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ABSTRACT

A numerical lifting surface method is developed for the prediction
of the steady, non-cavitating flow around the tips of marine propeller
blades. An inviscid flow model is employed together with a local viscous
analysis of the leading edge flow behavior, and the major effects of
vorticity shed from swept leading edges are included.

The usual propeller analysis problem is solved using a vortex
lattice approach, which includes an efficient method for calculating
the correct geometry of the trailing vortex wake. The attached flow
analysis is broken down into "global" and "local" problems to yield
high resolution in the tip region without an undue penalty in computa-
tion time. A semi-empirical viscous analysis, based on airfoil and
swept wing data, is used to determine the amount of vorticity shed
into the fluid due to flow separation at the blade leading edge. A
first-order representation of the leading edge vortex sheet is employed
to solve the resulting boundary value problem.

Comparisons between computed results and available experimental
data are generally quite good. The theory qualitatively explains the
influence of skew on leading edge sheet cavitation inception, and also
predicts a substantial Reynolds number effect. Data at higher Reynolds
numbers are required to confirm the scale effects predicted by the
current theory.

Thesis Supervisor: Justin E. Kerwin
Title: Professor of Naval Architecture
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NOMENCLATURE

A.. influence coefficient matrix, defined in Eq. 3.6.1

AR planar wing aspect ratio, AR = b/

b span of planar wing

c blade section chord length

c mean chord of planar wing

c unit vector in chordwise direction

1 2

Cd two dimensional drag coefficient, cd = drag/- pcU

1 2
c1 two dimensional lift coefficient, cl = lift/- pcU

ct two dimensional leading edge thrust coefficient,
defined in Eq. A.3.3

C leading edge singularity parameter, defined in Eq. A.3.1

pressure coefficient, C = (p-p)/1 pU2
P 2

C leading edge suction force coefficient, defined in
Eq. 4.3.1

D propeller diameter

f blade camber function

fo maximum blade section camber at a given radius

F vector force on blade surface

F suction force per unit length of leading edge,
defined in Eq. A.1.5

J advance coefficient. In this thesis, J = JA = Js

JA advance coefficient based on speed of advance,

JA = VA/nD
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J advance coefficient based on ship speed, J = V /nD

K number of propeller blades

K force coefficient for one blade, K = F/pn2 D4
F F -

K moment coefficient for one blade, KM = M/pn D

KQ torque coefficient, KQ = Q/pn2 D5
Q

K relaminarisation parameter, defined in E. 4.2.3
r

KT thrust coefficient, KT = T/pn D

L lift force

m unit vector along spanwise vortices

M number of chordwise panels over radius

M vector moment on blade surface

n propeller rotational speed, revolutions per unit time

n unit vector normal to blade camber surface

N number of spanwise vortices within a chordwise strip

N number of discrete vortex segments in ultimate tip vortexuw

p pressure

P. ambient pressure

P pressure gradient parameter, defined in Eq. C.2

P propeller pitch

Q strength of concentrated line source per unit length

Q propeller torque

r radial coordinate
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r leading edge radius

r inner radius of local tip solution, Fig. 3.9.1
cut

rH hub radius

r control point radii in tip solution, Eq. 3.9.2
m

r leading edge radius of section in plane normal to leading

edge

r radius of ultimate tip vortices

rH radius of hub vortex at end of transition wake

R propeller radius

Rle Reynolds number for leading edge flow, defined in Eq. 4.3.2

R. Reynolds number based on attachment line boundary layer
al momentum thickness, defined in Eq. 4.2.2

R8 Reynolds number based on boundary layer momentum thickness

s at separation, defined in Eq. C.4.1

s fraction of chord from leading edge

s distance along surface

s unit spanwise vector on blade

s transformed chordwise coordinate, see Eq. 3.2.2

t blade thickness function

to maximum blade section thickness at a given radius

T propeller thrust

u,v,w perturbation velocities in x,y,z coordinate system

helical tip vorticesuUt j ailadtneta eoiisidcd
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axial and tangential induced velocities due to propeller
and wake singularity system

axial and tangential induced velocities just behind
blade trailing edge

axial and tangential induced velocities at end of
transition wake

tangential velocity induced by ultimate hub vortex

component of inflow velocity normal to leading edge;
see Fig. 4.2.2 or 4.3.1

component of inflow velocity parallel to leading edge;
see Fig. 4.2.2 or 4.3.1

free stream velocity

total velocity vector

volumetric mean inflow velocity,

2 1

V. = r VA(r) r dr
A [1-(r H/R)2 ] rH/R

chordwise velocity at free vortex sheet node

radial component of inflow velocity

spanwise velocity at free vortex sheet node

ship speed

tangential component of inflow velocity

u (x' r)a

ual (r)l

utl(r)

Ua2 (r))

ut2 (r)3

UtH

U
n

U
S

U
co

V

VA

Vc

VR

Vs

VT
vT
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x distance along chord for two dimensional foils

x' axial distance downstream of blade trailing edge along a
given streamline

xfinal distance downstream of blade trailing edge at which wake
pitch stops changing

x rake, x-coordinate of midchord line, positive in direction
of positive x (see Fig. 31.2)

Xtw axial extent of transition wake, measured from blade
trailing edge

x,y,z cartesian coordinate system fixed on propeller: x-positive
downstream, y positive radially outward, and z being
determined to complete the right handed system

x,y,z cartesian coordinate system fixed on planar wing:
x-positive downstream, y to starboard, and z up.

a angle of attack

undisturbed flow angle

BT pitch angle of transition wake leaving blade tip

w pitch angle of ultimate wake tip vortex helix

pitch angle of tip vortex separated from leading edge
in global solution; see Eq. 3.4.1

B(x',r) pitch angle in transition wake

y strength of vortex sheet

Yb strength of bound vortex sheet

Ys strength of leading edge shed vortex sheet

r strength of discrete vortex segment or horseshoe vortex

rb circulation around blade section (bound circulation)

rc strength of chordwise vortex in discretized free vortex sheet
C
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rs strength of spanwise vortex in discretized free vortex sheet

rt strength of ultimate tip vortex

6c contraction angle of tip vortex; see Fig. 3.3.2

6k angular coordinate of k'th blade

6etw angular extent of discrete vortex segment in transition wake

A maximum displacement of separated tip vortex in global
solution

open water propeller efficiency, n = (J. KT)/(2 KQ)

e angular coordinate in propeller fixed coordinates,
-1

8 = tan (z/y)

0 transformed chordwise coordinate; see Eq. A.2.1

8al attachment line boundary layer momentum thickness,
defined in Eq. 4.2.1

8 skew angle: angular coordinate of mid-chord line as
measured from y-axis, positive clockwise when looking
toward positive x-axis (See Fig. 3.1.1)

8 momemturn thickness of boundary layer at separation;
see Eq. C.4.1

A leading edge sweep angle; see Fig. 4.3.1

v kinematic viscosity of fluid

,nT ~ coordinate system for sheared wing: see Fig. 4.3.1
and Fig. E.1

xi/x final

p mass density of fluid

PM radial coordinate of chordwise vortices, defined in
Eq. 3.2.1 and Eq. 3.9.1
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chordwise
Eq. 3.2.2

nose-tail

propeller

vorticity

position of concentrated vortex, defined in

pitch angle of propeller blade section

rotational speed, radians per unit time

vector

SUPERSCRIPTS

I inflow velocity, see Eq. 3.6.2

q source

SUBSCRIPTS

c camber surface

l,t leading and trailing edges

m midchord

m spanwise index

n normal section

n chordwise index

w ultimate wake

an
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I. Introduction

The hydrodynamic analysis of marine propellers has progressed

greatly since the introduction of the digital computer approximately

twenty years ago. It is now possible to predict the steady performance

characteristics of most propellers with engineering accuracy, and to

calculate unsteady loads acting on propeller blades when the propeller

is operating in a spatially non-uniform inflow. It is also possible

to predict the behavior of unsteady sheet cavitation on propellers

operating in a wakefield, as shown by Lee (1979).

Yet despite the tremendous amount of progress made in the predic-

tion of the unsteady performance of marine propellers, both cavitating

and non-cavitating, the steady flow analysis problem is still far from

being completely solved. Designs incorporating significant amounts

of skew, rake, and radial pitch variation not infrequently fail to meet

the desired thrust, power, and RPM relationships in both model- and full-

scale. And as more ships, both civilian and military, come to rely on

underwater acoustic sensors to fulfill their mission,the accurate pre-

diction of cavitation inception on their propellers becomes very important

since a cavitating propeller is invariably the loudest underwater noise

source on a ship. Model tests are no panacea because of the large

Reynolds number ("scale") effects on propeller cavitation, even in steady

flow. Many techniques for delaying cavitation inception may lead to a

reduction in propeller efficiency, so that a real need exists for the
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analytical and computational tools to al4ew-the propeller designer to

make a rational choice of propeller characteristics based on both

efficiency and cavitation criteria.

The ultimate objectives of the research described herein are two-

fold: the accurate prediction of both steady and unsteady loadings on

arbitrary propeller blades operating in a specified inflow; and the

prediction of cavitation inception in both steady and unsteady flow,

over a range of Reynolds numbers encompassing both model- and full-scale

propellers.

The goals of the current thesis are more modest, but form a necessary

first step toward the ultimate objectives described above. They are:

i) Correctly model the main features of the flow near the tip of

a propeller blade over a range of advance coefficients in steady,

non-cavitating flow. In particular, the form and location of

the tip vortex will be of major concern.

ii) Improve the prediction of blade loading in the tip region.

iii) Explain both qualitatively and quantitatively the observed

effects of skew and Reynolds number on the inception of

leading edge sheet cavitation.

No attempt is made here to predict the occurrence of tip vortex cavitation,

since recent data (Arndt, 1981) suggest that boundary layer characteristics

on both sides of the blade may influence tip vortex cavitation, and

theoretical solutions for propeller blade boundary layers are not yet

routinely available.
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The basic approach utilized in this thesis is to decompose the tip

flow prediction problem into a series of simpler problems, and solve these

new, simpler problems successively. The primary reason for doing this is

economic: the numerical calculations are far less expensive when done

this way. In addition, it is easier to think about the flow prediction

problem when it is broken down into its component parts.

There are four major sections in the tip flow analysis scheme escribed

in this thesis:

a) A "global" solution, which consists of solving for the flow

around the propeller as a whole, assuming attached flow on

the blades. The results of this solution yield the overall

forces and moments acting on the propeller blades.

b) A "local" tip flow solution, which gives a very detailed pre-

diction of the loads on the tip of the key blade under the

assumption of normal attached flow (trailing vorticity leaving

blade trailing edge and tip edge only).

c) A local viscous analysis of the flow near the leading edge of

the blade tip.

d) A local tip flow solution which allows for the possibility of

a leading edge or part-span vortex separating from the leading

edge and passing over the blade tip, profoundly altering the

load distribution in the tip region.

Although there would appear to be strong interactions between these four

segments of the tip flow analysis problem that would require a tremendous

amount of iteration, it is shown that useful predictions of tip flow
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behavior can be obtained without iteration. This helps keep the cost of

the calculations described herein within reason, so that the theory can

be used regularly as a design tool.
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II Formulation of the Problem

2.1 Fundamental Assumptions

The propeller is assumed to consist of K identical blades symmetri-

cally arranged about a common axis. The blades rotate about the axis

at a constant angular velocity in an unbounded, incompressible fluid.

The presence of the hub is ignored. The inflow velocities to the pro-

peller may vary with radius only, so that the flow seen in a propeller-

fixed coordinate system is steady in time.

The blades are assumed to be thin and operate a small angle of attack,

so that they may be modelled as source and vortex sheets on the mean

camber surface of the blade (the separated flow tip solution requires

special treatment, discussed in Chapter V). The trailing wakes leaving

the blades are also assumed to be thin, so that they may be represented

by vortex sheets. The perturbation velocity due to the presence of the

propeller is considered irrotational outside the blade boundary layers

and the trailing vortex wake.

The presence of boundary layers on the blade surface is not expli-

citly taken into account in the current work. Slight empirical corrections

are made to account for the loss of lift caused by boundary layers

altering the "effective" shape of the blade

2.2 Boundary Value Problem

The solution to the propeller steady flow problem must satisfy the

principle of mass conservation everywhere. The following boundary
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conditions are imposed to make the solution unique:

a) The flow must be tangent to the blade surface. In a blade

fixed coordinate system, this is expressed as V ·n = 0

on the blade, where V is the total fluid velocity and n

is the local normal vector

b) The flow must leave the blade trailing edge tangentially

(Kutta condition)

c) Circulation is conserved (Kelvin's theorem)

d) The trailing vortex sheets must be force-free (no pressure

jump across wake)

e) The perturbation velocity due to the propeller must vanish

sufficiently far upstream of the propeller.

2.3 Singularity Distributions

The steady flow problem is solved by distributing sources and

vortices on the blade camber surface and vortices on the trailing

wake and finding the correct strengths of the singularities by imposing

the above boundary conditions, which leads to a surface integral equa-

tion. This technique is ideally suited to numerical computation since

integral equations can be readily approximated by a system of linear

algebraic equations.

The source distribution is used to represent the jump in normal

velocity at the camber surface due to the blade thickness. The strength

of these sources are computed from the stripwise application of thin wing

theory at each radius.
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The vortex distribution is employed to represent the jump in

tangential velocity across the camber surface and across the trailing

vortex sheets. Since the vortex strength is a vector lying in the blade

camber surface, it is convenient to resolve it into a spanwise and a

chordwise component at each point. The determination of the vortex

strength everywhere so that the boundary conditions are met requires

the solution of an integral equation on the blade camber surface. In

the present work the vortex sheets are discretized and the integral

equation is solved at a limited number of control points on the blade

camber surface.
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III. Formulation of Numerical Lifting Surface Theory

3.1 Blade Geometry

The propeller geometry problem consists of finding the cartesian

coordinates of points on the camber surface of the blade, given the

usual propeller geometric descriptions.

The geometry is specified with respect to a right-handed, blade-

fixed coordinate system, with the x-axis pointing downstream and the

y-axis at some arbitrary angular orientation relative to the key blade.

Cylindrical coordinates (x, r, ) are defined as usual, with

r = J (3.1.1)

and being measured clockwise from the y-axis when viewed looking

downstream.

The skew angle Em(r) is defined as the angular position of the

section midchord at radius r. 8 (r) may contain an arbitrary additive

constant, due to a non-unique specification of the position of the y-axis.

A projected view of a blade looking downstream is shown in Fig. 3.1.1

The x coordinate of the section midchord (Fig. 3.12) is defined

by the rake, x (r), which may also contain an arbitrary additive constant.

The leading and trailing edges of the blade are found by passing

a helix of pitch angle (r) through the midchord point at each radius r.

The length of the blade chord along this helix is c(r), and we get from

simple geometry:
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Figure 3.1.1 - Projected view of blade looking downstream

K

Figure 3.1.2 - Longitudinal elevation of propeller blade
looking to starboard
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- C
X m 2 + sin
i,t m

8z = em + 2cos 

Yp t = r cos Z, t

(3.1.2)
z ,t r= sine 8, t

where the subscripts , t refer to the blade leading and trailing edges.

A non-dimensional chordwise variable s is defined such that s=O

at the blade leading edge and s=l at the trailing edge, s being measured

along the pitch helix. The cylindrical blade section camber and thick-

ness are specified as a function of s; f(s) and t(s) respectively.

(see Fig. 3.1.3).

To identify blades other than the key blade, a blade indexing angle

is defined,

6 2w(k-1) k 1 2, . . K) (3 13)
k K k=l,2,.K)k K

where k is the identifying index and K is the number of propeller blades.

The coordinates of a point on the camber surface of the k'th blade

may now be specified in terms of the usual propeller geometric quantities

(skew, rake, pitch, chord, and camber):

x = x + c(s - ) sin ~ - f cos 
c m 2

1 cos % sin = em + c(s - 1) COS + f in + 6k (3.1.4)
c m 2 r r

y = r cos 8c c

z = r sin 8
c c

where the subscript c denotes blade camber surface.
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Figure 3.1.3 - Cylindrical-section of blade
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3.2 Discretization of Blade Singularity Distribution

The continuous distribution of sources and vortices used to repre-

sent blade thickness and loading is replaced by a lattice of concentrated

straight line elements. The elements are of constant strength, and the

endpoints of each elements are located on the blade camber surface.

The velocities induced at any point in space by these concentrated

singularities may be easily computed from formulas given by Kerwin and

Lee (1978)o

The element arrangement used in the present work is shown in Fig.

3.2.1. The radial interval from the hub rH to the tip R is divided

into M eual intervals, with the extremities of the lattice inset one

quarter interval from the ends of the blade. The endpoints of the

discrete vortices located at radii

(R - rH ) (4m-3)

Pm 4M + 2 , m = 1, 2 . . ., M + 1 (3.2.1)

Kerwin and Lee (1978) discussed several chordwise distributions

of singularities and concluded that a uniform chordwise distribution

of singularities, with an explicit Kutta condition, was the best com-

promise for solving both the steady and unsteady problems with the

same spacing. But since this thesis deals only with steady flow, this

choice was re-examined. For the current work a "cosine" chordwise

spacing of singularities is chosen, in which the vortices and control

points are located at equal intervals of s, where the chordwise variable

s is given by

1
s = (1 - cos ) , ( < s < ) (3.2.2)
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Figure 3.2.1 - Discretization of blade singularities
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If there are N vortices over the chord, the positions of the vortices,

a , and control points, si, are given by

[ 1
1 ii COS C (n-:57· 7an = .ji - Cos [(n~ [ , n = 1, 2, . ., N.

si= 2 cos = 1, 2, N. (3.2.3)

Note that with this arrangement last control oint is at the trailing

edge, and two dimensional calculations show that this forces the dis-

tribution of vorticity over the chord to have the proper behavior near

the trailing edge (implicit Kutta condition). This chordwise singularity

distribution is also useful in that it enables the magnitude of the

leading edge singularity (leading edge suction force) to be readily

calculated (See Appendix A).

The sensitivity of the computed global solution to the parameters

M and N is shown in Chapter VI.

3.3 Geometry of Trailing Vortex Wake

The geometry of the trailing vortex wake greatly influences the

calculation of induced velocities on the blade, and hence the calculation

of blade loading. The current wake model was originally developed by

Kerwin (1981) and is extended in the present work.

The propeller wake is divided into two parts (Fig. 3.3.1):

a) A transition wake region where the contraction and deformation

of the slipstream occurs, and
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b) An ultimate wake region which is composed of K concentrated

helical tip vortices and a single rolled up hub vortex.

Although an earlier wake model (Kerwin and Lee, 1978) included a

strong rolling-up in the transition wake region, laser velocimeter

measurements in the M.I.T. propeller tunnel indicate that the trailing

vortex wake does not roll-up completely, so that the current transition

wake model is probably more realistic.

The radii of the discrete vortices representing the trailing wake

are determined by a limited set of parameters, chosen in accordance

with experimental data. (Fig. 3.3.2):

a) The radius of the rolled up tip vortices, r

b) The radius of the hub vortex at the end of the transition

wake, rwH

c) The length of the transition wake region, xtw

d) The contraction angle of the tip vortex as it leaves the blade

tip, 6c

The trailers comprising the transition wake region are extensions of the

chordwise vortices on the blade. The radii of the innermost and outer-

most trailers in the transition wake region are set by smooth curves

consistent with the above wake descriptors, and the radii of intermediate

trailers are obtained by interpolation at any downstream location.

Since the trailing vortex wake is modeled by a series of short,

straight vortex segments, it is also necessary to specify the angular

extent subtended by each vortex segment. In the transition wake the
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angular subdivision is specified by the parameter 6Stw. The ultimate

wake tip vortex from each blade is composed of three complete turns of

a helix, and the angular extent of each straight vortex element is

determined by specifying the number of points in the ultimate tip

vortex, N . These two parameters are set by considering the trade-uw

off between accuracy and computational cost.

Kerwin and Lee (1978) demonstrated that the wake pitch is the most

critical parameter in determining the wake geometry, since this sets

the distance between the key blade and the wake of the blade immediately

ahead of it. Because this is such a crucial parameter, it was decided

to calculate the correct wake pitch, rather than providing it as input

data.

The pitch of the ultimate tip vortices is calculated first, using

the theory of Loukakis (1971). Using an estimated strength of the

ultimate tip vortex (obtained by solving the boundary value problem

with an approximate wake geometry) and an estimated tip vortex core

radius size, the pitch of the ultimate tip vortex may be calculated as

shown in Appendix B This calculation also yields the axial and tangential

induced velocities at the ultimate tip vortex.

The pitch of the transition wake is allowed to vary in both the

radial -and downstream directions. The correct pitch is that which

results in the wake being force-free, ie., no pressure jump across the

trailing vortex wake. For the steady flow case considered here, this

condition is met if the total velocity vector is parallel to the local
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vorticity vector everywhere on the trailing vortex sheet. Since the

laser velocimeter measurements of Min (1978) indicate that the wake

pitch varies smoothly in the downstream direction, it appears reasonable

to calculate the correct wake pitch at a limited number of points in the

transition wake and assume a smooth variation in pitch between these

points. In the present work the correct pitch is calculated at a series

of points just downstream of the blade trailing edge and at another

series of points at x' = 0.70 tw. The pitch everywhere else in the

transition wake is obtained by interpolation, and a new wake geometry

is generated. Since the geometry of the wake affects the calculation

of the correct pitch, this wake alignment procedure requires an iterative

solution: for a given wake geometry the correct pitch is calculated at

several points in the wake, the wake geometry is updated to reflect the

new calculated pitch distribution, and the process is repeated until the

wake geometry stops changing.

All of the calculations described above require knowing the vorticity

distribution on the blade and in the wake, which are the unknowns to be

determined. It is therefore necessary to iterate not only on the wake

geometry, but also on the vorticity distribution used to calculate the

correct wake geometry. The following approach is used:

a) Solve the global boundary value problem and determine the

vorticity distribution using an assumed trailing vortex wake

geometry.
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b) Using the vorticity distribution from a), calculate the correct

(force-free) wake geometry.

c) Re-solve the boundary value problem using the updated wake

geometry and determine a new vorticity distribution. Continue

iterating on steps a) and b) until the vorticity distribution

stops changing.

The above process converges quite rapidly. The details of the wake

alignment scheme are developed in Appendix B, and some results are

presented in Chapter VI.

3.4 Vortex Sheet Separation from Blade Tip

Flow visualization experiments on low aspect ratio wings and

propeller blades at high loadings show that the tip vortex does not

leave the trailing edge, but rather separates along the tip chord or

even from the leading edge. The "tip" vortex then passes above the

wing or propeller blade, drastically changing the load distribution in

the tip region and increasing the lift. A detailed discussion of this

phenomenon and the approach used to model it are presented in Chapters IV

and V of this thesis as part of the local tip flow analysis. Of interest

here is how to go about adequately modeling this effect in the global

flow analysis. Following Kerwin and Lee (1978) the chordwise vortices

at the tip are allowed to separate from the blade and coalesce at a

point above the trailing edge of the blade at the tip, as shown in Fig.

3.4.1. The pitch angle of the vortex leaving the leading edge of the
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tip panel is assumed to be

-18= (B + 8T) (3.4.1)

where B is the undisturbed inflow angle at the tip and BT is the pitch

of the transition wake tip vortex as it leaves the blade. The dis-

placement of the trailers above the camber surface at the trailing edge

is given by

A = c tan ( - B)

where c is the chord length of the tip panel, and is the pitch of

the blade at the tip.

The displacement A is small when a propeller is operating near its

design advance coefficient, but increases as J is reduced. This repre-

sentation is sufficient to enable the thrust and torque of the propeller

to be accurately calculated over a wide range of advance ratios. The

more refined modeling of the separated tip vortex presented in Chapter V

is necessary to predict the load distribution in the tip region.

3.5 Modeling of Other Blades and Wakes

It is not necessary to model the other blades and their transition

wakes as accurately as the key blade because of the large distance between

the other blade singularities and the key blade control points. A much

coarser vortex-source lattice may be used to represent the other blades

and wakes without impairing the accuracy of the final solution to the

boundary value problem. The only exception to this rule is the transition

wake from the blade just ahead of the key blade, which passes very close
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to the key blade at low advance coefficients. This transition wake should

be modeled in as much detail as the wake leaving the key blade. The

present computer program allows for a wide variety of paneling schemes,

a typical example being shown in Fig. 3.5.1.

3.6 Solution of Boundary Value Problem

The solution of the boundary value problem consists of determining

the strengths of the singularities representing the propeller blades

and their trailing vortex wakes, subject to the boundary conditions

listed in Section 2.2. The strengths of the sources representing the

blade thickness are determined by a stripwise application of thin wing

theory at each radius, leaving only the vortex strengths to be deter-

mined.

The strengths of all the vortices on the blades and in the trailing

vortex wake may be specified in terms of the strengths of the spanwise

vortices on the key blade by applying Kelvin's theorem repeatedly. Since

there are (NxM) spanwise vortices on the key blade and the same number

of control points, we may formulate a set of linear simultaneous algebraic

equations in order to determine the strengths of the spanwise vortices on

the key blade, r..

The boundary condition to be applied is that of zero normal velocity

at the control points on the key blade. Define an influence function A..,

which is the normal velocity at the i'th control point caused by vortex

system associated with a unit strength of j'th spanwise vortex. Then
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Figure 3.5.1 - Discretization of other blades
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the total normal velocity at the i'th control point due to the vortex

system on the blades and in the wake is given by

(Nax

I A.. , i = 1, 2, . . .,(NxM) (3.6.1)
j=1 

The normal component of the inflow velocity due to speed of advance

and propeller rotation is given by

n. V.I (3.6.2)
--i -1

where n. is the unit normal vector.
--1

The normal component of the velocity due to all of the sources is

denoted

n. V. (3.6.3)

Then the boundary condition can be written as

(X)
A.. . +- n. (V.I + V. q) = O

j=l -

or (3.6.4)

(NtM)
A.. .-n. (V. + V.) , i = 1, 2, . . .,(NxM)

jj=l - -3. -

which is sufficient to determine the unknown r. values.

3.7 Determination of Blade Forces

Following Kerwin and Lee (1978), the blade forces are computed by

determining the forces acting on the line singularities representing

the key blade. Assuming that the average velocity over the length of a
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singularity can be approximated by the velocity at its midpoint, the

force on the j'th key blade singularity can be expressed as

F. = p Aj[V. x . - Vj Qj] (3.7.1)
-J J- J -J J

where AQj is the length of the line singularity, V. is the total velocity

at its midpoint, and Qj is the strength per unit length of the line

source. This computation is made for all of the spanwise and chordwise

singularities on the key blade, except for the outermost chordwise vor-

tices on the tip panel, which are assumed to be separated from the

blade. (See Section 3.4).

The effect of viscous drag is modeled as a force increment on

each of the spanwise singularities. The computed leading edge suction

force is multiplied by a suction efficiency factor of 1/3 to simulate

the experimentally observed loss of leading edge suction away from

ideal angle of attack, as described by Kerwin and Lee (1978).

3.8 Formulation of Local Problem

The lifting surface theory just described is adequate to determine

the overall forces on propeller blades with sufficient accuracy for

many purposes. Determining the load distribution on the blade with high

resolution requires a much finer discretization of the blade singularity

system, with a large increase in computer time. Since the details of

the load distribution near the tip are of primary interest in the current

work, it makes sense to only use a fine source-and vortex-lattice in the

tip region. The computational scheme used to do this is illustrated in
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Fig. 3.8.1. There are four basic steps:

a) Solve the "global" boundary value problem for the entire

propeller using a relatively coarse discretization of the

blade singularity system.

b) Choose a "local" flow domain, including the tip region

of the key blade and a portion of the key blade trailing

vortex wake near the tip. Set the strengths of the sources

and vortices in this local flow domain equal to zero.

c) At a series of points in the local flow domain, calculate

the induced velocities caused by the remainder of the

singularity system (i.eo, the rest of the key blade,

the rest of the key blade wake, and the other blades

and wakes). Since there are no singularities in this

region, the induced velocity is a smooth function of

position, and interpolation may be used to find the

induced velocity at any point in the local flow domain.

d) The local tip flow problem now consists of solving for

the flow about the tip of the key blade only. The inflow

velocity, VI, at each point on the blade tip now consists

of the inflow velocity caused by the speed of advance and

propeller rotation plus the induced velocities calculated

in c). Note that the influence of most of the key blade

trailing vortex wake is included in the induced velocity

calculation, so that only the portion of the trailing
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Figure 3.8.1 - Separation of problem into

global and local domains
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vortex wake in the local flow domain needs to be included.

From this point on we need only consider the problem of determining

the flow around this isolated blade tip. No further account need be

taken of the rest of the key blade and its trailing vortex wake, or of

the cther blades and their wakes. This results in a significant saving

in computer time compared to calculating the details of the tip flow as

part of the global solution.

A high resolution attached flow tip solution, using the same

assumptions used in the global solution, is discussed below. This

is used to provide input data for the viscous leading edge solution

described in Chapter IV. Finally, the tip flow solution is re-solved

in Chapter V, now allowing for the possibility of significant flow

separation from the leading edge.

3.9 Calculation of Attached Flow Tip Solution

The method of calculating the attached flow tip solution is

virtually identical to that used for the global solution, so that only

those features peculiar to the tip solution will be discussed here.

In order to reasonably discretize a propeller blade with zero tip

chord (planform having rounded tip in projected view) it was found

necessary to divide the blade tip radially using "half-cosine" spacing

instead of the uniform spacing used in the global solution. Dividing

the tip region into M spanwise panels, the endpoints of the discrete
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vortices are located at radii

p r + (-r ) sin (m-l)391)
Pm cut cut sin 2M+l (3.9.1)

m = 1, 2, . . ., M+l

and the control points are located at radii

r r + (1-rcut sin 2Ml (3.9.2)
cut cut

m = 1, 2, . . ., M

where r is the separation radius between global and local solutions.
cut

The trailing vortex wake geometry for the attached flow tip solu-

tion is assumed to be the same as that used for the global solution.

The approach developed in Section 3.4 for approximating the effect of

flow separation from the tip is also utilized. Figs. 3.9.1 and 3.9.2

illustrates the vortex lattice grids typically used for global and local

analyses.

An important part of the local tip solution is the determination

of the loading near the leading edge, which is needed for the viscous

leading edge analysis. Since thin airfoil theory (singularities on

camberline instead of airfoil surface) is being used, the relevant

descriptor of the leading edge flow is the magnitude of the leading

edge suction force. This may be determined from the solution to the

local tip flow boundary value problem by placing control points along

the leading edge and computing the total upwash (normalwash) there,

as shown in Appendix A. While there are other ways to determine the
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leading edge suction, the method used here is an integral part of the

separated flow modeling in the tip region described in Chapter V.

3.10 Viscous Pitch Correction

The influence of blade boundary layers on propeller performance

may be explicitly included in the present approach by altering the

right hand side of Eq. 3.6.4 to account for a known boundary layer

displacement thickness distribution. However, since solutions for

propeller blade boundary layers are not routinely available, the

influence of the boundary layers on blade section lift is approximated

by reducing the pitch angle of each blade section by the amount

Ac = 1.9454 (3.10.1)

where a is in radians. This is the same viscous pitch correction

used by Kerwin and Lee (1978).
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IV. Tip Region Leading Edge Flows

4.1 Types of Tip Region Flows

In order to calculate the flow quantities of interest in the

tip region a model of the flow must be used. All models involve

various approximations of some sort, and the usefulness of any given

model depends on how realistic the approximations are and what informa-

tion about the flow is to be computed. Four models for the types of

flow near the blade tip are discussed below, at increasing levels of

sophistication. The fact that these are models of the flow, and not

representations of the flow itself, must be kept in mind. To simplify

the discussion and figures,the flow about wing tips rather than

propeller blade tips will be considered. The concepts are the same

for either case.

a) Classical Lifting Surface Theory

This theory assumes that the flow is attached to the wing surface

everywhere and the trailing vortex wake is shed off the trailing edge

only. The wake is assumed to remain flat behind the wing and not roll

up into discrete trailing vortices (see Fig. 4.1.1)o This model is

widely used because of its simplicity, and yields excellent predictions

of lift, drag, and pitching moment for moderate- to high-aspect ratio

wings. The predicted pressure distribution is also quite good except

near the wingtip. Efforts to improve this latter problem by letting

the trailing vorticity separate off of the trailing edge and then roll

up do not yield much improvement.
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As already pointed out in Section 3.4, the above model is in-

adequate for calculating the loads on low aspect ratio propeller

blades when they are heavily loaded.

b) Side Edge Separation

At high angles of attack (heavy loading), trailing vorticity is

shed off of the tip chord of the wing and starts to roll up before

the trailing edge is reached, with the centroid of the vorticity

lying above the upper surface wing (Francis and Kennedy, 1979). While

this side edge rollup process has been modeled successfully by

Maskew (1976), many of the important effects on the wing pressure

distribution can be determined by including a "tip vortex sheet" in

the model, as shown in Fig. 4.1.2. The presence of a tip vortex

sheet increases the circulation in the tip region and moves the center

of pressure aft near the tip. The global solution for the propeller

flow problem uses this type of model, as shown in Fig. 3.4.1. It is

sufficient for calculating the total forces on the blade, but it is

not adequate for computing the pressure distribution on the blade

in the tip region.

c) Swept Leading Edge Flow (Sharp Edge)

Most propeller blades have leading edges in the tip region that

are highly swept relative to the oncoming flowo Even on unskewed

propellers, the leading edge is highly swept at the tip unless a

finite tip chord is used. Some qualitative feel for the flow around

such a swept leading edge may be gained by considering the flow around
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a low aspect ratio delta wing. Since most studies of delta wings

assume sharp leading edges, we will make this assumption initially.

The effect of rounded leading edges will be dealt with subsequently.

A free shear layer separates from the sharp edge of a delta wing

at incidence and rolls up into a leading edge vortex (LEV) lying above

the wing surface and inboard of the edge, as shown in Fig. 4.1.3.

The upper surface of the wing underneath the leading edge vortex

is subjected to a strong sidewash, which decreases the upper surface

pressures and greatly increases the wing loading and lift. Fig. 4.1.4

shows the pressure distribution on a delta wing as determined by

experiment and a very elaborate vortex sheet model for the flow, with

the suction peaks underneath the leading edge vortices very prominant.

The large increase in lift at high incidence due to leading edge vor-

tices is what enables delta wing aircraft (e.g., Concorde, Space

Shuttle) to land at reasonable speeds.

Fig. 4.1.5 shows the surface flow patterns obtained on a sharp

edged delta wing, and Fig. 4.1.6 shows the flow pattern in a cross-

flow plane for this wing. The flow separates at the primary separa-

tion line S (wing edge), and the resulting vortex sheet coils up

above the wing to form the primary vortex core. The fluid near the

wing surface flows outward from the primary attachment line Al.

(For more discussion of three-dimensional flow separation and attach-

ment, see Appendix D). The crossflow is accelerated as it passes

under the primary vortex, but it then encounters an adverse pressure
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gradient and separates again at the secondary separation line S2,

forming the secondary vortex. This process of generating further

separations, attachments, and smaller vortex cores proceeds until

viscosity and turbulence obliterate the small scale flow structures.

Fig. 4.1.7 shows the results of point tests on three different

propellers at 30% slip (J = .70 x P/D). Propellers A and C clearly

show an attachment line just inboard of the tip on the suction side,

and from this we may infer the presence of a rolled up vortex lying

above the blade tip, similar to a leading edge vortex on a sharp-

edged delta wing. This type of flow is only pronounced when the

propeller is fairly heavily loaded.

The discussion above deals with delta wings having sharp leading

edges, so that flow separation along the leading edges occurs at all

values of incidence except zero. The theoretical results by Weber

et al (1976) shown in Fig. 4.1.4 depend on the wing edge being sharp,

so that a Kutta condition (tangential flow requirement) can be applied

at the leading edge in the mathematical model. However, propeller

blades usually have nicely rounded leading edges in order to delay

the appearance of leading edge sheet cavitation. In this case the

presence or absence of flow separation at the leading edge depends

on the details of the viscous flow, as shown below.

d) Swept Leading Edge Flow (Rounded Edge)

The flow behavior near rounded leading edges on airfoils is often

governed by the behavior of laminar separation bubbles (see Appendix C
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for a discussion of two-dimensional separation bubbles). If the foil

or wing is operating above its ideal angle of attack there will be a

suction peak near the nose, and the laminar boundary layer will usually

separate and form a free shear layer when it encounters the adverse

pressure gradient following the suction peak. This shear layer is

quite unstable and undergoes transition to turbulence quite rapidly,

at which point the flow usually reattaches to the wing surface as a

turbulent boundary layer. There are two types of laminar separation

bubbles found in practice:

a) Short bubbles (< 1% chord in length and < 0.01% chord in

height) which have almost no effect on the flow around the

foil except directly underneath the bubble, and

b) Long bubbles (>> 1% chord in length) which drastically

alter the flow around the foil section, usually destroying

the suction peak near the leading edge and producing a

region of moderately low pressure under the bubble.

For a thin two-dimensional airfoil section a short bubble appears

first as the incidence is increased above the ideal angle of attack,

and at some point the short bubble "bursts" and a long bubble is

formed. Kuchemann (1953) noted that the tips of swept-back wings

operate at a higher effective angle of incidence (greater leading

edge suction peak) than do the inboard sections as the angle of attack

of the wing is increased. One would expect therefore that a short

separation bubble would burst near the tip of the wing first as the
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incidence is increased. Since the jump between a short and long bubble

involves a rearrangement (and reduction) of the bound vorticity on

the foil, a "part-span vortex" (PSV) must be shed from the junction

between short and long bubbles on a swept wing, as shown in Fig. 4.1.8.

Figs. 4.1.9 illustrate some pressure distribution data on a 450

swept back wing of aspect ratio 3. Fig. 4.1.9a shows the minimum

pressure near the leading edge as a function of span for several

angles of attack. At a=20.60 and a=22.60 the suction peak has collapsed

over the outer part of the wing, indicating the presence of a long

bubble in this region. Fig. 4.1.9b confirms this, showing the chord-

wise distribution of upper surface pressure at the 61% semispan station

for several angles of attack. The pressure distribution at =16.40

is quite normal, and the short bubble most likely present does not

show up in the pressure plot. At a=20.6 the suction peak has been

greatly reduced by the presence of a long bubble, which is also respon-

sible for the extended region of low pressure. The junction between

short and long bubbles (and the associated part-span vortex) moves

inward as the wing incidence is increased, giving rise to swept wing

stall.

Figs. 4.1.10 and 4.1.11 illustrate the part span vortex phenomenon

on a highly skewed propeller blade in steady flow, where the "tip"

vortex has been made visible by reducing the water tunnel static

pressure so that vortex cavitation occurs. The "tip" vortex leaves

the tip of the blade when operating near the design advance coefficient
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Figure 4.1.10 - Highly skewed propeller (#4498) operating
near design J
(Tip vortex leaves tip of blade)
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Figure 4.1.11 - Highly skewed propeller (#4498) operating
at 60% of design J
(Tip vortex separates from leading edge
and passes over blade)
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(Fig. 4.1.10), but it separates quite far down the leading edge at a

lower J and passes over the blade (Fig. 4.1.11).

If the part span vortex occurs very near the tip of a propeller

blade where the leading edge sweep angle is changing rapidly with

radius, the distinction between a part span vortex and a leading edge

vortex is somewhat difficult to make. In the current work "part span

vortex" will refer to a distinct vortex separating quite far down the

leading edge of a propeller blade, while "leading edge vortex" will

refer to the rolled up vortex downstream of a region of leading edge

separation near the tip. A leading edge vortex tends to resemble a

side edge vortex as the leading edge sweep angle approaches 900

(streamwise edge).

It is the intent of the present work to model the part span vortex

phenomenon on propeller blades in an approximate manner. It is obvious

from the above discussion that the first major problem is determining

where the flow separates from the leading edge. The rest of this

chapter explains the physics of viscous leading edge flows in greater

detail, and the method developed to predict the starting point of a

part span vortex on a propeller blade.

4.2 Viscous Leading Edge Flows

As noted in Section 4.1, laminar separation bubbles are a common

feature on unswept wings when operating above their ideal angles of

incidence. The flow remains laminar at the separation point up to

very high free-stream Reynolds numbers because the flow from the
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stagnation point to the suction peak is in a favorable pressure

gradient which damps out instability and transition mechanisms

(Tollmein-Schlicting waves and subsequent three-dimensional distur-

bances) which would tend to make the leading edge boundary layer

turbulent. After the laminar boundary layer separates and forms a

free shear layer it is much more susceptible to instabilities, and

usually becomes turbulent and reattaches to the airfoil surface,

forming a bubble of trapped fluid. If the flow reattaches shortly

behind the separation point a short bubble is formed which has very

little effect on the main flow. If the flow progresses quite far

downstream before reattachment occurs a long bubble is formed, which

drastically alters the pressure distribution on the foil upper surface.

A further discussion of short and long bubbles is given in Appendix C.

Additional complications arise when considering separation

bubbles on swept leading edges because mechanisms other than Tollmein-

Schlicting instabilities may govern transition near the leading edge.

The first mechanism is 'cross-flow instability' (Beasley, 1973) and

is characterized by streamwise vortices in the laminar boundary layer.

These vortices develop near the leading edge where there is a large

chordwise velocity gradient. The boundary layer velocity profile

viewed in a direction normal to the external inviscid streamline may

contain a point of inflection, which is indicative of instability at

low Reynolds numbers. Fig. 4.2.1 shows how this inflected cross-

flow profile occurs.
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A much more important mechanism is 'leading edge contamination',

as described by Gaster (1967) and Cumpsty and Head (1967). In this

case the flow along the forward attachment line of a swept wing is

turbulent, so that turbulence propagates out along the span of a

swept wing from the upstream (inboard) end, and the boundary layer

around any section of the wing is initially turbulent without the

need for undergoing Tollmein-Schlicting type instability and transi-

tion. Fig. 4.2.2 illustrates the attachment line flow on an infinite

swept wing, with leading edge sweep angle A and inflow velocity U.

The component of the inflow normal to the leading edge is U =U. cosA,

and the component of the inflow along the attachment line is

Us=U. sinA. The momentum thickness 0a1 of the boundary layer along

the attachment line (assuming laminar flow) is given by (Gaster, 1967),

8 = 0.4044 (4o2l1)

/ e

V ds

where v = kinematic viscosity

dU
d = velocity gradient of component of potential flow normal

to the leading edge, evaluated at the attachment line

and the Reynolds number describing the attachment line flow is given by

U e
s al

R = (4.2.2)
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Although there are no definite values of R which differentiate
al

between different flow regimes, Beasly (1973) suggests the following

values:

R. < 100 : no turbulent contamination possible
al (disturbances die out)

100 < R < 240 : turbulent contamination possible
al (disturbances will propagate)

R. > 240 : turbulent contamination
al (attachment line boundary layer unstable

to disturbances)

An additional complication occurs when the boundary layer

around a section of a swept wing starts at a (possibly) turbulent

attachment line but undergoes re-laminarisation as it passes through

the favorable pressure gradient leading up to the suction peak.

Launder and Jones (1968) suggested that re-laminarisation may occur

if the parameter K exceeds 5 x 10-6 , K being defined as
r r

v dUK = d (4°2°3)
r 2 ds

where U = velocity along inviscid streamline

dU
d- = velocity gradient along inviscid streamline.ds

In addition to the considerations described here, it is expected

that inflow turbulence and surface roughness may significantly influ-

ence flow transition and separation in the leading edge region of

wings and propeller blades.
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4.3 Prediction of Leading Edge Flow Behavior-Theory

The most important item to be determined from a viscous flow

analysis of the leading edge of a swept wing or propeller blade is

the point (if any) at which a part span vortex forms. If we accept

the hypothesis put forward by Kuchemann (1953) and Smith (1975) that

this point is where a short laminar separation bubble bursts, then

whatever prediction method is used should predict the bursting of

two-dimensional laminar separation bubbles as the leading edge sweep

approaches zero.

The problem appears far too complicated for a direct theoretical

assault, especially since instability and transition are involved, and

these phenomena continue to defy an army of researchers. Therefore

the approach taken here is to try to identify the relevant non-dimen-

sional parameters governing the problem and collect as much data as

possible upon which to regress, so that a semi-empirical model can be

developed to predict the occurrence of part span vortices.

Two major assumptions were made in developing the leading edge

flow model presented belowi

a) It is assumed that each point on the leading edge can be con-

sidered to be part of an infinite sheared wing (Appendix E)

having the same leading edge sweep and the same velocity

gradients along the surface normal to the leading edge.

This is equivalent to ignoring flow gradients along the

direction of the leading edge: only those gradients normal
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to the leading edge are assumed to matter. While it seems

that spanwise gradients should be important at the leading

edge of a low-aspect ratio wing or propeller blade tip, it

is far from obvious how to include them in the model.

b) The attached flow inviscid load distribution calculated in

Section 3.9 is used as input to the iscous flow calculations.

Since the presence of a part span vortex radically alters

the load distribution on the wing or propeller blade, it would

seem necessary to iterate between the viscous leading edge

analysis and a potential flow calculation which included the

part span vortex, until convergence is obtained. There are

two justifications for not doing so. Dixon and Sampath

(1978) tried this approach in a very elaborate model for

predicting flow separation on wings with round edges and

found no convergence possible. They finally concluded that

the leading edge boundary layer should be calculated only

once, using the attached flow velocity distribution (their

methodology has not been adopted for the present work due to

excessive computing time and inconclusive results). A

second reason for neglecting viscid-inviscid iteration is

that a part-span vortex has little effect on the wing

pressure distribution inboard of it, so the inviscid pressure

distribution calculated assuming completely attached flow,

is probably quite accurate inboard of the actual part span

vortex location.
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As noted above, the flow at any point of the leading edge is

assumed to be equivalent to that along an infinite sheared wing having

the same leading edge sweep angle relative to the flow and the same

distribution of the inviscid velocity component along the surface

normal to the leading edge. If we make the further assumption that

the leading edge region of a wing or blade section in a plane normal

to the leading edge (Fig. 4.3.1) can be satisfactorily represented

by a parabola having the same leading edge radius, then the surface

velocity component normal to the leading edge in inviscid flow can

be calculated using the equations in Appendix F. The only quantity

remaining to be specified is the position of the stagnation point

on the section normal to the leading edge (position of attachment

line on infinite sheared wing). The descriptor used in the current

work is the suction force per length of leading edge, F This is

convenient because calculations of the attached potential flow using

thin wing theory (Appendix A) yield the leading edge suction force

directly. A non-dimensional leading edge suction force coefficient

is defined as

F

s 1 2 
¥pU r2 n n

where U = component of inflow velocity normal to leading edge

r = radius of leading edge in plane normal to leading edge

Note that C does not contain A.s
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The proper Reynolds number for describing the leading edge flow

on swept wings was determined to be

U r
n

R le= (4.3-.2)
le V

While it might be argued that Un is the proper velocity to use, in

accordance with infinite sheared wing theory, it must be remembered

that the equations for the chordwise and spanwise components of the

flow on a sheared wing only uncouple in the cases of inviscid flow

or an attached laminar boundary layer. Once separation or turbulence

appears the chordwise and spanwise flow velocities interact. Since

we are concerned about leading edge flows involving separation and

transition to turbulence it appears that U is the proper velocity

to use in forming a leading edge Reynolds number.

4.4 Prediction of Leading Edge Flow Behavior -
Correlation of Experimental Data

Wind tunnel data for swept wings [Black (1953), Garner and

Bryer (1957), Garner and Walsh (1960), Garner and Cox (1961), Woodward

and Lean (1971), Garner (1972)] was collected and analyzed using the

following procedure:

a) For a given wing geometry, free stream Reynolds number,

and angle of attack, the attached potential flow load

distribution was determined using a vortex-lattice computer

program very similar to the one used for the global propeller

analysis.
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b)_ Te following quantities were computed at a series of points

along the leading edge:

i) A - leading. edge sweep angle

ii) R8 - Reynolds number of attachment line flow (Eq. 4.2.2)
a!

iii) K - relaminarisation parameter (Eq. 4.2.3)

iv) Cs - leading edge suction force coefficient (Eq. 4.3.1)

v) Rle - leading edge Reynolds number (Eq. 4.3.2)

c) The values of the above quantities were determined at the

point along the leading edge where the part span vortex

originiated.

d) The above process was repeated for a variety of different

wings at different free stream Reynolds numbers and different

angles of attack. The values of the parameters at the part

span vortex separation point were cross plotted in various

ways in a search for some sort of correlation.

The best correlation between parameters was obtained between C
S

and Rle, as expected. The process used to generate one data point for

the final C vs. R, plot is shown in Fig. 4.4.1, and all of the re-
s .Le

sulting data points are shown in Fig. 4.4.2. The scatter in the data

is discouraging but not surprising, given the strong influence of

surface roughness and turbulence shown for the 49.40 swept wing. There

are inaccuracies in estimating Cs also, since the influence of the wing

boundary layer was not considered in determining the attached flow

loading distribution, and Kuchemann (1955) has shown that the influence
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of the boundary layer increases with sweep. Nevertheless, there is a

clear correlation between R e and the computed Cs at the point where

the part span vortex separates from the wing. No significant correla-

tion could be found involving A, R or Kr , although in some cases
al

a high value of R (indicating possible turbulent attachment line
al

flow) occurred simultaneously with a high value of Cs at separation,

which is to be expected.

Three other curves are shown in Fig. 4.4.2. The solid line is

taken from Ridder (1974) and represents the results of a series of

tests on two-dimensional airfoil sections. The line plotted is the

maximum attainable leading edge suction force coefficient Cs (just

before flow breakdown occurs) versus leading edge Reynolds number

Rle. For the portion of the curve to the left of the knuckle

(R. < 8.6x 10 ) the cause of the flow breakdown is bursting of a
±e

short laminar separation bubble. To the right of the knuckle

(RP, > 8.6 x 10 ) the cause of flow breakdown is turbulent separation

behind a short laminar bubble.

The line across Fig. 4.4.2 at C = 6.5 is the lower limit for

the formation of laminar separation bubbles near the leading edge of

a two dimensional section. This line was calculated using the velocity

distribution around a parabolic leading edge (Appendix F) and the

laminar boundary layer separation criterion developed by Stratford

(1957a). This criterion is independent of Reynolds number, as it

should be.
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The dashed line is the computed Cs at which turbulent boundary

layer separation is predicted to occur near the leading edge of two

dimensional sections. This calculation was made using the inviscid

velocity distribution around a parabolic leading edge and the turbu-

lent boundary layer separation criterion due to Stratford (1957b).

The fact that both two-dimensional experimental data and the

computed turbulent separation line pass through the experimental

points for flow separation on swept wings is extremely encouraging.

This appears to indicate that C and Re are proper descriptors for

the state of the leading edge flow on both swept and unswept wings.

Other factors certainly influence the leading edge flow behavior,

such as R K , spanwise pressure gradients, surface roughness,

a!
and inflow turbulence; but the limited amount of detailed swept

wing flow data available makes a correlation with these parameters

difficult or impossible at present. It seems clear, however, that

the suction force coefficient C and leading edge Reynolds number

R.e are the most important parameters to consider.

Putting a line through all of the data shown in Fig. 4.4.2

results in a sort of "universal curve" for predicting the onset of

leading edge flow breakdown, which is presented in Fig. 4.4.3. If

the leading edge flow at some point on a wing has a computed Cs

lying above the solid line in Fig. 4.4.3, then flow breakdown is

expected. If the computed Cs lies below this limiting curve, then

a short laminar separation bubble is predicted to occur. Applying
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this procedure to the case of propeller blades, good results are

obtained in predicting the occurrence and origin of part span vortices,

as shown in Chapter VI.

The dashed curve in Fig. 4.4.3 represents the level of suction

force remaining after leading edge flow breakdown occurs. This curve

is taken from Ridder (1974) and represents two-dimensional airfoil

data only. The importance of this curve will become clear in Chapter

V, but for now it suffices to say that swept wing data must be obtained

to see if this curve holds for three dimensional wings also. At

present this curve must be considered as tentative onlyo
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V. Modeling of Tip Region Separated Flow

5.1 Physical Description

As shown in Chapter IV, heavily loaded wings and propeller blades

often shed vorticity into the fluid from the leading edge as well as

the trailing edge. Since the vorticity shed from the leading edge

passes very close to the wing or blade, it is essential to correctly

determine the strength and location of this shed vorticity in order to

determine the load distribution on the blade.

Figure 4.1.10 (page 65) shows a heavily loaded propeller with

a very strong part span vortex being shed from the leading edge. While

it may appear that vorticity is being shed from only one location on

the leading edge in this case, vortex shedding is actually occurring

along the entire length of the leading edge outboard of the initial

separation pointb The vorticity shed from the leading edge then rolls

up into the part span vortex core, so that the circulation around the

core increases in the outward (downstream) direction.

At propeller loadings less severe than that shown in Fig. 4.1.11

(operation closer to design J), the initial separation point moves

outward on the blade, and the strength of the vorticity shed from the

leading edge is reduced. Perhaps more importantly, the tendency for

the vorticity shed from the leading edge to toll up tightly is reduced.

While adequate photographs of this phenomena are not available, detailed

visual observations in the MIT Variable Pressure Water Tunnel of two

different model propellers indicate that the tendency toward strong
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rollup of the leading edge shed vorticity is reduced as the propeller

loading is reduced. Flow visualization was accomplished by noting the

trajectories of minute cavitation bubbles emanating from nicks in the

blade leading edges. Hence, it would appear that for many cases of

interest (operation not too far away from design J) the vorticity

shed from the blade leading edge tends to resemble a vortex sheet

rather than a tightly rolled up vortex core. Ideally, any model used

to represent this separated flow should indicate the basic form of

the shed vorticity (sheet or core) as part of the solution.

The amount of vorticity shed from the leading edge of a propeller

blade or wing is determined by the nature of the flow at the leading

edge. If the leading edge is sharp it is appropriate to impose a

Kutta condition there to insure that velocities near the leading edge

remain bounded. This is sufficient to determine the amount of vorticity

shed from the leading edge using a wide variety of theoretical flow

models. In fact, there are a tremendous number of papers in the

aeronautical literature dealing with flow separation from the leading

edges of low aspect ratio delta wings (see Figs. 4.1.4-4.1.6), and

almost all utilize a leading edge Kutta condition in an inviscid flow

model to predict the flow around the wing. In many cases this is

quite a reasonable assumption: delta wings on supersonic aircraft

tend to be quite thin and have very small leading edge radii.
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However, propeller blades typically have generous leading edge

radii to delay sheet cavitation inception so that a Kutta condition

at the leading edge is inappropriate. The vortex shedding rate is

actually determined by the details of the viscous flow near the leading

edge. Just as in the leading edge separation problem discussed in

Chapter IV, a frontal assult on the leading edge viscous flow problem

for the purpose of determining the vortex shedding rate does not seem

warranted at this time. A semi-empirical approach is utilized here,

as in Chapter IV. Section 5.2 (below) shows that the amount of vorti-

city shed into the flow once leading edge flow breakdown occurs can be

related to the residual leading edge suction force. For present pur-

poses this is taken from an empirical correlation (the dashed line in

Fig. 4.4.3, pg. 83).

Once the amount of vorticity shed from the leading edge is deter-

mined, the major problem in completing the flow solution is to deter-

mine the proper trajectory of the shed vorticity as it passes close to

the blade surface. The proper boundary condition for the shed vortex

sheet is that there is no pressure jump across ito For the inviscid

steady-flow model used here this is satisfied if

x V = 0(5.1.1)

everywhere on the sheet; i.eo, the local vorticity vector must be

parallel to the local velocity vector everywhere on the sheet in order

for the sheet to be force-free.
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The vortex sheet shed from the leading edge causes significant

induced velocities on the blade, which will change the vorticity distri-

bution on the blade required to satisfy the zero normal velocity bound-

ary condition. Conversely, a change in vorticity distribution on the

blade will change the velocity field seen by the free vortex sheet,

and hence its correct (force-free) position. It is necessary to use

an iterative approach to solve this non-linear problem, switching back

and forth between satisfying the zero normal velocity boundary condition

on the blade (determining the vortex strengths everywhere), and relaxing

the position of the free vortex sheet. Under-relaxation of the free

sheet position is usually necessary in order to make this process con-

vergent.

5.2 Existing Methods for Solving Lifting Wing Problems
with Leading Edge Separation

Several existing methods for determining the flow about slender

delta wings with leading edge separation are discussed below in order

to set the stage for the separated flow model utilized in the current

work.

a) Conical Flow Theories

The British aeronautical community (e.g. Smith (1957), Clapworthy

and Mangler (1974)) has devoted a great deal of effort toward analyzing

delta wing flows utilizing the conical flow assumption. This assump-

tion states that the flow in all planes normal to the direction of

flight is self-similaro The problem is attacked by solving the two-



-89-

dimensional Laplace equation in the-cross-flow plane by using conformal

mapping techniques (including the influence of the leading edge vor-

tices) and then including the streamwise interaction effects in the

downstream direction only. Since upstream effects cannot be included

the trailing edge Kutta condition is not satisfied. While much in-

sight has been gained by pursuing conical flow theory for delta wings,

the lack of applicability to more general geometries renders it useless

for the problem at hand.

b) Vortex Lattice Method of Kandil, Mook, and Nayfeh

Kandil, Mook, and Nayfeh (1976) presented a vortex lattice tech-

nique for determining the flow about wings with arbitrary planform,

camber, and angle of attack having leading-edge separation. The method

is restricted to sharp leading edges, so that a leading edge Kutta

condition may be imposed.

The method is based on the usual vortex lattice lifting surface

theory such as that described in Chapter III. In addition to the

horseshoe vortices and associated control points on the wing surface,

there are "leading-edge horseshoes" which extend up the trailing wake

to the wing trailing edge, through the wing to the leading edge, and

then out of the leading edge and extending downstream to form part of

the leading edge vortex sheet (see Fig. 52.1). By arranging the

whole vortex system into horseshoe vortices Kelvin's theorem is

automatically satisfied. For each leading edge horseshoe vortex a

control point is added at the leading edge of the wing; requiring the
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total normal velocity to be zero there is equivalent to enforcing a

leading edge Kutta condition.

The following iterative approach is used to solve the non-linear

boundary value problem:

1) Initial positions for the discrete vortex segments representing

the shed vortex sheet are selected.

2) A matrix A of influence coefficients is computed from the

Biot-Savart law: element Aij represents the normal velocity

induced at the j'th control point by a unit strength of the

i'th horseshoe vortex (either in the wing, or a leading edge

horseshoe vortex)

3) The strengths of all of the horseshoe vortices are determined

by solving the set of simultaneous equations:

NCP

j=l

where

Fr

V .
n]

Ai. r .= n .j , i = 1, . . . , NCPij J nj (5.2.1)

= strength of the j'th horseshoe vortex

= normal component of the inflow velocity at the j'th
control point

NCP = total number of control points

4. With the strengths of all of the discrete vortices known,

the velocity at the upstream end of each vortex segment in

the shed vortex sheet is computed, and the segment is aligned
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with this computed velocity. Since the changing geometry of

the free sheet changes the calculation of the velocity, this

is an iterative procedure. This process is continued until

the shed vortex sheet is force free for the assumed vorticity

distribution on the wing.

5) Steps 2), 3), and 4) are repeated until the displacement of

the free sheet vortex segments during step 4) is below a

certain tolerance and a converged solution is obtained.

Fig. 5.2.2 shows a converged solution using this approach for a flat

delta wing with aspect ratio = 1.46 and angle of attack = 140°. Note

that the wake is represented by straight semi-infinite segments at

some point behind the trailing edge in order to reduce computation

time. This is reasonable because the minute details of the wake

geometry behind the trailing edge do not significantly affect the

loads on the wing.

c) Vortex Lattice Theory of Mehrotra and Lan

Mehrotra and Lan (1978) developed a vortex lattice theory for

delta wings with leading edge flow separation which is quite similar

to that developed by Kandil, Mook, and Nayfeh (1976). The unique

feature in Mehrotra and Lan's work is that any arbitrary amount of

leading edge suction force can be specified as part of the solution,

and not just the case of zero leading suction force (leading edge

Kutta condition). Mehrotra and Lan admitted that they did not know

how to establish what the correct leading edge suction force should
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(From Kandil, Mook, & Nayfeh, 1976)

Figure 5.2.2 - Typical solution of wake shape for

a delta wing using Kandil, Mook, &

Nayfeh model
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be for a rounded leading edge with partial separation. The semi-

empirical correlation for leading edge suction force developed in

Chapter IV (Fig. 4.4.3, pg. 83) can be used to supply this missing

information.

Section A.3 in Appendix A shows that the leading edge suction

force on a three-dimensional wing can be calculated from a vortex

lattice program if cosine spacing of the bound vortices over the chord

is utilized. In this case the suction force per unit length of leading

edge is proportional to the square of the normal velocity computed at

a leading edge control point ahead of the first bound vortex (Fig.

5.2.3). This calculation can be inverted to yield the proper normal

velocity at the leading edge control points so that the desired leading

edge suction force is attained.

When considering usual attached flow (no leading edge separation)

the leading edge control points do not enter into the simultaneous

equations to determine the bound vorticity distribution. The normal

velocity at the leading edge control points is calculated after the

vortex strengths are determined so that the leading edge suction force

can be calculated. If the normal velocity is to be specified at

several leading edge control points as part of the solution, then an

equal number of leading edge horseshoe vortices of unknown strength

must be included so that there are as many unknowns as there are

equations. The resulting simultaneous equations can be expressed
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in matrix form as follows

A r = B

<- ICP Ad-- + LCP 

A1 1 I A12

A21 1 A22
A2 1 ! A2 2

1 31

B2

(5.2.2)

(5.2.3)

A = matrix of normal velocity influence coefficients
(see Eq. 5.2.1)

A11 = submatrix expressing influence of regular horses]
on regular control points

A 12 submatrix expressing influence of leading edge he
shoes on regular control points

A21 = submatrix expressing influence of regular horses"
on leading edge control points

A22 = submatrix expressing influence of leading edge he
shoes on leading edge control points

r 1 = vector of regular horseshoe strengths

B1

B2

ICP

LCP

hoes

rse-

hoes

:rse-

= vector of leading edge horseshoe strengths

= vector of the negative of the inflow velocity at the
regular control points

= vector of desired induced velocities at the leading
edge control points

= number of regular control points

= number of leading edge control points

or

ICP

LCP

where

where

m

l

r.

.
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Note that solving the attached flow problem without leading edge

separation present is equivalent to solving the matrix equation

All · rl = B1 (5.2.4)

The leading edge horseshoe system is superimposed on the regular

vortex lattice grid. A typical leading edge horseshoe is shown by

points A through J in Figure 5.2.4, with the initial geometry shown

by dashed lines and the final (force-free) geometry shown by solid

lines. Points A through D lie along the usual trailing vortex wake,

and segment D-E coincides with the chordwise legs of the usual horse-

shoes on the wing. Points E, F, G, and H lie in the wing plane. The

location of segment E-F is ahead of the first bound (spanwise) vortex

and is given by

XE = x + 1 cos + (5.2.5a)

c F s rr/2xF =xlO x N+ c1 - 31 (5.205b)
F X1 F N+

where the subscripts E and F refer to the points under consideration.

The segments F-G and G-H are of the same length. Segments H through

J form part of the vortex sheet shed from the leading edge.

The iterative scheme used by Mehrotra and Lan to solve the non-

linear boundary value problem is essentially identical to that used

by Kandil, Mook, and Nayfeh (1976) and described above in part b).

The calculated geometries of the vortex sheet shed from the leading
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edge are very similar for the two methods (Fig. 5.2.2)

Both of the vortex lattice methods described here yield adequate

results for the lift, pitching moment, and pressure distribution on

sharp-edged delta wings at high angles of attack. The method of

Mehrotra and Lan has the added advantage of being able to deal with

only a partial loss of leading edge suction, as opposed to the complete

loss implied by imposing a leading edge Kutta condition.

However, neither one of these methods works very well at low

angles of attack.. The major problem is that the calculation of

velocities at arbitrary points near the wing surface is required when

lining up the segments of the leading edge vortex sheet with the flow.

Unfortunately, the velocity field very close to the wing is grossly

distorted because of the use of line vortices to represent the vortex

sheet in the wing. Just as the control points on the wing must be

very carefully located to get the correct normal velocity on the wing

due to the vortex sheet, great care must be taken in computing induced

velocities at points near the wing. Another problem with the vortex

lattice methods described here is that at low angles of attack the

vortices representing the leading edge vortex sheet may interact strongly

with each other and either orbit around each other or attempt to force

one of the vortices to pass through the wing surface. Many checks

must be built into the free sheet alignment algorithm to make sure

that such chaos does not occur. As a result, there may be many cases

where the free sheet alignment algorithm fails to converge to a reason-

able solution, or indeed, fails to converge at allo
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5.3 Separated Tip Flow Model

Because the shed vorticity from the leading edge tends to remain

as a vortex sheet for the operating conditions of interest (operation

near design J), an attempt was made to use a model for the shed vorti-

city which represents a vortex sheet rather than a tightly rolled up

vortex core. This was done by placing a replica of the vortex lattice

used to represent the blade tip at a small distance above the suction

surface of the blade (dashed lines in Fig. 5.3.1). This auxiliary

lattice is a discretized representation of the leading edge vortex

sheet. Vorticity "enters" this free sheet lattice through short seg-

ments connecting the free sheet lattice to the leading edge blade

lattice. Instead of actually moving the vortex segments in the free

sheet.laterally to render them force-free, the vorticity is shunted

back and forth between the segments of the free sheet lattice as the

vorticity moves downstream so that the resulting vorticity vector at

each node parallels as closely as possible the velocity vector at that

node. This is referred to as lateral vorticity movement, and is

discussed in detail in Appendix G. The height of the free sheet lattice

may also be varied, as discussed in Section 5.4.

All calculations of induced velocities on the free sheet are made

at the free sheet "control points"; that is, where the control points

would be if the the free sheet lattice were the blade lattice. These

are the correct locations for calculating the influence of the free

sheet on itself. These are also the optimum locations for calculating
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the induced velocity due to the blade. The induced velocities at

the free sheet nodes (required for directing the lateral vorticity

movement) are obtained from the induced velocities at the free sheet

"control points" by two-dimensional interpolation.

Using this discretized vortex sheet, the portion of a leading

edge horseshoe representing part of the shed sheet no longer consists

of a single line of short vortex segments passing over the blade sur-

face, such as that shown in Fig. 5.2.4 (pg. 98). Instead, the free

sheet portion of a leading edge horseshoe vortex consists of a number

of spanwise and chordwise vortex segments in the free sheet, as shown

in Fig. 5.3.2. The relative weights of the segments making up the

horseshoe are assigned such that Kelvin's theorem (conservation of

circulation) is satisfied at each node in the free sheet lattice, and

so that the equivalent single vortex line (Fig. 5.3.2) is aligned as

closely as possible with the local vorticity vector along its length.

Aside from the novel approach used to represent the shed vortex

sheet, the rest of procedure was very similar to Mehrotra and Lan's

(1978) method. Use was made of the capability for specifying an

arbitrary leading edge suction force distribution, and the set of

equations used to solve for the vortex strengths for an assumed vortex

system geometry was identical to that given by Eq. 5.2.3.

It was hoped that the numerical problems encountered at low angles

of attack when using a vortex lattice approach such as those discussed

in Section 52 would be circumvented by this representation of the
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vortex sheet shed from the leading edge of the blade. However, this

scheme did not work at all. The lateral vorticity movement algorithm

described in Appendix G kept moving all of the shed vorticity to the

inboard edge of the sheet, whereas in reality the shed Vorticity tends

to remain close to the leading and tip edges of the blade. In hind-

sight, this result was to be expected. The direction of the radial

velocity above the suction side of the blade tip is inward in the

whole tip region, and this is responsible for the tip vortex being dis-

placed slightly inward from the extreme blade tip° It is the rolling-

up of the leading edge vortex sheet which is responsible for the shed

vorticity concentrating near the leading and tip edges of the blade.

This may be seen by examining the flow near the leading edge of the

blade, as shown in Fig. 5.3.3. It is the outward induced velocity

on the inboard portion of the sheet caused by the outboard portion of

the sheet that is responsible for the shed vorticity remaining near

the leading edge. Also, a strong rolling up is associated with an

axial flow along the vortex "core" that causes entrainment and further

concentration of the vorticity, as pointed out by Mc Mahon (1967) and

Cummings (1968).

Hence, although the rolling up of the free sheet at operation

near design J is not expected to be dramatic, it appears that the

modeling of the rolling up process is important in calculating the

correct trajectory of the shed vorticity. The vortex lattice methods

described in Section 5.2 do allow the free sheet to roll up (see Fig.
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5.2.2, pg. 93) but as already pointed out these methods do not work

well at low angles of attack because of the extremely close approach

of the discretized sheet to the discretized blade.

Because the free sheet is so close to the blade surface for the

operating conditions under consideration, the neglect of the no-slip

boundary condition on the blade surface may be a serious omission.

If this is true then no potential flow model, no matter how elaborate,

will correctly predict the features of the real flow. In any event

the disparate length scales involved in simultaneously modeling the

free sheet roll up and the flow over the rest of the blade tip would

cause problems in most potential flow modeling schemes.

Since the major interest in the current thesis lies in modeling

the flow around the blade tip when the shed vorticity does not roll

up too strongly, a "first order" free sheet model has been implemented.

In this model of the sheet the free vorticity is shed from the leading

edge and moves back over the blade in the chordwise direction only

(no change in radius). The height of the free sheet above the blade

camber surface is given by

Height above camber surface =

1/2 blade thickness + blade boundary layer thickness (5.3.1)

The resulting first order free sheet geometry is shown in Fig. 5.3.4o
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5.4 Tip Flow Solution Procedure

The complete procedure used to solve the boundary value problem

for the flow around a propeller blade tip is outlined below. It is

assumed that the global propeller analysis has already been completed

and that a local tip flow domain has already been selected, as dis-

cussed in Sections 3.1 through 3.8.

a) A local tip flow solution using a fine vortex lattice is

done, assuming no flow separation from the leading edge of the

blade. This is discussed in Section 39.

b) Using the singularity distribution determined above, the

normal velocities at the leading edge control points on

the blade tip are calculated. As shown in Appendix A, this

allows the leading edge suction force coefficient C to be
s

determined along the leading edge.

c) Fig. 4.4.3 (pg. 83) is consulted to determine which portions

of the leading edge have suffered leading edge flow break-

down. The assumption is made currently that vorticity is

shed all along the leading edge outboard of the innermost

separation point. This assumption appears to be valid for

propellers having any kind of pitch distribution except for

extreme unloading of the tip. For those sections of the

blade predicted to have flow separation, the dashed line in

Fig. 44.3 is used to estimate the residual leading edge

suction force coefficient.
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d) For each strip of the blade predicted to have leading edge

flow separation, the required normal induced velocity at

the leading edge control points is determined from the

estimated residual leading edge suction force coefficient

determined in c).

e) The "first order" model of the leading edge vortex sheet

(Fig. 5.3.4) is set up covering all chordwise strips having

leading edge separation. The height of the sheet is set by

Eq. 5.3.1, using a simple two-dimensional zero pressure

gradient turbulent boundary layer solution to estimate the

blade boundary layer thickness (this is deemed sufficiently

accurate for the current free sheet model). This first order

free sheet model comprises the shed sheet legs of the leading

edge horseshoes (Fig. 5.2.4).

f) The set of simultaneous equations (Eq. 5.2.3) is set up

and solved to determine the strength of the blade vortex

sheet and the shed vortex sheet. Since the free sheet

geometry is not subsequently updated in an attempt to

render it force free, this is in fact the final solution.

No iteration is performed.
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5.5 Determination of Blade Forces

The forces on the blade tip in the separated flow solution are

calculated in a manner very similar to that used in the global solu-

tion and explained in Section 3.7. There are additional induced

velocities due to the leading edge vortex sheet which must be included.

The leading edge suction force for those portions of the leading edge

experiencing flow separation is taken from Fig. 4.4.3.
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VI. Numerical Results and Comparison With Experiments

6.1 Propeller Performance Analysis (Global Problem)

A series of computations were made to determine the accuracy of

the propeller analysis procedure. For all of the computations described

here the appropriate values of the ultimate wake radius (r ), ultimate

hub vortex radius (r h), and tip vortex contraction angle ( ) were
c

determined from the experimental measurements of Min (1978). The two

propellers described here are members of the NSRDC series of skewed

propellers [Boswell (1971), Nelka (1974)]. Propeller 4381 is the

unskewed parent propeller while propeller 4498 has 72 degrees of warp

(72 degrees of midchord skew in the projected view, with the skew-

induced rake removed). The design advance coefficient for both pro-

pellers is J = 889. A vortex lattice representation for 4381 is shown

in Fig. 6.1.1, while 4498 is shown in Fig. 3.5.1 (pg. 43).

The importance of the correct trailing vortex wake pitch is

illustrated in Fig. 6.1.2. The alignment of the wake with the flow

is done using the algorithm described in Section 3.3 and Appendix B.

Excellent agreement between measured and computed thrust is usually

obtained if the wake geometry is correctly aligned with the flow,

even at very low J values.

The influence of different grid arrangements on the predicted

performance of 4381 is shown in Table 6.1.1. For each lattice arrange-

ment the first number refers to the spanwise number of panels on the

key blade, while the second gives the chordwise number of panels on
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Figure 6.1.1 - Vortex lattice arrangement
for propeller 4381 (8 x 8 grid)



0
(,

0
4-J,I

03

0a4)
0rUa

040a)q~41)

mc

44

,O

0

LU

a

0t

0*

IL

I,( <9~"I

)*

-113-

('4

'I
l

a

w

wI0-1i-

LI

-I

\I0



-114-

the key blade. For these and all other computations shown here the

blade section viscous drag coefficient was taken to be 0.007.

Table 6.1.1

Effect of Lattice Arrangement on Predicted
Performance of 4381, J = .889

Lattice KT K

8 x 8 .2048 .04196 .691

12 x 8 .2049 .04196 .691

8 x 12 .2055 .04161 .699

12 x 12 .2054 .04160 .699

Since these results are quite close and the 8 x 8 grid is much less

expensive to use than the others, and 8 x 8 grid is used for most

routine calculations.

Measured and computed open-water characteristics for propellers

4381 and 4498 are shown in Figures 6.1.3 and 6.1.4. Agreement is

seen to be satisfactory, considering the spread in the experimental

results. The under-prediction of torque for 4498 (720 warped prop)

may be related to the fact that swept vortex lattices under-predict

the induced drag of swept-back wings, as noted by Kalman, Giesing,

and Rodden (1970) and Tulinius et al (1972).
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6°2 Attached Flow Tip Solution

The validity of the global-local problem separation was established

by extensive numerical experimentation. Some typical results are

presented here.

Fig. 6.2.1 shows the predicted bound circulation distribution for

propeller 4498 operating at design J. The solid line is the bound

circulation computed using an 8 x 8 grid in the global solution. The

blade tip was "cut off" at r/R = .788 and several different lattice

arrangements were used on the tip to solve the attached flow tip

problem, yielding the results shown in Fig. 6.2.1. The circulation

near the tip is artificially high in the global solution because of

the large tip chord used in the global vortex lattice (compare Figs.

3.9.1 and 3.9.2, pg. 50). There is less discrepancy in the predicted

forces and moments on the tip of the blade, as shown in Table 6.2ol.

This may be due to the method of calculating blade forces, discussed

in Section 3.7. It is assumed there that the average velocity over

the length of a line singularity in the lattice is given by the

velocity at its midpoint. Since the velocity gradients are large in

the tip region, this assumption is only valid if short line singularities

are used in the lattice, as in the tip solution. This appears to be

responsible for the fact that the discrepancies between global and

local solutions are not the same for circulation and forces.
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Figure 6.2.2 shows the predicted chordwise distribution of bound

vorticity (proportional to the pressure jump across the blade) at

r/R = .835 for the global and local solutions. Agreement is quite

good.

These results indicate that the present technique of splitting up

the problem is a viable method for obtaining a high resolution tip

solution without the computational expense associated with a high

resolution solution over the whole blade.

6.3 Prediction of Leading Edge Separation Point

Very little data is available for comparing predicted leading

edge separation points with experimentally determined values. There

is no full scale data available. Obtaining model scale data is

limited by two factors:

a) Very few model propellers are available having accurately

finished (and undamaged!) leading edges. The leading edge

radius near the tip of a model propeller is only several

thousandths of an inch.

b) The only technique currently available for leading edge

flow visualization is to induce cavitation in the leading

edge vortex. Unfortunately, there is only a limited range

of operating conditions where other forms of cavitation

(especially leading edge sheet cavitation) do not obscure

leading edge vortex cavitation. This problem is especially

severe at operation near design J, where the vorticity shed

from the leading edge is weak.
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The available data was taken in the MIT Variable Pressure Water

Tunnel with two propellers: #4498, and #4119, which is a three-bladed

unskewed constant pitch propeller designed for J = .833. (The global

solution vortex lattice for 4119 is shown in Fig. 3.2.1, pg. 32)

Fig. 6.3.1 shows the observed and calculated results. The vertical

bar indicates the variability between different blades on the same

propeller and the uncertainty involved in establishing the separation

point from the cavitation patterns. Agreement is deemed to be

satisfactory, but much more data is needed to validate the model.

The current viscous leading edge flow analysis qualitatively

explains the observed phenomenon that skew delays the inception of

leading edge sheet cavitation [Boswell (1971)]. Consider two pro-

pellers having the same chordlengths, section thicknesses, and load

distribution; but let one be highly skewed and the other unskewed.

The leading edge radius of the normal section (rn) varies inversely

with leading edge sweep angle A (Eq. E.2):

1
r (6.3.1)
n cosA

and the component of the inflow velocity normal to the leading edge

(Un ) varies as the cosine of the sweep angle A squared:

U - cos A (6.3.2)
n

Hence the leading edge suction force coefficient C , defined by
s

F

s 1 2Un rn2 (4.3.1)p U rn n
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varies like

C - 1/cos A (6.3°3)

for the two otherwise identical propellers. Similarly, the leading

edge Reynolds number (Eq. 4.3.2) varies as

Rle ~ l/cos A (6.3.4)

Referring to Figure 4.4.3 (pg. 83), it can be seen that the propeller

with the higher leading edge sweep A (the highly skewed propeller)

will operate with its sections closer to the limiting suction force

line in Fig. 4.4.3. So for a given J (J < Jdes ), the highly skewed

propeller will have leading edge separation extending further inboard

than on the unskewed propeller. Since the presence of leading edge

separation knocks down the minimum pressure peak at the leading edge

which is responsible for leading edge sheet cavitation, we may infer

that the highly skewed propeller will be less susceptible to leading

edge sheet cavitation than its unskewed partner, for a given loading

and cavitation number. This phenomenon has been observed by Boswell

(1971) and others.

Figure 4.4.3 also indicates that there may be significant Reynolds

number ("scale") effects on leading edge cavitation inception. Argu-

ments similar to those given above show that leading edge separation

will occur to a greater extent on a model propeller than on its full

scale geosim, as shown in Figures 6.3°2 and 6.3.3, when both are

operating at the same advance coefficient. Leading edge sheet cavita-



-125-

SEPARATION4 BUBBLE BEAKDOWN -
FAILUR OF FLOW TO RATTACH

LONG 5EPARATION BUBBL -
KNOCKI Ov4NN LAD0Ns EDGE

SUCTON PEAK

SORT LAMlNj
SEPARATION 8L
SMALL EFFECT
LEADING E)6E
SUCTION PEAV

4OARY
AYER

LAYER

(BLADE LOADING HIGHER TWAN D5E6-ED)

Figure 6.3.2 - Schematic of suction side flow on
model propeller blade

046cE



-126-

FLOW TURBULENT NEAR LEAOIN6 ED6E -
DUE TO LOCAL INSTABILITIES AND
TRAtiSLTtON OR OUE 'ro SPANwViSE
'TURBULENT COkTAMINATON

URBULENT SEPARATION

SAK

¥

540RT LAMINAF
SEPARATtON BUS

LAMINAR BOUN

- I

(BLADE LOADING HIC64ER THAN DESIGNED)

Figure 6.3.3 - Schematic of suction side
flow on full-scale propeller
blade

J r i C WA



-127-

tion will be inhibited on the model ropeller because of the greater

extent of the leading edge where the minimum pressure peak has been

reduced due to flow separation. This means that model tests should

give optimistic predictions of full scale cavitation behavior, and

indeed this often occurs.

6.4 Tip Solution Including Leading Edge Separation

A calculation was done using the theory outlined in Section 5.4

in order to predict the flow around the tip of the blade of propeller

4498, when operating at J = .800 (Design J = .899). At model scale,

leading edge separation was predicted to occur outboard of r/R = .85.

Fig. 6.4.1 shows the predicted bound circulation distributions, and

it is seen that the presence of leading edge separation unloads the

extreme tip of the blade and increases the loading inboard of the

leading edge vortex sheet. Fig. 6.4.2 illustrates the predicted

strength of the vortex sheet shed off of the leading edge.

Figures 6.4.3 through 6.4.10 show the computed chordwise load

distributions at the radii at which calculations were performed. As

expected, the major effect of the separated flow is to reduce the

loading near the leading edge in the region where leading edge flow

separation is expected to occur. The severe dip in the loading near

the trailing edge at r/R = .993 (Fig. 6.4.10) is probably an anomoly

due to the inadequate representation of the leading edge vortex sheet

as it passes over the trailing edge of the tip.
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Figure 6.4.3 - Predicted chordwise loading
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Figure 6.4.4 - Predicted chordwise loading
at r/R = .709
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Figure 6.4.5 - Predicted chordwise loading
at r/R = .778
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Figure 6.4.6 - Predicted chordwise loading
at r/R = .841
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Figure 6.4.7 - Predicted chordwise loading
at r/R = .896
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Figure 6.4.8 - Predicted chordwise loading
at r/R = .940
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Figure 6.4.9 - Predicted chordwise loading
at r/R - .973
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Figure 6.4.10 - Predicted chordwise loading
at r/R = .993
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The computed values of thrust and torque on the blade tip are

given in Table 6.4.1. The computed thrust is about the same for the

three solutions. This is encouraging, since the global analysis does

a good job predicting the propeller thrust over a wide range of J

values (Fig. 6.1.4). The change in computed torques may reflect the

difficulty in computing induced drag with a swept vortex lattice, which

was mentioned previously.

Table 64.1

Computed Thrust and Torque on Tip of 4498
Blade Outboard of r/R = .600, at J=.800

KF KM
x x

SOLUTION (thrust) (torque)

Tip Portion of
Tip Portion of -.04019 .007444
Global Solution

Attached Flow Tip
-.03996 .007249

Solution

Tip Solution with
Leading Edge Separation
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Unfortunately, there are no experimental data to compare with

these computations. At this advance ratio cavitation does not suffice

for flow visualization, while at lower J values (heavier propeller

loading) the first order representation of the leading edge vortex

sheet is inadequate. This may be seen in Fig. 4.1.11 (pg. 66), which

shows this propeller (4498) at J = .534. It is obvious that a model

of the leading edge vortex sheet which allows for roll-up is required

to model the flow at this advance ratio.
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VII. 'Conclusions and Recommendations

7.1 Conclusions

A numerical lifting surface theory is developed for the prediction

of the steady non-cavitating flow around marine propeller blade tips.

The global propeller analysis is sufficiently accurate and efficient

to be used routinely in propeller design and analysis work. The pro-

cedure used to calculate the correct pitch of the trailing vortex wake

eliminates the need to estimate this critical parameter for a given

propeller and operating condition. Unlike most other "vortex chasing"

procedures, the wake alignment algorithm developed here is sufficiently

inexpensive to run so that it can be used routinely. All experience

to date indicates that it is a very "robust" algorithm.

The decomposition of the tip flow analysis problem into global

and local problems allows for the calculation of a high resolution

tip solution without an undue penalty in computing time. Numerical

results indicate that this procedure is valid if the inclusion of

leading edge separation in the tip solution does not greatly alter

the load distribution near the separation between global and local

domains.

A viscous leading edge flow analysis is developed to predict the

point at which leading edge flow separation occurs and to estimate

the amount of vorticity shed into the flow at the leading edge. The

analysis is semi-empirical, and is based on swept wing and airfoil

section data. It appears to work well for the few cases tested. It
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is the only theory known to the author which explains the effect of

skew in delaying sheet cavitation inception. The analysis also indi-

cates a large Reynolds number ("scale") effect on sheet cavitation

inception which is consistent with experience.

For propeller operation not too far from design J, a first order

model for the leading edge vortex sheet is developed. Calculations

made using this first order model indicate a loss of loading near

the leading edge of the blade, a loss of bound circulation at the

extreme tip of the blade, and an increase of bound circulation inboard

of the leading edge vortex sheet. These features are consistent with

those found on swept wings having leading edge separation.

For operation at extreme propeller loadings a discrete vortex

representation of the leading edge vortex sheet (such as that shown

in Fig. 5.2.2, pg. 93) may be adequate to predict the flow quantities

of interest. For operation near design J, it is possible that no

potential flow model will correctly represent the leading edge vortex

sheet and its interaction with the blade, since the no-slip condition

at the blade surface may be significant in determining the interaction

of the vortex sheet with the nearby blade. Recent work by Shamroth

and Briley (1979) shows great promise in pursuing the goal of analyzing

the viscous flowfield around the blade tip using a reasonable amount of

computer time.
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7.2 Recommendations

1) Regression equations based on experimental data should be

developed so that the free parameters in the current wake

model (r , 6 ) can easily be estimated for a given propeller
c

at a given operating condition. The relevant parameters

to regress upon are probably P/D, J, total midchord skew,

and number of blades.

2) Refinements to the current wake alignment algorithm can

probably be developed from a more extensive correlation

of numerical results with experimental data obtained with

the Laser Doppler Velocimeter in the MIT Water Tunnel.

3) Possible problems calculating induced drag using swept

vortex lattices need to be investigated.

4) Much more data needs to be gathered and plotted on Fig.

4.2.2 (pg. 71) to improve confidence in the viscous

leading edge analysis developed in this thesis. In

particular, swept wing data on the amount of leading

edge suction remaining after flow separation is needed.

5) More data on leading edge separation on propellers is

needed at both model and full scale Reynolds numbers.

This will probably require new methods of flow visualiza-

tion.

6) An attempt should be made to develop a quantitative correla-

tion between leading edge suction computed using the current
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theory and observed cavitation inception behavior on model

propellers.

7) Comparisons should be made between measured blade pressure

distributions and those calculated using the current theory.

8) The model of the leading edge vortex sheet needs considerable

improvement. Short of a complete viscous analysis of the

tip region, a semi-empirical approach to setting the free

sheet geometry is probably the best way to proceed.
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Appendix A: LeadingEdge Suction Force and its Calculation

A.1 Leading Edge Suction Force in Thin Wing Theory

Thin wing theory is used in the present work to determine the

loading on the blades. This theory assumes that the effects of loading

and thickness are locally separable (loading is not really independent

of thickness in the propeller case because of the non-planar geometry),

and that the loading and thickness problems may be solved by placing

singularities on the camberline instead of the airfoil surface. These

assumptions work quite well everywhere over the foil except for the

leading edge, where singularities occur.

Consider the two-dimensional lifting flow over a flat plate as

shown in Fig. A.lolo The vortex distribution y(x) must be such that

there is no normal velocity on the plate,

PERTuRBATtONt L VELOCITIES
VORT EX
O1STRIBUTION ' ()

J & ,. , , , / _/. .. , , X

ok a L.E. CE..... mE.

Figure A.1.1 - Two-dimensional flat plate at
angle of attack

and y(x) must go to zero at the trailing edge (Kutta condition). The

A
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boundary condition can be written as

w y(x) dx = U sina, o-< x < c (A.l.l)

-0

where w(x) is the normal perturbation velocity. The solution for the

vortex distribution is

y(x) = 2 U sina / c-x (A.1.2)
x

The pressure jump across the foil will yield a force in the z-direction

only. Since lift and drag are defined relative to the undisturbed

free stream, the integration of normal pressures gives

C 2w sin a cos a
LN

CD = 2w sin a (A.1.3)
N

But in two-dimensional ideal flow, the drag should be zero. The

discrepancy lies in the disregard of the leading edge suction force.

From Eq. (A.1.2), the vortex distribution is singular at the

leading edge like (x) -1/2 Define a leading edge singularity parameter

C as

1/2

C lir{ Y(x)-j t= 2 Usin (A.1.4)
X_-~~~~~~~-O~~O ·
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Then the suction force (in the -x direction) is given by

2

Fs= pc (A.1.5)

Making this non-dimensional in the same way as the lift and drag

coefficients and resolving the leading edge force in the lift and

drag directions, we obtain

CL = 2w sin a

s

CD = -2w sin a (Ao1.6)
s

Adding the normal pressure and suction force contributions together

and retaining only second-order terms, one obtains

CL = 2w sin a cos a

CD = 0 (A.1.7)

as expected.

In thin airfoil theory this finite leading edge suction force is

the result of an infinitely low pressure at the leading edge (due to

the infinitely high velocity) acting over a zero thickness leading

edge. In reality this same force arises on thin foils from very low

pressures acting on small leading edge radii. For very thick foils

the suction force is actually distributed over a considerable extent

of the nose region, so that the term "leading edge suction" is somewhat

misleading. However, for the thin sections near the tip of propeller

blades, leading edge suction force is a very useful concept.
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A.2 Calculation of Leading Edge Suction for Two-Dimensional Foils

In order to determine the leading edge suction force on a 2D

foil, it is necessary to compute the parameter C:

1/2

C - lim y) j } (A 1.3)

While this could be estimated from any numerical solution for the

vortex distribution y(x), Lan (1974) discovered an alternative method

which turns out to be very useful in other parts of the current work.

The development given below is due to Lan (1974). The derivation

is given in terms of the vortex density y(x); the conversion to

discrete vortices ri. will be given subsequently. For convenience

we take U = 1 and c = 1.
co

The x-coordinate along the chord is transformed to the coordinate

by

x = (1 - cose)/2 , ( < < ) (A.2.1)

Eq. (A.l.1) for the downwash can then be written

r

-1 y(e' ) sin el de'
w(0) = rr y(0') sin ' do' (A.2.2)

Define

g(0) = (e) sin (A.2.3)
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and re-write Eq. (A.2.2) as

1

w(e) = jg() - g(e) d9'

7T

g(e) d e'
27 r cose - cos '

0

-1 g(e) - g() de' (A.2.4)
271 J cos - cos '

0o

g(e) does not have any square-root singularities because of the sin 

factor, and the integrand in Eq. (A.2.4) is finite everywhere. The

integral can be approximated as a finite sum by using the midpoint

trapezoidal rule:

g(e') - g(e) de'T cosO - cos 8'
o

N
AS', g((2k-l)A81/2) - g(8)

k cos e - cos ((2k-1)Ae1/2N)
k=l

N g ((2k-1 ) /2N)

-N 1_cos - cos((2k-1)7/2N)
k=l

g(e)

cos - cos((2k-1)T/2N) (A.205)

if we assume 8 80'.

It is desired to eliminate the last term in the above equation.
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This can be done by choosing control points (8 values) such that

N
7 1/(cos - cos((2k-1)r/2N)) = 0 (A.2,6)
k=l

The theory of Chebychev polynomials is useful for determining the

correct values.

Let Al, 2, . , XN be the zeros of TN(X Y, which is the

Chebychev polynomial of the first kind. Then for some constant A,

TN (k) = A(k-X 1) -X (-XN2 ) ) (A.2.7)

and using logarithmic differentiation

Ni
1 (_k = TN (X)/T (X) (A.2.8)

k%.=l k

Let X = cos8, then TN(cose) = cos N. The zeros of TN are then N k =

(2k-l) f/2, or

Xk = cos8k = cos((2k-1)/2N),. k = 1, 2, . o , N (A.2.9)

which are the values of at which g(8) is specified (see Ea. A.2o5).

In order to satisfy Eq. (A.2.6), we require

d dO sin N 0
TN ) (cos N) = N = (A.2.10)

which occurs when the control points ei satisfy

Ai = cos ei = cos(iw/N), = 1, 2, . . . , N-1 (Ao2.11)

For i=N, ei=r, and Eq. (A.2.10) shows that TN (A.) -N cos N andTNi~~~ N 1
2

TN (i)/TN(Ai) + -N . But this occurs when 8= or x=l, and g(0) isN 1 N ~~~~~~~~~~~~~~~~~. ~ ~
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zero there, so that the control points can be extended to the trailing

edge without invalidating Eq. (A.2.6). For i=O (the leading edge),

2
it can be shown from Eq. (A.2.10) that TN /TN + N . This allows the

computation of the leading edge suction parameter C, as shown below.

The unknown function y(e) may contain a square-root singularity

at =0. Assume for now that y(x) is actually representing flat plate

loading. Then

(x) = C(l-x)1/2 x-1/2 (A.2.12)

Note that

sin = 2 x 1/2 (1-x)1/2 (A.2.13)

Then

lim g(8) = lim y(8) sin 
8+0 80O

- lim C(1-x)1/2 x-1/2 2x11/2 (1x)1/2
x+O

= 2C (A.2.14)

So if g(8) can be computed at =0, the leading edge suction parameter

can be determined directly.

The positions where the vortex density y(x) is determined are

given by

Xk = [1 - cos((2k-1)7/2N]/2, k = 1, 2, . . .,N (A.2.15a)

and the control point positions (where the normal velocity is specified)
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are given by

x. = [1 - cos(i7/N)]/2,
1

i = O, , 2, . .. , N (A.2.15b)

Eq. (A.2.4) can now be written as

N x ) 1/2 ( 1 )/2

2N k=l i Xk
0,

i= 0
(A.2.16)

i 0

To determine the k for a given foil, (given downwash distribution),

Eq. (A.2.16) is written as a matrix equation

N

Wi = aik Yk 
k=l

i = 1, 2, . . .,N

1

aik =2N

X 1/2

Xk (-x k

xi - Xk
(A.2.17b)

Once the k'S are known, the leading edge suction parameter C can be

computed using

w 2N 1 N
2N2 k=l

(A.2.18)
1/2f 1xk ~ Xk

where w0 is the component of the inflow velocity normal to the camber-

line at the leading edge.

The lift coefficient is given by

C I = 2 (x) dx = y(8) sine de

0 0

(A.2 19)= k ¥k s in
k=l

where

(A.2.17a)
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It may be demonstrated numerically that the formulation presented here

gives the exact vorticity distribution, leading edge suction parameter,

and lift coefficient for both flat plate and parabolic arc camberlines,

for any value of N.

The above formulation is presented in terms of the vortex sheet

density k at certain locations Xk, whereas the lifting surface theory

for the propeller is developed in terms of discrete vortex strengths

rk. If the above theory for two-dimensional airfoils is developed using

discrete vortices at the locations Xk, one obtains

rk = Yk N x 1/2 (1l- 1/2 (A.2.20)

relating discrete vortex strengths and vortex sheet density at xk.

One also obtains

N

Wi = bik rk i = 1, 2, . . ., N (A.2.21)
k=l

where:

1 1
bik 2 xx (A.2.22)ik 2-n xi-xk

which is the usual formulation of the vortex lattice method for two-

dimensional foils. In this case the vortices and control points are

arranged along the chord using cosine spacing identical to that used

in the propeller case (Section 3.2), rather than the more commonly used

uniform spacing. The leading edge suction parameter C may be calculated

from

C=LE k-l k X (Ao2.23)
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Ao3 Calculation of Leading Edge SuCtion for Three Dimensional
Lifting Surfaces

Lan (1974) showed that the above method for calculating the leading

edge suction parameter C is readily extended to three dimensional

lifting surfaces. The geometry of a typical swept wing is shown in

Fig. A.3.1. The value of C for a particular section of the wing

is defined by

C - lim { y(x) } (A.3.1)

. oe.

where now y(x) is the density of the spanwise vorticity on the wing

made non-dimensional by U and c is the local wing chord. Representing

the wing loading with a vortex lattice utilizing N cosine-spaced

vortices in the chordwise direction, Lan shows that C may be computed

from

C=1 total computed upwash (free stream and (A3.2)
C Linduced) at the leading edge control point (A32)

and the leading edge thrust coefficient ct may be computed from

= Thrust/unit span
ct

1 2
p2 U

2
irC- C (A.3o3)

2 cos A,

where A is the leading edge sweep angle relative to the plane normal

to U . This approach is used to calculate the leading edge suction in
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Figure A.3.1 - Plan view of swept wing
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the attached flow tip solution (Section 3.9), makjing use of the relation

Thrust per unit span = Suction Force per unit length of leading edge.
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Appendix B: Calculation of Trailing Vortex Wake Pitch

B.1 Calculation of Ultimate Wake Pitch

The ultimate wake is assumed to consist of K equally spaced helical

tip vortices of strength rt and radius r surrounding a single rolled-

up hub vortex of strength Kxrto If we examine a point in the ultimate

wake sufficiently far from the propeller, it may be safely assumed that

the ultimate wake extends to infinity both fore and aft, thus simplifying

the geometry of the problem. In a coordinate system rotating with the

propeller, the velocity seen at a point on one of the tip vortices con-

sists of the propeller rotational velocity, the speed of advance, the

induced velocities due to the helical vortices, and the induced velocity

due to the hub vortex. Since the tip vortices are force-free, the total

velocity must be tangent to the tip vortex helix at each point. Using

this fact the pitch angle of the ultimate tip vortices may be calculated.

Loukakis (1971) considered this problem in detail and noted that

the local self-induced velocity of a helical vortex line is infinite.

To remove this singularity it is necessary to recognize the existance

of a finite core in the tip vortex, over which the vorticity is dis-

tributed. Loukakis performed extensive numerical calculations of the

self induced velocities of a set of K symmetrically located, infinitely

extended, helical vortex cores, with the ratio (core radius/helix radius)

as a parameter. His results, which are utilized in the present work,

are listed in Table Blolo This table gives the axial and tangential

self-induced velocities as a function of K and tan B . The ratio
w
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(core radius/helix radius) was selected

All of the induced velocities shown are

The actual values of the velocities can

the values in the table by t/rw

The velocity diagram at one of the

to be 0.02, as described below.

computed for r = 1 and rt = 1.
w t

be calculated by multiplying

tip vortices is shown in

Fig. B.l.l.

XW r VT

Figure Bolol - Velocity diagram at ultimate
tip vortex

where: wr = tangential velocity due to propeller rotation

VA = axial inflow velocity at rw

VT = tangential inflow velocity at rw
o1cr

uH = -t is the tangential velocity induced by the hub vortex
tH = fr

w
1r

u = - UA is the axial velocity induced by the helical tip
a r

w vortices

rut = rt UT is the tangential velocity induced by the helicalw tip vortices

and UA, UT are taken from Table B.l. 1.
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The pitch angle of the ultimate wake can then be found by

solving the following equation:

V + ' UA(tan 8 ,K)
A r w

tan w = t - (B..)
Twr + V + UT(tanS K) - L
w T r w 2Trr

w w

This yields the ultimate wake pitch tan 5 and the induced

velocities at the ultimate tip vortex, u a2 (r ) and ut2(rw ) where

ua2 (r) = ua from above, and ut2 (r) = u + utH

It is usually assumed that the trailing vortex wake from a wing

completely rolls up into two trailing tip vortices, implying that the

circulation of each ultimate tip vortex is equal to the maximum bound

circulation around the wing. Detailed measurements behind lifting

wings by Sampson (1977) show that this is not the case: the circulation

of the tip vortices is only 60-80% of the maximum bound circulation.

Similarly, laser velocimeter measurements behind an operating propeller

show a weak vortex sheet at intermediate radii quite far downstream.

It was found from extensive numerical experimentation that a (core

radius/helix radius) ratio of 0.02 and an ultimate tip vortex strength

of 80% of the maximum circulation on the blade yielded predicted ultimate

wake pitches in remarkable agreement with experimentally measured values.

The values of the axial and tangential induced velocities in the

ultimate wake at the ultimate-hub vortex radius rwH are determined from
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the following relations:

.75 K rt
u (r ) =
Ua2 (rwH) r tan 

w w

-.75 K r

ut2(rH)= r (BwH 2)

The factor 0.75 was included after comparing computed wake velocities

and the experimental measurements by Min (1978).

B.2 Calculation of Transition Wake Pitch

The calculation of the pitch of the transition wake is complicated

by the fact that the pitch is allowed to vary in both the radial and

downstream directions. The extensive laser velocimeter measurements

of propeller vortex wakes by Min (1978) and ealier visual measurements

by Kerwin (1976) indicate that the wake pitch varies smoothly with both

radius and axial location. Accordingly, it was considered reasonable

to calculate the pitch at a limited number of points in the transition

wake and interpolate to obtain the pitch at other locations.

The velocity diagram of any point in the transition wake of the

key blade is shown in Fig. B.2.1, in a coordinate system rotating with

the propeller.
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r)

,r)

VA(r)

wr vTa)

Figure Bo201 - Velocity diagram in transition
wake

where: r = radius

x' = axial position downstream of the blade trailing edge

wr = propeller rotational velocity at radius r

VA (r) = axial inflow velocity

VT (r) = tangential inflow velocity

u (x',r),
= axial and tangential induced velocities due to the p:

ut(x',r) and wake singularity systemt
ropeller

(x',r) = local pitch angle of the transition wake
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In determining the transition wake geometry the axial and tangential

induced velocities are calculated at certain points and interpolated at

other locations, rather than the pitch angle (x',r) itself.

The transition wake geometry is correct (force-free) when the

induced velocities ua (x',r) and ut(x',r) calculated using an assumed

pitch distribution S(x',r) yield a calculated pitch distribution

-1 VA(r) + u (x' r)
(x',r) = tan (B.2.1)

r + VT (r) + ut (x' ,r) 

such that (x',r) = (x',r) everywhere. This requires an iterative

procedure, which usually converges quite rapidly.

Fig. B.2.2 shows the assumed downstream variation of induced

velocities in the transition wake region. Although the axial extent

of the transition wake region is set by xtw, where xtw is typically

one propeller radius, the induced velocities are allowed to change

in the downstream direction until x' = xfinal, where xfinal is usually

set to 1.5 R based on experimental observations. Expressed algebraically,

a = Ua2(r) , > 1

where: al(r) = the axial induced velocity at the blade trailing
edge

ua2 (r) = the axial induced velocity in the ultimate wake

= x'/Xfinafinal
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The same expressions are used for the downstream change in tangential

induced velocities. The form of Eq. (B.2.1) was chosen after examining

Min's (1978) laser measurements of propeller vortex wakes.

Fig. B.2.3 illustrates the variation of axial induced velocities

at the key blade transition wake as a function of x' and r. A similar

graph could be drawn for the tangential induced velocities in the

transition wake region.

Most of the discrete trailers in the transition wake model are

actually representing part of a vortex sheet, and it is reasonable to

disregard the local self-induced velocity of the curved vortex line.

At the tip of the blade, however, the vortex sheet rolls up considerably

even before the trailing edge of the blade is reached, so that the

outermost discrete trailer leaving the blade is actually representing

a vortex core. In this case it is correct to assume a viscous core

size and calculate the local self-induced velocity of the trailer

leaving the tip. If a viscous core radius of 0.1% of the propeller

radius is assumed, the calculated pitch of the tip vortex just behind

the blade tip is in good agreement with Min's (1978) measurements for

several propellers over a range of advance coefficients.

The procedure used to align the wake for a given vorticity dis-

tribution on the propeller and in the wake is as follows:

a) Calculate the pitch of the ultimate tip vortices. This also

yields the quantities Ua2 ( a2(wH), ut2 (rw) , and ut2 (rwH).
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b) Using a previously assumed transition wake geometry, calculate

induced velocities at the key blade transition wake at points

just behind the blade and at x' = 0.7 Xtw.

c) Using these calculated induced velocities in the transition

wake and the induced velocities at the start of the ultimate

wake from step a), interpolate to find the induced velocities

everywhere in the transition wake and calculate a new transition

wake geometry.

d) Repeat steps b) and c) until the transition wake geometry

stops changing.

Since the calculated vorticity distribution depends on the wake

geometry, the boundary value problem must be solved several times, with

the wake re-aligned at each step. Fortunately, this process converges

quite rapidly.

It is found that the computed induced velocities in the transition

wake near the hub and tip of the blade are sensitive to the number of

trailers used to represent the transition wake. Any numerical scheme

exhibiting this kind of behavior is usually dismissed as being unreliable.

However, if the present scheme is used with eight spanwise panels on

the key blade (nine trailing vortices), the computed results are reasonable

and in good agreement with the experiments of Min (1978) for a variety f

different propellers and advance coefficients. Therefore, the current

wake alignment scheme is only used with eight spanwise panels on the blade.

Once the induced velocities in the wake are calculated from this analysis
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they-may-be used to specify the wake geometry for use with any desired

number of spanwise panels on the key blade.
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Appendix C: Two Dimensional Laminar Separation Bubbles

C.1 Introduction

The characteristics of airfoil sections in real fluids depend on

the type of flow separation present, which governs the stalling

characteristics of sections. Three types of stall behavior are observed

for two-dimensional airfoil sections in low Mach number flow, which

correspond to different types of behavior possible for the boundary

layer on the suction side of the foil:

a) Trailing-edge stall, with the separation point of the

turbulent boundary layer moving forward from the trailing

edge as the incidence increases. This type of stall usually

occurs on rather thick sections (to/c > 0.12) or those having

a large amount of camber. This type of stall is gradual,

as shown in Fig. C.l.la.

b) Leading-edge stall, caused by a sudden failure of the flow

to reattach to the airfoil following laminar boundary layer

separation near the nose. This behavior is typical of

moderately thick airfoils (0.09 < t /c < 0.15) and is a

very abrupt stall (Fig. C.l.lb).

c) Thin airfoil stall, with laminar separation near the leading

edge and turbulent reattachment at a point which moves rear-

ward as the incidence is increased. This type of stall is

found on thin airfoils (to/c < 0.09) and is a gentle stall,

as shown in Fig. Cololc.



a) Trailing edge stall
(thick or highly
cambered sections)

b) Leading edge stall
(moderately thick
sections)

c) Thin airfoil stall
(thin sections)

(From Chappell, 1967)

Figure C.1.1 - CL vs. a curves for three types of stall
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Further discussion will be restricted to the types of flow found in

b) and c) above, as both of these involve the presence of laminar

separation bubbles near the leading edge of the airfoil. The behavior

of the leading edge separation bubble greatly influences the nature of

the flow along swept leading edges, as shown in Chapter IV.

C.2 The Nature of Separation Bubbles

Laininar separation bubbles occur on two-dimensional airfoil

sections operating above their ideal angle of attack because the

laminar boundary layer on the suction side is unable to negotiate

the adverse pressure gradient following the suction peak near the

nose. The boundary layer separates and forms a thin free shear

layer above the airfoil surface. This shear layer is highly unstable

to disturbances and usually undergoes transition to turbulence,

which may enable the flow to reattach to the foil as a turbulent

boundary layer downstream of the separation point. The shear layer

then encloses a mostly stagnant region of fluid known as a separation

bubble, in which the pressure is sensibly constant.

Some understanding of separation bubbles can be gained by examining

the distribution of vorticity around an airfoil section. In inviscid

flow the foil section can be represented as a distribution of vorticity

on the surface of the foil. The strength and distribution of the

surface vorticity is determined by requiring the airfoil surface to

be a streamline, and imposing a Kutta condition at the trailing edge.
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In the real flow past an airfoil the vorticity is nonzero every-

where, although at high Reynolds numbers the vorticity is concentrated

near the foil surface (boundary layer approximation). If the boundary

layer is thin compared to the dimensions of the foil, we may consider

the vorticity to be concentrated into a thin vortex sheet at the foil

surface. The vorticity distribution must be such that the foil surface

is a streamline and the local vorticity represents the drop in velocity

from outside the boundary layer to zero at the wall. In viscous flow

the airfoil surface is a distributed source of vorticity which sheds

vorticity into the wake behind the foil. The net vorticity behind

the foil must be zero, since a non-zero value of circulation is

obtained only for a path enclosing the foil. Thus the vorticity

shed from the upper surface is equal to, but of opposite sign, from that

that shed from the lower surface, as pointed out by Taylor (1935).

Separation bubbles may be thought of as regions of mostly

stagnant fluid adjacent to the airfoil surface, separated from the

main potential flow by a thin vortex sheet. Fig. C.2.1 shows the

flow near the leading edge of a foil with a "short" bubble present.

The height of this bubble is very small (< 0.0001 x chord), so that

the vortex distribution on bubble surface is not very different from

the distribution on the airfoil surface in the absence of the bubble,

and the bubble has only a small influence on the surface pressures.

Fig. C.2.2 illustrates the kind of flow with a "long" bubble present,

which occurs when the flow fails to reattach just behind the laminar
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Figure C.2.1 - Flow with short bubble near
leading edge
(Height of bubble exaggerated)

Figure C.2.2 - Flow with long bubble
(Height of bubble exaggerated)

Figure C.2.3 - Completely stalled flow
with dead-air region

(FROM KUCHEMANN, 1953)
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separation point and instead attaches much further downstream. This

type of bubble involves a considerable re-arrangement of the vorticity

on the foil, with an associated large change in the pressure distribu-

tion on the foil. Typically, the pressure inside the bubble is fairly

constant except near the trailing edge of the bubble. Fig. C.2.3 shows

the situation which occurs when the flow fails to reattach to the foil

at all after laminar separation. A large dead-air region exists over

the upper surface of the airfoil, with the pressure inside only

slightly below the free stream value.

The pressure distribution on the surface of an airfoil with a

short bubble is shown in Fig. C.2.4a. The laminar boundary layer

separates at point S in the adverse pressure gradient following the

suction peak. The separated shear layer encloses a region of quiescent

fluid until point T is reached, where the shear layer undergoes transi-

tion to turbulence. Aft of this point, turbulent mixing between the

free stream and the shear layer enables the pressure rise to point R

to be negotiated, whereupon the flow reattaches to the foil surface

as a turbulent boundary layer. As shown in Fig. C.2.4b a short bubble

typically affects the pressure on the foil surface only in the immediate

vicinity of the bubble. For this reason the presence of short bubbles

usually does not influence the lift, drag, or pitching moment.

A long bubble may extend over a large fraction of the airfoil

chord and drastically alter the pressure distribution. Typically the

suction peak (and thus the leading edge suction force) is greatly
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reduced, so that the drag is increased. However, the low pressure in

the bubble is extended over a large part of the chord, so that the lift

does not necessarily suffer (Fig. C2.5). This is responsible for

the gentle stall of thin airfoils, where a long bubble grows in length

as the incidence is increased (Fig. Col..c).

C.3 Separation Bubble Behavior and Stall

Most two dimensional airfoil sections will have a short laminar

separation bubble present near the nose when operating slightly above

ideal angle of attack. The length of this bubble decreases as the

Reynolds number is increases at a fixed incidence, since the free shear

layer undergoes transition sooner.

As the incidence is increased at a fixed Reynolds number both the

separation point S and the reattachment point R (Fig. C.2.4) move

forward, and the bubble contracts in length. At some point the short

bubble "bursts", due either to the bubble being unable to negotiate

the required pressure rise in so short a distance, or because the

"reattached" turbulent boundary layer undergoes turbulent separation

immediately downstream of R.

At this point there are two possibilities. If the shear layer fails

to reattach to the foil at any point the flow breaks down completely

and leading edge stall is said to have occurred, with a loss of lift

and a large increase in drag (Figs. C.lolb, C.2.3). If the shear layer

reattaches much further downstream a long bubble forms (Fig. C.2.2)
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Figure C.2.5 - Upper surface pressure distribution
on foil with long separation bubble
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and alters the pressure distribution over the airfoil upper surface.

This jump between short and long bubbles is the start of thin-airfoil

stall, and is responsible for the kink in the CL vs. curve for thin

airfoils (Fig. C.l.lc). As incidence is increased further the reattach-

ment point of the long bubble moves aft and the slope of the CL vso c

curve falls off slowly.

C.4 Environmental Effects on Two-Dimensional Separation Bubbles

The critical issue in two dimensional laminar separation bubbles

is how quickly the free shear layer undergoes transition to turbulence.

Thus Reynolds number, free stream turbulence, and surface roughness

all influence separation bubble behavior. It is beyond the current

state of the art to account for these factors in a rational fashion,

so recourse is made to experimental data. The most important quantity

to determine is the operating condition at which the bursting of a short

bubble takes place. Gaster (1966) reasoned that for low inflow turbulence

flow over smooth two dimensional foils, bursting should depend on the

following quantities:

u - the velocity at the separation point S (surface velocity

in attached, inviscid flow)

8 - the momentum thickness of the laminar boundary layer at S

v - the kinematic viscosity

Au/Ax - the change in surface velocity Au over the length of the
bubble Ax
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Gaster formed a Reynolds number

u 8
Re = (C.4.1)

S

and a pressure gradient parameter

Ap =s Au (Co4.2)
v Ax

and achieved an excellent correlation between R and P at bursting,

shown in Fig. C.4.1. For short bubbles, Au/Ax over the length of the

bubble is very close to du/dx at the separation point. If we momentarily

consider P to be given by P = ( s /v) (dU/dx), then Stratford's (1957a)

laminar separation theory, as modified by Curle and Skan (1957), shows

that laminar separation will not take place near the leading edge for

P > -.09, as shown in Fig. C.4.1. Also, for Res < 125, the free shear

layer will usually not undergo transition to turbulence soon enough to

form a short bubble.

Fig. C.4.1 presents measured values of P and Re for short bubbles

on the verge of bursting. This same type of figure forms the basis of

bubble behavior prediction schemes (Herring and Ely (1978), Pavelka and

Tatum (1981), where experimental data for bubble breakdown is plotted as

a computed pressure gradient parameter at separation versus some relevant

computed Reynolds number. Although these prediction schemes seem to work

fairly well, no account is taken of surface roughness or inflow turbulence,

which are sure to have a significant impact.
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Appendix D: Three Dimensional-Flow Separation and Attachment

Flow separation in steady two-dimensional flow is relatively easy

to define: it is where the skin friction vanishes and the flow breaks

away from the surface. Separation in three-dimensional flow is far

more complicated. Many three dimensional flow separations occur where

the skin friction is non-zero and the external streamlines are not

significantly affected.

Maskell (1955) clarified the matter considerably by considering

the behavior of the limiting streamlines on the surface of a body or

wing. Of course there is no flow at the surface of a body moving in a

viscous fluid, but there is at a distance above the body. The limiting

streamlines are determined by letting -+ 0.

Ordinary separation and attachment occurs along a line on a smooth

body where the limiting streamlines gradually merge, as shown in Fig. D.1.

Limiting streamlines may also collide head on at singular separation

and attachment points S, shown in Fig. D.2.

These types of limiting streamline behavior are usually associated

with distinct forms of separation. The surface of separation above an

ordinary separation line is actually a shear layer or vortex sheet, shown

in Fig. D.3. This is the most common type of three dimensional separation.

Singular separation and attachment occurs only at isolated points and is

usually associated with the presence of a bubble of trapped fluid, as

shown in Fig. D.4. Singular attachment points also occur at the forward

stagnation points of bodies of revolution at zero angle of attack.
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In the steady viscous flow past a solid body the paths of the

individual fluid particles are of two distinct types. Open stream-

lines begin at infinity upstream and end at infinity downstream.

Particles following closed streamlines circulate continuously along

closed paths, which are necessarily associated with separation bubbles.

Separation bubbles on two dimensional airfoil sections are truly

bubbles according to the above definition, since they contain fluid

particles which circulate slowly along closed streamlines (ignoring

the turbulence at the end of the bubble). However, a separation "bubble"

at the leading edge of a swept wing is not really a bubble, since the

spanwise flow along the leading edge prevents closed streamlines from

forming and the separation and reattachment will be of the ordinary type.

Nevertheless, it is called a bubble because of its similarity to a two

dimensional bubble.

A thorough discussion of three dimensional separation and reattach-

ment may be found in Maskell (1955), Lighthill (1963), and Tobak and

Peake (1979).
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Appendix E: Flow Around 'Infinite Sheared Wings

An infinite sheared wing is a swept wing of infinite aspect ratio,

obtained by shearing backward every section of an unswept wing, leaving

its shape and lateral position of each section unchanged.

For the position of a sheared wing shown in Fig. E.1, introduce

a coordinate system (, n, ) defined by

= x cosA - y sinA

n = x sinA + y cosA

= z (E.1)

where A = leading edge sweep angle.

Two different airfoil sections can be considered when discussing

sheared wings. The streamwise section (suffix s) is the original sec-

tion from which the sheared wing was formed. We may also consider the

airfoil section in a plane normal to the n axis (suffix n), as shown

in Fig. El. From simple geometry we have

c = c cosA
n s

(to)n (to)s

t t

() = (--)/cosAcn c

r = r/cosA (E.2)
n s

where

c = chord length

t = maximum thickness0

r = leading edge radius
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The flow over the sheared wing is equivalent to the two-dimensional flow

around the normal section, with inflow components

Vi = V cos A cos a -

V = V0 sin a (E.3)

where a is measured in a vertical streamwise plane, plus the spanwise

flow component

Vn = V sin A cos a (E4)

which leads to a non-zero velocity along the attachment line of the

sheared wing (where the normal section has its stagnation point)o This

stagnation line flow can have a significant influence on the behavior

of sheared wings, as described in Chapter IV.

Perturbation velocities due to thickness and lift are generated

only in the i and C directions: there are no perturbation velocities

in the direction. Because the potential flow around a sheared wing

is independent of the velocity in the n direction, the flow follows what

is know as the 'independence principle'. The perturbation velocities

ug and u~ are those due to the two dimensional flow around the normal

section, with the inflow velocities to the section given by (Eqo E.3).

Since the streamwise inflow velocity V is reduced from the streamwise

inflow V0 by the factor cos A, the perturbation velocities due to lift

(in linear theory) will be reduced by the same factor. The same conclu-

sion can be reached by looking at the vorticity distribution when the wing

is at an angle of attack. The normal inflow velocity V = V sin is
05V inai
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independent of sweep, so the strength of the bound vortices parallel to

the leading edge, y(E), is also independent of sweep. The vortices

are inclined at an angle - A to the mainstream VO, so the pressure
2

jump across the wing is

Ap( ) = PVO Y() cosA (E.5)

from the Kutta-Joukowski law. Thus the lift slope of the sheared wing is

dC
= 2w cosA (E.6)da

The thickness to-chord ratio of the normal section is greater than

that of the streamwise section, as given by (Eq. E.2), and the leading

edge radius is also increased. This means that the high Velocities

near the leading edge caused by angle of attack loading are reduced

by the presence of leading edge sweep. Brown and Norton (1976) made use

of this fact in designing a novel thruster blade having increased tolerance

to angle of attack fluctuations without causing leading edge cavitation.

If we consider the laminar boundary layer on an infinite sheared

wing, we arrive at the conclusion that the flow in the E, C plane

around the normal section is independent of the spanwise flow in the

n direction (see, for example, Schlicting (1968)). Hence the indepen-

dence principle also holds for laminar boundary layers. However, once

the flow separates or becomes turbulent the independence principle no

longer applies: the flow must be considered as being completely three

dimensional, even though the potential flow is independent of the n

direction.
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Appendix F: Parabolic Leading Edges

Thin airfoil theory, such as that described in Appendix A, leads

to solutions having infinite velocities at the leading edge when the

section or wing is operating above its design angle of attack. In

practice, infinite velocities do not occur because the leading edge

has a finite radius of curvature. Lighthill (1951) and Van Dyke (1955)

formulated leading edge corrections to thin airfoil theory so that

surface velocites may be accurately calculated near the nose of a foil.

However, these corrections are formulated in terms of angle of attack

of the section, which is a somewhat nebulous concept for a propeller

blade section. The derivation below expresses the leading edge flow in

terms of the leading edge suction force (see Appendix A). Only two

dimensional flows are considered here, since the flow near a swept

leading edge can be approximately decomposed into the flow normal to

the leading edge and a flow along the leading edge, as shown in Appendix

E.

The surface velocity distribution for a zero thickness flat plate

at small incidence a is

V c-

V x

= 1+- * avl-x/c (F.1)

where x = distance from leading edge

c = chord length

V = surface velocity

V = free stream velocity
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The velocity is infinite at the leading edge, as expected. The position

of the stagnation point, Xst' is where V/V is zero, and can be found

from Eq. F.1:

St /c
2 x /C (F.2)

st/

2

stXst = c a2 for Xst/C << 1.

The surface velocity may be expanded in a series

V a x
= 1+ - [1 + ... ]

V 2 c

- 1+ for x << 1 (F.3)

X/C c

Inserting Eq. F.2 we get

_ St xst << c
(F.4)V - x -~ ,

on~ · ~ << C

The leading edge suction force F for a flat two-dimensional foil

is given by the zero drag condition (see Appendix A):

1 2
F = 2 a * ( P V c)as 2 00

2 1 2
= 2 a c ( p V ) (F.5)

Inserting Eqo (F.2) we obtain

F = 2 x (1 V 2) , << c (F.6)s Xst 2 ' st
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which now specifies the stagnation point Xst in terms of the suction

force Fs
The leading edge corrections by Lighthill and Van Dyke involve

multiplying the thin airfoil surface velocities by the factor

[x/(x+r/2] / , where r is the leading edge radius. Applying this to

Eq. F.4, we get

V = (1 + ) (x 1/2
V- r

x X+2

=42x/r + / 2Xst/r

/1 + 2x/r

This is exactly equivalent to considering the flow around an infinite

parabola, as shown in Fig. F.1.

N

*f
V

X

Figure F.1 - Parabolic leading edge
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In order to perform boundary layer computations, the surface

velocity V as a function of arc length s must be known. To do

this it is convenient to non-dimensionalize all lengths by the leading

edge radius r, and introduce the parameter t. Then we have

x 2
= t

r

Y = b_2 t (F.8)
r

To find the arc length s along the surface we note that ds =dx +dy ,

which leads to

s(t) = 2 + 1/2 d
r

0

t + t z + 1 / 2 .
= tt + 1/2 + tn 2/2 (F.9)

The velocity on the surface can be found by expressing Eq. F.7 in

terms of t and tst, where tst is given by

st = r

and the minus sign causes the stagnation point to be on the lower

surface. Eq. (F.6) can be re-written as

Xst 1 Fs
r 2 w 1 2

-pr V
2 co
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The second term is precisely the leading edge suction force coefficient

defined in Eq. 4.3.1

F

C = (4.3.1)s 1 2
p r UnnD

which is applied to both 2D and 3D wings. Thus

Xst Cs
(F.12)

r 27rr

Velocity gradients on the surface can be obtained by straight-

forward application of the chain rule.
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Appendix G: Calculation of Lateral Vorticity Movement
in Leading Edge'Vortex Sheet

G.1 Single Node Calculation

Section 5.1 notes that the proper boundary condition for a free

vortex sheet in steady inviscid flow is that there is no pressure jump

across it. This condition is satisfied if the local vorticity vector

in the vortex sheet is parallel to the local velocity vector at all

points on the free sheet. In most vortex lattice techniques this

condition is approximately satisfied by making each discrete vortex

segment parallel to the velocity vector at its upstream end or mid-

point..

In the current work the vortex sheet is rendered approximately

force free by determining how the vorticity entering each node in the

discretized sheet leaves the node; that is, how much leaves in the

downstream chordwise vortex and how much leaves in the spanwise vortex

in the direction of the spanwise velocity at that node. This process

is best illustrated by showing the computations done at a typical node

in the discretized free vortex sheet.

Figure G.l.1 shows a typical node in the discretized free sheet.

The relevant quantities are defined as follows:

V - chordwise velocity at node

V - spanwise velocity at node

r - strength of chordwise vortex

r - strength of spanwise vortex

The (m, n)'th node is under consideration. V and V have been cal-
c s
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culated previously, and r (n-l) and r (m-l) are known from prior nodal

calculations. The problem is to determine r (n) and r (m). Note that

the "spanwise" vortices actually have components in both the spanwise

and chordwise directions. The spanwise vortices point in the "m"

direction, which varies over the blade.

The total vorticity entering the node is

rt = r (n-l) + rs(m-l) (G.l.l)

By Kelvin's theorem, this must also be the total vorticity leaving

the node

rt = rc(n) + r (m) (G.1.2)

The total chordwise vorticity vector at the node is

rct c(n-l) + rc(n)] + (c * m) (m-l) + s(i) (G.1.3)

and the total spanwise vorticity vector at the node is

rst= r(m-l) + S(m ( m) (G.1.4)

The local vorticity vector is parallel to the local velocity vector if

the following equation is satisfied

r st V

= = Q (G.1.5)
Fr V
ct c
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By simple algebra,

m) = (n-l) + t + (c * m) r(m-l - (s m) r (m-l)r (m) =c .. ..s (s - m) + Q (1 - (c m ))

(G.1.6)

and

F (n) = rt - rs(m) (G.1.7)

However, this calculation must be constrained somewhat. If we

take the arrows on the vortex segments in Fig. G.l.l1 to point in the

direction of positive vorticity (using the right-hand rule), then we

expect on physical grounds that rc > 0 at every node. That is, the

sense of rotation of the shed vorticity should not change sign in the

middle of the sheet. Thus at each node we must insure that

r (n) > 0 (Gol.8)

G.2 Node Marching Procedure

Since there is an inequality constraint to be satisfied at each

node, a set of simultaneous equations cannot be generated to solve all

of the node calculations at once. There appear to be two alternative

solution procedures:

a) March through the nodes one by one, satisfying the constraint

at each node in turn; or

b) Formulate an optimization problem with inequality constraints

to do all of the node calculations at once.

Since the former approach appears to be far simpler it has been chosen

here. The remaining problem is to determine the marching direction.
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From physical arguments we expect that marching through the nodes

should progress basically in the chordwise (downstream) direction.

However, since the spanwise vortices and chordwise vortices are not

orthogonal, ambiguities arise in determining which nodes to do first

if the marching is in the chordwise direction. The resolution to

this problem is to march through the nodes in order of increasing-

e (see Fig. 3.1.1, pg. 28). This eliminates all arbitrariness in

determining marching order.

All of the node calculations are done using the values of the

leading edge horseshoe strengths from the most recent iteration.

The leading edge horseshoe strengths determine the amount of vorti-

city entering the free sheet at the n=l row of nodes, and all of the

node calculations described in Section G.1 depend on the actual

values of the vorticity being directed through the discretized free

sheet. Once the node calculations are completed using the actual

vorticity values, the ratio T (n)/rt (see Eq. G.l.1 - G.1.7) is

computed at each node and saved for use in assigning leading edge

horseshoe element weights, as described below.

G.3'Determination of Leading Edge Horseshoe Element Weights

As discussed in Section 5.3 and illustrated in Fig. 5.3.2, the

free sheet portion of a leading edge horseshoe vortex actually con-

sists of quite a few spanwise and chordwise vortex elements in the

free sheet, with appropriate weighting factors. These weights are
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determined by considering vorticity of unit amplitude entering the

leading edge of the free sheet at the proper location for the leading

edge horseshoe under consideration. All of the nodes in the free sheet

are then marched through in precisely the same order as that determined

during the lateral vorticity movement described in Sections G.1 and

G.2 above. At each node the value of r (n)/rt computed previously

is used to establish the strengths of the spanwise and chordwise vortex

segments adjacent to that node. Since the node marching procedure does

in fact satisfy Kelvin's theorem everywhere on the free sheet, and since

a unit amplitude of vorticity entered the free sheet at the leading

edge, the strengths of the spanwise and chordwise vortex segments

determined by this procedure are precisely the weighting factors for

the leading edge horseshoe under consideration. This procedure is

repeated for each of the leading edge horseshoe vortices.


