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ABSTRACT

The coil-globule phase transition is the reversible, conforma-
tional change of a single linear polymer molecule from an extended
coil in the high temperature (or good solvent) phase to a tightly
packed globule in the low temperature (or poor solvent) phase. Since
the mid-1960's, many theories have been proposed to describe the
transition between coil and globule. However, no experimental con-
firmation of the collapsed, globular phase existed before the work
described in this dissertation. The globular phase is present in
solution only at low concentrations of polymer. Measurement of the
size of single polymers in such dilute solutions had been beyond the
reach of conventional techniques. The light scattering experiments
described within this dissertation represent the first measurements
of the complete coil-globule phase transition.

These experiments investigated two polymer-solvent systems. For

solutions of polyacrylamide (Mw=5-6x106) in acetone-water mixtures,

at concentrations of polymer less than 10pg/ml and at a temperature
of 250C, a sharp decrease in the radius of gyration (RG) and hydro-

dynamic radius (RH) occurred at an acetone concentration of 39%.

Measurements of the RH continued to 80% acetone concentration, well

into the globular phase.

In polystyrene (Mw2.6x107) and cyclohexane solutions, with

polymer concentrations as low as 0.01pg/ml, varying the temperature
induced the transition. The coexistence curve, which shows the tem-
peratures and concentrations at which the solution separates into
polymer-rich and polymer-poor phases, was determined in this low
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concentration regime. The measurements of the polymer size were
obtained above the phase separation temperature. Between 35°C and
300C, RH decreased sharply from -1300 to -700A while RG dropped from

-1800 to -500A. In the limit of the collapsed globular state the
ratio of RG to RH was 0.74+0.04, close to the value for a solid iso-

tropic sphere. The exponents for the reduced-temperature dependence
of the expansion factor in the collapsed region, -0.34±0.04 for RG

and -0.36+0.04 for RH, agree with the mean-field theory prediction of
-1/3.

Evidence of a sharp increase in amplitude and a sharp decrease
in the rate of intramolecular density fluctuations within the indivi-
dual polymer molecules was also observed near the transition. Such
behavior of density fluctuations is characteristic of critical
phenomenon associated with phase transitions.

An extension of Flory's mean-field theory for a single polymer
qualitatively describes the collapse in radius. In addition, the
first theoretical considerations of critical density-fluctuations
within a single polymer molecule are presented. The predicted tem-
perature dependence of the amplitude and rate of the fluctuations
also qualitatively agrees with the observations.

This dissertation also includes a description of the light
scattering instrument built to make the sensitive measurements at low
levels of scattering.

Thesis Supervisor: Toyoichi Tanaka

Title: Professor of Physics



TABLE OF CONTENTS

A13STRACT ...................

LIST OF FIGURES ............

LIST OF TABLES .............

Chapter 1 INTRODUCTION ....

Chapter 2 THEORY FOR THE COI

2.1 Introduction ...

2.2 Some Definitions

2.3 Free Energy of a

2.4 Bulk Modulus and

2.5 Similar Theories

Chapter 3 LIGHT SCATTERING T]

3.1 Introduction ...

3.2 Light Scattering

3.2.1 The Scattered 

3.2.2 Correlation Fu

3.2.3 Diffusion CoefJ

3.2.4 Static PropertJ

3.2.5 Measurement of

3.3 Internal Motion

Chapter 4 EXPERIMENTS AND RE"

4.1 Introduction

e...................................

L-GLOBULE TRANSITION ..............

.................................

Polymer Chain in Solution .......

Compressibility ..................

..................................

HEORY .............................

Field .............................

action ............................

f i cient ...........................

ies ...............................

S(i) .............................

3ULTS .............................

*ee . e.. e .. e · .*e.. e. . e . . e. ..e ·X

2

7

9

10

20

20

20

23

34

35

39

39

39

40

42

44

46

50

54

61

61

4



4.2 Polyacrylamide in Acetone-Water ...................

4.3 Polystyrene in Cyclohexane ........................

4.3.1 Coexistence Curve and Hydrodynamic Radius .......

-r . aUL UO VLA U .Ll . . .. . . .

4.3.3 Intramolecular motion .........

4.3.4 Comparison with Theory ........

4.4 Other Work ......................

Chapter 5 THE LIGHT SCATTERING APPARATUS ....

5.1 Introduction ....................

5.2 Stray Light and Convection ......

5.3 The Sample Cell ................

5.4 Overall Design ................

5.5 Laser Source ....................

5.6 Detection .......................

5.7 The Correlator ..................

5.8 The Cell Holder . ................

5.9 Optical Alignment Procedure .....

5.10 Temperature Control ............

5.11 Temperature Measurement ........

Chapter 6 SUGGESTIONS FOR FUTURE EXPERIMENTS

Appendix A FITTING THE CORRELATION FUNCTION .

BIOGRAPHICAL NOTE ............................

LIST OF PUBLICATIONS ........................

5

62

66

66

69

75

80

84

89

89

90

91

93

99

100

101

102

106

108

110

113

116

121

121

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................
..................
..................
..................
..................
................. ·
.................

I I '. .) DA; ,- _f f'-,- -+- i _



6

ACKNOWLEDGEMENTS ................. .................... 123



LIST OF FIGURES

2.1 Free Energy Function for a Single Polymer ................. 29

2.2 Effect of Chain Flexibility on Equilibrium Size ........... 30

2.3 Expansion Factor vs. Interaction parameter ... ............. 32

2.4 Compressibility of a Single Polymer ....................... 36

3.1 Scattered Field Geometry ....................... ........... 40

3.2 The Scattered Wave Vector ................... .............. 41

3.3 Molecular Structure Factors ............................... 49

3.4 Contributions to the Correlation Function ................. 52

4.1 RH and RG for a Single Polyacrylamide Chain ............... 64

4.2 Coexistence Curve for Polystyrene in Cyclohexane .......... 68

4.3 Scaled Coexistence Curve .................................. 70

4.14 Hydrodynamic Radius for a Single Polystyrene chain ........ 71

4.5 Angular Dependence of Scattering ................... ....... 73

4.6 RH and RG for a Single Polystyene Chain ................... 74

4.7 Asymptotic Behavior of the Radius for T < ............... 76

4.8 Angular Dependence of Intramolecular Quantities ........... 78

4.9 Temperature Dependence of Intramolecular Quantities ....... 79

4.10 Fit of Expansion Factor to Mean-Field Theory ............. 82

4.11 Comparison of Intramolecular Data with Theory ............ 83

5.1 Components of the Light-Scattering System ................. 94

5.2 Rotating Arm and Collection Optics ....................... 95

7



5.3 Dimensions of the Collection Optics ....................... 97

5.14 The Coherence Area .............................. .......... 98

5.5 Cell with Stopper ......................................... 103

5.6 The Cylindrical Cell Holder ............................... 104

5.7 Cell Holder Cross-Section ................................ 105

5.8 Temperature Control of the Cell Holder .................... 109



LIST OF TABLES

5.1 Comparison of Rectangular and Cylindrical Cells ........... 91

5.2 Length Scale (in A) vs. Scattering Angle .................. 100

9



CHAPTER 1

INTRODUCTION

The distinctive feature of the polymer is its structure -- hun-

dreds to hundreds of thousands of small molecules (often identical)

are covalently linked together to form a flexible, randomly coiled

chain. This picture of the polymer was first proposed by Staudinger

in 1920 [1], and it marks the beginning of polymer science.

The flexibility of the chain comes from the ability of the bonds

joining the polymer segments to rotate. When the number of segments

is large, the number of possible configurations of the chain is

tremendous. Because the configurations are so numerous, mechanistic

calculations of chain dimensions and dynamics are impossible. For

the same reason, however, the polymer chain is well-suited for treat-

ment by statistical methods.

The simplest model of a polymer chain neglects any interaction

among segments. The problem of describing the average distance, say,

between the ends of the chain is equivalent to the statistical prob-

lem of a determining the distance between the end points of a 3-

dimensional random walk. The solution to that problem is well known,

and the result is that the average end-to-end distance of the polymer

chain is proportional to the square root of the number of segments in

the chain.

10
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In a solution of real polymers, the interactions among the seg-

ments and solvent molecules affect the configuration of the chains.

One interaction that is always present is the hard-core, or "excluded

volume", repulsion between segments, which tends to expand the coil.

The temperature-dependent energy of interaction between segments and

between segments and solvent molecules can favor either segment-

segment attraction or segment-segment repulsion. If the net interac-

tion between segments is repulsive, corresponding to the "good sol-

vent" environment and usually associated with high temperatures, the

polymer chain is again expanded. If the net interaction is attrac-

tive, corresponding to a "poor solvent" and low temperatures, the

polymers in the solution normally aggregate, producing phase separa-

tion of the polymer solution. At a particular temperature (Flory's

"theta temperature"), the attractive and repulsive interactions are

nearly balanced, favoring the random-walk configuration.

The first statistical mechanical treatments of this kind of

phase separation in polymer solutions were given independently by

Flory [2] and Huggins [3] in 1942. Although they realized a single

chain would contract in a poor solvent, their theories rightly showed

that the distance between individual chains needed to avoid interpo-

lymer aggregation required solutions too dilute to detect single col-

lapsed chains using any then known experimental technique. Thus,

theories to describe the average extension of polymer chains in solu-

tion were only concerned with and valid in the good and theta solvent

regimes. Flory's successful (mean-field) theory treating single
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polymers under these conditions is contained his 1953 book [4].

There is a mention of single polymer contraction in a 1960 paper

by Stockmeyer [51, but the first statistical treatment describing

polymer dimensions over the range of expanded coil to compact "glo-

bule" came in 1965 from Ptitsyn and Eizner [6] who coined the phrase

"coil-globule transition". They treated the polymer as a van der

Walls gas confined by an elastic membrane, and predicted the segments

would condense to a compact form as the temperature is lowered. In

this picture the phase transition within the polymer is analogous to.

the phase separation of the polymer solution. Several similar treat-

ments soon followed [7-9]. A much broader interest in the coil-

globule transition developed during the 1970's [10]. Observations of

the transition of DNA to a compact form in polymer solutions [11],

more sensitive experiments to detect the onset of polymer contraction

in dilute solutions [12-14], and development of renormalization group

techniques for the study of phase transitions sparked the renewed

theoretical interest in the phase transition of a single polymer

[15-24].

There is no agreement, however, among the theorists on how the

polymer changes from expanded random coil to collapsed globule. The

mean-field theories generally predict that chains with a particular

flexibility will undergo a discrete, first-order phase transition.

Others suggest there will be a second order phase transition only in

the limit of infinite molecular weight chains, while real polymers

will undergo a smooth transition. Still others are concerned with
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the structure of the globule, does it have a dense core with an

expanded exterior? Until the results described in this dissertation,

there were no measurements of the complete coil-globule transition to

test any theory.

Another aspect to the problem of individual polymers in solution

is the dynamics of the single chains. Interest in this problem arose

in attempts to explain the anomalously large viscosities of polymer

solutions [25-27]. Typically, the polymer chain is modeled as a

sequence of beads and massless springs, with the beads also coupled

by the hydrodynamic interaction mediated by the solvent. In the

expanded coil state, where there is little segment-segment contact,

the model has been successful. However, there has been no theory

specifically concerned with the dynamics of density fluctuations

within a single polymer near the coil-globule transition. Since

fluctuations play an important role in critical phenomenon [28], a

theory appropriate for the single polymer near the phase transition

is presented in this dissertation. Because even a small increase in

the amplitude of the internal density fluctuations of the polymer

near the critical point can include the entire polymer, we model the

fluctuations as breathing modes of an elastic sphere.

Application of light scattering to the study of polymer solu-

tions was suggested by Debye [29] in 1944, and became widely used to

chari-; erize the size of polymers in solution [4]. Following the

invention of the laser in the late 1960's, and subsequent development

of the quasi-elastic light scattering technique, a sufficiently sen-
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sitive method became available for not only following the change in

size of single polymer chains down to the globule state, but also

measuring intramolecular dynamics. Great care is required in such an

experiment, because of the low level of signal. The first successful

application of dynamic-light scattering techniques to measure the

entire coil-globule transition are contained in this dissertation.

The remaining chapters are organized as follows. Chapter 2

presents a mean-field theory for the temperature dependence of the

expansion factor of a single polymer chain in solution, using the

method of Flory [4] extended to the poor solvent regime by Eizner

[8]. The order of the collapse phase transition is shown to depend

on the flexibility of the physical chain. A stiff chain will undergo

a first-order phase transition, while a flexible chain will smoothly

change from coil to globule as the temperature is lowered. Also

included are new considerations of the elasticity of a single chain.

At a critical value of the chain flexibility, the compressibility of

the chain is shown to diverge.

Chapter 3 presents the theoretical basis for the light scatter-

ing measurements of the hydrodynamic radius and the radius of gyra-

tion of the single chains, and the measurement of the amplitude and

relaxation time of the lowest order mode of internal density fluctua-

tions within a single chain. The measurements of the radius of gyra-

tion are based on a new technique appropriate for the dilute solu-

tions needed for existence of the globule state. The angular dissym-

metry in the intensity of the light scattered by the polymer
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molecules is obtained by determining the amplitude of the intensity

fluctuations from the correlation function of the scattered light. A

new approach for obtaining the elasticity of the polymer from light

scattering measurements is also presented.

The light scattering experiments on polyacrylamide chains in

acetone-water mixtures and polystyrene chains in cyclohexane are

described, and the results shown in Chapter 4. A fit of the data for

polystyrene in cyclohexane to the mean-field theory of Chapter 2 is

consistent with a sharp, but still smooth transition for a flexible

chain. The predictions for the compressibility of the chain at the

transition qualitatively agree with the measurements, which show a

significant "softening" of the chain near the transition temperature.

The apparatus built for these experiments is described in

Chapter 5, and suggestions for further experiments are given in

Chapter 6.
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CHAPTER 2

THEORY FOR THE COIL-GLOBULE TRANSITION

2.1. Introduction

This chapter presents a mean-field theory for the equilibrium

expansion-factor of a single polymer, based on the model developed by

Flory [1]. The transition between coil and globule is interpreted as

a phase transition that can be first order, second order, or smooth

depending on the value of a parameter that characterizes the flexi-

bility of the polymer backbone. An expression for the compressibil-

ity of the single coil is also derived. Finally, similar mean-field

approaches to the problem are reviewed.

2.2. Some Definitions

Several parameters must be defined for the derivations that fol-

low in this chapter. First, consider the ideal polymer chain. It

has N segments, each of length a. There are no restrictions on the

orientation of successive segments. Interaction among segments,

including steric interference, is neglected. The possible orienta-

tions of such a chain are identical to the paths of an N-step 3-

dimensional random walk of step-length a. Each path can be charac-

terized by the end-to-end distance h,

h = ril , (2.1)

where r is a vector from the origin at the beginning of the first
1

20
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step to the end of the ith step. For N large, the mean-square end-

to-end distance <h2> over all possible paths is, as for a random

walk,

<h2> = Na2 . (2.2)

(The subscript 0 will henceforth refer to the ideal or random-walk

polymer.) The probability that a particular path has end-to-end dis-

tance h is given by the normalized Gaussian distribution,

9h2

3/2 -- (2. 3)
P(h) = >] e h(2.3)

"'ho>j

Laboratory measurements usually determine the radius of gyration

rather than the end-to-end distance. The radius of gyration s (else-

where in this dissertation denoted RG) is the root-mean-square dis-

tance of the segments from the molecular center of mass at CM'

<S = i - RCMI . (2.4)
1

It is straightforward to show that for a Gaussian chain, s and h are

simply related [1],

<s2> = 6<h2> . (2.5)

In real polymers, the chain configuration does ot generally

obey the random walk formulas owing to segment-segment interactions.

However, under certain conditions the real chain will nearly obey

random walk statistics with h (and s) proportional to the square root

of polymer molecular weight, M2. These conditions occur in the bulk

(melt) polymer state and under specific solvent conditions for
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polymer solutions. A scaling of the observed size of the polymer

chains with M2 defines the ideal chain environments. It is not

necessary for N to correspond to the number of monomers in the chai,.

Instead, N and a are identified as an effective segment number and an

effective segment length, where the effective segment will encompass

several real monomers.

The extent to which the size of the chain deviates from the

ideal is given by the expansion factor a, where

2 2
c= h - s> (2.6)

<h2> <so>

The second equality is not generally valid, but does hold for Gaus-

sian chains, assumed in the model presented in this discussion.

One more parameter will be needed to describe the real chain.

It is related to the molecular volume of an effective segment, V.

We will let b characterize the radius of an effective segment such

that

V1 = ab 2 (2.7)

We can then define a parameter w,

w = b (2.8)
a

that characterizes the flexibility of the chain. A low value of w

corresponds to a stiff chain where the shape of the effective seg-

ments is long and thin. As the length of the effective segment

decreases, the flexibility increases. The flexibility will soon be

shown to profoundly effect the transition from coil to globule.
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Also needed in the following discussion is the molecular volume

of the real chain, Vp. In terms of already introduced parameters, it

satisfies the relation

N =P (2.9)
V·

2.3. Free Energy of a Polymer Chain in Solution

This discussion will predict how the expansion factor of a real

chain in solution will depend on the characteristics of the chain,

with parameters N, a, and w, and on the solvent environment. First,

the free energy of the chain in solution must be calculated. We need

only consider the difference between the total free energy of the

solution and the free energies of the pure polymer and pure solvent

components. The net free energy will be called AF. It is composed

of two parts, an enthalpic or heat of mixing component, AH, and an

entropic contribution, AS,

AF = AH - TAS , (2.10)

where T is the solution temperature.

Only binary interactions will be considered in determining AH,

thus

AH = kTxnl . (2.11)

Here, n, is the number of solvent molecules in the volume, and is

the volume fraction of polymer. The product n is proportional to

the probability of contact between a solvent molecule and a segment

of the polymer. X is a parameter that characterizes the free-energy
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increase per contact divided by kT, and depends on temperature, the

particular solvent-polymer combination, and possibly the solute con-

centration. The temperature dependence is usually adequately treated

by defining an ideal or compensation temperature , and writing

X = 1 - ) (2.12)

where p is an interaction parameter with a negligible temperature

dependence. When T = , the effect of binary interactions vanishes.

Any concentration dependence of X will be neglected.

The entropic contribution can be considered to be composed of

two parts. The first, ASmix, is associated with the disorientation

or mixing of the solvent and the polymer, calculated with no restric-

tion on the configuration of the polymer. The second contribution to

the net entropy, ASel, accounts for the decrease in the number of

configurations available to the chain as it is swells or shrinks

relative to the ideal state. (Remember, in the pure (or bulk) poly-

mer state the chain assumes a random walk configuration.) This con-

tribution is called the rubber elasticity of the polymer chain.

The entropy of mixing is calculated using a simple lattice model

for the polymer and solvent. The result will, however, contain no

parameters of the lattice. The solvent molecules and effective seg-

ments are assumed to occupy identical lattice sites. The lattice

coordination number is z. The first segment of the polymer is placed

on an arbitrary site. There are z - 1 sites for the next segment to

occupy. As successive segments are placed on the lattice, there is a

possibility an adjacent site will already be occupied by a segment
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placed earlier than the previous one. To account for these long-

range interferences analytically is an intractable problem. Instead,

a mean-field approximation is made whereby the probability a site is

occupied is assumed proportional to the number of segments already

placed on the lattice. That probability is 1 - i/no for the ith seg-

ment, where n = n + N is the number of lattice sites. Thus the

number of ways to distribute the polymer over the lattice is

N

Qmix = n (z - 1)(1 - n)
(2.13)

(Z- 1)N n,! = ( - 1 )N (n. + N)!
n, (no - N)! n, + N n,!

After the polymer is placed on the lattice, there is only one way to

add the remaining solvent molecules. The net entropy of mixing will

be given by

ASmix = S(n1, N) - S(nl, O) - S(O, N) . (2.14)

Since S = kln, and by employing Stirling's approximation for the

factorials, x! = xlnx - x, the result,

ASmix = -knln(1 - ) , (2.15)

is obtained, where (1 - c) = n is the volume fraction of the
n, +N

solvent, and z, the lattice coordination number, has disappeared.

To calculate ASel, consider an ensemble of v Gaussian chains.

In the ideal state the probability wi of a chain end occurring in a

spherical shell a distance r from the center of the polymer is
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3r2

= e 2<r2> 4wr2dr (2.16)

After an isotropic expansion (or contraction) by the factor a, the

distribution is still Gaussian except that the mean is increased by a

factor a. Looking at the expansion in another way, a chain ending

between r and r + dr after expansion corresponds to a chain origi-

nally having an end in the spherical shell at 4wr2dr/a3. The number

of chains in the ensemble after such expansion (or contraction) with

an end between r and r + dr is then

3r2

3 e 'r>a 4 r dr

2 2r<r 2> Oa3

The number of distinguishable configurations el will be given by the

product of wi for each configuration, nII i, times the number of per-

mutations of the chains over the various configurations, v!1 .
i i

Therefore,

V.

(2.18)
0el = v! v!

and

ASel = klngel

VWi (2.19)
=k I-i n

i i
again, obtained by using Stirling's approximation for the factorials.

Substituting for wi and vi, converting the sum over i to an integral
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over r, and setting v = 1, since we are considering only one chain,

yields the final result,

ASel = k[(1 a2) +31n] . (2.20)

This expression has its maximum value at = 1.

We can now combine these results to write an expression for the

net free energy of a polymer chain in solution,

AF = AHmi - TASix - TAS el (2.21)

or

F = nlln (1 - + Xn, + n + 31na . (2.22)

The segment concentration was assumed constant within the poly-

mer chain in calculating the heat and entropy of mixing. However,

under most solvent conditions the polymer has a loose coil configura-

tion, with a greater segment density at the center. Equation 2.22

should then be written,

AT= [iln[1 - (r)] + x(r)]dn 1 (r) + 23 3n , (2.23)

where

dn1 (r) = [1 - (r)]47rr dr (2.24)
VI

We assume that the segment density obeys a Gaussian distribution and

write

3r2

(r) = Vp2 (2.25)
For small, th e logarithm in the integral can be expanded. Keeping

For small, the logarithm in the integral can be expanded. Keeping
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terms to third order in , and performing the integration yields the

result,

F N[(X - 1) + - + W + 32 - 31na , (2.26)
'k~_T ,2/a 3 2.3¥S2a6 2

where

= -l =( 9)/NY2w 2 (2.27)

L2>rO ' 
The third-order term in the expansion partially accounts for ternary

interactions among segments.

In Figure 2.1 the free energy, -f, is plotted as a function of

the expansion factor a for several values of X and for three dif-

ferent values of the flexibility. The minimum in the curve for a

particular value of X determines the value of a corresponding to the

equilibrium state. When there are two minima, the lower determines

the equilibrium state.

There is a qualitative difference in the curves for different

values of the flexibility. The difference is made clear in Figure

2.2, which is a plot of the equilibrium expansion-factor versus flex-

ibility for successive values of X, obtained by finding numerically

the value of a that minimizes the free energy of mixing for particu-

lar values of X and w. These curves resemble the isotherms of van

der Walls gas. The figure should be interpreted by considering, for

a fixed value of the flexibility, the corresponding value of the

expansion factor while X varies from right to left, which is

equivalent to lowering the temperature. If w is large (a flexible
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Figure 2.1 Free Energy Function for a Single Polymer. The
equilibrium size of the polymer corresponds to the value of a at the
free energy minimum. The curves are for successive values of X
corresponding to temperatures below 0, with X = 0.50256. The param-
eter N is 200,000. The flexibility is above, at, and below the crit-
ical flexibility %w in the left, center, and right figures. The free
energy is offset to 0 at a = 1 for each curve,
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Figure 2.2 Effect of Chain Flexibility on Equilibrium Size.
Each curve is for a fixed value of X, with the same value of N as in
Figure 2.1. Traveling from right to left for fixed w corresponds to
decreasing the temperature -- a changes abruptly for w below w. The
extended tick marks on the left correspond to the flexibilities plot-
ted in Figure 2.1.
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chain), the expansion factor decreases smoothly. If w is small (a

stiff chain), the transition while X is varied becomes discontinuous,

and the equilibrium state of the polymer changes discretely from

expanded coil to collapsed globule. The critical value w separates

the smooth from the discontinuous transition.

An explicit equation for the expansion factor is obtained by

differentiating the expression for the free energy (Equation 2.26)

with respect to a, and requiring the result be equal to zero, since

the equilibrium value for corresponds to a minimum. The result is

5 - - Y = Z , (2.28)a 5 -a 3 (2.28)
a3

where

37/2w4

and

z= (29 )( - X N/2w 2 (2.30)

Equation 2.28 is a key result of this derivation. Several other

theoretical approaches to the coil-globule transition, some of which

are described below, lead to results of the same form.

Figure 2.3 is a plot of a as a function X according to Equation

2.28 for w above, at, and below w for a narrow range of X. When

there are 2 real roots to the equation, the root corresponding to the

lower value of the free energy expression, Equation 2.26, is used.

Several predictions cn made from Equation 2.28. First, for

polymer-solvent solutions of identical chemical composition, but with
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Figure 2.3 Expansion Factor vs. Interaction parameter. The
same values of w and N are used as in Figure 2.1. Values of X < 0.5
correspond to temperature above . For a stiff chain, there is a
discrete collapse.
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polymers of different molecular weight, the expansion factor vs. tem-

perature curves will be identical if the reduced temperature is

scaled by the square root of the molecular weight. The asymptotic

behavior of the expansion factor can be obtained from Equation 2.28.

In the expanded coil state with a >> 1,

a - N1 (1 - Y ) s
T >> (2.31)

r - N /5 5

where T = (1 - /T) is the reduced temperature, and r is a charac-

teristic polymer dimension. In the globule state with a << 1,

T << 0 (2.32)

r - N 1/3 3

At the critical point, the function y(a) = a8 _ a5 - z3 (nearly

the function plotted in Figure 2.2) has an inflection point, and both

the first and second derivatives vanish. Taking the derivatives and

solving the resulting two equations yields,

ac = (9 )Y2 - 0.671

1 6

Yc -- ac - 0.0228

WC = 7/ - 0351.33)

1 2/ 2 
Xc =- + / N - 0.5 + 1.15NY2

In this model, whether the transition between coil and globule

is first order (discontinuous), second order (continuous through the

critical point), or smooth depends only on the flexibility of the
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chain. The critical temperature,

Tc O - 115]-' (2.34)
N'

approaches the ideal temperature O as N + A.

2.4. Bulk Modulus and Compressibility

The isothermal bulk modulus KT of a single polymer in solution

can be defined just as for a gel [2],

KT i= (--)T (2.35)

where is the osmotic pressure of the polymer coil. The osmotic

pressure is,

1 aF 1 aAF _a (2.36)
V, an, V a an,

Since,

V P V 2
= -, a += ,2V] == (2.37)
: Tn VP + n,V, Vp N

the osmotic pressure becomes,

= 2V aF (2.38)
V 1 N a

Using Equation 2.26 for the free energy of the single polymer yields,

- kTN 2 x) + 1 + i ' (2.39)
VP 2a2 2.3/2a3 Ca% a

where

M3 = _ (2.40)

Since
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o 2·3VP (2.41)2>/2<r >

the bulk modulus is then given by,

K- kT _ + W2 (
T <r2 > [ 2/2 6

3 9 3 3 (2.42)
2 a(X 3 ' 

The isothermal compressibility, KTP of the coil is the inverse of the

bulk modulus and is plotted in Figure 2.4. At the critical flexibil-

ity, the compressibility diverges.

2.5. Similar Theories

Setting y = 0 in Equation 2.28 yields Flory's result for the

expansion factor of a single polymer in a good solvent C1].

Strangely enough, however, Flory never considers the implications of

his equations in the poor solvent regime, well below the O tempera-

ture. He seemed convinced that the onset of interpolymer aggregation

would prevent the complete collapse of single molecules. Apparently

the first to consider the regime with a < 1 were Ptitsyn and Eizner

in 1965 [3]. They obtained an equation with the same form as Equa-

tion 2.28 by modeling the polymer as a van der Walls gas of non-

interacting segments, and adding the Flory rubber elasticity terms.

Later, Eizner [4] presented a derivation in the same form as that

presented in this chapter for the free energy of a Gaussian coil, and

in addition, carried through the calculations for a homogeneous

sphere, a model more appropriate for the globule state. For this

latter model, the form obtained for Equation 2.28 is identical, but

the numerical coefficients vary.
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Figure 2.4 Compressibility of a Single Polymer. The three
curves correspond to the same values of the flexibility as in Figures
2.1 and 2.3. The compressibility diverges at Xc for w w .
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In the theory presented above, ternary interactions appear only

in the entropy terms. Post and Zimm [5], appended this theory for

the Gaussian coil with consideration of ternary interactions in the

heat of mixing term. The resulting corrections slightly increase the

expansion factor in the globule state. The added terms, however,

retain the lattice coordination number as a parameter.
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CHAPTER 3

LIGHT SCATTERING THEORY

3.1. Introduction

Expressions for the expansion factor and compressibility of a

single polymer chain in dilute solution were derived in the previous

chapter. This chapter is concerned with the physical basis for the

measurement of these quantities. The technique of dynamic light-

scattering provides the means to determine not only the average

dimensions of the individual molecules, but also the internal dynam-

ics of single molecules. The internal dynamics will be shown to be

directly related to the compressibility.

3.2. Light Scattering

Like all scattering experiments, light scattering involves

shooting a well-characterized probe (laser-generated photons) into

the system under study and determining the response (or state) of the

system by measuring the alterations in the probe. In general, the

interaction can be an exchange of energy or momentum. In the type of

light scattering experiments performed in this work, the interaction

is the quasi-elastic scattering of the incident photons by density

fluctuations in the polymer solution. The energy shift implied by

the "quasi" is due solely to the doppler shift imposed on the light

by the motion of the density fluctuations.

39
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3.2.1. The Scattered Field

The coordinate system used in the following discussion, based on

the geometry of the light scattering apparatus described in the next

chapter, is shown in Figure 3.1. The incident electric field, o,

consists of plane waves polarized in the +z direction. The scattered

field is detected in the direction at a point , distant compared

to the dimensions of the scattering volume. We consider only

scattering in the x-y plane. The familiar solution to Maxwell's

equations for the scattered electric field at the point is [1]

4 4

= e s - 3 r (3.1)

The scattering is from inhomogeneities in the scattering medium that

has a dielectric constant

Figure 3.1 Scattered Field Geometry. The incident field con-
sists of plane waves polarized in the +z direction. The scattered
field is detected in the direction at a point that is much farth-
er from the origin than the dimensions of the scattering volume V.
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c(r',t) = o + 6c(r,t) . (3.2)

It is assumed the medium is isotropic, and the fluctuations 6c(r,t)

are small compared to Eo. The laboratory scattering angle defines

the direction of the scattered field wave vector, ks. The integra-

tion is over the scattering volume, V.

We write the explicit r and t dependence of the incident field,

o = Eei(ko° r - Wt)z, and introduce the scattered wave vector i,

(see Figure 3.2), where i = i. -k s. The scattered field amplitude

is then given by

2 i(ksR - wt)
E okse | *(rt)e (3.3)

Es( 't) 4trRes o ure r

The integral is the spatial Fourier transform of the dielectric fluc-

: ko-kg

2e-IkIn: 4kosin 

Figure 3.2 The Scattered Wave Vector. For elastic scattering,
the magnitude of the scattered wave vector is the same as the in-
cident wave vector k0. The length of is ten determined by the law
of cosines, where k=2wn/A, with n the refractive index of the medium
and A the vacuum wavelength of the incident beam.
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tuations,

6E(2,t) = 6 (r,te )e d , (3.14)

meaning that only fluctuations with wave vector contribute to the

scattered field. Fluctuations of different length scales can be

probed by changing l , generally by varying the scattering angle .

3.2.2. Correlation Function

The dynamic properties of polymers in the solution are revealed

through analysis of the temporal behavior of the scattered field.

Although over a long time the amplitude of the scattered field is

random, since it reflects the random thermal fluctuations of the

scattering medium, at sufficiently short intervals there can be

self-correlation. A suitable measure is the normalized first-order

auto-correlation function of the scattered electric field,

<Es(O)Es(t)>
g( (t) = (3.5)

<1Es(0) 12>

where the brackets mean a time average. The process responsible for

the fluctuations in dielectric is assumed to be a stationary, allow-

ing the time origin to be chosen arbitrarily. By the ergodic

hypothesis the time average, which can be measured, is identical to

the ensemble average.

In the self-beating, or homodyne, light-scattering method

employed in these experiments, the correlation function of the scat-

tered light intensity is measured, since the photocathode of the pho-

tomultiplier is a square law detector. The second-order correlation
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function of the scattered field is therefore required,

(2) <E ()E()Es(t)Es(t)> (3.6)
g (t) = 2 2 (3.6)

<IE(O) 12>2

This expression can be simplified by assuming the process responsible

for the temporal fluctuations in the scattered field is a Gaussian

random process, and the scattered field obeys Gaussian statistics.

The factorization property of a multi-dimensional Gaussian distribu-

tion of, say, four functions A, B, C, and D, each a function of the

same set of Gaussian random variables, asserts that the correlation

function <ABCD> can be expressed as

<ABCD> = <AB><CD> + <AC><BD> + <AD><BC> . (3.7)

Applying this property to Equation 3.6 yields,

<Es(O)Es ()><Es(t)Es(t)> + <Es(O)Es(t)><Es(t)E s()>

<Es(O) 12>2 (3.8)

= 1 + Ig(1) (t)12 .

The form of the measured correlation function varies slightly

because of optical geometry (or diffraction) effects and the digital

nature of photoelectron generation within the detector. The result

for the measured correlation function is,

C(t) = <n>2[1 + f(A)lg()(t)2] , (3.9)

where <n> = o(AU)<IEs(0)12> is the average photo-count rate to the

correlator, with o related to the quantum efficiency of the detector
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and AT is the sampling interval of the correlator. The quantity,

f(A), is the spatial coherence factor, directly related to the number

of coherence areas illuminated at the detector surface. The coher-

ence area is the size of the Airy disk in the diffraction pattern of

the illuminated volume at the detector.

There are two terms neglected in Equation 3.9. One is the

shot-noise term, originating in the very short time correlation

within the electron bunches generated in the photomultiplier. This

is nearly a 6-function at t = 0 and does not appear in the measured

correlation function at the sampling intervals used in these experi-

ments. Another term is related to the fluctuations in number density

within the scattering volume. Although our solutions were dilute,

the concentration was high enough to make this term negligible.

3.2.3. Diffusion Coefficient

What are the fluctuations in dielectric responsible for the

fluctuations in the scattered electric field? On a length scale that

encompasses the entire macromolecule, the fluctuations can be pic-

tured to arise from the buffeting of the polymer molecules by the

much smaller, thermally agitated solvent molecules. The local fluc-

tuations in the dielectric constant are directly proportional to the

fluctuating presence or absence of polymer. The Onsager regression

hypothesis [2,3] justifies use of the diffusion equation to describe

the decay of the local concentration fluctuations, 6c(r,t),

asc(t) = DV2 6c(r,t) ,(310)at
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where D is the diffusion coefficient. Using the proportionality,

6e(r,t) 6 6c(r,t), the diffusion equation can be written,

a(,t) =DV26E(r,t) . (3.11)at
Taking the spatial Fourier transform of this equation yields the

solution,

6E(i,t) = 6 e(2,O)e Dk2t (3.12)

The fluctuations with wave vector decay with time constant

T= 1/Dk2 .

The Einstein formula relates the diffusion coefficient of a par-

ticle in solution to the thermal energy kBT, and a friction factor f

appropriate to the particle in the solvent,

kBT
D = (3.13)

f ·

For a spherical particle, Stoke's law states,

f = 6nR , (3.14)

where n is the solvent viscosity, and RH is the radius of the parti-

cle. For an expanded polymer coil in solution, RH is identified as a

generalized hydrodynamic radius with a complicated and not well-

understood relation to the actual polymer configuration.

Finally, combining Equation 3.3 for the scattered field, Equa-

tion 3.9 for the measured correlation function, and Equation 3.12,

the solution to the diffusion equation, results in
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C(t) = <n>2[1 + f(A)e- 2Dk2t] .(35)

The quantity <n> 2 is the "baseline" of the correlation function (the

average intensity) and is measured directly by the correlator instru-

ment, while f(A) and the quantity 2Dk2 are determined by fitting the

data to an exponential function. Normally, g(1)(t) is composed of a

sum or distribution of exponentials, reflecting the non-

monodispersity of the scattering particles or fluctuations. Thus

there are several fitting procedures used for C(t), each appropriate

to the a priori assumed distribution. Some fitting techniques are

described in Appendix A.

3.2.4. Static Properties

To determine static properties, only the time-averaged value of

the intensity of the scattered field and its dependence on is meas-

ured. Such a measurement gives information on the mass distribution

of the scattering particles, and hence, the radius of gyration. The

difference between the polarizability of each mass element of the

scatterer (monomeric segment) and the surrounding medium causes the

scattering. When the path difference for light scattered from dif-

ferent parts of the molecule to the detector becomes a significant

fraction (-1/20) of A, destructive interference results in decreased

intensity. Thus the angular distribution of the scattered light for

larger particles is more asymmetric than for smaller particles. Sim-

ple shapes such as spheres, rods, or coils can be distinguished

experimentally from the precise angular dependence of he scattered

light.
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The average scattered intensity, as a function of , is, from

Equation 3.3,

E2k4 rrd (3.16)
2 < 6(r) 2)ei k '(rl - r2)d34 34( 41r6(4)e )r r,V

(4Ro)2
The dielectric constant is a macroscopic quantity expressing the

response of the medium to the electric field. To evaluate the double

integral we use a microscopic model for the scattering particles.

The appropriate microscopic quantity is the excess polarizability a

of each monomeric segment of the polymer over that of the surrounding

solvent. Macroscopic electrodynamics shows and a are related as,

= 1 + 4 . (3.17)

Thus

n N
6() = 4 (r - ri ),1 (3.18)

1=1li=1

where the 6-function locates the ith segment of the 1th molecule in

the scattering volume and the sums are over the N segments of the n

molecules, each segment having identical polarizability, a. The

integrals in Equation 3.16 can then be transformed into sums,

I() 2< I I I e 1 > . (3.19)
R2 E l=lk=li=1j=l

The polymer solution is considered sufficiently dilute so that

there is no spatial correlation among different molecules. Thus the

terms eik(r ) average to zero for Then,
terms e average to zero for 1 k. Then,
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E2k4 2 N N -i .(r'i - r)
I(i) os <n>< e > 

R cs i=lj-1

(3.20)

where <n> is simply the average number of molecules in the scattering

volume.

Let us first consider scattering at low angles with IrJI << 1.

Then the exponential can be expanded,

2 4Ek N N
I() = 22 (n>a2 < Y [1I - k21i - 2cos 2 j.

i=lj=1 

(3.21)

Averaging over all orientations of r.i -rj about k, the terms in

brackets become,

2 4

IiR) = 2S <n>a2 N2

2k4

-E <n> 2 IN2

R2s 2

(3.22)

k2 N N

< i=lj=ri rj 12 >] 
i=lj i -

The double summation is over a single molecule. Considering the ori-

gin at the center of gravity of that molecule and expanding the pro-

duct,

N N

i< Lj i - j 12
i=lj=-1 

N 2 2
-=< [Jri + IXrj 2 2 i rj ]>

i= j=1 

= 2N I r 
i=1

(3.23)

as the cross terms average to zero.

The radius of gyration, RG, of a polymer is the root-mean-square

distance of the mass elements from molecular center of gravity,

expressed as,
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N N

Lmir I l I ril2
2 i-1 i=1

G N N
m

(3.24)

L ..-
i=l 1

where we consider the mass, mi, of each segment to be identical.

Substituting Equations 3.24 and 3.24 into 3.23 yields

E2 2

I(2) 2 <n>a 2 N2 [1 (kRG) (3.25)
R2 2 3

The factor in square brackets is the molecular structure factor,

S(~), and here is correct for any shape molecule provided kRG 1.

Figure 3.3 shows S(i) in this limiting case. Also plotted are the

calculated structure factors [4] for Gaussian coils,

1.0

0. 8

,-

co)

0.6

0. 4

0.2

0
0 1 2 3 4 5

2x = (Rsk)

Figure 3.3 Molecular Structure Factors. The molecular struc-

ture factor is shown for coils (dashed line), for spheres (dotted
line), and in the limit kRG << 1 (dashed-dotted line).
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S(k) = 2 [-(kRG )

S() 2 [le ( - 1 + (kRG) 2] , (3.26)
(kRG)

and spheres (R is the sphere radius, R = R2)

2

S( 3 sin(kR) - kRcos(kR)]] (3.27)

L(kR) 3

By comparing the measured angular dependence of the scattered light

intensity to the structure factor, at minimum, the radius of gyration

can be determined, and possibly the molecular shape.

3.2.5. Measurement of S()

The previous sections show that the angular dependence of the

scattered intensity is determined by the size and shape of the dilute

polymers in solution. Of course, the measured scattered intensity

includes the isotropic background scattering from density fluctua-

tions of the solvent. The classical method for obtaining the excess

scattering due solely to the polymer is to subtract the measured

intensity of pure solvent from that of solvent plus polymer. For the

dilute solutions needed to observe the globule state, the method

requiring two separate measurements of the intensity fails. The

experimental uncertainty in the value for the net scattered intensity

obtained from the difference in the two measurements overwhelms the

signal. However, during this work we developed a new method that

yields the excess scattering of the solute in dilute solutions from a

single measurement.
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For a two-component system consisting of solvent and polymer,

the first-order correlation function is a sum of two exponentials,

g(1)(t) = ae- t/ + ae-t/ T2 (3.28)

where component 1 is the solvent and component 2 is the polymer.

From Equation 3.9, the measured homodyne correlation function for

this system is

C(t) <n>2 [1 + f(A)Iale a2e-t/ 2] . (3.29)
la, + a 2

Since the solvent molecules are much smaller than the wavelength of

the incident light, and the measurements are performed far from the

critical point of the solution, a is constant over angle. The

structure factor S(~) is therefore contained in the angular depen-

dence of a2. Normally a<<a 2, but for solutions as dilute as those

required in our experiments a = a2. The relaxation time for diffu-

sion of the solvent molecules is -103 times shorter than that for the

polymers. Since the digital correlator forms the product

I(t)I(t+AT), where AT is the clock time for sampling, and since the

clock time is also much greater than , the first exponential in

Equation 3.29 is completely decayed before the first interval begins.

In Figure 3.4 Equation 3.29 is plotted for the cases where a = 0 and

a2 = 1, where a = 1 and a2 = 0, and where a = a 2 = 1. The open

circles represent the observed correlation function.

Extrapolating Equation 3.29 to t = 0 yields,
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Figure 3.4 Contributions to the Correlation Function. The

upper curve iS the contribution to the homodyne correlation function

from the solute from Equation 3.29 with f(A) = 0.5 and <n>
2 = 1. The

lower curve is the contribution from the solvent. The solid line is
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is the value at t = 0 extrapolated from the observed points.
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COBs(t40) = <n>2[1 + f(A) a2 (3.30)
(a, + a) 2

This value is represented by the filled circle in the figure. In the

limit t,

COBS(tc) = <n>2 , (3.31)

which is the measured baseline. Combining the previous two equations

algebraically,

COBS(t) - CBS(t-) 2
= f(A) (3.32)

COBS(t"c) (a + a)2

Or, in a more useful form,

f(A)Cs(t,)
a-= 2 - 1 (3-33)
al, CBSt+°' COBS(t )
This equation gives the angular dependence of light scattered from

the polymer molecules. The spatial coherence factor, f(A), depends

only on the optical geometry of the light scattering apparatus, and

can be determined by direct measurement. For a concentrated solution

(of latex spheres, for example) with a<<a 2 , the ratio formed in

Equation 3.30 is just f(A).

This method of determining the static scattering properties only

works for dilute solutions. If the net scattering from the solute is

much greater than that from solvent, all that will be measured is the

spatial coherence factor.
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3.3. Internal Motion

The motions of the segments within the polymer molecules result

in density fluctuations within the solution just as the translational

diffusion of the entire molecule does. The length scale of these

fluctuations is, of course, much shorter. At small laboratory

scattering angles (small 1i1, large length scale), only the transla-

tional diffusion of the macromolecules contributes to the scattering.

As the length scale probed is made smaller by going to larger

scattering angles, intramolecular fluctuations begin to contribute to

the observed correlation function. We now recalculate the temporal

correlation function of the dielectric (or density) fluctuations,

taking into account the contribution from the internal motion.

For this calculation, we model the polymer molecules as elastic

spheres. The elasticity will be characterized by the bulk modulus,

K, derived for the Gaussian coil in the previous chapter. We con-

sider the lowest order collective motion of the polymer segments to

be adequately modeled by isotropic fluctuations in the radius of the

sphere.

Let the equilibrium radius of the sphere be a, and the fluctua-

tions in size be given by a(t) = a + Aa(t), where Aa(t) << a. If

li(t) locates the center of mass of the ith sphere in the scattering

volume, then the density distribution is given by

p(r,t) = poXH(a i(t) r- i(t)l) , (3.34)

where H(x) is the unit-step function with H(x) = 1 for x 0 and is
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zero otherwise. The sum is over the particles in the scattering

volume. The spatial Fourier transform is

p(k,t) - poll H(ai(t) - - i (t)I)eik rd 
1

where the integral is over the scattering volume. We let

r (t) r - (t) and can then write
1 1

-i i(t) ~.ikr (t).{ ~ ' \ . ........ 1 -. . ..
PtK, J = poei J (ri(t) - a

4.a3 -ik -
p w heree P(ka (t)) 

i 1

where

Li(t))e cori(t)1

(3.35)

(3.36)

P(ka(t)) = 3 H(r - a(t))eikr 4

[sinkat) - kat)coskat)](3.37)
_ 3-- [sinka(t) - ka(t)cos ka(t)]
(kao)3

is the dissymmetry factor associated with spherical particles. The

temporal density-density correlation function then becomes,

ik(fi(t) - R.())
<p(,t)*(,O)> = p2<P(kai(t))P(kaj(O))e 1> (3.38)

ij

The exponential factor is associated with the translational diffusion

of the particles. We note there is no correlation among the parti-

cles, and none between translational and internal motion. The nor-

malized density-density correlation function is then,

<p(k,t)p*(k,O)> <P(ka(t)) P(ka(O))><eik(t) ))>

<lp(,O) 2> <P(ka) (3392>

<P(ka(t)) P(ka(O))> -Dk 2t

<IP(kao)l 2

where D o is the translation diffusion coefficient. Since the
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fluctuations in a(t) are small, we can expand P(ka(t)) about kao,

P(ka(t)) = P(kao) + ka(t) ( xk ' .3

Thus

<P(ka(t))P(ka(O))> = p2 (kao)+ k2 <Aa(t)Aa(O)> )[aP(x) ]2 x=(3.41)r -ax x=ka°

The final task is to evaluate <(a(t)Aa(O)>. We write it as

<(a(t)Aa(0)> = <Aa2(0> <Aa(t)Aa(0)> (3.42)
<Aa (O)>

to evaluate separately the amplitude of the fluctuations and their

time dependence. The elastic energy per unit volume, E, for deforma-

tion of the sphere is [5]

3K (Aa2 (3.43)
2 a,

where K is the bulk modulus of the material. By the equipartition

theorem, the thermal energy per unit volume associated with the fluc-

tuations, Aa, is

kBT/2
E = . (3.44)

471a3/3

Thus

-kBT

<a2(O)> = 4aK (3.45)

To evaluate the time dependence f the fluctuations, we write

the equation of motion for the elastic sphere in a viscous medium.

Let u(r,t) represent the displacement of a point r in the particle

from its average location at time t. The equation of motion is



a = V.' fau (3.46)a2at 'at
where p is the average density of the sphere, and the last term

characterizes the friction force per unit volume within the sphere.

We can neglect shear and so define o, the stress tensor, as

0ik = Kuikdik where

au au.
Uik 2 -I+ax + ax . (3.47)

1 k

The boundary condition requires V-o = 0 at r = a. We simplify by

considering only the lowest order radial mode and write

u(r,t) = u(r)e -rt. With such a simplification Equation 3.46 reduces

to

r2a2u(r) + 2rau(r) + r2q2u(r) = 0 , (3.48)
r2 ar

where

2 fr - pr2 (3.49)
q = K

Equation 3.48 is the zeroth order spherical Bessel equation. The

solution is

u(r) j(qr) = sin(qr) (3.50)
qr

The boundary conditions require q = n/ao, with n an integer. For

the lowest mode, n = 1. Solving Equation 3.49 for r yields,

r =f 1 + (1 -1 Kp )] (3.51)
2P f2

As with gels [6], the fluctuations within the single polymer are

overdamped. The square root can De expanded with the result r = K/f.
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K( rr )2t

u(t - e o

Since Aa(t) = u(ao,t),

where

K
int f 

The final result for the first order correlation function,

including internal motion, is then,

g(1) (t) =

where

L

L

k T
+ B F(kao)e

4ra 3K

-D nt ()2t -Dk2t (3.55)

F(x) = aP(x') '=x]

1 - 3x)21 - xot x

(3.56)

In the two-exponential form (used in the fits to the experimental

correlation functions),

g(1)(t) - Ae-t/-1 + A2e-t/t2

we have

-1 2T1 =D 1k2

-1 -1 - 'n )2
2 - = Dint ao 

and

(3.57)

(3.58)

(3.59)

58

(3.52)

(3.53)

(3. 54)

e int a,12<Aa(t a(0 >
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A2 kBT
-A = a F(ka0) * (3.60)

A, 4ia3K

In principle, then, the temperature dependence of the internal seg-

ment diffusivity and the bulk modulus (or compressibility) of the

individual polymer molecules can be determined from dynamic light

scattering.

The friction coefficient, f, is not well understood, so we can

not yet predict the temperature dependence of Dint. However, that

dependence can be given by considering the spatial correlation length

i of the fluctuations. As Kawasaki [7] originally proved for binary

fluid mixtures and Tanaka [8] has shown for gels, the internal dif-

fusivity should be related to in the single polymer as,

D kBT (3.61)
int - 6rr, '

Except near the critical point, where diverges, the correlation

length should be proportional to the amplitude of the fluctuations

Aa, determined in Equation 3.45. Therefore

(ao kBTK) (3.62)
D - - - ___ (3. 62)
Dint ~ 

Since the temperature dependence of K has been given using mean-field

theory in Chapter 2, the light-scattering determinations of Dint can

now be compared with predictions. The result of such a comparison is

shown in the next chapter.
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1. Introduction

The investigations of the coil-globule transition that comprise

this dissertation consisted of four experiments. The motivation for

the initial experiment was provided by Tanaka's [1] observation of a

collapse phase transition in macroscopic polyacrylamide gels immersed

in a mixed solvent of acetone and water. The phase transition could

be induced in these gels by varying either the temperature or the

solvent composition. In the first attempt to observe the single

polymer collapse [2] we used the same chemical system as the gel, and

varied solvent composition, as in most of the gel experiments. After

successful observation of the collapse in that system, we pursued the

investigation in a simpler system of polymer and single solvent.

The solution used in the other three experiments was polystyrene

in cyclohexane. The polystyrene and cyclohexane combination has long

been a favorite of polymer chemists, and there is much literature on

the properties of the solutions [3]. All that work, though, was for

solutions at temperatures in the vicinity of, or greater than the 0-

temperature, where the polymer is in the coil state.

In our second experiment (the first with polystyrene) we deter-

mined the coexistence curve of the solution in the dilute regime and

observed the coil-globule transition in measurements of the

61
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hydrodynamic radius [4]. The third experiment was a determination of

the radius of gyration [5] using the method introduced in Chapter 3,

while the fourth experiment was a characterization of the intramolec-

ular motion of the single molecules through the transition [61.

4.2. Polyacrylamide in Acetone-Water

In experiments by Tanaka 1], macroscopic gels made of

covalently crosslinked polyacrylamide networks immersed in an

acetone-water mixtures were observed to uniergo a discrete and rever-

sible collapse. The collapse occurred with a change in either the

temperature or acetone concentration of the solvent, and the

phenomenon was interpreted as a first-order phase transition. Water

is a good solvent for polyacrylamide, while acetone is a poor sol-

vent. Variation of the solvent composition is equivalent to changing

the interaction parameter X, introduced in Equation 2.11. At the

collapse, the volume of the gel changed by a factor of several hun-

dred. These observations suggested to us a similar transition might

be observed in single linear polyacrylamide molecules using light

scattering techniques.

The polyacrylamide used in our experiments was of molecular

weight 5-6x106 (Polysciences -- polydispersity index unknown). A

single chain of the polymer contains about 80,000 acrylamide monomers

and has a backbone length of about 24pm. In the solutions we used,

the concentration of polymer was generally less than 10g ml 1. At

this concentration, the mean distance between adjacent polymers is

nearly 1im, much larger than the average polymer size, thus
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preventing interpolymer entanglement and aggregation.

Contamination of the sample solution by dust is always a problem

in light scattering, more so for dilute solutions, and especially so

for dilute solutions where water is the solvent. Dust scatters light

strongly and distorts the correlation function of the light scattered

by the polymer molecules. For the measurements, we constructed a

device to vary the solvent mixture without adding dust to the sample.

The cell holder cap was fitted with two hollow needles. One needle

was connected through a 0.4pm filter to a syringe. The other allowed

displaced air to escape. The cell was partially filled with an

acetone-water mixture or an acetone-water mixture containing the

polymer. To vary the solvent composition, a sample solution, pure

water or pure acetone, was added through the syringe. The new sol-

vent composition could be determined from the number of drops added.

A small magnetic stirring bar which remained in the cell was used to

mix the solution.

The correlation function of light scattered from the sample at a

900 angle was measured using a 64-channel clipped correlator (Nicoli

Instruments). All measurements were made at 250C.

The hydrodynamic radius, RH, was obtained by fitting the corre-

lation function, with methods described in Appendix A, using a second

order cumulants expansion with the baseline fixed by the average

count rate. The values obtained for RH are plotted in Figure 4.1.

At low acetone concentrations, RH is large, about 500A. Near an

acetone concentration of 39%, the polymer shows a sharp decrease in
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Figure 4.1 R and RG for a Single Polyacry amide Chain. The

molecular weight o the polyacrylamide is 5-6x10 . The solvent is

acetone-water mixtures at 25°C. The open circles are for the hydro-

dynamic radius, determined by dynamic light-scattering. The filled

circles are for the radius of gyration, determined by the classical

dissymmetry method.
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hydrodynamic radius to about 200A. With a further increase in

acetone concentration, the polymer radius remains constant. The

transition was reversible.

We also determined the radius of gyration, RG, of the chain from

the angular dissymmetry of the scattered light intensity, using the

classical method. These results are also shown in Figure 4.1. The

transition is seen to occur at the same acetone concentration as that

seen in the curve of the hydrodynamic radius. It was impossible to

continue these measurements of RG to higher acetone concentrations

since the the classical method is inadequate at the low level of

scattering from the dilute solutions.

In the coil state, the values for RH are a poor representation

of the polymer size. At a 900 scattering angle, the intramolecular

fluctuations contribute significantly to the correlation function.

Without taking this contribution into account, the value obtained for

RH is too low.

More recent experiments and theoretical considerations [7] on

the phase transition in polyacrylamide gels have shown that ions

within the gel and charged groups attached to the network are impor-

tant in the free energy equation. To simplify the theoretical

description of the phase transition in single polymers, we continued

the studies in a single solvent solution.
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4.3. Polystyrene in Cyclohexane

4.3.1. Coexistence Curve and Hydrodynamic Radius

Samples were prepared using MW = 27x106 polystyrene (Polysci-

ences lot 3-1761, Mw/MN = 1.3), and high-quality cyclohexane (Fisher

99-Mol% pure). Both were used as supplied with no additional purifi-

cation. We did not characterize the molecular weight distribution of

the polymer samples and were refused any additional information from

the manufacturer on their characterization of the sample.

All glassware and sample cells were carefully cleaned and han-

dled to prevent contamination by dust or other impurities. A stock

solution of about 10mg of polystyrene dissolved in 10ml of warm

(-550C) cyclohexane was prepared in a tube. For initial dissolution

of the polymer, the tube was mechanically rotated end-over-end in a

warm oven for several hours. The stock solution remained in the oven

for several days to allow complete dispersion of the polymer and to

allow any introduced dust to settle. Unlike the acetone-water sol-

vent, cyclohexane tends to exclude large dust particles. Next,

-20-200pl of the stock solution were added to a rectangular cuvette

containing -2-3ml of warm cyclohexane. For the most dilute samples,

a two-step dilution was required.

The cuvettes were capped within teflon stoppers. A teflon

encapsulated thermistor (YSI model 702) was inserted through the

stopper to monitor the solution temperature. In these experiments,

the temperature of the solution was controlled to better than
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±0.050C. The Argon-ion laser source was operated at powers between

200 and 1200mW, depending on the solution concentration. All meas-

urements were made at an effective forward scattering angle of 23°.

The first task in characterization of the dilute solution

behavior of polystyrene in cyclohexane was determination of the coex-

istence (or phase separation) curve in the dilute regime. The coex-

istence curve is a plot of the temperatures and concentrations that

separate phases of mostly polymer (bulk phase) and phases of mostly

solvent (dilute solution) from unstable states. In dilute solution

at a fixed concentration, as the solution temperature is lowered, a

state is reached where the distinct solution phase separates into two

phases by inter-molecular aggregation of the polymer.

The phase separation temperature can be readily detected by sim-

ple light scattering measurements. The scattering intensity of the

solution is monitored as the temperature of the solution is decreased

in steps. The intensity is constant at each temperature while the

solution is of one phase. The intensity first rises at the coex-

istence or phase separation temperature because of the formation of

interpolymer aggregates that scatter more light than the smaller iso-

lated molecules. Eventually, the aggregates settle out of solution

and the intensity drops. The initial rise in intensity, however,

marks the phase separation temperature.

Our data for the phase separation temperature is plotted in Fig-

ure 4.2a. Scaling arguments [8] predict that the data for different

molecular weights should fall on the same curve if the concentration
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Figure 4.2 Coexistence Curve for Polystyrene in Cyclohexane.

a) the phase separation temperature of thg polymer solution deter-
mined by light scattering for M = 2.7x10 . The horizontal line in-

dicates the coil-globule transition temperature. b) the values of RG

plotted in Figure 4.6 are used to estimate the poymer concentration

within the single chains, where Ccoil = MW/(NA'RG), NA being
Avagadro's number.
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and reduced temperature T = (T - 0)/O are both scaled by M2. The

data are plotted in such a manner. in Figure 4.3 along with data for

polystyrene of several lower molecular weights in more concentrated

solutions.

As in the previous experiment with polyacrylamide, the measured

correlation function was fitted using a second order cumtulants expan-

sion to obtain the hydrodynamic radius. The results for several con-

centrations of polymer are shown in Figure 4.4. For each sample RH

follows nearly the same curve. The radius in the coil state is

-1250A. Near 320C, the polymer collapses to a globule with a radius

of -500A. Although most measurements were made while lowering the

temperature, the transition could be reversed by raising the tempera-

ture. As in the polyacrylamide measurements, the hydrodynamic radius

is too low owing to the inclusion of scattering from intramolecular

motion in the correlation function.

4.3.2. Radius of Gyration

Most of the theories of the coil-globule transition deal with

the radius of gyration rather than the hydrodynai,*,' radius. Thus, we

wanted to measure RG directly. Such a measurement required a new

technique, as explained in Chapter 3. Determination of RG requires

measurement of the angular dependence of the intensity of light scat-

tered from the polymer. Instead of measuring the difference in

intensities between pure solvent and solution, as in the classical

method, we obtained the angular dependence from the correlation func-

tion.
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Figure .4 Hydrodynamic Radius for a Single Polystyrene chain.

The temperature dependence of the hydrodynamic radius of polystyrene

(Mw = 2.7x10 ) in cyclohexane is plotted for several concentrations
of polymer.
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Material, sample preparation, and apparatus were identical with

the previous experiment except for the correlator, which was a full

4-bit-by-4-bit machine (Nicomp Instruments). With a full correlator,

fluctuations in the average scattering intensity cause no distortion

of the correlation function. Since the solute scattering intensity

was the target of the measurements, it is unlikely a clipped correla-

tor would have worked.

Equation 3.33 gives the ratio of the amplitude of scattering

from the solute, a2, to that from the solvent, a, in terms of the

extrapolated values of the correlation function at t = 0 and t = ,

a, ]/ 1]O C (~o (4.1)
a ) CoBS(tso) - COBS(t) 

where f(A) depends only on the optical geometry. The factor f(A) was

measured at each angle using a concentrated solution of latex spheres

(Dow Diagnostics). Since a is constant over angle, the angular

dependence of a2/a, reflects the angular dependence of the scattering

from the solute. Figure 4.5 is a plot of a,/a2 vs. sin2 (8) (propor-

tional to k2) at several temperatures. The radius of gyration was

determined by fitting these curves using the small-angle approxima-

tion for the static structure factor, as explained in the previous

chapter.

The values obtained for RG are shown in Figure 4.6. New meas-

urements of RH, determined with the full correlator, are also plot-

ted. These agree with the previous results except for slightly

larger values for the coil state. Below 29.60C, the ratio of R G to
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RH is 0.74±0.04, close to (3/5) 
/ 2 0.77, the value of the ratio for

a solid isotropic sphere. This is convincing evidence the polymer

has collapsed to a state where the solvent is completely excluded

from the molecule. Above 36°C the polymer is in the expanded coil

state. In Figure 4.2b, the values of RG are used to estimate the

polymer concentration within the single coil. The temperature depen-

dence of the coil concentration is plotted alongside the solution

coexistence curve. It is provocative to see that at the transition

to the globule state, the coil concentration is very near the concen-

tration of the solution at phase separation.

Figure 4.7 is a log-log plot of RG and RH below the tempera-

ture as a function of the reduced temperature. In the compact glo-

bule state, the slopes are -0.34+0.04 and -0.36±0.04 for RG and RH

respectively. The slope for the radius of gyration agrees with the

mean field theory prediction of -1/3 of Equation 2.32. The hydro-

dynamic radius should be directly proportional to the radius of gyra-

tion in the globule state, and the data bear this out.

4.3.3. Intramolecular motion

The measurement of the internal motion was made on a new

apparatus, described in Chapter 5, that had improved temperature

control and provisions for computerized scans of temperature and

scattering angle. A 4-bit-by-4-bit, 136-channel correlator

(Brookhaven Instruments) was used. The added channels were desirable

because the correlation function was to be analyzed for two exponen-

tials; 4 or 5 parameters would be fitted. The same polystyrene, but
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higher quality cyclohexane (Fisher HPLC grade), was used in this

experiment.

An established procedure was used to characterize the internal

motion [10,11]. At each temperature, correlation functions were

measured at forward scattering angles (x _ k2 R2 < 1) to determine D.

The correlation function was then measured at higher scattering

angles and fit to

C(t) = [Ae t / T + A2et/T2]2 + B (4.2)

where T is fixed by D, so only A,, A2, T, and B need to be varied.

Figure 4.8a shows the behavior of the normalized amplitude of

internal motion, A2/(A + A2), as a function of x at 33.9oC. Figure

4.8b shows the inverse relaxation time, T 1 , also as a function of x

at the same temperature. The translation relaxation rate, T 1, is

plotted as a straight line through the origin. The difference

between T 1 and T 1 in the region where they are parallel is propor-

tional to the segment diffusivity, Dint (see Equation 3.59). For

higher values of x, the effect of the higher-order modes correspond-

ing to shorter length-scale density fluctuations is apparent -- the

two exponential form is no longer appropriate to describe the meas-

ured correlation function.

Figure 4.9a reproduces the results showing the collapse in the

radius of gyration as the temperature is lowered. Figure 4.9b is a

plot of the diffusivity of the internal motion, defined as

Dint = R/(T1 - T1
1 ). Equation 3.59 puts Dint = ( 2/(T 1 - T1
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where a is the radius of the model elastic sphere. We simply assume

ao 0 RG. The slowing-down of the intramolecular motion at the tran-

sition is apparent in the plot. Figure 4.9c is a plot of the normal-

ized amplitude A2/(A + A2) versus temperature at x = 2.5. This plot

shows the sharp increase in the amplitude of the fluctuations at the

transition temperature.

4.3.4. Comparison with Theory

A theory for the expansion factor of the radius of gyration was

derived in Chapter 2. The result was

a5 - a 3 - y (4.3)

where

y = 3w 4 (4.4)
T3

RG (4.5)
ro

and

z = ( )/2(1 - )N2 w2 ( 4.6)

Here, w characterizes the flexibility of the polymer chain, r is the

radius of gyration under conditions where RG scales as N/2, 0 is the

temperature at which the effect of binary interactions vanishes dues

to the compensating entropy terms in the free energy, character-

izes the energy of interaction between the components of the solu-

tion, and N is the number of statistical elements in the chain.
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There are effectively four parameters in this equation. They

are w, r, 0, and N 1/2. There is no way to separate the last two

factors. Fitting the equation simultaneously for these parameters to

the data of Figure 4.6 results in w = 0.472, r = 1660A, 0 = 34.750C,

and N/2 = 350. The goodness of fit can be judged from Figure 4.10.

The fitted value of the flexibility is well above the critical flexi-

bility (cf. Figure 2.2), and in the region of the second order tran-

sition. Other estimates of the flexibility of the polystyrene chain

are higher than that obtained here [13,14]. Values for O quoted in

the literature [15] range from 34.50C to 35.40C, which agree with the

result obtained in the fit.

An empirical formula that summarizes data from many sources [16]

for polystyrene in solvents relates RG to molecular weight as,

<R2(T=G)>/2 = 0.29 (±2.5%) A . (4.7)

At T = the fit to Equation 4.3 gives RG = 1711A which corresponds

to MW = 34.8x106 For RG = r = 1660A, the empirical formula

predicts MW = 32.8x106. In either case, it seems likely that the

value quoted by the manufacturer (MW = 27x106) may be slightly low.

The predictions at the end of Chapter 3 for the temperature

dependence of the intramolecular quantities are shown in Figure 4.11.

Figure 4.11a is of the internal (or segment) diffusivity (cf. Equa-

tion 3.62),

(aekTK) y2 (4.8)
Dint u 

while Figure .llb is of the relative amplitude of the lowest order
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Figure 4.10 Fit of Expansion Factor to Mean-Field Theory. The

data points ieclude the results from Figure 4.6 and neutron scatter-

ing data from a low molecular weight specimen [12]. The solid curve

is the best fit to Equation 2.28. The fitted parameters are
eN%2 350, w - 0.472, 8 - 34.75, and <r?/2 = 1660A. The remaining

curves use the same parameters except N is reduced by successive

powers of 10, corresponding to lower molecular weights. (Accom-

plished byscaling IN y2 by successive powers of 10/2.)
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Figure 4.11 Comparison of Intramolecular Data with Theory. The

data points are-from Figure 4.9. The solid lines are theoretical

curves from Equation 3.62 for D.int and Equation 3.60 for A2/A1 . In

these equations, the bulk modulus K is given by Equation 2.42. All

parameters except the proportionality constants are obtained from the

fit displayed in Figure 4.10.
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mode of the intramolecular fluctuations (cf. Equation 3.60),

A2 kT F(ka )F(ka0) . (4.9)
Al 4wa3K

The radius of the elastic sphere, a, used in the model is replaced

by RG. RG and the bulk modulus, K, are calculated using the same

parameters as for Figure 4.10. The proportionality constants used in

the plots are estimates -- the data do not conform to the theoretical

curves well enough for a fit to work.

4.4. Other Work

Although the preponderance of the literature relating to the

coil-globule transition is the work of theoreticians and includes

mean-field theories, scaling and renormalization arguments, and

numerical simulations, there are a handful of experimental studies

that relate to the phenomenon. None of these experiments, however,

revealed the dimensions of a single polymer in the globule state.

Both classical [17-19] and dynamic light-scattering [19-21] tech-

niques have also been applied by other groups in their attempts to

observe the coil-globule transition. In addition neutron scattering

[12], sedimentation [22], and viscometry [17,21,23] measurements have

been reported.

The neutron-scattering results are shown in Figure 4.10. The

authors claimed the exponent for the temperature dependence of the

expansion factor was -1/3 for the globule state, in agreement with

the predictions of the theory. They argued that by choosing polymers

of low molecular weight, a larger range in temperature between the 
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temperature and the solution coexistence curve could be obtained.

However, the authors overlooked the fact that the coil-globule tran-

sition temperature is also a function of molecular weight, as can be

seen in Figure 4.10. The transition is broadened as the value of N

decreases. Thus, the polymer collapse occurs at lower temperatures

for lower molecular weight molecules. Comparing their data and ours

with the theory, it appears the temperature range involved in the

neutron experiment was near the onset of the transition, and the

slope of -1/3 they obtained was only coincidental.

All the light scattering experiments cited were unable to con-

tinue measurements to the globule state owing to the onset of phase

separation in the insufficiently dilute solutions used. Some authors

did not believe observation of the globule state was even possible,

stating it was "unlikely that the single collapsed coil can exist

before phase separation begins." [18]

The sedimentation and viscosity experiments are difficult, if

not impossible, with very dilute solutions, and so were also hindered

by phase separation at the solution concentrations used in the exper-

iments. Also, these techniques are not very sensitive to dimeriza-

tion, trimerization, etc, of the molecules, compared to light

scattering.
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CHAPTER 5

THE LIGHT SCATTERING APPARATUS

5.1. Introduction

Since the design of the light scattering apparatus was important

to the success of our measurements of the coil-globule transition,

that apparatus is described in some detail in this chapter. Although

three instruments were used during the experiments, with two of them

built especially for these measurements, only the final and most ela-

borate one will be considered in depth.

The optical requirements of the basic light scattering instru-

ment are simple. An incident beam of monochromatic, collimated, and

polarized light is needed. A laser is the most convenient source for

such a beam. This incident beam is brought to a focus within the

sample by a lens. In collecting the scattered light, two apertures

define the scattering angle and limit the size of the scattering

volume. Detection is provided for with a photomultiplier tube that

converts the scattered light to an electrical signal. Other elements

of the apparatus include a sample holder and electronics for analyz-

ing the detected signal. In addition to these components, the

apparatus includes devices for precise regulation and measurement of

sample temperature, and connections to a laboratory computer for

experiment control, data acquisition, and data reduction.

89
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5.2. Stray Light and Convection

When dynamic light scattering is used for the study of dilute

solutions, particular attention must be paid to the problem of stray

light reaching the detector and to the problem of convective flow

within the scattering volume. Stray light is light scattered or

reflected from portions of the apparatus that has the same frequency

spectrum as the incident light. Stray light is a problem if it

reaches the photomultiplier surface, where it mixes with the

frequency-shifted scattered light resulting in a heterodyned signal.

Such a signal produces a correlation function proportional to the

function g(1)(t) defined in Equation 3.5. The characteristic decay

times of exponentials in g(1)(t) are twice those of the homodyne

correlation function. All else being equal, the weaker the signal

from the scattering volume, the more the correlation function will be

distorted as a result of heterodyning.

Convection can result either from uneven heating of the sample

by the temperature control system or from local heating of the solu-

tion by the incident beam. In the presence of convection, which can

be characterized by a time-independent velocity field v(r), the dif-

fusion equation (3.10) contains additional terms,

a(t) - DV2 6c(r,t) + v(r).V6c(r,t) + 6c(r,t)V v(r) ,

where c(r,t) is the local concentration fluctuation and D the diffu-

sion coefficient. For v constant (uniform convective flow), the

solution to the above equation for the Fourier component of the con-

centration fluctuation with wave vector is



91

6c(a, t) e oDk2 t - iv

The homodyne correlation function, g(2)(t), is proportional to

j6c(k ,t ) c(k,t)j , and uniform flow has no effect. However, in the

presence of stray light and the associated heterodyning, the uniform

flow will add an obvious sinusoidal component to the correlation

function. Non-uniform flow, perhaps more likely in a small sample

cell, can distort the correlation function even in the absence of

heterodyning. In any case, it is not possible to obtain worthwhile

data when the correlation function suffers from significant distor-

tion.

5.3. The Sample Cell

In general, either a cylindrical or rectangular cell may be used

to contain the sample solution. As summarized in Table 5.1, con-

siderations in the choice of cell type include the the cell surface

quality, and the ease of low angle work, temperature control, and

automated scanning of angles. The quality of the cell surface is

important since scattering from surface imperfections is one source

Table 5.1 Comparison of Rectangular and
Cylindrical Cells

Quality Low angle Temperature Automated
surfaces work control angle scan

Cylindrical Rare Difficult Simple Easy

Rectangular Common Possible Difficult Complicated
. .. , : : · ·.
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of stray light. Good cylindrical glass is difficult to find, and

even at its best, does not match the optically flat and parallel sur-

faces of readily available rectangular cells. Cylindrical cells also

pose problems at forward scattering angles, especially when the cells

are of small diameter, since the unscattered beam will diverge as it

passes from the glass into the air. Finally, accurate alignment at

low angles is more difficult with cylindrical cells. Because the

central axis of the cylinder cannot be easily determined, problems

arise in centering the incident beam and in positioning the collec-

tion optics. Cylindrical cells do offer certain advantages, however.

First, precise temperature control is generally simpler. It is dif-

ficult to design holders for rectangular cells without exposing a

portion of the cell to air. Such exposure leads to temperature con-

trol problems. A cylindrical cell holder, however, can be designed

to immerse the cell entirely in a thermostating and index-matching

fluid. Second, automated control of the scattering angle is readily

carried out when a cylindrical cell is used. The cell position and

detection optics do not need to be readjusted as the scattering angle

is cha,,ged (which is necessary with a rectangular cell), since the

light path from the sample to the detector is symmetric at all

angles.

The first system we built employed a rectangular cell. The cell

fit into an aluminum block with heating and cooling provided by a

Peltier-effect module attached to one side of the block. We found it

difficult to eliminate temperature gradients across the cell. The
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best results were obtained when an auxiliary heating element was

placed in a hole drilled in the block on the side of the sample oppo-

site the module. Heat to the sample cell was carefully adjusted to

maintain constant temperature on both sides of the cell, as deter-

mined by two sensors and by observation of the correlation function.

Although we obtained adequate results in the polyacrylamide experi-

ment (performed at constant temperature) and in the measurements of

the radius of gyration of polystyrene, temperature control was tedi-

ous and unreliable. Because our plans to measure the intramolecular

motion required correlation functions at many combinations of tem-

perature and scattering angle, we designed a new system emphasizing

improved temperature control and computerized experiment management.

The cylindrical cell is best suited to these requirements and was

chosen for the new apparatus.

5.4. Overall Design

Figure 5.1 is a block diagram of the cylindrical-cell, light-

scattering apparatus. Apparent are the many connections between the

elements of the apparatus and the computer. Scattering angle and

temperature of the sample are under computer control, and scattering

intensity and temperature are monitored by the computer. In addi-

tion, the computer has complete remote control of the correlator

operating parameters.

Figure 5.2 is a scale drawing of the primary mechanical and opt-

ical components. The laser and rotary table are mounted on a rigid

aluminum slab. A post fits through the center of the rotary table
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and is also fastened to the slab. A platform to hold the focusing

lens and the cell holder is attached to the post. An aluminum chan-

nel is bolted to the top of the rotary table to support the detection

optics. The entire assembly rests on a fairly massive (-500lbs)

wooden table. The table legs sit on inflated inner tubes to damp out

building vibrations.

A stepping motor attached to the worm drive of the rotary table

and controlled by computer varies the scattering angle with an angu-

lar resolution of 0.010 per step. There was no measurable error in

the reproducibility of the angular position.

A lens is inserted behind the first aperture on the rotating arm

to form a twice-magnified image of the illuminated volume at the

plane of the second aperture. A folding mirror, ground-glass screen

assembly, salvaged from a single-lens reflex camera, is mounted in

front of the second aperture. When the mirror is down, the image can

be viewed on the screen. This arrangement allows visual inspection

of the scattering volume for proper focusing of the laser beam, dust

in the sample, and the presence of stray light. The space between

the first aperture and the photomultiplier is completely shielded

from ambient light.

Figure 5.3 shows the dimensions of the collection optics. These

dimensions will now be used to estimate the size of the scattering

volume and the number of coherence areas illuminated at the detector.

The magnification, M, of the illuminated volume at the pinhole P2 is

given by the ratio of the object distance, so, and the image
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distance, si: M = si/So=2.53. The diameter d of P2 is 0.2mm, and it

limits the length b of the scattering volume, where b = d/M = 0.08mm.

The diameter of the focused laser is about 0.1mm. Since b < , the

shape of the scattering volume at = 900 is a cylinder with its axis

along the line of the collection optics. Its volume is

rw(b/2)2 0.0005mm3. At other scattering angles b, and hence, the

scattering volume, are increased by the factor 1/sin0.

The meaning of the coherence area is illustrated in Figure 5.4,

Scatterinc

herei

P1

Figure 5.4 The Coherence Area. The wavefronts from two un-
correlated scatterers in the scattering volume combine constructively
forming an interference pattern at the aperture P1. The coherence
area is proportional to the square of the distance between successive
minima. A rigorous calculation requires summing the wavefronts from
all points in the scattering volume.

nce
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which shows the resultant intensity from two scattered beams ori-

ginating from opposite corners of the scattering volume. A rigorous

determination of the coherence area requires integrating the phase

differences of the scattered beam at the reference plane from each

point in the scattering volume. This calculation is identical to a

determination of the Fraunhofer or far-field diffraction pattern of

the scattering volume. If we consider the scattering volume to be a

disk, and the coherence area at P1 to be the area of the central max-

imum of the diffraction pattern of a disk, the coherence area is

AC(All/b) 2 . The diameter D of aperture P1 determines the number of

coherence areas NC illuminated at the detector, where

N-(D/2) 2/A C 0.24, for D = 1mm and = 900. At other scattering

angles NC increases by the factor 1/sin2 8. For example, at = 200

with D = mm, NC = 2. In the experiments, several different aper-

tures were used for P2 with diameters from .38mm to 1.5mm.

5.5. Laser Source

A Spectra-Physics model 164 Argon-ion laser generates the

incident beam. The green line at 5145A was chosen for the experi-

ments. Table 5.2 is a list of the magnitude of the inverse scatter-

ing vector for a series of scattering angles at this wavelength.

This magnitude corresponds to the length scale of the concentration

fluctuations in the samples that are probed at each scattering angle

(see Equation 3.4).

The laser head contains an integral beam splitter which directs

a fraction of the beam onto a photo-diode. The photo-diode is
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Table 5.2 Length scale (in A) vs. scattering angle
for cyclohexane at 34.5°C

e 1 k 1 k-1

5 6600 35 956 80 448
10 3300 40 842 90 407
15 2210 45 753 100 376
20 1660 50 682 120 333
25 1330 60 576 1 40 307

30 1110 70 502 1 60 292

connected to circuitry that monitors and regulates the beam inten-

sity. We relied on this built-in power monitor to gauge the inten-

sity of the incident beam. Incident power was typically 100-200mW.

High laser power, while shortening accumulation time, caused local

heating in the sample solution, generating convective flow. Usually

a neutral density filter was inserted into the beam path so the laser

could be operated at higher powers where the beam was apparently less

susceptible to ripple from the power supply.

5.6. Detection

The scattered light is converted to electric pulses by a pho-

tomultiplier tube (EMI model 9368A, photocathode diameter .lin,

selected for low dark current). The photomultiplier is biased at

-1800V (with a Fluke model 415B supply). The photomultiplier housing

(EMI model RFI1/B-263F) contains an integral pre-amplifier and

discriminator (EMI model APED-1). The discriminator output is buf-

fered (by a 74-128 integrated circuit) to provide replicas of the
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signal for the digital correlator and a count-rate meter (Hewlett-

Packard model 5300B/5308A/5312A/5311B). The meter can be read by the

computer (typically at 10-30 second intervals) and can also be con-

nected to a strip-chart recorder to provide a record of the scattered

intensity. An increase in the scattering intensity as the tempera-

ture of the solution is lowered, or as the solvent mixture becomes

poor, is one indication of the onset of interpolymer aggregation.

5.7. The Correlator

The state of the art of commercial digital correlators improved

over the 5 years of these experiments. The first correlator from

Nicomp Instruments had 64 channels to accumulate the correlation

function. Limitations in the speed of digital circuits at that time

required use of a clipping scheme to restrict the correlation product

to one bit. The next-generation correlator from Nicomp provided true

multiplication up to 4 bits, meaning the input count rate could vary

by a factor of 16 with no distortion of the correlation function. We

next obtained a 136-channel 4-bit correlator (Brookhaven Instruments

model BI2020). Additional channels improve the quality of the fits

to the correlation function when studying the internal motion of sin-

gle polymers, where the correlation function consists of at least two

exponentials of different decay times.

The Nicomp correlators, after modification, could be started,

stopped, and cleared under computer control, and the accumulated

correlation function could be read directly into the computer. The

Brookhaven correlator has these features, but also allows remote
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control of the clock (sample) time and input prescale factor. With

this correlator, the computer can be programmed to optimize these

parameters for the intensity of the scattered light and the charac-

teristic time of the correlation function, which change drasticly

while scanning the scattering angle. In practice, the computer was

programmed to fit a short-duration correlation function at each new

scattering angle. The clock time required to produce a constant

number of decays over the 136 channels was calculated and sent to the

correlator, and a new sample correlation function was obtained. The

procedure generally required two or three iterations and took about 1

minute.

5.8. The Cell Holder

The sample solutions are contained in quartz cuvettes of 12mm

outer diameter. Figure 5.5 shows the finned teflon stoppers designed

to cap the cells. The fins are thin enough to flex and form a tight

seal. A hole through the center of the cap allows air to escape when

the cells are closed. A screw covered with teflon tape seals the

hole.

Figure 5.6 is a cutaway drawing of the cell holder. The cell

fits into the brass inner cylinder and is centered by the tapered

walls on the bottom and by a delrin compression ring at the top.

Concentricity between the inner cell holder and the steel center post

attached to the baseplate is achieved by accurate machining of the 4

intermediate pieces. Steel pins pressed into the connecting pieces

secures the alignment. All brass pieces were treated using the
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Figure 5.5 Cell with Stopper. The finned teflon stopper seals
the cell to prevent evaporation of the volatile cylcohexane solu-
tions. A teflon-covered screw seals the pressure-release hole that
is drilled through the stopper.

ebanol-C process, to blacken the surfaces and reduce reflections.

Index-matching paraffin oil fills the cell holder to the level

of the inlet hole. A small peristaltic pump circulates the oil from

the cell holder through a filter to remove the dust introduced when

the cell is changed.

Figure 5.7 is cross section of the cell holder at the level of

the beam. At this level the walls of the inner cylinder are shaped

to minimize reflections. There is a small pinhole suspended within

the oil between the entrance window and the cell to limit reflec-

tions. A piece of neutral density filter is suspended between the

cell and the exitwindow to absorb the unscattered beam. The

entrance window is a quartz disk with an anti-reflection coating.

Scattered light is collected through the cylindrical window, which
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CYLINDRIC
WINDOW

CENTEI
POST

Figure 5.6 The Cylindrical Cell Holder. The cylindrical pro-
jection on the bottom of the base fits into the hole on the top of
the center post to align the cell holder with the center of rotation
of the rotary table.
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V- U I. I.__ .I nYV WIN

Figure 5.7 Cell Holder Cross-Section. The section is taken at
the level of the windows. The aperture, the beam absorber, and the
cutaway portions of the inner cell holder are included in the design
to prevent stray light from reaching the detector.
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was fabricated from Suprasil II grade quartz. The window subtends an

arc of 1500. Sixteen screws are used to hold the window in place.

Great care was required in tightening these screws to avoid introduc-

ing stresses that would crack the window. The third window shown in

the figure is used only to aid visual inspection of the cell holder

interior. All the windows are mounted with o-ring seals to prevent

leakage of the index-matching fluid.

5.9. Optical Alignment Procedure

The mechanical construction of the system is stable. Realign-

ment is generally only necessary when components are changed. The

general procedure for alignment follows.

(1) The position of the rotary table is adjusted to put its axis of

rotation in line with the axis of the fixed post. A dial-

indicator is fastened to the top of the rotary table with the

indicating point in contact with the fixed post. The rotary

table is turned, its position on the base slab adjusted, and the

mounting bolts secured.

(2) A centering point is placed in a hole drilled for this purpose

in the center of the fixed post, and the position of the laser

adjusted so that the beam passes through the center of rotation

at the proper height.

(3) The cell holder is temporarily put into position or, the fixed

post, and the reflection from the beam-entrance window back to

the laser is used to set the inclination of the laser beam per-
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pendicular to the surface of the window.

(4) The cell holder is removed, the height and centering of the beam

is rechecked, and the previous step repeated, until the laser is

satisfactorily aligned.

(5) The rotating arm is placed at 00, and the mounting of the

photomultiplier/pinhole assembly set for the beam to hit the

pinhole on center. The rotary table angle indicator is set to

read 00 at this time.

(6) The collecting lens on the rotating arm is put into place and

positioned using the reflections back to the laser to set the

lens perpendicular to the beam while maintaining the centering

of the beam on the rear pinhole.

(7) The cell holder is put into place and bolted into position

guided by the reflection of the laser beam off the beam-entrance

window back to to laser.

(8) The laser focusing lens is positioned again using reflections.

(9) The rotating arm is moved off 00, and the collection lens is

adjusted again in the vertical direction to maximize the

scattering intensity. The focusing lens is adjusted to put the

point of maximn beam convergence in the center of the cell.

The collection lens is then adjusted to bring the image of the

beam into focus on the viewing screen.
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5.10. Temperature Control

Measurements were made at temperatures in the range 25-50°C.

Temperature stability of the cell was better than lmK over 10 hours.

The thermal isolation of the cell holder and the elements related to

temperature control are illustrated in Figure 5.8. The inner cell

holder and the outer can are brass to provide thermal mass. The

cover and base are stainless steel, a material with relatively low

thermal conductivity. In addition, the outer can is separated from

the base by ceramic spacers to limit heat flow through the base to

the fixed plate. The index-matching paraffin oil that fills the cell

holder also serves as a thermostating fluid for the cell. Heat is

supplied through 3.5m of teflon-encased nichrome resistance wire

wrapped around the inner cell holder (resistance = 20.4).

A second stage of regulation is provided by a brass cylinder

with brazed-on copper tubing that fits over the outer can. A tem-

perature controlled circulator (Lauda model K-2/R) pumps fluid, gen-

erally a few degrees below the temperature of the cell, through the

tubing. Foam insulation covers the entire assembly. To further

limit heat flow, the base of the cell holder below the ceramic

spacers is heated by resistance elements. The electric power sent

through these elements and the temperature of the circulator are

adjusted manually to keep the voltage across the cell-heater resis-

tance wire as low as possible. The temperature of the sample can be

scanned over several degrees before these auxiliary heaters need to

be readjusted. The ceramic spacers and base plate heaters were not
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Figure 5.8 Temperature Control of the Cell Holder. The wires
leading to the thermistors and the heating wire are not shown. They
are fed through holes in the cover of the real cell holder.
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part of the original design, but were added in an attempt to elim-

inate temperature gradients.

The main element of the controlling electronics is a precision,

low-noise resistance bridge. An epoxy-coated thermistor (YSI model

44032) embedded in the inner cell holder is one arm of the bridge.

Complimentary to that arm is a variable resistance set to balance the

thermistor at a particular temperature. The amplified difference

voltage of the bridge drives a programmable power supply (Kepco model

OPS 55-2M) that provides up to 20 Watts through the resistance wire.

A computer generated offset voltage can be added to the bridge offset

voltage to scan the temperature about the set point.

5.11. Temperature Measurement

The temperature sensor is another thermistor identical to the

one in the bridge, also embedded in the inner cell holder. A current

source, powered by a 1.35V Mercury cell battery and consisting of a

low-drift, low-noise operational amplifier (Analog Devices OP-07) and

resistors, supplied -10pA. A computer-controlled relay alternately

switched the current source between a 100MQ precision resistor and

the thermistor. The voltage V across either element was then deter-

mined using a 6-digit voltmeter which was periodically read over

the computer interface. The source current is was calculated from

the reading when the precision resistor was in line using Ohm's law,

with i = V/100Mn. The resistance R of the thermistor was then cal-

culated from is and the voltage across the thermistor.
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The temperature-resistance relationship of the thermistor is

described well by the empirical Steinhart equation [1],

T = A + Bln(R) + C[ln(R)]3 .

The coefficients A = 9.322x10 4 , B = 2.221x10 , and C = 1.262xlO 7

were determined by fitting the equation with simultaneous measure-

ments of the resistance of the thermistor and direct measurements of

the temperature using a quartz thermometer (HP model 2804A). At

25°C, for a 1C temperature change, R changes by 12400. Resolution

in the temperature measurements was -0.5mK.
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CHAPTER 6

SUGCS'TIONS FOR FUTURE EXPERIMENTS

Future studies of the coil-globule transition should be done

with well-characterized polymers to remove doubt about whether the

results are affected by polydispersity of the sample, branched

chains, etc. The Toyo-Soda company of Japan can supply such samples

of polystyrene. Further improvements in the light scattering instru-

ment, particularly for uniform temperature control of the sample and

elimination of stray light at forward scattering angles, are required

to improve the quality of the data, especially in determination of

the intramolecular dynamics.

To test the predictions of the molecular weight dependence of

the phenomenon, measurements must be carried out for a homologous

series of polymers. Many of the theories are presumed valid only in

the thermodynamic limit of infinite molecular weight. This limit may

be effectively satisfied with the 20-50 million molecular weight

polymers commercially available. Measurements using successively

smaller polymers will test the range of applicability of the

theories. To test the predictions regarding the influence of the

flexibility of the polymer on the type of phase transition from coil

to globule, new polymer-solvent systems must be investigated. Recent

observations by Tanaka [1] of a first-order phase transition in gels

made of polyisopropylacrylamide in water suggest single chains of

this polymer may also undergo a first-order phase transition. If a
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polymer-solvent system is found that undergoes a discrete collapse,

the effect of the finite size of the three-dimensional statistical

system should be apparent in a progressive rounding of the transition

at lower molecular weights [2]. Such data would provide a test of

statistical mechanical theories for finite systems.
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APPENDIX A

FITTING THE CORRELATION FUNCTION

Fitting the correlation function involves choosing an appropri-

ate functional form for the correlation function and then adjusting

the parameters of the function to minimize the differences between it

and the observed correlation function. If CFIT(ti) is the fitting

function and CBS(t i ) is the observed correlation function, where t i

is the delay time at the ith channel, the differences between them

are accumulated in the chi-squared sum,

2 N (CFIT(ti) - COBS(ti) ) 2 (A.1)
X N NA R

i PAR

where N is the number of points and NA R is the number of fitted

parameters. The lower the value of chi-squared, the better the fit.

The simplest homodyne correlation function is expected for a

monodisperse solution of particles and has the form,

CFIT(ti) = [Ae ]2 + Ai], (A. 2)

where the A's are the adjustable parameters, and

1
Al -- , (A. 3)

Dk

with D the diffusion coefficient and k the magnitude of the scatter-

ing wave vector.

If the particle distribution is not monodisperse, but distri-

buted about a mean size, the next simplest form for the fitting
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function is expressed in the cumulants (or moments) expansion [1].

The fitting function takes the form

A, + A Ati + At2 + A 3t3 +.
CFIT(ti) = [e i i ]2 + An (A.4)

The parameters are combined to describe the distribution as follows.

Equation A.3 holds for A,. The percentage variance (or width) of the

distribution is

variance = 2 x100 . (A.5)
A1

Only the mean and the variance are required to characterize a Gaus-

sian distribution. The skewness (or asymmetry) of the distribution

about the Gaussian is

skewness = -A3 X10 0 . (A.6)
A2 /2

Higher order moments are defined, but fitting the correlation func-

tion for the required added parameters is unlikely to produce signi-

ficant results.

Another fitting function is also used in this work. If the

scattering solution is expected to have two widely separated decay

times, for instance, one associated with translational diffusion and

one with internal motion, a two-exponential fitting function is

appropriate,

Alti A3ti]2 (A.7)

C(ti+ [Ae + + A3,

The computer fitting program implements two techniques to minim-

ize chi-squared. If the baseline can be eliminated as a free
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parameter in forms A.2 or A.4, the fitting function can be rewritten

as (for A. 4),Ir2 t3+ .2.2ln [CFIT(ti ) - baseline] = A + At i + A2 ti + A3,t +

The resulting polynomial fnction can be fit by strictly analytical

methods [2]. After the logarithm is taken, however, the fit would

give a disproportionate weight to the points on the tail of the

correlation function. To compensate, each point in COBS is cus-

tomarily weighted by the factor (COBs(ti) - base)2 .

There are two ways to fix the value of the baseline. Both are

handled by the correlator electronics. The correlator maintains a

count of the total input pulses and the elapsed time of the measure-

ment. Their quotient is the average count (or calculated) baseline.

For the second method, the correlator inserts many (-1000) clock

periods after the last normal channel. The correlation function is

expected to be completely decayed at this point, and its value is the

so-called delayed baseline. These methods of fixing the baseline do

not always produce the best fit to the data. For instance, if a

large particle passes through the scattering volume, the correlation

function at the delayed baseline channels may be raised.

When the fitting function cannot be converted to a polynomial,

as for the cumulants expansion with the baseline a free parameter or

for a double exponential, a non-analytic, iterative technique is

necessary. The procedure requires choosing initial guesses for the

parameters. In the fitting computer-program, the initial guesses are

chosen automatically, using a heuristic method. First, COBs(t) is
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fit to a first order polynomial function using a fixed baseline. The

values of A and A thus obtained and the fixed baseline are used as

initial guesses to fit to a single exponential with the baseline as a

free parameter. The fit to the polynomial function is then repeated,

this time using the baseline obtained from the fit to the single

exponential. The order of the polynomial is the same order as the

target cumulants fit, or first order if the target fit is the double

exponential form. The parameters obtained from this polynomial fit,

along with the baseline from the single exponential fit, are the ini-

tial guesses for the cumulants fit. If the target fit is the double

exponential, the amplitudes of the exponentials are taken as 80% and

20% of the zeroth order polynomial term. The initial guess for the

decay rate of the larger amplitude exponential is set to four times

A1 from the polynomial fit. The second decay rate is set to A.

Once the initial guesses are chosen, the procedure for searching

parameter space for the minimum value of chi-squared uses the Mar-

quardt algorithm as presented by Bevington [2].
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