at x' = 0,70 Xiw® The pitch everywhere else in the
transition wake is obtained by interpolation, and a new wake geometry

is generated. Since the geometry of the wake affects the calculation

of the correct pitch, this wake alignment procedure requires an iterative
solution: for a given wake geometry the correct pitch is calculated at
several points in the wake, the wake geometry is updated to reflect the
new calculated pitch distribution, and the process is repeated until the
wake geometry stops changing.

All of the calcﬁlations described above require knowing the vorticity
distribution on the blade and in the wake, which are the unknowns to bé
determined. It is therefore necessary to iterate not only on the wake
geometry, but also on the vorticity distribution used to calculate the
correct wake geometry. The following approach is used:

a) Solve the global boundary value problem and determine the

vorticity distribution using an assumed trailing vortex wake

geometry.

¥
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b) Using the vorticity distribution from a), calculate the correct
(force-free) wake geometry.

c) Re-solve the boundary value problem using the updated wake
geometry and determine a new vorticity distribution. Continue
iterating on steps a) and b) until the vorticity distribution
stops changing.

The above process converges quite rapidly. .The details of the wake
alignment scheme are developed in Appendix B, and some results are

presented in Chapter VI,

3.4 Vortex Sheet Separation from Blade Tip

Flow visualization experiments on low aspect ratio wings and
propeller blades at high loadings show that the tip vortex does not
leave the trailing edge, but rather separates along thertip chord or
even from the leading edge. The "tip" vortex then passes above the
wing or propeller blade, drastically changing the load distribution in
the tip region and increasing the lift. A detailed discussion of this
phenomenon and the approach used to model it are presented in Chapters IV
and V of this thesis as part of the local tip flow analysis. Of interest
here is how to go about adequately modeling this effect in the global
flow analysis. Following Kerwin and Lee (1978) the chordwise vortices
at the tip are allowed to separate from the blade and coalesce at a
point above the trailing edge of the blade at the tip, as shown in Fig.

3.4.1. The pitch angle of the vortex leaving the leading edge of the
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tip panel is assumed to be

-

-

(B + BT) (3.4.1)

where B is the undisturbed inflow angle at the tip and BT is the pitch
of the transition wake tip vortex as it leaves the blade, The dis-
placement of the trailers above the camber surface at the trailing edge

is given by

A=c tan (¢ - B)
where ¢ is the chord length of the tip panel, and ¢ is the pitch of
the blade at the tip.

The displacement A is small when a propellier is operating near its
design advance coefficient, but increases as J is reduced. This repre-
sentation is sufficient to enable the thrust and torque of the propeller
to be accurately calculated over a wide range of advance ratios. The
more refined modeling of the separated tip vortex presented in Chapter V

is necessary to predict the load distribution in the tip region.

3.5 Modeling of Other Blades and Wakes

It is not necessary to model the other blades and their transition
wakes as accurately as the key blade because of the large distance between
the other blade singularities and the key blade control points. A much
coarser vortex-source lattice may be used to represent the other blades
and wakes without impairing the accuracy of the final solution to the
boundary value problem. The only exception to this rule is the transition

wake from the blade just ahead of the key blade, which passes very close
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to the key blade at low advance coefficients. This transition wake should
be modeled in as much detail as the wake leaving the key blade. The
present computer program allows for a wide variety of papeling schemes,

a typical example being shown in Fig. 3.5.1.

3.6 Solution of Boundary Value Problem

The solution of the boundary value problem consists of determining
the strengths of the singularities representing the propeller blades
and their trailing vortex wakes, subject to the boundary conditions
listed in Section 2.2, The strengths of the sources representing the
blade thickness are determined by a stripwise application of thin wing
theory at each radius, leaving only the vortex strengths to be deter-
mined.

The strengths of all the vortices on the blades and in the trailing
vortex wake may be specified in terms of the strengths of the spanwise
vortices on ‘the key blade by applying Kelvin's theorem repeatedly. Since
there are (NxM) spanwise vortices on the key blade and the same number
of control points, we may formulate a set of linear simultaneous algebraic
equations in order to determine the strengths of the spanwise vortices on
the key blade, Fi.

The boundary condition to be applied is that of zero normal velocity
at the control points on the key blade. Define an influence function Aij'
which is the normal velocity at the i'th control point caused by vortex

system associated with a unit strength of j'th spanwise vortex. Then
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the total normal velocity at the i'th control point due to the vortex

system on the blades and in the wake is given by

(NxM)

Aij Pj r 1=1,2, . . .,(NxM) (3.6.1)
j=1

The normal component of the inflow velocity due to speed of advance
and propeller rotation is given by

Ei . zi (3.6.2)

where n, is the unit normal vector.

The normal component of the velocity due to all of the sources is

denoted
. q :
n, Vi (3.6.3)

Then the boundary condition can be written as

{2xM) I
X g2 U5 +omy (V4 yiq) =0
jo1 1373
or (3.6.4)
(NxM) 1 q
r. = e . 1 =
X Aij j B‘i (Y'i + Zi ) r 1 l’ 2, . e ey (NXM)

which is sufficient to determine the unknown Pj values.

3.7 Determination of Blade Forces

Following Kerwin and Lee (1978), the blade forces are computed by
determining the forces acting on the line singularities representing

the key blade. Assuming that the average velocity over the length of a
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singularity can be approximated by the velocity at its midpoint, the

force on the j'th key blade singularity can be expressed as
F, =p A [V. xT. -V, Q.] (3.7.1)
=3 P J 3 =3 =] QJ

where Alj is the length of the line singularity, Yj is the total velocity
at its midpoint, and Qj is the strength per unit length of the line
source. This computation is made for all of the spanwise and chordwise
singularities on the key blade, except for the outermost chordwise vor-
tices on the tip panel, which are assumed to be separated from the
blade. (See Section 3.4).

The effect of viscous drag is modeled as a force increment on
each of the spanwise singularities. The computed leading edge suction
force is multiplied by a suction efficiency factor of 1/3 to simulate
the experimentally observed loss of leading edge suction away from

ideal angle of attack, as described by Kerwin and Lee (1978).

3.8 Formulation of Local Probklem

The lifting surface theory just described is adeguate to determine
the overall forces on propeller blades with sufficient accuracy for
many purposés. Determining the load distribution on the blade with high
resolution requires a much finer discretization of the blade singularity
system, with a large increase in computer time. Since the details of
the load distribution near the tip are of primary interest in the current
work, it makes sense to only use a fine source-and vortex-lattice in the

tip region. The computational scheme used to do this is illustrated in
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Fig. 3.8.1. There are four basic steps:

a) Solve the "global" boundary value problem for the entire
propeller using a relatively coarse discretization of the
blade singularity system.

b) Choose a "local" flow domain, including the tip region
of the key blade and a portion of the key blade trailing'
vortex wake near the tip. Set the strengths of the sources
and vortices in this local flow domain.equal to zero.

¢) At a series of points in the local flow domain, calculate
the induced velocities caused by the remainder of the
singularitf system (i.e., the rest éf the key blade,
the rest of the key blade wake, and the other blades
and wakes). Since there are no singularities in this-
region, the induced velocity is a smooth function of
position, and interpolation may be used to £ind the
induced velécity at any point in the local flow domain.

d) The local tip flow problem now consists of solving for
the flow about the tip of the key blade only. The inflow
velocity, z;, at each point on the blade tip now consists
of the inflow velocity caused by the speed of advance and
propeller rotation plus the induced velocities calcul;ted
in ¢). Note that the influence of most of the ké&y blade
trailing vortex wake is included in the induced velocity

calculation, so that only the portion of the trailing
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vortex wake in the local flow domain needs to be included.

From this point on we need only consider the problem of determining
the flow around this isolated blade tip. No further account need be
taken of the rest of the key blade and its trailing vortex wake, or of
the cther blades and their wakes. This results in a significant saving
in computer time compared to calculating the details of the tip flow as
part of the global solution.

A high resolution attached flow tip solution, using the same
assumptions used in the global solution, is discussed below. This
is used to provide input data for the viscous leading edge solution
described in Chapter IV. Finally, the tip flow solution is re-solved
in Chapter Vv, now allowing for the possibility of significant flow

separation from the leading edge.

3.9 Calculation of Attached Flow Tip Solution

The method of calculating the attached flow tip solution is
virtually identical to that used for the global solution, so that only
those features peculiar to the tip solution will be discussed here.

In order to reasonably discretize a propeller blade with zero tip
chord (planform having rounded tip in projected view) it was found
necessary to divide the blade tip radially using "half-cosine" spacing
instead of the uniform spacing used in the global solution. Dividing

the tip region into M spanwise panels, the endpoints of the discrete
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vortices are located at radii

— -
_ ) (m=1)7
P = rcut + (l-rcut) Sln{_-iﬁiif{] ’ (3.9.1)

m=1, 2, . . ., M¥l

and the control points are located at radii

Rmr 4 (e ) sin[ﬂ%ﬁ)—":[ (3.9.2)
m=1,2, ..., M
where rcut is the separation radius between global and local solutions.

The frailing vortex wake geometry for the attached flow tip solu-
tion is assumed to be the same as that used for the global solution.
The approach developed in Section 3.4 for approximating the effect of
flow separation from the tip is also utilized., Figs. 3.9.1 and 3.9.2
illustrates the vortex lattice grids typically used for global and local
analyses.

An important part of the local tip solution is the determination
of the loading near the leading edge, which is needed for the viscous
leading edge analysis. Since thin airfoil theory (singularities on
camberline instead of airfoil surface) is being used, the relevant
descriptor of the leading edge flow is the magnitude of the leading
edge suction force. This may be determined from the solution to the
local tip flow boundary value problem by placing control points along
the ieading edge and computing the total upwash (normalwash) there,

as shown in Appendix A. While there are other ways to determine the



90T33eT X93I0A




-51-

leading edge suction, the method used here is an integral part of the

separated flow modeling in the tip region described in Chapter V.

3.10 Viscous Pitch Correction

The influence of blade boundary layers on propeller performance
may be explicitly included in the present approach by altering the
right hand side of Eg. 3.6.4 to account for a known boundary layer
displacement thickness distribution. However, since solutions for
propeller blade boundary layers are not routinely available, the
influence of the boundary layers on blade section lift is approximated
by reducing thevpitch angle of each blade section by the amount

£
of| e

t
Ao = 1,9454 [:;} (3.10.1)

where Ao is in radians. This is the same viscous pitch correction

used by Kerwin and Lee (1978).
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IV. Tip Region Leading Edge Flows

4.1 Types of Tip Region Flows

In order to calculate the flow quantities of interest in the
tip region a mcdel of the flow must be used. 2ll models involve
various approximations of some sort, and the usefulness of any given
model depends on how realistic the approximations are and what informa-
tion about the flow is to be computed. Four models for the types of
flow near the blade tip are discussed below, at increasing levels of
sophistication. The fact that these are models of the flow, and not
representations of the flow itself, must be kept in mind. To simplify
the discussion and figures, the flow about wing tips rather than
propeller blade tips will be considered. The concepts are the same
for either case.

a) Classical Lifting Surface Theory

This theory assumes that the flow is attached to the wing surface
everywhere and the trailing vortex wake is shed off the trailing edge
only. The wake is assumed to remain flat behind the wing and not roll
up into discrete trailing vortices (see Fig. 4.1.1). This model is
widely used because of its simplicity, and yields excellent predictions
of 1lift, drag, -and pitching moment for moderate- to high-aspect ratio
wings. The predicted pressure distribution is also quite good except
near the wingtip., Efforts to improve this latter problem by letting
the trailing vorticity separate off of the trailing edge and then roll

up do not yield much improvement.
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TRAILING VORTEX SHEET

Figure 4.1.1 - Classical wake model
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Figure 4.1.2 - Wake model with side edge
separation
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As already pointed out in Section 3.4, the above model is in-
adequate for calculating the loads on low aspect ratio propeller
blades when they are heavily loaded.

b) Side Edge Separation

At high angles of attack (heavy loading), trailing vorticity is
shed off of the tip chord of the wing and starts to roll up before
the trailing edge is reached, with the centroid of the vorticity
lying above the upper surface wing (Francis and Kennedy, 1979). While
this side edge rollup process has been modeled successfully by
Maskew (1976), many of the important effects on the wing pressure
distribution can be determined by including a “tip vortex sheet" in
the model, as shown in Fig, 4.1.2. The presence of a tip vortex
sheet increases the circulation in the tip region and moves the center
of pressure aft near the tip. The global solution for the propeller
flow problem uses this type of model, as shown_in Fig. 3.4.1. It is
sufficient for calculating the total forces on the blade, but it is
not adequate for computing the pressure distribution on the blade
in the tip region.

¢) Swept Leading Edge Flow (Sharp Edge)

Most propeller blades have leading edges in the tip region that
are highly swept relative to the oncoming flow., Even on unskewed
propellers, the leading edge is highly swept at the tip unless a
finite tip chord is used. Some qualitative feel for the flow around

such a swept leading edge may be gained by considering the flow around



-55=

a low aspect ratio delta wing. Since most studies of delta wings
assume sharp leading edges, we will make this assumption initially.
The effect of rounded leading edges will be dealt with subsequently.

A free shear layer separate§ from the sharp edge of a delta wing
at incidence and rolls up into a leading edge vortex (LEV) lying above
the wing surface and inboard of the edge, as shown in Fig. 4.1.3..

The upper surface of the wing underneath the leading edge vortex

is subjected to a strong sidewash, which decreases the upper surface
pPressures and greatly increases.the wing loading and lift. Fig. 4.1.4
shows the pressure distribution on a delta wing as determined by
experiment and a very elaborate vortex sheet model for the flow, wifh
the suction peaks underneath the leading edge vortices very prominant.
The large increase in 1lift at high incidence due to leading edge vor-
tices is what enables delta wing aircraft (e.g., Concorde, Space
Shuttle) to land at reasonable speeds.

FPig. 4.1.5 shows the surface flow patterns obtained on a sharp
edged delta wing, énd Fig. 4.1.6 shows the flow pa?tern in a éross-
flow plane for this wing. The flow separates at the primary separa-
tion line Sl (wing edge), and the resulting vortex sheet coils up
above the wing to form the primary vortex core. The fluid near the
wing surface flows outward from the primary attachment line Al,

(For more discussion of three-dimensional flow separation and attach-
ment, see Appendix D). The crossflow is accelerated as it passes

under the primary vortex, but it then encounters an adverse pressure
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Vortex core

(From Hall, 1966)

Figure 4.1.3 - Vortex cores over slender delta wing
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Figure 4.1.4 - Pressure distribution on upper surface

of delta wing
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Figure 4.1.5 - Surface flow visualization on upper
surface of delta wing (o = 14°)
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gradient and separates again at the secondary separation line sé,
forming the secondary vortex; This process of generating further
separations, attachments, and smaller vortex cores proceeds until
viscosity and turbulence obliterate the small scale flow structures.

Fig. 4.1.7 shows the results of point tests on three different
propellers at 30% slip (J = .70 x P/D). Propellers A and C cleariy
show an attachment line just inboard of the tip on the suction side,
and from this we may infer the presence of a rolled up vortex lying
above the blade tip, similar to a leading edge vortex on a sharp-
edged delta wing. This type of flow is only pronounced when the
propeller is fairly heavily loaded.

The discussion above deals with delta wings having sharp leading
edges, so that flow separation along the leading edges occurs at all
values of incidence except zero. The theoretical results by Weber
et al (1976) shown in Fig. 4.l1.4 depend on the wing edge being sharp,
so that a Kutta condition (tangential flow requirement) can be applied
at the leading edge in the mathematical model, However, propeller
bl;des usually have nicely rounded leading edges in order to delay
the appearance of leading edge sheet cavitation. 1In this case the
Presence or absence of flow separation at the leading edge depends
on the details of the viscous fl;w,_as shown below,

d) ‘Swept Leading Edge Flow (Rounded Edge)

The flow behavior near rounded leading edges on airfoils is often

governed by the behavior of laminar separation bubbles (see Appendix C
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(From Kuiper, 1978)
Figure 4.1.7 - Paint flow patterns on 3 propellers at 30% slip
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for a discussion of two-dimensional separation bubbles). If the foil
or wing is operating above its ideal angle of attack there will be a

suction peak near the nose, and the laminar boundary layer will usually

separate and form a free shear layer when it encounters the adverse
pressure gradient following the suction peak. This shear layer is
quite unstable and undergoes transition to turbulence quite rapidly,
at which point the flow usually reattaches to the wing surface as a
turbulent boundary layer. There are two types of laminar separation
- bubbles found in practice:

a) Short bubbles (< 1% chord in length and < 0.01% chord in
height) which have almost no effect on the flow around the
foil except directly underneath the bubble, and

b) Long bubbles (>> 1% chord in length) which drastically
alter the flow around the foil section, usually destroying
the suction peak near the leading edge and producing a
region of moderately low pressure under the bubble.

For a thin two-dimensional airfoil section a short bubble appears
first as the incidence is increased above the ideal aggle of attack,
and at some point the short bubble "bursts” and a long bubble is
formed. Kuchemann (1953) noted that the tips of swept-back wings
operate at a higher effective angle of incidence (greater leading
edge suction peak) than do the inboard sections as the angle of attack
of the wing is increased. One would expect therefore that a short

Separation bubble would burst near the tip of the wing first as the
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incidence is increased. Since the jump between a short and long bubble
involves a rearrangement (and reduction) of the bound vorticity on
the foil, a "part-span vortex" (PSV) must be shed from the junction
between short and long bubbles on a swept wing, as shown in Fig. 4.1.8.

Figs. 4.1.9 illustrate some pressure distribution data on a 45°
swept back wing of aspect ratio 3. Fig. 4.1.9a shows the minimum-
pressure near the leading edge as a function of span for several
angles of attack. At 0=20.6° and a=22,6° the suction peak has collapsed
over the outer part of the wing, indicating the presence of a long
bubble in this region. Fig. 4.1.9b confirms this, showing the chord-
wise distribution of upper surface éressure at the 61% semispan station
for several angles of attack. The pressure distribution at a=16.4°
is quite normal, and the short bubble most likely present does not
show up in the pressure plot. At a=20.6° the suction peak has been
greatly reduced by the presence of a long bubble, which is also respon-
sible for the extended region of low pressure. The junction between
short and long.bubbles {and the associated part-span vortex) moves
inward as the wing incidenée is increased, éiving rise to swept wing
stall.

Figs. 4.1.10 and 4.1.11 illustrate the part span vortex phenomenon
on a highly skewed propeller blade in steady flow, where the "tip"
vortex has been made visible by reducing the water tunnel static
Pressure so that vortex cavitation occurs. The "tip" vortex leaves

the tip of the blade when operating near the design advance coefficient
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Figure 4.1.10 - Highly skewed propeller (#4498) operating
near design J
(Tip vortex leaves tip of blade)



—66—-

Figure 4.1.11 -~ Highly skewed propeller (#4498) operating
at 60% of design J
(Tip vortex separates from leading edge
and passes over blade)
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(Fig. 4.1.10), but it separates quite far down the leading edge at a
lower J and passes over the blade (Fig. 4.1.1l1).

If the part span vortex occurs very near the tip of a propeller
blade where the leading edge sweep angle is changing rapidly with
radius, the distinction between a part span vortex and a leading edge
vortex is somewhat difficult to make. In the current work "part span
vortex" will refer to a distinct vortex separating quite far down the
leading edge of a propeller blade, while "leading edge vortex" will
refer to the rolled up vortex downstream of a regioﬁ of leading edge
separation near the tip. A leading edge vortex tends to resemble a
side edge vortex as the leading edge sweep angle approaches 90°
(streamwise edge).

It is the intent of the present work to model the part spén vortex
phenomenon on propeller blades in an approximate maﬁner. It is obvious
from the abpve discussion that the first major problem is determining
where the flow separgtes from the leading edge. Thg rest of this
chapter explains the physics of viscous leading edge flows in greater
detail, and the method developed to predict the starting point of a

part span vortex on a propeller blade.

4,2 'viscous Leading Edge Flows

As noted in Section 4.1, laminar separation bubbles are a common
feature on unswept wings when operating above their ideal angles of
incidence. The flow remains laminar at the separation point up to

very high free-stream Reynolds numbexs because the flow from the
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stagnation point to the suction peak is in a favorable pressure
gradient which damps out instability and transition mechanisms
(Tollmein-Schlicting waves and subsequent three-dimensional distur-
bances) which would tend to make the leading edge boundary layer
turbulent. After the laminar boundary layer separates and forms a
free shear layer it 1s much more susceptible to instabilities, and
usually becomes turbulent and reattaches to the airfoil surface,
forming a bubble of trapped fluid. If the flow reattaches shortly
behind the separation point a short bubble is formed which has very
little effect on the main flow. If the flow progresses quite far
downstream before reattachment occurs a long bubble is formed, which
drastically alters the pressure distribution on the foil upper surface.
A further discussion of short and long bubbles is given in Appendix C.

Additional complications arise when considering separation
bubbles on swept leading edges because mechanisms other than Tollmein-
Schlicting instabilities may govern transition near the leading edge.
The first mechanism is 'cross-flow instability' (Beasley, 1973) and
is characterized by streamwise vortices in the laminar boundary layer.
These vortices develop near the leading edge where there is a large
chordwise velocity gradient. The boundary layer velocity profile
viewed in a direction normal to the external inviscid streamline may
contain a point of inflection, which is indicative of instability at
low Reynolds numbers. Fig. 4.2.1 shows how this inflected cross-

flow profile occurs.
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A much more important mechanism is 'leading edge contamination’,
as described by Gaster (1967) and Cumpsty and Head (1967); In this
case the flow along the forward attachment line of a swept wing is
turbulent, so that turbulence propagates out along the span of a
swept wing from the upstream (inboard) end, and the boundary layer
around any section of the wing is initially turbulent without the
need for undergoing Tollmein-Schlicting type instability and transi-
tion. Fig. 4.2.2 illustrates the attachment line flow on an infinite
swept wing, with leading edge sweep angle A and inflow velocity U_.
The component of the inflow normal to the leading edge is Un=U°° cosA,
and the component of the inflow along the attachment line is

US=UW sinA. The momentum thickness GE.g of the boundary layer along

1

the attachment line (assuming laminar flow) is given by (Gaster, 1967),

J—
8,, = 0.4044 = (4.2.1)
- du
=
ds
where v = kinematic viscosity
dUe :
rFrale velocity gradient of component of potential flow normal

to the leading edge, evaluated at the attachment line
and the Reynolds number describing the attachment line flow is given by

Useal

9 . = V)

(4.2.2)



-71-

(butm peaxesays 93TUTIUT)

MOTY SUTT jusuyoejzjle obps mcﬁvmm.ﬂ wmmx,.om - Z°2°'p 2anbta
(LL6T ‘1104 WOxd)

=

NN \

MO 3
- IVNYILXRT -
‘ ;
S~
2ov4u0S oram” ‘

—

3N
ANINHIY LY
20D44NS
2UHWD2}S |DUI2IX]



-72~

Although there are no definite values of Re which differentiate
' al

between different flow regimes, Beasly (1973) suggests the following

values:
Re < 100 : no turbulent contamination possible
al (disturbances die out)
100 < Re < 240 : turbulent contamination possible
al (disturbances will propagate)
RB > 240 : turbulent contamination
al (attachment line boundary layer unstable

to disturbances)

An additional complication occurs when the boundary layer
around a section of a swept wing starts at a (possibly) turbulent
attachment line but undergoes re-laminarisation as it passes through
the favorable pressure gradient leading up to the suction peak.
Launder and Jones (1968) suggested that re-laminarisation may occur

if the parameter Kr' exceeds 5 x 10-6, Kr being defined as

s

K = au (4.2,3)
r 2 ds
U
where U = velocity along inviscid streamline
- du . . s e s .
= - velocity gradient along inviscid streamline.

In addition to the considerations described here, it is expected
that inflow turbulence and surface roughness may significantly influ-
ence flow transition and separation in the leading edge region of

wings and propeller blades.
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4,3 prediction of Leading Edge Flow Behavior-Theory

The most important item to be determined from a viscous flow

analysis of the leading edge of a swept wing or propeller blade is
the point (if any) at which a part span vortex forms. If we accept
the hypothesis put forward by Kuchemann (1953) and Smith (1975) that
this point is where a short laminar separation bubble bursts, then
whatever prediction method is used should predict the bursting of
two-dimensional laminar separation bubbles as the leading edge sweep
approaches zero.

The problem appears far too complicated for a direct theoretical
assault, especially since instability and transition are involved, and
these phenomena continue to defy an army of researchers. Therefore
the approach taken here’is to try to identify the relevant non-dimen-
sional parameters governing the problem and collect as much data as
'possible upon which to regress, so that a semi-empirical model can be
developed to predict'the occurrence of part span vortices.

Two major assumptiogs were made in developing the leading edge
flow model presented below:

a) It is assumed that each point on the leading edge can be con-
sidered to be part of an infinite sheared wing (Appendix E)
having the same leading edge sweep and the same velocity
gradients along the surface normal to the leading edge.

This is equivalent to ignoring flow gradients along the

direction of the leading edge: only those gradients normal
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to the leading edge are assumed to matter. While it seems
that spanwise gradients should be important at the leading
edge of a lcw-aspect ratio wing or propeller blade tip, it

is far from obvious how to include them in the model.

The attached flow inviscid load distribution calculated in
Section 3.9 is used as input to the viscous flow calculafions.
Since the presence of a part span vortex radically alters

the load distribution on the wing or propeller blade, it would
Seem necessafy to iterate between the viscous leading edge
analysis and a potential flow calculation which included the
part span vortex, until convergence is obtained. There are
two justifications for not doing so. Dixon and Sampath
(1978) tried this approach in a very elaborate model for
predicting flow separation on wings with round edges and
found no convergence possible. They finally concluded that
the leading edge boundary layer should be calculated only
once, using the attached flow velocity distribution (their
methddology has not been adopted for the present work due to
excessive computing time and inconclusive results). A

second reason for neglecting viscid-inviscid iteration is
that a part-span vortex has little effect on the wing
pressure distribution inboard of it, so the inviscid pressure
distribution calculated, assuming completely attached flow,

is probably quite accurate inboard of the actual part span

vortex location.
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As noted above, the flow at any point of the leading edge is
assumed to be equivalent to that along an infinite sheared wing having
the same leading edge sweep angle relative to the flow and the same
distribution of the inviscid velocity component along the surface
normal to the leading edge. If we make the further assumption that
the leading edge region of a wing or blade section in a plane normal
to the leading edge (Fig. 4.3.1) can be satisfactorily represented
by a parabola having the same leading edge radius, then the surface
velocity component normal to the leading edge in inviscid flow can
be calculated using the equations in Appendix F. The only quantity
remaining to be specified is the position of the stagnation point
on the section normal to the leading edge (position of attachment
line on infinite sheared wing). The descriptor used in the current
work is the suction force per length of leading edge, FSu This is
convenient because calculations of the attached potential flow using
thin wing theory (Appendix A) yield the leading edge suction force
directly. A non-dimensional leading edge suction force coefficient

is defined as

Fs
CS = T 5 2r (4.3.1)
2P ntn
where Un = component of inflow velocity normal to leading edge
r, = radius of leading edge in plane normal to leading edge

Note that CS does not contain A.
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The proper Reynolds riumber for describing the leading edge flow

on swept wings was determined to be

(4.3-.2)

While it might be argued that Un is the proper velocity to use, in
accordance with infinite sheared wing theory, it must be remembered
that the equations for the chordwise and spanwise components of the
flow on a sheared wing only uncouple in the cases of inviscid flow
or an attached laminar -boundary layer. Once separgtion or turbulence
appears the chordwise and spanwise flow velocities interact. Since
we are concerned about leading edge flows involving separation and
transition to turbulence it appears that U_ is the proper velocity

to use in forming a leading edge Reynolds number.

4,4 Prediction of Leading Edge Flow Behavior -
Correlation of Experimental Data

Wind tunnel data for swept wings-:[Black (1953), Garner and
Bryer (1957), Garner and Walsh (1960), Garner and Cox (1961), Woodward
and Lean (1971), Garner (1972)] was collected and analyzed using the
following procedure:
a) For a given wing geometry, free stream Reynolds number,
and angle of attack, the attached potential flow lcad
distribution was determined using a vortex-lattice computer
program very similar to the one used for the global propeller

analysis.
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b)__The following quantities were computed at a series of points

along the leading edge:

i) A - leading. edge sweep angle

ii) Rea1 ~ Reynolds number of attachment line flow (Eq. 4.2.2)
iii) Kr T relaminarisation parameter (Eq. 4.2.3)

iv) Cs - leading edge suction force coefficient (Eq. 4.3.1)

v) lee - leading edge Reynolds number (Eq. 4.3.2)

¢) The values of the above quantities were determined at the
point along the leading edge where the part span vortex
originiated.

d) The above process was repeated for a variety of different
wings at different free stream Reynolds numbers and different
angles of attack. The values of the parameters at the part
span vortex separation point were cross plotted in various
ways .in a search for some sort of cor:elation.

The best correlation between paramgters was obtained between Cs
and Rle' as expected. The process used to generate one data point for
the final Cs vs._R1e plot is shown in Fig. 4.4.1, and all of the re-
sulting data points are shown in Fig. 4.4.2. The scatter in the data
is discouraging but not surprising, given the strong influence of
surface roughness and turbulence shown for the 49.4° swept wing. There
are inaccuracies in estimating Cs also, since the influence of the wing
boundary layer was not considered in determining the attached flow

loading distribution, and K;chemann (1955) has shown that the influence
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of the boundary layer increases with sweep. Nevertheless, there is a
clear correlation between Rle and the computed CS at the point where
the part span vortex separates from the wing. No significant ‘correla-

tion could be found involving A, R or Kr' although in some cases

eal

a high value of R {indicating possible turbulent attachment line

eal

flow) occurred simultaneously with a high value of Cyq at separation,
which is to be expected,

Three other curves are shown in Fig. 4.4.2. The solid line is
taken from Ridder (1974) and represents the results of a series of
tests on two-dimensional airfoil sections. The line plotted is the
maximum attainable leading edge suction force coefficient CS (just
before flow breakdown occurs) versus leading edge Reynolds number
R, . For the portion of the curve to the left of the knuckle

le
(R1 < 8.,6x 103) the cause of the flow breakdown is bursting of a
short laminar separation bubble. To the right of the knuckle
(3le > 8,6 x 103) the cause of flow breakdown is turbulent separation
behind a short laminar bubble.

The line across Fig. 4.4.2 at Cs = 6.5 is the lower limit for
the formation of laminar separation bubbles near the leading edge of
a two dimensional section. This line was calculated using the velocity
distribution around a parabolic leading edge (Appendix F) and the
laminar boundary layer separation criterion developed by Stratford

(1957a) . This criterion is independent of Reynolds number, as it

should be.
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The dashed line is the computed CS at which turbulent boundary
layer separation is predicted to occur near the leading edge of two
dimensional sections. This calculation was made using the inviscid
velocity distribution around a parabolic leading edge and the turbu-
lent boundary layer separation criterion due to Stratford (1957b).

The fact that both two-dimensional experimental data and the.
computed turbulent separation line pass through the experimental
points for flow separation on swept wings is extremely encouraging.
This appears to indicate that CS and RIe are proper descriptors for
the state of the leading edge flow on both swept and unswept wings.

Other factors certainly influence the leading edge flow behavior,

such as Re , K_: spanwise pressure gradients, surface roughness,
al

and inflow turbulence; but the limited amount of detailed swept
wing flow data available makes a correlation with these parameters
difficult or impossible at present. It‘seems clear, however, that
the suction force coefficient Cs and ieading edge Reynolds number
Rle are the most important parameters to consider.

Putting a line through all of the data shown in Fig, 4.4.2
results in a sort of "universal curve" for predicting the onset of
leading edge flow breakdown, which is presented in Fig. 4.4.3. If
the leading edge flow at some point on a wing has a computed Cs
lying above the solid line in Fig. 4.4.3, then flow breakdown is

expected. If the computed Cs lies below this limiting curve, then

a short laminar separation bubble is predicted to occur. Applying
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this procedure to the case of propeller blades, good results are
obtained in predicting the occurrence and origin of part span vortices,
as shown in Chapter VI.

The dashed curve in Fig. 4.4.3 represents the level of suction
force remaining after leading edge flow breakdown occurs. This curve
is taken from Ridder (1974) and represents two-dimensional airfoil
data only. The importance of this curve will become clear in Chapter
V, but for now it suffices to say that swept wing data must be obtained
to see if this curve holds for three dimensional wings also. At

present this curve must be considered as tentative only.,
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V. Modeling of Tip Region Separated Flow

5.1 ‘Physical Description

As shown in Chapter IV, heavily loaded wings and propeller blades
often shed vorticity into the fluid from the leading edge as well as
the trailing edge. Since the vorticity shed from the leading edge
passes very close to the wing or blade, it is essential to correctly
determine the strength and location of this shed vorticity in order to
determine the load distribution on the blade.

Figure 4.1.10 (page 65) shows a heavily loaded propeller with
a very strohg part span vortex being shed from the leading edge. While
it may appear that vorticity is being shed from only one location on
the leading edge in this case, vortex shedding is actually occurring
along the entire length of the leading edge outboard of the initial
separation point. The vorticity shed from the leading edge then rolls
up into the part span vortex core, so that the circulation arognd the
core increases in the outward (downstream) direction.

At propeller loadings less severe than that shown in Fig. 4.1.11
{operation closer to design J), the initial separation point moves
outward on the blade, and the strength of the vorticity shed from the
leading edge is reduced. Perhaps more importantly, the tendency for
the vorticity shed from the leading edge to toll up tightly is reduced.
While adequate photographs of this phenomena are not available, detailed
visual observations in the MIT Variable Pressure Water Tunnel of two

different model propellers indicate that the tendency toward strong
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rollup of the leading edge shed vorticity is reduced as the propeller
loading is reduced. Flow visualization was éccomplished by noting the
trajectories of minute cavitation bubblés emanating from nicks in the
blade leading edges. Hence; it would appear that for many cases of
interest (operation not too far away from design J) the vorticity

shed from the blade leading edge tends to resemble a vortex sheet
rather than a tightly rolled up vortex core. Ideally, any model gsed
to represent this separated flow should indicate the basic form of

the shed vorticity (sheet or core) as part of the solution.

The amount of vorticity shed from the leading edge of a propeller
blade or wing is determined by the nature of fhe flow at the leading
edge. If the leading edge is sharp it is appropriate to impose a
Kutta condition there to insure that velocities near the leading edge
remain bounded. This is sufficient to determine the amount of vorticity
shed from the leading edge using a wide variety of theoretical flow
models. In fact, there are a tremendous number of papers in the
aeronautical literature dealing with flow separation from the leading
edges of low aspect ratio delta wings (see Figs. 4.1.4-4.1.6), and
almost all utilize a leading edge Kutta condition in an inviscid flow
model to predict the flow around the wing. In many cases this is
quite a reasonable assumption: delta wings on supersonic aircraft

tend to be quite thin and have very small leading edge radii.
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However, propeller blades typically have generous leading edge
radii to delay sheet cavitation inception so that a Kutta condition
at the leading edge is inappropriate. The vortex shedding rate is
actually determined by the details of the viscous flow near the leading
edge. Just as in the leading edge separation problem discussed in
Chapter IV, a frontal assult on the leading edge viscous flow problem
for the purpose of determining the vortex shedding rate does not seem
warranted at this time. A semi-empirical approach is utilized here,
as in Chapter IV. Section 5,2 (below) shows that the amount of vorti-
city shed into the flow once leading edge flow breakdown occurs can be
related to the residual leading edge suction force. For present pur-
poses this is taken from an empirical correlation (the dashed line in
Fig. 4.4.3, pg. 83).

Once the amount of vorticity shed from the leading edge is deter-
mined, the major problem in completing the flow solution is to deter-
mine the proper trajectory of the shed vorticity as it passes close to
the blade surface. The proper boundary condition for the shed vortex
sheet is that there is no pressure jump across it. For the inviscid
steady-flow model used here this is satisfied if

Wwx V=0 (5.1.1)

everywhere on the sheet; i.e., the local vorticity vector must be
parallel to the local velocity vector everywhere on the sheet in order

for the sheet to be force-free.
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The vortex sheet shed from the leading edge causes significant
induced velocities on the blade; whiéh will change the vorticity distri-
bution on the blade required to satisfy the zero normal velocity bound-
ary condition. Conversely; a change in vorticity distribution on the
blade will change the velocity field seen by the free vortex sheet,
and hence its correct (force-free) position;' It is necessary to use
an iterative approach to solve this non-linear problem, switching back
énd forth between satisfying the zero normal velocity boundary condition
on the blade (determining the vorte# strengths everywhere), and relaxing
the position of the free vortex sheet; Under-relaxation of the free
sheet position is usually necessary in order té make this process con-
vergent,

5.2 Existing Methods for Solving Lifting Wing Problems
with Leading Edge Separation '

Several existing methods for determining the flow about slender
delta wings with leading edge separation are discussed below in order
to set the stage for the separated flow model utilized in the current
work.

a) 'Conical Flow Theories

The British aeronautical community (e.g. Smith (1957), Clapworthy
and Mangler (1974)) has devoted a great deal of effort toward analyzing
delta wing flows utilizing the conical flow assumption; This assump-
tion states that the flow in all planés normal to the direction of

flight is self-similar. The problem is attacked by séblving the two-
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dimensional Laplace equation in the-cross-=flow plane by using conformal
mapping techniques (including the influence of the leading edge vor-
tices) and then including the streamwise interaction effects in the
downstream direction only; Since upstream effects cannot be included
the trailing edge Kutta condition is not satisfied. While much in-
sight has been gained by pursuing conical flow theory for delta wings,
the lack of applicability to more general geometries renders it useless

for the problem at hand.

b) Vortex TLattice Method of Kandil, Mook, and Nayfeh

Kandil, Mook, and Nayfeh (1976) presented a vortex lattice tech-
nigque for determining the flow about wings with arbitrary planform,
camber, and angle of attack having leading-edge separation. The method
is restricted to sharp leading edges, so that a leading edge Kutta
condition may be imposed.

The method is based on the usual vortex lattice lifting surface
theory such as that described in Chapter III.‘ In addition to the
horseshoe vortices and associated control points on the wing surface,
there are "leading-edge horseshoes" which extend up the trailing wake
to the wing trailing edge, through the wing to the leading edge, and
then out of the leading edge and extending downstream to form part of
the leading edge vortex sheet (see Fig; 502;1). By arranging the
whole vortex system into horseshoe vortices Kelvin's theorem is
automatically satisfied. For each leading edge horseshoe vortex a

control point is added at the leading edge of the wing; requiring the
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total normal velocity to be zero there is equivalent to enforcing a

leading edge Kutta condition.

The

boundary

1)

2)

3)

.NCP

where

nj

NCP

4,

following iterative approach is used to solve the non-linear
value problem:

Initial positions for the discrete vortex segments representing
the shed vortex sheet are selected.

A matrix A of influence coefficients is computed from the
Biot-Savart law: element Aij represents the normal velocity
induced at the j'th control point by a unit strength of the
i'th horseshoe vortex (either in the wing; or a leading edge
horseshoe vortex)

The strengths of all of the horseshoe vortices are determined

by solving the set of simultaneous equations:

A.. r = =V . r i = l, » e e 7 NCP (50201)

= strength of the j'th horseshoe vortex

= normal component of the inflow velocity at the j'th
control point

= total number of control points
With the strengths of all of the discrete vortices known,
the velocity at the upstream end of each vortex segment in

the shed vortex sheet is computed, and the segment is aligned
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with this computed velocity. Since the changing geometry of
the free sheet changes the calculation of the velocity; this
is an iterative procedure., This process is continued until
the shed vortex sheet is force free for the assumed vorticity
distribution on the wing.
5) Steps 2), 3); and 4) are repeated until the displacement- of
the free sheet vortex segments during step 4) is below a
certain toleraﬁce and a converged solution is obtained.
Fig. 5.2.2 shows a converged solution using this approach for a flat
delta wing with aspect ratio‘= 1;46 and angle of attack = 14°. Note
that the wake is representéd by straight semi-infinite segments at
some point behind the trailing edge in order to reduce computation
time. This is reasonable bécause the minute details of the wake
geometry behind the trailing edge do not significantly affect the
loads on the wing.

c) Vortex Lattice Theory of Mehrotra and Lan

Mehrotra and Lan (1978) developed a vortex lattice theory for
delta wings with leading edge flow separation which is quite similar
to that developed by Kandil, Mook, and Nayfeh (1976). The unique
feature in Mehrotra and Lan's work is that any arbitrary amount of
leading edge suction force can be specified as part of the solution,
and not just the case of zero leading suction force (leading edge
Kutta condition). Mehrotra and Lan admitted that they did not know

how to establish what the correct leading edge suction force should
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be for a rounded leading edge with partial separation. The semi-

empirical correlation for leading edge suction force developed in

Chapter IV (Fig. 4.4.3, pg. 83) can be used to supply this missing
information.

Section A.3 in Appendik A shows that the leading edge suction
force on a three-dimensional wing can be calculated from a vortex
lattice program if cosine spacing of-the bound vortices over the chord
is utilized. 1In this case the suction force per unit length of leading
edge is proportional to the square of the normal velocity computed at
a leading edge control point ahead of the first bound vortex (Fig.
5.2.3). This calculation can be inverted to yield the proper normal
velocity at the leading edge control points so that the desired leading
edge suction force is attained;

When considering usual attached flow (no leading edge separation)
the leading edge control points do not enter into the simultaneous
equations to determine the bound vorticity distribution. The normal
velocity at the leading edge control points is calculated after the
vortex strengths are determined so that the leading edge suction force
can be calculated. If the normal velocity is to be specified at
several leading edge control points as part of the solution, then an
equal number of leading edge horseshoe vortices of unknown strength
must be included so that there are as many unknowns as there are

equations. The resulting simultaneous equations can be expressed
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(From Mehrotra & Lan, 1978)

Figure 5.2.3 - Wing geometry without leading edge
vortex system in Mehrotra & Lan
model (1/2 of delta wing)
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in matrix form as follows

or

ICP

LCP

where

11

12

21

22

ICp

ILCp

(5.2.2)

FA

ICP ~< LCP >

l . ) = (5-203)

matrix of normal velocity influence coefficients
(see Eg. 5.2.1)

submatrix expressing influence of regular horseshoes
on regular control points

submatrix expressing influence of leading edge horse-
shoes on regular control points

submatrix expressing influence of reqular horseshoes
on leading edge control points

submatrix expressing influence of leading edge horse-
shoes on leading edge control points

vector of reqular horseshoe strengths
vector of leading edge horseshoe strengths

vector of the negative of the inflow velocity at the
regular control points

vector of desired induced velocities at the leading
edge control points

number of regular control points

number of leading edge control points
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Note that solving the attached flow problem without leading edge

separation present is equivalent to solving the matrix equation

All . Pl = Bl (5.2.4)

The leading edge horseshoe system is superimposed on the regular
vortex lattice grid. A typical leading edge horseshoe is shown by
points A through J in Figure 5.2.4, with the initial geometry shown
by dashed lines and the final (force-free) geometry shown by solid
lines. Points A through D lie along the usual trailing vortex wake,
and segment D-E coincides with the chordwise legs of the usual horse-
shoes on the wing. Points E, F, G, and H lie in the wing plane, The
location of segment E-F is ahead of the first bound (spanwise) vortex
and is given by

L T

_ E /2
XE = xl + > 1 cos [ N1 (5.2.5a)
E — —
C pr N -
_ F /2
xF = xlF + > _l cos { NI | (5.2.5b)

wheré the subscripts E and F refer to the points under consideration.
The segments F-G and G-H are of the same length. Segments H through
J form part of the vortex sheet shed from the leading edge.

The iterative scheme used by Mehrotra and Lan to solve the non-
linear boundary value problem is essentially identical to that used
by Kandil; Mook, and Nayfeh (1976) and described above in part b).

The calculated geometries of the vortex sheet shed from the leading
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Figure 5.2.4 - Typical leading edge horseshoe vortex
in Mehrotra & Lan model
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edge are very similar for the two methods (Fig. 5.2.2),

Both of the vortex lattice methods described here yield adequate
results for the 1lift, pitching moment, and pressure distribution on
sharp-edged delta wings at high angles of attack. The method of
Mehrotra and Lan has the added advantage of being able to deal with
only a partial loss of leading edge suction, as opposed to the complete
loss implied by imposing a leading edge Kutta condition.

However, neither one of these methods works very well at low
angles of attack.. The major problem is that the calculation of
velocities at arbitrary points near the wing surface is required when
lining up the segments of the leading edge vortex sheet with the flow.
Unfortunately; the velocity field very close to the wing is grossly
distorted because of the use of line vortices to represent the vortex
sheet in the wing; Just as the control points on the wing must be
very carefully located to get the correct normal wvelocity on the wing
due to the vortex sheet, great care must be taken in computing induced
velocities at points near the wing. Another problem with the vortex
lattice methods described here is that at low angles of attack the
vortices representing the leading edge vortex sheet may interact strongly
with each other and either orbit around each other or attempt to force
one of the vortices to pass through the wing surface. Many checks
must be built into the free sheet alignment algorithm to make sure
that such chaos does not occur. As a result, there may be many cases
where the free sheet alignment algorithm fails to converge to a reason-

able solution, or indeed, fails to converge at all,
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5.3 'Separated Tip Flow Model

Because the shed vorticity from the leading edge tends to remain
as a vortex sheet for the operating conditions of interest (operation
near design J), an attempt was made to use a model for the shed vorti-
city which represents a vortex sheet rather than a tightly rolled up
vortex core. This was done by placing a replica of the vortex lattice
used to represent the blade tip at a small distance above the suction
surface of the blade (dashed lines in Fig. 5.3.1). This auxiliary
lattice is a discretized representation of the leading adge vortex
sheet. Vorticity "enters" this free sheet lattice through short seg-
ments connecting the free sheet lattice to the leading edge blade
lattice. Instead of actually moving the vortex segments in the free
sheet.laterally to render them force-free, the vorticity is shunted
back and forth between the segments of the free sheet lattice as the
vorticity moves downstream so that the resulting vorticity vector at
each node éarallels as closely as possible the velocity wvector at that
node. This is referred to as iateral vorticity movement, and is
discussed in detail in Appendix G. The height of the free sheet lattice
may also be varied, as discussed in Section 5.4.

All calculations of induced velocities on the free sheet are made
at the free sheet "control points"; that is, where the control points
would be if the the free sheet lattice were the blade lattice. These
are the correct locations for calculating the influence of the free

sheet on itself. These are also the optimum locations for calculating
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the induced velocity due to the blade. The induced velocities at
the free sheet nodes (reéuired for directing the lateral vorticity
movement) are obtained from the induced velocities at the free sheet
"control points" by two-dimensional interpolation.

Using this discretized vortex sheet, the portion of a leading
edge horseshoe representing part of the shed sheet no longer consists
of a single line of short vortex segments passing over the blade sur-
face, such as that shown in Fig. 5.2.4 (pg. 98). Instead, the free
sheet portion of a leading edge horseshoe vortex consists of a number
of spanwise and chordwise vortex segments in the free sheet, as shown
in Fig. 5.3;2. The relative weights of the segments making up the |
_horseshoe are assigned such that-Kelvin's theorem (conservation of
circulation) is satisfied at each node in the free sheet lattice, and
so that the equivalent single vortex line (Fig. 5.3.2) is aligned as
closely as possible with the local vorticity vector along its length.

Aside from the ﬁovel approach used to represent the shed vortex
sheet, the rest of procedure was very similar to Mehrotra and Lan's
(1978) method. Use was made of the capability for specifying an
arbitrary leading edge suction force distribution, and the set of
equations used to solve for the vortex strengths for an assumed vortex
system geometry was identical'to that given by Eg. 5.2.3,

It was hoped that the numerical problems encountered at low angles
of attack when using a vortex lattice approach such as those discussed

in Section 5.2 would be circumvented by this representation of the
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vortex sheet shed from the leading edge of the blade. However, this
}scheme did not work at all. The lateral vorticity movement algorithm
described in Appendix G kept moving all of the shed vorticity to the
inboard edge of the sheet, whereas iﬁAreality the shed vorticity tends
to remain close to the leading and tip edges of the blade. 1In hind-
sight, this result was to be expected. The direction of the radial
velocity above the suction side of the blade tip is inward in the

whole tip region, and this is responsible for the tip vortex being dis-
placed slightly inward from the extreme blade tip. It is the rolling-
up of the leading edgelvértex sheet which is responsible for the shed
vorticity concentrating near the leading and tip edges of the blade.
This may be seen by examining the flow near the leading edge of the
blade, as shown in Fig. 5.3.3. It is the outward induced velocity

on the inboard portion of the sheet caused by the outboard portion of
the sheet that is responsible for the shed vorticity remaining near

the leading edge. Also, a strong rolling up is associated with an
axial flow along the vortex "core" that causes entrainment and further
concentration of the vorticity, as pointed out by Mc Mahon (1967) and
Cummings (1968). ‘

Hence, although the rolling up of the free sheet at operation
near design J is not expected to be dramatic, it appears that the
modeling of the rolling up process is important in calculating the
correct trajectory of the shed vorticity. The vortex lattice methods

described in Section 5.2 do allow the free sheet to roll up (see Fig.
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5.2.2; pg. 93) but as already pointed out these methods do not work
well at low angles of attack because of the extremely close approach
of the discretized sheet to the discretized blade.
Because the free sheet is so close to the blade surface for the
_operating conditions under consideration, the neglect of the no-slip
boundary condition on the blade surface may be a serious omission.
If this is true then no potential flow model, no matter how elaborate,
will correctly predict the features of the real flow. In any event
the disparate length scales involved in simultaneously modeling the
free sheet roll up and the flow over the rest of the blade tip would
cause problems in most potential flow modeling schemes.
Since the major interest in the current thesis lies in modeling
the flow around the blade tip when the shed vorticity does not roll
up too strongly, a "first order" free sheet model has been implemented.
In this model of the sheet the free vorticity is shed from the leading
edge and moves baék over the blade in the chordwise direction only
(no change in radius). The height of the free sheet above the blade

camber surface is given by

Height above camber surface =

1/2 blade thickness + blade boundary layer thickness (5.3.1)

The resulting first order free sheet geometry is shown in Fig. 5.3.4.
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5.4 'Tip Flow Solution Procedure

The complete procedure used to solve the boundary value problem

for the flow around a propeller blade tip is outlined below., It is

assumed that the global propeller analysis has already been completed

and that a local tip flow domain has already been selected, as dis-

cussed in Sections 3.1 through 3.8.

a)

b)

c)

A local tip flow solution using a fine vortex lattice is

done, assuming no flow separation from the leading edge of the

blade. This is discussed in Section 3,9;

Using the singularity distribution determined above, the
normal velocities at the leading edge control points on

the blade tip are calculated. As shown in Appendix A, this
allows the ;eading edge suction force coefficient Cs to be
determined along the leading edge.

Fig. 4.4.3 (pg. 83) is consulted to determine which portions
of the leading edge have suffered leading edge flow break-
down. The assumption is made currently that vorticity is
shed all along the leading edge outboard of the innermost
separation point. This assumption appears to be valid for
propellers having any kind of pitch distribution except for
extreme unloading of the tip. For those sections of the
blade predicted to have flow separation, the dashed line in
Fig. 4.4.3 is used to estimate the residual 1éading edge

suction force coefficient.



d)

e)

£)
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For each strip of the blade predicted to have leading edge
flow separation, the required normal induced velocity at

the leading edge control points is determined from the
estimated residual leading edge suction for;; coefficient
determined in c).

The "first order" model of the leading edge vortex sheet
(Fig. 5.3.4) is set up covering all chordwise strips having
leading edge separation. The height of the sheet is set by
Eg. 5.3.1, using a simple two-dimensional zero pressure
gradient turbulent boundary layer solution to estimate the
blade boundary layer thickness (this is deemed sufficiently
accurate for the current free sheet model). This first order
free sheet model comprises the shed sheet legs of the leading

edge horseshoes (Fig., 5.2.4).

The set of simultaneous equations (Eq. 5.2.3) is set up

‘and solved to determine the strength of the blade vortex

sheet and the shed vortex sheet. Since the free sheet
geometry is not subsequently updated in an attempt to
render it force free, this is in fact the final solution.

No iteration is performed.
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5.5 Determination of Blade Forces

The forces on the blade tip in the separated flow solution are
calculated in a manner very similar to that used in the global solu-
tion and explained in Section 3.7. There are additional induced
velocities due to the leading edge vortex sheet which must be included.
The leading edge suction force for those portions of the leading edge

experiencing flow separation is taken from Fig. 4.4.3.
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VI. Numerical Results and Comparison With Experiments

6.1 Propeller Performance Analysis (Global Problem)

A series of computations were made to determine the accuracy of
the propeller analysis procedure. For all of the computations described
here the appropriate values of the ultimate wake radius (rw), ultimate
hub vortex radius (rwh)’ and tip vortex contraction angle (Gc) weré
determined from the experimental measurements of Min (1978). The two
propellers described here are members of the NSRDC series of skewed
propellers [Boswell (1971), Nelka (1974)]. Propeller 4381 is the
unskewed parent propeller while propeller 4498 has 72 degrees of warp
(72 degrees of midchord skew in the projected view, with the skew-
induced rake removed). The design advance coefficient for both pro-
pellers is J = ,889. A vortex lattice representation for 4381 is shown
in Fig. 6.1.1, while 4498 is shown in Fig. 3.5.1 (pg. 43).

The importance of the correct trailing vortex wake pitch is
illustrated in Fig. 6.1.2. The alignment of the wake with the flow
is done using the algorithm described in Section 3.3 and Appendix B.
Excellent agreement between measured and computed tﬁrust is usually
obtained if the wake geometry is correctly aligned with the flow,
even at very low J values.

The influence of different grid arrangements on the predicted
performance of 4381 is shown in Table 6.1.1. For each lattice arrange-
ment the first number refers to the spanwise number of panels on the

key blade, while the second gives the chordwise number of panels on
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©

Figure 6.1.1 - Vortex lattice arrangement
for propeller 4381 (8 x 8 grid)
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the key blade. For these and all other computations shown here the

blade section viscous drag coefficient was taken to be 0.007.

Table 6.1.1

Effect of Lattice Arrangement on Predicted
Performance of 4381, J = ,.889

‘Lattice Eg Eg n
8x8 .2048 .04196 .691
12x8 .2049 .04196 .691
8x12 .2055 .04161 .699
12x12 .2054 .04160 .699

Since these results are quite close and the 8 x 8 grid is much less
expensive co use than the others, and 8 x 8 grid is used for most
routine calculations.

Measured and computed open-water characteristics for propellers
4381 and 4498 are shown in Figures 6.1.3 and 6.1.4. Agreement is
seen to be satisfactory, considering the spread in the experimental
results. The under-prediction of torque for 4498 (72° warped prop)
may be related to the fact that swept vortex lattices under-predict
the induced drag of swept-back wings, as noted by Kalman, Giesing,

and Rodden (1970) and Tulinius EEPEL (1972).
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Figure 6.1.3 - Measured & calculated open water
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6.2 Attached Flow Tip Solution

The validity of the global-local problem separation was established
by extensive numerical experimentation. Some typical results are
p;ésented here.

Fig; 6.2.1 shows the predicted bound circulation distribution for
propeller 4498 operating at design J. The solid line is the bound
circulation computed using an 8 x 8 grid in the global solution. The
blade tip was "cut off" at r/R = ,788 and several aifferent lattice
arrangemenfs were used on the tip to solve the attached flow tip
problem, yielding the results shown in Fig. 6.2.1. The circulation
near the tip is artificially high in the global solution because of
the large tip chord used in the global vortex lattice (compare Figs.,
3.9.1 and 3.9.2, pg. 50). There is less discrepancy in the predicted
forces and moments on the tip of the blade, as shown in Table 6.2.1.
This may be due to the method of calculating blade forces, discussed
in Section 3.7. It is assumed there that the average velocity over
the length of a line singularity in the lattice is given by the
velocity at its midpoint. Since the velocity gradients are large in
the tip region, this assumption is only valid if short line sinqularities
are used in the lattice, as in the tip solution. This appears to be
responsible for the fact that the discrepancies between global and

local solutions are not the same for circulation and forces.
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Figure 6.2.2 shows the predicted chordwise distribution of bound
vorticity (proportional to the pressure jump across the blade) at
r/R = .835 for the global and local solutions., Agreement is quite
good.

These results indicate that the present technique of splitting up
the problem is a viable method for obtaining a high resolution tip
solution without the computational expense associated with a high
resolution solution over the whole blade.

6.3 Prediction of Leading Edge Separation Point

Very little data is available for comparing predicted leading
edge separation points with experimentally determined values. There
is no full scale data available. Obtaining model scale data is
limited by two factors:

a) Very few model propellers are available having accurately
finished (and undamaged!) leading edges. The leading edge
radius near the tip of a model propeller is only several
thousandths of an inch.

b) The only technique currently available for leading edge
flow visualization is to induce cavitation in the leading
edge vortex. Unfortunately, there is only a limited range
of operating conditions where other forms of cavitation
{especially leading edge sheet cavitation) do not obscure
leading edge vortex cavitation. This problem is especially
severe at operation near design J, where the vorticity shed

from the leading edge is weak.
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The available data was taken in the MIT Variable Pressure Water
Tunnel with two propellers: #4498, and #4119, which is a three-bladed
unskewed constant pitch propeller designed for J = .833. (The global
solution vortex lattice for 4119 is shown in Fig. 3.2.1; pg; 32),
Fig. 6.3.1 shows the observed and calculated results. The vertical
bar indicates the variability between different blades on the same
propeller and the uncertainty involved in establishing the separation
point from the cavitation patterns. Agreement is deemed to be
satisfactory, but much more data is needed to validate the model;

The current viscous leading edge flow analysis qualitatively
explains the observed phenomenon that skew delays the inception of
leading edge sheet cavitation [Boswell (1971)]. Consider two pro-
pellers having the same chordlengths, section thicknesses, and load
distribution; but let one be highly skewed and the other unskewed.
The leading edge radius of the normal section (rn) varies inversely
with 1eading edge sweep angle A (Eq. E.2):

r « 1
n cosi

(6.3.1)

and the component of the inflow velocity normal to the leading edge

(Un) varies as the cosine of the sweep angle A squared:
2
Un « cos A (6.3.2)

Hence the leading edge suction force coefficient C , defined by
s

= s '
Cs = 5 (4.3.1)
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varies like
CS « 1/cos A {6.3,3)

for the two otherwise identical propellers. Similarly, the leading

edge Reynolds number (Eg. 4.3.2) varies as

Rle « 1/cos A (6.3.4)

Referring to Figure 4.4.3 (pg. 83), it can be seen that the propeller
with the higher leading edge sweep A (the highly skewed propeller)
will operate with its sections closer to the limiting suction force

line in Fig., 4.4.3. So for agiven J (J < J

design), the highly skewed

propeller will have leading edge separation extending further inboard
than on the unskewed propeller., Since the presence of lead;ng edge
separation knocks down the minimum pressure peak at the leading edge
which is responsible for leading edge sheet cavitation, we may infer
that the highly skewed propeller will be less susceptible to leading
edge sheet cavitation than its unskewed partner, for a given loading
and cavitation number. This phenomenon has been observed by Boswell
(1971) and others.

Figure 4.4.3 also indicates that there may be significant Reynolds
number ("scale") effects on leading edge cavitation inception. Argu-
~ments similar to those given above show that leading edge separation
will occur to a greater extent on a model propeller than on its full
scale geosim; as shown in Figures 6.3.2 and 6.3.3, when both are

operating at the same advance coefficient. Leading edge sheet cavita-
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SEPARATION BUBBLE BREAKDOWN -
FAILURE OF FLOW TO REATTACH

LONG SEPARATION BUBBLE -

KNOCKS DOWN LEADING EDGE
SLCTION PEAK

SHORT LAMINAR

SERPARATION BUBBLE -
SMALL EFFECT ON
LEADING EDGE
SUCTION PEAK

LEADING EDGE
VORTEX

TURBLLENT BOULUNDARY
LAYER ON BLADE

TRANSITION LINE

LAMINAR BOUNDARY LAYER

I< J.DEQ\GN

(BLADE LOADING HIGHER THAN DESIGNED)

Figure 6.3.2 - Schematic of suction side flow on
model propeller blade
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FLOW TURBULENT NEAR LEADING EDGE -
DUE TO LOCAL INSTABILITIES AND
TRANSITION OR DUE ToO SPANWISE
TURBULENT CONTAMINATION

TURBULENT OSEPARATION

LEADING EDGE
VORTEX -

REDUCES LEADING

EDGE. SLLTI\ON PEAK

TURBULENT BOUNDARY
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TRANSITION LINE

SHORT LAMINAR
SEPARATION BUBSBLE

LAMINAR BOULNDARY LAYER

Cr‘< :rsesuaa

(BLADE LOADING HIGHER THAN DESIGNED)

Figure 6.3.3 - Schematic of suction side
flow on full-scale propeller
blade
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tion will be inhibited on the model propeller because of the greater
extent of the leading edge where the minimum pressure peak has been
reduced due to flow separation. This means that model tests should
give optimistic predictions of full scale cavitation behaviof, and
indeed this often occurs.

6.4 Tip Solution Including Leading Edge Separation

A calculation was done using the theory outlined in Section 5.4
in order to predict the flow around the tip of the blade of propeller
4498, when operating at J = .800 (Design J = .899). At model scale,
leading edge separation was predicted to occur outboard of r/R = .85.
Fig. 6.4.1 shows the predicted bound circulation distributions, and
it is seen that the presence of leading edge separation unloads the
extreme tip of the blade and increases the loading inboard of the
leading edge vortex sheet. Fig. 6.4.2 illustrates the predicted
strength of the vortex sheet shed off of the leading edge.

Figures 6.4.3 through 6.4.10 show the coméuted chordwise load
distributions at the radii at which calculations were performed. As
expected, the major effect of the separated flow is to reduce the
loading near the leading edge in the region where leading edge flow
separation is expected to occur. The severe dip in the loading near
the trailing edge at r/R = .993 (Fig. 6.4.10) is probably an anomoly
due to the inadequate representation of the leading edge vortex sheet

as it passes over the trailing edge of the tip.
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PROP #4438 , J=.800
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Figure 6.4.1 - Comparison of predicted bound
circulation distributions for
attached and separated flow
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Figure 6.4.2 - Predicted strength of
leading edge vortex sheet
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Figure 6.4.3 - Predicted chordwise loading
at r/R = .637
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Figure 6.4.4 - Predicted chordwise loading
at r/R = ,709
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Figure 6.4.6 - Predicted chordwise loading

at r/R = ,841
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Figure 6.4.7 - Predicted chordwise loading
at r/R = ,896
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Figure 6.4.8 - Predicted chordwise loading

at r/R = ,940
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Figure 6.4.9 - Predicted chordwise loading
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Figure 6.4.10 - Predicted chordwise loading

at r/R = ,993
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The computed values of thrust and torque on the blade tip are
given in Table 6.4.1. The computed thrust is about the same for the
three solutions. This is encouraging, since the global analysis does
a good job predicting the propeller thrust over a wide range of J
values (Fig. 6.1.4). The change in computed torques may reflect the
difficulty in computing induced drag with a swept vortex lattice; which

was mentioned previously.

Table 6.4.1

Computed Thrust and Torque on Tip of 4498
Blade Outboard of r/R = .600, at J=,800

KF KM
X X
SOLUTION (thrust) (torque)
Tip pPortion of
Global Solution . 04019 .007444
Attacheq Flow Tip - 03996 007249
Solution
Tip Solution with . 04098 007100

Leading Edge Separation
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Unfortunately, there are no experimental data to compare with
these computations. At this advance ratio cavitation does not suffice
for flow visualization, while at lower J values (heavier propeller
loading) the first order representation of the leading edge vortex
sheet is inadequate. This may be seen in Fig. 4;1.11 (pg. 66), which
shows this propeller (4498) at J = .534, It is obvious that a model
of the leading edge vortex sheet which allows for roll-up is required

to model the flow at this advance ratio.
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" VII. Conclusions and Recommendations

7.1“¢onclusions

A numerical lifting surface theory is developed for the prediction
of the steady non-cavitating flow around marine propeller blade tips.

The global propeller analysis is sufficiently accurate and efficient
to be used routinely in propeller design and analysis work. The pro-
cedure used to calculate the correct pitch of the trailing vortex wake
eliminates the need to estimate this critical parameter for a given
propeller and operating condition. Unlike most other "vortex chasing”
procedures, the wake alignment algorithm developed here is sufficiently
inexpensive to run so that it can be used routinely. Aall e#perience
to date indicates that it is a very "robust" algorithm;

The decomposition of the tip flow analysis problem into global
and local problems allows for the calculation of a high resolution
tip solution without an undue penalty in computing time; Numerical
results indicate that this procedure is valid if the inclusion of
leading edge separation in the tip solution does not greatly alter
the load distribution near the separation between global and local
domains.

A viscous leading edge flow analysis is developed to predict the
point at which leading edge flow separation occurs and to estiﬁate
the amount of vorticity shed into the flow at the leading edge; The
analysis is semi-empirical, and is based on swept win§ and airfoil

section data. It appears to work well for the few cases tested. It
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is the only theory known to the author which explains the effect of
skew in delaying sheet cavitation inception. The analysis alsoc indi-
cates a large Reynolds number ("scale") effect on sheet cavitation
inception which is consistent with experience.

For propeller operation not too far from design J, a first order
model for the leading edge vortex sheet is developed. Calculations
made using this first order model indicate a loss of loading near
the leading edge of the blade, a loss of bound circulation at the
extreme tip of the blade, and an increase of bound circulation inboard
of the leading edge vortex sheet. These features are consistent with
those found on swept wings having leading edge separation;

For operation at extreme propeller loadings a discrete vortex
representation of the leading edge vortex sheet (such as that shown
in Pig. 5.2.2, pg. 93) may be adequate to predict ‘the flow quantities
of interest., For operation near design J, it is possible that Eé
potential flow ﬁodel will correctly represent the leading edge vortex
sheet and its interaction with the blade, since the no-slip condition
at the blade surface may be significant in determining the interaction
of the vortex sheet with the nearby blade. Recent work by Shamroth
and Briley (1979) shows great promise in pursuing the goal of analyzing
the Qiscoué flowfield around the blade tip using a reasonable amount of

computer time.,
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7.2 ‘Recommendations

1)

2)

3)

4)

5)

6)

Regression equations based on experimental data should be
developed so that the free parameters in the current wake
model (rw, Gc) can easily be estimated for a given propefier
at a given operating condition. The relevant parameters
to regress upon are probably P/D, J, total midchord skew,
and number of blades.

Refinements to the current wake alignment algorithm can
probably be developed from a more extensive correlation
of numerical results with experimental data obtained with
the Laser Doppler Velocimeter in the MIT Watexr Tunnel;
Possible problems calculating induced drag using swept
vortex lattices need to be investigated.

Much more data needs to be gathered and plotted on Fig;
4.2.2 (pg. 71) to improve confidence in the viscous
leading edge-analysis developed in this thesis. In
particular, swept wing data on the amount of leading

edge suction remaining after flow separation is needed.
More data on leading edge separation on propellers is
needed at both model and full scale Reynolds numbers;
This will probably require new methods of flow visualiza-
tion.

An attempt should be made to develop a quantitativé correla-

tion between leading edge suction computed using the current
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8)
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theory and observed cavitation inception behavior on model
propellers, |

Comparisons should be made between measured blade pressure
distributions and those calculated using the current theory.
The model of the leading edge vortex sheet needs considerable
improvement., Short of a complete viscous analysis of the

tip region, a semi-empirical approach to setting the free

sheet geometry is probably the best way to proceed.
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Appendix A: Leading Edge Suction Force and its Calculation

A.1l Leading Edge Suction Force in Thin Wing Theory

Thin wing theory is used in the present work to determine the
loading on the blades. This theory assumes that the effects of loading
and thickness are locally separable (loading is not really independent
of thickness in the propeller case because of the non-planar geometry),
and that the loading and thickness problems may be solved by placing
singularities on the camberline instead of the airfoil surface. These
assumptions work quite well everywhere over the foil except for the
leading edge, where singularities occur.

Consider the two-dimensional lifting flow over a flat plate as
shown in Fig. A.l,l1., The vortex distribution Y(x) must be such that

there is no normal velocity on the plate,

| & N
PERTURBATION
u VELOCITIES

VORTEX
ODISTRIBUTION ¥ &)

PN Y. YN .
o\\\\\\\\\

c
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Figure A.l.l1 - Two-dimensional flat plate at
angle of attack

Y

and yv(x) must go to zero at the trailing edge (Kutta condition). The
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boundary condition can be written as

c

T 1
wix) = L Z£5—1~§§- = U sino, o< x < c (a,1.1)
2m x=-x " ® -
~0

where w(x) is the normal perturbation velocity. The solution for the

vortex distribution is

Y(x) = 2 U sina ¥ =X | (A.1.2)

The pressure jump gcross the foil will yield a force in the z-direction
only. Since lift and drag are defined relative to the undisturbed

free stream, the integration of normal pressures gives

C = 21 sin o cos «

LN

CD = 27 sin2 o (A.1.3)
N

But in two-dimensional ideal flow, the drag should be zero. The
discrepancy lies in the disregard of the leading edge suction force,

From Eq. (A.l.2), the vortex distribution is singular at the

leading edge like (x)-l/z. ‘Define a leading edge singularity parameter
C as
S L/2
C = lim { ¥ (x) [%J } = 2U_sina (A.1.4)
X0
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Then the suction force (in the -x direction) is given by

2

C
FS = TpcC Z (.1.5)

Making this non-dimensional in the same way as the 1lift and drag
coefficients and resolving the leading edge force in the lift and

drag directions, we obtain

3
= 2 i
CLS T sin o

CD = =27 sin2 o (A.1.6)
S

Adding the normal pressure and suction force contributions together

and retaining only second-order terms, one obtains

‘L

2T sin o cos @

c.=0 (A.1.7)

as expected.

In thin airfoil theory this finite leading edge suction force is
the result of an infinitely low pressure at the leading edge (due to
the infinitely high velocity) acting over a zero thickness leading
edge. In reality this same force arises on thin foils from very low
pressures acting on small leading edge radii. For very thick foils
the suction force is actually distributed over a considerable extent
of the nose region, so that the term "leading edge suction" is somewhat
misleading. However, for the thin sections near the tip of propeller

blades, leading edge suction force is a very useful concept.
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A.2 Calculation of Leading Edge Suction for Two-Dimensional Foils

In order to determine the leading edge suction force on a 2D

foil, it is necessary to compute the parameter C:

1/2

C = lim { Y (x) [ﬂ } (a.1.3)
)

X0

While this could be estimated from any numerical solution for the
vortex distribution vy(x), Lan (1974) discovered an alternative method
which turns out to be very useful in other parts of the current work.

The develoﬁment given below is due to Lan (1974). The derivation
is given in terms of the vortex density v (x); the conversion to
discrete vortices Fi will be given subsequently. For convenience
we take U_ =1 and c = 1.

The x-coordinate along the chord is transformed to the 6 céordinate
by

x = (1l -cosb)/2 , (0<6 < _ (A.2.1)

Eq. (A.l1.1) for the downwash can then be written

™
_ -1 Y(6') sin 6' 46"
wi®) = f- cos 6 - cos 6' (2.2.2)
o
Define
g(6) = y(6) sin 8 (A.2.3)
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and re-write Eqg. (A.2.2) as

T
_ -1 g(8') - gli8) .
w(f) = 5 J os 6~ cos 8" dase
o
™
_g9(8) de’
2T cosH - cos 6
o
T
-1 g(e") - g(e) ,
Co2m J cos® - cos 9! ae (r.2.4)
o

g(8) does not have any square-root singularities because of the sin 6
factor, and the integrand in Eq. (A.2.4) is finite everywhere. The
integral can be approximated as a finite sum by using the midpoint

trapezoidal rule:

T
g(6') - g(b) ,
J cos B - cos 0! d8
o}
N
= Ap! z g((2k-1)A01/2) - g(8)
k=1 GOS0 - cos ((2k-1) AB1/2N)
N
=T z g ((2k=1)/2N)
N k=1 cos B - cos((2k-1)w/2N)

g(9)
" cos 6 - cos((2k-1)w/2N):] {A.2,5)

if we assume 6 # 6°'.

It is desired to eliminate the last term in the above equation.,
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This can be done by choosing control points (6 values) such that
N
) 1/(cos 8 - cos((2k-1)m/2N)) = O (a.2.6)
k=1
The theory of Chebychev polynomials is useful for determining the
correct 6 values.

Let Al, Xz, o o e o AN be the zeros of TN(AIJ which is the

Chebychev polynomial of the first kind. Then for some constant A&,

Ty A) = A(A-Al)(X-kz) « e o (A-AN) (A.2.7)

and using logarithmic differentiation

N

l 1
) == =T, (\)/T () (2.2.8)
W O-R) T N

" Let A = cosf, then TN(cose) = cos N6. The zeros of TN are then Nek =
(2k-1)m/2, or

A, = cosB, = cos((2k-1)m/2N), k=1,2, .. ., N (4,2.9)

which are the values of 6 at which g(8) is specified (see Eq. A.2,5).

In order to satisfy Eq. (A.2.6), we require

46 - sin NO -

! d
TN () = 1) (cos N6) TN =in®d 0 (a.2.10)

which occurs when the control points ei satisfy

Ai = cOoSs Gi = cos(im/N), i=12,..., N1 (A.2.11)

2
For i=N, 6i=ﬂ, and Eq. (A.2.10) shows that TN (Ai) -+ =N cos Nm and

]
TN (Xi)/TN(Ai) > -N2. But this occurs when 6=7 or x=1, and g(68) is
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zero there, so that the control points can be extended to the trailing

edge without invalidating Eg. (A.2.6). For i=0 (the leading edge),
' '
it can be shown from Eq. (A.2.10) that TN /TN > N2. This allows the

-~
computation of the leading edge suction parameter C, as shown below.

The unknown function y(8) may contain a square-root singularity
at 6=0. Aassume for now that y(x) is actually representing flat plate

loading. Then

v(x) = c(1-x)17? X172 (A.2.12)
Note that
sin 8 = 2 xl/2 (l—x)l/2 (a.2.13)

Then

lim g(8) = lim y(8) sin ©

6-0 6--0
= 1im c(1-x)/2 x71/2 2172 (1-x)t/?
o,

2C (a.2.14)

So if g(0) can be coﬁputed at 6=0, the leading edge suction parameter
can be determined directly.

The positions where the vortex density y(x) is determined are
given by

X, = [1 - cos((2k-1)T/2N}/2, k=1, 2, . . N (A.2.15a)

and the control point positions (where the normal velocity is specified)
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are given by

X, = [1 - cos(in/N)1/2, i=0,1,2, ..., N (A.2.15b)

Eg. (A.2.4) can now be written as

1/2 . 1/2 -
1 N Yk xk (1 xk) NC, i=0

N = x + (ar.2.16)
k=1 i k o, 1i#0

wix,) =
i

To determine the y, for a given foil, (giver downwash distribution),

Eq. (A.2.16) is written as a matrix equation

N
wi = z aik Yk r i = l, 2( * e -,N (A.2.17a)
k=1
where
1 Xkl/z(l-xk)l/2
4k - 2N . - X ' (A.2.17b)
i k
Once the Yk's are known, the leading edge suction parameter C can be

computed using

1/2
wo l-xk

1 I§ f
c=— — (3.2.18)
N 2N2 k=1 K Uxy

where LA is the component of the inflow velocity normal to the camber-

line at the leading edge.
The 1ift coefficient is given by

1 m
c. =2 J v(x) dx

0

vy(6) sinf d4é6

)
[}
o~——"-

Z|3

) Yy, sin 6 (R.2,19)
WLy 'k k
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It may be demonstrated numerically that the formulation presented here
gives the exact vorticity distribution, leading edge suction parameter,
and lift coefficient for both flat plate and parabolic arc camberlines,
for any value of N.

The above formulation is presented in terms of the vortex sheet
density Yy at certain locations Xyr whereas the lifting surface theory
for the propeller is developed in terms of discrete vortex strengths

T If the above theory for two-dimensional airfoils is developed using

k.
discrete vortices at the locations xk, one obtains
_ T 1/2 1/2
Pk =Y % *x (1 xk) (A.2.20)
relating discrete vortex strengths and vortex sheet density at xk.
One also obtains
N
w, =] bir T i=1,2, ..., N (A.2.21)
k=1
where:
1 1
Pix 3w " xx (A.2.22)
i’k

which is the usual formulation of the vortex lattice method for two-
dimensional foils. In this case the vortices and control points are
arranged along the chord using cosine spacing identical to that used
in the propeller case (Section 3.2), rather than the more commonly used

!

uniform spacing. The leading edge suction parameter C may be calculated

from
N T
C=311'E’o+21_n ) -1‘-] (3.2.23)
k=1 ¥k
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A.,3 Calculation of Leading Edge Suction for Three Dimensional
‘Lifting Surfaces

Lan (1974) showed that the above method for calculating the leading
edge suction parameter C is readily extended to three dimensional
lifting surfaces. The geometry of a typical swept wing is shown in
Fig. A.3.1. The value of C for a particular section of the wing

is defined by

o %

1/2
crum v (277)
XX

l.e.
where now y(x) is the density of the spanwise vorticity on the wing
made non-dimensional by U_ and ¢ is the local wing chord. Representing
-the wing loading with a vortex lattice utilizing N cosine-spaced

vortices in the chordwise direction, Lan shows that C may be computed °

from

C

1 l:total computed upwash (free stream and :[ (A.3.2)

T N | induced) at the leading edge control point

and the leading edge thrust coefficient ¢, may be computed from

t

Thrust/unit span

1 2
-i-chw

T C2

Toos by (A.3.3)

where Al is the leading edge sweep angle relative to the plane normal

to U_. This approach is used to calculate the leading edge suction in
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» Y
STARBOARD
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SUCTION ForCE =F,
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L < T —— -
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LOCAL. CHORD

Y
K

DOWNSTREAM

Figure A.3.1 - Plan view of swept wing
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the attached flow tip solution (Section 3.9), making use of the relation

-~

Thrust per unit span = Suction Force per unit length of leading edge.
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Appendix B: Calculation of Trailing Vortex Wake Pitch

B.l Calculation of Ultimate Wake Pitch

The ultimate wake is assumed to consist of K equally spaced helical
tip vortices of strength Pt and radius r. éﬁrrounding a single rolled-
up hub vortex of strength AKth. If we examine a point in the ultimate
wake sufficiently far from the propeller,; it may be safely assumed that
the ultimate wake extends to infinity both fore and aft, thus simplifying
the geometry of the problem., In a coordinate system rotating with the
propeller, the velocity seen at a point on one of the tip vortices con-
sists of the propeller rotatiénél velocity, the speed of advance, the
induced velocities due to the helical wvortices, and the induced velocity
due to the hub vortex. Since the tip vortices are force-free, the total
velocity must be tangent to the tip vortex helix at each point., Using
this fact the pitch angle of the ultimate tip vortices may be calculated,

Loukakis (1971) considered this problem in detail and noted that
the local self-induced velocity of a helical vortex line is infinite.

To remove this singularity it is necessary to recognize the existance

of a finite core in the tip vortex, over which the vorticity is dis-
tributed. Loukakis performed extensive numerical calculétions of the
self induced velocities of a set of K symmetrically located, infinitely
extended, helical vortex cores, with the ratio (core radius/helix radius)
as a parameter. His results, which are utilized in the present work,
are listed in Table_]?;.,l.,l° This table gives the axial and tangential

self-induced velocities as a function of K and tan Bw. The ratio
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(core radius/helix radius) was selected to be 0.02, as described below.
All of the induced velocities shown are computed for rw = 1 and Ft =1,
The actual values of the velocities can be calculated by multiplying
the values in the table by Ft/rw.

The velocity diagram at one of the tip vortices is shown in

Fig. B.l.1l.

wn, Vs

Figure B.l.1 - Velocity diagram at ultimate
tip vortex

where: wr = tangential velocity due to propeller rotation

VA = axial inflow velocity at r,
VT = tangential inflow velocity at r,
-KT
utH =:éE;L is the tangential velocity induced by the hub vortex
w
Ft . _ _
u = UA is the axial velocity induced by the helical tip
w vortices
T
u, = ;E * UT is the tangential velocity induced by the helical
w tip vortices

and UA, UT are taken from Table B.l.1l.
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The pitch angle Bw of the ultimate wake can then be found by

solving the following equation:

T
t
+ —_—
VA rw UA (tan BW,K)
tan B = T KT (B.1.1)
w t
+ — X - __t;-

wr + Vo = UT (tanB W’ K) Smr

w w

This yields the ultimate wake pitch tan Bw and the induced
velocities at the ultimate tip vortex, uaz(rw) and ut2(rw)' where
uaz(rw) =u, from above, and utz(rw) = ut + utH'

It is usually assumed that the trailing vortex wake from a wing
completely rolls up into two trailing.tip vortices, implying that the
circulation of each ultimate tip vortex is egual to the maximum bound
circulation around the wing. Detailed measurements behind lifting
wings by Sampson (1977) show that this is not the case: the circulation
of the tip vortices is only 60-80% of the maximum bound circulation.
Similarly, laser velocimeter measurements behind an operating propeller
show a weak vortex shéet at intermediate radii quite far downstream,

It was found from extensive numerical experimentation that a (core
radius/helix radius) ratio of 0.02 and an ultimate tip vortex strength

of 80% of the maximum circulation on the blade yielded predicted ultimate
wake pitches in remarkable agreement with experimentally measured values.

The values of the axial and tangential induced velocities in the

ultimate wake at the ultimate-hub vortex radius r g are determined from
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the following relations:

.75 K Pt

(er) =¥ tan B
w w

ua2

-.75 K Pt

ut2 (er)= — (B.1.2)
wH

The factor 0.75 was included after comparing computed wake velocities

and the experimental measurements by Min (1978).

B.2 Calculation of Transition Wake Pitch

The calculation of the pitch of the transition wake is complicated
by the fact that the pitch is allowed to vary in both the radial and
downstream directions. The extensive laser velocimeter measurements
of propeller vortex wakes by Min (1978) and ealier visual measurements
by Kerwin (1976) indicate that the wake pitch varies smoothly with both
radius and axial location. Accordingly, it was considered reasonable
to calculate the pitch at a limited number of points in the transition
wake and interpolate to obtain the pitch at other locations.

The velocity diagram of any point in the transition wake of the
key blade is shown in Fig. B.2.l1l, in a coordinate system rotating with

the propeller.



where: r
x!
wr

VA(r)
VT(r)
u (x',x),
“ut(x',r)

B(x',r)
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Uy (%',

VA( r)

B (x',r
. Y

wvr Vi ()

Figure B.2.1 ~ Velocity diagram in transition
wake

radius
= axial position downstream of the blade trailing edge
= propeller rotational velocity at radius r

= axial inflow velocity

= tangential inflow velocity

= axial and tangential induced velocities due to the propeller
and wake singularity system

= local pitch angle of the transition wake
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In determining the transition wake geometry the axial and tangential
induced velocities are calculated at certain points and interpolated at
other locations, rather than the pitch angle B(x',r) itself.

The transition wake geometry is correct (force-free) when the
induced velocities ua(x',r) and ut(x',r) calculated using an éssumed
pitch distribution E(x',r) vield a calculated pitch distribution_

[- V. (r) +u (x',r)
A a
L?r + VT(r) + ut(x',r)

-1

B(x',r) = tan (B,2.1)

such that B(x',r) = B(x',r) everywhere. This requires an iterative
procedure, which usually converges quite rapidly.

Fig. B.2.2 shows the assumed downstream variation of induced
velocities in the transition wake region. Although the axial extent
of the transition wake region is set by X where X is typically

one propeller radius, the induced velocities are allowed to change

in the downstream direction until x' = x , where x_,

final final 1S usually

'set to 1.5 R based on experimental observations. Expressed algebraically,

2 .3
u_.(r) + (u_,(r) = u_,(r)) - (36-357+7), &<1
) a2 al (B.2.2)

uaz(r) ’ £ >1

where: u_. (r)

the axial induced velocity at the blade trailing

al edge
uaz(r) = the axial induced velocity in the ultimate wake
g =x'/

Xfinal
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The same expressions are used for the downstream change in tangential
induced velocities. The form of Eq. (B.2.1) was chosen after examining
Min's (1978) laser measurements of propeller vortex wakes.

Fig. B.2.3 illustrates the variation of axial induced velocities
at the key blade transition wake as a function of x' and r. A similar
graph could be drawn for the tangential induced velocities in the -
transition wake region.

Most of the discrete trailers in the transition wake model are
actually representing part of a vortex sheet, and it is reasonable to
disregard the local self-induced velocity of the curved vortex line.
At the tip of the blade, however, the vortex sheet rolls up considerably
even before‘the trailing edge of the blade is reached, so that the
outermost discrete trai1é¥ leaving the blade is actually representing
a vortex core, In this case it is correct to assume a viscous core
size and calculate the local self-induced velocity of the trailer
léaving the tip. If a viscous core radius of 0.1% of the propeller
radius is assumed, the calculated pitch of the tip vortex just behind
the blade tip is in good agreement with Min's (1978) measurements for
several propellers ove¥ a range éf advance coefficients.

The procedure used to align the wake for a given vorticity dis-
tribution on the propeller and in the wake is as follows:

a) Calculate the pitch of the ultimate tip vortices. This also

yields the quantities ua2(rw)' u (r. .).

(r ), ut2(rw)' and LAY C

a2 “wH
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b) Using a previously assumed transition wake geometry, calculate
induced velocities at the key blade transition wake at points

just behind the blade and at x' = 0.7 X

¢} Using these calculated induced velocities in the transition

wake and the induced velocities at the start of the ultimate
wake from step a), interpolate to find the induced velocities
everywhere in the transition wake and calculate a new transition
wake geometry.

d) Repeat steps b) and c) until the transition wake geometry

stops changing.

Since the calculated vorticity distribution depends on the wake
geometry, the boundary value problem must be solved several times, with
the wake re-aligned at each step. Fortunately, this process converges
quite rapidly.

It is found that the computed induced velocities in the transition
wake near the hub and tip of the blade are sensitive to the number of
trailers used to represent the transition wake. Any numerical scheme
exhibiting this kind of behavior is usually dismissed as being unreliable.
However, if the present scheme is used with eight spanwise panels on
the key blade (nine trailing vortices), the computed results are reasonable
and in good agreement with the experiments of Min (1978) for a variety &f
different propellers and advance coefficients, Therefore, the current
wake alignment scheme is only used with eight spanwise panels on the blade.

Once the induced velocities in the wake are calculated from this analysis
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they-may-be used to specify the wake geometry for use with any desired

number of spanwise panels on the key blade.
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Appendix C: Two Dimensional Laminar Separation Bubbles

C.1 Introduction

The characteristics of airfoil sections in real fluids depend on
the type of flow separation present, which governs the stalling
characteristics of sections. Three types of stall behavior are observed
for two-dimensional airfoil sections in low Mach number flow, which
correspond to different types of behaQior possible for the boundary
layer on the suction side of the foil:

a) Trailing-edge stall, with the separation point of the
turbulent boundary layer moving forward from the trailing
edge as the incidence increases. This type of stall usually
occurs on rather thick sections (to/c > 0.12) or those having
a large amount of camber. This type of stall is graaual,
as shown in Fig. C.l.la.

b) Leading-edge stall, caused by a sudden failure of the flow
to reattach to the airfoil following laminar boundary layer
separation near the nose. This behavior is typical of
moderately thick airfoils (0.09 < to/c < 0.15) and is a
very abrupt stall (Fig, C.1l.1b).

¢) Thin airfoil stall, with laminar separation near the leading
edge and turbulent reattachment at a point which moves rear-
ward as the incidence is increased. This type of stall is
found on thin airfoils (t_/c < 0.09) and is a gentle stall,

as shown in Fig. C.l.lc.
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a) Trailing edge stall
(thick or highly

Q cambered sections)
J
@)
o —>
1
\]
| R

b) Leading edge stall
(moderately thick

fj sections)
O
oL —>»
¢) Thin airfoil stall
fJ (thin sections)
9]
o —>~

(From Chappell, 1967)

Figure C.l.1 - CL vs. a curves for three types of stall
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Further discussion will be restricted to the types of flow found in
b) and c¢) above, as both of these involve the presence of laminar
separation bubbles near the leading edge of the airfoil. The behavior
of the leading edge separation bubble greatly influences the nature of

the flow along swept leading edges, as shown in Chapter IV,

C.2 The Nature of Separation Bubbles

Laminar separation bubbles occur on two-dimensional airfoil
sections operating above their ideal angle of attack because the
laminar boundary layer on the suction side is unable to negotiate
the adverse pressure gradient following the suction peak near the
nose. The boundary layer separates and forms a thin free shear
layer above the airfoil surface. This shear layer is highly unstable
to disturbances and usually undergoes transition to turbulence,
which may enable the flow to reattach to the foil as a turbulent
boundary layer downstream of the separation point. The shear layer
then encloses a mostly stagnant region of fluid known as a separation
bubble, in which the pressure is sensib1§ constant,

Some understanding of separation bubbles can be gained by examining
the distribution of vorticity around an airfoil section. 1In inviscid
flow the foil section can be represented as a distribution of vorticity
on the surface of the foil. The strength and distribution of the
surface vorticity is determined by requiring the airfoil surface to

be a streamline, and imposing a Kutta condition at the trailing edge.
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In the real flow past an airfoil the vorticity is nonzero every-
where, although at high Reynolds numbers the vorticity is concentrated
near the foil surface (boundary layer approximation). If the boundary
layer is thin compared to the dimensions of the foil, we may consider
the vorticity to be concentrated into a thin vortex sheet at the foil
surface. The vorticity distribution must be such that the foil surface
is a streamline and the local vorticity represents the drop in velocity
from outside the boundary layer to zero at the wall. In viscous flow
the airfoil surface is a distributed source of vorticity which sheds
vorticity into the wake behind the foil. The net vorticity behind
the foil must be zero, since a non-zero value of circulation is
obtained only for a path enclosing the foil. Thus the vorticity
shed from the upper surface is equal to, but of opposite sign, from that
that shed from the lower surface, as pointed out by Taylor (1935).

Separation bubbles may be thought of as regions of mostly
stagnant fluid adjacent to the airfoil surface, separated from the
main potential flow by a thin vortex sheet. Fig. C.2.1 shows the
flow near the leading edge of a foil with a "short" bubble present.
The height of this bubble is very small (< 0.0001 x chord), so that
the vortex distribution on bubble surface is not very different from
the distribution on the airfoil surface in the absence of the bubble,
and the bubble has only a small influence on the surface pressures.
Fig. C.2.2 illustrates the kind of flow with a "long" bubble present,

which occurs when the flow fails to reattach just behind the laminar
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Figure C.2.1 - Flow with short bubble near
leading edge
(Height of bubble exaggerated)

Figure C.2.2 - Flow with long bubble
(Height of bubble exaggerated)

Figure C.2.3 - Completely stalled flow
with dead-air region

(FROM KUCHEMANN, 1953)
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separation point and instead attaches much further downstream. This
type of bubble involves a considerable re-arrangement of the vorticity
on the foil, with an associated large change in the pressure distribu-
tion on the foil. Typically, the pressure inside the bubble is fairly
constant except near the trailing edge of the bubble. Fig. C.2.3 shows
the situation which occurs when the flow fails to reattach to the foil
at all after laminar separation. A large dead-air region exists over
the upper surface of the airfoil, with the pressure inside only
slightly below the free stream value.

The pressure distribution on the surface of an airfoil with a
short bubble is shown in Fig. C.2.4a. The laminar boundary layer
separates at point S in the adverse pressure gradient following the
suction peak. The separated shear layer encloses a region of quiescent
fluid until point T is reached, where the shear layer undergoes transi-
tion to turbulence. Aft of this point, turbulent mixing between the
free stream and the shear layer enables the pressure rise to point R
to be negotiated, whereupon the flow reattaches to the foil surface
as a turbulent boundary layer., As shown in Fig. C.2.4b a short bubble
typically affects the pressure on the foil surface only in the immediate
vicinity of the bubble. For this reason the presence of short bubbles
usually does not influence the lift, drag, or pitching moment.

A long bubble may extend over a large fraction of the airfoil
chord and drastically alter the pressure distribution. Typically the

suction peak (and thus the leading edge suction force) is greatly
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reduced, so that the drag is increased. However, the low pressure in
the bubble is extended over a large part of the chord, so that the lift
does not necessarily suffer (Fig. C.2.5). This is responsible for

-~

the gentle stall of thin airfoils, where a long bubble grows in length

as the incidence is increased (Fig. C.l.lc).

C.3 Separation Bubble Behavior and Stall

Most two dimensional airfoil sections will have a short laminar
separation bubble present near the nose when operating slightly above
ideal angle of attack. The length of this bubble decreases as the
Reynolds number is increases at a fixed incidence, since the free shear
layer undergoes transition sooner,

As the incidence is increased at a fixed Reynolds number both the
Separation point S and the reattachment point R (Fig. C.2.4) move
forward, and the bubble contracts in length. At some point the short
bubble "bursts", due either to the bubble being unable to negotiate
the required pressure rise in so short a distance, or because the
"reattached" turbulent boundgry iayer undergoes turbulent separation
immediately. downstream of R,

At this point there are two possibilities. If the shear layer fails
to reattach to the foil at any point the flow breaks down completely
and leading edge stall is said to have occurred, with a loss of 1lift
and a large increase in drag (Figs. C.l.lb, C.2.3). If the shear layer

reattaches much further downstream a long bubble forms (Fig. C.2.2)
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(From Kﬁchemann, 1953)
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and alters the pressure distribution over the airfoil upper surface.
This jump between short and long bubbles is the start of thin-airfoil
stall, and is responsible for the kink in the CL vs. a curve for thin
airfoils (Fig. C.l.lc). BAs incidence is increased further the reattach-
ment point of the long bubble moves aft and the slope of the CL Vs, O

curve falls off slowly.

C.4 Environmental Effects on Two-Dimensional Separation Bubbles

The critical issue in two dimensional laminar separation bubbles
is how quickly the free shear layer undergoes transition to turbulence.
Thus Reynolds number, free stream turbulence, and surface roughness.
all influence separation bubble behavior. It is beyond the current
state of the art to account for these facﬁors in a rational fashion,
so recourse is made to experimental data. The most important quantity
to determine is the operating condition at which the bursting of a short
bubble takes place., Gaster 11966) reasoned that for low inflow turbulence
flow over smooth two dimensional foils, bursting should depend on the

following quantities:

u - the velocity at the separation point S (surface velocity
s . e s
in attached, inviscid flow)
es ~ the momentum thickness of the laminar boundary layer at S
v ~ the kinematic viscosity
Au/Ax - the change in surface velocity Au over the length of the

bubble Ax
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Gaster formed a Reynolds number

u 6
R, = —— (C.4.1)
e v
S
and a pressure gradient parameter
8 : Au :
P = -———s ——— (C'o4.2)
v Ax

and achieved an excellent correlation between Re and P at bursting,
s

shown in Fig. C.4.1. For short bubbles, Au/Ax over the length of the
bubble is very close to du/dx at the separation point, If we momentarily
consider P to be given by P = (esz/v) (dU/dx), then Stratford's (1957a)
laminar separation theory, as modified by Curle and Skan (1957), shows
that laminar separation will not take place near the leading edge for

P > -,09, as shown in Fig. C.4.1. Also, for Res < 125, the free shear
layer will usually not undergo transition to turbulence soon enough to
form a short bubble.

Fig. C.4.1 presents measured values of P and Res for short bubbles
on the verge of bursting. This same type of figure forms the basis of
bubble behavior prediction schemes (Herring and Ely (1978), Pavelka and
Tatum (1981), where experimental data for bubble breakdown is plotted as
a computed pressure gradient parameter at separation versus some relevant
computed Reynolds number. Although these prediction schemes seem to work

fairly well, no account is taken of surface roughness or inflow turbulence,

which are sure to have a significant impact.
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Appendix D: Three DimensionalFlow Separation and Attachment

Flow separation in steady two-dimensional flow is relatively easy
to define: it is where the skin friction vanishes and the flow breaks
away from the surface. Separation in three-dimensional flow is far
more complicated. Many three dimensional flow separations occur where
the skin friction is non-zero and the external streamlines are not
significantly affected.

Maskell (1955) clarified the matter considerably by considering
the behavior of the limiting streamlines on the surface of a body or
wing. Of course there is no flow at the surface of a body moving in a
viscous fluid, but there is at a distance € above the body. The limiting
streamlines are determined by letting € + O.

Ordinary separation and attachment occurs along a line on a smooth
body where the limiting streamlines gradually merge, as shown in Fig. D.1l.
Limiting streamlines may also collide head on at singular separation
and attachment points S, shown in Fig, D.2;

These types of limiting streamline behavior are usually associated
with distinct forms of separation. The surface of separation above an
ordinary separation line is actually a shear layer or vortex sheet, shown
in Fig. D.3. This is the most common type of three dimensional separation.
Singular separation and attachment occurs only at isolated points and is
usually associated with the presence of a bubble of trapped fluid, as
shown in Fig. D.4. Singular attachment points also occur at the forward

stagnation points of bodies of revolution at zero angle of attack.
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In the steady viscous flow past a solid body the paths of the
individual fluid particles are of two distinct types. Open stream-
lines begin at infinity upstream and end at infinity downstream.
Particles following closed streamlines circulate continuously along
closed paths, which are necessarily associated with separation bubbles.

Separation bubbles on two dimensional airfoil sections are trﬁly
bubbles according to the above definition, since they contain fluid
particles which circulate slowly along closed streamlines (ignoring
the turbulence at the end of the bubble). However, a separation "bubble"
at the leading edge of a swept wing is not really a bubble, since the
spanwise flow along the leading edge prevents closed streamlines frém
forming and the separation and reattachment will be of the ordinary type.
Nevertheless, it is called a bubble because of its similarity to a two
dimensional bubble.

A thorough discussion of three dimensional separation and reattach-
ment may be found in Maskell (1955), Lighthill (1963), and Tobak and

Peake (1979).



-189-

Appendix E: Flow Around Infinite Sheared Wings

An infinite sheared wing is a swept wing of infinite aspect ratio,
obtained by shearing backward every section of an unswept wing, leaving
its shape and lateral position of each section unchanged.

For the position of a sheared wing shown in Fig. E.l, introduce

a coordinate system (£, n, r) defined by

£ = x cosh - y sinA
n = x sindA + y cosA
L =2z (E.1)

where A = leading edge sweep angle.

Two different airfoil sections can be considered when discussing
sheared wings. The streamwise section (suffix s) is the original sec=-
tion from which the sheared wing was formed. We may also consider the
airfoil section in a plane normal to the n axis (suffix n5, as shown

in Fig. E.l. From simple geometry we have

c = ¢ cosh
n s

(to)n = (to)s

to to

(T;On = (:;)/cosA

r = rs/cqu (E.2)
where

¢ = chord length

to = maximum thickness

r = leading edge radius
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The flow over the sheared wing is equivalent to the two-dimensional flow

around the normal section, with inflow components

<
Il

V. cos A cos a =

£ 0

<
1

T VO sin « (E.3)

where o is measured in a vertical streamwise plane, plus the spanwise
flow compeonent

Vn =Y, sin A cos a (E.4)

0

which leads to a non-zero velocity along the attachment line of the
sheared wing (where the normal section has its stagnation point). This
stagnation line flow can have a significant influence on the behavior
of sheared wings, as described in Chapter 1IV.

Perturbation velocities due to thickness and 1ift are generated
only in the & and { directions: there are no perturbation velocities
in the n direction. Because the potential flow around a sheared wing
is independent of the velocity in the n direction, the flow follows what
is know as the 'independence principle'. The perturbation velocities
uE and uc are those due to the two dimensional flow around the normal
section, with the inflow velocities to the section given by (Eg. E.3).
Since the streamwise inflow velocity VE is reduced from the streamwise
inflow VO by the factor cos A, the pertugbation velocities due to 1lift
(in linear theory) will be reduced by the same factor. The same conclu-
sion can be reached by looking at the vorticity distribution when the wing

is at an angle of attack. The normal inflow velocity V_ = V0 sin o is
0
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independent of sweep, so the strength of the bound vortices parallel to
the leading edge, Y(£), is also independent of sweep. The vortices

m .
are inclined at an angle 5" A to the mainstream Vo, so the pressure

jump across the wing is
Ap(E) = oV y(§) cosA (E.5)
from the Kutta-Joukowski law. Thus the 1lift slope of the sheared wing is

l "
e 21 cosh (E.6)

The thickness to-chord ratio of the normal section is greater than
that of the streamwise section, as given by (Eg. E.2), and the leading
edge radius is also increased. This means that the high velocities
near the leading edge caused by angle of attack ;oading are reduced
by the presence of leading edge sweep. Brown and Norton (1976) made use
of this fact in designing a novel thruster blade having increased tolerance
to angle of attack fluctuations without causing leading edge cavitation.

If we consider the laminar boundary layer on an infinite sheared
wing, we arrive at the conclusion that the flow in the &, £ plane
around the normal section is independent of the spanwise flow in the
n direction (see, for example, Schlicting (1968)). Hence the indepen-
dence principle also holds for laminar boundary layers. However, once
the flow separates or becomes turbulent the independence principle no
longer applies: the flow must be considered as being completely three
dimensional, even though the potential flow is independent of the n

direction.
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Appendix F: Parabolic Leading Edges

Thin airfoil theory, such as that described in Appendix A, leads
to solutions having infinite velocities at the leading edge when the
section or wing is operating above its design angle of attack. 1In
practice, infinite velocities do not occur because the leading edge
has a finite radius of curvature. Lighthill (1951) and Van Dyke (1955)
formulated leading edge corrections to thin airfoil theory so that
surface velocites may be accurately calculated near the nose of a foil,
However, these corrections are formulated in terms of angle of attack
of the section, which is a somewhat nebulous concept for a propeller
blade section. The derivation below expresses the leading edge flow in
terms of the leading eége suction force (see Appendix A). Only two
dimensional flows are considered here, since the flow near a swept
leading edge can be approximately decomposed into the flow normal to
the leading edge and a flow along the leading edge, as shown in Appendix
E.

The surface velocity distribution for a zero thickness flat plate

at small incidence o is

\ Cc-X
—— + —
\Y 1% o X
oo
I
= 1% - avl-x/c (F.1)
vV x/c
where x = distance from leading edge
¢ = chord length
V = surface velocity
vV = free stream velocity
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The velocity is infinite at the leading edge, as expected. The position

of the stagnation point, x__, is where V/V_ is zero, and can be found

st
from Eq. F.1:
2 xst/c
a = i—:fg——7g ’ (F.2)
st
X = C a2 for x ,/c << 1
st st ¢

The surface velocity may be expanded in a series

o 1 X

Vl = li [l - '2_ + -.o]
© Y x/c ¢ '
=1+ 2 for % << 1 (F.3)
Yx/c
Inserting Eq. F.2 we get
X X << ¢
vV . st st
— = + — .
v 1+ " ’ (F.4)
© - X << C

The leading edge suction force Fs for a flat two-dimensional foil

is given by the zero drag condition (see Appendix A):

o
]
0
3
e
L]
|

°
<
0
)

S 1
5P VY, (F.5)

1]
N
3
Q
Q
-
|
©°
<
A

Inserting Eq. (F.2) we obtain

1 2
Fs = 27 X (5-0 V. Xy << ¢ (F.6)
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which now specifies the stagnation point X, in terms of the suction

force F .
s
The leading edge corrections by Lighthill and Van Dyke involve
multiplying the thin airfoil surface velocities by the factor

/2

[x/(x+r/2]1 , where r is the leadingledge radius. Applying this to

Eq. F.4, we get

v .
6; 1t /7st ) (

Voxde + / Hst/T

= (r.7)
Yl + 2x/r ‘

This -is exactly equivalent to considering the flow around an infinite

parabola, as shown in Fig. F.l,

A&

I

STAGNATION
STREAMLINE

Figure F.l1 - Parabolic leading edge
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In order to perform boundary layer computations, the surface
velocity V as a function of arc length s must be known. To do
this it is convenient to non-dimensionalize all lengths by the leading

edge radius r, and introduce the parameter t. Then we have

H %
1
‘-r

L=y7¢ (F.8)
r

To find the arc length s along the surface we note that dsz=dx2+dy2,

which leads to

s(t) t
= 2 { YtZ + 1/2 4n

r
0
1 t + /&2 + 1/2
= tVtz + 1/2 + 5 &n /2—/2 (F.9)

The velocity on the surface can be found by expressihg Eg. F.7 in

terms of t and tst' where tst is given by

t 2 - —— (F.lO)

and the minus sign causes the stagnation point to be on the lower

surface. Eg. (F.6) can be re-written as

X F
st _ 1 S
< = 37 5 ] (F.11)

SPpr V_
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The second term is precisely the leading edge suction force coefficient

defined in Eq. 4.3.1

C = —— _ (4.3.1)

xst Cs
—_—= : (F.12)
r 27

Velocity gradients on the surface can be obtained by straight-

forward application of the chain rule.
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Appendix G: Calculation of Lateral Vorticity Movement
in Leading Edge Vortex Sheet

G.1 Single Node Calculation

Section 5.1 nétes that the proper boundary condition for a free
vortex sheet in steady inviscid flow is that there is no pressure jump
across it. This condition is satisfied if the local vorticity vector
in the vortex sheet is parallel to the local velocity vector at all
points on the free sheet. In most vortex lattice technigues this
condition is apprbximately satisfied by making each discrete vortex
segment parallel to the velocity vector at its upstream end or mid-
point. .

In the current work the vortex sheet is rendered approximately
force free by determining how the vorticity entering each node in the
discretized sheet leaves the node; that is, how much leaves in the
downstream chordwise vortex and'how much leaves in the spanwise vortex
in the direction of the spanwise velocity at that node. This process
is best illustrated by showing the computations done at a typical node
in the discretized free vortex sheet.

Figure G.l.l1l shows a typical node in the discretized free sheet.
The relevant quantities are defined as follows:

V_ - chordwise velocity at node

V_ -~ spanwise velocity at node

T - strength of chordwise vortex

T - strength of spanwise vortex

The (m, n)'th node is under consideration. Vc and Vs have been cal-
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culated previously, and rc(n-l) and Ps(m-l) are known from prior nodal
calculations. The problem is to determine Pc(n) and Ps(m); Note that
the "spanwise" vortices actually have compohents in both the spanwise
and chordwise directions. The spanwiée vortices point in the "m"

direction, which varies over the blade.

The total vorticity entering the node is
I, =T (n-1) + T _(m-1) (G.1.1)
t c S

By Kelvin's theorem, this must also be the total vorticity leaving

the node

Ft = Pc(n) + Ps(m) (G.1.2)

The total chordwise vorticity vector at the node is

T = {rc(n-l) + rc(n)] + (c . m [Fs(m—l) * rs(m)} (G.1.3)

and the total spanwise vorticity vector at the node is

Py = [I‘s(m-l) + I‘s(m)] (s - m) (G.1.4)

The local vorticity vector is parallel to the local velocity vector if

the following equation is satisfied

1| 3

VS
evms— = — - Q (G.l.s)
v
ct c
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By simple algebra,

¢ n=1) + T+ (c + m I‘s(m-l—)[ - (s +m T_(m=1)

Fgm (s em) +Q (1 -(c-m))

(G.1.6)

and

1‘C (n)

Pt - Fs(m) (G.1.7)

However, this calculation must be constrained somewhat. If we
take the arrows on the Vvortex segments in Fig. G.l.1 to péint in the
direction of positive vorticity (using the right-hand rule), then we
expect on physical grounds that Pc > 0 at every node. That is, the
sense of rotation of the shed vorticity should not change sign in the
middle of the sheet. Thus at each node we must insure that

r_(m) >0 | (G.1.8)

G.2 Node Marching Procedure

Since there is an inequality constraint to be satisfied at each
node, a set of simultaneous equations caﬁnot be generated to solve all
of the node calculations at once. There appear to be two alternative
solution procedures:

a) March through the nodes one by one, satisfyiné the constraint

at each node in turn; or

b) Formulate an optimization problem with inequality constraints

to do all of the node calculations at once.
Since the former approach appears to be far simpler it has been chosen

here. The remaining problem is to determine the marching direction.
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From physical arguments we expect that marching through the nodes
should progress basically in the chordwise (downstream) direction.
However, since the spanwise vortices and chordwise vortices are not
orthogonal, ambiguities arise in determining which nodes to do first
if the marching is in the chordwise direction. The resoclution to
this problem is to march through the nodes in order of increasing-

8 (see Fig. 3.l.l1, pg. 28). This eliminates all arbitrariness in
determining marching order.

All of the node calculations are done using the values of the
leading edge horseshoe strengths from the most recent iteration.

The leading edge horseshoe strengths determine the amount of vorti-
city entering the free sheet at the n=1 row of nodes, and all of the
node calculations described in Section G.l depend on the actual
values of the vorticity being directed through the discretized free
sheet, Once the node calculations are completed using the actual
vorticity wvalues, the ratio Tc(n)/I‘t (see Eq. G.l.1 - G.1.7) is
computed at each node and saved for use in assigning leading edge

horseshoe element weights, as described below.

G.3 'Determination of Leading Edge Horseshoe Element Weights

As discussed in Section 5.3 and illustrated in Fig. 5.3.2, the
free sheet portion of a leading edge horseshoe vortex actually con-
sists of quite a few spanwise and chordwise vortex elements in the

free sheet, with appropriate weighting factors. These weights are
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determined by considering vorticity of unit amplitude entering the
leading edge of the free sheet at the proper location for the leading
edge horseshoe under consideration. All of the nodes in the free sheet
are then marched through in precisely the same order as that determined
during the lateral vorticity movement described in Sections G.1 and

G.2 above. At each node the value of I‘c(n)/I't computed previously

is used to establish the strengths of the spanwise and chordwise vortex
segments adjacent to that node. Since the node marching procedure does
in fact satisfy Kelvin's theorem everywhere on the free sheet, and since
a unit amplitude of vorticity entered the free sheet at the leading
edge, the strengths of the spanwise and chordwise vortex segments
determined by this proceduie are precisely the weighting factors for
the leading edge horseshoe under consideration. This procedure is

repeated for each of the leading edge horseshoe vortices.



