
Implementing a Window System

for an

All Points Addressable Display

by

John Cambell Gonzalez

Submitted in Partial Fulfillment
of the Requirements for the

Degree of Bachelor of Science

at the

Massachusetts Institute of Technology

June, 1982

A If

Signature of Author.
-epartment of Electrical Engineering and Caoputer 4ence, 1982

Certified by ,----. .-. ,..
A Zf

Thesis Supervisor

Accepted by
Chairman, Departmental Committee on Theses

Copyright © 1982, John C. Gonzalez.

The author hereby grants to
the Massachusetts Institute of Technology and the IBM Corporation

permission to reproduce and distribute copies of this document in whole or in part.
This copy was produced on 21 May 1982 at 3:55 P.M.

Archives

1: / :1' S82

.

-2-

Implementing a Window System

for an All Points Addressable Display

by

John Cambell Gonzalez, M.I.T. 1982

ABSTRACT

The design and implementation of a display management system for an all points

addressable display is discussed. This window system exists as an independent software

library, allowing application level programs to define arbitrarily overlapping rectangular areas

of the screen. These areas, or windows, are used to view text, graphical entities, images, or any

visual data form. Data to be displayed in these areas is represented in an abstract structure,

the canvas, the form of which is defined by the application program.

The window system discussed in this paper was implemented on the Three Rivers

PERQ personal computer. The performance of this implementation is examined and

compared with the expectations of the original design.

Thesis Supervisor: Richard Zippel

Assistant Professor of Computer Science and Engineering

-3-

ACKNOWLEDGMENTS

The completion of this thesis would have been impossible without generous

contributions of time and effort by a number of people. To list all who have assisted me

would require more text than the body of this document. I would, however, like to mention a

few.

To Richard Mark Soley. my tried and true friend, I would like to say thank you.

Were it not for you advice and occasional wizardry, this thesis would not be.

1 would like to thank Lynn Ilana Miller for her immeasurable commitment to the

birthing of two theses. Her perseverance and patience are an.inspiration to us all.

To Brewster L. Kahle, partner in all that befalls me, I would like to say a word of

thanks. We got through.

I would like to thank Robert P. O'Hara for his enormous contribution to the design

and implementation of Jaws.

I thank Ray Fessel, John Prager, Sheldon Borkin, and Peter Hardy for putting up

with incessant questions and interuptions.

I thank Professor Richard Zippel, my thesis advisor and friend, for his great part in

making this thesis a reality.

I thank Carl Hoffman for his good ideas and friendship.

For Cambell, Juanita, Amelia, and Anita

- 4 -

CONTENTS

1. Introduction...7

1.1 Clarification of Terminology 7
1.2 Why Windows? 9
1.3 Window Management Systems .. 10

2. Overview of Selected Display Management Systems ... 11

2.1 TSO Session Manager ... 11
2.2 Core Graphics Standard ... 12
2.3 Smalltalk Window System 13
2.4 New Lisp Machine Window System ... 13

3. Design Objectives of Jaws .. 15

3.1 The Type of Windows Displayed .. 15
3.2 Binding of Information to a Window 16
3.3 Dissociation of Display and Window Activity ... 16
3.4 Non-Embedded Window System 17
3.5 Flexibility ... 17

4. Design Overview .. 19

4.1 An Overview of the Three Managers .. 19
4.2 Intermanager Communication 20
4.3 Dispatching by Window Type ... 21
4.4 Handling Input .. 23

5. The Data Structures of Jaws .. 24

5.1 Windows 24
5.2 Canvases ... 29
5.3 Queues 32
5.4 Screens 33

5.5 Window Frills 34

6. The Three Managers of Jaws ... 35

6.1 The Screen Manager ... 35
6.2 The Window Manager .. 37
6.3 The Canvas Manager .. 41

7. The hnplementation of Jaws .. 43

7.1 The Pascal Programming Language .. 43
7.2 The PERQ Personal Computer ... 44
7.3 The Modules of Jaws .. 44

8. Future Directions for the Window System .. 47

8.1 Possible Improvements to Jaws ... 48

9. Conclusion ... 51

10. References 52

-6-

FIGURES

1. The Three Managers of Jaws .. 22

2. Sample Window Hierarchy 28

3. Overlapping Windows .. 30

-7-

Introduction L

This thesis discusses research completed over the past year on a window

management system (.aws) for an all points addressable display. An implementation of the

design outlined in this paper is currently underway on the Three Rivers PERQ minicomputer.

Jaws was designed to facilitate the handling of an all points addressable (APA)

display device by application programs. Many software packages exist which will allow users

to specify, manipulate, and output to rectangular areas of the screen. The thrust behind Jaws

was to create a window system which provides these facilities while being transportable and

independent of the underlying operating system.

Throughout this thesis male pronouns are used to denote the reader, programmers

and general users. This is merely an arbitrary but well established convention of the English

language. It is not intended to Imply that all persons in the field of Computer Systems

Engineering are men.

1.1 Clarification of Terminology

Before discussing window systems, it is necessary to define some terminology. These

are not absolute definitions, but basics which will facilitate tile review of this and other

window system implementations.

All Points Addressable

Commonly abbreviated as APA. An all points addressable device is

one in which every point is writable as an individual unit. An APA

display has the capability of writing to individual pixels (c.f.). This

differs from video character displays (e.g. the IBM 3270) which allow

single characters to be written, but not the points which comprise those

characters.

-8-

application program

A program written to perform some well specified action at the request

of a user. Application programs rely upon underlying system programs

to supply any system dependent software support they might need.

canvas

for this thesis, an area for communication between the window system

and the application program. The canvas is in an application

convenient data representation. It is similar in concept to the world of

the Core Graphics package [Siggraph-ACM].

display

the physical device that tile user sees. This will usually be a video

terminal of some type.

keyboard

A device which allows the user to enter character data into the

operating system or application program.

manager

A software subsystem which has been designed to facilitate the

manipulation of some aspect of a larger, usually enclosing, system. For

example, a display manager might be responsible for transferring

screen representations to the physical display device.

pixel

Sometimes called pell. A pixel is a single point on a raster scan display.

In this thesis, a pixel is at times used to refer to a single bit in a bit

plane which will latter be moved to the physical display device. This is

in recognition of the fact that although that bit is not currently on the

screen, it represents a single point in an image which may appear on

the screen.

-9-

process

An executing program and its associated data represent a process. Most

modern operating systems are capable of suspending and later

resuming the execution of processes without affecting the ultimate

output of the program (unless the output is a function of real time).

screen representation

Loosely, a form of representing data which is understandable to the

physical display device. For a raster-scan video display, this is usually

pixels; for a vector display the screen representation is likely to be a list

of vector endpoints; for a character matrix display (such as the IBM

3278), it might be a two dimensional character array.

terminal

A combination of a display, a keyboard, and perhaps a pointing device.

Terminals are basic to user interaction in that they provide a means of

getting information to and from the operating system.

window

A rectangular region of the display device. Windows may have

ornaments (borders, titles, and the like), but the basic abstraction is

that of a viewport through which data is examined.

1.2 Why Windows?

Information processing technology has progressed to the point that it is quite

feasible, and in fact expected, for upcoming computer systems to support several concurrent

processes. Windows were invented in response to the necessity for communicating with these

processes as independent entities. It is quite useful to be able to reserve a section of the

display device for the exclusive use of a particular program. This is not unlike the designation

of certain areas of primary storage for an executing program. As with memory management,

it became apparent that it is a rarity to fully utilize all of a specified resource (be that resource

- 10 -

screen area or memory cells). 'The concept of partitioning the display area into regions,

windows, each of which represents a communication pathway to an application program,

sprung from this recognition.

There is no reason that a given application program needs to be limited to a single

window; it may have several. Each may allow the program to express information in a

different way (text, graphics, images, etc.). In a well designed program, the judicious use of

windows greatly enhances the understandability, and hence the usability, of a software

package. It is in this spirit that window systems are being actively researched.

1.3 Window Management Systems

Once committed to the idea of windows, one is faced with the challenge of how to

implement them. Window management systems address this issue. Window systems usually

provide facilities to: specify areas of the screen; output to those areas; manipulate (move,

reshape, etc.) the windows; and to destroy them. Frequently, they provide routines which

tailor a window to a specific application. These might include drawing characters, generating

polygons, or panning over images. In fact, it is not uncommon for a window system to be

embedded in the overseeing application program. In these cases, the window system is really

a portion of that application, and inaccessible to other programs which may wish to utilize it.

Another extreme is to incorporate the window system in the underlying operating system.

This forces the application programmer to use the system-wide display management facilities

if he wishes to use any at all. Jaws was designed to be both non-embedded, and

non-operating system dependent.

-11-

Overview of Selected Display Management Systems W
This chapter provides a brief review of extant display management schemes. The

merits and restrictions of each are discussed. The systems listed here in no way comprise an

exhaustive list. Indeed, they represent a limited selection of the available strategies. The

intent is to xpose the reader to some of the more successful display management

implementations so that he may have a context from which to view Jaws.

2.1 TSO Session Manager

The Time Sharing Option (TSO) Session Manager [McCrossin, O'Hara, and Koster]

was designed to provide a facility to allow users to maintain a useful record of their

transactions with the TSO environment while taking advantage of the added facilities of a

video display terminal. The session manager was implemented as an additional layer

insulating the user from the single line input and output mechanisms of TSO.

Most programs executing in the TSO environment operate in a traditional line at a

time fashion. This is a reminder of the days when only character-printing teletypewriter

terminals were available. While inelegant, the teletype did provide the user with a running

record of his interaction with the computer system.

The advent of full screen character display terminals (such as the IBM 3270 series)

generated some difficulties in the interactive computing arena. While these terminals

frequently allowed smoother and faster user/program interaction, they also had the

unfortunate property of not maintaining a log of those interactions. One of the design goals

for the TSO session manager was to create a facility which at once provided the increased

interactive capabilities of a display terminal, while retaining the journalizing features of a

teletype.

- 12 -

Additional considerations included allowing the user to specify how he wishes to

have program and operating system information presented to him, and designing the system

such that minimal changes, if any, would be required in existing application and system

programs.

The session manager channels its input and output through a mechanisms called

streams. These streams are large character arrays which serve as buffers to hold incoming and

outgoing terminal transactions. A window is defined to view a stream, and is updated when

that stream is modified. An application program may both read from and write to a TSO

stream. Because stream are able to retain much more information than the physical screen

they are also used as a running journal of the interactive session. TSO streams are of

particular interest because of their similarity the Jaws window system canvas (see section 5.2,

below).

The primary display device for the TSO session manager is the IBM 3270 terminal.

Windows may be specified as non-overlapping rectangles of the 3270 display. Due to the

nature of the device, these window were designed to display only fixed width character data.

At the time of its inception, the session manager was a definitive step towards more

personalized computing. It is very good at what it was designed to do-manage a character

display. Unfortunately, the commitment to character data and the limitation of not begin able

to define overlapping windows make the TSO Session Manager obsolete when it is compared.

to modem display management systems.

2.2 Core Graphics Standard

The Core Graphics Standard [Siggraph-ACM] is an attempt to develop a standard

definition for computer graphics packages. It is largely based on the definitions outlined by

William Newman and Robert Sproull [Newman and Sproull]. The Standard was developed

at a time when computer graphics systems were implemented almost exclusively on vector

displays. It does not exploit the full capabilities of a raster scan device.

When using a graphics system based on the Core Standard, an application

programmer must define an object referred to as the world All of the information which will

appear on the graphics device is part of this world. Windows are defined to have a view of the

world. This view is made available on the physical device through a conceptual area known as

- 13 -

a viewport. An unfortunate conflict of terminology is that these viewports correspond to the

windows of Jaws. Viewports are rectangles on the physical screen which the user sees as

containing information.

The Core Graphics Standards does not allow viewports to overlap. It is an

interesting outline to study in that the concept of a single world of information is not unlike

that of a canvas. Also, within the Core definition, windows are considered to transform the

information they are viewing before displaying it. This is similar to the idea of Jaws windows

translating information fiom an application program representation to a screen representation

before transferring it to the physical screen.

2.3 Smalltalk Window System

The Smalltalk Window System [Tesler] was primarily implemented as a friendly user

interface for the Smalltalk programming environment on the Xerox Alto personal computer.

Smalltalk was formulated not as an operating system, but as an integrated programming

environment. For this reason, it is at times difficult to separate the window system, from its

implementation environment.

In the Smalltalk environment, windows are usually used to communicate with

various system programs or processes Some examples of a Smalltalk processes are the editor,

the compiler, and the inspector. Each process passes its output to and receives its input from

windows. These windows may overlap on the physical display, but each serves to identify a

single executing program.

The major restriction of the Smalltalk window system is its strong association with a

single programming environment. Within that environment, it is impossible to avoid the

window system-outside of it the window system is unavailable.

2.4 New Lisp Machine Window System

The New Lisp Machine Window System [Weinreb and Moon] was designed to aid

the user interface of the Lisp Machine [Lisp Manual]. While it facilitates communication with

multiple processes, it is not the only means of process communication available to the user.

Using the Lisp Machine Window System (NLMWS), it is possible to define multiple

-14 -

windows any of which may overlap. A further convenience is that subwindows, or panes may

be specified. A window may exist to contain the interaction between a user and one of many

processes, or it may simply be the output area of any given process. These windows are

capable of displaying graphics, text, and simple black and white images.

While much of Jaws was designed to emulate the NLMWS there are some aspects of

that system which are undesirable. One of these is that a partially or completely overlapped

window becomes inactive. That is, output to a window is suspended if another window

encroaches on.its screen area. A second problem is that to conserve primary storage, window

images are generated once (by the application program) and stored only on the physical

screen. If another process overwrites the display, the original image must be completely

regenerated. This is usually rather difficult, and at times, impossible. A mechanism exists

whereby the application programmer may request that a window to maintain an off-screen

version of its display. This secondary area, known as a screen buffer, is automatically supplied

for every window of the Jaws window system.

- 15 -

Design Objectives of Jaws

This chapter discusses the design objectives of Jaws. It is not concerned with the

realization of the goals outlined, only their delineation.

3.1 The Type of Windows Displayed

Jaws is designed to manipulate rectangular windows up to the size of the physical

display device. These windows may overlap, but cannot extend beyond the border of the

screen.

Windows may themselves contain other windows called children or child vindows.

These must lie in the region bounded by the parent window. If the outer window moves, the

child should also move with it, retaining its relative offset within the parent. When a child is

created, it loses one window property: it may not arbitrarily overlap its siblings. This is

because subwindows are usually created in an attempt to further subdivide a given section of

the screen. That is, one would like a facility which allows groups of windows to be moved

about as a unit. It is in this spirit that one creates child windows. To enforce this, it was

decided that the design of Jaws should prohibit children from overlapping their siblings. If

the programmer wishes to have independent windows which may be overlapped arbitrarily,

he may create them as top-level windows.

Each window is a mechanism for viewing data generated by application programs.

They may have borders, titles, margins, and numerous other frills. Conceptually, windows

might be considered functions which translate information from user (application program)

representations into screen images. To further understand this, it is necessary to consider how

to establish the association between a window and the information it is to display.

- 16 -

3.2 Binding of Information to a Window

One of the major goals of Jaws was to retain a strong association between a window,

and the data which are to be displayed in that window. It should never be the case that a

window "forgets" what information it is displaying. This should be true regardless of what

machinations occur to the physical screen (interrupts from other programs, error messages,

etc.). The Lisp machine [Weinreb and Moon] keeps display infornnation on the physical

display-information which is lost if another process overwrites the display area. In such a

system, the display must be regenerated by the application program (unless that window has

an associated screen buffer). By comparison, the TSO Session Manager [McCrossin, O'Hara,

and Koster] maintains the information needed to regenerate the display apart from the

physical device. This seems the more useful and versatile approach in that a window's shape,

position, and depth do not affect its contents. Any of the three parameters may be changed

without having to recompute the screen image of the window.

A second consideration is that the information delivered to the window system

should be in a representation convenient to the calling application program. While this is an

unusual property of a display manager, it is not an unreasonable one to include. It would be

quite useful for a graphic display window to accept vector endpoints, while a text window

"understands" how to display linked lists of character strings. These considerations have been

incorporated into the design of Jaws. Windows translate the information the application

program passes them according to the .type of the window (see section 6.2). With this

mechanism, it has proved quite feasible to retain both the strong association desired, and a

flexibility of information representation.

3.3 Dissociation of Display and Window Activity

In addition to divorcing the display storage from the window contents, one might

consider having the update of a window be independent of its display status. Why not have

partially, or even completely overlapped windows remain active? An answer might be to

eliminate the useless computation involved in updating an image which is not visible.

Conversely, the constant update of a partially overlapped window allows the system to display

important messages and information which might otherwise be postponed. With Jaws, every

- 17 -

window is updated at the request of the application program regardless of its display status.

This means that not only partially overlapped, but completed covered and "hidden" (see

Window Depth Control, section 6.2.2) will have their screen representations modified

whenever the information they are viewing changes.

3.4 Non-Embedded Window System

The concept of a window system being non-embedded is somewhat difficult to

convey. Such a system is one which exists above the functional level of the operating system.

More simply, declaring a window system to be non-embedded indicates that an application

prograln is not obligated to make use of it for visual (or other) communications. Indeed, it

should be possible for many such window systems to coexist in one operating system. This

does not imply that they should be able to operate concurrently, only that application

programs should have a choice as to which one to make use of. Jaws was designed as a

non-embedded system.

Neither should a window system be so application oriented that the application

programmer must worry about the details of display management. The major advantage of a

display management system is that it divorces the programmer for the specifics of handling

the display. It would defeat this end if every application program attempted to implement its

own window system. Another strike against individual application programs configuring their

own window management systems is that there can be no hope of a uniform interface. Jaws is

not the offshoot of some larger application program, but a software system in its own right.

In short, a non-embedded system is not tailored to any specific application program,

nor to any particular operating system. It exists as a tool which, at the programmer's

discretion, may or may not be part of the complete application package.

3.5 Flexibility

Of great importance to the design of Jaws is the desire to maintain flexibility. This

includes flexibility in the implementation, flexibility in the display device, and flexibility in

the application program's use of the window system.

Every attempt has been made to keep Jaws transportable from its initial

-18 -

implementation machine (Three Rivers PERQ, see chapter 7). Jaws is designed to drive

devices of any kind, not merely visual displays, but interfaces which might include speech

synthesis devices or Ethernet ports.

Finally, window systems are intended to make display management easy for

application programmers. They should not unnecessarily restrict the programmer. Allowing

multiple data representations is a step in this direction. The underlying window system

should provide a well-defined interface which permits the application programmer to specify

particular window attributes, without forcing him to do so when a default condition is

adequate.

- 19 -

Design Overview

To facilitate its design and implementation, Jaws was divided into three functional

parts: the screen manager, the window manager, and the canvas manager. In addition to these

managers, the window system design depends heavily on the underlying data structures, and

the inter-module communication protocol. These components are detailed in later sections.

This chapter is intended to present a global view of how the individual pieces interact to

achieve the objectives outlined in the preceding chapter.

4.1 An Overview of the Three Managers

The screen manager is responsible for handling the physical display device. It moves

screen representations of window data to the display screen. It is the screen manager which

negotiates overlaps among windows, for it is only when windows are displayed on the physical

device that overlap becomes an issue. This manager ntay also clear the entire screen, or

portions of it.

The window manager's primary function is to convert information from application

program representation (ASCII strings, vector endpoints, etc.) to screen representation

(pixels). Since this may be done in a different way for each window type, the window

manager must dispatch to type dependent procedures to perform a large part of the

translation. In addition to this, .the window manager controls the creation, destruction, and

relative depth (in or out of the screen) of windows. The window manager does not concern

itself with overlap. Each window is a separate entity which views information in an

application convenient form (the canvas), and has a designated area in which to place the

translated image (the screen buffer). Conversion from the canvas to the screen buffer may

take place regardless of a window's display status. It is for this reason that the window

manager does not have to examine the window overlap status.

The canvas manager handles the updating of the communication area common to

both the application program and the window system-the canvas. The canvas contains

- 20 -

information in a representation which is easy for the application program to understand. In

some cases, it is desirable to isolate the application program from the low-level details of

placing information in the canvas. The canvas manager may intervene in these cases. More

importantly, the canvas manager notifies the window manager when a canvas has changed.

The window manager must have a mechanism for determining when a canvas has changed,

since a change in the canvas implies a change to the screen representation, and finally a

change to the physical screen.

4.2 Intermanager Communication

During the operation of the window system, each manager is to perform a fairly

specific portion of the job of getting the information onto the screen. To accomplish this, it is

necessary to establish some sort of protocol by which the modules may communicate. For

Jaws, queues of change records were chosen to facilitate the passing of information. Each

record contains the range of influence of a change. Using these, each manager may determine

how much recomputation, if any, is necessary to update the data structure it is responsible for.

It may prove instructional to trace the process by which the display is updated. The

application program makes changes to the canvas, either directly or via calls to the canvas

manager. In either case, the canvas manager must be notified of the changes, and given

information as to their extent. This information is placed in the changed-canvases queue, and

the window manager called.

Upon entry, the window manager examines the changed-canvases queue and

determines which windows are affected by a change to the first canvas change record in the

queue. For each of these windows, a type dependent translation procedure is called. This

procedure translates the canvas information into pixels, placing the result in the window's

screen buffer. The window manager then places a change record in the redisplay queue. The

process is repeated for each canvas change record found in the changed-canvases queue, and

then the screen manager is called.

When called, the screen manager examines the redisplay queue to determine which

windows must be updated on the physical screen. For each of these windows, the screen

manager moves the screen buffer onto the display, and restores any windows which are

known to overlap that area. This is done for every window in the redisplay queue.

- 21 -

It is through these many levels of indirection that the display is updated. Usually,

the queues will only hold the most recently changed item. The application program may

make calls directly to the window manager if there is a need to create, destroy, move, or alter

the depth of a window. The relationship between the major window system components is

shown graphically in figure 1, below.

Above, the three managers are depicted as three synchronous processes, each

beginning when another has finished. This need not be the case. Because each manager

receives the information it needs from a global queue, there is no reason to prevent the

managers from running concurrently. If this is the case, the calls from one manager to

another should be eliminated, as each will begin processing when an item appears in its input

queue.

4.3 Dispatching by Window Type

To be able to translate from canvases of varying representations, it is necessary to

have a mechanism for executing different translation code for each data format. In the Lisp

Machine [Weinreb and Moon], this is done using the flavor facility [Lisp Manual]. For Jaws

to be transportable, a different scheme had to be selected. Type dependent dispatches from

generic procedures is one solution.

A type dependent dispatch means that there are some routines which examine an

object's type field, and conditionally branch to code which will perform the operation for an

object of that type. The result of the operation is conceptually the same for all types, yet the

method for achieving that result varies. Such a dispatching procedure may be called a generic

as it specifies an operation which will accept an argument of any type, and produce a correct

result. Generic procedures have the advantage of being implementable in some form in

almost any language on almost any operating system.

The most obvious place that a routine of this nature is needed is in the window

translation procedure. Here, the window manager is to convert canvases of many types to

screen buffers. Clearly this translation will be different for ASCII text and graphic orders. It

is also necessary to place such generic procedures in the window creation, and destruction

portions of the code. There are also times when the canvas manager must dispatch according

to type (when allocating and deallocating the storage for a canvas, for instance).

-22 -

Figure 1 - The Three Managers of Jaws

Application Program

_1
Canvas Manager -

Update Canvas

Queue canvas change

Call window manager

r Window Manager

Examine canvas queue

Translate windows

Queue a screen change

Call screen manager

Screen Manager

Examine redisplay queue

Move image to screen

Rebury screen image

Canvas queueL -- -j |

IA - -- -

Redis. queue
.-1

I O
· '-- I_i..-

Display Screen

The relationship between the major components of the Jaws window system.

Flavor

Library

4------

C C.r l

Ar- -.

I II I
�V4·

- 23 -

The body of the code executed once the branching decision has been made need not

reside in the generic procedure, but may be located in another procedure or possibly even a

different source module. If this is the case, it is possible to group all of the procedure bodies

associated with a single type into a single module, and identify that module as aflavor. These

are not to be confused with Lisp Machine flavors, except in the conceptual convenience of

identifying a group of .routines geared towards the handling of data in a particular

representation.

4.4 andling Input

An interesting question which comes to mind is whether or not the window system

should handle input from the keyboard, mouse, or other transmission devices. The initial

design of Jaws included provisions for such things. As the design progressed, it became

apparent that Jaws was merely replicating the entry points native software provided for

obtaining and buffering input data. In light of this, the design of Jaws was altered so as not to

include input processing. Such input is handled by the application program, or in the flavor

support packages called by the canvas manager.

-24 -

The Data Structures of Jaws X

The Jaws window system depends on its underlying data structures to hold the

information needed for smooth operation. In addition to this function, some of the data

structures described below serve as communication links between the various components of

the window system.

5.1 Windows

By far the most central data structure to a window system is that of the window

object. Windows must contain information indicating their size, their placement on the

screen, their abstract contents, and how to translate the contents for the physical screen. In

Jaws, some of this information is maintained not in the actual window record, but in

associated structures (canvases and screen buffers). The depth of a window is determined

from the interconnection of the window objects (see section 5.1.3 below). It is necessary to

first get a feel for the basic window object before we explore the associated data constructs,

and how each they come together to represent the window system information.

5.1.1 Basic Window Record

Below is the basic window data object. The functions of many of the fields are easily

determined from their names. Others will need some clarification. The structure is:

- 25 -

Datatype: Window

Field Name

windtype

prevwind nextwind

parent, children

offsetx, offsety

height, width

topmargin, botmargin

leftmargin, rightmargin

canvas

viewposx, viewposy

viewwidth, viewheight

screenbuffer

segment_number

cursorxpos, cusor..ypos

mouse_xpos, mouse-ypos

mousespeed

frills

Field Type

windowtypes

window_ptr

ivindowptr

integer

integer

integer

integer

canvasptr
integer

integer

mnemoryptr

integer

integer

integer

integer

frillptr

The window type slot is the most important field to the operation of the window

system. It is this type field which determines how the information in the window is to be

translated. Dispatching routines (see section 4.3, above) examine the window type to select

what procedures to call to perform any type dependent processing. The value in window type

slot identifies one of a set of defined window styles. This set is implemented using the Pascal

enumerated scalar data type.

The nextwind and prevwind slots are used to give the window a position in a

doubly-linked list. The children pointer, if non-null, points to the first child of a window.

Parent fields are obvious. For a more complete explanation of these pointers, refer to section

5.1.3, below.

The view of a windox: declares what portion of the associated canvas this window is

viewing. The canvas itself may be found at the end of the pointer in the canvas field of the

- 26 -

window (see section 5.2, below).

A last thing to mention about the window record is the segment_number slot. This

field holds the number of the memory segment assigned to hold the screen buffer of the

window. Although it is an implementation level detail, this is mentioned because of its

relevance to the next section.

5.1.2 Screen buffers

The screen buffer of a window is an area of storage designated to hold the screen

representation of that window's data. They are similar to Lisp Machine [Weinreb and Moon]

screen buffers, except that every window has a screen buffer. That is to say, every window

maintains a copy of the pixels composing its display in off-screen memory.

The inclusion of screen buffers stems from a desire to update the screen as quickly as

possible. With screen buffers, it is possible to perform the hard part of window update, the

translation from user representation to screen representation, without slowing down the

screen redisplay. Computation of the screen image may continue regardless of screen activity

since the output of the translation is directed to non-displayed memory instead of to the

screen. A further bonus is that repositioning windows becomes trivial-the screen manager

need only change the location on the physical device to which it moves the screen buffer.

Using screen buffers, the job of the screen manager becomes conceptually trivial.

All that need be done is move the screen buffers, or parts of them, to the physical screen in the

right order. The order that the pre-computed screen buffers are moved to the display

determines the apparent depth of the windows.

A variation on this theme occurs with child windows. A child shares its parent's

screen buffer. This is an additional reason why children may not overlap. Since there is only

one area of storage being used to maintain their images, if sibling windows were to overlap,

their screen representations would also overlap. The result would be that the screen

representations would not be independent, and operations such as subwindow repositioning

would become rather difficult to perform. One might note that once a window is said to have

children, it no longer makes sense to update the screen buffer of that window as a single

object. If the entire screen buffer is updated, the screen representations of that window's

children are destroyed, and must be regenerated from the canvas. A more meaningful

-27 -

operation is to update each child independently, modifying only a portion of the parent's

screen buffer at a time.

A drawback to maintaining screen buffers is the large amount of storage required to

maintain them. It may seem unreasonable to keep two copies of a screen image (one in

memory, and one on the screen). More complete analysis shows that under usual

circumstances, the memory sacrificed is not overwhelming. It is extremely unusual for the

sum of the areas of all of the defined top level windows to be greater than the area of the

display device. It is usually feasible to allocate enough memory to retain a single copy of the

entire display screen. Maintaining screen buffers will be no worse.

Screen buffers are implemented by assigning one PERQ memory segment to hold

each. A memory segment is a group of memory cells which may be paged to and from disk as

a single unit. This is an advantage, in that the screen buffers of seldom updated windows will

gradually migrate to disk, and not consume valuable primary storage.

5.1.3 The Window Hierarchy

The window hierarchy is established using the relational pointers of individual

window records. The form of the hierarchy is simple. Top level windows reside on a

doubly-linked list, the head of which is held in the screen data structure (see section 5.4,

below). If a window is to have children, a pointer to the first child created is placed in the

children field of the parent window. All siblings of this first child are strung together on a

doubly linked list rooted on that child. The parent field of each child points to the parent of

the first child (hence the sibling relationship). Using this scheme, it is perfectly reasonable for

children to in turn have children. A sample window record hierarchy is depicted graphically

in Figure 2, following.

This linked list data structure is used for more than just storing the window records.

It is used by the screen manager to determine the depth of a window. For each screen, there

are three window pointers kept which together determine the display status of every other

window. The first of these refers to a window called the head window. This is the first

top-level window on the doubly-linked list. A second pointer is kept to identify the last

window of the top-level linked list-the tail window. The last special pointer identifies the

bottom window. The bottom window is the window which is to appear as the bottomost one of

- 28 -

Figure 2 - Sample Window Hierarchy

SCREEN

PAM. EIT
PRGV. 31 OOW
NJEWT ww~oa.4
viAIEbSXt I D

A sample web of window records representing four top level windows (only three of which

are to be displayed); two child windows; and one grandchild. A possible screen configuration

for this hierarchy is shown in Figure 3, below.

- 29 -

the display (i.e., the most buried). It is this window which is the first one moved to the screen

by the screen manager. Any windows preceeding the bottom window on the linked list are

not displayed. All windows following the bottom one appear on the screen as if they are

stacked in the order determined by the window hierarchy. A diagram of a possible display for

the hierarchy of Figure 2 is shown in Figure 3, below. The detailed use of the window

hierarchy will be covered in section 6.1.

5.2 Canvases

There has been a very strong emphasis on representing the contents of a window in a

manner which is convenient to the application program making use of Jaws. The realization

of this goal is accomplished via the canvas. It is difficult to specify the exact structure of a

canvas, because that structure is defined by the specific application program. It is possible,

however, to identify the purpose a canvas is to serve, and the basic information which must be

contained in it.

The canvas is a communication area between the window system and the application

program. As with the world of the Core Graphics Standard [Siggraph-ACM] and the streams

of the TSO Session Manager [McCrossin, O'Hara, and Koster], it is here, in the canvas, that

the application program makes modifications to the display information. It is the

responsibility of the window system to notice changes in the canvas, and to modify the screen

display to reflect those changes.

Canvases are interpreted with the aid of routines found in type dependent'support

packages. These packages might be called flavors. A flavor is the combination of the window

type, the canvas type, and the specialized procedures engineered to manipulate objects of that

type. A good example of a canvas type is a text canvas. Within a text canvas, one might

expect to find a linked list of ASCII strings. Similarly, an image canvas might be a simple bit

plane. The window manager must be able to translate all of these window and canvas types.

The method for translating the canvas data to a screen buffer is embodied in the flavor

package for a window type.

Application programs are able to read from canvases as well. One example of a case

where the application programmer may wish to retrieve data from a canvas is when it is

necessary to identify what character the user is pointing to with the mouse. To be able to

- 30 -

Figure 3 - Overlapping Windows

A possible display configuration for the window hierarchy depicted in Figure 2.

-31-

determine this for a text window, there will need to be some mapping from a screen pixel to a

canvas character. Only the canvas has the information needed to perform such a

computation.

Despite their generality, there is some information which might be considered

fundamental to all canvases. Before discussing this information, it is necessary to understand

the concept of canvas coordinates. Canvas coordinates are simply integers whose

interpretation depends on the type of a canvas. For instance, an integer in canvas coordinates

for a text canvas might specify a certain number of characters, while for a graphic canvas, it

represents an index into an array of vector endpoints.

There need not be a single window for any given canvas. Different windows may

view the same canvas. A good example of this arises when a text canvas is created to hold a

fairly large document. It would not be unreasonable to have two windows viewing different

portions of this single document. In this manner, the user might compare two similar parts of

the text and make corrections and additions based on his observations.

Because there is some information which should be maintained for every canvas, it

was decided to head each conceptual canvas with a record containing basic canvas

information. This is the canvas record:

Datatype: Canvas

Field Name Field Type

canvastype cantypes

whose boolean

width, height integer

canvasarea POINTER

The height and width are given in canvas coordinates. The canvasarea field holds a

pointer to the actual storage area to which the application program will output to update the

window. The whose field will be discussed with the canvas manager (section 6.3) below. It

serves to indicate whether the canvas was created by the application program explicitly, or in

some other way.

- 32 -

5.3 Queues

As mentioned above, the primary communication mechanism of Jaws is that of an

information queue. Queues are used to transmit information between the canvas manager

and the window manager, and between the window manager and the screen manager. Using

this mechanism, one manager may notify another of a modification to the data area the two

share.

A queue is an ordered collection of records. These records are accessed in a first in

first out (FIFO) manner. That is to say that the least recently added record will be the first

one examined by the reader of the queue. This ensures that sequential updates will occur in

the order they were requested. The records themselves hold information specifying what

portions of the common area have changed:

Datatype: Queue Record

Field Name Field Type

next_record queuerecptr

queued_item POINTER

modified_xpos, modifiedypos integer

modifiedwidth, modifiedheight integer

The queued_item field of this record holds a pointer to the base of the area which has changed.

If the queue involved is, say, the redisplay queue, then the queued_item slot will contain a

pointer to a modified window. In this case, the integer fields would represent pixel offsets

and values. If the canvas queue were under consideration, the queued item would be a

pointer to a canvas record (see section 5.2, above) and the modified area would be defined in

canvas coordinates.

These records are placed on a singly linked list. New records are added to the head

of the list. This is known as pushing an item onto the queue. When a reader of the queue

requires a record, the first record of the linked list is unlinked and returned. This is know as

popping the queue. A queue itself is really nothing more than a header for the linked list of

records:

- 33 -

Datatype: Queue

Field Name

recordcount

recordlist

Field Type

integer

queuerec-ptr

Since the queue data structure is completely general, there may be, and in fact are,

general routines for pushing and popping any queue.

5.4 Screens

One of tile design objectives of Jaws was that it be capable of outputting to a variety

of devices-not just a raster scan video terminal. The intelligence to output to other devices

must be embodied in the screen manager. A screen data structure is needed to support that

intelligence. In addition to this, screen records must retain the information necessary to

handle window overlap, whatever that may mean for the device being controlled. At its

present stage of development, Jaws is only able to control black and white video displays. The

following data type was designed to support that particular style of device:

Datatype: Screen

Field Name

screenname

screenaddress

windowcount

head_window

bottom_window

tailwindow

Field Type

string

memory ptr

integer

windowptr

windowptr

windowptr

The screen_address field of this record holds a pointer to the actual location in memory that

the operating system of the implementation machine recognizes as the screen. The

headwindow slot contains a pointer to the first top-level window of the window hierarchy.

- 34-

The bottomnwindow pointer identifies that window which is to be the first one moved to the

screen. Similarly, the tailwindow field points to the last window of the top-level linked list

structure. These three pointers are used by the screen manager to overlap the windows on the

screen (see section 6.1, below). If a non-visible device were being controlled (perhaps a

speech synthesis port), it is unclear whether or not the bottom_window field is useful. What

does it mean to overlap things which can not be seen? This can only be determined on a

per-screen basis.

A screen record is global to the window system. References are made to it by all

three managers. This record, the redisplay queue, and the canvas queue are the only global

variables of Jaws.

5.5 Window Frills

In addition to the basic window attributes (height, width, position, etc.), there are

frequently special ornaments one would like a window to have. These might include such

things as titles, borders, or grid lines. The information to generate such window ornaments

resides in the frills slot of tile window record. This field holds a pointer which is the.biea.d of a

list of frills. Because frills vary greatly in how they are represented, each frill record on this

linked list holds an untyped pointer to be used by whatever routine interprets and generates

the ornament.

Datatype: Frill

Field Name Field Type

frillname string

frill_info POINTER

nextfrill frill-ptr

- 35-

The Three Managers of Jaws

In its current implementation, Jaws is composed of three basic functional parts: the

screen manager, the window manager, and the canvas manager. This chapter covers the details

of each of these subsystems. Throughout the following discussion, there will be references to

the data structures outlined in the preceding chapter.

6.1 The Screen Manager

The screen manager is responsible for moving the screen images of windows to the

physical display device. These screen images may be found in the screen buffers of the

windows. As windows may be defined to be overlapping, the screen manager must be calpable

of displaying images which appear to overlap. This is accomplished by simply moving the

screen buffers to the screen in a bottom to top fashion. The overlapped portions of the lower

windows will be overwritten by the later image placements. The result is similar to having

individual pieces of paper which have been laid down on a table top.

The order to move the screen buffers to the screen is completely determined by the

window hierarchy. Only the top level windows are involved in the update. Since child

windows share their parent's screen buffer, there is no need to dive into the window

hierarchy-the children will be updated when their parents are. The apparent effect of this is

that all siblings appear to move as a single group. They are buried, surfaced, and repositioned

as a unit. When there is an attempt to perform any of those actions to a child, the operation is

redirected to the parent. Please refer to the window manager discussion (section 6.2),

immediately below for further details on this aspect of the parent/child relationship.

To redisplay the screen, the screen manager first examines the redisplay queue to

find a queue record referring to a window awaiting redisplay. A quick check is performed to

ensure that this window is indeed on display. It then calculates the absolute offset of the

modified area from the base of dithe physical screen area. The portion of the screen buffer the

queue record specified as having changed is copied onto the screen. It is not always necessary

-36 -

to copy the full screen buffer to the screen. When a single character is added to a text

window, it would be grossly inefficient to update the entire window. Instead, only a rectangle

the size of that single character need be copied from the screen buffer to the display. The

information delineating that sector may be found in the queue record which was popped from

the redisplay queue.

Once the screen image of a window has been refreshed, the screen manager must

rebury the updated image. To date, this reburying is performed in a rather unintelligent

manner-the screen buffers of all windows following the redisplayed window in the window

hierarchy are moved to the screen in the order they appear on the linked list of top-level

window records. Using this algorithm, the image of a window which does not overlap

anything will be copied fiom its screen buffer to the screen if any window preceding it in the

window hierarchy is redisplayed. A more intelligent thing to do might be to only copy the

screen buffers, or portions of the screen buffers, of those window which actually overlap the

modified screen area. There is a very real tradeoff between the amount of time required to

compute such overlaps, an the time needed to simply copy the bits of the image to the screen.

For arbitrary window overlaps, the computation can be quite involved.

Occasionaily, it is necessary to reconstruct the entire screen image from screen

buffers. Such a situation arises when the application program is interrupted by another

program which overwrites the screen. A full redisplay is accomplished by queueing the

bottom window for redisplay. The reburying algorithm will cause every displayed window to

be updated from its screen buffer.

After the first window on the redisplay queue has been processed in this manner, the

next queue record is read and the process repeated. This continues until the redisplay queue is

empty. In addition to moving screen images to the physical display, the screen manager

includes entry points for clearing the screen area a window occupies. This must be done when

a window is destroyed, buried, or moved (the screen area where the window used to be must

be cleared before the window is repositioned).

- 37 -

6.2 The Window Manager

The window manager of Jaws is its largest and most characteristic module. This

portion of the window system is responsible for creating, destroying, repositioning, and

translating windows. The translation of a window involves converting the data that window is

viewing in its associated canvas into pixels of the screen buffer. It is this function which is

central to the window system.

There are additional services the window manager provides. These include

examining the position and size of a window, reshaping it, and finding which window encloses

a given point. The window manager is not expected to have to output to the physical display

device-that is the screen manager's function. The window manager is to handle those

aspects of the window system which require a full understanding of the window data

abstraction, and its associated structures (screen buffers, canvases, fiill lists and the like). The

structure of many of these objects vary according to the type of the window involved. To

better manage the processing of windows of varying types, type dependent dispatches are

included in this and other sections of the window system.

6.2.1 Dispatching by Window Type

Many of the operations the window manager is to perform must be re-routed to

procedure libraries tailored to manager windows of a particular type. These actions include

creating, destroying, and translating windows. To create a window, the window manager first

adds a blank record to the end of the window hierarchy. This record is filled in with the type,

dimensions, and position of the new window. Once this has been done, a dispatch is made to

the collection of routines to handle windows of that type. Here the type dependent

initialization is done. When a window is created, there are often properties we would like to

immediately add to the window. These vary with the type of the window. Such frills might

include titles, borders, or margin size. Only after the type dependent parameters have been

set is the new window queued for redisplay by the screen manager.

Similarly, a window of a given type may have "last requests" to be executed before

the window is destroyed. A dispatch in the window destruction procedure provides such a

facility. Only after the type dependent termination procedures have been executed does the

- 38 -

window manager remove a window record from the window hierarchy.

By far the most important dispatch performed by the window manager is that for the

translation of a window. It is impossible for the window manager to know how to interpret

the canvas of every window type. It is for this reason that the actual translation is referred to

the type library. In the procedure library for windows of a given type, there must be a

procedure specifying how to translate the canvas into pixels. Once the translation has been

performed, the window manager may queue the window for redisplay. It is interesting to note

that the window manager cannot determine how much of the screen buffer has changed to

optimize the screen manager redisplay. This information must be obtained from the

procedure which actually translates the canvas because only the specific translation routines

knows exactly how many bits of the screen buffer where changed.

6.2.2 Window Depth Control

The window manager is responsible for establishing the window depth. That is not

to say that the window manager causes windows to appear overlapped on the physical display,

only that it sets the depths the screen manager will use to update the screen. The screen

manager refers to the window hierarchy to compute how windows overlap. Consequently, the

window manager must alter that hierarchy if it receives a request to modify a window's

relative depth.

There are three depth controlling operations an application program may specify.

These are surface, bury, and hide. To surface a window is to bring it to the very top of the

stack of windows. This is accomplished by simply moving the window to the end of the

doubly-linked list. Burying a window means to place that window at the very bottom of the

stack of displayed windows. This is easily done by moving the window record to a position of

the linked list just preceding the bottom window. The bottom window pointer must then be set

to point to this newly buried window. The effects of either of these two depth commands will

become apparent during the next screen update.

The last depth operation is hide. When a window is hidden, it is not to be displayed

at all. This does not imply that the window becomes inactive. That would violate the Jaws

philosophy of separating the display status from the window activity. When a window is to be

hidden, it is moved to the very beginning of the linked list. A check is then made to ensure

- 39 -

that the bottom window pointer either points to a window further down the list, or is null. The

screen area occupied by the newly hidden window is cleared and the screen manager is called

to perform a complete redisplay. Since the now-hidden window does not appear after the

bottom window its screen buffer will never be transferred to the display. The window

disappears from the screen.

6.2.3 The Handling of Child Windows

One of the design objectives of Jaws is that it be able to handle windows with

subwindows or children. Child windows are a way of further dividing the screen area. They

may not overlap. A child is to move with its parent during repositioning and depth

controlling operations. These windows are created in the same manner as top-level windows,

except that the call for the creation of a child includes a non-null parent pointer. The new

window is added to the hierarchy as a child of that parent window. Offsets are computed as

offsets from the origin of the parent. When the parent is destroyed, all of its children, indeed

all of its descendant, must also be terminated.

It is difficult to define a consistent behavior for children during depth control

operations. Clearly, when a top level window is buried, its descendants should be buried with

it. What is to happen if a child is buried? Since children exists only under their parent's

auspices, the child should be buried within the frame of the parent. This would be a useless

operation because children may not overlap. Burying a non-overlapping window is

meaningless. A similar problem arises with the hiding of child windows. Should the child

completely disappear from the display? The convention finally decided upon was that any

depth controlling operation performed on a child is redirected to the parent. Thus to burying

a child implies that the child's siblings, and their common parent, will all be buried as a unit.

The reasoning is that a subwindow is inextricably bound to its parent from creation. What

happens to a child should also happen to its siblings and the parent. The only exception to

this convention is window movement. Moving a child window means moving it relative to its

parent

The last peculiarity of child windows is the fact that they share their parent's screen

buffer. The implications of this are not all immediately apparent. When the screen image of

the parent is repositioned, so are those of its children. Subwindows may be updated freely,

-40-

but that update takes place in the screen buffer of the parent window. Consequently, if the

parent is then updated, the screen image of its child window is lost. In a sense, parents only

serve to bind their children together. Once a window is declared to have subwindows, it loses

its ability to operate as a full viewport, but instead becomes a frame which holds other,

smaller, viewports (the subwindows). These are not unlike the frames of the Lisp Machine

Window System [Weinreb and Moon].

6.2.4 Other Window Manager Functions

In addition to the basic function of creating, destroying, updating, and setting the

depth of windows, the window manager provides a few other services. These include

repositioning, querying, and locating window objects. Repositioning a window is very

straightforward-the offset fields of the window record concerned is modified to reflect the

requested movement. The only checks performed are those to ensure that the window

remains within a bounded area (the parent's borders for a child; the screen border for a

top-level window). Querying a window returns the window's position, size, and type.

An application program may need to determine what window contains a given

screen point. One example is when the user is selecting windows with the mouse or other

pointing device. The window manager is able to provide this information. To find the

window which contains a specific point, the window manager searches the window hierarchy

beginning with the tail window. A backward search is appropriate because the window

hierarchy establishes the depth of each window on the screen. What must be returned is the

uppermost window which contains the point, not any window which might be underneath

that one. Once a window is found to contain the point, any children that window might have

must in turn be searched. A recursive search is necessary because the most specific answer,

i.e. the smallest enclosing window, is what is desired.

-41 -

6.3 The Canvas Manager

The canvas manager of Jaws is the module responsible for the creation, destruction,

and, in some cases, the modification of canvases. As the specific structure of each canvas is

very application program dependent, the canvas manager frequently dispatches to procedure

libraries for handling canvases of a particular type.

When specifying that a window is to be created, the application programmer must

decide whether the application program or the canvas manager will be responsible for

maintaining the canvas. There are examples for either situation. If the application

programmer wishes the window to behave as a simple typewriter, then the canvas manager

may easily handle placing characters in the canvas. If, on the other hand, the program is an

image processor, the application program may need to modify individual pixels in the canvas.

In this case, the application program may "own" the canvas, and be responsible for its update.

The ownership of a canvas may be determined by examining the whose field of the canvas

record.

Regardless of who owns it, the canvas manager must be notified of any changes to

the canvas. This notification includes information delineating what area of the canvas has

changed. If several changes are to be made before a screen update, the canvas manager keeps

track of the accumulated modifications, and queues them all at once. This facility prevents

the application program from having to designate a series of local canvas changes. Instead,

the program may modify separate areas of the canvas, and depend on the canvas manager to

keep a cumulative account of the rectangle encompassing all modifications. This rectangle

represents the screen area which should be refreshed during the next screen update. This

information is placed in a queue record, to be acted upon by the window manager when a

refresh request is next signalled.

The canvas manager is not aware of which windows, if any, are viewing the canvases

it is maintaining. It exists primarily to insulate the application programmer from some of the

lower level details of the window system. With the canvas manager, an application program

may make use of an output area without concerning itself with display restrictions, such as

window size, position, or visibility. The canvas retains its state regardless of any of these

factors.

The canvas manager may be considered as an application program in its own right,

-42 -

since it only manipulates the canvases, or communication area, of the window system. It is the

existence of the canvas manager that allows a library of generally useful window operations to

be defined. Echoing characters from the keyboard is something the canvas manager might

do. To echo a character, the canvas of a window must have that character added to it. Only

after the character appears in the canvas will it make its way to the screen. By introducing this

use of the canvas manager, the application programmer need not be concerned with echoing,

or even reading, characters. Input characters may be extracted from the canvas, instead of the

system input buffer.

-43 -

The Implementation of Jaws

An implementation of the Jaws window system was begun during January, 1982 on

the Three Rivers PERQ personal computer. Since that time, a working version has been

successfully coded and tested. This chapter describes some of the relevant details of that

implementatidn.

7.1 The Pascal Programming Language

Jaws is implemented in the Pascal programming language. While not the most

powerful computer language available on today's machines, it does provide a good selection

of programming features. The PERQ implementation of Pascal includes a several language

enhancements which proved quite useful during the coding of the window system (see section

7.2, immediately below). Pascal is also the only language currently available on the PERQ.

Pascal does not permit the storage of function oijects in a compound data structure.

This restriction made implementing the window type dependent dispatches somewhat more

difficult than it might have been is a more object oriented language such as Lisp [Lisp

Manual]. In Lisp, the function to be executed by a particular window to perform a generic

action might be stored in the window record itself. A different mechanism had to be found

which could be realized in Pascal. Here, generic procedures are called to dispatch to a specific

routine for handling a window of a given type. Since the PERQ implementation represents

the type of a window as an enumerated scalar, it is quite feasible to use the wind_type field in a

simple CASE statement which selects a procedure to perform the actual operation. An

unfortunate consequence of this scheme is that when a new window type is added to the

window system, this dispatch module, indeed all of the window system modules must be

recompiled.

-44-

7.2 The PERQ Personal Computer'

The Three Rivers PERQ mini-computer is a single user system quite suited to a

programming project of this nature. It supports a black and white, high density, bit mapped

display and a tablet which allows the entry planar coordinates into the operating system.

7.2.1 PERQ Software Enhancements

In addition to its hardware features, the PERQ provides many software

enhancements which greatly facilitated the implementation of Jaws. The first of these is a

Pascal .intrinsic called RasterOp. RasterOp allows a programmer to move and logically

combine very large areas of storage. Its primary purpose is to move screen images to and

from the PERQ's display screen. Using RasterOp, orders for the movement of entire screen

buffers were reduced to a single Pascal statement. As RasterOp is implemented in microcode,

it is a very fast operation. This proved to be crucial for real time window system applications.

Another PERQ Pascal addition is that of supporting generic pointer types. While

the window system could have been implemented using the standard definition of Pascal

[Jensen and Wirth], generic types allowed general data structures such as canvases to be

included in record structures. Where there no generic types, these data types would have to

be implemented as variant records.

The PERQ also features a software module import/export facility. Using this, it was

possible to divide Jaws into many modules which could be independently modified and

recompiled. Please refer to the following section for a list of the modules.which comprise the

window system.

7.3 The Modules of Jaws

Jaws is a large software system. It was neither feasible nor desirable to implement a

system of its extent in only three independent software modules. There are many. This

section identifies those packages and provides a brief description of the function of each:

-45 -

window datatype declarations

This module contains the declarations of the window system data

types. When this package is modified, every other module of the

window system must be recompiled. This is because every other module

must refer to the window system data structures to perform its

function.

window system utilities

The window system utility package includes those routines which are

frequently referenced by the other system modules. In this package

are functions which: return a window's eldest ancestor; compute a

window's absolute offset from the origin of the physical screen; push a

queue record onto any specified queue; etc.

screen manager

The screen manager (see section 6.1, above) is responsible for updating

the physical display device. This module contains the screen manager

procedures.

window manager

The window manager creates, destroys, repositions, and translates

windows. It is fully described in section 6.2, above. This module

contains the window manager procedures.

canvas manager

This module contains the canvas manager routines. The canvas

manager handles the creation, destruction, and manipulation of

canvases. It does not know how to translate canvases into screen

buffers. Refer to section 6.3, above.

- 46 -

window system dispatcher

This module contains all of the dispatch routines of the window

system. Every "generic procedure" may be found in this module. The

reasoning behind placing all such routines in a single package is that

only this file and the window data type declaration module need be

modified when a new "flavor" is added to the window system. The

window types module must be updated to reflect the additional

window type.

basic flavor package

The basic flavor package is a module which contains routines to

perform functions frequently used in flavor packages. Some of the

basic flavor package procedures: draw borders around windows,

redefine window margins, alter the view a window has of the canvas,

and clear a window's screen buffer (as opposed to its screen area).

bit window flavor

The bit window flavor package was the first "flavor" of window

implemented. It supports simple bit mapped windows. This package

includes the target of the dispatches for type bitmap. It is here that the

body of the routines for translating the canvas of a bit window to the

screen buffer reside. Since the canvas is also a bit plane, that

translation is a simple copy operation.

Currently, there are two other flavor packages implemented for Jaws. These are the character

array and Quix flavors. Ultimately, there will be many more. Jaws was designed to allow the

application programmer to define and display whatever data abstraction he finds convenient.

It was towards this end, that flavor packages were designed. The unfortunate aspects of Jaws

flavors are that they require the designer of the flavor know a fair amount about the internals

of the window system, and that every flavor addition forces a recompilation of the entire

window system.

- 47 -

Future Directions for the Window System W
The PERQ implementation of Jaws both proved its design features, and revealed its

design oversights. This chapter discusses the results of the PERQ implementation, and briefly

reviews some enhancements and omissions which may improve the performance of this and

other window management systems.

Overall, the performance of the Jaws implementation is far better than anticipated.

It was expected that due to the overhead of the communication queues and copying screen

images to the screen, the window system would not be capable of keeping up with real time

application programs. This is not the case. Jaws is able to keep pace with interactive

application programs. This includes such things as typing into character windows, and

dragging windows of any type with the mouse.

Likewise, the redisplay algorithms and canvas scheme worked quite well. Canvases

proved a very convenient way of having two windows display the same thing. This was as

expected, but the visual affect is much more impressive than imagined. An analysis of the

storage consumption was not performed, yet no application program to date has run against a

storage limitation.

The most apparent misfeature of Jaws is the overlap management When partially

buried windows are updated very frequently (about three times a second), the flashing of the

screen as it struggles to rebury the window after update becomes noticeable. At Five updates

a second, the flashing is annoying, while a window update rate greater than eight per second is

intolerable. A possible solution to this problem is proposed in section 8.1.1, below.

The major design flaw is probably that of choosing to have windows share their

parent's screen buffer. This proved to be a rather troublesome property. Children must be

handled specially by almost every routine of the window manager. Many of these difficulties

are compounded by the fact that every screen buffer is contained in a single segment. Since

each segment is a distinct memory object, it is difficult to reference a smaller rectangle defined

to lie within that segment. A child window is just that. The alternatives, are either to have a

screen buffer for every window buffer, or to have the inclusion of screen buffer a per window

-48 -

option selected by the application programmer. Both of these are rather unattractive.

8.1 Possible Improvements to Jaws

Jaws is by no means perfect. There are many design alterations which would greatly

contribute to a more robust and general system. The major design changes have been

mentioned above. Following are possible additions or modifications to improve the PERQ

implementation of Jaws. Most of the enhancements outlined in this section should also be

incorporated in any redesign of the window system.

8.1.1 Improving the Overlap Algorithm

It was mentioned that the flashing of the screen as overlapped windows are

redisplayed proved distracting. One way to solve this problem is to add to the screen manager

the intelligence to compute when and to what extent windows overlap. With a smarted screen

manager, only the visible areas of partially covered windows would be refreshed. A

completely covered window would not be updated at all. Because only the visible portions of

window are shown, there would no longer be a need rebury window images. It is the rebury

operation which is the source of the screen flash. Consequently, this flash would be

eliminated from the revised system. A second method of eliminating the overlap is to retain'

the original screen manager, and to instead add an specialized overlap manager.

8.1.2 Adding Other Managers

The global queue method of information transfer used in Jaws facilitates the

insertion of other functional managers between any of the existing ones. A reasonable

addition might be a display overlap manager. This module would compute what portions of

windows which are to be redisplayed are actually visible. These visible sectors will always be

decomposable into some combination of rectangles. The overlap manager would inspect the

window hierarchy, and the redisplay queue and use that information to create a new queue of

the smaller rectangles which together form the visible display image. The screen manager is

already set up to display any subrectangle of given window. There would be no need to

modify its behavior other than to designate this new queue as its input stream.

-49 -

Another manager to add to the system would be one to handle input to the window

system. Currently input is either handled by the canvas manager, or by the application

program itself. An input manager would poll all of the input devices and direct the input

streams to windows designated as active. The canvas manager would then take over, updating

the canvases of the active windows, and notifying the application programs managing those

windows that they have input. Before such a scheme may become a reality, the underlying

operating system must provide some means of managing independently executing processes.

The continuous inspection of input buffers requires an asynchronous process.

8.1.3 Asynchonous Managers

There is no good reason the three main managers of Jaws cannot run as

asynchronous processes. Currently, one manager calls the next in a well defined sequence.

This does not always make the best use of system resources. It may well be more efficient to

have the window manager active recomputing the screen image of a complex data

representation while the user is performing a relatively less demanding activity such as pure

text entry.

There are some drawbacks to parallel processes. The first problem is that the PERQ

does not currently support simultaneously executing programs. This feature is to be added in

the near future. Once it becomes available, there are still difficulties. A locking mechanism

will be needed to ensure that no area is being read and modified simultaneously. The results

of such an action are quite unpredictable. Once all of the problems have been resolved, it is

expected that multiprocessing will greatly enhance the performance of Jaws.

8.1.4 Multiple Screens

Usually, the user is only interested in managing a single screen of windows. One can

imagine situations where this assumption is no longer valid. An example is if the operating

system supports a color screen in addition to its usual alphanumeric one. The window

management system should be able to control many screens if that is what the application

programmer desires.

The entire state of the window system is embodied in the screen record and the two

- 50 -

information queues. Currently these the are only global variable of Jaws. It is quite feasible

to create an additional data type to hold all such global information on a linked list or similar

structure. The global variables could then be re-instantiated every time the application

requests a screen change. In this manner, a single invocation of the window system might

manage multiple screens of varying types.

A question arises as to what other modifications would need to be made to Jaws to

handle screens of other types. The largest alterations would occur in the routines which

handle the screen representations or screen buffers. These must be made to understand

whatever screen representation is appropriate for the currently active screen. Fortunately, all

such routines reside only in the screen manager and the translation portions of the window

manager.

-51-

Conclusion E

As personal and main frame computers supporting all points addressable displays

become more prolific, it will prove increasingly necessary to supply the users of these systems

with reliable and well designed display management facilities. The Jaws window management

system is a step in that direction. Jaws is by no means the best window manager in existence.

It is an attempt to incorporate the current display management ideas the author feels are the

most useful into a coherent and flexible display driver.

The Jaws implementation employs some software concepts seldom found in window

systems of this nature. Among these are the use of communication queues to relay redisplay

information, a facility which allows application programmers to express information in an

application convenient representation, and the use of the window data structures to store both

the data for individual windows,' and the information needed to establish the relationships

between displayed window images.

As an experimental system, Jaws was quite successful. It performed better than

expected. Design problems were uncovered, but that is part of motivation behind any

prototypical system-to find the limitations of the design and implementation. The author

learned much both about window systems, and implementing large software subsystems. It is

hoped that the development of Jaws will continue, and that this initial design and

implementation effort will not have been in vain.

- 52 -

References 10

[Jensen and Wirth]

Jensen, Kathleen, and Wirth, Niklaus, PASCAL User Manual and Reuort

Springer-Verlag, New York, NY., 1978

[Lisp Manual]

Weinreb, Daniel L., and Moon, David, The Iisp Machine Manual, M.I.T.

Artificial Intelligence Laboratory, Cambridge, MA, July 1981.

[McCrossin, O'Hara, and Koster]

McCrossin, J.M., O'Hara, R.P., and Koster, L.R., "A Time-Sharing Display

Terminal Session Manager", IBM Systems Journal, vol. 17, num. 3, 3M Corp.,

1978

[Newman and Sproulll

Newmnan, William M., and Sproull, Robert E.; Principles of Interactive Comnputer

Graphics, McGraw-Hill, New York, NY, 1979

[Siggraph-ACM]

Computer Graphics. A Ouarterly Report of SIGGRAPH-ACM, Association for

Computing Machinery, New York, NY; August, 1979

[SPICE]

Ball, J. Eugene, "Alto as Terminal", Carnegie-Mellon University Sl'ICE Project,

Spice Document S008, Carnegie Mellon University, March, 1980

[Tesler]

Tesler, Larry, "The Smalltalk Environment" Byte, Byte Publications Inc., August,

1981, vol. 6 num. 8

-53-

[Virtual Terminal]

Lantz, Keith A., and Rashid, Richard F., "Virtual Terminal Management in a

Multiple Process Environment" Proceedings of the Seventh Svmposium on

Operating System Principles Association for Computing Machinery, Pacific

Grove, California, December, 1979

[Weinreb and Moon]

Weinreb, Daniel, and Moon, David A., Introduction to Using the Window System,

M.I.T. Artificial Intelligence Laboratory Working Paper 210, May, 1981.

