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ABSTRACT

Currently envisioned operational safety systems require
fast running computer models of major power plant components
in order to generate reliable estimates of significant
safety-related parameters. The objectives of this research
are to develop and to validate such a model for a vertical
U-tube natural circulation steam generator.

The model is developed using a first principles appli-
cation of the one-dimensional conservation equations of
mass, momentum, and energy. Two-phase flow is treated by
using the drift flux model. Two salient features of the
model are the incorporation of an integrated secondary-
recirculation-loop momentum equation and the retention of
all nonlinear effects. The inclusion of the integrated loop
momentum equation permits calculation of the steam generator
water level. The use of a nonlinear model, as opposed to a
linearized model, allows accurate calculation of steam gen-
erator conditions for transients with large changes from
nominal operating conditions.

The model is validated over a wide range of steady-
state conditions and a spectrum of transient tests ranging
from turbine trip events to a milder full-length control-
element assembly drop transient. The results of the valida-
tion effort are encouraging, demonstrating that the model is
suitable for application to a broad range of operational
transients.

Execution speed of the model appears to be fast enough
to achieve real-time execution on plant process computers.
Real Time-~-to-CPU Time ratios for running the computer pro-
gram on an Amdahl 470 V/8 computer range from 47 to 200,
with integration time step sizes of 0.1 to 0.4 seconds,
respectively. When the model is run on a Digital Equipment
Corp. VAX 11/780 computer using an integration time step of
0.25 seconds, the Real Time-to-CPU Time ratio is 11.

Thesis Supervisor: John E. Meyer
Title: Professor of Nuclear Engineering

Thesis Reader: David D. Lanning
Title: Professor of Nuclear Engineering
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Chapter 1
INTRODUCTION

The goal of this thesis is to develop a fast running
computer model of a vertical U;tube natural circulation
steam generator. 1In this chapter we first discuss possible
applications for this model in the context of current safety
issues and concerns. Having demonstrated a need for such a
model, we then clearly define the research task and follow

up with a brief review of previous work.

1.1 BACKGROUND AND MOTIVATION

Major efforts are being made to improve the safety of
nuclear power plants by developing systems to assist opera-
tors in taking appropriate corrective action during off-
normal plant transients. Two such systems are the utility-
funded Electric Power Research Institute's disturbance anal-
ysis and surveillance system (DASS) (Refs. (E2) and (M6)),
and the Nuclear Regulatory Commission - mandated safety
parameter display system (SPDS) (Ref. (H4)). Both of these
systems should be predicated upon the concept of information
reliability. That is, the creation and maintenance of a
validated data base consisting of best estimate values of
processed sensor signals to be used in generating reliable
estimates of parameters relevant to plant safety (Refs. (H4)

and (D1)). Systems that achieve information reliability can



be used by power plant operators with a high degree of con-~
fidence, particularly during off-normal plant events when
crucial decisions have to be mﬁde. In addition to improving
plant safety, these systems should also improve planf avail-
ability, providing an economic incentive for their develop-~
ment.

Given that information reliability is desirable, how
can it be achieved? One approach to this question is ad-
dressed elsewhere (Refs. (H4) and (D1)) and will only be
discussed briefly here. We consider a situation where we
have sensors to measure four quantities: A, B, C, and D
(this example is taken from Ref. (Dl1l)). 1In fact, we have
two sensors to measure quantity A and one each for quanti-
ties B, C, and D. VWe also have a plant component X which
defines a physical relationship between quantity A and quan-
fities B, C, and D. We define an analytic measurement of
quantity A tc be the output of an an#lytic model of compo-
nent X using as input the measured quantitics B, C, and D.

This relationship is defined in Fig. 1.1-1.

ANALYTIC-A
MEASURCMENT

Figure 1.1-1. Analytic Measurement (Ref. (D1)).



Before pursuing this example any further, we pause here
to define a decision/estimator (D/E). The inputs to a D/E_
consist of all measurements of a quantity of interest; these
measurements can be both direct sensor measurements or anal-
ytic measurements. The D/E performs two functions:
1.) detection and isolation of incoasistencies in
the multiple measurements for a given varia-
ble; and,
2.) uses remaining consistent input measurements
to obtain a single estimate of the given
variable.
Figure 1.1-2 shows the symbol used to represent a D/E. The
D/E shown irn this figure has three input measurements and
one output corresponding to the estimated value of the meas-
urement. The arrow cmerging from the side of the D/E indi-
cates the detection and isolation of inconsistencies in the

input measurements.

Figure 1.1-2. Decision Estimator (Ref. (D1l)).

Returning to our example, we use the two direct sensor
measurements of quantity A together with the analytic meas-
urement of A as inputs to a D/E, as shown in Fig. 1.1-3.

The output of the D/E is then a good, or reliable, estimate
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of the value of the measured quantity A. There are several

comments regarding Fig. 1.1-3:

A SENSOR 1
VALIDATED

A ESTIMATE

A SENZOR 2

MODEL OF
COMPONENT
X

ANALYTIC A
MEASUREMENT

C SENSOR

i

Figure 1.1-3. Generation of a Best Estimate Value of
Quantity A (Ref. (D1)).

1.) The inputs to the model of component X could
consist of validated estimates from other
D/Es, as well as direct sensor measurements;

2.) The method usually does not require installa-

tion of additional sensors in power plants,
particularly in major plant systems; and,

3.) The methodology has fault detection capabil-

ity (Ref. (Dl)).

In order to generate an analytic measurement, we need a
model of plant component X. This model is required to run
in real time, or faster, in parallel with all other plant
computer tasks. The model should be derived from physical
laws applying to the c;mponent in question. A physicaily
based model is preferred to an empirically constructed model

because a model derived from basic physical laws can often



be applied to a wide range of operating conditions while
empirical models are generally limited to the narrow range
of operating conditions for which they are obtained. Both
the DASS and SPDS need plant component models in order to
generate parameters relevant to plant safety. For this
application, the models are also required to run in real
time and should be physically derived. Finally, if we ob-
tain much faster than real time computing capability, then
these models can be used in a predictive manner to aid oper-
ations personnel in making decisions concerning alternate
control actions to be initiated during off-normal plant
transients.

In summary, the judicious application of physically
derived, accurate, faster than real time computer models of
major plant components can result in systems that improve
the reliability of information displayed to plant operators
or used in closed loop control, improve plant availability,

and provide the operator with predictive capability.

1.2 RESEARCH OBJECTIVES

The main objectives of this work are to develop and
validate an analytic model of a vertical U-tube natural
circulation steam generator, which is a major component in
many pressurized water reactor (PWR) plants (the other tyre
of steam generator in PWR plants is the once-through steam
generator). The model should satisfy the criteria set down

in the previous section, which are:
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1.) Real time operation of the model; and,

2.) Model development based on the application of
fundamental physical laws rather than an
empirically derived model.

Model development is accomplished by the application of
the laws of conservation of mass, momentum, and energy to
control volumes constituting the steam generator. The con-
trol volumes selected and the physical assumptions used in
these control volumes are based on considerations such as
geometric configuration, the physics occuring within the
various steam generator regions, and constraints arising
from numerical solution techniques.

The task of model validation is the comparison of the
computer model results with experimental data and/or results
generated by other computer codes that have been well vali-
dated. This step ensures model fidelity and helps determine
the limits of model applicability. A thoroughly validated
model can be used with confidence in an operational safety
system.

An additional dividend resulting from the development
of a fast, physically based steam generator model is that
such a model bridges the gap between simplified boiler-pot
models and the more complex, computer-time-consuming codes
such as RETRAN (Ref. (M8)), URSULA2 (Ref. (K2)), and COBRA-

TF(EPRI) (Ref. (82)).

1-6



1.3 PREVIOUS WORK

Little literature exists relevant to the real time
modeling of steam generators. However, there is a fair
amount of information available dealing with steam generator
modeling in general. A good literature survey of transient
modeling of nuclear steam generators is given in Ref. (L2),
so a literature review will not be given here.

Much of the recent work in steam generator modeling
involves detailed, three-dimensional, two-fluid representa-
tions of the boiling side of the steam generator (Refs.
(K2), (M7), (S2), and (I2)). The computer models derived in
the references given above are used to generate detailed
flow conditions for either steady state or transient cases.
The detail is obtained only by spending large amounts of
computing time as shown in Table 1.3-1. Note that the geo-
metric detail of these models ranges from 4900 cells to
about 500 cells, while the model developed in this work has
4 cells. Less detailed computer models are developed in
Refs. (V1), (H5), and (L3); these models use one-dimen-
sional, slip-flow (not two-fluid) représentations of the
boiling side of the steam generator. The TRANSG code (Ref.
(L3)) when used to model a once-through steam generator with
a fixed time step size of 0.05 seconds requires 16 seconds
of computer time to simulate 10 seconds of real time on an
Amdahl 470/V6 computer system. (Computation time results
quoted here vary with the size of the problem being solved -

for the TRANSG problem mentioned above this is 20 cells for
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both the primary and secondary sides.) Although none of the
works cited here deal with real time modeling of steam gen-
erators, they are useful guides in developing real time
computer models since they provide insightful information
concerning steam generator dynamics and modeling.

The most relevant work with respect to real time model-
ing is a thesis by Clarke (Ref. (C2)). 1In this work Clarke
uses a lumped parameter approach in the treatment of the
secondary regions of the steam generator. The model is
simple, but it retains the essential physical features ne-

cessary to reproduce gross steam generator dynamics.

1.4 ORGANIZATION OF REPORT

Chapter 2 is an overview of the steam generator model
developed in this work. Chapter 3 provides detailed infor-
mation regarding the development of the secondary side mod-
el. The primary side model, along with the heat transfer
model, is developed in Chapter 4. The numerical solution
scheme, including a discussion of stability concerns, is
given in Chapter 5. Model validation is discussed in Chap-
ter 6 and Appendix H. Conclusions and recommendations, as
well as a summary, are given in Chapter 7. Appendices I and
J contain a description and listing of the computer pro-
gram. An interesting attempt to use boundary conditions for
transient calculations other than those given in the main
text is presented in Appendix G. The remaining appendices

(A, B, C, D, E, F, and K) contain supplementary details.
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Chapter 2

STEAM GENERATOR MODEL: OVERVIEW

2.1 DESCRIPTION OF STEAM GENERATOR

Heat generated by the nuclear chain reaction in the
core of a pressurized water reactor is removed by the pri-
mary coolant and is transferred to the secondary coolant via
the steam generators. This heat transfer results in the
production of secondary steam which is then used to drive a
turbine-generator set.

A representative U-tube steam generator (UTSG) is shown
in Fig. 2.1-1. The unit consists of two irteracting fluid
systems: the hot primary fluid system and the colder secon-
dary fluid system. The primary and secondary sides are
linked by heat transfer through the tube walls. The primary
fluid system consists of the hot reactor coolant on the tube
side of the tube bundle, as well as the primary coolant
contained in the inlet and outlet plena located at the bot-
tom of the steam generator. Hot reactor water enters the
steam generator through the primary inlet nozzle. It then
flows inside the U-tubes, first upward and then downward,
where it transfers heat to the secondary fluid. The coolant
then leaves the outlet plenum through the outlet nozzle.

The secondary fluid has two distinct regions: an upflow
region and a downflow region. These regions are separated
by a wrapper with the inner (upflow) region consisting of
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Figure 2.1-1 Representative U-Tube Steam Generator
(Ref. (Bl)).
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the tube bundle and riser, and the outer (downflow) region
consisting of the downcomer and feedwater mixing region.
Subcooled feedwater is introduced into the steam generator
via the feedwater nozzle and is distributed throughout the
feedwater mixing region by the feedwater ring. There it
mixes with the recirculating saturated liquid returning from
the steam separation devices. The resulting subcooled 1li-
quid flows downward through the annular downcomer region
formed by the wrapper and the steam generator outer shell.
At the bottom of the downcomer, the water is turned and
flows upward through the shell side of the tube bundle re-
gion, where it is heated to saturation and beils. The sec-
ondary fluid exits the tube bundle region as a saturated
two-phase mixture and flows upward through the riser into
the steam separating equipment. Steam separation is
achieved by using a combination of centrifugal steam sepa-
rators, for bulk liquid-vapor separation, and chevron type
steam dryers, for the removal of any residual moisture. The
relatively dry steam leaves through the steam outlet nozzle
at the top of the steam generator, while the saturated water
is directed downward to mix with the entering feedwater.

The secondary fluid path just described constitutes a
natural circulation loop. The driving head for this recir-
culation flow is provided by the density difference between
the subcooled column of liquid in the downcomer region and
the two-phase mixture in the tube bundle and riser. This

2-3



driving head is counterbalanced by the various pressure
losses in the loop, such as frictional losses in the tube
bundle and the losses within the steam separators.

Load changes in UTSG units are accompanied by changes
in the secondary pressure, primary coolant inlet tempera-
ture, feedwater flowrate, and feedwater temperature. Since
the steam generator heat transfer rate is essentially pro-
portional to the difference between the primary coolant
temperature and the secondary saturation temperature, and
since the saturation temperature is a function of saturation
pressure, a change in secondary pressure results in a change
in the primary-to-secondary heat transfer rate. For exam-
ple, a load demand increase may be satisfied by increasing
both the primary inlet temperature and feedwater flowrate,

along with a decrease in secondary pressure.

2.2 MODEL REGIONS

For the purposes of developing a model of the steam
generator, it is necessary to divide both the primary and
secondary sides into several regions. As a matter of prac-
ticality, these model regions correspond to actual physical
regions of the steam generator. This allows us to specify
with greater accuracy the different physical processes oc-
curring within each region. For instance, in the downcomer
we are primarily interested in the flow of a subcooled 1lig-
uid, while in the tube bundle portion of the secondary side
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we are interested in describing a two-phase flow with heat
addition. These are two essentially different physical
processes requiring different modeling techniques; hence, we
require two separate model regions. However, one must avoid
the temptation to use too many model regions since this can
result in a large and computationally costly model, which is
contrary to the goals of this work.

The steam generator model developed in this work has
four model regions on the secondary side and three model
regions on the primary side. The primary side regions con-
sist of the inlet plenum, the fluid volume within the tubes
of the tube bundle, and the outlet plenum (Fig. 2.2-1). The
four secondary regions are: the tube bundle region; the
riser region; and, the steam dome-downcomer region, which is
divided into a saturated volume and a subcooled volume
-(Fig. 2.2-2). The saturated ond subcooled volumes have a
movable interface; thus these volumes are not constant.
However, the sum of their volumes is constant and equal to
the total volume of the steam dome-downcomer region. There
are three constraints imposed on the model of the regions
contained within the steam dome-downcomer. The first is
that the interface between the saturated and subcooled re-
gions can never be above the level of the feedwater ring.
This constraint is motivated by physical consideraticns,
since one would not expect to find subcooled liquid above
the feedwater ring because the feedwater ring éprays highly
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subcooled water downward. The second constraint is that
there is always a minimum amount of saturated liquid present
in the saturated region. The final constraint is that the
feedwater is always added to the subcooled region, although
this is not always true during steam generator off-normal
operation. The last two constraints are discussed at length
in Section 3.3. The steam separators, although not expli-
citly treated, are accounted for by assigning a loss coeffi-
cient for pressure drop calculations and by assuming that

they always accomplish complete phase separation.

2.3 AUXILIARY MODELS

In order to simulate the effects of control actions
initiated in the main steam and feedwater systems on steam
generator performance, we have included simple models of
these systems in the overall steam generator model as an
alternative to providing the time-dependent steam and feed-
water flows as input. These models are fully developed in
Section 3.6; here we simply describe the systems and their
operation.

A schematic of a typical main steam system is shown in
Fig. 2.3-1. The main steam line extends from the steam
generator steam outlet nozzle to the high pressure turbine
main stop and control valve. The main steam line is also

provided with a main steam isolation valve (MSIV), which
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serves to isolate each steam generator in the event of a
main steam line break and thereby limits the steam generator
inventory loss. The MSIV also closes on a low steam genera-
tor pressure signal in order to prevent overcooling of the
primary system fluid. There are also a number of steam
relief systems associated with the main steam line. These
are the steam dump, turbine bypass, and safety relief valve
systems. The steam dump system vents to the atmosphere.
The turbine bypass system diverts steam directly to the
condensers and serves to limit steam pressure during opera-
tional transients. The bypass system is also used during
hot standby and shutdown cooling. Both the steam dump and
turbine bypass systems are used during load rejections in
order to limit the ensuing secondary pressure rise. This
action maintains the steam generétor heat removal capability
and prevents excessive increases in primary system tempera-
tures. The safety relief valve system consists of a number
of pressure relief valves located upstream of the MSIV,.
This is a passive system requiring no operator or control
system action since the valves are spring loaded and open if
the steam pressure is greater than the spring force. The
steam relief capacity of this system is generally 5 to 6 per
cent larger than the main steam flowrate at full power
conditions.

The feedwater system consists of the feedwater heaters,
feedwater pumps'and feedwater regulating valves. Modeling
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of this system in itself is a difficult task and is not at-

tempted in this work. The feedwater temperature, in partic-
ular, is a required input to the steam generator model since
determining this quantity would require a model of the feed-
water train, including extraction steam, which is beyond the
scope of this work.

A simple model of the feedwater control system is in-
corporated into the overall steam generator model so that
one can simulate controller effects on feedwater flowrate.
The feedwater flow controller is a three-element controller
that monitors steam flowrate, feedwater flowrate, and steam
generator water level. The controlled quantity is the steam
generator water level, and its control is accomplished by
regulating the feedwater flowrate. Figure 2.3-2 is a block
diagram of the controller. The measured steam and feedwater
flowrates are .compared and processed to provide a flow mis-
match error signal. The measured water level is compared to
the desired water level, and the difference between them is
processed to provide a level error signal. The flow mis-
match and level error signals are then combined to produce a
feedwater flowrate demand signal that either increases or
decreases the feedwater flowrate.

In Chapters 3 and 4 we develop in detail the steam
generator primaré and secondary side models, as well as the

models of the peripheral systems.
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Figure 2.3-2 Block Diagram of a Typical Feedwater Controller
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Chapter 3

SECONDARY SIDE MODEL

The most challenging part of the steam generator from a
modeling point of view is the secondary'side. The modeling
difficulties are due to the following:

1.) Strong coupling between all regions of

the secondary side;

2.) Natural recirculation flow;

3.) Both two-phase and single phase conditions

exist; and,

4.) Geometry.

The following sections describe in detail the development of

the secondary side model.

3.1 TUBE BUNDLE REGION

3.1.1 Mass and Energy Equations

As descriﬁed in Chapter 2, the recirculating secondary
fluid is heated and boils in the tube bundle region. A
block diagram indicating the secondary side regions and the
variables of interest is shown in Fig. 3.1-1 (see Nomencla-
ture for variable identification). As discussed in Appendix
B, we are using a model in which all system fluid properties
are evaluated at a single, time-dependent reference pres-
sure. It should be noted that the flow pattern and heat

transfer distribution are not uniform in the tube bundle.
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Since the primary fluid is cooled during its journey through
the tubes, the heat transfer rate varies along the length of
the tubes. This results in a "hot side" and a "cold side"
of the steam generator, which correspond to the upflow and
downflow portions of the tubeside fluid. This spatially
non-uniform heat transfer causes the secondary side flow
pattern in the tube bundle to be non-uniform. In addition,
there is a flow redistribution within the crossflow region
of the tube bundle. Thus, although we use a one-dimensional
treatment for the fluid on the shell-side of the tube
bundle, the flow conditions are truly three-dimensional.
Using the mass and energy egquations developed in
Appendix B and neglecting heat transfer to the steam genera-

tor structural material, we obtain:

dM B
BB = Wy- W (3.1-1)
and,
dE - .
TB = W Ho— er + ap (3.1=-2)

dt 0 r

Solving Eq. (3.1-1) for W, and substituting the result

into Eq. (3.1-2) yields,

dE d -
a;TB ~- H at B = WO(HO- Hr) + ag (3.1-3)
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Equation (3.1-3) is in a form which is independent of en-

thalpy reference point (see Appendix B, Section 4).

3.1.2 Integration by Profiles

In order to solve Eqg. (3.1-3) we need to determine
Erg and Mpg. Both of these quantities are integrals of
either the density or the product of density and internal
energy over the tube bundle volume. Since we are using a
one-dimensional approach we really need only integrate over
the length of the tube bundle taking into account, of
course, flow area changes. Thus, the problem is reduced to
finding, or making an approximation regarding, the axial
profiles of the fluid density and internal energy in the
‘tube bundle. Determining the transient axial profiles of
these quantities is a time consuming task, and since we are
interested in computational speed we choose to make some
approximations in obtaining these profiles. One condition
tpat seems appropriate for these pfofiles to satisfy is that
they reduce to the correct steady state profiles. 1In addi-
tion, we are interested in transients which are signifi-
cantly longer in time span than the fluid transport time
through the tube bundle (see Table 3.1-1 for representative
transport times). Therefore, it is reasonable to assume
that each transient profile adjusts slowly and is similar to
some steady state profile. So now the question is: What

are the steady state profiles?
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Table 3.1-1
Representative Fluid Transport Times

Percent Tube Steam
Power Bundle Riser Downcomer Dome
100 4,5 sec 1.4 sec 1.7 sec 9.2 sec

10 13.8 sec 7.7 sec 2.3 sec 11.5 sec

3.1.3 Detailed Profiles

Before we can answer this question we must take &

closer look at the tube bundle region and the physical pro-

cesses occuring there. This is best accomplished by per-

forming a
hydraulic
region we
(see Fig.
1.)

2-)

3.)

detailed one-dimensional steady state thermal-
analysis of the tube bundle region. In this

can identify three flow and heat transfer }egimes
3.1-2):

Heat transfer by forced convection to

a suﬁconled liquid;

Heat transfer via subcooled nucleate

boiling; and,

Heat transfer by saturated nucleate

boiling.

Clearly our detailed analysis should account for these pro-

cesses.



1
|

-— e s e

Convection to Sﬁbcooled Saturated
single-phase liquid ; boiling boiling
¥ 4 1 h 4 \ 4
e PP
° e P o )
» 4 41 A 4 4 4 4
! Uniform heat flux
ot .| ]
] !
i 1
L 1 i
h—g———,' ’
1 I
i t Tsat
P“-—-.—-T---~-‘--
1
i
1 |
; Mean liquid :
{ temperature
1 ]

Figure 3.1-2. Heat transfer regimes (Ref. (C1)).
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The approach taken here is to develop a detailed com-
puter model subject to the following:
1.) Uniform axial heat flux;
2.) Single pressure for property evaluation;
3.) Onset of subcooled boiling determined
by the empirical bubble departure
criterion of Saha and Zuber (Ref. (L1));
4.) Subcooled and saturated flow quality
distributions provided by a profile-
fit model (Ref. (L1)); and
5.) vVapor volume fraction-flow quality
relationship described by the drift
flux model (Appendices A and C).
In this detailed model we use steady state heat balances to
determine the fluid ﬁxial enthalpy distribution. Thus, the
axial position at which the fluid bulk temperature reaches

the saturation temperature is given by,

Loy = w(:l‘ s-" iy (3.1-4)
ard

However, subcooled boiling occurs before the bulk of the
fluid is at saturation. The subcooled boiling region is
further divided into two regimes. 1In the first region vapor
is generated,-but the vapor bubbles collapse immediately
after they detach from the wall. In the second region the

bulk fluid temperature is high enough so that the vapor



bubbles do not collapse immediately after they detach from
the wall., This second region starts at the so-called bubble
departure point and is the more important of the two
regions. We will, therefore, neglect the first region and
assume that the onset of subcooled boiling is coincident
with the bubble departure point. The Saha-Zuber criterion

for the bubble departure point is:

_ Pe n
st - (Hz)d = (0.0022) -§9— Pe < 70,000
¢ - 154 q"
st (Hz)d e Pe > 70,000
where
G D, C
Pe = Peclet Number = —-%—2£
2
and (Hz)d £ fluid bulk enthalpy at the bubble departure

point.

So the axial position at which subcooléd boiling occurs is

W ()4 - Hyy)

L = - (3.1-5)
d AHT q

Upstream of Ld is very little vapor, between Ld and LSAT the
bulk fluid temperature is less than the prevailing satura-
tion temperature but there is a net production of vapor, and

downstream of Lggt the fluid is g mixture of saturated



liquid and vapor. Thus, the density and internal energy

distributions are

ol
i

ot
[

Ca> pog + (1r - <a>)p, Ly -z < Lgar

T = | <odp, Uy * (1 -<a»p, U]/ 5

ol
[}

{a> Pys + (1 - <a>)p2S z > LSAT

g = | Cadp, U o+ (1 - <a>)pzsUzS] / ®

We still need to determine the distribution of <a>. By
using the drift flux model we can obtain <a> once we know
X. As mentioned earlier, we are using a profile~fit model
to predict the flow quality distribution. In the profile-
fit model we assume that the mean liquid enthalpy, Hy, is

the following function of the enthalpy, H',

e -8 L [ - sl ) .
[Hpg = (Hpgl [Hyg = (Hp)yl
but,
H' = Hz(l - X) + Hvsx
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SO0,

(d - st) M [st B (Hz)d} §
* T {szs + [st - (Hz)dj 3

At this point we have completely specified and solved
the problem. All that remains is a discussion of how this
scheme is implemented on the computer.1 Simply stated, the
tube bundle is divided into a number of nodes and the
various parameters of interest (H', x, <a>, p and U) are
then calculated. The nodalization scheme is determined by

Ld and L The length extending from the tube bundle

SAT®
inlet to Lq is divided into five nodes, as is the distance
between Ld and LSAT‘ The remaining length from LSAT to the
tube bundle outlet is divided into ten nodes.

The required inputs for this calculation are_ the power,
system pressure, inlet flowrate, inlet density, and inlet
internal energy. The system conditions used for the calcu-
lations presented here are representative of current nuclear

U-tube steam generators. These parameters are listed in

! fThis is a preliminary calculation for verification pur-
poses only. This scheme is not used in the final steam
generator model.
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Table 3.1-2
Inputs for Detailed Profile Calculations

Percent Psat U P 1)
Power (MPa) | (MJ/kg) (kg/m3) (kg/s)
100 5.6 o 1.141 785.4 2250

80 5.67 1.146 783.9 2309
60 5.74 1.153 781.4 2310
40 5.81 1.164 777.5 2208
20 5.88 1.177 772.4 1869
S 5.93 1.191 767.2 292

Table 3.1-3 lists the fractional lengths at which
bubble departure is calculated, and the fractional lengths
at which bulk saturation conditions occur. The results
clearly indicate that subcooled boiling, as predicted by the
bubble departure criterion, plays a significant role at all
power levels. That is, anywhere from 9 percent to 12
percent of the tube bundle length is in subcooled boiling.
Thus, flow quality and vapor volume fraction.profiles start

well before bulk saturation conditions exist.
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Table 3.1-3
Results of Detailed Profile Calculations
. Bubble Departure and Saturation Lengths

szg:gt Lg/Lrot Lsar/Lpot

100 0.0 0.1187
80 0.0269 0.1526
60 0.0641 0.1897
40 0.0993 0.2248
20 0.1406 0.2662
5 ' 0.2039 0.2966

!

{

3.1.4 Approximate Profiles

Figures 3.1-3 through 3.1-5 are plots of <a>, p, V

(v = 1/9) and U versus fractional length for power levels of
100%, 40%, and 5% of the nominal power (817 MWt). The

plots of interest are those of v and U. The figures show
that these quantities are nearly linear functions of posi-
tion. This observation, together with the fact that sub-
cooled boiling stzrts very near the tube bundle inlet, leads
us to the assumptions that the density varies inversely with
axial position, while the internal energy varies in direct

proportion to the axial position.
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It might seem at first glance that these assumptions
are not self-consistent. However, we will show that they
are indeed consistent in saturated two-phase regions, and
that assuming one profile directly implies the other.
Starting with the density being inversely proportional to

axial position we have,

1 o a2+ (3.1-6)
P
But
p, U
T o= s 4s {a>
u - o (pvsts pzsUzs) (3.1-7)
o P
]
p ) _%E -1
and <a> = ——&§:———- or <f> = £ —
Pes = Pys ) Pes ~ Pys

Substituting Eq. (3.1-6) into the previous expression

yields,

pzs(Az + B) -1

Sgl Cz + D
[o]

Pes = Pus
Substituting this result and Eq. (3.1-6) into Eq. (3.1-7),

o = pzsU!(.s(Az + B) + (Cz + D)("vsuvs - pJLsUJLs)

or
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0§ = Ez + F (3.1-8)
Thereby demonstrating that if p is inversely proportional to
axial position, then T is directly proportional to axial

position in saturated two-phase regions.

3.1.5 Approximation Errors

In order to gain insight into the magnitude of the
error generated by extending linear profiles to other re-
gions, we can perform some straightforward calculations.

Equation (3.1-6) can be written as

O [
(1]
~
|
L

+ 1
Po

Substituting this expression into the definition of Mrp

yields

Y18 8° 0P r Po
Mpg = [ pdv = ( ) 1n — (3.1-9)
0 Po ~ Pr Pp

Equation (3.1-8) can be written as,

€]

v r

- Uo)z/LTB + U0

So, Epp is,



(3.1-10)

By comparing the values of Mpg and Eqp calculated using

Eqs. (3.1-9) and (3.1-10) to the values obtained using the
detailed profiles generated earlier we can determine the
error introduced by using linear profiles. The error in
mass content is calculated as the difference between the
"approximate" mass and the "exact" mass, divided by the
"exact" mass. The error introduced by using linear profiles

for p and U when calculating Eypg is determined by the

following:
L B _ _ . VTB _ _
(= [ ®(T-u;pav) - (= [ #(@-U;yp)av)
TB O Approximate MTB 0 Exact
i P )
_— o (U=-U..,)dV
MTB 0 IN Exact
The quantity,
1 V'fB - =
—— p(U-U.. AV
MTB 0 IN

is essentially the energy content per unit mass of the tube

bundle fluid over and above the internal energy of the fluid
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at the inlet, as shown in Fig. 3.1-6. This method of calcu-
lating the error avoids the ambiguity that could arise due
to the arbitrariness of property table reference point for
internal energy since only differences in internal energy
appear in the calculation.

Table 3.1-4 shows the results of the error calcula-
tions. The linear profiles tend to understimate both MTB

and E The error in mass content is never greater than

TB®
six percent, which indicates that using a linear profile for
v is a relatively good approximation. The error in energy

content, on the other hand, lies in the range of 13 to 22

Table 3.1-4
Errors Introduced by Linear Profile Approximation

Percent Mass Content Energy Content
Power Error (%) Error (%)
100 -0.389 -21.21

80 -4.081 -18.38
60 -5.531 -17.06
40 -5.836 ~15.47
20 -5.159 -13.46
5 - -3.163 -12.98
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percent, with the error decreasing as the power decreases.

A discussion of the sources of error is included in Appen-

dix E.

3.1.6 State Variables

We are almost ready to return to Eq. (3.1-3) and pro-
ceed with determining the time derivatives of Mpp and
Erg. However, we still need to specify the state varia-
bles. As can be seen from Eqs. (3.1-9) and (3.1-10), both
Mrgp and Erg depend only on the values of the fluid prop-
erties at the inlet and outlet of the tube bundle. These
properties obviously depend on pressure, which is, there-
fore, one of our state variables. For the subcooled fluid
at the entrance we require an additional state variable in
order to completely specify its thermodynamic state. This
state variable could be temperature, density, enthalpy, or
internal energy. For our purposes it is convenient to use
the iiguid internal energy as the additional state varia-
ble. The fluid at the tube bundle exit is a saturated mix-
ture of liquid and vapor, so its thermodynamic properties
are known if we know the pressure. However, in order to
specify its phermodynamic state, we need to know the rela-
tive proportions of liquid and vapor present. Hence, we
need the vapor volume fraction as an additional state varia-
ble. In summary, our state variables are: the system pres-
sure, p; the subcooled liquid internal energy, Up; and the

vapor volume fraction at the tube bundle exit, <ap>.



The total derivatives of Mpg ad Epg can now be

written as,

dMTB _ SMTB dUO . (aMTB ) d<a_>
dt BUO <“r>'p dt 8<ar> Uo'p dt
. (QMTB) dp
op Uo,<ar> dt
and
dETB (aETB) dUo (aETB ) d<a_>
dt BUO <a >, dt 8<ar> Uo’p dt
v (1B, d
ap Uo,(u > dt
(3.1-12)

The partial derivatives appearing in Egs. (3.1-11) and
(3.1-12) and associated property derivatives are shown in

Tables 3.1-5 and 3.1-6. ihus Eq. (3.1-3) can be written as,

dU d<a_»>

r dp .
+ B = Wo(Hy - H) + qp

0
By gt * B &% 3 at

(3.1-13)

3-22



AA uvmv d ozau 0
Toe Oge R D
40, t o, 4 <o (&)
< uvﬁ de 7 aXJ de, ¢ ¢ VH V e
Tae Og¢
I, a 0 UM
d d - d ds
0 - -
AAH vmu Am.ﬁ - T u 5 ﬁA vav
de N 9
I, 0 A
"8 (g - W) T
Oy’ 8l Iy CF,
uofssaaxdxy £37u8nd

CI-1°€ pu® TI-T1°€ °sbd J0J s2ATIBATISQ T®YIIIEd
'G-1°t °Iqel

3-23



d WAL 19 T9 - 0997
(£ av@v C2/7ure - L9 ) L, ,
Ig L _ 0 I _ 0,,0
de a n) (" n) -9
d ux Y T3 /% yu1] ¢« 1 0
(o[ 2 _ (d/70)ur al, |, d'¢Toy 0, Gl 470 (Toye ava
3 3 T (&, ) &5, ﬁ -
ne d o Sm |
I 0
d - Y4g
nﬁoEJ mA dJ ) _
Ose "L("g - On)ty
i 0 0
(9/d) ur d I,,0 I 0 . K ;
- 2 €L, JC9/79)ur g - Yd di¢"»> o gL d‘¢"»> o
HD - OD : _ = m.—..S + m Dmv N ﬁ Nl
9 aL., aLy dlg,
uoyssaxdxq £313uBnd

2I-1°€ puw II-1*g °sby JoJ saaylwatIeq T¥TIIBd
(*P3uod) g-I°g o198y

3-24



- I, ,0 I J 04\
d d d d - d
> .A.Havﬁ aJ (T2/79) pur™d A ) gl .
Tse'L ("o - %) (g - %)%
I 0 I, .0 I .-
d - 0g ¢ /00 d
A.uav.of %yﬁ 2t 9 ) (Fg/79) ur™y a1
%3¢ (*a - %)% (*a - %) _
x ¥ I, ,0 - I .,0 :
Jd -~ %9 d d
Moy .Aaavﬁ de;| = _Gg/7)ur ar, , <7 aA de_, Qg o:.%avﬂ de
T Ty 1 | By, 8l CR,
uoftssaxdxy £3173UuBN)

¢I-1°€ PuUB II-1°g °Sbd JoJ seATlIvATISd TBTIIIB]

(*p3uo)) ¢-

1°¢ 8143l

3-25



d d
(78 3 - - ¥ ®>(ge
SR (%) By - D o4 (PP £ o> oe
d d
QAAUVmV = . = QﬁAvau
dg 0 S¥S¥, _SASA, ne
dp dp <o)y de
(> - 1) + <®> Ty
muav m>au mmmu
8¥4 _ SAy nAAqu
Wm
uoissaxdxy A3 T3uBnd

saaTlvATIOq A3aadoad
9-1°¢€ 9a1qelL

3-26




where

This completes

equation,

3.2 RISER REGION

3E M
TB TB
(a“o <a>.p r (an <a >
a>,p a.>,p
M
TB
(a< ) - 1y (3555)
Olp r UO,
3E 3
T8 Mrg
<a >,U, <a >,U,

the derivation of the tube bundle energy

3.2.1 Mass and Energy Equations

The riser region is the unheated upflow region located

just above the tube bundle.

The mass and energy conserva-

tion equations for this region are (neglecting heat transier

to steam generator structure):

and

dM
R = W, -¥W
—~dt r n
dE
R = WH -~-VWVH
a‘:t—'- rr n

(3.2-1)

(3.2-2)



Solving Eq. (3.2-1) for Wn and substituting the result intec

into Eq. (3.2-2) yields:

dE
R _H_

= - ( -
35 B W.(H, - H) (3.2-3)

3.2.2 Profiles

As in the case of the tube bundle, we need to know the
profiles of the density and the product of the internal
energy and density in order to evaluate MR and ER‘ For the
riser we will assume that the average vapor volume fraction,
<a>, is a linear function of riser volume. By definition we
know the following (Appendix A):

s

Pog ¥ Ca2(pyg = Pyg)

and

PU = pysUps ¥ <02(p Uog = 0psUss)

Since the saturated thermodynamic properties are not func-
tions of position, which is a result of our single pressure

assumption, Both the density and the product of density and

internal energy are linear functions of riser volume. Thus,

) (3.2-4)
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and

- v - -
Eg = vf BU AV = B (5U. + 5 U,) (3.2-5)
R

3.2.3 State Variables

From these equations it is clear that MR and ER are
functions of the fluid thermodynamic state at the inlet and
outlet of the riser, as well as the riser volume, which is
constant. The thermodynamic state of the fluid at the riser
inlet is a function of the system pressure, p, and the inlet
vapor volume fraction, g;r>- At the riser outlet we need
the system pressure and the exit vapor velume fraction,
{ap>, to determine the fluid state. Therefoée, our state
variables for the riser region are: system pressure, p;
inlet vapor volume fraction, <ayp>; and exit vapor volume
fraction, <ap>. '

Taking the total derivatives of MR and ER yields:

dyR . ( SMR ) d<ar> . ( QMR ) ‘d<°n>
dt 3(ar> <a >,p dt 3<an> <a>,p dt
n r
oM

o

R dp -
+ (5 )<ar>,<an> dt (3.2-6)
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and

dEp ( 3Eg ddap> : IEg d<a >
at 3<a> Vg 5 p O 5¢a> Ve 5 p At
n r
3E
: dp .
+ apR ) = (3.2-7)
<ar),(a >

Substituting Egs. (3.2-6) and (3.2-7) into Eq. (3.2-3)

yields:
d<a_> d<a_>
r n dp -
By gt — * Bs 49t~ * Bg gt Wo(H, - H))
(3.2-8)
where
By (a:ig>) H, (aiiR>)
r’ <a >, r {a >,p
n n
By = () iy (eds)
n’ <al>, n’ <o >,p
r r
B = ;gg) fn (;§B)
<ar>,<an> <ar>,<an>
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The partial derivatives of MR and ER appearing above are
shown in Table 3.2-1. Equation (3.2-8) 1s our energy equa-

tion for the riser region.

3.3 STEAM DOME AND DOWNCOMER

The steam dome consists of the steam generator volume
above the separator deck and the feedwater ring. The down-
comer is the annular region formed by the steam generator
outer shell and the tube bundle wrapper (Fig. 3.3-1). Dur-
ing normal operation the sfeam dome contains saturated vapor
and liquid, while the downcomer contains subcooled liquid.
During off-normal transients it is possible for the liquid
level to fall below the feedwater ring. In this case, the
steam dome contains saturated or superheated steam, while
the dow;comer contains both saturated and subcooled liquid.

In order to describe the liquid behavior in the steam
dome -~ downcomer we consider two cases:

l.) Liquid volume in these regions greater than a

pre-specified volume; and,

2.) Liquid volume less than a pre-specified

volume.
The pre-specified volume is generally taken to be the volume
oi the downcomer plus some fraction (in our model 25 per
cent) of the volume of saturated liquid at normal operating
conditions. For Case 1, the steam dome is treated as a
volume containing only saturated liquid and vapor, while the

downcomer is treated as a volume containing only subcooled
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Table 3.2-1

Partial Derivatives of Mg and ER

Quantity Expression
(re3s) 2 (32s)
r (an>,p r’ p
(5es) 2 (2s)
n <ar>,p n p
(52) 2l (2) o)
ap 2 ap ap
<ar>,<an> <ar> <a_>
3E v.[ ap Y] |
(33 a‘R'>) '2_R U, (a":'ri')') + 5y (3es)
r <an>,p r r Pp
e -l
- —
(s 2l0, GeZy) + 5, (5eeds)
o <ar>,p n p P
=) 20, G5 e + 5 (35
ap 2 | 'r ‘op ‘Ka D r ‘Ip
<ar>,<an> r (ar>
Rl G )
a > p <a >
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Figure 3.3-1.

Steam dome - downcomer.
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liquid. For Case 2, the steam dome and downcomer are not
treated as separate control volumes. Rather, the steam

dome - downcomer is divided into a saturated region and a
subcooled region. These regions share a common interface
which is allowed to move with time. During the movement,
the volume of saturated liquid is kept constant. The sum of
the saturated and subcooled region volumes is consfant and
equal to the total steam dome - downcomer volume. We will
now develop the conservation equations for both Case 1 and

Case 2.

3.3.1 Case 1 Conservation Equations

For Case 1 we make the following assumptions:

1.) Only saturated vapor and liquid in the steam
dome (thermodynamic equilibrium);

2.) Only subcooled liquid in the downcomer;

3.) Instantaneous and perfect mixing in the
downcomer; .

4.) No vapor below the liquid-vapor interface;

5.) Neglect heat transfer to structural material;

6.) No vapor carry-under or liquid carry-over;
and,

7.) Neglect liquid held up in separator return
pipes or running down steam generator struc-
ture.

The first assumption is reasonable since we are inter-

ested in modeling relatively slow operational transients
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where we would not expect to see significant departures from
thermodynamic equilibrium. In addition, the feedwater ring
sprays the feedwater dqwnward so that we would not expect to
find much subcooled liquid above the feedwater ring. The
segond assumption is justified by the fact that pressure
reductions occurring during transients of interest to us are
expected to be slow enough and mild enough so that the down-
comer fluid does not start boiling. The third assumption is
physically reasonpble since the fluid transport time in the
downcomer is relatively small compared to the lengths of the
transients we wish to model. This assumption is also
important from a numerical standpoint (donor cell differ-
encing), as is discussed in Appendix F.

The fourth assumption regarding a lack of vapor below
the liquid-vapor interface is essentially equivalent to
assuming that we will deal only with a collapsed liquid
level. This assumption is excellent for dealing with the
gravitational component of the momentum equation, but intro-
duces some error when calculating the mass or energy content
of regions with varying cross-sectional flow areas.

Neglecting heat transfer to steam generator structural
material is reasonable since this is a small contribution in
the energy equation. Steam separating equipment in the
steam dome of the steam generator is designed to minimize
liquid carry-over, so neglecting this effect during opera-
tional transients is reasonabie. The assumption regarding

vapor carry-under is not justifiable since there is no
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evidence as to whether or not carry-under is significant.
The same comment applies to liquid held up in separator
return lines and on structure walls.

The conservation of mass and energy equations for the

steam dome are:

dM
SAT
—e W,o- W - W, (3.3-1)
dE
SAT
dt Wally = Wl = Welys (3.3-2)

Multiplying Eq. (3.3-1) by Hgg and subtracting the result

from Eq. (3.3-2) yields:

dE dM

SAT SAT _
dt - Hpg 3% = W H, - Ho) - WHpos
(3.3-3)
By definition we have,
V?D V?TM

M = p dV + p dV

SAT 0 0

= Pes Vgp * (Pyg = PV * PysVsTH
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SD Vs
E = [ VpU 4V + [ opU dv
0 0

g, Vv (p.. U

Peslas’sp ¥ (PygUvs = PysUss)Vy U

Pys vsVSTM

(3.3-4b)

volume of steam dome;

where, VSD

v volume of saturated steam in the steam

v
dome; and,

v volume of main steam line.

STM
In Eqs. (3.3-4) we have included the volume of the main
steam line. In this formulation we have assumed that there
is only saturated steam in the mair steam line and we héve
neglected changes in properties caused by the pressure drop
experienced by the steam floﬁing in the pipes.

The mass and energy comnservation equations for the

downcomer are:

au '
SUB _
5 Woy + Wy = Wy (3.3-6)
daM
SUB _
—at Wewlley + Wel, o - WoH, (3.3-7)

Multiplying Eq. (3.3-6) by Hy g and subtracting the result

from Eq. (3.3-7) yvields, ‘
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dE aM
SUB SUB
at . - Hps gt = VegUHpy - Hyo) - Wo(Hy -~ H )

Using the instantaneous and perfect mixing assumption to

determine Mgyp and Egyp gives:

b
Moug = é pavV = o, V, (3.3-9a)
\ VD .
Equp = é pU dV = o UV, (3.3-9b)

where Vp is the downcomer volume.

3.3.2 Case 1 State Variables

It is apparent from Egs. (3.3-4) that Mgar and Egar
are functions of pressure and vapor volume alone, so these
quantities are chosen to be our state variables. Taking the
total derivatives of Mgar and Egatr and substituting them
into Eq. (3.3-3) yields:

dVv

v dp - -
7 35 * B W (H, - H ) - VH

B 8 dt S Lvs

(3.3-10)
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where,

9E '
SAT SAT
B, ( v, )p - Hs ( )
and,
B = (aESAT) _ ( AT)
8 p VV zs op V

Table 3.3-1 shows the partial derivatives appearing in
Eq. (3.3-10).

Equations (3.3-9a and b) show that both Mgyp and
Egyg are functions of pressure. Since the downcomer fluid
is subcooled we need to know an additicnal thermodynamic
property to completely specify the state of the fluid. 1In
the derivation of the tubé bundle energy equation we use the
internal energy of the subcooled fluid as this additional
state vi;iable, so we will do the same here. Taking the
total derivatives of Mgyp and Egyp and substituting into

Eq. (3.3-8) yields:

au, dp
By gt * Bio at = Vew(Hey - Hyg) - Wo(Hy - Hy )
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Table 3.3-1
Partial Derivatives for Equation 3.3-10.

Quantity Expression
SAT
( ) (Pyg = Pyg)
dp dp
SAT s vs
( )V dp (Vgp = V) dp (Vg + Vo)
SAT
( v ) Pyslvs = PasUss
| -
JE du P
SAT LS zs -
(=55 v, (Pos —ap- * Uss —ap ) (Vsp = V)
du dp
Vs vs
*+ (pyg ap ¥ Uvs ap JVg + Vomy)
where,
5 ( SUB) (Zsup MSUB) (3.3-11)
] zs 30 0 p *
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and,

E

SUB UB
(e ),

}&s ( ip

10

The partial derivatives appearing in Eq. (3.3-11) are shown

in Table 3.3-2.

3.3.3 Case 2 Conservation Equations

For Case 2 we make the same assumptions as for Case 1
with the following additional assumptions:
1.) The saturated liquid volume is constant and
equal to some specified fraction of the vol-
- ume of saturated liquid present during normal
operation; and,
2.) The feedwater is always added to the sub-
cooled region.
The first assumption listed above is difficult to Jjustify,
except to note that we would expect to find saturated liquid
present even if the water level is below the feedwater
ring. A similar assumption (assuming a constant per cent of
the total liquid mass) has been used with success (Ref.
(S1)). The results of calculations using the constant sat-
urated liquid volume depend on the size of the volume. 1In
this work we use a value 6f 25 per cent of the saturated

liquid veclume at normal full power operation.
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Table 3.3-2
Partial Derivatives Appearing in Equation 3.3-11.,

Quantity Expression
L 7 (30

3T, 'p p \30,’p

9p

MsuB 0
( 3p )Uo Vp (35 )Uo
JE 9p

SUB 0
( 3T, )p VpPo * VpUo (35705

SUB 30g
(—p )UO ol (35 )

The second assumption Jlisted above is not always true
in off-normal plant transients. However, in situations
where the liquid inventory becomes low enough for Case 2 to
be implemented, the feedwater flowrate is usually small
enough so assuming that the feedwater is added directly to
the subcooled region introduces a small error.

It should be noted thgt situations in which the water

level is low enough for us to use Case 2 for calculations
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are infrequent and generally occur during transients for
which the steam generator model developed here rapidly be-
comes invalid.

As mentioned at the beginning of this section we use
control volumes with a common interface that moves with
time. The conservation equations for each region comprising
this system are somewhat different from those used for fixed
control volumes. Here we must account for two effects:

1.) Addition or loss of fluid due to the motion

of the interface; and,

2.) VWork done by or on the control volume due to

expansion or contraction.
Before we formulate the conservation equations for Case 2 it
is necessary to clearly define the system and the variables
of interest. Figure 3.3-2 is a block diagram of the steam
dome-downcomer showing the variables of interest. One of
the more important gquantities is the velocity of the

interface, uj. This quantity is given by,

d£i
w = - g (3.3-12)

where the minus sign is introduced because a positi?e
interface velocity is defined to be in the direction of
decreasing interface height. The rate at which volume is
swept out by the interface (the rate at which the saturated

region volume changes) is given by
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1“ - fater level

2., - Level of interface

] - Saturated vapor volume

v

VSUB = Subcooled 11quid volume

vfo - Constant volume of
saturated 1iquid

Figure 3.3-2.

Case 2 block
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av A.de
sat ~ 1924
at = Awy = -5 (3.3-13)

Since the volume of saturated liquid is assumed to be con-

stant Eq. (3.3-13) becomes

av av

dt at (3.3-14)

I
]
o
[
=
[

Returning to Fig. (3.3-2), the rate at which mass is
added to the saturated region due to both the motion of the

interface and flow accross the interface is given by,

pzs(uzs - ui)Ai (3.3~15a)

Likewise, for the subcooled region we have

po(u0 - ui)Ai (3.3-15b)

The relationship between Eqs. (3.3-15a) and (3.3-15b) can be
found by performing a mass balance for an infinitesimal
volume, 6Vj, around the interface (see Fig. 3.3-3). We do
not allow the accumulation of mass in this infinitesimal

volume, which results in the so-called jump condition:

(u - ui)Ai = po(u0 - ui)Ai (3.3-16)

L4 £s

is
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OR

pW

i
Infinitesimal
volume

N\

Infinitesimal
volume

Figure 3.3-3. Mass balance jump condition.
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Performing a mass balance for the saturated region results
in:

AMg o

dt

Wn - WS )Ai (3.3-17)

=Py - uy

The quantity pzsuzsAi is equal to the flowrate across the
interface if the interface was stationary, Wg, and the
quantity pzsuiAi is a term which accounts for the motion of
the interface. Substituting Wf for pzsuzsAi and Eq. (3.3-

14) for Ajuiy yields:

Wsar = W -WV_- W, + SX!
dt n s £ 7 Pys Gt
or
dM dv
SAT LA
dt ~ Pgs dt L PP (3.2-18)

Comparing Egs. f3.3-18) and (3.3~1) we see that the only

difference between them is the term p g dVy/dt appearing

on the left hand side of Eq. (3.3-18). Clearly this term
accounts for the fact that the control of volume is not

fixed.



For the subcooled volume a mass balance yields:

M
SUB _ . _w u, )A

4t tw ~ Wo teolug - uydA (3.3-19)

Substituting Egq. (3.3-16) into the expression gives:

dM
SUB _ . _

dt fw o’ pzs(uzs -u

104

Performing the same manipulations that gave us Eq. (3.3-18)

from Eq. (3.3-17) results in:

dM av
SUB v .
dt ' Pys Gt Vow ~ Vo * ¥

When writing the energy equation for the saturated
region we must account for the motion of the interface.
First, we must account for the work done by or on the con-
trol volume due to expansion or contraction. Second, we
must properly account for energy convected through the in-
terface due to both the motion of the interface and the

fluid velocity. The work term is given by,

av av .
SAT v
-P 5% -P i (3.3-20)
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while, the convective term is given by,

-p_j?'s(uks - ui)Ain (3.3-21)

where

Thus, the energy equation for the saturated region is:

dE av
SAT _ v
dt WoHy = Wolpog = ppe(upg = u)A B - P 33

Substituting for pzsuzsAi and Aiui yields:

dESAT dVv

gt - (ppgHy - P) gg— = WpH, - WH, o - W, H

(3.3-22)

Using the same arguments for the subcooled region yields:

dE dv
SUB v
* Be =P g = W

dat . (pls ol

+ WeH - WoH,

wafw
(3.3-23)
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Multiplying Eq. (3.3-18) by Hx and subtracting the

result from Eq. (3.3-22) gives:

dE dM dav
SAT SAT v -
dt - By dt * P 3% - wn(Hn - ) - "s(Hvs - Hy)

(3.3-24)

Multiplying Eq. (3.3-19) by the Hy and subtracting from

Eq. (3.3-23) gives:

dE dM av
SUB SUB v o _ ‘
at - &% gt " Par T Weg(Hpy - H) - Wy(Hy - HY)

(3.3-25)

3.3.4 Case 2 State Variables

The mass and energy contents of the saturated region

are given by

SAT
Mgap = é p dv
= VeoPes ¥ (Vo * VorndPys

(3.3-264a)
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and,

VSAT

Eqpp = é pU AV

U + (Vv + V

Vfopzs Ls STM>pvsts

(3.3-26b)

From Egs. (3.3-26) it is clear that both Mgat and Egat

are functions of pressure, p, &nd steam volume, Vy.
Therefore, these quantities are again chosen as state varia-
Lles. Taking the total derivative of ﬁSAT and EgaT, and

substituting the result into Eq. (3.3-24) gives:

av, dp
Byat * B12 at W E, - &) - W (Hyg - B

where,

aESAT oM

g = A )p - (3.3-27)

and, .

Mg ap

SATy
k ( ap )V

(2o8ATy
12 ap Vv
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The partial derivatives appearing above are shown in Table

3.3-3.

Partial Derivatives Appearing in Equation 3.3-27.

Table 3.3-3

Quantity Expansion
(53T
av Pus
do dp
AT _Vs Ls
( 3p )v Ve * Vo) 3 * V20 ap
SAT
( ) pvsts
do - dU
SAT vsS Vs
( )V (vv + VSTM)(UVS dp Pys dp )
dp du
+ Vv (U s s
_fo Ls dp s dp
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For the subcooled region we have,

SUB
Msup = é pdV = (Vpor = V¢ = Vg5) P00
(3.3-28a)
and, '
Vsus
Esup = é pU AV = (Vpop = Yy = Vo) P00
(3.3-28b)

Volume of steam dome and downcomer

"

where, Vyor
= Vgp + Vp; and,

Volume of saturated liquid.

(1]

Vo

Both Mgyp and Egyp depend on pressure, and since the

fluid is subcooled we also need the fluid internal energy to
completely specify its thermodynamic state. 1In addition,
since the vapor volume appears in Egq. (3.3-28) it is also

one of our state variables. Thus,

=

SUB

av aM
| v, (L.SUB dp
~%, 'V,,p dt

SUB )
3p UO,Vvdt

dt

dM du aM
0 SUB
( + (

)
v avv Uo,p dt
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and,

Esyp ( SUB) av
dt a0, 'V,,p dt

0

. ( *Esyp dp

ap )U A dt

SUB
* ( v, )U ,p T 0

Substituting the above expressions into Eq. (3.3-25) yields:

au, av,, dp
Bigat *Biaat *Bisat = Vew(Hey - H) - Wy - HY)
where
. OEsyp MsuB
B, 4 ( i ) V,.p " Hy ( 30, )v D (3.3-29)
2By M
SUB SUB
Bigy = (=v— 3V, )U p - B (v — )Uo,p - P
and,
B = (aESUB) _§ (oysuB
15 D JUy,V, - Tk (A Jug,v,

The partial derivatives appearing in Eq. (3.3-29) are shown
in Table 3.3-4. This completes the derivation of the steam

dome - downcomer conservation equations.
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Table 3.3-4

Partial Derivatives Appearing in Equation 3.3-29.

Quantity Expression
( aSUB)v ,D (Vgp = Vy = Vo) (:[‘;o)
(=v. a\srUB)Uo,p ~Po
(—p— apUB)U v, (Vsp = Vo = Vi) (;EQ)U
(== ]:UEB)V . (Vgp = Vg = Vo) (g *+ Ug (—:-[-‘;-g-)p)
(—SUB aSUB 0.5 ~60¥,
(—3uB asma 0.V, (Vgp = Vo = Veo)Tg (;?-)UO
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3.4 MOMENTUM EQUATION FOR THE RECIRCULATING FLOW

In this section we develop the momentum equation used
for calculating the recircﬁlating flow pattern. As men-
tioned in Chapter 2, the secondary side of the steam gener-
ator forms a boiling natural circulation system. The driv-
ing head for the natural circulation flow is provided by the
density difference between the subcooled downcomer fluid and
the two phase mixture in the tube bundle and riser. This
driving head is offset by the various pressure losses in the
loop, such as friction and turning losses.

The form of the momentum equation used here is derived
foermally in Appendix B. We apply the equation to a one-
dimensional loop consisting of connected flow paths through
the tube bundle, riser, steam dome, and downcomer. The
coordinate s is used to denote distance along the flow

path. The ‘romentum equation for this loop is:

=

d 0
155 = 7 -F (3.4-1)

where



Ap = f (- %g) ds = 0 since the loop is closed; and,

2

"2 K, W

P o= §xd (L) +§ _LL_;WDWA33+§pg sin 8 ds + ;‘21 :2
i 2p.

i7i

In order to determine W we must first find an expres-
sion for § !%E. This is best done by performing the re-

quired integration in a piecewise manner, i.e.,

L L L

TB R w

= Wds _ Wds Wds Wds

W o= §5 S S A e
Tube Riser Steam Dome -
Bundle Downcomer

In Eq. (3.4-2) we have defined a new origin for each sub-
volume so that the limits of each piecewise integration can
be written simply. The tube bundle portion of the flow path
can be divided into two parts (see Fig. 3.4-1):
1.) a parallel flow portion in which flow is
essentially parallel to the tubes; and,
2.) a crossflow portion in which flow is predom-
inantly transverse to the tubes.
The flow path length associated with the radial inflow at
the bottom of the tube bundle is neglected. 1In the parallel

flow portion of the tube bundle the flow area, Apg, is
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Figure 3.4-1. Notation for momentum equation.
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constant. Denoting the length of the parallel flow region

by Lp we can rewrite the first term of Eq. (3.4-2) as:

TB D TB
[ Hes - L Twas + [ K (3.4-3)
0 TB 0 L,

The integrations indicated in Eg. (3.4-3) require that we
know the axial profile of the flowrate. Jnfortunately, we
do not know what this profile is in transient situations, so
we must make an assumption regarding this profile. We use
the trapezoidal rule to perform the integrations, which is
equivalent to assuming that the quantity W/A (the mass flux)

has a linear profile. Thus,

}B was _ (o * )by (Bqp — Tp) (wp o r )
o A 2Arp 2 Apg Mg
L L L - L
= (EKR_) Wo * (KIE) L (“ng—__a) Iy
TB TB RI
Similarly for the riser, we obtain,
L
fR Wds _ EB (wr + ¥n )
o A 2 “Ap1 Ao
L L
R R
= ( ) W+ [ ) W (3.4-5)
2ARI r 2AR0 n



For the steam dome -~ downcomer portion of the recirculation
loop the situation is complicated by the addition of feed-
water. Thus, we will ignore the addition of feedwater and
we will characterize the flowrate within this region by

Wo, the downcomer flowrate. This is justifiable since

only a small portion of the flow path is above the feedwater

ring and since the flow is essentially constant in density.

Thus, we obtain,

L
Wds
A 0

o—

(3.4-6)

In deriving Eq. (3.4-6) we have implicitly assumed that the
water level, Ly, is greater than the height of the down-
comer, Lp. It turns out, however, that Eq. (Z2.4-6) re-
duces to a correct result even when the water level is less
than the downcomer height. In this case Ay is equal to

Ap so Eq. (3.4-6) becomes;

©

w
wd w
¥as . (=) W

A 0

Q- o

which is the correct result when &y is less than Lp.
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Eq. (3.4-1) is derived with the assumption that the
inertance, I, is time invariant. This is not strictly true
for the steam dome - downcomer since we have a moving free
surface, i.e. the water level. We will allow the inertance
to vary with time; however, we will neglect the time deriva-
ti;e of the inertance. This is justifiable since in most
situations of interest to us the derivative of Eq. (3.4-6)
is small. When £y is less than Lp this is not true, but
in this case there is probably a breakdown in the natural
recirculation flow and our formulation of the momentum
equation is invalid.

Substituting Egs. (3.4-4), (3.4-5), and (3.4-6) ianto

Eq. (3.4-2) and collecting terms yields:

N T T Ly  Lp
W= e fE, g Y
w D D TB
+ (ETB) W, * (LTB ;ALP - LR) Wp * (ZZR ) ¥,
8 P RI RO
IV = B Wy + B, +BW, + B, ¥, (3.4-6)

The inertance, I, is determined by using the following

equality:
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L 2
TB Lg w
ds ds ds ds
$§=2 = [ S+ S84 CS (3.4-7)
A 0 A 0 A 0 A
Tube Riser Steam Dome -
Bundle Downcomer

A consistent evaluation of I can therefore be obtained

by equating all flows to unity in Eq. (3.4-8):

I=LE+(LTB-LJD;)(1)+1)+LR(1+1)
Arg 2 Apg  Apy’ 2 MApr  Ag,
RS Tl LS T . oD

3 reily w R v
w D D
(3.4-8)

Using Eqs. (3.4-6) and (3.4-8) gives:

¥ = ' ' 1 ' ' -
W Ble + Bzwp + B3Wr + B4Wn (3.4-9)
4
where 8; = 8,/I, and iZlBi = 1,

It is important to note that the sum of the Bis is unity.
The last quantity of interest in Eq. (3.4-1) is the
term F, which consists of acceleration, friction, shock, and

gravitation components. We will derive each component for

the entire loop in turn.



Friction

The frictional term can be written as:

£|w|w s Wy 'R £W| W] b £W|w
$ ds = | ds + [ 5+ J . ds

2>DhA 0] ZpDhA 0 2pDhA 0 2pDhA

(3.4-10)

We will neglect frictional losses in the riser and steam
dome, since in these regions the hydraulic diameter and flow
area are large resulting in a small frictional pressure

gradient. Equation (3.4-10) then becomes:

L L
TB D
§fw|wlzds= [ fwwzds+f fwwzds
2D, 0 2D.A 0 20D, A

(3.4-11)

Characterizing the flowrate in the downcomer by Wp yields:

L

D £W. W |L
[ fwlwlz 4s = D ol o'zn (3.4-12)
0 22DA % oDppAp

This result is based on a flowrate in the downcomer assumed
to be spatially constant at any instant in time. This is
reasonable since the downcomer fluid is virtually constant
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in density. The downcomer fluid is thermally expandable,
but this has a negligible effect on the flow rate.
The tube bundle can be split into two regions: a par-

allel flow region and a cross-flow region. Thus,

L L
TB Lp TB
| f¥|w s ds = | W|w s ds + | fw|w|2 ds
0 20D, A 0 20D A Lp 20D A

(3.4-13)

The first term in this equation is evaluated using the trap-

ezoidal rule, giving:

w tww_ ds = Lp rfOWOIWOI + fzs,pwplwpl ¢2
2 2 p ) 20,p
0 2pDhA 4DhTBATB 0 s
(3.4-14)

where ¢30,p is the two-phase multiplier evaluated at the
junction of the parallel.and cross-flow regions (see Appen-
dices A and C).

The cross-flow component of the frictional pressure
gradient in the tube bundle is difficult to evaluate. Here
we use to following expression for the frictional pressure

drop:
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TB

K
fW{w _ c 2 9
Ldr 2pD A2 s = 2018 IWP'Wpiq’zs,p * wr'wr""zo,r]
p h

(3.4-15)

The quantity K. appearing in Egq. (3.4-15) is a cross-flow
frictional loss coefficient for saturated single-phase flow
and it is formally defined in Appendix D.

Substituting Egs. (3.4-12), (3.4-13), (3.4-14), and

(3.4-15) into Eq. (3.4-11) gives:

£W | W] _ fplp Lofo
§2DA2dS I P A2+4p D.___A2 AN
*Yn ° 0”hD"D 0" hTB"TB
L_f K
+ pPLS,p + c wplwpl¢2
4 D...A2 Py %0,p
2 s hTB“TB
K
c 2
+ (a>£ ) wr'wr"pzo,r
S
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Acceleration

The acceleration term can be written as:

(3.4-17)

where the integration limits indicate the s positions at
which the definite integral is to be evaluated. 1In the
parallel flow region of the tube bundle the flow area is

constant, so we have:

L

TB .2 P TB |2

[ 2a () = 3 awwdh « [ 1d ()
0 a2 0o i
TB P

Using the trapezoidal rule on the third term in this equa-

tion yields

L 2
TB 3y w2 1 ,.2' Wy
| 3 (FF) —— (Wov, - =)
A °o

T8

o2 w2

1 err ) vap 1 . 1 ]

2 | Ap; Apg [ |2r1  Ars

(3.4-18)
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Similarly for the riser we obtain:

2 L2
[Vnwn W, 2
Aro Ap1 Apr  ARo

(3.4-19)

Do

In the steam dome - downcomer we will neglect momentum
effects caused by the introduction of feedwater, and we will
only account for acceleration due to changes in flow geom-
etry. To do this we will characterize the flowrate and
density by the downcomer outlet flowrate, Wg, and the

downcomer dencity, pg. These assumptions yield:

2 A
} raury o Yo Py,
2 A A Po A A A
W w
2
W
= %(-1—5--1-5) (3.4-20)
o a2 A2

Substituting Eqs. (3.4-18), (3.4-19), and (3.4-20) into

Eq. (3.4-17) gives:



2 w2
[ Lg (T =[1__;__ 2]0 +[1 - 1]pp
A A 2 2 2 2 A A A
AD Aw ATB 0 TB RI TB
't 2 ' .2
N IR DS T O I
Ars Aro| %2g1  [%ro 2r1| %2ro
(3.4-21)
Gravity
The gravitational term can be written as
Lpg _ Lp Y
[ pg sin e ds = [ pgds +[ opgds - [ pg ds
0 0 0

From Section 3.1 we know that the density profile in the

tube bundle is given by:

1 1 1, s
= — + (-—— - .__.) ———
Pr Pgo Lopg

1
'Y °o

Using this expression in the first term on the right hand

(3.4-22) gives:

side of Eq.
B _ Lig P8 . P0

| pg ds = —— 1n (—) (3.4-23)
0 o " Pr pr



In the riser we assume the vapor volume fraction axial pro-
file is linear, which implies that the axial profile of the

density is linear. Thus,

LR _ LRg _ _
[ pgds = 5= (p.+* b)) (3.4-24)
0

(3.4-25)

where 2ga1T is the vertical length of the saturated region
and fgyp is the vertical length of the subcooled region.
Substituting Eqs. (3.4-23), (3.4-24), and (3.4-25) into
Eq. (3.4-22) yields:

LonP o P _
§ g sin 6 ds = ¢ ~2§—9:£ ln (:9) + ;B (o, + pn)
Po ~ Pr °r
= PestsaT T Potsus
(3.4-26)



Other Losses

There are three major sources of pressure drop other
than those already derived. One is the turning and shock
loss occurring at the bottom of the downcomer. Another is
the pressure drop caused by tube supports in the tube bun-
dle. The last is the pressure drop experienced by the two-
phase mixture as it flows through the separators. We will
not deal directly with tube support losses; rather, we will
combine those losses with the separator loss and assign a
single loss coefficient, Kggp, to account for both pres-
sure drops. This loss coefficient is based on the velocity

of the fluid at the top of the riser and is given by:

v'wg .
Ap = KSEP 5 (3.4-27)
2AR0
The loss at the bottom of the downcomer is given by:
%
Ap = KD 5 (3.4-28)
ZpoAD

Overall Loss

Adding Eqs. (3.4-16), (3.4-21), (3.4-26), (3.4-27) and

(3.4~28) yields:



Foom MWy & WW & MW+ MM+ M (3.4-29)
where,
M, = =+ (1+KD__1.___£_)W
1 %o, e 2 a2 Yo
D w Arp
fplp Lofo
+ ( + ) 'W ' :
D. A2 2D, A2 0
npA 1B hTBATB
v W L_f 02 |
My = [Al _A1]2§p+[5£_s_2 +Kc] zg___; £
T 2RI TB 2D, npATh s
_ , 2
M. = 1 1 Vr¥r + Kc4’JL0,r 'w '
3 At 2ro| 2Ar: P r
¥ 1
M _ KSEP +1 + 1 van . d
a = A A 2A. . ° and,
| “po RI RO
LenP AP, Ly
= B 0°r 0 _R = _ _
Mg g — 1n (=) + 5= (e, *o,) = Poctsar = Polsys
po - pl‘ pl‘
3.5 CLOSURE OF EQUATIONS

At this point it is worthwhile to take a look at the

number of unknown quantities that we héve,

number of equations available fcr solution.
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as well as the

There are 11



W w W and

<a_>, €a_.>, p, W, W p’ pr Wy

unknowns: UO’ Vv’ r n 0’

w We have derived 10 equations, as shown in Table 3.5-1.

f.
In order to have closure we require an additional equation.
Further examination of the unknowns. reveals that the re-
quired equation should involve Wp, the flowrate at the

parallel to cross-flow transition in the tube bundle. This

flowrate was introduced in the momentum equation and does

Table 3.5-1,
Equations Available for Solution

Equation Number
Conservation Equation in Text
Tube Bundle Mass 3.1-1
Tube Bundlie Energy 3.1-13
Riser Mass 3.2-1 .
Riser Energy 3.2-8
Saturated Region Mass 3.3-1 or 3.3-18
Saturated Region Energy’ 3.3-10 or 3.3-27
Subcooled Region Mass 3.3-6 or 3.3-19
Subcooled Region Energy 3.3-11 or 3.3-29
Momentum 3.4-1
Definition of W 3.4-9
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not appear in any equations prior to that. The simplest
equation that incorporates Wp is a mass conservation equa-

tion for the cross-flow region of the tube bundle. This

egquation is:

dM

TBC _
—5— = wp - W (3.5-1)
where,
Vi
== A -
Mope {7 p dV (3.5-2)
p

In section 3.1 we make the assumption that the density pro-
file is inversely proportional to axial position in the tube

bundle. Using this assumption in Eq. (3.5-2) yields:

VP oP P ~
TB"O"r P _ _
Mrge = B9 = Pr i1n (%) Mpg (3.5-3)
Pr 1n (—)

The quantity, Ep, is a known function of o and B}, the tube
bundle inlet and outlet densities. Thus Eq. (3.5-3) is a
furction of pressure, p, inlet internal energy, Ugpg, and
outlet vapor volume fraction, <eap>. These variables are

all part of our set of unknowns so we have not introduced



any new unknowns with Eq. (3.5-1). Expanding the left hand

side of Eg. (3.5-1) into its total derivative yields:

Mype (aMTBC] avy | (aMTBC) d<a_>
at 70, @y at 74>/ Uy o TdE
IM
*+ ach)<a >,U %% = W, -V
r’’°0
(3.5-4)

The partial derivatives appearing in Eq. (3.5-4) are shown
in Table 3.5-2. Tables 3.5-3 and 3.5-4 list the unknowns
and equations that constitute the secondary side model.

Evaluation of the various fluid properties and fluid
property derivatives dictates the need for a comprehensive
set of fluid property tables. The model incorporates a
complete set of thermodynamic property fits for both satur-
ated and subcooled conditions, as well as fits for various
transport properties such as fluid viscosity. The property
fits are those used in the TRAC code (Ref (L4)) and the
THERMIT code (Ref (K3)). The fits can be found in subrou-
tines THERM and PRMPRO in the code listing given in Appen-
dix J.

The last element needed to ensure closure is a rela-
tionship between the vapor volume fraction, <a>, and the
flow quality, x. As mentioned previously we use the drift

. flux model to satisfy this requirement. The drift flux
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Table 3.5-3
Secondary Side Unknowns.

Symbol Definition

Ug Internal energy of subcooled fluid

Vy Volume of vapor in saturated region

{ap> Vapor volume fraction at tube bundle outlet

{ap> Vapor volume fraction at riser outlet

o] System pressure

v Geometrically averaged flowrate

Vo Downcomer flowrate

Wp Flowrate at pérallel-to—crossflow interface

Vr ‘Tube bundle exit flowrate

¥n Riser exit flowrate

LE3 Flowrate of sub-liquid from Saturated to
subcooled region

model is derived in Appendix A, and the various empirical

parameters needed to use this model are discussed in Appen-

dix C.

3.6 MAIN STEAM AND FEEDWATER SYSTEM MODELS

Control actions initiated in the main steam and feed-

water systems can have profound effects on steam generator

performance.

The operation of these systems is usually
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Table 3.5-4
Secondary Side Equations.

Conservation Equation Equation Number In Text
Tube Bundle Mass 3.1-1

Tube Bundle Energy 3.1-13
Riser Mass 3.2-1

Riser Energy 3.2-8
Saturated Region Mass 3.3-1 or 3.3-18
Saturated Region Energy 3.3-10 or 3.3-27
Subcooled Region Mass 3.3-6 or 3.3-19
Subcooled Region Energy 3,3~11 or 3.3-29
Momentum ' 3.4-1
Definition of W 3.4-9

Tube Bundle Cross-flow 3.5-4
Region Mass

automatic and is governed by sensor signals concerning such
quantities as steam pressure, steam generator water level,
primary average temperature, trip alarms, steam flowrate,
and feedwater flowrate. The net result of control actions
taken in the main steam and feedwater systems is a change in
steam flowrate and/or feedwater flowrate. Both of these

flowrates are boundary conditions for cur model and are



required as input to the computer program. As an alterna-
tive to directly inputting the steam and feedwater flowrates
we provideAsimple models of the main steam and feedwater
systems to calculate these flowrates given the system oper-
ating conditions.

The feedwater system itself is not modeled since this
would requige accounting for feedwater heaters, pumps and
valves, which is beyond the scope of this work. We simply
model the control actions of a three-element feedwater flow-
rate controller. This three-element controller monitors the
steam flowrate, the feedwater flowrate, and the steam gener-
ator water level, and generates a feedwater flowrate demand
signal. The demand signal consists of components due to a
steam flow-feed flow mismatch error and a level error, where
the level error is the difference between the desired level
and the measured level. This control scheme is represented

by the following differential equation:

dew
at = Cw(Ws - wa) + cl(z* - lw) (3.6-1)

where Cy and Cy are controller parameters that must be
determined for each plant, and £* is the desired level.

The main steam system accomplishes its control func-
tions by the opening and closing of valves. Therefore, the

major component model for this system is a valve model.



There are generally four sets of valves that discharge steam
from the main steam system. They are:
1.) steam dump valves discharging to the atmos-
phere;
2.) Dbypass valves diverting steam to the conden-
ser;
3.) turbine stop and control valves which regu-
late steam flow to the turbine; and
4.) secondary safety relief valves.
The steam dump, bypass and secondary relief valves discharge
steam at a much lower pressure than that in the main steam
system. Hence, it is reasonable to assume that the flow
through these valves is choked and can be simulated using a
critical flow model. This is not necessarily the case for
the turbine stop and control valves. Nonetheless, the as-
sumption of choked flow through the stop and control valves
is commonly used and will be applied here. Dry steam at
high pressure behaves very much like an ideal gas so criti-
cal flow equations derived for an ideal gas can be used to
model choking in steam systems. The flowrate of an ideal

gas in critical flow is given by:

Ws = Ksp//T (3.6-2)

where the valve flow constant, Kg, is a function of flow

area, gas specific heat ratio, gas atomic mass, and the
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universal gas constant. We use Eq. (3.6-2) to determine the
steam flowrate through the va;ves of the main steam system.
The valve flow constant for the fully opened valve can
be obtained from the rated valve capacity and is denoted by
the additional subscript 0 i.e. Kgg. The valve capacity
is given in terms of a flowrate at a specified pressure,
and, since the steam is saturated, once we know the steam
pressure we also know its temperature. Thus, Eg. (3.6-2)
can be solved for Kgg. The value of the valve constant,
Kg, for other valve openings is directly proportional to
the valve flow area at that opening divided by the maximum

valve flow area. Therefore:

A .
. W_ = (+7—) K_,p//T (3.6-3)
s AMAX s0

= fvp//T

where fy is the fractional valve opening. Given the frac-
tional valve opening and the pressure we can use Eq. (3.6-3)
to determine the valve flowrate.

The way in which the steam dump and bypass systems
operate varies from plant to plant. We will describe here
the operation of these systems for the Maine Yankee Nuclear
Power Plant (Ref. (C-2)). The steam dump valves open only
after a turbine trip. Once opened by a turbine trip signal,

the dump valve opéning is controlled by a reactor coolant
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temperature error signal. This error signal is the steam
generator average primary temperature minus the zero load
reference temperature. The rate at which the dump valves
open following a trip is governed by the magnitude of the
temperature error signal (Fig. 3.6-1). The valves open
rapidly to their fully open position when the temperature
error signal at the time of the trip is larger than a pre-
specified amount, ATpggt. If the temperature error signal
at the time of the trip is less than a minimum temperature
difference, ATpip, then the dump valves will not open

until the temperature error signal reaches ATpip. If the
temperature error signal is within the range of ATpip to
ATpast, then the dump valves are opened at normal speed to
a proportional position as shown in Figure 3.6-~1. Once the
dump valves are opened they are modulated by the reactor
coolant temperature error signal (Figure 3.6-1). When the
error signal is less than ATgjgge the valves are fully
closed, thereby ensuring that steam is not continuously bled
from the sysfem as the plant approaches zero load. Once the
valves are closed a temperature error signal greater than
ATpin is required to reopen them.

The bypass system operates to maintain the secondary
pressure at or below the zero load steam pressure. After a
turbine trip the bypass valves open rapidly. Once open, the
steam bypass system receives the higher of the dump system

temperature error signal and a secondary pressure signal.
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Figure 3.6-1. Steam dump valve control'ﬁfogram-(ﬁef; (cz)).
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As hot standby is approached, the bypass valves are posi-
tioned to maintain the secondary pressure at the zero load
pressure and the reactor coolant temperature near the zero
power level value.

The secondary safety relief valves provide overpressure
protection for the shell side of the steam generator. This
system for the Maine Yankee plant consists of four banks of
valves, each bank having its own set-point. The steam flow
" through these valves is choked and can be modeled by using
Eq. (3.6-3).

The turbine stop and control valve is modeled using a
critical flow equation (Eq. (3.6-3)). The model allows the
user to input the time at which turbine trip occurs, as well
as the valve closing time, and when the trip time is reached
in the simulation the computer code automatically starts
closing the stop valve. 1In addition, we can also simulate
load maneuvering by specifying the percent full power valve
position as a function of time in tabular form.

We should emphasize here that the main stream system
described above is characteristic of the Maine Yankee
Plant. Other plants may or may not have the same opera-

tional characteristics.

3.7 DISCUSSION OF MODEL

The preceding sections define in detail the steam gen-
erator secondary side model. It is now worthwhile to sum-

marize the limitations on the use of the model. The modgl
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cannot be used to simulate situations where flow reversal
can occur, since we implicitly assume that the flow is in
one direction only. We also assume that natural circulation
flow is always maintained. Therefore, cases in which a
breakdown in the natural circulaticon flow (i.e. riser exit
quality greater than or equal to 1.0) cannot be treated by
using this model. Finally, the model is not valid for tran-
sients in which there is significant amount of boiling in

the downcomer.
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Chapter 4
PRIMARY SIDE MODEL

The model of the primary side of the steam generator
consists of three model regions:

1.) The primary inlet plenunm;

2.) The primary fluid volume contained within the

tubes of the tube bundle; and,

3.) The primary outlet plenum.
In this chapter we_develop a set of conservation equations
for these regions. In addition, we develop the model used

to determine the heat transfer from the érimary coolant to

the secondary fluid.

4.1 PRIMARY FLUID SYSTEM

Modeling of the primary fluid system requires that we
" develop .vo component models. We need a model for the plena

Qnd a model for the primary fluid in the tubes.

4.1.1 Plenum Model

The one-dimensional conservation equations for the

inlet plenum are (Appendix B):

dM1
ﬁ_- = wIN - Wl (4.1—1)



dE1

It V. H - W1H1 (4.1-2)

INVIN

where the primary side nomenclature is defined in
(H1 + HIN)
Fig. 4.1-1. Multiplying Eq. (4.1-1) by —— and sub-

tracting the result from Eq. (4.1-2) yields:

dE1 (Hl + HIN) dM1 ~ (WIN + Wl)

at " ) it = ) (Hyy - H

IN 1)

In order to evaluate Mj; and E; we invoke the instantan-
eous, perfect mixing assumption, which is justified since
the transport time in either the inlet or outlet plenum is

short compared to the time span of transients of interest to

us (Table 4.1-1).

Table 4.1-1
Representative Primary Side Transport Times

Region Transport Time* (s)
Plenum 0.87
Tubes 2.73

* Transport time = [p dV/W
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Figure 4.1-1. Primary side nomenclature.




Thus:

v 1
Ml = OF p dv = plvpl (4.1~-43)
and,
ffl
E1 5 pU1 av = plUlvp1 (4.1-4Db)

For a subcooled fluid we need two thermodynamic proper-
ties in order to specify its thermodynamic state. Since the
pressure dependence of properties for a fluid in a highly
subcooled state is weak we will neglect the pressure deriva-
tives of the primary fluid properties and assume that the
pressure is either a known function of time or constant.
This leaves us with one state variable, which we will take

to be fluid temperature. Thus:

M, d, 4Ty
@ = "mla) (4.1-52)

and



dE 23U 30 a7
1 1 1 1
it = m ["1 ('a"r"l') + Uy (577) p] at

(4.1-5b)

Substituting Egqs. (4.1-5) into Eq. (4.1-3) gives:

dT (W + W

= ————" (H,, - H

1
€, & ) v ~ Hy)

where,

90

¢ = Vpl["1 (57

1 .(_H_l_iflﬂ.)_) (a"l) ]
1p

+(uy - ) 3T

We will further assume that the flowrate throughout the
primary portion of the steam generator is spatially con-
stant, but that changes in the primary inlet flow are felt
instantaneously at all points in the primary flow path.

This assumption allows us to ignore the conservation of mass
equation (Eq. (4.1-1)), leaving us the following equation as

the sole conservation equation for the inlet plenum.

dT

1 _
Cy at = WinGHpy - Hp) (4.1-6)

The conservation equation for the outlet plenum is

derived in an analogous manner, which yields:
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3
€3 gt = Wiz - Hy) (¢-1-7)
where
3U (H, + H,) ap
3 2 3 3
C = V Pn (3m—) + [U - _____ﬁ___] (___)
3 p2[ 3 3T3 p 3 2 3T3 P

Note that the primary inlet flowrate Wiy, appears in
Eq. (4.1-7) since we have assumed a spatially constant pri-

mary flowrate.

4.1.2 Tubeside Model

The conservation equations for the primary fluid within

the tubes of the tube bundle are:

sz
it = Wl - Wz (4.1-8)

dE2
3 = W H - WH, - q (4.1-9)
(H1 + H2)
Multiplying Eq. (4.1-8) by —_—— and subtracting the re-

sult from Eq. (4.1-9) yields:



dE, ) (H; + Hy) dM, ) (W, + W) " .
at 2 dt P 1~ He) — Qg

(4.1-10)

We will evaluate Mg and Eg by using the instantaneous,
perfect mixing assumption. This assumption can be justi-
fied, to some extent, by the fact that the transport time
through the tubes is short relative to the length of tran-
sients of interest to us. This assumption does, however,
tend to deviate from reality when calculating energy tran-
sport. That is, tube outlet temperatures calculated using
this assumption tend to respond to transient perturbations
faster than they would in reality. In particular, during a
primary flow coastdown, when the tube transport time becomes
long, characterizing the tube region temperature by the tube
outlet temperature is inappropriate and leads to difficul-
ties in calculating the heat transfer rate. In sec-
tion 4.2.3 we develop a method to deal with this special
situation.

The instantaneous, perfect mixing assumption is useful
for two reasons. First, it is easy to apply to Egq. (4.1-10)
without loss of physical plausibility. Second, it has de-
sirable properties from a numerical standpoint (see Appendix
F). Thus we will retain this assumption despite the short-
comings mentioned previously. The mass and energy content

of the tubes are then given by:



TBP
M = / p 4V
2 0
and
Vosp
E, = | oUav
2 0

As stated in the development of the plenum model,

P oV rRp

u, v

P2Y YrBp

(4.1-11a)

(4.1-11D)

we will

neglect the pressure derivatives of the primary fluid prop-

erties,
Therefore:
sz v (3p2J de
t TBP 8T2 dt
and
dE [ 53U 3p
2 2
2« Vs e v D) |
dt TBP|" 2 a'I‘2 p 2 3T2 D

so that we deal only with temperature derivatives.

(4.1-12a)

dT2
t

d

(4.1-12b)

Since the primary flowrate is assumed to be constant,

Eq. (4.1-10) becomes:



2 .
C2ar = Yy - Hp) - (4.1-13)
where,
au (H, + H,) dp
2 1 2 2
C = Vv P (___) + [U - ] ( ) ]
2 TBP[ 2 aT2 P 2 2 3T2 P

Egqs. (4.1-6), (4.1-7), and (4.1-13) comprise our pri-
mary fluid system model. By assuming a spatially constant
flowrate we have essentially reduced the problem to one of
determining energy transport and have thereby obviated any

need for the mass conservation equations.

4.2 HEAT TRANSFER MODEL

The primary to secondary heat transfer occurs primarily
through three mechanisms:
1.) single-phase forced convection heat transfer
from primary fluid to tube inner wall,;
2.) \conduction heat transfer through the tube
metal; and,
3.) boiling heat transfer from tube outer wall to
secondary fluid.
This situation is illustrated in Fig. 4.2-1. In this sec-
tion we develop the heat transfer model. Details regarding

heat transfer correlations can be found in Appendix C.
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4.2.1 Tube Metal Conduction

The heat conduction equation is (Ref (B2)):

Q

Ty
eeCot 3T = YV 0 KTy

Assuming that heat 'conduction is significant only in the
radial direction of a cylindrical geometry, and assuming

that the thermal conductivity is constant yields:

oT K raT
t t 3 t
°+Cpt 7% 57 (57) (4.2-1)

Equation (4.2-1), along with eupropriate boundary condi-
tions, is the formal equation wve should solve to determine
the heat transfer rate. We would like to avoid solving this
equation in the interests of computational speed and effi-
ciency. One way to do this is to use a technique which is
analogous to a lumped parameter approach. This technique
will now be described.

Since the tube wall is thin we can approximate

Eq. (4.2-1) by its rectangular coordinate analogue:

T
Ty 3

bt 3T (4.2-2)
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where the coordinate x replaces the radial coordinate of

Eq. (4.2-1). The steady state solution of Eq. (4.2-2) is:

To - T4

where the nomenclature is defined by Fig. 4.2-2. Clearly
this temperature profile is linear. If the response of the
tube metal temperature to transient perturbations is fast,
we can assume that the tube metal temperature retains a
linear profile during transients. Thus, the energy stored

per unit volume of tube metal is given by:

tube _ o M1t To)

P —_— (4.2-4)
™ t pt 2

For constant tube metal properties the energy storage rate

per vnit volume becomes:

1 dEt _ ptht (dTO . dTi)
VTM dt 2 dt dt

(4.2-5)

Eq. (4.2-5) is basically the left hand side of Eq. (4.2-2).
Finally, if we assume that (Tg + Tgar)/2 is approxi-

mately equal to (Tg + Ty)/2, then Eq. (4.2-5) becomes:
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1 %y _ St 9T dTSAT] (4.2-6)
Vg OF 7 la at :

Eq. (4.2-6) suggests a method which we can use to account
for energy storage in the tube metal without solving the
conduction equation. We can simply lump half the tube metal
heat capacity in the primary side tube fluid energy equation
and the other half in the secondary side tube bundle energy

equation. Thus, the coefficient Cy in Eq. (4.1-13)

becomes:
. = v |o (3U2) N S Y (392) . TmuPrpt
2 TBP|"2 ‘3T 2 2 T 2
2 p 2 p
and the coefficient 33 in Eq. (3.1-13) becomes:
B = (aETB) _n (D . JruPtCpt Tsar
3 ap <ar>,U0 r ap <ar>,U0 2 dp
(4.2-8)

The overall heat transfer rate, qg, is then calculated

using a log mean temperature difference, as discussed in

Section 4.2.3.
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4.2.2 Tube Metal Temperature Response

An essential assumption made in the derivation appear-
ing above is that the response of the tube metal temperature
to transient perturbations is fast. We can justify this
assumption by performing a simple calculation for the system
shown in Fig. 4.2-3. This system consists of an infinite
slab of metal surrounded by a fluid at a uniform tempera-
ture. The fluid temperature is increasing in a ramp manner
such that the metal temperature reaches and maintains an
asymptotic shape with a continuously increasing magnitude.
The temperature time derivative at all points in the metal

region is then given by:

where a is constant.

The one-dimensional conduction equation for this system

is:
2
oC aT (x,t) = K 3T T(x,t)
p ot 3 2
b 4
or,
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subject to the boundary conditions:

@
-3

3T(0,t) - 0 and K

ax

(L,t) = h(Tg(t) - T(L,t)

@
]

The solution to this equation is:

pC_a
= P x2 - 1, L
T(x,t) 5K X + Tf pCpaL [h + 2K
(4.2-9)
We can define the time constant, 1, for the metal
temperature response as:
' Te(t) - T(O,t) .
r = (4.2-10)

a
Equation (4.2-10) simply defines the time span by which the

metal center-line temperature lags the fluid temperature.

Substituting Eq. (4.2-9) into Eq. (4.2-10) yields:
t = pC.L [—15 + %ﬁ] (4.2-11)

Table 4.2-1 lists some representative numbers for the
quantities appearing in Eq. (4.2-11). Using these numbers

vields:
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Table 4.2-1
Representative Steam Generator Parameters

Quantity Value

0,C 4.1338 MJ/m® - °C
tpt
K, 18.6005 W/m - °C
h 3.2671 - 10% w/m? - °c
L 6.0 + 10 %m

T = 0.12s

This is indeed a relatively fast response time compared to
other characteristic times for the steam generator (i.e.

transport times) and, therefore, justifies our assumption
that the tube metal temperature response to transient per-

turbations is fast.
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4.2.3 Overall Heat Transfer

The overall heat transfer, qg, is calculated using
the log-mean temperature difference and the overall heat

transfer coefficient (Ref. (H2)). That is:

Qg = UOAOATLM (4.2-12)
where,
ATLM = log-mean temperature difference
I Wl TR
- H
Ty = Tsap
n (Fm—F )
2 SAT
AO = total outside surface area of tubes; and,
U0 = overall heat transfer coefficient based

on outside surface area of tubes.

The derivation of log-mean temperature difference is valid
for steady state heat transfer involving fluids with con-
stant specific heats. Extension of this formulation to
transient calculationsvis, perhaps, questionable. However,
the log-mean temperature difference is based on an exponen-
tial temperature profile along the tube length, and since
the transport time for the primary fluid in the tubes is
short relative to the time span of transients of interest to
us, we can assume that we maintain temperature profiles
similar to the steady state profile. The log-mean tempera-

ture difference defined in Eq. (4.2-12) is based. on the heat
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sink being uniformly at the saturation temperature. This is
not quite the case in reality since there is some subcooled
fluid located near the inlet to the tube bundle, so the
log-mean temperature difference is actually greater than
that obtained using the saturation temnerature for the
secondary side fluid. Using our ezpression for the log-mean
temperature difference will result in our calculating too
low a heat transfer rate. But, as is shown in Chapter 3,
the majority of the tube bundle region is in either sub-
cooled or saturated nucleate boiling, which is a more effi-
cient mode of heat transfer than forced convection. Since
we use a secondary side heat transfer coefficient for nucle-
ate boiling 1n evaluating the overall heat transfer coeffi-
cient (see Appendix C), we will obtain a value of Up that

is larger than it should be. This offsets, to some extent,
the low log-mean temperature difference that we calculate
using Eq. (4.2-12). Further discussion of the overall heat
transfer coefficient, Ug, and correlations related to it

can be found in Appendix C.

There are situations where uéing the log-mean tempera-
ture difference to calculate the heat transfer rate is inap-
propriate. We can envision a transient in which the primary
flow coasts down while the secondary pressure undergoes a
fairly rapid increase. For this case, our primary fluid
system model using the instantaneous, perfect mixing assump-
tion for the fluid in the tubes does not do a good job in

simulating energy transport since the fluid transport time
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is long. 1In addition, since the primary flowrate is small
and the secondary pressure is increasing quickly, we can
have a temporary situation where the tube outlet temperature
is below the secondary saturation temperature. When this
occurs, the log-mean temperature difference is undefined and
we must seek another method to calculate the heat transfer
rate.

The transition from the log-mean temperature difference
method for obtaining the heat transfer rate to the alter-
native method used.in the special case mentioned in the
preceding paragraph must be smooth. A method that satisfies
this criterion will now be developed.

The first step in developing this alternate heat trans-
fer model is to define at what point we switch from the
log-mean temperature difference approach. We define this
transition point to correspond to the time when the tube
outlet temperature, Tg, reaches a value that is ¢ degrees
above the prevailing secondary saturation temperature. We
denote the log-mean temperature difference for this partic-

*
ular point by ATLM’ which is given by:

AT, = L Tl (4.2-13)
LM Ty - Tsar )
in ( )

The primary fluid temperature distribution corresponding to

Eq. (4.2-13) is shown in Fig. 4.2-4. We represent this
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Figure 4.2-4., Primary temperature distribution at heat
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profile by an equivalent histogram-like temperature distri-

bution as shown in Fig. 4.2-5. We then define a weighting

factor, n, such that:
: *
n(T1 - TSAT) + (1 -n)e = ATLM (4.2-14)

We now define the following average temperature difference:

AT = n(Ty - Tgap) + (1 = n)(Ty = Tguq)

(4.2-15)
with the heat transfer rate given by:
Qg = UOAOAT (4.2-16)

Equation (4.2-16) is exact when T2 is equal to TSAT + e, If
we assume that we can use Egs. (4.2--13) through (4.2-16)
when Tg is less than Tgar + €, then we can use this
method to calculate the heat transfer rate for situations
such as the one illustrated in Fig. 4.2-6. The calcula-
tional scheme is as follows:
1.) Find the weighting factor, n, using Egs.
(4.2-13) and (4.2-14);
2.) Use this value of n in Eq. (4.2-15) to calcu-
late AT; and,

3.) Calculate qp using Eq. (4.2-16).
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'Figure 4.2-6. Generalized histogram representation of
temperature profile.
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Note that this scheme results in a continuous transition
since Egs. (4.2-13) through (4.2-16) reduce to Eq. (4.2-12)
when T9 is equal to Tgar + €.

There are several comments regarding this alternate
heat transfer calculation. First, it is based on the as-
sumption that we can extend the exact histogram representa-
tion to situations where Tg is not equal to Tgar + e.

This assumption is difficult to justify; however, situations
where we make use of the alternate heat transfer calcula-
tional scheme are rare and of short duration. Second, this
alternate method allows us to "ride through" transients

.which we would not be able to simulate otherwise.
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Chapter 5

NUMERICAL SOLUTION

In this chapter we discuss the formulation and imple-
mentation of a numerical scheme for solving the model equa-
tions given in Chapters 3 and 4. A brief, but illuminating,
discussion of solution techniques for ordinary differential

equations may be found in Reference (H3).

5.1 EQUATION SYSTEM

We have developed a set of equations which can be
broken down into two subsets. One subset is comprised of
the primary fluid system equations, while the second set
consists of the secondary side equations. We will deal with

each subset individually.

5.1.1 Primary Side Equations

For the primary fluid system model we have a set of
three differential equations in three unknowns. This set of

equations can be written compactly as:

{[p]
jr3e
M
jm



where,

= Diag[C;, C,, Cgl;

o

T = Col[Tl, TZ’ T3]; and,

g = CollWn(Hpy = Hy), Wyn(Hy - Hy) - ap, Wpy(Hy - Hy)l

5.1.2 Secondary Side Equations

The secondary side equations consist of mass and energy
censervation equations for each region of the steam gener-
ator as well as a loop momentum equation. Not all of these
equations afe differential equations; some are algebraic
relationships. We will now derive and define the differen-
tial, or state, equations.

By manipulating the various individual region mass
balances along with an overall mass balance for the steam

generator, we obtain the following equations:

dM

TB TBC
Wp = wo - 3t + at (5.1-2a)
dM
- TB
Wr Vo - at (5.1-2b)
dM dM
TB R
R (8-1-2¢)
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Subsiituting these equations into the defining equation for

4
W (Eq. 3.4-9) and noting that 8 = 1 yields:
j=1
aM am aM
_— TBC TB R
W Wo + 83 g5~ (Bg +B83 *+84) —g5— - B4 gT
or
du d<a > d<a_ >
- _C r —_n_ dp
v Wo* By gt * By 3t — * B3 3+ Byt
(5.1-3)
where,
E, = 8! ( il - By *BYL* ) (52 MTB)
1 2 * 3, \<a 2 "3 Wy b, Capd
aM oM,
TBC
Eyg = By (3<a 5) - By + 83 +8,) (3<u 5)
r’ p,U p,U
0 0
- 8! (_3.}?.13...]
4 3(ar> p,<a.>
n
oM
R
E, = -8B, (3¢=)
3 4 3<an> p’<ar>



and,

IMrpc .
By (55— )<a>UO"(Bé+33 “)(a )<a>Uo

BMR)

- 8! (=
4 ‘3p (ar),(an>

Substituting Egs. (5.1-2a,b,c) and (5.1-3) into the various

energy equations derived in Chapter 3, summing up the mass

conservation equations, and retaining the momentum equation

ylelds:

or,

Ax = £ (5.1-4)
(v, | [ W(H, - H) + q l
0 _-0 r B
vy Z(Hr - H)
L4 <ap>| | WCHp - Hy) - We(Hyg = Hy)
= dt |Ka > wa(wa - Hk) - W(H0 - Hk)
P ¥ow = Vs
| W | -F J
= Hs Vy £ Vpeg OF Uy L Uy
Hy
= HO uy > g and V_ > vref
(5.1-5)



where the components of the matrix A are shown in Ta-
ble 5.1-1.

Equation (5.1-5) shows us that we have six equations in
six unknowns. We will call these six unknowns the state
variables of our system, so that X is our state vector. The
six equations are the differential, or state, equations of
our secondary side mcdel, and can be solved to determine the
state variables and their derivatives at any time. Knowing
the derivatives of the state variables allows us to deter-
mine the mass storage rates for the various regions of our
model. Then, using Egs. (5.1-3) and (5.1-2a,b,c) as alge-
braic relationships we can find Wo, Wp, Wr, and Wn. The
flowrate of saturated liquid leaving the saturated region,

W¢, is then found from:

dM,
- SUB
Vs it " Tt Yo Vo £ Vper (5:1-6)
or
aM av
- SUB v
wf dt = wfw * ysat t w0 Vv > vref

where Vpes is the vapor volume at which we switch from a

fixed control volume steam dome - downcomer to a variable

.

volume steam dome - downcomer.



Table 5.1-1
Components of A Matrix

Component Expression

A11 B1 in Eq. (3.1-13) + EI(H0 - Hr)
A12 0
A13 32 in Eq. (3.1-13) + EZ(HO - Hr)
A14 0
A15 B3 in Eq. (4.2-8) + E4(H0 - Hr)
A16 0

M

TB :
A ( ) + E](H - H)
21 [ an <°r>'p 1 r n
Agg °
A23 B4 in Eq. (3.2-8)
My
B
+ | (=) E,I(H_. - H)

[ 3<ar> Uo’p 2] T n
A24 85 in Eq. (3.2-8) + E3(Hr - Hn)

[( 3p )U <a > E4](Hr - Hy)
A26 0
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Table 5.1-1
Components of A Matrix (Cont.)

Component Expression
oM
TB
A (=—) +E](H - H.)
31 [3U0 <a >,p 1 n k
r
A32 B7 or B11 is Egqs. (3.3-10 or 27)
Az3 [(:':'{;Bﬂ + (—a:z‘%) * Ey
r Uo,p r <an),p
(Hn - Hk)
My

Azq [(‘a'<'a'n>)<an>,p + Es](Hn - B
A35 BB or B12 in Egqs. (3.3-10 or 27)

M [(al:TBjU <a > ¥ (:MR)< >,<a> T E

P 0’ ar P qf ’ (h 3

(Hn - Hk)
A36 0
A41 89 or 313 in Egs. (3.3-11 or 29)

- Ey(Hp - HY)
A42 0 or 814 in Eq. (3.3-29)
g3 ~Eg(Hy - Hp)
Agq ~Eg(Hy - Hy)




Table 5.1-1
Components of A Matrix (Cont.)

Component Expression
A45 B10 or B15 in Eq. (3.3-11) or 29)
- Ey(Hy - Hy)
A46 0
A (a ) (_au;sl@.
51 au <a >,P auo )p or p,V
oM
SAT SUB
A ( ) + ( )
52 avv p’UO
oM
R
A53 (<c 3) o.u (8<ar>)< S
o % )p
A54 (32:3>)
n° <a_ >,p
b o
oM
Ags ( 5p )<a >,U 5o X o5,< a>
0 P Ca2tq
. (°MSAT1
ap 'Vv
. (aMSUB
op )Uo or UO’VV
A56 0
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Table 5.1-1
Components of A Matrix (Cont.)

Component Expression
Ag1:862° 0
Ag3: 464265 0

5.2 STEADY STATE SOLUTION

The steady state solution of our model equations pro-
vides a starting point for transient calculations. The
primary and secondary side solutions are coupled through the
heat transfer rate. In the steady state the heat tr&nsfer-
rate is constant, so we can present the primary and seccnd-

ary steady state solutions independently.

5.2.1 Primary Side Steady State Solution

The primary side steady state solution is obtained by
solving the priﬁary side model equations with all deriva-
tives set equal to zero. The solution is calculated for two
sets of initial conditions: full power operation and other
than full power operation. The solution for full power
operation is always calculated and is used to determine the

tube fouling factor (see Appendix C) for subsequent heat
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transfer calculations. The other than full power primary
steady state solution is then calculated if an input flag
indicates that the power plant is operating at a power dif-

ferent from full power. We will now describe each solution

scheme separately.

Full Power Solution

To obtain the steady state solution for the primary

fluid system we must solve the following equations:

WIN(H1 - H2) = qB; (5.2-1)

97

dg = UOAOA TLM'

The necessary inputs for this calculation are:

1.) The primary average temperature, Tavg =
2.) The primary flowrate, WiN;

3.) The primary system pressure, Pp;

4.) The power corresponding to full power;. and,

5.) The secondary pressure, p.
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The secondary pressure enters into this calculation since we
need the secondary saturation temperature to evaluate the
log-mean temperature difference. The calculated outputs are
the primary fluid temperatures Tl’ T2, and T3, and the foul-
ing factor, rg.

The solution is obtained in two steps. We first calcu-
late the primary fluid temperatures, then we calculate the
fouling factor. A flowchart for the primary temperature
calculation is shown in Fig. 5.2~1. The numerical scheme
shown in this figure uses the bisection method to converge
to the correct temperatures. Given the full power operating
conditions we first calculate the required enthalpy drop of
the primary fluid, AH*. To start off the bisection method
we make & guess at TiN which is sufficiently large so as
to ensure that our first estimate of the primary enthalpy
drop, AH, is larger than AH* (see Fig. 5.2-2). To do this
we add 100°C to the given primary average temperature, which
is equivalent to estimating that the primary temperature
drop is on the order of 200°C. This temperature drop is, as
required, too large. Having an estimate for T; we can
calculate a consistent éstimate for Tg by using the defi-
nition of Tgyg. Now we are in a position to evaluate H;
and Hy by using fluid property routines and, therefore, we
can calculate an estimated primary enthalpy drop, AH. Since
our first estimate for the primary enthalpy drop is larger
than AH*, we obtain our second estimate for T; by averag-

ing our old value of T; and Tayg. By going through the
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Figure 5.2-1. Flowchart of stéédy state primary
temperature calculation.
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process described above we obtain an updated estimate of AH,
which we then compare to AH*., If AR is still greater than
A H* we again average the old value of T; and Tavg to ob-
tain a new estimate for Ty, and we continue to do this un-
til AH is less than AH*, or until the absolute value of the
difference between AH and AH* is less than some specified
convergence criteria (usually 0.5% of AH*). Once AH has
been less than AH* we average, or bisect, the last value of
Ty to give us a positive value of (AH - AH*) with the last
value of Ty to give us a negative value of (AH - AH*), to
generate a new estimate for Ty. We continue to do this
until the convergence criteria is satisfied. Figure 5.2-2
shows how the bisection method is used to converge on the
correct value of AH. At this point we have obtained T;

and T2,
we have completed the solution for the primary fluid temper-

and since TIN is equal to T1 and Té is equal to TZ'

atures.

We can readily obtain the fouling factor by inverting

(see Appendix C),

g = UpAp Ty

to obtain,
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All the quantities on the righthand side of Eq. (5.2-2) are
known, or can be determined from quantities already calcu-

lated.

Solution at Other Powers

For calculation of the primary side conditions at power
levels other than full power we use a somewhat different
calculational scheme. For these cases, a fouling factor is
calculated assuming full power conditions, and this fouling
factor is then used in heat transfer calculations to calcu-
late the secondary pressure which results in a heat balance
for the given power level. The inputs required for this
calculation are:

1.) The primary average temperature, Tgyg, cor-

responding to this power level;

2.) The primary flowrate, WiN;

3.) The primary system pressure, Pp; and,

4.) The power 1level, qg.

The first step in this calculation is to obtain the
fouling factor at full power, using the scheme discussed in
the preceding section. If the plant is operating at full

power then the primary steady state calculation stops here.
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If not, the conditions pertaining to the current plant power
level are read in and the primary fluid temperatures are
calculated in the same manner as they are for full power

conditions. Next, the heat transfer equation,

ag = UpApTy

is solved for the saturation temperature. Since both Ug
and A Ty are functions of the saturation temperature, the
equation given above is a nonlinear, transcendental equation
and a straightforward solution for Tgar is impossible.
However, we can use Newton's method to solve for the root of

the following rearranged form of this equation:

q
B
ﬁ;zg - ATLM = 0 = H(TSAT) (5.2-3)

where the notation H(TgarT) indicates that the left-hand
expression in Eq. (5.2-3) is a function of Tgar. Newton's

method for finding the root of Eq. (5.2-3) is given by:

H(T, . )

5+41 _ .8 SAT

Tgar Tsar - —4H (5.2-4)
dTsar 8

SAT

5~17



where the superscript § indicate the last iterate value, and
6§ + 1 indicates the new iterate -value. We need an initial
estimate for Tgar and we use Tayg - 30°C as this start-

ing value. The iteration indicated by Eq. (5.2-4) is con-
tinued until the difference between prior and current iter-
ates (i.e. ng% - TgAT) is less than 0.1°C. The derivative
appearing in Eq. (5.2-4) is shown in Table 5.2-1. Once we
have a converged value for Tgar, it is simply a matter of

using property tables to find the corresponding secondary

pressure.

5.2.2 Secondary Side Steady State Solution

The purpose of the secondary side steady state solution
is to determine the steady state flow pattern and downcomer
density. The bisection method is used to numerically solve
the recirculation-loop momentum equation. The initial con-
ditions required as input for the solution are:

1.) Secondary pressure, p, either input or deter-

mined by a prior heat transfer calculation;

2.) Power level, apg;

3.) VWater level in downcomer; and,

4.) Feedwater temperature, Tgy.

The first step in the calculation is to determine the
steady state steam and feedwater flowrates, which are
equal. They are calculated using a heat balance for the

entire secondary side of the steam generator:
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Table 5.2-1
Derivative of Equation 5.2-3

d dp To\ d 1 d 1
<= H(T ) = —— [r (——)———- (&) + (=
T 1 SAT ot dTg,r ‘K, dTg,r ‘B

_am,
dTgr
where

d (1y . _1 dky _o.oua[;"”ma+ 1]
dTgar Ky Kﬁ dTgpp K% 2 dTg,q

1
q q 2
AB de (111—) = -22.65 g
o 9Tgar "Bg 10%a,
-p
SAT
exp ( )
. 87 « 10%"  9Pgar
87 + 10° dTgap
2
BTw _ ___ ATiw
dTgar (Ty = Tgap)(Tg = Tgpp)

Note: Explicit correlations for hg and K{ are given in
Appendix C.

L = W 2 (5.2~

The next step is to solve the steady state loop momentum
equation for the downcomer flowrate, Wy, which is, from

Chapter 3:
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F = (Ml + M2 + M3 + M4)Wo + M5 = 0

(5.2-6)

where the Mj are complex functions of Wg. A representa-
tive plot of the left hand side of Eq. (5.2-6) is shown in
Fig. 5.2-3. The solution we seek is shown in Fig. 5.2-3 as
the intersection of the curve representing F and the Wp
axis. In order to start the bisection method we need an es-
timate of Wg sufficiently large so that F is positive. 1In
the steady state the tube bundle exit quality exit is equal
to the steam flowrate divided by the downcomer flowrate;

hence,

W, = == (5.2-7)

If we choose a sufficiently low value for x,, themn Wp

will be large and F will be positive. Thus, we use 0.01 as
a starting value for x,. Before continuing with the cal-
culation we must determine the fluid properties at various
locations on the secondary side of the steam generator. 1In
the steady state the tube bundle exit quality, xp, is

equal to the riser exit quality,. x,. Using the drift flux
model (see Appendices A and C) we can then calculate <ap>
and @ p>, and, since we know the secondary pressure, we

also know the saturation properties of the water, so we can
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evaluate ;& and ;n’ The downcomer density, p,, is deter-
mined by performing a steady state mixing calculation for

the subcooled region. An energy balance for this region

yields:

H0 = er

g ¥ (1 - X

Knowing the subcooled fluid enthalpy and the secondary pres-
sure we can determine the subcooled fluid density, opq,

from fluid property routines. Given the location of the
parallel to cross flow transition, Lp, as well as ;r and

LI it is a simple matter to determine pp’ and hence <ap>,
from the assumed linear profile of 1/p in the tube bundle
region. The flow quality at this point, Xp, can be ob-
tained from <ap> by using the drift flux model. Finally,
the fluid viscosities are obtained from property routines.
We are now in a position to evaluate Eq. (5.2-6). For the
first estimate of x, we know that F is greater than zero,

sc for our next estimate x, is increased by adding 0.05 to
the original value of xpr. Then the whole process de-
scribed above is repeated until either F is less than zerc
or the absolute value of F is less than some convergence
criteria (ian ou™ model we use 0.1 Pa as this convergence
criteria). If the convergence criteria is satisfied then we

can proceed to the next step in the solution. Otherwise, we

average the last value of Wg which gave us a negative
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value of F and the last value of Wy which gave us a posi-
tive value of F to obtain a new estimate for Wg (and xp
through the relation X, = WS/WO). This process is continued
until the convergence criteria is met. Figure 5.2-4 is a
flowchart of this solution scheme. [

The ﬁext step is to determine Wg¢ which is simply Wy
minus Wgy. Then the steady state masses of the various
regions are calculated and summed to obtain the total mass
of fluid contained in the steam generator, which completes

the steady state solution for the secondary side.

5.3 DECOUPLING OF PRIMARY AND SECONDARY TRANSIENT SOLUTIONS

In the steady state solution scheme it is permissible
to decouple the primary and secondary solutions since the
heat transfer rate is constant. This is not the case for
the transient solution because the heat transfer rate is not
constant and depends on the instantaneous conditions present
in both the primary and secondary fluid systems. We can,
however, make reasonable arguments for decoupling the pri-
mary and secondary solution by using an explicit represen-
tation for the heat transfer rate. That is, we can use a
heat transfer rate calculated from system parameters ob-
tained at a previous time step to calculate the advanced
time condition in the time differenced version of our model
equations. For instance, consider a system consisting of

two concentric cylinders with the outer cylinder insulated
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over its outer surface. The inner cylinder has a hot fluid
flowing inside it, while the annulus formed by the two cyl-
inders contains a colder fluid flowing in the opposite di-
rection. The colder fluid is heated by heat transfer from
the hotlfluid through the wall of the inner cylinder. We
denote quantities associated with the flow in the annulus by
the subscript a, and those associated with the flow in the
inner cylinder by the subscript i. We also make the follow-
ing assumptions:
i.) the pressure for both fluids is constant;
2.) we can neglect the heat capacity of the
cylinders;
3.) we can use the log-mean temperature
difference to calculate the transient heat
transfer rate;
4.) 1instantaneous, perfect mixing for both
fluids;
5.) constant flowrates for both fluids; and,
6.) 1inlet temperatures are known functions of
time.

The energy equations for the system are:

T
i oUT _
G B T Wiy n = B oup) - @
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dar
a OUT
(pCV)y —at Wo(Hy 1y = Hy opr) * @
(5.3-2)
where
q = ua (Ty 1n -~ Ta ovr) = 4 our = Ta 1)
HT 1n Ty 1n -~ Ta our
Ty our - Ta 1IN

Time differencing these equations in an explicit fashion

yields,
Tn""l Tn
i oOUT ~ i ouT _ n n
CCNy it Vi(Hy.qn - By opp) - @
(5.3-3)
n+l1
T -
a ouT a ouT  _ n n
bCV, it VaHy 1y - Hy oup) * @
(5.3-4)

where the superscript n denotes the old time level, and n+1l

the new time level. All the quantities on the right hand

side of Egqs. (5.3-3) and (5.3-4) are known so that T:+3UT
and T£+éUT can be calculated independently. This would not
n+l

be the case if we used ag in Egqs. (5.3-3) and (5.3-4),

since these equations would be coupled through the log-mean
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temperature difference in the heat transfer rate equation.
Solution for the new time level outlet temperatures in this
case would require simultaneous solution of Egs. (5.3-3) and
(5.3-4).

The argument just given is also true for the solution
of the primary and secondary side eqﬁations. Thus, we can
perform the primary and secondary side transient solutions
independently by using explicit time differencing for the
heat transfer rate.

We can justify the use of explicit time differencing
for two reasons. First, when time differencing differential
lequations, it is somewhat arbitrary as to when quantities
not appearing in time derivatives are evaluated withia the
time step. They can be evaluated at the beginring «f ithe
time step, the end, or somewhere in between, az lonyg && the
difference equations reduce to the differential syuat:oms in
the limit of At approaching zero. Explicit time differ-
encing satisfies this condition. Second, heat transfer
transients occur on a longer time scale than fluid flow
transients. That is pressure disturbances propagate at the
sonic velocity (in our case at an infinite velocity since we
assume a uniform system pressure) and affect flowrates in
the time it takes a sonic wave to travel from the source of
the disturbance to the location of interest. Heat transfer
and energy transport disturbances propagate at speeds on the
order of the fluid velocity for convective heat transfer,

and on a time scale on the order of tenths of a second for

5-28



conduction heat transfer. Hence, using explicit time dif-
ferencing for the heat transfer rate should introduce little
error in the calculations, although we recognize the possi-
bility of introducing instability in the calculation when
using an explicit form for qg.

5.4 TRANSIENT SOLUTION BOUNDARY CONDITIONS

Steam generator transients are initiated and maintained
by events occurring in the primary system, the main steam
system, or the feedwater system. Therefore, the boundary
conditions, or forcing function inputs, are quantities that
define the changes at the interfaces between these systems
and the steam generator. Boundary conditions related to the
primary system are:

1.) Primary fluid temperature at the steam gener-

ator inlet;

2.) Primary flowrate; and

3.) Primary system pressure.
Feedwater related boundary conditions are:

1.) Feedwater flowrate; and,

2.) Feedwater temperature.

The last boundary condition is the steam flowrate, which is
related to the main steam system.

All the boundary conditions listed above are required
as input for a transient calculation. The quantities can be

obtained from measurements, or from a suitable model of the

systen.
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5.5 PRIMARY TRANSIENT SOLUTION

The primary fluid system traasient solution is obtained
by using an explicit time differencing scheme for Eq. (5.1-

1). That is,

n+1

T - T
n L 2 n
g 1 g (5.5-1)
or,
1n+1 - In + [gn]'dAt g-n (5.5-2)
But, C is diagonal so we can write:
n
A tW
n+l n IN n
T 1+~ G- B
1
n+l n LAt rgn n n
Ty Ta * ' [Win(Hy - Hy)" - agls
n
and
n
AtW
n+l _ .0 IN n
3
(5.5-3)
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Equations (5.5-3) constitute the transient solution for the

primary fluid system.

5.6 SECONDARY TRANSIENT SOLUTION

The equations making up the transient model of the
secondary side consist of a mixture of differential and .
algebraic equations. 1In section 5.1.2 we isolate the dif-

ferential equations and write them in compact form as:

-
I
"
|+

where

x = CollU,, V,, <« >, < >, p, W]

v!
It is worthwhile to take a look at the structure of the
matrix A to see whether or not we can take advantage of the
structure in our numerical solution. The structure is as

follows:

[}
[1]]

O M| dM| M| M| A
O M| X| H| ©] ©
O Pl W] M| M| M
O Ml M| M ] M
OF | »| M) M| >
Nl |l o] of o] ©
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X = nonzero entry
0

H zero entry

The structure shown above indicates that the last equation,
which is the momentum equation, is independent of the other
equations. This is not really the case, and the reason why
the momentum equation appears to be independent of the other
equations is because we did not substitute Egs. (5.1-2a,b,c)
and (5.1-3) into the right hand side of the momentum equa-
;ion. This substitution step is omitted since it results in
nonlinear algebraic expressions involving the derivatives of
the state variables, which is a situétion we want to avoid.
Therefcre, we will assume that the momentum equation can be
solved independently of the cther state equations at any
time step. The result of this assumption is that instead of
having to solve a set of six coupled differential equations
we now have to solve a set of five coupled differential

equations. We will represent this reduced set of equations

by:

¥y = h (5.6-1)

i

where R is the matrix formed by deleting the sixth row and
column from A, y is the corresponding reduced state vector,

and h is the reduced vector corresponding to f.
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Differencing Eq. (5.6-1) in an explicit manner yields:

Enozn = tiIZI

or,

¥t o= [En]'lgn (5.6-2)

B+l o yP 4 Aty (5.6-3)
where,

n+1 n
.n - 1
=
At

Equation (5.6-2) gives us the time derivatives of the re-
duced set of state variables, while Eg. (5.6-3) gives us the
new time values oi the reduced set of state variables.
Before we update the state variables, we substitute the
derivatives of the reduced set of state variables into

Eq. (5.1-3) to obtain wg. Further substitution of these
derivatives into Egqs. (3.1-11), (3.2-6), and (3.5-4) yields
the derivatives of the mass contents appearing in Egs. (5.1-
2a,b,c), which then gives us W;, W: and Wg. The flowrate W?
is obtaired by using Eq. (5.1-6). Note that the flowrates

obtained in this manner are not the current flowrates but

flowrates gt the old time. This is so because we used an
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explicit method to obtain in and a typical mass conservation

equation differenced in a corresponding manner is:

n
n n - aM _ on
in = Your at - £@)

where E(}n) indicates that dMn/dt can be written as an alge-
braic function of &n. Therefore, solving the mass conserva-
tion equations (Egqs. (5.1-2a,b,c)) together with the defini-
tion of W° (Ea. (5.1-3)) yields the flowrates at time 1lev-
el n.

The next step (see Fig. 5.6-1 for a flowchart of the
secondary solution) in the secondary solution is to update
the reduced set of state variables using Eq. (5.6-3) and
then evaluate the secondary fluid properties. Following
this we calculate the downcomer water level in a way that
guarantees that we conserve mass for the entire steam gener-
ator unit. The steps followed to obtain the water level
are:

1.) Calculate the total mass of the steam gener-

ator fluid at the new time using:

n+1

. n n+1 n+1
ror ° Mror W

+ (W -

fw s )at;
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2.)

3.)

4.)

Calculate the new time values of the tube
bundle and riser mass contents (M;;l and M§+1
using Eqs. (3.1-9), (3.2-4), and yi+1l;
Subtract the results of Step 2 from the re-~
sult of Step 1 to obtain the new time mass

contained in the steam dome - downcomer, i.e.

n+l _ n+1 n+l _ n+1 n+1 n+l
SD Msup * Mgar Mror - M M

TB R ~’

At this point we must determine whether or
not the water level is low enough so that we
are using a steam dome - downcomer model with
variable volumes. To do this we can caicu-
late the mass content of the steam dome -
downcomer as if the water level was exactly
at the level where the switch from a constant
volume approach to a variable volume approach

n+1
is made. Call this mass MCUT' Then,

n+l n+l n+1 n+l
nv1 _ 'spPss * VrorPo * VstM °vs ~ Msp
n+1
("zs - pvs)
n+l1 n+1
1f Mopp < Mgp
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or,

n+1l n+1 n+l n+1
oo+t . YstuPvs * Vs0Pss * (ror - Veo)P0 - Msp
v o _ oo+l
Po " Pvs
n+1 n+l
1f M3 < M2T

1

5.) Using V3+ and the steam generator geometry

calculate L:+1 (Appendix K).
The finral step in the numerical solution of the second-

ary side equations is to solve the momentum equation:

=n+1 _ f'rn

n W n+l n
U = = -“F@ ¥
or
worl o g _AL pyPtlLwD (5.6-4)

In Eq. (5.6-4) we indicate that F is evaluated as a
function of the new time state variables and the old time
flowrates. This may seem inconsistent, but recall that when
time differencing equations the matter of where quantities
are evaluated is arbitrary so long as the difference equa-
tion reduces to the correct differential eguation when At is
allowed to approach zero. Equation (5.6-4) satisfies this

requirement.
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This completes the discussion of the secondary side

numerical solution.

5.7 TRANSIENT HEAT TRANSFER RATE

In this work we assume that the transient heat transfer

rate is given by (see Chapter 4):
Qg = UOAOATLM (5.7-1)

Solving this equation for qg is not as straightforward as
it seems, since U0 depends on ap through hs, the secondary

side heat transfer coefficient. Writing out Ugp:

r -1

(5.7-2)

The secorndary side heat transfer coefficient, hg, is given

by (Appendix C):

dg

h =
s 86(Tg = Tgar)

(5.7-3)
o

But, using Eq. (C-13) from Appendix C:
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ap -
A (T, = Tqam) -22.65 A exp )
0°'w  "SAT 10%a, 07 87.0 . 10°
or
Ay (T, = Tgpm) = zz/a; (5.7-4)
Substituting Eq. (5.7-4) into Eq. (5.7-3) yields:
/?;'l;
hs = g (5.7-5)
2
Defining:
T
0
Ao rozn (}’;)
7 = + +r
Aihp Kt b 4
and using Eq. (56.7-5), Eq. (5.7-2) becomes:
7 -1
U, = |2, + = (5.7-86)
v
dg
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Substituting Bq. (5.7-6) into Eq. (5.7-1) gives:

Z, -1
Q- = |2, + — z
B 1 —
ag 3
where, 23 E AOATLM‘ This equation can be written as:
Zqu + Zzqu - Z3 = 0 (5.7-7)

Equation (5.7-7) is a quadratic equation in /qB, and the

solution is given by:

-2t /22 + 4z2.2

q; = —2 231 13 (5.7-8)

Equation (5.7-8) indicates that we have two solutions for

/(;B. However, in order to satisfy Eq. (5.7-5) we must se-

lect the positive value of /qB since both hs and Z2 are

always positive, so the correct solution for /qB is:

/72 + a7 7
-2, +/ 2 + 42,2
fag = —2 231 13 (5.7-9)

Therefore the transient heat transfer is given by:

2
-2 +/2% + 47.2

o 2 2 1“3 .
ag 22, (5.7-10)
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5.8 NUMERICAL ANALYSIS OF SECONDARY SIDE EQUATIONS

It is useful to develop some insight into the stability
characteristics of the secondary side solution scheme. This
is difficult to do for the nonlinear set of equations which
we have developed for the secondary fluid system. However,
if we linearize the state equations we can then perform a
straightforward analysis of the stability of the linear
system, which, for small perturbations about the lineariza-
tion point, gives us a good feel for the stability charac-
teristics of our nonlinear model.

Taking Eq. (5.1-4) and solving for x yields:

-1 (5.8-1)

e
]
|
129

Let us linearize Eq. (5.8-1) about an operating point P.%)

such that:

(5.8-2)

I

X = X, +
-3 )

where é is small. Now we make a Taylor expansion of the

right hand side of Eq. (5.8-1) about the poin: X to obtain:

X + Higher order terms

>
Y
]
T
|+
+

(5.8-3)
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where J is the Jacobian matrix of A_l

0
evaluated at xg, that is:

f with respect to x

If the perturbation is small enough we can neglect the high-
er order terms in Eq. (5.8-~3). Then substituting Eqs. (5.8-

2) and (5.8-3) into Eq. (5.8-1) yields:

(5.8-4)

B
]
2]

The stability properties of the linear system described by
Eq. (5.8-4) are directly linked to the eigenvalies of the
matrix gxo. Before continuing any further we should define
exactly what we mean by stability. We define a system of
equations to be stable if when we introduce a small, but
arbitrary, perturbation into the system, this perturbation
does not grow in time as the equations are solved. We will
denote this small, arbitrary perturbation by gb for the
system of equations defined in Eq. (5.8-4).

We now derive the solution for Eq. (5.8~-4). In this
derivation we assume that the matrix gﬁo has a full set of
linearly independent eigenvectors, where each eigenvector,

o4, has a corresponding eigenvalue, Aj. The diagonal-

izing matrix S of J, 1is a matrix with columrs consisting of
- =0
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the eigenvectors of gx (Ref. (S3)). The diagonalized form
0

of éxo is then given by:

-1 y (5.8-5)

)
&
W
L]

(i
L

where the diagonal matrix A has the eigenvalues o.: gx as
= . 0
diagonal elements. If we define a vector v such that:
£ = Sy
then Eq. (5.8-4) becomes:
2 -1 -~ -
v = 8§ °J_SVv = AV (5.8-6)
- ==x0_—.:—- = -

The solution of this equation, subject to the initial condi-

tion v, = g‘l_';o, is simply (Ref. (B-6)):
6 ALt
y = §-1 X Cjo4® 1

= =1
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where the Cj; are determined from

- -1 8
vo = 871 GCigy
- i=1
or, in terms of é:
- z6 At
X = C.o.e (5.8-7)
j=p 11
with,
0 - 1
X = C.o
=0 j=p 171

In order for the initial perturbation, 20, to not increase
with time, the real parts of the eigenvalues appearing in
Eq. (5.8-7) must be less than or equal to zero. If this is
the case then our differential equations, by our definiticn,
are stable. What this mesans is that if the system is oper-
ating in the steady state and there is a small perturbation
to the state vector, then the system will eventually return
to the steady state.

We now ask ourselves the question: can we perform a
similar analysis for the difference equation analogue to

Eq. (5.8-4)? The answer to this question is yes, we can.
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We can write the explicit time differenced form of Eq. (5.8-

6) as:

or,

0+l 11 o+ ata]SR (5.8-8)

Starting with jn and performing successive substitutions

we can rewrite Eq. (5.8-8) as:

= [I + atal™15 (5.8-9)

Since [I + AtA] is a diagonal matrix, each element of the

vector QP*I is given by:

n+1 = n+1l =
vy (1 + Atki) Yoi i 1,2, ..., 6

Equation (5.8-10) satisfies our definition of stability if

the largest magnitude of (1 + At)j) is less than or equal

to one. We use the term magnitude rather than absolute
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value since some of the Aj may be complex. Expanding each

eigenvalue in complex form yields:

where either aj or by may be zero, and I = /=1I. Using
this expression for the Aj in Eq. (5.8-10) yields the fol-

lowing stability criterion for our discrete-time system:

2

D2+ (atbH? ¢ 1 for all 1.

(1 + Ata

After some manipulation we obtain:

— 1 (5.8-11)

Since At must be positive, aj must be negative to satisfy
Eq. (5.8-11). But ajy is.the real part of Aj, so this is
the same condition that we require for stability of the
continuous time system of equations. Therefore, in addition
to satisfying the same stability condition as the continuous
time system our explicit discrete time system must also
satisfy the more stringent vequirements of Eq. (5.8-11).

We have performed the analysis given above for the
Maine Yankee nuclear power plant. The Jacobian is obtained

by numerical differentiation and the operating point for the



linearization is at 106 per cent full power steady state
operation. The eigenvalues for our sixth order set of dif-

ferential equations are shown in Table 5.8-1.

Table 5.8-1
Eigenvalues of the Sixth Order System for Maine Yankee.

i li

1 -2.0490

2 -0.4718 + 1.0270i1
3 -0.4718 -~ 1.0270i
4 -0.2155

5 -0.0348

6 0.0

As can be seen the eigenvalues all have real parts that
are less than or equal to zero, indicating that our differ-
ential equations afe stable. That is, a small disturbance
to our state vector in the steady state will eventually die
out, returning our system to the steady state. Using
Eq. (5.8-11) to determine the critical time step size for
our linear discrete time system yields 0.73 seconds, which
corresponds to the complex conjugate pair Ag and Aigj.

This may or may not be the critical time step size for our
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nonlinear system. (Note that the zero eigenvalue does not
make At undefined since it satisfies (1 + Atig) < 1).
Transient tests indicate that the critical time step size
for our nonlinear model is around 0.65 seconds, whicn is 11
per cent less than the time step size obtained using a )
linear analysis. It is important to note that the critical
time step size calculated herg is for the secondary side
model and not for the entire steam generator model. When
both the primary and secondary sides are modeled, testing
shows the critical time step size to be on the order of
0.45 seconds rather than 0.65 seconds. For the primary
side, which is donor cell differenced (see Appendix F), the
critical time step size is on the order of the transport
time through the plena. For Maine Yankee this transport
time is 0.67 seconds. However, the critical time step size
for the entire steam generator is neither the critical time
step size for the primary side nor the critical time step
size for the secondary side. This is because there is a
coupling between the primary and secondary sides through the
heat transfer rate and this heat transfer rate is treated in
an explicit fashion in the difference equations. This ex-
plicit treatment of the heat transfer rate introduces a more
stringent requirement on integration time step size.
Finally, there is the matter of a zero eigenvalue
A g). This eigenvalue corresponds to what is referred to
in linear control system analysis as a free integrator.

This means that we are integrating a system of equations
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which has an output that responds in an unbounded manner to
a persisting error in the inputs. Specifically, for our
model, we are talking about the response of the steam gener-
ator water level to the feedwater flowrate. To clarify
this, we can draw an analogy between our steam generator
model and a tank with a single inflow and outflow. For this
tank, in the steady stéte, the flowrate into the tank is
equal to the flowrate out of the tank so that the tank water
level is constant. This tank also has a water level con-
troller which regulates the flowrate into the tank in a way
that maintains a constant water level. Let us assume that a
model for this tank exists, but that a model of the control-
ler is not used. Rather, the flowrate into thé tank is
specified as input. Consider that there is a slight error
in input to the model such that the steady state flowrate in
is marginally greater than the flowrate out. Integration of
the model equations yields the result that the steady state
tank water level increases continuously in time, which is
physically incorrect. However, if we were to use a tank
model which included a model of the water level controller,
this problem would not arise.

A similar situation exists for the steam generator mod-
el; therefore, it seems appropriate to add an equation simu-
lating the feedwater controller to our existing set of six
equations and then to redo the eigenvalue analysis. The

controller equation we use is:



dew
at

= cw(ws - wfw) + Cf. a* - zw)

with Cy equal to 0.025 and G equal to 0.05. The eigen-
values for this seventh order model, again for Maine Yankee,

are shown in Table 5.8-2. The first three eigenvalues shown

Table 5.8-2
Eigenvalues of the Seventh Order System for Maine Yankee.

i Ay

1 ~2.0490

2 -0.4718 + 1.0270i
3 -0.4718 - 1.02701i
4 ~0.2172

5 -0.0288 + 0.0112i
6 -0.0288 - 0.0112i
7 -0.0005

in this table are identical to the first three shown in
Table 5.8-1. In addition, the zero eigenvalue has disap-
peared. As for the sixth order system, the critical time
step size is 0.73 seconds and is determined by the complex

conjugate pair A9 and A3. Hence, the conclusions drawn
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regarding stability for the sixth order system apply equally
for the seventh order system.

The presence of a free integrator in our model in the
absence of an accurate feedwater controller model is signi-
ficant. It indicates that small errors in the feedwater
flowrate input can be integrated over a long time span into
a sizable error in the calculated water level. This fact
must be kept in mind when comparing results calculated using

the steam generator model to experimental results.



Chapter 6

VALIDATION

6.1 PREVIEW

An important step in the development of a computational
model is the wvalidation and testing of the model. This step
serves two purposes: First, it allows us to establish work-
ing limits on the applicability of the model. Second, it
serves to give us confidence in the predictions of the model
within its applicable 1limits. )

The steam generator model developed here has been ex-
tensively tested against the predictions of other computer
programs and experimental results, for both steady state and
transient conditions. Table 6.1-1 lists the test cases used‘
in the model validation effort. This table lists the test
facilities along with representative numbers for steam gen-
erator operating pressure and full power heat transfer
rate. These test cases can be further subdivided into test
case runs; that is, conditions simulated using the steam
generator computer model. Table 6.1-2 gives a breakdown of
conditions simulated for each test case. Also listed in
this table are text references where specific information
regarding each test run may be found, as well as a classifi-
cation as to whether the test run is compared to experi-

mental results or results calculated using another computer

program,



Table 6.1-1
Test Cases Used for Model Validation.

Powér per ! Cperating
Steam Regener- Pressure
Test Case ator (MWfE) (MPa)
Maine Yankee 817 5.6
Arkansas Nuclear
One - Unit 2 1408 6.2
Calvert Cliffs 1280 5.8
Argonne National
Laboratory Tests 0.12 3.5
RD-12 Boiler
Experiments 1.2 4.6

As can be seen in Table 6.1-2, only three of the five
test cases are discussed in this chapter, while two are
presented in Appendix H. The two test cases presented in
Appendix H, Maine Yankee and Calvert Cliffs, are test cases
in which the transient boundary conditions are not well
known. That is, the steam flowrate, feedwater flowrate, and

feedwater temperature are not given as functions of time.

For these cases we used models of the main steam and
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feedwater systems to calculate the feed and steam flowrates,
while the feedwater temperature was held constant. It is
not known whether or not these models predict steam and
feedwater flowrates comparable to these in the test case
transients, so it is difficult to draw any firm conclusions
regarding the steam generator model accuracy. These cases
do provide, however, a confidence that the model behaves
well over a wide range of intere;ting conditions.

The remaining three test cases, on the other hand, are
well documented. The Argonne National Laboratory data are
for steady state operation and all the input ;ecessary for
simulation is documented. The Arkansas Nuclear One - Unit 2
data was acquired during preoperational testing, and the
transient boundary conditions for the steam generator are
known, with the exceptiqn of the transient feedwater temper-'
ature. The RD-12 Boiler data is complete, allowing us to
wholly specify the transient boundary conditions. Thus, for
these three test cases we can perform model validation under

carefully specified conditions and, therefore, more readily

draw conclusions regarding model accuracy and validity.

6.2 ARGONNE NATIONAL LABORATORY TEST LOOP

6.2.1 Background Information

This test case is a set of measurements made during the
steady state operation of a natural circulation test loop at

the Argonne National Laboratory (Ref. (P2)). Data appearing



in Ref. (P2) is taken from Refs. (A1) and (A2). The meas-
urements were made for various loop geometries; however, we
are interested in only one test loop configuration, which is
shown in Fig. 6.2-1. For this geometry the loop was oper-
ated at a series of pressures, and at each pressure the heat
input was incremented until a steady flow oscillation was
observed in the downcomer. After each power increment the
steady state downcomer flow was measured. Table 6.2-1 shows
the test loop operating conditiong. Information regarding

geometric input can be found in Appendix H.

Table 6.2-1
Test Loop Operating Conditions.

Quantity ) Value
Operating Pressure Variable (2.17, 2.86,
3.55 MPa)
Feedwater Temperature 32.25°C
Heat Input! variable (20, 30, 40 kW, ...)
Water Level? 1.93 m

! Heat losses in downcomer neglected.
From bottom of heated section.

6.2.2 Results

The results of calculations for the test loop are shown

in Fig. 6.2-2 in the form of downcomer fiowrate vs. power
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Figure 6.2-1. Argonne National Laboratory test loop
configuration (Ref. P2)).

6-8



0.6

| { I | J
0.5 b= —
"
S~
o
= 0.4 |~ -
2 o)
“ 0.3 -
by
g Psat = 2.17 MPa
2 0.2 |~ o
z O Measured
= — Calculated
0.1 p= -
0.0 | | | ] |
0.6 N R E— ]
— 0.5 — —any
[7,] - .
.
g, O‘O‘&zfr&c\o\
z O
. -
e« 0.3 p= -
2
]
g 0.2 b= Psat = 2.86 MPa -
e Q Measured
0.1 j= — (alculated -
0.0 L1 i ] I
0 20 40 60 80 100 120
Power (kW)

Figure 6.2-2. Downcomer flowrate versus power.
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curves for three different operating pressures. As can be
seen, the agreement between calculation and experiment is
generally good. For the lower pressures (2.17 and 2.86
MPa), in particuiar, the shapes and magnitudes of the calcu-
lated downcomer flowrate vs. power curves are in excellent
agreement with the measured data. The calculated downcomer
flowrate vs. power curve for the case where the operating
pressure is 3.55 MPa is in good agreement with the data at
low power. But, at higher powers (greater than 50 kW) the
calculated downcomer flowrate tends to be larger than the
measured flowrate. This could be due to either inaccuracies
in calculating two-phase friction losses in the tube bundle,
or calculating too high a vapor volume fraction in two phase
regions, or both. If the calculated friction losses in the
tube bundle are too low, then the calculated downcomer flow-
rate will exceed the measured flowrate because the calcu-
lated loop losses must balaﬁce out the calculated natural
circulation driving head. If the calculated vapor volume
fraction is too high, then the calculated driving head will
be too large which results in calculating a larger downcomer
flowrate than is measured.

One of the objectives of the tests made on the Argonne
test loop was to determine the power, at a given pressure,
that caused a sustained oscillation of the downcomer flow-
rate. We attempted to simulate this situation by inputting
the measured critical power and performing a steady state

calculation. A transient was then run in which the power

§-11



was increased by 2 per cent at time 2zero, and the behavior
of the downcomer flowrate was observed. At all pressures
the calculated downcomer flowrate did indeed oscillate, but
the oscillation was damped rather than sustained. This
result is to be expected, since the moiel developed here
does not account for transport éffects in a detailed manner,
and the experimentally observed downcomer flowrate oscilla-
tion is greatly influenced by transport effects in the heat-

ed region.

6.3 RD12 BOILER TESTS

6.3.1 Background Information

The RD12 test loop is an experimentai facility at the
Whiteshell Nuclear Research Establishment in Pinawa, Can-
ada. It is a scale version of the heat transport system of
a CANDU (CANada Deuterium Uranium) reactor system designed
to provide experimental data for use in the validation of
analytic modeis for the transient behavior of such heat
transport systems. The test loop has scaled versions of the
major components of a CANDU system including heated sections
to simulate the reactor core, primary pumps, and natural
circulation U-~tube steam generators. Reference (M4) states
that the test loop primary fluid is HgO and not DgO,
which is the primary fluid in CANDU reactors.

A diagram of the test loop arrangement for the tests

discussed here is shown in Fig. 6.3-1. Details regarding
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the test loop design and operation can be found in

Refs. (M4) and (B3). A schematic of the RD12 steam gener-
ator is shown in Fig. 6.3-2a. The steam generator is in-
strumented to measure the following parameters:

1.) Primary inlet temperature;

2.) Primary outlet temperature;

3.) Primary pressure;

4.) Primary flowrate;

5.) Feedwater flowrate;

6.) Steam flowrate;

7.) Downcomer flowrate;

8.) Steam generator level; aqd,

9.) Vapor volume fraction at various elevations.

The list given above does not include all the measured
quantities available, just those quan?ities of interest to
us. .

Temperature measurements are made using both resistance
temperature detectors (RTDs) and thermocouples. The RTDs
have time constants on the order of 28 seconds, so they are
only used for steady state measurements. The thermocouple
time constants are on the order of 0.1 seconds, which is
fast enough to avoid having to account for sensor dynamics
during transient tests.

The RD12 steam generators have integral preheaters
(economizers) where the entering feedwater is heated before
mixing with the recirculating saturated fluid (see Fig. 6.3-

2b). This geometry is somewhat different from that for
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Figure 6.3-2b. Steam generator with integral preheater
(Ref. (1I2)).

which our steam generator model is developed. However,
during operation of the RD12 steam generator it was found
that there is a significant amount of preheater leakage
(Refs. (M4) and (M3)). That is, there is some mixing of the
feedwater with the saturated recirculating fluid in the
lower portion of the steam generator. We can approximate
the situation in our steam generator model by introducing
the feedwater at the bottom of the downcomer and using a
very small subcooled region volume located at the bottom of

the downcomer.
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The RD12 steam generators do not have steam separating
equipment. The two phase mixture exits the riser through a
perforated plate and then the steam separates from the water
by means of free separation.

' Both steady state and transient tests were performed
using the loop configuration shown in Fig. 6.3-1. During
the steady state tests measurements were made of the down-
comer flowrate and the riser inlet vapor volume fraction for
various powers and pressures (other parameters were also
measured, but only those listed are of immediate interest).
The transient tests are:

1.) Power increase;

2.) Power decrease;

3.) Primary flow decrease;

4,) Primary flow increase;

5.) Secondary pressure increase;

6.) Feed fiow transient; and,

7.) Oscillating secondary pressure.

Calculated results for the transients listed above, except
for the oscillating secondary pressure, are'presented in the
following sections. The calculation for the oscillating
secondary pressure was unsuccessful and the reasons why are
discussed in 6.3.10. The geometric input for the RD12 steam

generator is given in Appendix H.
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6.3.2 Steady State Tests

Data acquired during steady state tests were used to
determine some parameters relevant to two-phase flow model-
ing, in particular the drift flux model (Ref. (M4)). Figure
6.3-3 shows the slip ratio inferred from data taken in the
riser as a function of power. This plot clearly indicates
that the homogeneous model (slip ratio equal to one) for
calculating the vapor volume fraction (see Appendix A) is
inappropriate ani that a model accounting for the relative
motion between the phases should be used. The drift flux
model (Appendices A and C) satisfies this requirement. 1In
Appendix C we state that we use the following drift flux

parameters:

C = 1,13; and,

e

cg(p -9 )]
s vs
uvj 1.41 p2 J
Ls

However, data presented in Ref. (M4) and traansient calcula-
tions reported in Ref. (M4) indicate that the drift flux
parameters that are appropriate for the RD12 steam genera-

tors are:

C = 1,12; and,
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Figure 6.3-3. Slip ratio in riser vs. power (Ref. | M4)).
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aglp, o =~ Pyg) |4
2
Pis

u . = 2.54 (6.3-1)

v3

The coefficient 2.54 appearing in the correlation for Uy j

is obtained by fitting the data at a pressure of 4.6 MPa.

It appears that Eq. (6.3-1) is valid within a pressure range
of approximately 3.6 to 5.6 MPa. The secondary pressure
during all transient tes£s is within this range, so the use
of Eq. (6.3-1) to calculate Uy j does not introduce signi-
ficant error. Figure 6.3-4 is a plot of <uy>y versus

<{j> at 4.6 MPa using the drift flux parameters given above.
Also shown in this figure are experimental data taken at 4.6
MPa (Ref. (M4)).

Figures 6.3-5 and 6.3-6 are taken from Ref. (M4).
Figure 6.3-5 shows the experimentally determined steady
state vapor volume fraction at the riser inlet as a function
of steam generator power at various pressures. Figure 6.3-6
is a similar plot for the measured downcomer flowrate.
Before trying to- reproduce these curves analytically it is
necessary to determine values for the parameters Kggp and
Kp appearing in the momentum equation for the recircu-
lating flow (see Chapter 3). These parameters are chosen so
that the calculated downcomer flowrate curve matches the
experimental curve at 3.9 MPa. The parameters thus ob-

tained, by trial and error, are:
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o~

KSEP = 124; and,

K = 39.

It is interestihg to note that both the shape and the magni-
tude of the downcomer flowrate versus power curve can be
controlled by juggling the values of Kggp and Kp. This
observation has significant ramifications from a model adap-
tation viewpoint, in that it implies that both Kggp and
Kp are probable model adaptation parameters and can be
modified in order to correct for model deviations from ac-
tual plant performance. |

Now that all model parameters have been specified we
may compare model calculations to measured data. Fig-
ure 6.3-7 is a set of plots of the riser inlet vapor volume
fraction as a function of power for three pressures: 2.1
MPa, 4.1 MPa and 5.3 MPa., The calculations are in good
agreement with the measured data for,pressures of 4.1 MPa
and 5.3 MPa. For a secondary pressure of 2.1 MPa the calcu-
lated vapor volume fraction is greater than the measured
vapor volume fraction at all powers, although it follows the
same trend as the measured data. This discrepancy is most
likely due to the fact that the pressure, 2.1 MPa, is out-
side of the range of validity of Eq. (6.3-1), which is used
to calculate uyj. It is apparent that a larger value of

tyj than that obtained from Eq. (6.3-1) would result in

- 6-23
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better agreement between calculated and measured vapor vol-
ume fractions. Data presented in Ref. (M4) supports this
conclusion.

Figure 6.3-8 is a set of plots of the downcomer flow-
rate as a function of steam generator power for five pres-
sures: 5.3 MPa, 4.6 MPa, 3.9 MPa, 2.1 MPa, and 1.7 MPa.
Since thes measured data at 3.9 MPa are used to determine
Kggp and Kp it is not surprising that the calculated
downcomer flowrate is in excellent agreement with the data
at this pressure. The comparison is also excellent at a
secondary pressure of 4.6 MPa. The calculated results at a
pressure of 5.3 MPa are in good agreement with the measured
downcomer flowrate, although slightly high. At 2.1 MPa the
calculated downcomer flows are somewhat larger than the
measured flows at powers less than 1 MW and agreement is
good at higher powers. Some of the deviation between calcu-
lation and experiment seen here can be attributed to errors
in calculating uyj and losses in the tube bundle and ri-
sér, i.e. KSEP and KD. Although KSEP and KD are assumed to
be constant, tney are in reality dependent on flow condi-
tions in the tube bundle and riser. To some extent they
account for the distribution (in an integral sense) of the
pressure loss experienced by the fluid in the heated and
unheated upflow portion of the steam generator. This dis-
tribution certainly depends on the mean system pressure in a

boiling channel.
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Finally, calculated downcomer flowrates at 1.7 MPa
agree fairly well with the measured flowrates, although the
shape of the calculated downcomer flowrate curve is slightly
different from the shape of the measured flowrate variation
with power. As with the 2.1 MPa calculations, the differ-
ences can be partially accounted for by errors in calcu-

lating uvj and by using fixed values for KSEP and KD.

6.3{3 Additional Information for Transient Simulations

The fouling factor for heat transfer calculations still
needs to be specifiéd. Reference (M3) provides a number of
measured steady state primary side temperature distributions
and we used one of these measured curves to calculate a
nominal fouling factor. Table 6.3-1 shows the steam gener-
ator operating conditions for this calculation. The nominal
fouling factor obtained is 1.29 - 10"":1;2 - °K/W. This foul-
ing factor is used in all transient calculations. In Ref.
(M3) the fouling factor used is 1.25 - 10-"m? - °K/W, which
compares favorably with our value fbr the fouling factor.

The initial heat transfer rate for any given transient
is determined from a heat balance on the secondary side of
the steam generator using measured data. Thus, the initial

steady state heat transfer rate is given by:
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Table 6.3-1
Steam Generator Conditions for Fouling Factor Calculation.

Quantity Value
Power 1.05 Mwt
Steam Pressure 4.6 MPa
Feedwater Temperature 80°C
Primary Inlet Temperature 301°C
Primary Outlet Temperature 269.5°C
Primary Flowrate 6.4 kg/s
dp Ws(Hyg = Hpy)d

W = =
PiN (Hpy = Hogp) (Hry = Hoge)
(6.3-3)

In transients where the measured primary volumetric flowrate
changes, we vary the input primary flowrate by the same
fractional amount of the steady state flowrate. That is, if
the measured primary volumetric flowrate changes by a factor
of 0.5 based on the initial steady state volumetric flow-
rate, then we change the input primary flowrate by a factor

of 0.5 based on the initial steady state calculated primary

flowrate given by Eq. (6.3-3).
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Two level measurements are presented in Ref. (M4). The
level measurements presented are actually calculated from
static level measurements. The first level presented in
Ref. (M4), referred to in that work as the apparent level,
is calculated assuming that the measured static head is
caused by saturated liquid only. This assumption is proba-
bly not true when the water level is above the top of the
riser, since free separation is used inste;d of separators.
In addition, flashing can occur in the downcomer, which will
also affect the level. The second level presented in Ref.
(M4) is calculated in a manner that attempts to account for
these effects. Pressure taps in the downcomer are used to
measure the static head and the downcomer density is in-
ferred from this. The density of the riser flow (which can
be inferred from vapor volume fraction measurements at the
riser inlet) is assumed to prevail above the riser outlet in
the steam dome. These two densities along with a measure-
ment of the siatic head from the bottom of the downcomer to
the top of the steam generator are then used to calculate
the level. We use this technique to.calculate the level,
except we assume that the downcomer fluid does not boil.
Thus, the scheme used here to calculate the water level is
slighty different from that presented in Chapter 5. The

steps used in this case are:

n+1

TOT from:

1.) Determine M
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+ ar(wWhrl - 2t

n+l n
M s

TOT TOT

2.) Obtain Mggl (the advanced time steam dome - down-
comer mass content) from:
n+1 n+1 n+1 n+1
Msp Mror - Mpp - Mg
3.) Calculate the steam dome - downcomer mass
content that corresponds to a water level
coincident with the top of the riser. Call
n+1l
this mass content MCUT
n+1 n+l n+l n+1
Mcur VeorPvs * (Ysp = Vrop)Pes” * VsurPo
where,
Vrop £ Volume of steam dome above riser exit;

Vgp = Volume of steam dome - downcomer excluding
the small. subcooled volume at bottom of
downcomer;

Vgys = Volume of small subcooled region at bottom
of downcomer.
n+1 n+l

4,) 1If MSD 2 MCUT’ then the following equation is

is used to calculate Vy:
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—n+1 n+l n+1l n+1
o1 _ YrorPr  * @sp - Vrop)ss * VsusPo -~ Msp
v —-n+1 - n+1)
°Pr Pys
Otherwise we use:
n+1 n+1l n+1
ool o Ysfas * VsupPo ~ Msp
v ( n+l _ n+1]
Pes Pys
n+1
5.) Using Vv and the known steam generator
geometry we can calculate £:+1, the water

level at the advanced time.

6.3.4 Power Increase Test

The initial conditions used in the simulation of the
power increase test are given in Table 6.3-2. Plots of the
input used to conduct the simulation are shown in Fig. 6.3-
9. The measured and calculated responses of the RD12 steam
generator are shown in Fig. 6.3-10. The calculated riser
inlet vapor volume fraction is in excellent agreement with
the measured data. The same comment applies to the measured
and calculated level. The calculated downcomer flowrate
matches the measured downcomer flowrate for the first 25§
seconds, which is actually a period of steady state opera-
tion. As the power increase is initiated, the calculzted

downcomer flowrate first dips and then starts to increase.
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Table 6.3-2
Initial Conditions for Power Increase Test.

Quantity Value
Power 0.2704 MWt
Water Level* 0.2501 m
Downcomer Flowrate 2.366 kg/s
- Steam Pressure 4.6 MPa
Steam Flowrate 0.11 kg/s
Feedwater Temperature 79.55°C
Riser Inlet Vapor Volume 0.1751
Fraction
Primary Inlet Temperature 271.9°C
Primary Outlet Temperature 262.4°C
Primary Flowrate 5.66 kg/s

* Referenced to top of riser.

The measured downcomer flowrafe does not exhibit an initial
dip; rather, it starts increasing as soon as the power in-
crease starts. This difference in behavior between the
measured and calculated downcomer flowrates is probably due
to three dimensional effects that are not accounted for in
our one-dimensional model. In our one-dimensional, large
control volume model, the dip in the calculated downcomer

flowrate is caused by the increased boiling occurring in the
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tube bundle as the result of the increased heat transfer
rate. This increased boiling expels mass from our one-
dimensional volume resulting in an increase in the exit
flowrate and a decrease in the inlet flowrate (i.e. the
downcomer flowrate). This calculated decrease in the down-
comer flowrate is eventually offset by the increased natural
circulation driving head caused by the increased vapor vol-
ume fraction in the tube bundle and riser. In the actual
steam generator the increased boiling causes a three-dimgn-
sional redistribution of the flowrate rather than the one-
dimensional adjustment that we calculate, thereby softening
or eliminating the effect on the downcomer flowrate. Once
the calculated downcomer flowrate has recovered from its
initial dip, the csaslculated flowrate is in good agrgement
with the measured data.

The results for the primary outlet temperature (TCOLD)
and the secondary pressure must be considered together. As
can be seen, both the calculated cold leg temperature and
secondary pressure are less than the corresponding measured
gquantities. The calculated response of the4cold leg temper-
ature is directly linked to the calculated response of the
secondary pressure through the heat transfer rate. Thus, we
would expect to see the cold leg temperature follow the
trend set by the secondary pressure. The cold leg tempera-
ture is also affected by the bebaviop of the hot leg temper-
ature. The calculated cold leg temperature shows a less

marked increase than the measured cold leg temperature. The
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increasing hot leg temperature causes the calculated cold
leg temperature to increase, however, the decreasing calcu-
lated secondary pressure limits, or holds down, the increase
in the cold leg temperature. Therefore, the error in the
behavior of the cold leg temperature can be traced to the
error in the behavior of the calculated éecondary pressure.
The behavior of the calculated secondary pressure is strong-
ly influenced by the input steam flow, so it is reasonable
to assume that some of the error in the calculated pressure
can be attributed to the input steam flow. In addition, we
account for the integral preheater present in the RD12 steam
generator by using an approximation in our model which may
not properly represent the heat transfer dynamics, although
it is not clear what effect this has on the calculated cold

by temperature and secondary pressure.

6.3.5 Power Decrease Test

The initial conditions for the power decrease test
simulation are given in Table 6.3-3. Figure 6.3-11 shows
the inputs used to drive the simulation. The measured and
calculated responée of various steam generator parameters
are shown in Fig. 6.3-12.

The calculated and measured riser inlet vapor volume
fractions are in excellent agreement. The calculated steam
generator level is in good agreement with the data, ?lthough
after 40 seconds the calculated level is less than the meas-

ured level. This difference coﬁld be due to integration of
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Table 6.3-3
Initial Conditions for Power Decrease Test.

Quantity Value
Power 1.154 MWt
Water Level* 0.4410 m
Downcomer Flowrate 3.415 m
Steam Pressure 4.6 MPa
Steam Flowrate 0.4699 kg/s
Feedwater Temperature . 80.05°C
Riser Inlet Vapor Volume 0.4409
Fraction '
Primary Inlet Temperature 305.4°C
Primary Outlet Temperature 270.6°C
Primary Flowrate 6.208 kg/s

*Referenced to top of riser.

any error in the measured feedwater and steam flowrates used
as input. The calculated downcomer flowrate is in good
agreement with the measured downcomer flowrate, except for
the time period extending from 22 to 35 seconds. During
this time span the calculated downcomer flow shows a slight
increase before it starts to decrease. The reason for this
behavior is analogous to the reason given for the dip in the

downcomer flowrate in the power increase test, except here
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the decreased boiling in the tube bundle causes a "shrink"
in that volume resulting in a decrease in the exit flow and
an increase in the inlet flow. Again, we can attribute the
stronger response of the calculated downcomer flowrate to
using a one-dimensional model to represent a three-dimen-
sional effect. The increased calculated downcomer flowrate
also affects the calculated level and contributes to the
error seen between the calculated and measured levels.

The calculated pressure is in excellent agreement with
tLe measured pressure. The calculated cold leg temperature
matches the measured temperature except for the time span
extending from 28 to 60 seconds. In this interval the
calculated cold leg temperature is a little larger than the
measured cold leg temperature. This may be due in part to
the heat transfer dynamics associated with the integral
preheater, which are modeled approximately in our calcu-

lation.

6.3.6 Primary Flowrate Decrease Test

The initial conditioms for the primary flowrate de-
crease test are given in Table 6.3-4. The inputs used to
drive the transient are shown in Fig. 6.3-13. The measured
and calculated responses of the RD12 steam generator are
shown in Fig. 6.3-14.

The calculated riser inlet vapor velume fraction is in
excellent agreement with the measured results. The calcu-

lated level follows the same trend as the measured level,
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Table 6.3-4
Initial Conditions for Primary Flowrate Decrease Test.

Quantity , . Value
Power 1.178 MWt
Water Levelx* 0.4501 m
Downcomer Flowrate 3.383 kg/s
Steam Pressure 4.75 MPa
Steam Flowrate 0.4799 kg/s
Feedwater Temperature 80.05°C
Riser Inlet Vapor Volume 0.4391
Fraction
Primary Inlet Temperature 307.5°C
Primary Outlet Temperature 272.7°C
Primary Flowrate 6.317 kg/s

* Referenced to top of riser.

but with a marked difference in magnitude. The calculated
downcomer flowrate is greater than the measured downcomer
flowrate, which is consistent with the results obtained for
the level. It turns out that there is boiling in the down-
comer during this test, as demonstrated by Fig. 6.3-15,
which is a plot of the measured downcomer vapor volume frac-
tion versus time. In our model we do not allow boiling in

the downcomer. This is a major reason why the calculated
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and measured levels and downcomer flowrates do not ugree.
The presence of vapor in the downcomer decreases the driving
head for the recirculation flow and results in a sharp de-
crease in the measured downcomer flbw. In our model we
cannot account for this effect, which is why the calculated
downcomer flowrate is too high. The boiling in the down-
comer also tends to cause a "swell” in the level, so that
the measured level does not decrease as much as the calcu-
lated level. The fact that the calculated downcomer flow-
rate is too high also contributes to low calculated value
for the 1level.

The calculated pressure is in good agreement with the
measured pressure for the first half of the transient.
During the final 25 seconds of the transient the calculated
pressure is a little below the measured pressure, which may
be the result of error in the input steam flowrate. The
calculated cold leg temperature follows the same trend as
the measured cold leg temperature, except that it does not
respond as sharply as the measured data. Some of this error

is due to the approximation made in modeling the preheater.

6.3.7 Primary Flowrate Increase Test

The initial conditions for the primary flowrate
increase test are given in Table 6.3-5. The input used to
drive the simulation is shown in Fig. 6.3-16. Figure 6.3-17

shows the calculated and measured results for the test.
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Table 6.3-5
Initial Conditions for Primary Flowrate Increase Test.

Quantity Value
Power 0.7025 MWt
Water Level* 0.1010 m
Downcomer Flowrate 3.147 kg/s
Steam Pressure 4.6 MPa
Steam Flowrate 0.2861 kg/s
Feedwater Temperature 80.05°C
Riser Inlet Vapor Volume 0.3361
Fraction
Primary Inlet Temperature 306.6°C
Primary Outlet Temperature 264.8°C
Primary Flowrate 3.159 kg/s

* Referenced to top of riser.

the calculated result is high. The calculated level is in
excellent agreement with the measured level. The calculated
level is a little high towards the end of the simulation,
which is due, in part, to the integrated effect of input
feedwater flowrate errors. The calculated downcomer flow-
rate follows the same trend as the measured downcomer flow,
and reaches a final value somewhat smaller (by about

0.1 kg/s) than the measured value. The response of the
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The measured and calculated riser inlet vapor volume
fractions are in good agreement, although the calculated
vapor volume fraction is a little low. The calculated level
shows the same trends as the measured level, correctly ex-
hibiting level swell and shrink. For some portions of the
transient the calculated level is less than the measured
level, which, to some extent, can be attributed to integra-
tion of errors in the input feedwater and steam flowrates.
The calculated downcomer flowrate responds in the same man-
ner as the measured flowrate, although it appears to lag
behind the measured results.

The calculated pressure is in excellent agreement with
the measured pressure, except for a short period at 25 sec-
onds where the calculated pressure is a little high. The
calculated cold leg temperature is ir good agreement with
the measured temperature. Errors in the calculated tempera-
ture can be partially accounted for by the approximation

made regarding the integral preheater.

6.3.8 Secondary Pressure Increase Test

The initial conditions for the secondary pressure in-
crease test are given in Table 6.3-6. The transient input
boundary conditions are shown in Fig. 6.3-18. Figure 8.3-19
shows the measured and calculated results for the test.

The calculated riser inlet vapor volume fraction is in
good agreement with the measured vapor volume fraction ex-

cept for a time span extending from 12 to 20 seconds, where
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Table 6.3-6
Initial Conditions for Secondary Pressure Increase Test.

Quantity Value
Power 0.8363 MWt
Water Level* 0.4101 m
Downcomer Flowrate 3.235 kg/s
Steam Pressure 4.65 MPa
Steam Flowrate 0.335 kg/s
Feedwater Temperature 70.35°C
Riser Inlet Vapor Volume . 0.3664
Fraction
Primary Inlet Temperature 293.1°C
Primary Outlet Temperature 268.5°C
Primary Flowrate 6.557 kg/s

* Referenced to top of riser.

calculated downcomer flowrate at 10 and 18 seconds is more
pronounced than the response of the measured flowrate, but
this is probably due to using a one-dimensional model as
discussed in 6.3.4 and 6.3.5.

The calculated pressure is in good agreement with the
measured pressure, although the calculated pressure in-
creases less rapidly than the measured pressure and attains

a higher final value than the measured pressure. Some of
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the error observed here is probably due to error in the
input steam flowrate. The calculated cold leg temperature
is not in good agreement with the measured cold leg tempera-
ture, although the calculated temperature follows the cor-
rect trend with what appears to be an offset introduced by
the different values for the calculated and measured steady

state temperature..

6.3.9 Feedwater Transient Test

The initial conditions for the feedwater transient test
are given in Table 6.3-7. The inputs used to drive the
simulation are shown in Fig. 6.3-20. Calculated and meas-
ured results for the test are shown in Figure 6.3-21.

As can be seen in Fig. 6.3-21 the model is able to
track the measured water level response for about 230 sec-
onds. After 230 seconds the calculated level decreases
faster than the measured level and the calculation termi-
nates at 300 seconds when a breakdown in natural circulation
occurs (the model indicates that a breakdown in natural
circulation occurs - it is not known whether or not this
happens in the experiment.) The downcomer flowrate calcu-
lated during the simulation is in gdod agreement with the
measured downcomer flowf#te for the first 60 seconds of the
test. From about 60 to 200 seconds the calculated flowrate
is less than the measured flowrate, although it exhibits the
same trend as the measured flowrate. After 220 seconds, the

calculated flowrate decreases more rapidly than the measured
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Table 6.3-7
Initial Conditions for Feedwater Transient.

Quantity Value

Power 1.224 MWt
Water Level* 0.9510 m
Downcomer Flowrate 3.628 kg/s
Steam Pressure 3.85 MPa
Steam Flowrate 0.4902 kg/s
Feedwater Temperature 71.05°C
Riser Inlet Vapor Volume 0.4854
Fraction :
Primary Inlet Temperature 299.3°C

- Primary Outlet Temperature 260.6°C
Primary Flowrate . 6.060 kg/s

* Referenced to top of riser.

flowrate. The reason the downcomer flowrate is nearly con-
stant from 60 to 220 seconds is that for this time span the
water level is above the riser exit (zero reference level)
where equal static heads for the upflowing fluid and the
downflowing fluid cancel so that the flowrate is independent
of water level. Once the level falls below the riser exit
(below 0.0 m reference level) the decreasing static head

causes the downcomer flowrate to decrease.
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The calculated pressure is in excellent agreement with
the measured pressure for the first 20 seconds of the tran-
slent. After this the calculated pressure rises to a con-
stant value about 0.2 MP2 above the measured pressure.
Towards the end of the simulation the calculated pressure
increases rapidly. This happens because the model calcula-
tions indicate an approach to a breakdown in ratural circu-
lation, where the model rapidly becomes invalid. Thus,
model calculations beyond 270 seconds are suspect, since
after this time we are attempting to model a situation out-
side the range of model validity. The calculated cold leg
temperature basically follows the trend set by the calcu-
lated pressure, so that comments made regarding the validity
of the calculated pressure beyond 270 seconds apply equally
for the calculated cold leg temperature. Note that the
calculated cold leg temperature starts from a lower initial
temperature than the measured temperature, which introduces
some error in the calculated transient response of the cold

leg temperature.

6.3.10 Oscillating Secondary Pressure Test

In this test the condenser pressure was forced to os-
cillate in a sinusoidal fashion with a 0.2 Hertz frequency
and a 0.25 MPa magnitude. This resulted in a sustained
oscillation of the secondary pressure and steam flowrate.
The measured steam flowrate oscillation is described by the

following equation:
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ws = 0.38 + 0.21 sin (1.266 t)kg/s

As mentioned in 6.3.1, attempts to simulate this test were
unsuccessful. The major problem encountered is that the
calculated downcomer flowrate responds very sharply with
larger swings in magnitude than are observed for the meas-
ured downcomer flowrate. In fact, the calculated downcomer
flowrate becomes negative, indicating reverse flow from the
tube bundle to the downcomer; this condition is not observed
experimentally. Once the calculated downcomer flowrate
becomes negative, the simulation stops since the model de-
veloped nere cannot handie reverse flow.

It is not clear why the calculated downcomer flowrate
oscillation is of larger magnitude than the observed down-
comer flowrate oscillation. However, we do know that three-
dimensional effects are not accounted for in our one-dimen-
sional, large control volume model, and that these three-
dimensional effects tend to damp the downcomer response to
transient perturbations (see 6.3.4). Thus, a reasonable
explanation of the problem encountered in trying to simulate
this test is that three dimensional effects, particularly
flow redistribution in the tube bundle, are important, re-
quiring a more detailed spatial model of the steam gener-

ator.
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6.4 ARKANSAS NUCLEAR ONE - UNIT 2

6.4.1 Background Information

Arkansas Nuclear One - Unit 2 (ANO-2) is a Combustion
Engineering nuclear steam supply system (NSSS) with a rated
thermal power of 2815 MWt. The primary loop consists of the
reactor, pressurizer, two steam generators and four reactor
coolant pumps (see Fig. 6.4-1), with one hot leg and two
cold legs per steam generator. Normal operating parameters
for the steam generator are listed in Table 6.4-1 and geo-
metric input can be found in Appendix H. Further details
concerning plant systems and operation can be found in
Refs. (Gl) and (F2).

Durirg ine initial power ascension test program for
A;0-2, four pian. transient tests were conducted with the
speciflec zkijezrive of adding to the data base used in NSSS
design and sz{¢ty analysis. The tests were:

1.) & complete loss of forced primary coolant

flow (LOF);

2.) a full length control element assembly (CEA)

drop (FLCEAD);

3.) &a part length CEA drop (PLCEAD); and,

4.) a turbine trip (TT).

Some of the data generated during these tests were
processed (i.e. filtered) to remove noise components (see
Ref. (S4) for details on filtering process). According to
Ref. (S4) this filtering introduced a time delay between the

filtered and unfiltered data which was no greater than
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Table 6.4-1
Arkansas Nuclear One - Unit 2 Steam Generator
Design Operating Parameters.

Quantity Nominal Value

Primary Flowrate/Steam Generator 7592 kg/s
Primary Pressure 15.46 MPa
Primary Inlet Temperature 323°C
Primary Outlet Temperature 290°C
Steam Flowrate/Steam Generator 797 kg/s
Steam Pre:sure 6.18 MPa
Feedwater Temperature Full Power 233°C
Steam Generator Water Level¥* 10.43 m

* Referenced t: tube sheet.

1-2 seconds, but generally less than one second. Data ac~
quired during the turbine trip test was not filtered.

An important comsideration when comparing computer
calculations to measured data is instrument response time.
For most of the instruments used in the tests this is on the
order of 5 to 180 milliseconds. However, for the tempera-
ture sensdrs, which in this case are resistance temperature
detectors (RTDs), the response time, or time constant, is dn
the order of 5 seconds. This 1s not a negligible quantity

when looking at data acquired over a sixty second interval.
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Thus, it is apparent that comparisons of temperature predic-
tions by the computer code to measured temperatures must
somehow account for RTD performance. This is done by model-
ing the sensor response.

The sensor model used in this work is the sensor model
presented in Reference (S4) and is given by the following

differential equation:

dgdtgtz L I(t) ; $(t) (6.4-1)

where, ¢(t) sensor output;

I(t) sensor input; and,

T time constant of the sensor in seconds.
Equation (6.4-1) is a simple first order lag equation.

Discretizing Eq. (6.4-1) in a fully implicit manner yields

L1 (6.4-2)

where ¢80 is the sensor output for a given input, IB, at
time level n. Experimentally derived time constants are
listed in Table 6.4-2. Equation (6.4-2) is used to trans-
form calculated cold leg temperatures sb that they can be
properly compared to measured cold leg temperatures.

Since the hot leg temperature is input to the calculation,

we must invert Eq. (6.4-2) to obtain the sensor input
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Table 6.4-2
RTD Response Times

Response Tim2
Measured Response Used in Calcu-
Instrument Time (msec) lations (msec)
Hot Leg RTD 4753 £ 520 4753
Cold Leg RTD 4898 + 520 4898

temperature in order to obtain the corrected hot leg temper-

atures from the measured hot leg temperature. This yields:
T \
I = ¢ +rz -9 ) (6.4-3)

Thus, at time level n we use Eq. (6.4-3) to obtain the true
hot leg temperature from the measured hot leg temperature,
¢ 1, For the ANO-2 calculations At is 0.25 seconds.

The data for each test is presented in Ref. (S4) in the
form of plots of the significant parameters versus time for
each of the steam generators. These plots indicate that the
two steam generators respond differently during any given
transient; therefore, we simulate both ste;m generators
separately for each test, thereby effectively doubling the

e

number of test transients and broadening our data base.
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Difficulty in obtaining a steady state heat balance was
encountered when performing initialization calculations
using steady state data presented in Ref. (S4). There were
twe sources of troulle. First, the power calculated using
the given primary enthalpy drop and flowrate was not equal
to the stated power. Second, given the primary temperatuge
difference and the secondary pressure, using the nominal
fouling factor (the fouling factor obtained using nominal
steam gererator parameters) to calculate the heat transfer
rate via the log-mean temperature difference yielded a heat
transfer different from the stated heat transfer rate. 1In
addition, the power calculated using the primary enthalpy
drop, and the power calculated using the log-mean tempera-
ture difference were not consistent. To resolve these prob-
lems we make two adjustments for steady state calculaticns.
The first adjustment is that we use a value of the primary
flowrate that gives us a heat transfer rate that is consis-
tent with the stated power when used in conjunction with the
primary enthalpy drop derived from measurements. The second
adjustmernt is that we use a tube fouling factor which gives
us the measured power when we use the measured primary and
secondary temperatures in the log-mean temperature differ-
ence. Both the adjusted primary flowrate and tube fouling
factor may be different from measured or n;minal values.

The adjustments for each test study performed are shown in
Table 6.4-3. The reader will observe that only three test

transients are shown in Table 6.4-3, while four test
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Table 6.4-3

Primary Flowrates and Tube Fouling Factors Used in
Initialization Calculations for each Transient.

Primary
Test Transient Flowrate Fouling Factor
Nominal 7592 kg/s 2.775 + 10-°m?

- °K/W

Turbine Trip
Steam Generator 1
Steam Generator 2

104% Nominal
100.4% Nominal

79.7% Nominal
71.3% Nominal

Loss of Primary Flow
Steam Generator 1
Steam Generator 2

109.8% Nominal
113.9% Nominal

45.9% Nominal
68.4% Nominal

Full Length CEA Drop
Steam Generator 1
Steam Generator 2

100.8% Nominal
98.9% Nominal

56.9% Nominal
66.6% Nominal

transients were actually performed at ANO-2. Simulations of

the part length control element assembly drop were nrot per-

formed, since this is a relatively mild transient in so far

as the behavior of the steam generator is concerned, and we

felt that simulation of the transient would not yield any

significant information.

The feedwater temperature was not given in the test

data appearing in Ref.

(S4).
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temperature was inferred from a heat balance on the second-

ary side of the steam generator. That is,

All the quantities on the right hand side of the above equa-
tion are known, so Hey can be calculated. It is then a
simple matter of using steam tables to obtain Tgy. The
input time dependent behavior of the feedwater'temperature
is discussed for each transient separately when the tran-
sient itself is presented.

A final note regarding empirical or assignable pdram—
eters in the steam generator model. For the drift flux
parameters, Cp and uyj, we use the expressions given in
Appendix C. The loss coefficient at the bottom of the down-
comer, Kp, and the separator loss ccefficient, Kggp, are
assigned values that yield a calculated steady state full
power recirculation ratio (Wg/Wg) in the range of 4 to
5. We use Kp equal to 0.51 and Kggp equal to 100, which
gives us a calculated full power recircﬁiation ratio of 4.6
with a corresponding downcomer flowrate of 3601 kg/s.

Finally, in plots of cold leg temperature versus time
we have two curves corresponding to measured results and one
curve for calculated results. This is because the steam
generators of ANO-2 have two cold legs and each leg has a

separate temperature sensor. For the simulation results, on
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the other hand, we calculate only one plenum outlet tempera-
ture, which we call the cold leg temperature. If the fluid
in the outlet plenum is well mixed then the two measured
cold leg temperatures should be the same. Differences in
the measured temperatures for the two cold legs could be
caused by a bias in the calibration of.the RTDs or different
RTD response times (e.g., due to displacement of one of the

RTDs in its thermowell).

6.4.2 Full Length CEA Drop Test

The full length CEA drop test is a transient in which a
reactor trip did not occur. The test is initiated by drop-
ping the full length CEA nearest to the steam generator 2
hot leg and the transient is allowed to proceed until the
plant reaches a new equilibrium operating state. Because
the dropped full length CEA is near the steam generator 2
hot leg, the system response is asymmetric. That is, steam
generator 2 parameters respond faster and exhibit larger
swings in value than do parameters associated with steam
generator 1.

There is some problem in interpreting the steam and
feedwater flowrate data given in Ref. (S4). The measured
steady state feedwater flowratg is greater than the measured
steady state steam flowrate (by amounts up to 7.2 per cent
of full power steam flowrate). It is probable that this
difference in measured steady state flowrates can be ac-

counted for by fluid extracted through the steam generator
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blowdown line. The model developed in this work does not
account for steam generator blowdown flowrates, so we must
find a way to reconcile the difference in steam and feed-
water flows. One simple way to do this is to bias the feed-
water flow so that it is equal to steam flow in the steady
state and then apply this bias to the transieat feedwater
flowrate. This is the method we have chosen to use. We
simply equate the steady state feedwater flowrafe to the
steady state steam flowrate and during transient analyses we
subtract the steady state blowdown flowrate (which is simply
the difference between the measure” feed and steam flows in

the steady state) from the measured feedwater flowrate.

Steam Generator 1

The initial conditions for steam generator 1 in <the
full length CEA drop test are given in Table 6.4;4. The
input used for the short term (60 second) aﬁd long term
(600 second) calculations are shown in Figs. 6.4-2 and 6.4-
3. The feedwater flowrate is biased by -13.5 kg/s (-7.2 per
cent full power steam flowrate) for the entire transient.

The short term response of steam generator 1 is shown
in Fig. 6.4-4. The calculated cold leg temperature response
is in excellent agreement with the measured data. The cal-
culated pressure is initially in good agreement with the

measured pressure, but after about 15 seconds the calculated

pressure remains slightly below the measured pressure. The

.
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Full Length CEA Drop Initial Conditions, Steam Generator 1.

Quantity Value
Power/Steam Generator 695.5 MWt
Vater lLevel* 10.43 m (70%) %1
Downcomer Flowrate 3432 kg/s
Steam Pressure 6.42 MPa
Steam Flowrate 365.2 kg/s
Feedwater Temperature 205.0°C
Primnary Inlet Temperature 302.9°C
Primary Outlet Temperature 285.7°C
Primary Flowrate 7651 kg/s
Fouling Factor 1.580 + 10-°m2- K/W

* Referenced to tubesheet.

T Percent of instrument span (4.24 m), where lower in-

strument tap is 7.47 m above tube sheet.

calculated level is also in good agreement with the
data.

The long term response of steam generator 1 is
Fig. 6.4-5. The calculated cold leg temperature is

cellent agreement with the measured data, as is the

measured

shown in
in ex-

calcu-~-

lated pressure. The calculated level compares favorably

with the measured data at the start of the transient, but

aiter about 60 seconds the calculated level exceeds
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measured level, although it does follow the same general
trend as the experimental data. Some of the error in the
calculated level can be attributed to idealization of the
downcomer geometry in tpe model (Appendix K) and to the
integration of errors in the input feeawater flowrate (see

6.4.3 for discussion cf this effect).

Steam Generator 2

The initial conditions for steam generator 2 are given
in Table 6.4-5. The inputs used for the long and short term
calculations are shown in Figs. 6.4-6 and 6.4-7. The feed-
water flowrate for steam generator 2 is biased by -9 kg/s
(-1.1 per cent full power steam flowrate) for the duration
of the transient.

The short term response of steam generator 2 is shown
in Fig. 6.4-8. The calculated cold leg temperature is in
excellent agreement with the measured data. The calculated
pressure is also in good agreement with the data, although
it is a little high &uring the last 40 seconds shown. The
agreement between the calculated level and the measured
level is not good.

The long term response of steam generator 2 is shown in
Fig. 6.4-9. As can be seen both the calculated cold 1leg
temperature and the calculated pressure are in good agree-
ment with the plant data. The agreement between the calcu-
lated level and the measured level is poor. Some of the

error in the lével calculation is due to the integrated
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Table 6.4-5
Full Length CEA Drop Initial Conditions, Steam Generator 2.

Quantity Value
Power/Steam Generator 695.5 MWt
Water Level* 10.39 m (69%)7
Downcomer Flowrate 3415 kg/s
Steam Pressure 6.42 MPa
Steam Flowrate 371.4 kg/s
Feedwater Temperature 212.1°C
Primary Inlet Temperature 303.3°C
Primary Cutlet Temperature 285.8°C
Primary Flowrate 7508 kg/s
Fouling Factoer 1.848 « 10- T 2 - K/W

* Referenced to tubesheet.
1 Percent of instrument span (4.24 m), where lower in-
strument tap is 7.47 m above tube sheet.

effect of errors in the input feedwater flowrate, which will

now be demonstrated.

6.4.3 Sensitivity of Level to Feedwater Flowrate

In Chapter 5 we show that the steam generator model
behaves as a free integrator, since one of the eigenvalues
of the linearized model equations is zero. We also show

that the addition of a feedwater controller model eliminates
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the zero eigenvalue. Therefore, it seems reasonable to
conjecture that using a contrcller model to calculate the
feedwater flowrate rather than inputting the measured feed-
water flowrate (which may be in error) could help us draw
coaclusions regarding the sensitivity of level to feedwater

flowrate. We use the simple control equation given in Chap-

ter 3, i.e.

= CuWg = We) + C (2% = 2)

(6.4-4)

Using trial and error to match the calculated level with the
measured level shown in Fig. 6.4-9 gives us the following

control parameters for Eq. (6.4-4):

L* = 10,43 m = Nominal Level
02 = 1.0

The results obtained for the full length CEA drop (steam

generator 2) using the feédwater controller model and keep-
ing all other inputs the same are shown in Fig. 6.4-10. As
can be seen by comparing Figs. 6.4-9 and 6.4-10, the calcu-
lated cold leg temperature and calculated pressure have not

been affected significantly by us;ng the controller model.
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However, there has been a marked improvement in the agree-
ment between the calculated and measured levels.

The quéstion we must now ask is: How different is the
calculated feedwater flowrate from the measured flowrate?
This question is answered Ly looking at Fig. 6.4-11, which
is a plot of both the measured and calculated feed flows.
Here we see that the difference between the measured and
calculated flowrates is not as large as might be expected,
demonstrating that the level is sensitive to the feedwater
flowrate. In fact, this analysis shows that errors in cal-
culated level are strongly influenced by the integrated
error in the feedwater flowrate input to the calculation, a
fact that should be kept in mind when making comparisons

between measured and calculated levels.

6.4.4 Turbine Trip Test

All the information used to perfcrm the simulations of
the turbine trip test are taken from Ref. (S4). For each
steam generator there are two sets of calculations. The
first set of calculations simulates the first sixty seconds
of the transient, since éxpanded scale plots for this time
period are available in Ref. (S4). The second set of calcu-
lations simulate the transient for a 200 second interval.
For this time period the plots provicded in Ref. (S4) are on
a compressed scale, making 1 difficult to accurately pick
off the transient boundary conditions for input to the simu-

lation. The long term plots in Ref. (S4) extend for five
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minutes; however, at 200 seconds the reactor coolant pumps
are tripped initiating a flow coastdown. Since we already
have a flow coast test (see 6.4.5) performed under carefully
controlled conditions, we feel that it is unnecessary to
simulate the turbine trip beyond 200 seconds.

During the turbine tfip test an emergency feedwater ac-
tuation signal was generated. This occurred 6.1 seconds af-
ter the trip of the main turbine and resulted in the intro-
duction of cold feedwater into the steam generators. The
emergency feedwater is drawn from the condensate storage
tank, which is maintained at a temperature of 24°C (Ref.
(F2)). Unfortunately, data is not available indicating how
the feedwater temperature varies with time. We assume that
the feedwater temperature ramps down from its initial value

to 24°C in three seconds, and that this ramp starts at seven

seconds.

Steam Generator 1

The initial conditions prevailing for steam generator 1
in the turbine trip test are given in Table 6.4-6. The
sequence of events during the test are as follows: At time
zero the main turbine is manually tripped. Two seconds into
the test the bypass and atmosphere dump valves start to
open, and are fully open one second later. At 21 seconds
the bypass valves begin to close, while an atmospheric dump
valve remains open. The bypass valves are fully closed at

29 seconds. Meanwhile, at 6.1 seconds, the reactor trips
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Table 6.4-6
Turbine Trip Initial Conditions, Steam Generator 1.

Quantity Value
Power/Steam Generator 1382 MWt
Water Level* 10.52 m (72%)7
Downcomer Flowrate 3572 kg/s
Steam Pressure 6;24 MPa
Steam Flowrate 805.5 kg/s
Feedwater Temperature 246.2°C
Primary Inlet Temperature 320.5°C
Primary Outlet Temperature 289.4°C
Primary Flowrate 7908 kg/s
Fouling Factor 2.213 » 10-%> m? - K/W

* Referenced to tubesheet.
T Percent of instrument span (4.24 m), where lower in-
strument tap is 7.47 m above tube sheet.

and an emergency feedwater actuation signal is generated.

At 200 seconds the reactor coolant pumps are tripped, ini-
tiating a flow coastdown. At this point we stop the turbine
trip simulation. Note that from 7 to 10 seconds we ramp
down the feedwater temperature from 246.25C to 23.85°C. The
short term and long term inputs for the turbine trip test

are shown in Figs. 6.4-12 and 6.4-13.

6~100



<L 10000
p
)
=
O 5000-
e
g
& ~— |
ég 0.0 ' ! * T ; ! ; ] ; ] "
0.0 10.0 200 300 400 500 600
<
S 10000
-~
=
EO« 500.0 -
3
-+ 0.0 T i 1 ] T ] v i i ) v
N 00 100 200 300 400 500 600
340.0
320.0-
&)
-]
-
Bt
3000
I I —
00 100 200 300 400 500 60.0

Time sec

Figure 6.4-12. Short term input for turbine trip,
steam generator 1.

6-101



<2 10000
Qf
~4
s
S 5000,
P
~
8
r:__' 0.0 v ] ' I v 1 N I i
0.0 40.0 80.0 1200 160.0 200.0
<
) 1000.0
~
=
5
B d o'o v L ! t * | ' ] v
n 0.0 40.0 80.0 120.0 160.0 200.0
330.0
8100
° -d
.g 4
=
250.0 -
270.0 | | | \ﬁ

| N i M 1
0.0 400 80.0 1200 1600 200.0
Time sec

Figure 6.4-13. Long term input for turbine trip,
steam generator 1.

6-102



The measured and calculated responses of steam genera-
tor 1 are shown in Figs. 6.4-14 and 6.4-15.

Looking at Fig. 6.4-14 we see that the short term cal-
culated response of both the steam generator level and cold
leg temperature are in excellent agreement with the measured
data. The calculated secondary pressure is different in
magnitude from the measured pressure, but exhibits essen-
tially the same trend. The differences in the calculated
and measured pressure could be due to the following:

1.) Inaccuracies ig the input steam flowrate

history;

2.) The use of a thermodynamic equilibrium model;

and,

3.) Error in the input feedwater temperature.

It should be stressed that the turbine trip transieant is, in
its initial moments, a rather fast transient and as such is
a severe test of our computer model, which was designed to
simulate slow transients, such as the later stages of the
turbine trip test. Nonetheless, the results for the first
sixty seconds are encouraging and demonstrate that the model
can be used to simulate this type of transient.

The results of the long term simulation are shown in
Fig. 6.4-15. The calculated cold leg tenperature response
is in excellent agreement with the measured data. The cal-
culated pressure is in excellent agreement with the measured
pressure at times greater than 80 seconds. The calculated

water level deviates from the measured water level for times
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Figure 6.4-14. Short term turbine trip response, steam
generator 1. )
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Figure 6.4-15. Long term turbine trip response, steam
generator 1.
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greater than 60 seconds. Some of the error in the calcu-
lated water level can be attributed to the geometric repre-
sentation of the downcomer in the model. Also, there is the
fact that the steam generator model has a free integrator
(see Ch. 5.8 and Ch. 6.4.3) and therefore tends to integrate
any errors in the input steam and feedwater flowrates re-

sulting in inaccuracies in the calculated level.

Steam Generator 2

The initial conditions pertaining to steam generator 2
for the turbine trip test are given in Table §6.4-7. The
sequence of events for the transient are the same as those
given for steam genmerator 1. The short and long term inputs
are shown in Figs. 6.4-16 and 6.4-17.

The calculated short term response for steam generator
2 is shown in Fig. 6.4-18. As can be seen, the calculated
pressure exiiibits the same trend as the measured pressure
with some difference in magnitude. The short term behavior
of the cdld leg temperature reveals an interesting effect.
That is, the measured temperature for one cold leg responds
in a very different manner than the measured temperature for
the other cold leg, with the calculated cold leg temperature
response falling somewhere between. The difference in meas-
ured responses 1is probably due to differences in seating of
the RTDs within their thermowells. The transient response
of the calculated level compares favorably with the measured

1e€é1. Part of the error in the calculated error can be
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Table 6.4-7
Turbine Trip Initial Conditions, Steam Generator 2.

Quantity Value
Power/Steam Generator 1382 MWt
Water Level* 10.52 (72%)T
Downcomer Flowrate 3572 kg/s
Steam Pressure 6.24 MPa
Steam Flowrate 805.5 kg/s
Feedwater Temperature 246.2°C
Primary Inlet Temperature 321.3°C
Primary Outlet Temperature 288.8°C
Primary Flowrate 7619 kg/s
Fouling Factor 1.953 - 10-5 m? K/W

* Referenced to tubesheet.
T Percent of instrument span (4.24 m), where lower in-
strument tap is 7.47 m above tube sheet.

attributed to the idealized geometry used in the model and
to the integration of errors in the input steam and feed-
water flowrates.

The long term response of steam generator 2 is shown in
Fig. 6.4-19. The calculated pressure is in good agreement
with measured data. The calculated cold leg temperature is
also in good agreement with the data. Finally the calcu-

lated long term level response exhibits dynamics that are
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Figure 6.4-19. Long term turbine trip response, steam
generator 2.
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similar to the measured level dynamics with some differences

in magnitude.

6.4.5 Loss of Primary Flow

The sequence of events for the test are as follows:
All four reactor céolant pumps are manually tripped at
0.0 seconds. At 0.2 seconds a reactor trip occurs, followed
by a2 turbine trip at 0.4 seconds. At one second the turbine
bypass valves start to open, and are fully open one second
later, at which time the atmospheric dump valve opens. At
six seconds the atmospheric dump valve closes. The turbine
bypass valves start to close at 12 seconds, and are fully
closed at 18 seconds. The simulation continues until
360 seconds after the pumps trip.

The data presented in Ref. (S4) for the time dependent
primary flowrate are not adequate for simulation purposes.
Therefore, we use our own model for the primary flow coast-
down. For this situation we must consider two time periods:

1.) The initial part of the transient during

wvhich the primary flowrate decreases rapidly;
and,

2.) The time after which natural circulation in

the primary system is established.

For the first time span we use a model developed in
Ref. (T1). This model is represented by the following dif-

ferential equation:

6-112



aw
dt

]
o

+ aW

Integrating this equation subject to the initial condition

that W = Wj at t = 0 yields:

v 1
W T (6.4-5)

where b = aWj. The constant b is determined by fitting
Eq. (6.4-5) to the initial 30 seconds of the primary flow

data presented in Ref. (El). This fitting gives:

W 1
W, T T+o0.i15¢t (6.4-6)

Once natural circulation is established we must use a
different scheme from the one given above to calculate the
primary flowrate. Natural circulation conditions are com-
mocly characterized by the flow-to-power ratio, which is
defined to be the ratio of the primary flowrate, expressed
in percent of the full power flowrate, to the reactor power,
expressed in percent of full power. We do not know what
this ratio is for ANO-2. However, in Ref.. (N1) the flow-
to-power ratio for the Calvert Cliffs plant, which is also a
Combustion Engineering designed NSSS similar to ANO-2, is
given as being in the range of 4.2 to 4.8. Therefore, we

choose to use a flow-to-power ratio of 4.5 for ANO-2. 1In
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order to make use of the flow-to-power ratio for calculating
the primary flowrate we need to know the reactor decay pow-
er. In Ref. (N2) the decay power is modeled as the sum of

four decaying exponentials. That is,
0 i
QDie (6.4-7)

4
Q) = |

decay power expressed as a fraction of full

"W

where QD(t)

power ;
Qgi z contribution of decay group i expressed as a
fraction of full power; and,
Ai = decay constant of group i, sec -1,

To obtain the primary flowrate at any t.me once natural cir-
culation has been established we simply multiply Eq. (6.4-7)
by the flow-to-power ratio and the full power primary flow-
rate. The transition from Eg. (6.4~86) to Eq. (6.4-7) occurs
when the primary flowrate calculated using Eq. (6.4-6) be-
comes less than that obtained using Eq. (6.4-7). The time
dependent primary flow.ate calculated using the scheme given
above and then used in the loss of flow tests is shown in

Fig. 6.4-20.

Steam Generator 1

The initial conditions pertaining to steam generator 1
in the loss of primary flow test are given in Table 6.4-7.

The transient calculations consist of both short term
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Table 6.4-8
Decay Power Parameters (Ref. (N2)).

0 -1
Group Qni Ai(sec )
1 0.0054 0.7600
2 0.0150 0.1309
3 0.0185 0.01299
4 0.0260 3.4679 - 10"

(60 sec) and long term (360 sec) simulations, and the input
for these calculations are shown in Figs. 6.4-21 and 6.4-22.
When the steam and feedwater flowrates presented in
Ref. (S4) are used &s input to the calculations, the simula-

tion results differ significantly from the measured data.
The agreement between model calculations and measured plant
data can be improved by adjusting the steam and feedwater
flows. In fact, simulations described in Ref. (M5) use
steam and feedwater flows adjusted within instrumentation
uncertainties to improve agreement between model calcula-
tions and plant data. We modify the steam and feedwater
flowrates for steam generator 1 by subtracfing 17.4 kg/s
from the flowrates read off the plots provided in Ref. (S4),
effectively biasing the feed and steam flows by -17.4 kg/s,

or -2.2 per cent of the full power steam flowrate. This
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) Table 6.4-9
Loss of Primary Flow Initial Conditions, Steam Generator 1.

Quantity Value
Power/Steam Generator 1148 MWt
Water Level* 10.43 m (70%)7T
Downcomér Flowrate 3592 kg/s
Steam Pressure 6.38 MPa
Steam Flowrate 607.9 kg/s
Feedwater Temperature 208.9°C
Primary Inlet Temperature 313.4°C
Primary Outlet Temperature 288.2°C
Primary Flowrate 8336 kg/s
Fouling Factor 1.273 « 10~ W 2 . K/W

* Referenced to tubesheet.
T Percent of instrument span (4.24 m), where lower in-
strument tap is 7.47 m above tube sheet.

difference can be attributed to instrument calibration error
and a possible offset in the plots of the measured steam and
feed flows.

Tie response of steam generator 1 during the first
60 seconds is shown in Fig. 6.4-23. The calculated pressure
closely follows the measured pressure, with a slight offset
from the measured pressure for times greater than 15 sec-

onds. The calculated cold leg temperature is in gcod
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response, steam generator 1.
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agreement with the measured cold leg temperatures. The
calculated level follows the same trend exhibited by the
measured level, although it is somewhat greater than the
measured level from 4 to 30 seconds and then less than the
measured level after 30 seconds. Some of the error in the
the calculated level can be attributed to the use of an
idealized geometric representation (see Appendix K) of the
downcomer geometry and the integration of errors in the
input steam and feed flows.

"igure 6.4-24 shows the long term response of steam
generator 1 during the loss of primary flow transient. Both
the éalculated pressure and cold leg temperature are in
excellent agreement with tﬁe corresponding measured quanti-
ties. The calculated water level response is somewhat dif-
ferent from the measured water level response. Some of the
error in the calculated water level response is due to ide-
alization of the downcomer geometry and integration of er-

rors in the input steam and feed flows.

Steam Generator 2

The initial conditions for steam generator 2 in the primary
loss of flov test are shown in Table 6.4-10. As discussed
for steam generator 1, the steam and feedwater flowrates are
modified to improve agreement between model calculations and
plant data. For steam generator 2, the steam and feed flows
are modified by subtracting 12.7 kg/s from the measured

flowrates throughout the transient. This is equivalent to
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Table 6.4-10
Loss of Primary Flow Initial Conditions, Steam Generator 2.

Quantity Value
Power/Steam Genersator 1148 MWt
Water Level* 10.43 m (70%) %
Downcomer Flowrate 3585 kg/s
Steam Pressure 6.38 MPa
Steam Flowrate 617.8 kg/s
Feedwater Temperature 215.6°C
Primary Inlet Temperature 313.3°C
Primary Outlet Temperature 289.1°C
Primary Flowrate 8605 kg/s
Fouling Factor 1.898 -« 10~ %2~ K/W

* Referenced to tubesheet.
T Percent of instrument span (4.24 m), where lower in-
strument tap is 7.47 m above tube sheet.

using a constant bias in the flowrates of -1.6 per cent of
the steam flow at full power. The.input used for both the
short term and long term 6a1cu1ations are shown in Figs.
6.4-25 and 6.4-26.

The measured pressure for steam genefator 2 during the
loss of primary flow test is not presented in Ref. (S4).
Therefore the measured pressure is not shown in Fig. 6.4-27,

which shows the short term response of steam generator 2.

6-123



Figure 6.4-25.
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The calculated cold leg temperature is in good agreement
with the measured data for the sixty second interval. The
calculated short term response of the level is similar to
the measured level response. Some of error in the calcu-
lated level response can be accounted for by reasons given
previously.

The long term response for steam generator 2 is shown
in Fig. 6.4-28. The calculated cold leg temperature is in
excellent agreement with the measured data except for a
slight dip and recovery in the calculated values between 60
and 240 seconds. This calculated cold leg temperature be-
havior matches the secondary pressure behavior, as it should
since the heat transfer link between the primary and second-
ary systems provides a direct path for the secondary pres-
sure to influence the cold leg temperature. The calculated
level exhibits the same trend as the measured level during
the early stages of the test. However the calculated level
does not follow the measured level from about 45 seconds
6nward. Instead, the calculated ievel stays below the meas-
ured level and shows signs of recovering as the transient
calculation progresses. The error here is due, in part, to
the integration of uncertain input steam and feedwater flow-
rates, as well as idealizations made in order to model the

downcomer geometry.
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6.5 PROGRAM EXECUTION TIME

An important goal of this work is to develop a steam
generator model for use in a real time manner during power
plant operation. Therefore, we are interested in the pro-
gram execution time. The parameter of significance here is
the Real Time-to-CPU Time ratio. When this ratio is greater
than ocne the program execution is faster than real time.

The computer model was developed using an Amdahl 470
V/8 mainframe computer. This computer is much faster than
the on-line computers in power plants, so the Real Time-to-
CPU Time ratio for the program run on this machine must be
much greater than one if we wish to achieve real time compu-
tation on plant process computers. These process computers
. must also perform other calculations in parallel with the

model calculations, reinforcing the need for very fast

Table 6.5-1
Real Tine-to-CPU Time Ratio for Execution ’
on Amdahl 470 V/8 System.

Time Real Time-
Step Print to-CPU
Size(s) Frequency With Print
0.10 Every 10 47
steps

0.25 Every 4 107
. steps

0.40 Every 5 200
steps
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program execution. Table 6.5-1 shows the Real Time-to-CPU
Time ratios for a variety of time step sizes with interme-
diate printing of computation results (no printing of inter-
mediste results yields speeds that are up to 14 per cent
faster). The numbers given in Table 6.5-1 indicate that the
execution speed of the computer model appears to be suffi-
ciently fast to ensure real time modeling even on a smaller
computer system.

In an attempt to gain insight relevant to the execution
speed of the program on a plant computer, the model was run
on a Digital Equipment Corp. VAX 11/780 computer. This
computer is similar in size and speed to the types of compu-
ters being used in current generation power plants. The
Real Time-to-~CPU Time ratio for running the program on the
VAX machine using a 0.25 second time step with print outs at
eve;y second of simulation time is 11. This result supports
our conclusion that the model is probably fast enough for
use in a real time manner. ‘

There are two additional comments concerning the pro-
gram developed in this work:

1.) There are no simplifications made with re-

spect to:

a.) Reynolds number dependence. of friction
factors;

b.) Used full exponentials rather than

approximations;
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2.)

c.) No streamlining of property computa-
tions by neglecting to update proper-
ties with weak dependence on state
variables; aad,

d.) No pre-computation and storage of
groups of geometric parameters.

This could aid in obtaining even faster com-

putational speeds; and,

The amount of computer memory used when per-

forming calculations is not evaluated rela-

tive to the amount of storage space available
in plant process computers. This may require
reducing the storage requirements of the
comput:r model and the difficulty of doing

this is not addressed here.
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Chapter 7

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1 SUMMARY

The objective of this work is to develop and validate a
fast running computer model of a vertical U-tube steam gen-
erator, This model has & variety of applications in power
plant technology. The model can be used as part of a Safety
Parameter Display System (SPDS). The SPDS is to be used to
aid in the rapid and accurate diagnosis of plant faults, as
well as routine monitoring of significant plant parameters.
These functions réquire fast running models of IiImportant
power plant components. The model can also be used to pro-
vide information in signal validation efforis and in fault
detection and identification (FDI) systems. In addition,
this model coupled with other plant component modelé can be
used by operators to make projections of the consequences of
contemplated control actions. Finally, this model bridges
the gap between simple pot-boiler type models and the more
complex, CPU-time-consuming computer codes used for detailed
design and safety studies.

The model is developed using a first .principles appli-
cation of the one-dimensional conservation equations of
mass, momentum, and energy. The secondary side of the steam
generator is divided into four large control volumes. Two

of these volumes are the tube bundle region and the unheated



(two-phase) riser region. Two other volumes are obtained by
dividing the steam dome - downcomer into a saturated region
and a subcooled region. The mass and energy conservation
equations are integrated over these large control volumes to
eliminate the space derivative, resulting in a set of cou-
pled, nonlinear ordinary differential equations in time.

The momentum equation is jintegrated around the recirculation
loop, which results in a single nonlinear ordinary differen-
tial equation in time.

The primary side is divided into three volumes: the
inlet plenum, the outlet plenum, and the volume within the
tubes of the tube bundle. The mass and energy conservation
equations are integrated over each primary volume and com-
bined to obtain three coupled, nonlinear ordinary differen-
tial equations in time.

The model equations are forward time differenced and
solved using the numerical scheme presented in Chapter 5.
The stability characteristics of the numerical scheme are
investigated by linearizing the equation system.

Two salient features of the model are the incorporation
of the loop momentum equation and the retention of all non-
linear effects. The inclusion of the integrated momentum
equation allows us to track the water 1ev¢1 during tran-
sients without having to resort to artifices such as empir-
ical fits of level as a function of inventory or vapor vol-

€

ume. The fact that the model is nonlinear permits us to



model transients with large changes from nominal operating
conditions, which would not be the case for a linear model.
The finel step in the model development is validation.
This step is important because it serves as a check on model
fidelity and it allows us to determine the limits of model
applicability. The model calculations are compared to ezx-
perimental results or to results obtained using other compu-
ter models. This model is validated over a wide range of
steady state operating conditions and a spectrum of tran-
sient tests ranging from turbine trip events to a milder
full length control element assembly drop test. The results
of the validation effort are encouraging, indicating that
the model is suitable for application to a broad range of
operational transients. Equally important is the execution
speed of the computer model. Real Time-to-CPU-Time ratios
for running the computer program on an Amdahl 470 V/8 compu-
ter range from 47 to 200, with integration time step sizes

of 0.1 to 0.4 seconds respectively.

7.2 CONCLUSIONS

Based on model development, particularly model valida-
tion, we can draw the following conclusions:

1.) Execution Time—Real time execution of

the model appears to be achievable. Real
Time-to-CPU~Time ratios on a large mainframe
computer (Amdahl 470 V/8) range from 47 -to

200 using integration time step sizes of 0.1



2.)

to 0.4 seconds respectively. The Real Time-
to-~-CPU Time ratio for execution on a Digital
Equipment Corp. VAX 11/780 computer is 11
with an integration time step size of 0.25
seconds. It should be noted that extrapo-
lating the executiorn time results obtained
here to plant process computers is at best
uncertain and can even be misleading. Plant
process computers, which are generally mini-
computers, come in a variety of sizes and
types that are application oriented, making
it difficult to draw any definitive conclu-
sions regarding execution time of our compu-
ter model on a plant process computer witho:t
actually running the model on one of these
machines. However, given the Real Time-to-
CPU Time ratios achieved on the mainframe
computer, it appears that real time use of
this model on plant process computers is

feasible.

Validation—Model calculations agree well

with measured data. One requirement for the
model is that it be reasonably accurate, but
pinpoint accuracy is not necessary. The

model developed here fulfills this require-
ment for transients within its range of ap-

plicability. The development goal of real
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3.)

time execution of the computer model dictates
that the model be simple. This implies that
some plant events, specifically severe acci-
dent scenarios, cannot be followed. However,
the model is shown to be applicable to a
broad range of operational transients occur-
ring on rather long time scales. It is not
intended for use in modeling severe accidents
or situations where there is a significant
departure from normal operation, such as
steam generator dry-out.

Sensitivity to Input—The model calcula-

tions for secondary pressure and steam gener;
ator level are sensitive to the input feed-
water and steam flowrates. This sensitivity
is due to the fact that the model integrates
any persisting error in the input steam and
feedwater flowrates thereby affecting the
mass and energy storage rates for the entire
steam generator. These integrated effects
show up as errors in gross steam generator
parameters such as secondary pressure and
steam generator water level. Using the model
on-line would require good "information reli-
ability"; that is, validated steam and feed-

water flowrates obtained from sensor
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4.)

S5.)

processing software that generates best esti-
mate values of measured quantities.

Sensor Dynamics—Whea using this model,

either on-line or to perform simulations for
comparison to real plant data, sensor dynam-
ics must be taken into consideration. The
worst known offender, from a response time
viewpoint, is the Resistance Temperature
Detector (RTD), which can have a time con-
stant on the order of tens of seconds. Sen-
sor outputs used as input to the calculations
must be corrected to account for sensor dy-
namics. Similarly, model calculations should
be processed through sensor models in order
to obtain quantities that can be compared to
measured data.

Adaptation of Model Parameters-—The shape

and magnitude of downcomer flowrate versus
power curves can be modified or adjusted to
reproduce measurements by adjusting coeffi-
cients used in the calculation of tube bundle
inlet and outlet pressure losses. This ob-
servation has significant implications with
respect to parameter adaptation, which is the
process of adjusting model constants, or
parameters, in order to improve model agree-

ment with observed plant performance.



6.)

7-)

8.)

Drift Flux Parameters—The parameters

Co and Uy j appearing in the drift flux

modql should be determined, if possible, for
a given application of the model. These
constants affect the calculation of the vapor
volume fraction in the two-phase regions of
the steam generator and therefore have a
direct impact on the calculation of downcomer
flowrate and steam generator water level, as
well as the secondary pressure.

Excessive Downcomer Flow Response—The

calculated downcomer flowrate responds more
stroﬁgly to transient perturbations than does
the actual downcomer flowrate. This is prob-
ably dues to multidimensional effects that
tend tc soften, or damp, the actual downcomer
flowrate response. These multidimensional
effects are not accounted for in our one-
dimensional, large control volume representa-
tion, and these effects are most important in
the tube bundle region where three-dimen-
sional flow redistribution softens the re-
sponse of the downcomer flowrate.

Alternate Model Inputs—The use of water

level and pressure as model inputs (to re-
place feedwater flow and steam flow) is not

practical. The reader is referred to
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Appendix G for a complete discussion of this

modified steam generator model.

7.3 RECOMMENDATIONS FOR FUTURE WORK

We can make several recommendations regarding areas

requiring further investigative effort:

1.)

2.)

Model Realignment—During powver plant op-

eration it is expected that the model will

drift from actual plant performance. Methods

must be developed that will allow realignment
of the model with the power plant (e.g. ad-

Just model water level to agree with the

measured value). These methods are con-

strained by:

+ the methodology must execute in real time
or faster; and,

+ the methodology must be able to use exist-
ing sensor information to infer the values
of model state variables that are not
measured.

Parameter Adaptation—Methods for on-~line

parameter adaption remain to be developed.
The adaptation process must corrgctly identi-
fy model deviation from plant performance and
having done this select and adapt appropriate
model constants (e.g. parameter expressing

fouling of heat transfer surface). The



3.)

4.)

adaptation process should be developed within

the following guidelines:

» operation must be real time or faster;

+ methods are needed to distinguish between
disagreements caused by sensor inconsis-
tencies or by a need to up-date (adapt)
model constants; and,

. the model constant adaptation must not
negate the validation of the model.

Extended Range of Operation—At suffi-

ciently low powers the steam generator is in
a pot-boiler mode of operation, with separate
liquid levels in both the upflow and downflow
portions of the secondary side. The model
developed here is not capable of simulating
this situation. The model should be extended
to account for this mode of operation and the
transition from a natural circulation mode to
a pot-boiler mode, as well as the transition
from pot boiling to natural circulation.

Tube.Bundle Uncovery—This is a further

extension of the pot boiler mode of operation
to the case where steam generato; inventory
is low enough to cause uncovering of the
tubes in the tube bundle, effectively reduc-

ing the heat transfer rate.



5.)

60)

Downcomer Reverse Flow—The model devel-

oped here implicitly assumes flow in one
direction only. Although situations where
there is net flow from the tube bundle into
the downcomer are rare, it may be advisable
to be able to simulate these conditions in
view of the fact that program execution now
terminates when reverse flow conditions are
calculated to occur,

Alternate Model Inputs—The last recom-

mendation given here applies to weork dis-
cussed in Appendix G. Here we simply state
that methods for using transient water level

and pressure to calculate transient steam and

- feedwater flowrates require further investi-

gation. Since steam pressure and water level
are measured by multiply redundant sensors,
there are significant fault detection incen-
tives for using this approach. Implementa-
tion of this approach is not straightforward;
the problems that arise and possible solu-

tions are discussed in Appendix G.



Appendix A

TWO PHASE FLOW

The purpose of this appendix is to present basic defi-
nitions and principles of two-phase flow. The emphasis here
is on aspects of two-phase flow which are of immediate and
practical interest for the steam generator model developed
in this work. More detailed and sophisticated treatments of
the subject may be found in References (Cl1) and (Ll1).

In two-phase flow it is important to distinguish be-
tween local and average quantities. This is due to.the
discontinuous nature of a flow field consisting of two dis-
tinct phases. We will deal primarily with cross-section
averaged quantities. The cross-sectional average of an

arbitrary variable, F, can be written as (Ref. (L1)):

where A is the total flow cross-sectional area.
The local vapor volume fraction, or local void frac-
tion, is defined to be the time-averaged local volumetric

fraction of vapor in a two-phase mixture. That is



a = v = v (A-2)

where the subscript 2 indicates the liquid phase and v de-

notes the vapor phase.

The cross-sectional averaged vapor volume fraction,

<a>, is given by:

a)> = [[a dA (A-3)

A

Ve will refer to <a> as the vapor volume fraction with the
understanding that we mean the cross-sectional vapor volume

fraction. Equation (A-3) is often written as:

AV
{a> = m (A-4)

We can also define two other cross-sectional average

quantities (Ref. (L1)):

[/JF (1 - a) aa]
Fod = “Ta@ =G

(1 - a)Fz>
(1 - <a>)

(A-5)



[ffFva dA] <aF_ >
<F_»> B —— = e
vy (Aa ) {a>

These two definitions are essentially averages of phasic
parameters over the area of the phase in question.

In general, the velocities of the two phases in a mix-
ture are not equal. For example, in a heated channel with
boiling the vapor velocity exceeds that of the liquid. Ve
define the slip ratio, S, to be the ratio of the average
vapor velocity to the average liquid velocity, or:

<uv>v

ST (A-6)

The volumetric flux of each phase is defined to be the
volumetric flowrate of the phase in question divided by the

total cross-sectional fiow area, or

‘ <Qi>
<J i> = 5 i=24,v (A-7)
where
<Qi> = Ai<ui>i i=2,v (A-8)



Using Egs. (A-2), (A-4) and (A-5) yields

(Jz> (1 - <u>)<uz>z = (1 - a)uz>

(A-9)

<jv> <a><uv>v = <muv>
The total volumetric flux of the mixture, <j>, is defined to
be the sum of the individual volumet-ic fluxes; it is also
the velocity of the cérter of volume of the mixture.

In the analysis of two-phase flows there are three
qualities of interesf. The first is the thermodynamic equi-
librium quality, xe, which is obtained from the energy

equation and is written as,

(H' - H)

e ~ (Hgg - Hy Q) (A-10

This is the quality one would measure if the flowing mixture
was adiabatically isolated and allowed to reach equilib-
rium. Note that xo may be either positive or negative,
and can exceed unity.

The second quality of interest is the flow quality,
which is defined to be the true flow fraction of vapor,
regardless of whether or not a state of thérmodynamic equi-

librium exists. It can be written as:
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<p vuv>v(a >

pv<uv>v<a> + pz<u£>£(1 - <ad)

. _ <pvuv)v<a>
{pud
(A-11)
This can also be written as:
(H' - H,‘)

In Eq. (A-12) we have omitted the subscript s since we are
not assuming thermodynamic equilibrium. The flow quality is
always in the range of 0.0 to 1.0. Comparing Egs. (A-10)
'and (A-12) shows that in equilibrium bulk boiling x and xg
are eduivalent. Note also that by combining Eqs. (A-11) and

(A-12), and manipulating the result we obtain:

H = Lpul> (A-13)

The static quality, xg, is the last quality of inter-

est. It is simply the mass fraction of vapor, or

PS
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p_A

vV Vv
x = (A-14)
8 (vav + °2A2)

The static quality and the flow quality are related by

Sx

X S .
a5 - ?T—:—;gy (A-15)

Density is defined to be the average mass per unit
volume. In keeping with this definition, the density of a

two-phase mixture is the volume weighted density, given by

p = [[[fe, av + [[[p, aV] (A-16)

= (1 - (a))pz + (a)pv

Other phase weighted quantities may be defined in a similar

fashion, e.g.

[(1 - &a>),U + <adp U ]
= 2L v Vv (A-17)

3

The mass flux is defined to be the total mass flowrate

divided by the cross-sectional area, or
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p£<uz>z(1 - <)

L
G A (1 - x)
- pv<uv>v(a)
x
(A-18)
This last equation implies
<x> - (X <>
1= <) (E;) S [ =<y ! (A-19)

Equation (A-15) can be solved for <a> to give the vapor

volume fracticn-quality relation,

(ad = X (A-20)

pV
[x + s 5 @ - =]

This equation can be used to calculate <o once x and S are
known. In reality, however, it is difficult, if not impos-
sible, to determine the slip ratio. To circumvent this
problem, the assumption commonly is made that both phases
have the same velocity (S=1). This is referred to as the
homogeneous flow assumption. A more general vapor volume
fraction-quality model, known as the drift flux model, was
developed by Zuber and Findlay (Ref. Z21)) and will be pre-

sented here. One can write,
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u, = Jj + (u, - J)

which is simply an identity. Using a local form of

Eq. (A-9) yields,

J, = i +a(u, - 3

Averaging over the cross-sectional area,

Gy = <aP + <a(u, - §» (A-21)

The drift velocity, Uyj, is defined to be the vapor volume
weighted average velocity of the vapor phase with respect to

the center of volume of the mixture. That is,

<a(uV - 3>
Uy = 7B (4-22)

Zuber and Findlay also defined a distribution parameter,

Co, such that

= Saj> -
Co Zas<3> , (4-23)

Thus, C, is equal to the ratio of the average of the prod-

uct of j and a, to the product of the averages of each
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quantity. Substituting Egs. (A-22) and (A-23) into

Eq. (A-21) yields,

Gy> = Coldr<ad + ug<ad (A-24)

which can be solved for vapor volume fraction,

<3y

€ <35 + u (A-25)

<a>
vj)

But, <j,> = G %~ and <j,> = G Ll;:—il so Eq. (A-21) becomes,
v 2

¢a> = 5 = i (A-26)
{Colx + (;f) a - o] + 4

The distribution parameter, C,, accounts for the ef-
fect of a nonuniform vapor volume fraction and volumetric
flux distribution and gives a measure of the global slip
arising from the averaging of a nonuniform vapor volume
fraction profile. The drift velocity, Uy > accounts for
the effect of the local relative velocity of the two phases.

Comparing Eqs. (A-20) and (A-26) we find that the slip

ratio in the drift flux model is given by,



[x(C, - 1)o, ] (pgugy)
8= %" T,a-ol *ed- o]

If Cy is set equal to unity and uyj is equated to zero,
we find that the drift flux model reduces to the‘homogeneous
filow model. See Appendix B for more discussion on the dis-
tribution parameter and the drift velocity.

The final topic of interest in this discussion of two-
phase flow is the pressure gradient due to frictional loss-
es, In single-phase flow the frictional pressure gradient

is commonly expressed in terms of the dynamic head. That

is,

2
_(9p = K- G- _
(@, = % (a-27)

where K is an empirical, irreversible loss coefficient. 1In
pipe flow, wall friction can be used to find a similar

quantity:

(A-28)

=
[
Urt

In Eq. (A-28), f is the Darcy-Weisbach friction factor and
Dp is the equivalent hydraulic diameter of the flow chan-
nel. See Appendix C for further information regarding the

Darcy-~-Weisbach friction factor and the hydraulic diameter.
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It has been experimentally observed that the frictional
losses in a two-phase flow are, in general, substantially
greater than the losses for a single-phase liquid flow hav-
ing the same mass flux. The standard approach that has been
used to correlate two-phase friction losses is to define a
two-phase multiplier, ¢fo, which is equal to the ratio of
the two-phase frictional pressure gradient to the equivalent
saturated single-phase (liquid only) frictional pressure

gradient. That is,

d
2 laday (A-29)
fro T T(ap) "
dz/ s

Thus,

2
K e G
LS 2
dz) 2 (zpzs ) . 4y, (A-30)

The two-phase multiplier is a function of, at least, flow
quality, system pressure and the mass flux. See Appendix C

for a discussion of the correlations used for the two-phase

multiplier.
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Appendix B

GENERAL CONSERVATION EQUATIONS

In this appendix we will derive a general set of one-
dimensional conservation equations for a fixed control vol-
ume.* In the presentation we will use a single reference
pressure to evaluate all system fluid properties at any
given instant of time. The reference pressure is allowed to
vary with time. This assumption allows us to eliminate
sonic effects from our model, which is desirable from a
numerical standpoint since inclusion of these effects has a
negative effect on integration time step size (Refs. (H1l),
(M2) and Pl1)). The single feference pressure assumption
also permits us to make fewer entries to fluid property
routines during calculations.

The use of a single reference pressure to evaluate all
system fluid properties is justifiable on the basis that
pressure drops in the system are small compared to the ref-
erence pressure and that occurrences on a sonic time scale
are not to be followed. The single pressure assumption does
not permit compression when the local pressure increases, so
pressure and velocity perturbations propagate at an infinite
velocity. In this sense, the single pressure assumption is

* Extension to some situations in which the control volume
is not fixed is straightforward. See Section 3.3.



analogous to the use of a rigid body in solid mechanics. 1In
reality, local fluid accelerations can be caused by local
pressure changes without the immediate acceleratiorn of fluid
at locations far removed from the disturbance. In our sin<
gle pressure model, however, a change in the applied pres-
sure drop will immediately accelerate fluid particles at all
locations in the control volume. Therefore, the momentum
conservation equation must be integrated over the control
volume. The implications of this single pressure assumption
with respect to the solution of the conservation equations

are discussed in section B.5.

B.1 MASS CONSERVATION EQUATION

The conservation of mass principle states:

Mass Mass Mass
, |Storage - Inflow + Outflow

1]
(=]

Rate Rate Rate

For a fixed control volume, V, with a surface, S, this be-

comes (Ref. (M1)),

2 ffeav + []ol-dd = O (B-1)
v s

For our purposes we can make the following simplifying as-

sumptions:

1) One-dimensional flow, as shown in Figure B-1.

2) Flow is predominantly normel to the channel area.



S+AS

Figure B-1. Channel Geometry



3) The thermodynamic state and fluid velocity are
uniform (bulk average values) over a given flow
area at any instant of time.

As a result of these assumptions, Eq. (B-1) becomec:

L N * (B-2)

dt IN ouT

where

M = [[[ pdV; and
v

W o= if pu_dA = opAu_

B.2 ENERGY CONSERVATION EQUATION

The conservation of energy principle states:

Energy Energy Energy
Storage - Inflow + Outflow = 0

Rate Rate Rate
Mathematically,
%? [[] pedV - + [[ p(e +B ) ued§ = q-P (B-3)
o]
' S
where
2

u .
e U+ 5 + gh
q = Heat transfer rate to the control. volume; and

P = Power extracted from the control volume.
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For situations of interest to us, the kinetic and potential
energy terms (u2/2 and gh) are negligible when compared to

the fluid internal energy term (U). So Eq. (B-3) becomes:

-g—t j‘{f pUdV  + ij oHu-d§ = q - P (B-4)

where the definition of enthalpy (H = U + p/p) has been used
in the surface integral. Applying the same assumptions that
were used to obtain Eq. (B-2) yields:

dE

it = (WH)IN - (WH)OUT + q - P (B-5)

where

E = [ff oUdv
v

B.3 MOMENTUM CONSERVATION EQUATION

The conservation of momentum principle is:

omentum Momentum Momentum Sum of
Storage - Inflow + Outflow = Forces Acting

Rate Rate Rate on the
Control Volume

Mathematically this can be written as:

oo
o

[ otdv  + [f (pWyhedd = Zff pa§ + [[f edav
v s s v

+ [] T._ds
s v

(B-6)
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where —ff pd§ is due to the normal pressure forces; and

[/ ?wds is due to the tangential friction forces.
S

In applying Eq. (B-6) to curved flow paths, we will not deal
explicitly with forces generated by centripetal accelera-
tion. VWe will represent these effects only in cases where
turning losses are important, and then by use of appropriate
loss coefficients. For’our channel model (Fig. B.l) the
pressure force term becomes:

s+As
-éf PAS = —(Phlg,,s * (PA)g + [ (» g:) ds
A s

S+As
- "i (a D) ds

The frictional force térm becomes,

[[ T ds = -SIAS ¥ tdz]ds
S w s |/ Wetted w
Perimeter
S+AS
= - / rwdz] ds
s -WP

If the magnitude of the gravitational acceleration, g, is

taken to be constant, the body force term'can be written as:

. . s+As
f‘{f gdV = - | (feg sin & dA)
S
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where 6 is the angle of the flow direction measured from the
horizontal. In addition, the first term of Egq. (B-6) can be

replaced by:
N S+As
JI] eudv = [ (][ pu_dA) ds
v s A
and the second term becomes:
2 2
é[ (pu)d-d§ = ({f pusdA) . o - (ij pusdA)

Substituting these results into Eq. (B-6), dividing by as,

and taking the limit as As approaches zeroc gives:

- (if pu_da) + (£{ pu2da)

ks

= -A

(-4

s - [ 1,92 - [[ pg sin e dA
wp A

Using assumptions 2 and 3 of Section B.1 yields

aW 2 (ww?\ = adR._,gasine - [t od2  (B-T)
at " 3s \& WP
where
vt o= A& o u? aa (B-7a)
w2 A

In order to evaluate the frictional term id Eq. (B-7), an

empirical correlation based on the fluid dynamic head is



commonly used. This correlation takes the following form:

ép Tw e = §:DZA
where f is an empirical friction factor (see Appendix C).
Substituting'this expression into Eq. (B-7) and dividing by

A, which is constant in time, gives:

in’

2
E+l§_(v'w == _Q-M-pgsine
A A 3as \ A s 20D. A2

Yh

-]
ct

Because of the single pressure assumption mentioned at the
beginning of this appendix we must integrate this expression

along the flow path, which results in:

S+AsS 2
] w 1 v'W
L 3t a 98 * £ ad ( A ) = (Pyq = Poyut)

‘ 2
s+As S+AS K. W
- J SEL!LE ds - | pg sin 6 ds - y 1 12
s 2pDhA s - i 2piAi

(B-8)

The last term in the above equation accounts for shock and
turning losses (recoverable and unrecoverable pressure loss-
es). Since the volume is fixed, the first term in this

equation becomes:

s+As W st+As

F@oe - & [ (Das

0+
k)
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~If, in addition, we make the following definitions:

1 = s}.As d_s.; .
s A
s+As W
Ve | ] @as| /1
s
Ap = Pin Pout °’ and,
s+As Tl S+A s z+Az
F = | '% d (vAW ) + E!L!LE ds + [ pg sin e ds
s s 2pDhA Z
2
+ z Kiwi
2
i 2°iAi
then Eq. (B-8) becomes:
dw
I it - Ap - F (B-9)

which is our final form of the control volume momentum equa-
tion. Note that ¥ is essentially the average channel flow-
rate, so that Eq. (B-9) is in fact used to represent the
behavior of the average flowrate.

A final note as regards the quantity v'. The v' for
single-phase flow is simply equal to 1/p, if the velocity
distribution is considered to be approximately uniform at

all cross-sections. In two-phase flows v' can be determined



by expanding Eq. (B-7a) into components for each phase, as

follows:

= A 2 = A_ 2 2
v' 5 /] pu_ dA 5 I] e, <u, > dA + /] pz<uzs>sz]
W< A WA, A,

From Eq. (A-14) we can write:

xW

<uvs>v = m; and
, = (1 - x)W
ALTPR ) (T - <a>)p, A
Thus,
v! = A_ ff ._.__x_w;...szq.ff (1 - x)W szI
w2) i °v [Kede A P2 | T = <)o A] f
v A 2
v 2
. szv (1 - x)2A2
= — 4
<a>2Apv a - <u>)2Apz

But,<a> = Ay/A and (1 -<a>) = A; /A so,in two-phase flow:

2
1 - x)
+ T = <55, (B-10)

B.4 ENTHALPY REFERENCE POINT AND THE ENERGY EQUATION

The mass and energy conservation equations as derived

in Sections B.l1 and B.2 are .
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at = Yin- VYour (B-2)
and

df . (WH).,_ - (WH)...+q - P (B-5)

at IN OUT

If we multiply Eq. (B-2) by H* and subtract the result

from Eq. (B-5), we obtain:

M
S -w P = (W -] - [WE - B ]yt a-P

(B-11)

Equations (B-2) and (B~5) are theoretically correct,
and when tpey are solved simultaneously and precisely, no
problem arises. If they are solved approximately or out of
step, then Eq. (B-11) is preferred. This can be demon-
strated by noting that Eq. (B-5) as it stands is not inde-
.pendent of enthalpy reference point, while Eq. (B-11) is. A
change in enthalpy reference point results in a numerical
change in Eq. (B-5) if Eq. (B-2) is not satisfied pre-
cisely. Equation (B-11), however, does not exhibit this
characteristic because only differences in enthalpy appear.
To demoﬂstrate that this is the case we will take a closer
look at Eq. (B-11). The right hand side of this equation
clearly involves only differences in enthalpy. This is not
clear for the left hand side of the equation. We will show,
however, that the left hand side of Eq. (B-11) is not influ-
enced by enthalpy reference point. Startiﬁg with the

expression,

.
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dE
at - ™ &t
and substituting,
V1 Vi
E = [(pU)dV M = [pdV ,
0 0

where Vi is the region volume, yields,
d d
gel/emav] - B¢ [ [oav]

Using the Leibnitz rule for this expression (for generality

Vi is allowed to vary),

[(200/2t)AV + (pU)y (dV,/dt) - H¥[[(3p/at)AV + pg (dV,/dt)|
1 1

Expanding the derivatives,
[p(3U/3t)dV + [U(3p/3t)dV - H*[(3p/3t)dV
+ [ng)vIHbvlldvlzdt
Substituting U = H-p/p, .
[o[3H/3t - 3(p/p)/3t]dAV + [H*(3p/3t)dV - [(p/p)(23p/3t)dAV

- H*[(3p/3t)dV + [pvlﬁv - pvl— H*pvljdvl/dt
1

or,

Jel3H/3t - a(p/p)/3t]aAV - [(p/p)(3p /3t)dV (B-12)
+ lpviﬁvz H*) - pv%dvl/dt + [H*(3p/at)dV - H*[(3p/at)dvV
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The first term in this expression involves tﬁe derivative of
enthalpy, which is independent of reference point. The sec-
ond term does not involve enthalpy at all and the third term
has & difference in enthalpy. To show that the last two
terms taken together are independent of enthalpy reference
point, we shall assume that the enthalpy reference point is

perturbed by a constant amount, §H This yields,

ref®

x -
[(H A+ SH, o) (3p/3t)dV - (H* + GHref)f(ap/St)dV
and, since GHref is a constant, we obtain,

JH*(3p /3 t)dV - H*¥[ (3p/3t)dV

which is the same expression we started with, demonstrating
that the last two terms of Eq. (B-12) are independent of.
enthalpy reference point. Thus Eq. (B~11) is independent of

enthalpy reference point.

B.5 APPLICATION OF CONSERVATION EQUATIONS

The set of conservation equations we derived in the
preceding sections of this appendix comnstitute the channel
integral model (Ref. (M2)), which is a single control volume
version of the methods used in the body o6f this thesis.

These equations are:

B-13



dM

dat IN (B-2)

B _pe ¥ . [w-m9] - [WEH-EO] gyp+a- P

(B~-11)
Momentum
1{ = ap-F (B-9)
where
M = fpdv 3
A
E = [ pUdV ;
v
L
I = %_s_, and
0
L
ds
P = ‘{ WK-/I (B-13)

The method used to solve these equations merits further

discussion. Consider a vertical, heated channel in which

B-14




*

fluid is flowing upward. The initial conditions for this
system are assumed to be kaown, as is the steady state fluid
enthalpy distribution. The pressure drop, Ap, across the
channel is fixed and is small relative to the system pres-—
sure, which is constant. We also assume that we know the
equation of state relating H and p. The chanrel inlet en-
thalpy, HiN, and the channel heat input are known func-
tions of time. The conservation equations (Egs. (B-2),
(B-11), aﬁd (B-9)) together with the definition 6f Vv (Eq.
(B-13)) allow us to predict the time-dependent behavior of
H and W.

oUT’ OUT’
In order to evaluate Eq. (B-13) for W, we need to know

W W

IN®

‘the transient axial profile of the flowrate. For simplicity

we will assume that the profile has been established so

that: !

VW = YlwIN + Y2wOUT (B-14)

where
Yy + Yo = 1

since in steady state wIN is equal to WOUT' which is equal

——

to W.
Solving Egq. (B-2) for wOUT and substituting the result

into Eq. (B-14) yields
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] = W + O (B-15)

IN dt
Substituting Egs. (B-14) and (B-15) into the energy equation

‘(Eq. (B-11)) gives,

Both E and M can be written as functions of the average
channel enthalpy, . If we assume that the transient

enthalpy profile is similar to the steady profile, then

xH
0

YaHiy * Y4Hour (B-17)

where Yg and Y, can be determined a priori. Thus, Eg. (B-16)

becomes
af _ 1
dat o] [q - W(Hgyy - HIN)] (B-18)
where
- dE _ dM
¢ == = (Hpy + v Hyyp)

dft d#
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Equations (B-18) and (B-9) are used to determine H#’, df/dt,
and W. Equation (B-17) can then be used to determine Hoge -

We can write Eq. (B-15) as

- co -
Wy = ¥ o+ EI [aq - W(Hygp - HIN)] (B-19)

where

o
(X
]
)
N
2, |
=’ =

Equation (B-19) gives us wIN once we know dﬁ/dt. Thus,
WiN is not determined from a differential equation, but

from an algebraic relation between our two state variables W
and H. Finally, we can rearrange'Eq. (B—14)‘to give us

Your:

= 1. (7 - -
Your 15 W -vy¥ (B-20)

This example is meant to show how the conservation
equations are used to obtain the solution for a simple
problem. The method can be easily extended for use in more

complex problems.,:
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Appendix C

EMPIRICAL CORRELATIONS

The purpose of this appendix is to present the correla-

tions used in this thesis.

C.1 VAPOR VOLUME FRACTION

' In Appendix A we developed the drift flux model for the
calculation of the vapor volume fraction. In this represen-
tation we need correlations for the distribution parameter,
Co’ and the drift velocity, uvj' In order to gain greater
insight into the meaning of these parameters, it is useful

to rewrite Eq. (A-24) as:

<3y
o = Gl +uyy (C-1)
But,
<uv>v = <auv>/<a>
so Eq. (C-1) becomes,
<uv>v = C°<J> + uvj- (C=-2)

Equation (C-2) indicates that a plot of the vapor mean vel-

ocity, <uy>y, versus the average volumetric flux is a



straight line with a slope of Cy and an intercept equal to
Uyj. Such a plot is shown in Fig. (C-1). If both the

vapor volume fraction and the volumetric flux profiles are
uniform, then the distribution parameter, by definition, is
equal to unity. If, in addition, the drift velocity is
zero, then the flow is homogeneous, as shown in Fig. (C-1).
For a fully developed, saturated two-phase upflow in a round
duct, the vapor volume fraction and volumetric flux distri-
butions are not uniform; the profiles tend to be axisymmet-
ric with their maximum values at the center of symmetry. In
this case Cy is greater than one. (See Fig. C-2.) There

is also local élip between the phases so that uyj is

greater than zero. This situation is demonstrated by the
upper line in Fig. /£-1)., For the case of subcooled boiling
where the vapor wolum. Fraction is highest near the wall of
the duct, Cy is l«ss thsr one (Ref. (Z21) amd (I1)).

It is apperent fvom the upper curve in Fig. (C-1) that
the mean vapor velocity is equal to the drift velocity.where
the average volumetric flux, <j>, is zero. This suggests
that the drift velocity is closely related to the terminal
rise velocity of a vapor bubble. In Reference (L1) the
general form of the bubble rise velocity is derived by ac-
counting for the forces acting on a vapor bubble and then

performing fractional analysis. The result is:



Drift Flux Model

Weighted Mean Vapor Velocity
vs Volumetric Flux
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Figure C~1 (Ref. (Z1))
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og(p, . - P07 1/4
: " Kb r 2; Vs } (C-3)
L Pes

This equation corresponds to experimental results in the
churn-turbulent bubbly flow regime, with the constant, Kg,
given variously as 1.41 or 1.53. It has been found that in
vapor-dispersed-flow regimes the effect of vapor volume
fraction and volumetric flux profiles dominates the relafive
motion between the phases (Ref. (Il1)). Thus, vapor-dis-
persed-flow regimes are well represented by Eq. (C-3), the
churn-turbulent bubbly flow correlation.

As stated previously, the distribution parameter, C,,
is given by the slope of a plot of the mean vapor velocity
versus the average ~olumetric flux. Experimental results
for fully developed bubbly flows plotted in this manner
indicate that the value of Cy lies in the range of i.l to
1.2 (Ref. (I1)). For the churn-turbulent bubbly flow re-
gime, the data is well represented when C, is equal to
1.13.

In this work we are primarily interested in the vapor-
dispersed-flow regimes. Conseguently we shall adopt Eqg.
(C-3) with Ko equal to 1.41 as the correlation for the
drift velocity, and we shall use a distribption parameter,
Co, of 1.13. A good fit to the above equation for uyj

when Ko is taken to be 1.41 is:

= (6.4100*10"17)p - (5.7794*10"%)p + 2.0957*107}

uvj



C.2 FRICTIONAL PRESSURE DROP

In Appendices A and B, we stated that the frictional
component of the single-phase pressure gradient is commonly

expressed in terms of the dynamic head by:

- (4e = £ . g2 -
(dz )1¢ £+ G“/20,D, (C-4)

where f is the Darcy-Weisbach friction factor and Dp is

the equivalent hydraulic diameter of the flow channel. The
equivalent hydraulic diameter is defined to be equal to four
times the flow area divided by the wetted perimeter. The
friction factor for turbulent flow is generally wriften as a
function of the Reyﬁolds number (Re = GDp/u). Specif-

ically,

f = CRe®

where C is usually given as 0.316 or 0.184 and corresponding
values of n are -0.25 or -0.2 (Ref (R1)). We shall use the
second set of numbers, C = 0.184 and n = -0.2, since these
values give a better fit over a wide range of Reynolds
numbers.

The two-phase frictional pressﬁre gradient is usually
expressed as a multiple of the equivalent saturateg liquid

frictional pressure gradient. That is,
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/22) = ¢2 ™ (QE)
\dz 2 L0 dz s

where ¢fo, the two-phase Qultiplier, is a function of at
least flow quality, pressure, and mass flux (Refs. (L1) and
(E1)). A well-known two-phase multiplier correl..ion is
that developed by Martinelli and Nelson (Ref. (M10)), with a
flow effect correction factor developed by Jones (Ref.

(J1)). 1In this correlation 4’30 is written as,
82 = 2(x, 0, _/o..) *+ (<G>, p) (C-6)
L0 * Yes’Tvs ’

where ¢2( x , pzs/pvs) is the original Martinelli-Nelson
correlation, and where Q(<G>, p) is the mass flux correction
factor developed by Jones. A good fit to the Martinelli

correlation is given by (Ref (L1l)):

[+]

62 = Ji1.2 |28 - a1 x0-82¢40 (C-7)
Pys

The Jones correction is:
r
{G> =~ Go -8
1.43 + —_  (0.07 - 7.35*10 "p)
Go

for <G> < Go (C-8)
Q 1 :

Go -8
1.43 + G 1) (0.17 - 6*10 “p)

for <G> > Go

Cc-7



where p is in pascal; <G> is in kg/m2-s; and Go = 950
kg/m2-s, This two-phase multiplier correlation is the one

used in this work.

C.3 HEAT TRANSFER

In this work we use a log-mean temperature difference
approach to calculate the primary to secondary heat transfer

rate. The heat transfer equation is simply

Qg = UvoATLM (C-9)
where
Uo = overall heat transfer coefficient based on the
outer area of the tubes;
Ao = total tube outer area; and
ATLM = log-mean temperature difference.

The overall heat transfer coefficient is:

A r 2n(r_J/r,)

%]_ = 2 v =20 i, %— v T, (C-10)

o) P i t ]
where
Ai = total tube inner area;
ry Ty = tube outer and inner radii, respectively;
Kt = tube material thermal conductivity;
o = fouling factor to account for degraded heat

£ transfer due to the buildup of corrosion
products on tube surfaces;

Cc-8



h = primary side convective heat transfer coeffi-
P cient; and

secondary side convective heat transfer coeffi-
cient.

s

In order to calculate Uy from Eq. (C-10) we require
correlations for the primary side and secondary side heat
transfer coefficients. The primary fluid is a subcooled
single-phase fluid, and single-phase convective heat trans-

fer coefficients are correlated by the following equation:

Nu = C, rRe”pr™ (C-11)
where

hDh

Nu = Nusselt number = <
GDh

Re = Reynolds number = T ; and
C u

Pr = Prandtl number = —%— .

In the Dittus-Boelter equation for cooling a liquid, the

constants appearing in Eq. (C-11) are:

c = 0.023

1
n = 0.8
m = 0.3

In addition, all fluid properties are evaluated at the fluid.
bulk temperature. Thus,



GD

K r
n = -Rulk l?.ozs(

. 0.8 Cu 0.3
p B, = (%) ] (C-12)

¥ bulk bulk

For the secondary side the situation is somewhat
different. If the secondary side is at the saturation
temperature, then the heat transfer occurs via nucleate
boiling, assuming, of course, that the boiling crisis is not
reached or exceeded anywhere within the secondary heat
transfer region. In this case, the heat flux is commonly

given by an expression of the following form:

qQ" = «(T (C-13)

m
w Tsat]

where Tw is the tube wall temperature. We will use the Thom

correlation where,

exp (2p/87x105)
(22.65)2

[ 4 =

m = 2; and,

ps Pa, T = °K, q" = MW/m2

Thus,

(C-14)
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Finally, we have made some simple straight line fits

for the thermal properties of Inconel 600, which is the

alloy currently used as the tube material. These fits are

made to data taken from Reference (L-3). The fits are:

Kt = 0.016Tt + 9.632 473°K < Tt £ 673°K

and
3 6
(pCp)t = 1.3677 - 10 Tt + 3.3663 -« 10

422°K ¢ T, & 755°K

where:

e

"
.J
=

(pCp)t - B and,

°K

t

=
+
+3
m

T, = 3 SAT

C-11



Appendix D
CROSS FLOW LOSS COEFFICIENT

The purpose of this appendix is to present the method-
ology used here to calculate the pressure drop experienced
by the fluid flowing through the U-bend region of the tube
bundle. This calculation is complicated by the following:

1.) geometry; ﬁnd,

2.) two phase flow.

The geometry in this region is complex, with the flow being
either parallel to the tubes, perpendicular to the tubes, or
at some obligque angle to the tubes. In addition, there are
open fegions where the fluw is not obstructed by the pres-
ence of tubes., This makes tke flow distribution in the
U~-bend region a truly three-dimensional distribution, which
is difficult to represent using a one-dimensional model.

Add to this the fact that the flow consists of two phases
and one is faced with an intractable modeling challenge.

The approach taken here makes no attempt at dealing
with these difficulties in a detailed manner. Rather, the
goal is to develop a representation that allows us to ac-
count for the physical location of the U-bend pressure drop
in the recirculation loop momentum equation in a manner that
is physically plausible. To do this we define a U-bend loss

coefficient for saturated liquid-only flow, K,, by:
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(D-1)

APygs0 c %,

S

Note that this equation is not written in terms of a kinec-
2
tic head, (!—5), since we cannot associate a single flow
[o]

area, A, with the U-bend region. Solving for K, yields:

Ap
= UB,L 0
Kc E_WL.._. (D-2)
I!.

N

s

To obtain Kc using Eq. (D-2) we need to determine ApUB,zO'

It should be emphasizeq here that although Eq. (D-1) is
used to calculate the U-bend pressure drop in the computer
model, the loss coefficient, K;, is specified by the
user. Thus, the method given here for determining K. is
offered as a suggested method and is not part of the compu-
ter model. The user, therefore, may or may.not opt to use
this method, and can select another way to obtain Kg.

We assume here that the U-bend region may be approxi-
mated as consisting of square U-bends so that only parallel
and cross flow conditions Exist. We then divide the U-bend
region into a series of axial segments. For each axial
segment we determine the total flow area; that is, the sum
of the areas for parallel flow, cross-flow, and flow in the
open region. We assume that this total flow area is con-

stant for each axial segment. We then divide the flowrate

D-2



by the total flow area in each segment to obtain the average
mass velocity in each axial segment, Gavg,i» where the
subscript i is associated with a particular axial segment.
We then use this average mass velocity in a cross-flow pres-
sure drop correlation to determine the pressure drop fpr
each axial ségment, Apj. Summing these pressure drops

gives us the total U-bend region pressure drop, Apyg, 40-

That is,

APyg,s0 = zi“pi (D-3)

The cross flow pressure drop is calculated using a
correlation taken from Ref. (K1). For our system this cor-

relation becomes (see Fig. D=1 for nomcnclature):

(s

- d,.)G
Re . = r 0’ avg,i
c,1 Hes
S
T
x = (g=-1)
do
N, = Number of rows of tubes transverse to

T flow. .
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\L/ 1/
St
4 do
FLOW

a) Rectangular array

FLOW

b) Triangﬁlar array

Figure D-1. Arrangement of tubes in tube bundle
for cross flow (Ref (K1)).



a.) Rectangular array of tubes:

S
0.08 (3)

0

frp,1 = Bego

b.) Triangular 'rray of tubes:

= -0.16 0.16 0.1175
: 4 Rec’i X | [0.25 + ;m—]

N = N for S

T, 1 T X8

!
L
)

—lforST>SL

and,

Gavg_,i lGaX&,i!
Pes

Ap; = 2Nq yfqg.3

The two-phase flow U-bend pressure dfop is calculated
by multiplying the saturated liquid only pressure drop,

A pyg,. 0» by the average two phase multiplier:
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2 2
A = A [¢£O,p + ¢£0,r)
Pyp PyB,20 D)

(D-4)

Equation (D-4) is for the steady state pressure drop. 1In

transient situations we use the following equation:

Ke

bpyg * ZE;; [wp'wp'¢fo,p + wr’wr'¢f0,r]



Appendix E

LINEAR PROFILE ERRORS

In Chapter 3.1.5 we indicate that the errors introduced
by using linear profiles for v and U to calculate the mass
and enefgy content are less than six percent for the mass
and in the range of 13 to 22 percent for the energy. The
linear profile approximation appears to be a better assump-
tion for the mass content than for the energy content. The
energy content error is due primarily to two effects:

1) The fluid at the tube bundle inlet becomes less

subcooled as power decreases, and

2) The axial enthalpy gradient of the tube bundle

fluid becomes less pronounced as power decreases.
The first effect is due to the fact that as the power
decreases less feedwater is introduced into the steam
generator. Performing a steady state energy balance for the

downcomer yields:

Wollg = (Wg = Wl * Wegllty

In steady'state operation the feedwater flowrate is equal to

the steam flowrate, so



The quantity (WS/WO) is the steady state tube bundle exit
guality, which decreases as power decreases. Therefore,
according to the last equation, the tube bundle inlet
enthalpy, HO, approaches st. This shows that the tube
bundle inlet subcooling decreases with decreasing power.
The second effect is demonstrated by the following
argument. Since the axial heat flux is assumed to be

uniform we have:

(His B HO)

sat

We have already shown that (st - HO) decreases with de-
creasing power. Table 3.1-3 shows that as power decreéses,

L increases. The net effect is that dH/dZ decreases as

sat
power decreases.

Figure E-1 shows two plots of U versus fractional tube
bundle length: one for high power and one for low power.
The solid lines represent the actual profiles, while the
dashed lines indicate the hypothesized linear profiles. For
the high power case the actual profile of U is kinked, with

the amount of deviation from a linear profile determined by

both the magnitude of the subcooling and the .enthalpy gradi-



ent. For the lower power case we see that the deviation
from a linear profile is less pronounced, since both the
magnitude of the subcooling and the enthalpy gradient are
smaller than for the high power case. Thus, one would
expect the error introduced by using a linear profile for T
to decrease with decreasing power, which is the result shown

in Table 3.i-4.
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Appendix F
CONVECTIVE DIFFERENCING SCHEMES

The purpose of tﬂis appendix is to present, without
proof, some properties of two time differencing shemes for a
typical convection equation. A full discussion of the topic
can be found in Refs. (B5) and (R2).

The equation we are interested in is the simple one-

dimensional convection equation given by:

dH 1 (H

at - T Uiy - Hoyp) (F-1)

where t is the fluid transport time through the control

volume (1 = where Az is length of control volume and

u
2z’
u is the fluid velocity). If we assume instantaneous, per-

2 et mixing in the control volume, then Eq. (F-1) becomes:

dH
ouT _ 1
gt~ =~ 7 (Hpy - Hogp)

Using an explicit time difference yields:

B2l L 1 - p)E: o+ rHD

ouT OUT IN (F-2)



where r = éE. Equation (F-2) is an explicit "donor-cell"
difference approxzimation to Eq. (F-1). This scheme has the
following properties:
1.) VWhen r = 1 Eq. (F-2) gives the exact solution
for any change in the inlet enthalpy of the
control volume (or volumes if several volumes
are connected end-to-end);
2.) For a single control volume Eq. (F-2) is
stable for O { r < 2; and,
3.) For an infinite line of control volumes
Eq. (F-2) is stable for 0 { r < 1. In prac-
tical applications, this is also true for
several control volumes connected end-to-end.
In Ref. (BS) the explicit donor cell difference method is
referred to as the characteristic method. We point out here
that this method is used in the subcooled region of tbe.
steam - dome downcomer, and in all the primary side control
volumes.
Another method for dealing with Eq. (F-1) is to express
the derivative %% as the derivative of a weighted sum of the

inlet and outlet values of H. That is:

dH dH '
OUT IN _ 1
Yt * Q-1 35 = T (Hy - Hyp)

where vy is a weighting factor (0 { v { 1). Explicit time

differencing of this equation yields:



n+1 ry,n (1l + n 1, n+l
Hour (1 - J)Hgyp + (55— - L)Hpy + (1 - J)Hpy
(F-3)
If v = % (arithmetic average) Eq. (F-3) becomes:
n+l _ _ n n n+1 _
HOUT (1 2r)HOUT + (1 + 2r)HIN HIN (F-4)

This scheme has the following properties:
1.) For a single cqntrol volume Eq. (F-4) is
stable for 0 { r < 1; and,
2.) For an infinite line of control volumes
Eq. (F-4) is unconditionally unstable.

A scheme similar to Equation (F-3) is used in the tube

bundle and riser regions (but y # %).



Appendix G

CALCULATING STEAM AND FEEDWATER FLOWRATES USING

WATER LEVEL AND PRESSURE AS INPUTS

G.1 INTRODUCTION

As mentioned in Chapter 1, one of the applications of
the steam generator model developed here is in information
reliability. In particular, analytic measurements derived
from plant component models can be compared to direct sensor
measurements in an attempt to synthesize reliable estimates
of measured quantities. The model described in the main
text uses input steam and feedwater flows, among other in-
puts, to calculate steam pressure and water level. In theo-
ry, these calculated outputs, along with measured values of
steam pressure and water level, could be used as input to
decision/estimators (see Chapter 1). However, one may not
want to do this in practice, since there are a number of
direct sensor measurements of pfessure and water level but
few direct measurements of steam and feedwater flows. This
suggests that analytic measurements of steam and feedwater
flows are more useful than analytic measurements of pressure
and water level in signal validation efforts. What follows
is a description of an attempt to use water level and pres-
sure as input to a modified version of the model that calcu-

lates the steam and feedwater flowrates.



G.2 MODEL MODIFICATION

The secondary side solution (Chapters 3 and 5) requires
modification in order to achieve our goal of inputting the .
level and pressure to calculate the feedwater and steaﬁ
flowrates. Since we are providing the level and pressure as
input we do not need to solve the sixth order differential
equation system for the secondary side derived in the main
text of this report. The time derivative of the pressure,
b, is obtained by taking the difference between successive
input values of the pressure and dividing the result by the
time interval separating these input values of pressure.
Similarly, the time derivative of the volume of saturated
vapor in the steam dome - downcomer, Vv, is obtained by
first converting successive values of the level into corre-
sponding saturated vapor volumes using the known steam gen-
erator geometry, taking the difference of the resulting

volumes, and dividing by the time interval. That is:

n+l n

N - -
= P (G-1)

and,

n+i,, n+l n,,n
v (7)) - v(ey)
= v w v w (G-2)

<
< B
=]
+
'—L



We still need to determine hO’ <&r>, <&n>, and W. In
Chapter 5 we indicate that the momentum equation is solved
independently of the other differential equations and we
retain this feature here. Thus, we need to perform a simul-
taneous solution for 'UO, ér>, and <c'xn>, given p and f/v.
This requires three equations. Two of these equations are
the tube bundle energy equation and the riser energy equa-
tion, which are the first two equations given in the matrix
expression of Eg. (5.1-4). Rearranging these equations

yields:

A11UO + A13<ar> = W(H0 - Hr) + ag - A15p (G=3)

and,

AU, + A > = W(Hr - Hn) - A25p

21U * Aggle,> + A

24%@
(G-4)

The subcooled and saturated region energy equations are
solved for Wgy and Wg respectively, and the resulting

expressions are substituted into the overall steam generator

mass balance. This yields:



31 41 .
(AL, - - ) U
51 T H,_ - B~ H - H' 0
A A
33 43 .
" (A53 B Hvs - Hk - wa - Hk) <ar>
A A
34 44 .
+(A54-Hvs-Hk-Hf —Hk) <ap?
) w(Ho--ﬂk -Hn-—Hk)
wa - Hk Hvs - Hk
(A - am32 o _fe2 g
52 " H, - B~ H. - H’ vV

(G-5)

Equations (G-3) through (G-5) can be written compactly as:

Gr = z (G-6)
The equations are time differenced as follows:
® = g"7l" (G-7)

where,

n+
r 1-l‘n



The values of r', along with p° and ﬁ:, are used in

Egqs. (56.1-3) and (5.1-2a,b,c) to determine the flowrates

W Wp, Vv and Wn. The flowrate Wf is found using

0’ r’
Eq. (5.1-6). Finally, Wgy and Wg are obtained from:

=0 n -n
Wi(Hy - H)  + 2A

n 41 i
Vew = (G-8)
(Hegy - Hk)
5
=n n
. Wo(H, - Hy) o - iflAai i
W= (G=-9)
s " _ 5 )n
fw k

where

The solution after this point is the same as that described

in Chapter 5 except that the water level is not calculated

since it is already known.

G.3 RESULTS

The base case used to test this modified version of the

model is the full-length control-element assembly drop for



steam generator 2 of the Arkansas Nuclear One - Unit 2 power
plant (see 6.4.2). In fact, we deal only with the first 60
seconds of this transient and we use the calculated results
discussed in 6.4.2 as the numerical standard for our steam
and feedwater flowrate calculations.

The transient input hot leg temperature is shown in
Fig. 6.4-6 and the transient input level and pressure used
here are the calculated values shown in Fig. 6.4-8. The
calculated steam and feedwater flowrates obtained when using
four digit accuracy in the input level and pressure are
shown in Fig. G-1. The level and pressure are input every
time step, which is 0.25 seconds. Also shown in this figure
are the actual steam and feedwater flows. As can be seen,
the calculated steam flowrate is in relatively gooc agree-
ment with the actual steam flowrate, although ther~ are some
jagged, low magnitude fluctuations in the calculated steam
flowrate. The calculated feedwater flowrate, on the other
hand, shows very marked fluctuations around the actual feed-
water flowrate. At first glance it appears that the calcu-
lated feedwater flowrate is suspect. As a check on consis-
tency the calculated steam and feedwater flowrates are input
to the original steam generator model, and: the pressure and
level calculated in this manner are compared to the pressure
and levelioriginally input to the modified steam generator
model. This comparison shows almost exact agreement between

the calculated level and pressure, and the input level and

pressure.
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Figure G-2 shows the results obtained using input pres-
sure and level with seven significant digits rather than
four. The calculated steam flow is in excellent agreement
with the actual steam flow. The calculated feed flow, al-
though slightly different from the actual feedwater flow-
rate, shows much better agreement and less erratic behavior
than the calculated feed flow obtained using four digit
level and pressure input. This result is interesting and
indicates that the calculated feedwater flowrate is very
sensitive to input errors in the pressure and level (in this
case the error is caused by using truncated values of the
input). This suggests that the derivatives of p and Vy
must be precisely specified and that simple numerical dif-
ferentiation using successive values (in time) of p and Vy
is not adequate.

An attempt was made to improve the calculation of - the
feedwater flowrate by smoothing the four digit input level
and pressure. Let ng represent the raw input, either 1y
or p, and let np represent the corresponding smoothed

value of ny. The smoothing algorithm used here is then

given by:
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+1
(Fnp * ",
ng+1 - At Db - a (G-10)
L+

where,

At integration time step size

smoothing "time constant"”

-
"

Figure G-3 shows results obtained using values for T of 1
and 5 seconds, alceng with four digit input pressure and
level. The plots show that smoothing the input does not
significantly improve agreement between calculated and ac-
tual feed and steam flowrates, with agreement deteriorating

when the larger value of t is used.

G.4 CONCLUSIONS AND RECOMMENDATIONS

Calculations show that the method derived in this ap-
pendix can be used to calculate the steam and feedwater
flowrates using input level -and pressure only if the inputs
are specified to a high degree of accuracy. However, the
stipulation of high accuracy is too stringent for practical
application of the model in on-line saiety systems since
this accuracy 1is not available from sensors used to measure
the level and pressure. In addition, senéor signals will
certainly contain noise components, which, even after fil-
tering, will cause greater error in the input pressure and

level signals. Finally, high accuracy calcilated values of
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pressure and level will not be available from other sources
to use as input to this model. Thus, the method described
in this appendix for calculating the steam and feedwater
flowrates given the pressure and level (among other inputs)
is not appropriate for use in operational safety systems as
2 means of signal validation.

One recommendation that we. can make is to use a compu-
ting algorithm for the feedwater flowrate that is similar to
a three element controller algorithm. In this computing
scheme the model can be modified to calculate the steam
flowrate and the feed flowrate given the transient pres-
sure. The state vector for this case would be:

Col[UO, Vo, @ >, @ >, W]

v’

Thus, bn is obtained from the input pressure, while V2, and

o
therefore £:+1, is obtained from a calculation. The meas-
ured water level, %, is also input to the model, but it

is used in an algorithm that compares it to the calculated
level, £ y. This algorithm also compares the steam and
feedwater flowrates in order to guarantee equality of the

steam and feed flows in steady state operation. The algo-

rithm could be:

dew

at )

= Cw(ws - W) * Cz (zm -y
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vhere Cy and C; are algorithm coefficients that must be
determined in future research efforts. Using implicit time

differencing yields:

n n+1
n+l wa + AthWs
fw 1+Ath

n+1 n+1
+atC (2,7 - 2 7)

During the initial portions of fast transients the calcu-
lated feedwater flowrate will prohably be in error, but it
will eventually converge on the correct flowrate as the
transient proceeds towards:-a new steady state. Further
investigation is required in order to determine the feasi-
bility, accuracy, and limitations of the computational

scheme just described.
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APPENDIX H

ADDITIONAL VALIDATION AND GEOMETRIC INPUT

The purpose of the appendix is to present results ob-
tained for the Maine Yankee and Calvert Cliffs simulations.
In addition, the geometric input used for ail test cases is
presented.

Transient test cases are presented in this appendix for
completeness and to demonstrate that the program can be used
for licensing type calculations. However, due to a lack of
accurate knowledge of the transient steam and feed flows, it
is difficult to draw any firm conclusions regarding model
fidelity, so results are presented with a minimum of discus-
sion. We also do not know how the cold leg temperature is
calculated in the licensing codes to which we compare our
results. That is, we do not know if sensor models or first
order lags are used to process the calculated cold leg tem-
perature. Unless specifically stated in the text, all cold
1l2g temperatures calculated using our model are not proc-

essed through sensor models.

H.1 MAINE YANKEE

The Maine Yankee power plant has a Combustion Engineer-
ing designed nuclear steam supply system (NSSS). The plant
was originally licensed to operate at an NSSS output of 2450

MW¥t. The NSSS has three steam generators and in all steady



state or transient simulations we assume that the plant is
operated symmetrically. Maine Yankee design and operating

conditions can be found in Refs. (F1) and (M9).

H.1.1 Steady State Results

We have performed a complete set of steady-state calcu-
lations for the Maine Yankee plant. In order to perform
these calculations we need to provide the feedwater tempera-
ture and the primary average temperature as functions of
power level. These quantities are shown in Figs. H.1-1 and
H.1-2. The primary pressure, primary flowrate, and steam
generator level are not functions of power for this plant.
Table H.1-1 shows the important operating parameters for
this plant; note that both the separator loss coefficient
and the fouling factor (used in all calculations) are also
listed. The results for the steady-state calculations are

shown in Fig. H.1-3.

H.1.2 Transient Tests at 106 per cent Power

The transient simulation results shown here are com-
pared to licensing calculations performed for the Maine
Yankee plant (Ref. (F1)). All of the transients have the
same initial conditions, which are given in Table H.1-2.

There is some difficulty in interpreting the test re-
sults given here, primarily because we do not know if the
Zeedwater and steam flowrates used in our calculations match

those used in the calculations given in Ref. (Fl). 1In our
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Table H.1-1
Steady State Operating Parameters for Maine Yankee.

Quantity Value
Primary Flowrate/Steam Generator 5124 kg/s
Primary Pressure 15.46 MPa
Full Power Primary Average 297 °C
Temperature
Full Power Secondary Pressure 5.6 MPa
Reactor Power (100%) 2450 MWt
Separator Loss Coefficient 282.5
2 o
Fouling Factor 1.93 * 107> 2 - K
Steam Generator Water Level* 10.12 m

Measured from tubesheet.

calculations the steam flowrate is obtained from a model of
the main steam system (see Chapter 3 and Ref. (M9). The
transient feedwater flowrate behavior is discussed sepa-
rately for each transient. Discussion of trensient results
is limited to a brief description of the sequence of events,
and comments are made regarding the gross behavior of calcu-
lated steam generator parameters.

Control Element Withdrawal Incident

The transient inputs used to simulate an uncontrolled
withdrawal of a Control Element Assembly (CEA) are shown in

Fig. H.1-4. The calculated response of the steam generator
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Table H.1-2
Initial Conditions for Maine Yankee Transient Tests
at 106 per cent Power.

Quantity Value
Reactor Power 2611 MWt
VWater Level* 10.12 m
Downcomer Flowrate 2231 kg/s
Steam Pressure 5.847 MPa
Steam Flowrate 480.5 kg/s
Feedwater Temperature 225.9°C
Primary Inlet Temperature 316.4°C
Primary Outlet Temperature 285.5°C

* Measured from tubesheet.

is shown in Fig. H.1-5. The sequence of events is as
follows:
1.) Transient is initiated by the withdrawal of
CEAs;
2.) At approximately 43 seconds the turbine by-
pass valves open; and,
3.) At 72 seconds a reactor trip occurs, followed

immediately by a turbine trip.

As can be seen in Fig. H.1-5, the results calculated here

are in excellent agreement with those presented in Ref. (Fl).
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Loss ¢f Lecad Incident

The transient inputs used to simulate the loss of load
incident are shown in Fig. H.1-6. The calculated results
are shown in Fig. H.1-7. The simulation is run without the
berefit of the steam dump or turbine bypass systems. There-
fore, secondary pressure relief is accomplished solely by
means of the secondary safety valves. The sequence of
events is as follows:

1.) Main turbine trip initiates transient; tur-

bine stop valves close within 1/2 second;

and,

2.) Feedwater flowrate is ramped down to 5 per

cent of its full power~valve in sixty sec-

onds.
As can be seen in Fig. H.1-7, the calculated pressure is in
good agreement with the pressure given in Ref. (Fl). Dif-
ferences in our cslculated pressure from the calculated
pressure given in Ref. (Fl) are probably due to differences
in the steam flowrate used during the calculations. The
calculated cold leg temperatures are in good agreement after
42 seconds; prior to that our calculated cold leg tempera-
ture responds faster and reaches a higher peak value than
does the cold leg temperature taken from Ref. (Fl1). The
reason for this difference is not known, but it is reason-
able to assume that the cold leg temperature from Ref. (F1l)
is processed through a sensor model or through a first order

leg function, while the cold leg temperature we obtain is
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not. This would account for the differences seen in the
early part of the transient and would not significantly
affect results toward the end of the simulation since the

rate of change of the cold leg temper..ture is slow.

Loss of Feedwater Flow Ihcident

The transient inputs used to simulate the Loss of Feed-
water Incident are shown in Fig. H.1-8. The calculated
results are shown in Fig. H.1-9. The full main steam system
model is used to calculate the transient steam flowrate.

The sequence of events is as follows:
1.) The transient is initiated by the instanta-
neous loss of all feedwater flow; and
2.) Reactor and turbine trips occur at 17 sec-
onds.
The results shown in Fig. H.1-9 are not in.good agreement,
ard the reason why is not clear. It appears, however, that
the major cause for the difference between the two calcula-
tions is that our model predicts an initial decrease in
steam generator pressure that is not predicted by the 1li-
censing calculation. The pressure calculated by the model
hever recovers from the initial dip and remains at a nearly
constant offset from the pressure calculated using the 1li-
censing code. A similar behavior is shown by the calculated
cold leg temperature since it is directly influenced by the
calculated secondary pressure through the heat transfer

rate.
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H.1.2 Transient Tests at Full Power

The transient simulation results presented in this
section are compared to results given in Ref. (M9). The
initial conditions for all these transients are the same and

are given in Table H.1-3.

Table H.1-3
Initial Conditions for Maine Yankee Transient
Tests at Full Power.

Quantity Value

Reactor Power 2450 MWt
Water Level* 10.12 m
Downcomer Flowrate 2250 kg/s
Steam Pressure 5.6 MPa
Steam Flowrate 450.3 kg/s
Feedwater Temperature 225.9°C
Primary Inlet Temperature 311.7°C
Primary Outlet Temperature 282.1°C

* Measured from tube sheet.

Reactor Trip

The transient input for the simulation of the reactor
trip are shown in Fig. H.1-10. The calculated steam gener-
ator response is shown in Fig. H.1-11. The steam flowrate

is obtained using a model of the Maine Yankee main steam
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system. The transient is initiated by the simultaneous trip
of both the reactor and the main turbine. The results ob-
tained using our model compare favorably with the results
from Ref. (M9). Some of the differences can be accounted
for by inaccuracies and differences in the steam flowrates
used to generate each set of results. Unfortunately, the
steam flowrate used to generate the results given in Ref.

(M9) are not known so no firm conclusion can be drawn.

Turbine Trip with Steam Dump

The transient inputs used to simulate the turbine trip
with steam dump are shown in Fig. H.1-12, Transient test
results are shown in Fig. H.1-13. As can be seen, the cal-
culated pressures are in good agreement and most of the
differences seen are probably due to differences in the
input steam flows, which cannot be assessed here. Our cal-
culated cold leg temperature responds faster and reaches a
higher peak value than the cold leg temperature given ;n

Ref. (M9).

Turbine Trip without Steam Dump

The transient inputs used to simulate the turbine trip
without steam dump are shown in Fig. H.1-14. The calculated
response is shown in Fig. H.1-15. As can be seen the gen-
eral trends of both the calculated cold leg temperature and
the calculated pressure agree with the corresponding trends

of the results given in Ref. (M9). Again, the only comment
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we can make is that an incomplete knowledge of the transient
steam flowrate makes it difficult to draw any specific con-

clusions regarding model fidelity.

H.2 CALVERT CLIFFS

The Calvert Cliffs nuclear power plant has a Combustion
Engineering designed NSSS. The plant is licensed to operate
at an NSSS output of 2560 MWt. The NSSS has two steam gen-
erators. Included in the results given here are four tran-
sient tests:

1.) Control Element Assembly withdrawal at 102%

power (Ref. (F3));
2.) Loss of Load Incident at 102% power (Ref. -
(F3));
3.) Loss of Primary Flow at 40% power (Refs. (B4)
and (Wl); and,
4.) Turbine Trip at 100% power (Refs. (B4) and
(W1}).
The first two transient tests are taken froﬁ licensing cal-
culations (Ref. (F3)), while the last two are reported re-
sults from startup tests (Refs. (B4) and (Wl1l)). As is the
case for the Maine Yankee plant, we do not know the tran-
sient feed and steam flows used to obtain the results to
which we compare our calculated results. Thus, it is diffi-
cult to draw any firm conclusions from these tests, other
than comments regarding general trends of gross steam gener-

ator parameters.
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H.2.1 Licensing Calculations

The initial conditions for the licensing type calcula-
tions are given in Table H.2-1, which also lists the separa-
tor loss coefficient and fouling factor used in the anal-
yses., For all transient tests a model of the main steam

system is used to generate the transient steam flowrate.

Table H.2-1
Initial Conditions for Calvert Cliffs
Licensing Calculations.

Quantity Value
Reactor Power 2611 MWt
Water Level* 10.67 m
Downcomer Flowrate 3569 kg/s
Steam Pressure 6.036 MPa
Steam Flowrate 714.8 kg/s
FPeedwater Temperature 223.1°C
Primary Inlet Temperature 317.9°C
Primary Outlet Temperature 287.1°C
Primary Flowrate/Steam Generator 7693 kg/s
Fouling Factor 1.97 « 1075 Efiﬁ%JHQ
Separator Loss Coefficient 100.00

* Measured from tube sheet.
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Control Element Assembly Withdrawal Incident

The transient inputs for the CEA withdrawal incident
are shown in Fig. H.2-1. The steam generator response is
shown in Fig. H.2-2. As can be seen the general trends of
the cold leg temperature and steam pressure calculated using
the model are in good agreement with the results taken from
Ref. (F3). Differences in magnitude are probably due to
uncertainty in the input steam flowrate, which has a signi-
ficant effect on the steam pressure and also on the cold leg

temperature through the heat transfer rate.

Loss of Load Inci@ent

The transient inputs for the loss of load incident are
shown in Fig. H.2-3. The steam dump and bypass systems are
not used in this simulation, so that secondary pressure
relief is accomplished solely by the safety valves. The
jagged nature of the transient steam flowrate curve is due
to the opening and closing of the secondary safety valves.

The steam generator response is shown in Fig. H.2-4.
The transient is initiated by closing the turbine stop
valves within 1/2 second. Following the reactor trip, which
occurs at 7 seconds, the feedwater flowrate is ramped down
to 5 per cent of its full load valve in 60 seconds. The
calculated pressure using our model is in excellent agree-
ment with the results taken from Ref. (F3). Our calculated
cold leg temperature responds faster than the cold leg tem-

perature taken.from Ref. (F3).
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H.2.2 Startup Test Results

The results presented in this reaction are taken from
Refs. (B4) and (W1). Sensors are modeled using & first oder
leg (see Chapter 6) with time constants of 2.374 and 2.447

seconds for the hot and cold leg sensors, respectively.

Table H.2-2
Initial Conditions for Turbine Trip Test.

Quantity Value
Power/Steam Generator 1280 MWt
Water Level* 11.23 m
Downcomer Flowrate 3800 kg/s
Steam Pressure 5.995 MPa
Steam Flowrate 700.7 kg/s
Feedwater Temperature 223.1°C
Primary Inlet Temperature 311.4°C
Primary Outlet Temperature 285.3°C
Primary Flowrate/Steam Generator 9036 kg/s
Fouling Factor 5.199 - 10~° -"-‘2—{73—’5
Separator Loss Coefficient 100.00

* Measured from tube sheet.
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Turbine Trip Test

The initial conditions for the turbine trip test are
given in Table H.2-2. The transient inputs used to simulate
the turbine trip test are shown in Fig. H.2-5. Neither the
steam nor feed flowrate are given in Refs. (B4) and (Wl1l).
The steam flowrate is determined using a main steam system
model. The feedwater flowrate is ramped down to 5 per cent
of its full power value in 10 seconds.

The calculated results are shown in Fig. H.2-6. As can
be seen, the calculated pressure and cold leg temperature
are in good agreement with the measured data. The calcu-
lated level follows the same trend as the measured level but
with a larger magnitude. This is most likely due to error

in the input feedwater flowrate.

Loss of Primary Flow at 40 Per Cent Power Test

This test was initiated by tripping the main primary
coolant pumps 2 seconds into the test. The resulting pri-
mary'flow coastdown was modeled using the equations pre-
sented in 6.4.5, with the parameter b appearing in Eq. 6.4-5
equal to 0.1154. The primary flowrate obtained‘in this
maaner is shown in Fig. H.2-7.

The initial conditions for this test are given in Tabie
H.2-3, while the transient input is shown in Fig. H.2-8.

The steam generator response is shown in Fig. H.2-9. As can
be seen, the calculated level follows the same trend as the

measured level, with some slight differences in magnitude.
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Table H.2-3
Initial Conditions for Loss of Primary Flow
at 40 per cent Power.

Quantity Value
Power/Steam Generator 512 MWt
Yater Level* 10.67 m
Downcomer Flowrate 3294 kg/s
Steam Pressure 5.872 MPa
Steam Flowrate 280.1 kg/s
Feedwater Temperature 223.1°C
Primary Inlet Temperature 290.5°C
Primary Outlet Temperature 279.4°C
Primary Flowrate 8922 kg/s

-5 m? - °K

Fouling Factor 1.518 « 10 —w

* Measured from tube sheet.

The level error is probably due to the fact that we do not
know the actual feedwater flowrate for the test and we are
using best estimates for the transient feedwater flowrate.
The trend of the calculated steam pressure is in fairly good
agreement with the trend of the measured steam pressure,
although there are differences in magnitude. This is proba-
bly due to error in the transient steam flowrate used, since

we do not know the .actual steam flowrate, but use instead, a
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main steam system model. The agreement between the measured
cold leg temperature and the calculated cold leg temperature

is not good.

H.3 GEOMETRICAL INPUT FOR ALL TEST CASES AND COMMENTS

REGARDING SPECIAL FEATURES IN SOME TEST CASES

The geometric input appearing in the BLOCK DATA routine
of the computer program (Appendix J) for each test case is
given in Table H.3-1. The variables are identified by their
FORTRAN variable names, as used in the program, and each
FORTRAN name is clearly defined in the main routine of the
program (see Appendix J for variable nomenclature).

The blank'spaces appearing under the Argonne National
Laboratory (ANL) column of Table H.3-1 are geometric input
parameters that do not apply to the ANL test loop. In par-
ticular, the primary side model and the heat transfer model
were not used since there was not a primary side associated
with the ANL test loop. The transient heat transfer rate,
which is used only to initiate the stability test (see Chap-
ter 6), is directly input to the code. The water level is
determined by dividing the volume of water in the steam dome
by the steam dome area. Some comments regarding the special

geometry of the RD12 steam generator are made in 6.3.
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APPENDIX I

PROGRAM INPUT - OUTPUT

The purpose of this appendix is to describe the input

required to run the program and the output generated by the

program.

I.1 INPUT

The following is a description of the input needed to

run the program. The input is_described card by card; for

each card we give the FORTRAN variable name along with the

input format.

Card 1

Card 2

Card 3

Card 4

TITLE (20A4)

Short title (80 characters) identifying the run.
NSTG (I1)

Number of steam generators

POWER, TFW, KSEP, WPiN, PPRIM (5E12.3)

POWER: Full reactor power (Watts)

TFW: Full power feed temperature in (°K)

KSEP: Separator loss coefficient (-)

WPIN: Full Power Primary Flowrate (kg/s)

PPRIM: Full power primary pressure (Pa)

T1, T2 (2E12.3) '

Parameters giving the primary average temperature

as a function of per cent power (°K) i.e.



Card 5

Card 6

Card 7

Card 8

Card 9

-

Card 10

TAVG = T1 + T2 * (% Power)

PSAT (E12.3)

Full Power steam pressure (Pa)

NTRAN (I1l)

Flag for transient calculation

NTRAN = O Only steady state calculation

NTRAN = 1 Transient calculation as well as
steady state calculation.

LW (E12.3)

Steady state water level as measured from
tubesheet (m)

PERP, TF¥ (2E12.3)

PERP: Per cent power at initial conditions

TFW: Feedwater temperature corresponding to PERP
per cent power (°K)

PPRIM, WPIN (2E12.3)

PPRIM: Pressure corresponding to PERP per cent
power (Pa)

WPIN: Primary flowrate corresponding to PERP per
cent power (Pa)

POWER, TAVG (2E12.3)

This card is only included if PERP is greater than
1.0 .

POWER: Reactor power if PERP greater than 1.0

(Watts)



TAVG: Primary average temperature corresponding
to POWER ( °K).
The following cards are only included if NTRAN = 1.
Card 11 NPT, TDT (I2, E12.3)
NPT: Number of time zones.
fDT: Integration time step size (s)
Card 12 NPRIN, MSM, MB, MSV (4I2)
NPRIN: Print every NPRIN time step
MSM: Steam dump flag
MSM = 0 No steam dump
MSM = 1 Steam dump
MB: Turbine bypass flag
MB =0 No bypass
MB =1 Bypass
MSV: Secondary safety valve flag
MSV = O No secondary safety valves
MSV = 1 Secondary safety valves
Card 13 TMST, TSV, TISO (3E12.3)
TMST: Closing time of turbine stop valve (s)
TSV: Closing (or opening time) of safety valves -
not used, but provided if modification is
made to code (s) ‘
TISO: Closing time of main steam isolation valve
- not used, but provided if modification is
made to code (s)

Card 14 TTRIP (E12.3)
Time at which turbine trip occur (s)
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Card 15

Card 16

Card 18
Card 19

ISV(4) (412)

Flag for secondary safety valves.

ISV(1) = O I'th bank of safety valves do not
operate

ISV(I) = 1 I'th bank of safety valve operate

Up to four banks of valves can be specified.

TAUH, TAUC (2E12.3)

TAUH: Hot leg temperature sensor time constant

(s)
TAUC: Cold leg temperature sensor time constant
(s) .

TIM, TPI, TTFW, TWS, TWFW, PVAL (6E12.3)

WPI, PPRI, IFW, ISTM (2E12.3, 212)

Cards 18 and 19 must be provided for each time

zone (NPT times). These cards provide the tran-

sient boundary conditions in tabular form. Boun-

dary conditions between successive values of TIM

are determined by linear interpolation.

TIM: Time at end of time zone (s)

TPI: Primary inlet temperature at end of time
zone (°K)

TTFW: Feedwater temperature at end of time zone
(°K)

TWS: Steam flow at end of time zone (kg/s)

TWFW: Feed flow at end of time 2zone (kg/s)



Notes:

PVAL: Main steam control valve position, ex-
pressed in equivalent position at PVAL per
cent power, at end of time zone.

WPI: Primary flowrate at end of time zone (kg/s)

PPRIM: Primary pressure at end of time zone (Pa)

IFW: Flag for feedwater controller model
IFW = 0 No controller model
IFW = 1 Controller model

ISTM: Flag for main steam system model
ISTM = 0 No main steam model
ISTM = 1 Main steam model

If IFW = 1, then the user must supply a controller

model in subroutine CONTRO, énd the code ignores

the input for TWFW

If ISTM = 1, then the user must supply a main

steam system model in subroutine CHOKE, and the

code ignores the input for TWS

If ISTM = 0, then the inputs MSM, MB, MSV on Card

12 are ignored, as are the inputs on Cards 13, 14,

and 15. 'The transient steam flow‘must be speci-

fied (TWS). Also PVAL is ignored on Card 18.

If IFW = 0, then the transient feed flow must be

specified (TVWFW).



SAMPLE INPUT FILE WITHOUT FEEDWATER CONTROLLER
AND MAIN STEAM SYSTEM MODEL
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TURBINE TRIP ANO SG1 3 SEC TFW RAMP START AT 7 SEC,SENSOR MODEL

1

1.382E 09
5.579E 02
6.239E 06

1.052E 01
1.000E 00
-1.546E 07
27  2.500E-01
4111 -
3.000E 00
0,000E 00
1111
_ 4.753E 00
~ 1.000E 0C
~7.908E 03
~ 1.500E 00
- 7.908€ 03
~ 2.000E 00
7.908E 03
2.500E 00
7.908E 03
3.000E 00
7.908E 03
5.000E 00
7.908E 03
6.000E 00
7.908E 03
7.000E 00
7.908E 03
8.000E 00
7.908E 03
9.000E 00
7.908E 03
1.000E 01
7.908E 03
1.100E 01
7.908E 03
1.200€ 01
7.908E 03
1.500E 01
7.908E 03
1.800E 01
7.908E 03
2.200E 01
7.908E 03
2.400E 01
7.908E 03
2.700E 01
7.908E 03
3.000E 01
7.908E 03
3.600E 01

5.194E
2.022E

5.194E
7.508E

{

" 1.000E

4.898E
5.937E
1.557E
5.937E
1.562E
5.937E
1.568E
5.937E
1.573E
5.937€
1.578E
5.937E
1.600E
5.937E
1.611E
5.937E
1.622E
5.937E
1.632E
5.943E
1.602E
5.943E
1.572€
5.932E
1.542E
5.926E
1.512E
5.887E
1.495E
5.845E
1.477E
5.793E
1.439€
5.765E
1.400E
5.737¢
1.375€
5.712E
1.349E
5.673E

02
01

02

1.000E

03—

00
02
07
02
07
02
07
02
07
02
07
02
07
02
07
02
97
02
07
02
07
02
07
02
07
g2
07
02
07
02
07
02
07
02
07
02
97
02
97
02

1.000E

5.194E
0

02

82

8.194E 02

0
5.19%E
4
5.19%E
0
5.194E
0
5.194E
0
5.194E
0
5.194E
0
4.453€E
0
3.712E
0
2.970E
0
2.970E
0
2.970E
0
2.970E
0
2.970E
0
2.970E
e
2.970E
0
2.970€
0
2.970E
0
2.970E

02

02

02

02

02

62

02

02

62

02

02

02

02

02

02

02

02

02

7.908E 03

£.801E
4,389
2.838E
6.263E
5.064E
4.918E
4.918E
%.855E
4.792E
4.767€
4.691E
4.641E
4.614E
4.162E
3.998E
3.884E
3.279E
© 2.510€
2.119€

1.539€

I1-7

02

02

02

02

62

02

02

02

02

02

02

02

02

02

02

02

02

02

g2

1.566E 07

6.179E
3.279€
4.099E
4.288E
G.477E
6.179€
5.990E
5.675E
5.360E
4.918E
4.981E
4.754E
3.540E
2.909€
1.611E
1.778E
1.576E
1.513E
1.387€

1.387E

02

02

02

02

02

02

02

92

02

02

02

02

02

02

02

02

02

02

02

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

00

00

o¢

00

oo

00

00

00

oo

00

00

00

00

00



7.908E
3.90CE
7.508E
4.500€
7.908E
5.200E
7.908E
5.400E
7.908E
5.500E
7.908E
5.600E
7.908E
6.000E
7.908E

03
o1
03
ol
03
01
03
(1}
03
ol
03
ol
03
ol
03

1.326E
5.659E
1.315E
5.637E
1.292¢€
5.626E
1.282€
5.618E
1.279¢E
5.615E
1.278E
5.612E
1.277E
5.612E
1.271E

07
02
07
g2
07
02
07
02
07
02
07
02
07
02
07

00
2.970E
80
2.970E
00
2.970E
00
2.970E
00
2.970E
00
2.970E
00
2.970E
00

02

02

02

02

02

02

02

1.438E
1.211E
1.135E
1.135€
'.122E
1.072E

1.072E

I-8

02

02

02

02

02

02

92

1.400E 02

1.450E 02

_ 1.450€ 02

8.954E 01

7.819E 01

7.441E 01

7.819E 01

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

1.000E

00

00



I.2 SAMPLE OUTPUT
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THIS IS THE DRIVING ROUTINE

THESIS REFERENCE IS °'DYNAMIC MODELING OF VERTICAL U-TUBE STEAM
GENERATORS FOR OPERATIONAL SAFETY SYSTEMS' BY WALTER
STROHMAYER, PHD THESIS MIT 1982.

WE WILL DEFINE VARIABLES BY COMMON BLOCK. ALL UNITS ARE SI.
TEMPERATURES ARE IN DEGREES KELVIN

PRESSURES ARE IN PASCALS

LENGTHS ARE IN METERS

TIME IS IN SECONDS

ENERGY IS IN JOULES

PONER IS IN WATTS

MASS IS _IN KILOGRAMS

ALL OTHER UNITS ARE CONSISTENT WITH THE ABOVE

/76ECH/

KSEP SEPARATOR LOSS COEFFICIENT

LR RISER LENGTH

LT8 TUBE BUNDLE LENGTH

Lp LENGTH OF PARALLEL FLOW REGION IN TUBE BUNDLE
KC CROSS FLOW LOSS COEFFICIENT

ARI FLOW AREA AT RISER INLET,

ARO FLOW AREA AT RISER OQUTLET

ATB FLOW AREA IN PARALLE FLON PORTION OF TUBE BUNDLE
6 ACCELERATION OF GRAVITY

Vi@ VOLUME OF RISER

VT8 VOLUME OF TUBE BUNDLE

DHTB HYDRAULIC DIAMETER IN PARALLEL FLOW PCRTION OF

TUBE BUNDLE
BETA(4) GEOMETRIC PARAMETERS APPEARING IN MOMENTUM
EQUATION. SEE CHAPTER THREE OF THESIS.

nnnnonnnnonoonnnnnnonnoonononoonnnnonnnnnnnnnnnnnnooo

NSTG NUMBER OF STEAM GENERATORS ASSOCIATED WITH PONER
PLANT BEING MODELED

co DRIFT FLUX PARAMETER

AHT HEAT TRANSFER AREA IN THE TUBE BUNDLE

RO OUTER RADIUS OF TUBE

RI INNER RADIUS OF TUBE

voP VOLUME OF PRIMARY PLENA(ASSUMED TO BE SAME FOR
BOTH INLET AND OUTLET PLENA?

vTBP VOLUME CONTAINED BY TUBES ON PRIMARY SIDE

APT TOTAL FLOW AREA OF TUBES ON PRIMARY SIDE

vTM TOTAL VOLUME OF TUBE METAL

/DOME/

vsus SUBCOOLED LIGUID VOLUME IN STEAM DOME-DOWNCOMER{SDD)

vroT - TOTAL VOLUME OF SDD

VG VAPOR VOLUME IN SDD

vFO FIXED VOLUME OF SATURATED LIGUID USED IN MOVING
INTERFACE CASE FOR THE SDD

LSAT VERTICAL HEIGHT OF SATURATED REGION IN SDD

nonoonnnnonnnnnnonnnnonnnonnnnnnononnonnooonnonnnnnnn
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Lsus VERTICAL HEIGHT OF SUBCOOLED REGION IN SDD

VREF VAPOR VOLUME AT WHICH WE SWITCH FROM A FIXED
VOLUME SDD TO A MOVING INTERFACE SDD, IF VG
GREATER THAN VREF.

() WATER LEVEL

LD LENGTH OF LOWEST REGION OF SDD. THIS IS EQUAL TO
L% IN APPENDIX K OF THESIS: SEE ALSO CHAPTER THREE.

AD FLOW AREA OF LOWER DOWNCOMER

vo VOLUME OF LOWER DOWNCOMER

vso VOLUME OF STEAM DOME-THAT IS, VOLUME ABOVE FEED RING

DHD HYDRAULIC DIAMETER OF LOWER DONNCOMER

vT VOLUME FROM BOTTOM OF SDD TO FEED RING

LT VERTICAL HEIGHT CORRESPONDING TO VT

VsST™ VOLUME OF MAIN STEAM LINE

bve TIME DERIVATIVE OF YAPOR VOLUME IN SDD OBTAINED
FROM FINITE DIFFERENCING VOLUME CALCULATED USINS
TOTAL STEAM GENERATOR MASS BALANCE

ASH FLOW AREA AT VAPOR-LIQUID INTERFACE IN SDD

FOR FOLLOWING GEOMETRIC PARAMETERS SEE APPENDIX K OF THESIS

R1 SPHERICAL RADIUS OF STEAM DOME OR INNER RADIUS OF
STEAM GENERATOR UPPER SHELL

R2 GUTER RADIUS AT TOP OF RISER SHROUD

R3 OUTER RADIUS OF TUBE BUNDLE SHROUD

R4 °  INNER RADIUS OF STEAM GENERATOR LOWER SHELL

L1 VERTICAL LENGTH FROM SEPARATOR DECK TO BOTTOM CF
STEAM DOME HEMISPHERE

zZi2 VERTICAL LENGTH FROM TUSE BUNDLE SHROUD TO TOP OF
RISER SHROUD

ZL3 VERTICAL LENGTH OF TRANSITION FROM LOMER SHELL
RADIUS TO UPPER SHELL RADIUS

ZLF VERTICAL LENGTH OF FEED RING ABOVE TUBE BUNDLE SHROUD

/STEAN/

PSAT SECONDARY PRESSURE

TFR(1/2) FEEDWRATER TEMPERATURE(OLD/NEW TIME}

TSAT SATURATION TEMPERATURE ON SECONDARY SIDE

DTSAT DERIVATIVE OF TSAT WRY PSAT
HL(1) ENTHALPY OF SUBCOOLED FLUID IN SDD
HL(2) ENTHALPY OF SATURATED LIQUID
HFW(1/2) ENTHALPY OF FEEDWATER(OLD/NEW TIME)

vGJ DRIFT FLUX PARAMETER-DRIFT VELOCITY
MU(1/2) VISCOSITY(SUBCOOLED/SATURATED FLUID)

H6 SATURATED VAPOR ENTHALPY

uL INTERNAL ENERGY OF SUBCOOLED FLUID IN SDD
RL SUBCOOLED LIGQUID DENSITY ’
DRLY DERIVATIVE OF RL WRT UL

DRLP DERIVATIVE OF RL WRT PSAT

RHOG SATURATED VAPOR DENSITY

DRHOG DERIVATIVE OF RHOG WRT PSAT

RHOF SATURATED LIQUID DENSITY

DRHOF DERIVATIVE OF RHOF WRT PSAT

us SATURATED VAPOR INTERNAL ENERGY

oUG DERIVATIVE OF UG WRT PSAT
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UF

DUF

Q8

POMER
PERP

HFG
RFUW(1/2)

/FLOWS/
Wo
Ws(1/2)
WFH(1/2)
WF

WpR

WR

WN
DINERT

/TRANS/

SATURATED LIQUID INTERNAL ENERGY
DERIVATIVE OF UF WRT PSAT

POWER OR HEAT TRANSFER RATE
FULL PONER HEAT TRANSFER RATE
PER CENT FULL POWER

HEAT OF VAPORIZATION

FEEDWATER DENSITY{OLD/NEW TIME)

DOWNCOMER FLOWRATE

STEAM FLOMRATE{(OLD/NEW TIME)

FEEDWATER FLOWRATE(OLD/NEW TIME)

FLOWRATE OF SATURATED LIQUID FROM SATURATED REGION
OF SDD TO SUBCOOLED REGION OF SDD

FLOWRATE AT PARALLEL TO CROSS FLOW TRANSITION IN
TUBE BUNDLE REGION

FLOWRATE AT RISER INLET

FLONRATE AT RISER OUTLET

INERTANCE OF RECIRCULATION LOOP

VOID(1/2/3) VAPOR VOLUME FRACTION AT:

XQ(1/2/3)

RB(1/2)
DRP(1/2)
DRA
us(1/2)
DUP(1/2)
DUA(1/2)
MFD(1/2)
MR(1/2)
HTB(1/2)
MTBC(1/2)
MSD
MTOT(1/2}
HR

HN

$(5)

M(5)
VP(1/2/3)

R(9,5)

/TIME/

1 TUBE BUNDLE CQUTLET

2 RISER OUTLET

3 PARALLEL TO CROSS FLOW TRANSITION IN TUBE BUNDLE
FLOW QUALITY AT:

1 TUBE BUNDLE OUTLET

2 RISER OUTLET

3 PARALLEL TO CROSS FLOW TRANSITION IN TUBE BUNDLE
VOLUME WEIGHTED DENSITY(INLET/OUTLET OF RISER)
DERIVATIVE OF{RB(1)KRT PSAT/RB{2IWRT PSAT)
DERIVATIVE OF RB(1/2) WRT VOID(1/2)

WEISHTED INTERNAL ENERGY(INLET/QUTLET OF RISER)
DERIVATIVE OF(UB(1)HRT PSAT/UB(2)URT PSAT)
DERIVATIVE OF(UB(1)KRT VOID(1)/UB(2)NRT VOID(2})
NOT USED

MASS OF RISER REGICN(OLD/NEW TIME)

MASS OF TUBE BUNDLE REGION(OLD/NEMW TINME)

MASS OF CROSS FLOW REGION(OLD/NEW TIME)

MASS OF STEAM DOME WIHT VOLUME VSD GIVEN ABOVE
TOTAL MASS OF STEAM GENERATOR(OLD/NEW TIME)
ENTHALPY AT RISER INLET

ENTHALPY AT RISER OUTLET

RIGHT HAND SIDES OF STATE EQUATIONS

MOMENTUM EQUATION PARAMETERS, SEE CHAPTER 3 OF THESIS

MOMENTUM DENSITY AT:

1 TUBE BUNDLE OUTLET

2 RISER OUTLET

3 PARALLEL TO CROSS FLOW TRANSITION IN TUBE BUNDLE
DERIVATIVES RELATED TO MASS AND ENERGY EQUATIONS
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DT
ITRAN

WSF
ITC
ICHK

/RESP/

VALK

VALKO
IFR

PVALV

TTRIP

35 &

™ST
TSV

TIS0

SIMULATION TIME

INTEGRATION TIME STEP SIZE

FLAG FOR STEADY STATE CALCULATION(=0) OR TRANSIENT
CALCULATION(=1)

FULL POWER FEED FLOW

FULL POMER STEAM FLOW

FLAG USED IN HEAT TRANSFER CALCULATION

FLAS FOR INITIAL FULL POWER CALCULATION

=0 DO FULL POWER CALCULATION AND GET FOULING FACTOR
=1 FULL POWER CALCULATION ALREADY DONE

TURBINE STOP AND CONTROL VALVE FLOW COEFFICIENT
FOR CHOKED FLOW CALCULATION

VALK AT FULL POKER

FLAG FOR FEED CONTROLLER

=0 NO CONTROLLER-FEED FLOW INPUT

=1 CONTROLLER-NO FEED FLOW INPUT

FLAG FOR MAIN STEAM SYSTENM MODEL

=0 NO MODEL-STEAM FLOW INPUT

=1 MODEL- NO STEAM FLOW INPUT

TURBINE STOP AND CONTROL VALVE OPENING IN TERMS OF
OPENINS AT PVALV PER CENT FOKER

TIME WHEN TURBINE TRIP CCCURS

FLOW COEFFICIENT FOR STEAM DUMP CHOKED FLOW

FLOW COEFFICIENT FOR BYPASS CHOKED FLOW

FLAG FOR BYPASS SYSTEM OPERATION.

=0 NO BYPASS SYSTEM

=1 BYPASS SYSTEM

FLAG FOR STEAM DUMP SYSTEM

=0 NO STEAM DUMP

=1 STEAM DUMP

FLAG FOR SAFETY VALVES

=0 NO SAFETY VALVES

=1 SAFETY VALVES

CLOSING TIME OF TURBINE STOP AND CONTROL VALVE
TSV CLOSING TIME FOR SAFETY VALVES-NOT USED PROVIDED
FOR CONVENIENCE IF MODIFICATION IS MADE

CLOSING TIME OF ISOLATICN VALVE-NOT USED PROVIDED
FOR CONVENIENCE IF ISOLATION VALVE IS TO BE MODELED

ISV(1/2/3/4) FLAGS FOR INDIVIDUAL SAFETY VALVE BANKS. UP TO

/VALVES/

FB
FS1
Fs2

FOUR BANKS CAN BE MODELED.
=0 THIS BANK INOPERATIVE
=1 THIS BANK OPERATIVE

FRACTIONAL OPENING OF DUMP VALVES

FRACTIONAL OPENING OF TURBINE STOP AND CONTROL VALVE
FRACTIONAL OPENING OF BYPASS VALVES

FRACTIONAL OPENING OF SAFETY VALVE BANK 1
FRACTIONAL OPENING OF SAFETY VALVE BANK 2

J-~5
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FS3
FS4

/PRIME/
PPRIM
TLMTD

uo
TP(1/2/3)
HP(1/2/3)
RP(1/2/3)

UP(1/2/3)

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c TPIN(1/2)
c HPIN(1/2)
[~ WPIN(1/2)
c mp

c TKL

c CPL

c CPT

c

c /RYS/

c

c HPR

c HS

c RTUBE

c RFQUL

c

c /00NCC/
(4

c KD

c

c

c /AVE/

c .

c WBAR

c

c /FILTER/
c

c TFOLD

c

c

c TAUC

FRACTIONAL OPENING OF SAFETY VALVE BANK 3
FRACTIONAL OPEMING OF SAFETY VALVE BANK ¢

PRIMARY PRESSURE

LOG-MEAN TEMPERATURE DIFFERENCE

OVERALL HEAT TRANSFER COEFFICIENT

PRIMARY TEMPERATURES(INLET PLENUM GQUTLET/

TUBES OUTLET/OUTLET PLENUM OUTLET)

PRIMARY FLUID ENTHALPY CORRESFONDING TO TP(1/2/3)
PRIMARY FLUID DENSITIES(INLEY PLENMUM/TUBES/
OUTLET PLENURM)

DRPT(1/2/3) DERIVATIVE OF RP(I) WRT TP(I)

PRIMARY FLUID INTERNAL ENERGYV(INLET PLENURY/
TUBES/QUTLET PLENUM)

BUPT(1/2/3) DERIVATIVE OF UP{I} WRT TP(I)

PRIMARY INLET TEMPERATURE(OLD/NEN TIME)
PRIMARY INLET ENTHALPY(OLD/NEW TIME)
PRIMARY INLET FLOWRATE(OLD/NEW TIME)
VISCOGSITY OF PRIMARY FLUID IN TUBES
THERMAL CONDUCTIVITY OF FLUID IN TUBES
HEAT CAPACITY OF FLUID IN TUBES
VOLUMETRIC HEAT CAPACITY OF TUBE METAL

PRIMARY HEAT TRANSFER COEFFICIENT
SECONDARY HET TRANSFER COEFFICIENT
TUBE METAL HEAT TRANSFER RESISTANCE
FOULING FACTOR OR RESISTANCE

PRESSURE DROP COEFFICIENT FOR SHOCK AND TURNING
LOSSES AT BASE OF DOWNCOMER

GEOMETRICALLY WEIGHTED AVERAGE RECIRCULATION FLOW

OLD TIME VALUE OF PRIMARY OUTLET PLENUM EXIT
TEMPERATURE (IN DEGREES C) FOR SENSOR DYNAMICS
MODEL ’

COLD LEG TEMPERATURE SENSOR RESPONSE TIME

nnnnnnnnonnnnonnnoonnonnnnonnnonnnnnononnnnnnno

ceceeeecceceeceeccececeeccccecccececcececcecceceeccccccccccecececcecccccccccceeee
REAL LM,KSEP,LR,LD,LTB,LP,MU,KC,LF,M,MFD,MR,MTB,
IMTBC,MSD,MTOT, LT ,MUP, LSAT,LSUB,KD
DIMENSION TITLE(20)
COMMON /GEOM/ KSEP,LR,LTB,LP,KC,ARI,ATB,ARO,G»
1VR,VTB»DHTB,BETA(4),NSTG,CO,
2AHT ,RO»RI,VOPR,VTBP,APT,VTH



COMMON /DOME/ VSUB,VTOT,VG,VFO,LSAT,LSUB,VREF, LN,
1LD,AD,VD,VSD,DHD»VT, LT, VSTH,DVG,ASH,R1,R2,R3,R4,
2Z11,ZL2,ZL3,ZLF
COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL(2),HFW(2),V6J,MU(2]},
1HG,RL ,RHOG , RHOF , DUG , UG, DRHOG , DUF » UF , DRHOF , DRLP, DRLU,
2Q8,PORER, PERP,HFG,RFW(2),DTSAT
COMMON /FLOWS/ WO,HNS(2),HFW(2),WF, WP, HR,WN,DINERT
COMMON /TRANS/ VOID(3),XQ(3),RB(2),UB(2),DUP(2),DUA(2),DRP(2),
1DRA,MFD(2),MR(2),MTB(2),MTBC(2),HR,HN,MSD,
2MTOT(2),5(5),M(5),VP(3),R(9,5)
COMMON /TIME/ T,DT:ITRAN,WFWF,WSF, ITC,ICHK
COMMON /RESP/ VALIGIFW(31),PVALV, TTRIP,AK, AKB, VALKO,!MB,MSH,
1MSV, TMST, TSV, TISC,ISTM(31),ISV(4)
COMMON /VALVES/ F,FMST,FB,FS1,FS2,FS3,FS4
COMMON /PRIME/ PPRIM,TLMTD,UO,TP(3),HP(3),RP(3),UP(3),DRPT(3),
1DUPT(3), TPIN(2),HPIN(2) ,WPIN(2),MUP,CPL,TKL,CPT
CCMMON /HTS/ HPR,HS,RTUBE,RFOUL
COMMON /DOWCO/ KD
COMMON /AVE/ WBAR
COMMON /FILTER/ TFOLD,TAUC
c
ccceeeccecccececcececcecceccceeeccceccccecccecccccceccecee
c INITIALIZE FLAGS FOR STEADY STATE CALCULATIONS C
ceceecececcccececccceccecccccccoceceececccccccecccccceceecee
c

ITRAN=0

ICHK=0

c
cceeeccccccccccececccoeccceeccccceccceccceccccecccoccececcceceeccececcececee
c READ IN PROBLEM TITLE,NUMBER OF STEAM GENERATORS, FULL POWER €
c HEAT TRANSFER RATE,FULL POWER FEEDWATER TEMPERATURE, c
c SEPARATOR LOSS COEFFICIENT, PRIMARY FLOWRATE, PRIMARY PRESSURE C
cceececceeecceceeccecceeeccceeccceceeccecceeccecceceecceeeecceceeccecceeee
c

READ(5,600) TITLE

WRITE(6,601) TITLE

600 FORMAT(20A4)
601 FORMAT('1°,20A%)

READ(5,100) NSTG

READ(5,115) POWER,TFHW(2),KSEP,WPIN{1),PPRIM

PERP=1.0

QB=POWNER*PERP/NSTG

TFH(1)=TFW(2)

WPIN(2)=WPIN(1)

CALL ITER

ICHK=}
c
cceeeecceccccecceeccceccccceccceececccecceeececceeccccececeecceccece
c INITIALIZE FULL POWER STEAM AND FEED FLOWS, AS WELL AS C
c CHOKED FLOW COEFFICIENT FOR TURBINE STOP VALVE c
cceeceececceccececcccccceccccecceeccccccececcccececccccccceceecccecece
[

HWFWF=HS(1)

RSF=WS(1)



VALKO=NSFXSQRT( TSAT)/PSAT
c
CCCOCCCCCCCeteeCCCCtttCCttCteCCCCCCCCCCCCCteCCteCCCCCCCCCteCeeeeeet
c READ IN FLAG FOR TRANSIENT CALCULATION(NTRAN=0 STEADY STATE C
c CALCULATION ONLY, NTRAN=! TRANSIENT CALCULATION AS WELL c
CCCCCCECCCECCECeteCCeeCetrCCCeeeeCCetCCCCteCCeerCCtettCeCeCteteees
c
READ(5,100) NTRAN
I0=ITIME(IOUMMY)
c
€CCCCLCCCCCCEeCeCCeeCCeeceeeeeeeet
c DO STEADY STATE CALCULATION €
CCCCCCCCCCCCCCCtCCCCCCtCCeCCteeeeeee
c
CALL STEADY
I01=ITIME( IDUMMY)
1Z=101-10
WRITE(6,150) IZ
150 FORMAT(' *,'STEADY STATE CPU TIME CENTISECONDS',I4)
c
CCCLCCCTCCCCCeeCCetCtCCCCCCCCCCCeetteeeeett
c IF NTRAN=! DO TRANSIENT CALCULATION €
CCCCCCCCCCECteteCCCitCCCECteCeretTteeeeeeee
¢
IF(NTRAN.NE.1) 60 TO 5
102=ITIME( IDUMMY)
CALL TRANST
I03=ITIME( IDLMMY)
1Z1=103-102
WRITE(6,160) IZ1
160 FORMAT(' *,'TRANSIENT CPU TIME CENTISECONDS',IG)
5  WRITE(6,200)
100 FORMAT(I1)
"115 FORMAT(5E12.3)
200 FORMAT('-','END OF PROBLEM')
sToP
END



SUBROUTINE ALPHA

c

ceceeecceccecceccecceceececccccceoecceccccecccccccecccccceceececceccecccece
c THE PURPOSE OF THIS ROUTINE IS TO CALCULATE STEADY STATE c
c VAPOR VOLUME FRACTIONS AND BOTH STEADY STATE AND c

c TRANSIENT MOMENTUM SPECIFIC VOLUMES FOR SPATIAL ACCELERATION C
cceceeeceeeecccceececcceecccecccccceecccccceceececeecececceccececceccceceececeece
c
REAL LKW,KSEP,LR-LD,LTB,LP,MU,KC,LF,M;MFD,MR,MTB,
1MTEC,MSD, MTOT, LT, MUP, LSAT, LSUB
COMMON /GEOM/ KSEP,LR,LTB,LP,KC;ARI,ATB,ARC,G,
1VR,VTB,DHTB,BETA(4),NSTG,CO,
2AHT,RO,RI,VOP,VTBP,APT, VTN
COMMON /DOME/ VSUB,VTOT,VG,VFO,LSAT, LSUB,VREF, LM,
1LD,AD,VD,VYSD,DHD,VT,LT,VSTM,DVG,ASW,R1,R2,R3,R4,
2ZL1,ZL2,2ZL3,2ZLF
COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL(2),HFHN(2),VGJ,MU(2),
1HG,RL,RHOG,RHOF, DUG, UG, DRHOG,DUF , UF , DRHOF ,DRLP,DRLU,
2Q8, PONER , PERP,HFG,RFW(2),DTSAT
COMMON /FLOHS/ WO,WS(2),WFW(2),WF,WP,UR,NN,DINERT
COMMON /TRANS/ VOID(3),XQ(3),RB(2),UB(2),DUP(2),DUA(2),DRP(2),
1DRA,MFD(2},MR(2) ,MTB(2),MTBC(2),HR ,HN,MSD,
2MTOT(2),S(5),M(5),VP(3},R(9,5)
COMMON /TIME/ T,DT,ITRAN,WFWF,USF> ITC,ICHK
IF(ITRAN.EQ.1) GO TO 5
c
crecceeceecececcccceeceeccceccccecceccecccecccececceeeceee
[~ CALCULATE STEADY STATE VAPCR VOLUME FRACTIONS C
ceerneotacioseeeeccoeccecceceececcceccecccccececcccecccece

e
L

HHLETHARLL)
Rav=Rr 5 /RHOF
HIFCHEIRQI1)+(1.0-XQ( 1) IHRAT)
Va3 N0G/WO
WD L I5HQL )Z(X14X2%ARY )
VEIBF £)=XQ(2)/( X1 +X2#AR0)
00 z I=1,2
2  RB(I)=VOID(I)*RHOG+(1.0-VOID(I))*RHOF
RBP=1.0/(1.0/RL#(1.0/RB(1)-1.0/RL)¥*LP/LTB)
VOID(3)=(RHOF-RBP)/(RHOF-RHOG)
X3=COMRAT+RHOGHATE*VGJI/KO
X4=CO%(1.0-RAT)
XQ(3)=(VOID(3)%X3)/(1.0-VOID(3)%X4)
c
ceeeceecceceecceceeccceeceecceecceccececccceecececeecceeececeecceece
c CALCULATE SPECIFIC VOLUME FOR SPATIAL ACCELERATION C
cceceecccecececcececccceeccccecceccccecccccccececccececcccccceecee
c
5 DO 10 J=1,3
DY=XQ(J)%2/VOID(J)
DX=((1.0-XQ(J))*#2)/(1.0-VOID(J))
10  VP(J)=DY/RHOG+DX/RHOF
RETURN
END



BLOCK DATA
c
€ceeceecceceecceeceececececocceccceececeeccceececeecceccccceccceccece
[ THIS ROUTINE CONTAINS GEOMETRIC DATA FOR THE STEAM C
c GENERATOR BEING MODELED. THE NUMBERS SHOWN HERE ARE C
[ THOSE USED IN THE ARKAHSAS NUCLEAR ONE-UNIT 2 STUDY C
cceeeccceeccecccecceccceecceccccceececocecceccecceeccececccceccececee
c
REAL LW,KSEP,LR,LD,LTB,LP,MJ,KC,LF,M,MFD,MR,MTB,
1MTBC,MSD ,MTOT, LT, MUP, LSAT, LSUB,KD
COMMON /GEQM/ KSEP,LR,LYB,LP,KC,ARI,ATB,AROD,6)
1VR,VTB,DHTB,BETA(4),NSTG,CO,
2AHT,R0,RY,VOP,VTBP,APT,VTM
COMMON /DOME/ VSUB,VTOT,V6,VFO,LSAT, LSUB,VREF LN,
1LD,AD,VD,VSD,DHD,VT,LT,VSTM,DVG,ASH,R1,R2,R3,RG)»
2ZL1,21L2,ZL3,ZLF
COMMON /DOWCO/ KD .
DATA 6/9.8/,AR0/24.0808/,AR1/11.4393/,LR/2.5146/,DHTB/0.0266/
DATA ATB/6.6698/,LTB/8.5296/,LP/6.7262/,VR/43.6846/,VTB/56.8907/
DATA C0/1.13/,KC/0.06479/,BETA(23/0.6394/,BETA(3)/0.1887/
DATA BETA(4)/0.0522/,KD/0.51/,AHT/88641.2219/,VOP/6.6261/
DATA VTBP/31.998/,R0/9.525E-03/,R1/8.3058E~03/,APT/1.8229/
DATA VT/10.0851/,VSTH/57.0/
DATA LD/6.7262/,ZL1/0.9970/,2ZLF/0.7049/,2ZL2/2.5083/,ZL3/1.8034/
DATA R1/2.9385/,R2/2.7686/,R3/1.9082/,R4/1.986/
END
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c

SUBROUTINE CHOKE

geeeeececcceccceececceececcceccceccccccceccecccecccceccecccecceccceceece

c
c
c
c

THIS ROUTINE SIMULATES CONTROL ACTION IMPACT ON THE STEAM C
FLOW. THAT IS IT SIMULATES THE MAIN STEAM LINE VALVES. c
THE VERSION SHOWN HERE IS THE ONE USED FOR MAINE YANKEE. C
THE USER MAY CHANGE THIS ROUTINE TO SIMULATE OTHER PLANTS C

cEceceeccecceeeccccececceeceecceecceceecccececcceccecccececceccceccecc

c

COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL(2),HFW(2),VGJ,MU(2),
1HG,RL ,RHOG, RHOF ,BUG, UG, DRHOG , DUF , UF , DRHOF , DRLP,DRLU,
2QB, PONER, PERP,HFG,RFW(2) ,DTSAT

COMMON /FLONS/ WO,WS(2),WFH(2),WF,WP,NR,WN,DINERT

COMMON /TIME/ T,DT,ITRAN,WFWF,NSF, ITC,ICHK

CCMMON /PRIME/ PPRIM, TLMTD,UO, TP({3),HP(33,RP(3),UP(3]},DRPT(3),
1DUPT(3), TPIN(2),HPIN(2),WPIN(2),MUP,CPL, TKL,CPT

COMMON /RESP/ VALK,IFW(31),PVALV,TTRIP,AK,AKB,VALKO,MB,MSM,
1MSV, TMST, TSV, TIS0, ISTM(31),1ISV(4)

COMMON /VALVES/ F,FMST,FB,FS1,FS2,FS3,FS4

DATA C1/117.8/,C2/0.223/,C3/255.2/,A14/1 .0E~05/,C12/2 .5896E06/

DATA C13/6.35E-03/,C14/-1.0582E-09/,C15/1.0764/,C16/3.625E-10/

DATA C17/-9.063E-17/,SL0/~1.465568E06/,SL1/6.926955E03/

DATA SL2/-7.742307/,SL3/7.286301E-03/,C47/1000.0/,C45/1.0E-06/

DATA C48/-0.15E03/.C49/-20.0/,C51/0.657E-06/

DATA C9/1.066555/,PSET1/6.1840E 06/,PSET2/6.3215E 06/

DAYA C10/1.02E-08/,C11/-2.548E~15/,C8/3.403E05/,C7/~4.995E10/

DATA C6/2619410.618/,5H0/-8.9/,SH1/2.363444E04/,SH2/~77.6434017/

DATA SH3/7.021557E-02/,AKSV/3.2198E~04/

DATA PSV1/6.8712E06/,PSV2/7.0086E06/,PSV3/7.1117E06/

OATA PSV4/7.2147E06/,ACCUM/0.00/,BDOWN/0.00/

ACCUM AND BDOWN ARE THE SAFETY VALVE ACCUMULATICN AND Cc
BLOWDOWN, RESPECTIVELY. THESE EFFECTS ARE MODELED ONLY C
APPROXIMATELY IN THIS PARTICULAR SUBROUTINE, BUT THE c
MODEL COULD BE IMPROVED TO HANDLE THIS BETTER. c

c

WS(2)=0.0
PTSAT=PSAT/SGRT(TSAT)
IF(PSAT.LE.3.2844E06) 60 TO 50
JFIT.ST.OT) 60 TO 1

geeceeeeccecceecceccceeccececcece

c

INITIALIZE PARAMETERS C

ceceeeccccccceecceccecececececceeee

c

F=0.0
FMST=1.0
FE=0.0
FS1=0.0
FS2=0.0
FS$3=0.0
FS64=0.0
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1 IF(T.GE.TTRIP) G0 TO 20

c
ceeecceccecccceeeececcceccecceececeeceocceeeccececcccececccecceeecceccecceeeccee
c DO CALCULATIONS FOR MANIPULATION OF STOP AND CONTROL VALVE C

ceoeeeceeceeceaceceececeeecceecceceecceccececceecececeeeeececeecececceccece
c
IF(PERP.6T.1.0) GO TO 17
PS=(5.95~(0.35%PVALV) )*{1.0EQ6)
TF=(~45.83)%( PVALV%#2 ) +150.83%PVALV+394.0
TS=Cl%( (A1G*PS)XC2)+C3
IF(PS.6E.2.0E06) GO TO 2
=C6+C7%(1.0/(C8+PS))
GS=Co+(C11%PS+C10)%*PS
60 70 3
2 CONTINUE
US=C12+(C14%PS¢C13)%PS
6S=C15+(C17%PS+C16 ) *PS
DES=C16+2.0%C17#PSAT
DUG=C13+2.0%C14%PSAT
3 RG=PS/( (63~1.0)%US)
HGS=US*GS
IF(TF.GE.573.15) 60 TO 6
UFS=SLO¢SLINTFSL2#( TF%%2 .0 )+SL3I¥( TF%3.0)
60 TO 7
6 UFS=SHO+SH1#TF+SH2%( TF*%2 .0 ) +SH3#( TF*%3,.0)
7 RFS=C47+(C45HUFS )#( C48RCHGERUFS+CE9)+C51%PS
HFS=UFS+PS/RFS
WST=ABF#PVAL,/(HGS~HFS)
VALK=HST#( TS*%0.5)/PS
17 NS(2)=VALK*PTSAT

20 IF (T.LT.TTRIP} 60 TG 30
DVALK={VALKO~-VALK }/VALKO
IF(FMST.EQ.0.0) 60 7O 21
FHST=1.0-({T~-TTRIP)/THST)-DVALK
IF(FMST.LE.0.0) FMST=0.0

a1 HS(2)=FMSTHVALKO*PTSAT
IF(MSM) 30,30,22

c I7 DUMP SYSTEM IS OPERATIONAL SIMULATE IT C
ceceeceececcececcceccccccccceccececcecccececcccocececcece
c
22 TAVE=(TPIN(2})+TP(3))/2.0

DTAVE=TAVE-550.93

TCH=T-TTRIP

IF(TCH.SE.DT) 60 TO 25

F=0.0

ITR=0

IF{DTAVE.GE.13.89) 60 TO 23
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23

24
25

26

27

28

29

3

32

33

iF(DTAVE.SE.4.44) €0 TO 24
FO=0.0

60 TO 25

FO=1.0

60 TO 25
FO=0.0818%DTAVE-0.1362
IF(ITR.EQ.i) 60 TC 28
IF(F.LT.FO) GO TO 26
ITR=1

60 TO 28

IF(FO.LT.1.0) 60 TO 27
F=(T-TTRIP)/3.0
IFtF.6E.1.0) F=1.0

GO TO 36
F=(T-TTRIP)/15.0
IF(F.GE.FO) F=FO

60 1O Z6
IF(DTAVE.LT.13.89) 60 TO 29
IF(F.EQ.1.0) 60 TC 36
F=F+DT/15.0
IF(F.6E.1.0) F=1.0

60 TO 36

IF(F.EQ.0.0) 60 TO 35
F1=OTAVE#0.0818-0.1362
IF(F~-F1) 31,32,33
SIGN=1.0

60 TO 3%

SIGN=0.0

60 TO 34

SIGN=~-1.0
F=F+3SICGN*DT/15.0
IF(F.GE.1.0) F=1.0
IF(F.LE.0.0) F=0.0

60 TO 36
IF(DTAVE.LT.4.44) 60 TO 36
F2=DTAVE%0.818-0.1362
FsF+DT/15.0
IF(F.GE.F2) F=F2

60 TO 36

F=1.0

WS(2)=HS( 2 ) +FRAKH#PTSAT
IF(MB) 50,50,39

IF BYPASS SYSTEM IS OPERATIONAL SIMULATE IT C

geeeccecceccccoececcecerecccccccceccccecccecceccecece

40

41

IF(PSAT.LE.PSET1} 60 TO 40
IF(PSAT.GE.PSET2) 60 70 41
FB=(PSAT~PSET1)/(PSET2-PSET1)
G0 TO 42

FB=0.0

60 TO 42

FB=1.0
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42 WS(2)=NS(2)+FBRAKBXPTSAT
c
cceeeccceecceccceeccceccecccecececcceeccceccccccecceeccee
c IF SAFETY VALVES ARE WORKING SIMULATE THEM C
cceeeccececcececcceecccecccecececceccceceeccecccceceecceee
c
50 IF(MSV.NE.1) RETURN

IF(ISV(1).NE.1) GO TO 53

PSA1=(1.0+ACCUN}#PSV]

PSB1=(1.0-BDOWN)*PSV1

IF(PSAT.GE.FSAl) GO TO 51

IF(PSAT.LE.PSB1) 60 TO 52

FS1=(PSAT-PSB1)/(PSAL1-PSB1)

€0 TO 53
51 FSi=1.0

60 TO 53
52 FS1=0.0

53 HS(2)=RS(2)+FS1%AKSVHPTSAT
IF(ISV(2).NE.1) 60 TO 56
PSA2=(1.0+ACCUM)*PSV2
PSB2=(1.0-BDOWN)*PSV2
IF(PSAT.GE.PSA2) 60 TO 54
IF(PSAT.LE.PSB2) 60 TO 55
FS2=(PSAT~PSB2)/(PSA2-PSB2)

60 TO 56
54 FsS2=1.0

60 TO 56
55 FS2=0.0

56 HS(2)=US(2)+FS2%A" “VHPTSAT
IF(ISV(3).NE.1) 6. /O 59
PSA3=(1.0+ACCUM)%PTV3
P3B3=(1.0-BOOWN)I®P<YY
IF(PSAT.GE.PSA3) 60 To 57
IF(PSAT.LE.PSB3) GO 0 58
FS3=( PSAT-PSB3)/(PSA3~PSB3)

60 TO 59 .
57 F83=1.0

60 TO 59
58 F$3=0.0

59 WS(2)=HS(2)+2. ONFSINAKSYHPTSAT
IF(ISV(4).NE.1) 60 TO 62
PSA4=(1.0+ACCUM)*PSVG
PSB4=(1.0-BDOUN)I*PSV4
IF(PSAT.GE.PSA4) GO TO 60
IF(PSAT.LE.PSB4) GO TO 61
FS4=( PSAT-PSB¢ )/ (PSAG-PSBS) .
60 TO 62

60 FS4=1.0
G0 TO 62

61 F$4=0.0

62 HS(2)=HS(2)+2. 0%FS4RAKSVHPTSAT
RETURN
END
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THIS SUBROUTINE SIMULATES THE ACTION OF A THREE ELEMENT C

FEEDWATER CONTROLLER. THE ROUTINE MAY BE REPLACED BY

ONE OF THE USERS CHOICE. THIS CONTROLLER MODEL'S

PARAMETERS ARE THOSE USED FOR PART OF THE ARKANSAS

NUCLEAR ONE-UNIT 2 STUDY

c

OO0

- CeLeLTecceccecccceccccecccecccccecceccecccececccceeccceeecccccecceece

c

REAL LW,XSEP,LR,LD,LTB,LP,MU,KC,LF,N,MFD,MR,MTB,
1MTBC,NSD,MTOT, LT, MUP, LSAT, LSUB

COMMON /GEOM/ KSEP, LR,LTB,LP,KC,ARI,ATB,ARD,6G)
1VR,VTB,DHTB,BETA(4),NSTG,CO,

2AHT ,RO,RY, VOP,VTBP, APT,VTH

COMMON /DOME/ VSUB,VTOT,VG,VFO,LSAT,LSUB, VREF, LK,
1LD,AD,VD,VSD,0HD, VT, LT,VSTM,DVG, ASWH,RY,R2,R3,R4,
2ZL1,2L2,ZL3,ZLF

COMMON /FLOWS/ WO,WS(2),WFI(2),HF ,NP,H R, WN,DINERT
COMMON /TIME/ T,DT,ITRAN,WFWF,HSF, ITC,ICHK
CL=1.0000E+00

Ch=0.02 :

ROOT=Cli*(WS( 1 )=WFk( 1))+CL3#(30.43-LR

NFWC( 2)=WFI( 1 ) +KDOT#DT

RETURN

END
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c

cceceecceceecccccecccecceccceecceeccecccccccececccceccececcccccecceeceececeece
THIS ROUTINE PERFORM A STEADY STATE MIXING CALCULATION FOR

c
c

ccceececceeeccececcceccecececcecececccececcececceccceccccceccecccecccececcccececcece

c

c

SUBROUTINE DODEN

THE DOWNCOMER(SUBCOOLED REGION)

REAL LW,KSEP,LR,LD,LTB,LP,MU,KC,LF,M,MFD,MR,MTB,

1MTBC,MSD » MTOT, LT, MUP, LSAT, LSUB

COMMON /STEAM/ PSAT, TFW(2),TSAT,UL,HL(2),HFW(2),V6J,MU(2),
1HG,RL,RHOG, RHOF ,DUG, UG, DRHOG, DUF , UF , ODRHOF , DRLP, DRLU,

2Q8, POUER , PERP,HFG,RFUW(2) ,DTSAT

COMMON /TRANS/ VOID(3),XQ(3),RB(2),UB(2),DUP(2),DUA(2),DRP(2),

1DRA,MFD(2),MR(2),MTB(2),MTBC(2),HR ,HN,MSD,
2MTOT(2),5(5),M(5),VP(3),R(9,5)

COMMON /TIME/ T,DT,ITRAN,WFWF,WSF, ITC,ICHK
DATA A/-1.2083E-10/,B/-4.1089E-05/,C/986.3/

DATA C45/1.0E-06/,€47/1000.0/,C48/-0.15E03/
DATA C49/-20.0/,C51/0.657E~06/ .

ceeccecceeccceceeereccceccecceccecccccceccccececceecee

c

CALCULATE SUBCOOLED REGION ENTHALPY c

geeeeeccecccccecececccceecccccccccceccccecceeccecce

c

c

ccceecceccecececcececceeecceccceccececcccccccececeecceece
USE NEWTON'S METHOD TO FIND DOWNCOMER DENSITY

c

c

ccececececececccecceccceecccccececccececccecceecereceeceeecee

c

c

10

20

HLO1)SXQU1 )HFR{1)+(1.0-XQ(1))I*HL(2)

FROM FROPERTY FITS

RL=AMHL( 1 )92+4BHHLL1)+C
C1l=(Ca5¥2 )%C48
C23C49XC45
C3=C47+C51#PSAT
P=(~1.0)%{C14HL(1)M%2+C2¥HL(1)+C3)
Q=2.0%PSATEHL( 1 )%C1+C2%PSAT
RD==1.0%C1%(PSAT*%2)

=RL
60 TO 5
RN=RHO
F=RN#%3+PERN##2+Q¥RN+RD
FP=3.0%RN#%24+2.0%P*¥RN+Q
RHO=RN-F/FP
DEL=RHO-RN
ADEL=ABS(DEL)
IF {ADEL.LT.1.0E-02) GO TO 20
60 TO 10
RL=RHO

e

cceececccececceccecccecccecccccecceeceeccceceeee

c

CALCULATE DOWNCOMER INTERNAL ENERGY c

ceeececceececccccceeccccccecececcceececcccccececce

¢
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UL=HL(1)-PSAT/RL
c
ceceeecceccecececcceccccceececccceccceee
c EVALUATE OTHER PROPERTIES c
ccececececccecceecceccceccececcccceeccece
c

CALL THERM1

RETURN

END
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SUBROUTINE HEAT
[+
CCCCCeececeeecLceceeeceeccececececeecccececeeecceececceeecccccececececcee
[~ THE PURPOSE OF THIS ROUTINE IS TO CALCULATE THE STEADY C
[~ STATE STEAM AND FEED FLOWS, AS WELL AS THE TURBINE STOP C
c AND CONTROL VALVE CHOKED FLOW COEEFICIENT c
cceeeeccecceececceccceccceceeeccececceeecccececceccecccececccceccccceecece
[
COMMON /GEOM/ KSEP,LR,LTB,LP,KC,ARI,ATB,ARO,G»
1VR,VTB,DHTB,BETA(4),NST6,C0,
2AHT,R0O,RI,VOP,VTBP,APT,VTM
COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL{2),HFN(2),VGJ,MU(2),
1HG,RL,RHOG,RHOF ,DUG, UG, DRHOG , DUF , UF , DRHOF , DRLP,DRLU,
2QB, POKER s PERP,,HFG>RFN(2) ;DTSAT
COMMON /FLCWS/ WO>WS(2),WFN(2),NF NP, WR,WN,DINERT
COMMON /RESP/ VALK, IFWH(31),PVALV,TYRIP,AK,AKB,VALKO,MB,MSM,
1MSV, TMST, TSV, TIS0,ISTM(313},ISV(4)
[
ceeeecceeeeccceceeeccecceceeecceececcceceecccecceceecceeeceeecercececccece
[~ USE STEADY STATE HEAT BALANCE TO CAlLCULATE STEAM FLOW C
geeeecceccceecceececceececeecccececeeecccececcceceeccecceeccecccceeer
Cc
WS(1)=QB/(HEG-HFMW(1))
WFH(1)=RS(1)
c
CCCCCCCCCCCCCCCCCCCCCCtCCCtocCeeCeoiieccececccececccecccccceceoeet
[ CALCULATE TURBINE STOP AND CO.'TROL VALVE FLOW COEFFICIENT C
£CCCCCCCCCCCCLCCLCCCCCeCCeeceeeeoee .cecceecceececeeceecceecececcecececccecee
C
VALK=HS( 1 )#(TSAT*¥0.5)/PSAT
IF(PERP.GE.1.0) VALKO=VALK
RETURN
END
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SUBROUTINE ITER
c
cceeceececccccececccceccecceeccecenccecccccccecccececcceccceeccccecceece
c THIS ROUTINE CALCULATES THE STEADY STATE FRIMARY TEMPERATURE C
c DISTRIBUTION AND FOULING FACTCR. IT ALSO CALCULATES THE c
c SECONDARY PRESSURE IF THE REACTOR IS NOT AT FULL POKER. [
c THE SECONDARY STEADY STATE FLOW PATERN IS ALSO CALCULATED. C
cceccecceeccccecceccceecccececccececceccccccecccceeccccccceceeccececceecee
c B
REAL LW,KSEP,LR,LD,LYB,LP,MU,KC,LF " MFD,MR,MTB,
1MTBC,MSD,MTOT, LT, MUP, LSAT, LSUB,KD
COMMON /GEOM/ KSEP,LR,LTB,LP,KC,ARI,ATB,>ARO,G,
1VR,VTB,0HTB,BETA(4),NSTG,CO,
2AHT,RO,RI,VOP,VTBP,APT,VTM
COMMON /RESP/ VALK,IFW(31),PVALY,TTRIP,AK,AKB,VALKO,MB:MSM,
1MSV, TMST, TSV, IS0, ISTM(31),ISV(4)
COMMON /DOME/ VSUB,VTOT,V6,VFO, LSAT,LSUB,VREF, LK,
1LD,AD,»VD,VSD,DHD, VT, LT,VSTM,DVE,ASH,R1,R2,R3,R4G,
2ZL1,2L2,ZL3,%LF
COMMON /STEAM/ PSAT,TFU(2),TSAT,UL,HL(2),HFR(2),V6J,MU(2),
1HG,RL,RHOG6, RHOF , DUG , UG, DRHOG , DUF , UF , DRHOF » DRLP, DRLU,
2QB, POWER s PERP,HFG,RFW( 2) ,DTSAT
COMION /FLOWS/ WO,WS(2),WFR(2),WF »NP, KR, WN,DINERT
COMMNN /TRANS/ VOID(3),XQ(3),RB(2),UB(2),DUP(2),DUA(2),DRP(2),
1DRA,MFD(2),MR(2),MTB(2),MTBC(2),HR,HN,MSD»
2MTOT(2),8(5},M(5),VP(3),R(9,5)
COMMON /TIME/ T,DT,ITRAN,WFWF,WSF, ITC,ICHK
COMMON /PRIME/ PPRIM,TUMTD,UO,TP(3),HP(3),RP(3),UP(3),DRFT(3),
1DUPT(3), TPIN(2) ,HPIN(2),WPIN(2),MUP,CPL, TKL,CPT
COMMON /HTS/ HPR,HS,RTUBE,RFOUL
COMMON /DONCO/ KD
COMMON /AVE/ WBAR
DATA Al,A2,A4,A5 /255.2,117.8,0.223,87.0E05/
c
ceeceeccecececccceccecccecceecceceererecceeccececeeceecececcece
c CHECK IF THIS IS THE INITIAL FULL POWER CALCULATION C
c FOR THE FOULING FACTOR c
cceececececeeeecccceeccececccceeeccceercLeeecceccecceccccecccacce
c

IF(ICHK.EQ.1) 60 TO 80
c
cceeeececeeeeeetcecececeeccceeeccceccreecececcecccccecceceecccceece
c READ IN THE PARAMETERS T1 AND T2 FOR LINEAR FUNCTION C
c OF TAVE WITH POWER: TAVE=T1+T2%PERP c
cceeececceecteccececceccceccccccceccecctececccceceecceececcsecccece
c

READ(5,201) T1,T2
201 FORMAT(2E12.3)
80 IFC(PERP.LE.1.0) GO TO 90
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCreeeeeceeeeeeeeeececeeceeecceee
c IF THE REACTOR IS OPERATING ABOVE FULL POMER READ IN TAVE C
ceeeeeeeeeecceeceeeeccececeeeceececcecececcecceceeceeccecceeeccecee
c
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200

90
c

READ(5,200) TAVE
FORMAT(E12.3)

GO TO 91
TAVE=T1+T2%*PERP

cceeececececcceecececccecceccceeccecccceeccececccccccectcecceee
CALCULATE FRIMARY TEMPERATURES USING BISECTION C
cceeececcceceecccececececcceccccecccecacecceeccceccceccceeccee

c

c
1)

100

101

102

103

IcT=0
DHSTAR=QB/WPIN(1)
CRIT=5.0E~03*DHSTAR
TP(1)=TAVE+100.0
TPO=TP(1)

TP(2)=2. OXTAVE-TP(1)
Ime=1

CALL PRMPRO
DH=HP(1)-HP(2)
EDH=DH-DHSTAR
AEDH=ABS(EDH)

IF(AEDH. LE.CRIT) 60 TO 103
IF(EDH.LE.0.0) 60 TO 102
IFUICT.EQ.1) 60 TO 101
TPO=TP(1)
TP(1)=(TPO+TAVE)/2.0

60 TO 100

TPO=TP(1)
TP(1)=(TPO+TN)/2.0

60 TO 100

TN=TP(1)
TR(1)=(TPO+TN)/2.0

IcT=1

60 TO 100

TPINC1)=TP(1)
TPIN(2)=TPIN(1)
TP(3)=TP(2)

c
cccecceccccccecreceecceeerccceceecceeecieeeceeeceee
IF THE REACTOR IS AT LESS THAN FULL PONER C

c
c
c
c

CALCULATE SECONDARY PRESSURE USING THE

c

FOULING FACTOR OBTAINED FROM A FULL POWER C

CALCULATION

c

ccecececceecccececcccecccecceccccceeccecccccecccecee

c

c

IF (PERP.NE.1.0) GO TO 107

cceecececccccceccceceocccccececcccccceccececcecccceccceecce

¢
c
c

IF THIS IS THE INITIAL FULL POWER CALCULATION

READ IN THE SECONDARY PRESSURE AND DETERMINE

THE FOULING FACTOR

c
c
c

ccceececeeeccececccecceccecccccecceceeecceeccecceccceceecee

C

203

IF(ICHK.EQ.0) READ(5,203) PSAT

FORMAT(E12.3)
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ITC=0

CALL PRMPRO

CALL THERM

CALL HEAT

Z1=TP(1)~-TSAT

Z2=TP(2)~TSAT
TLMTO=(TP(1)-TP(2) )/ALOG(Z1/Z2)
CALL NEWPR1

UO=CB/(AHT*TLMTD)
RFOUL=1.0/U0-RTUBE~-(RO/RI)/HPR~1.0/HS
IF (ICHK.NE.1) RETURN

60 TO 106
c
ccecececeecceeecceecececcceccccecceeccecccccccccccccecccceeccecece
c THIS SECTION CALCULATES THE SECONDARY FRESSURE AT c

c POMERS OTHER THAN FULL POMER, GIVEN THE FOULING FACTOR C
CCCCCCCCCLeeTereetCtereiteCCttCCCCCCCCCeCCCCCteteeCteeeeeeeeee
c
107 ITC=0
CALL PRMFRO
A321.0/A6
QP=GB/AHT
QP1=QP/1.0E06
RE=2.0%RIXWPIN 2)/( APTHMUP)
PREMUP*CPL/TKL
HPR=Z(0.023 )% RE¥#0.8)%( PR#%0.4 )¥TKL/(2.0%RT)
RPF=(RO/RI )/HPR4RFOUL
TS2=TAVE-36.0
106 TS1=782
AS=(TS1-A1)/A2
PS1Z(AS#¥AS)*1.0EQS
Z1=TP(1)-TS1
Z2=TP(2)-TS1
TL=(TP(1)-TP(2) )/ALOG( 21/22)
TT=0.016%(TL/2.04T51)¢9.632
F1=QP*(RPF+RO¥ALOG(RO/RI )/TT)
F2222.65#SGRT( QPL )¥EXP(-PS1/AS)
FEF14F2-TL
DTL=(~1.0 )%(TL##2.0)/(Z1%Z2)
DPS=A3H(ASH#(A3-1.0))%1.0EC5/A2
FP1=(-1.0%QP )%(ROXALOG(RO/RI )/TT##2.0)%(0.016)%(DTL/2.0+1.0)
FP=FP1+(F2/AS )¥DPS-DTL
152=TS1~F/FP
DTS=T52-TS1
ADTS=ABS(DTS)
IF (ADTS.LE.C.1) GO TO 105
G0 TO 104
105 TSAT=TS2
PSS(TSAT-AL)/A2
PSAT=(PS#¥*A3)#1 . 0E05
CALL THERM
CALL HEAT
ZI=TP(1)-TSAT '
Z2=TP(2)-TSAT
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TLMTD=(TP(1)-TP(2))/ALOG(Z1/Z2)

106 CONTINUE

c

cceeececeececceeceecceereccceccccccececcccreccecceccccccccecee

c
c

CALCULATE THE STEADY STATE DOWNCOMER FLOLRATE
AND SECONDARY FLOW PATTERN USING BISECTION

c
c

ceceeeeccceeccccceeccccccccecccecccccccecceceecceceececeece

c

10

20

30

40
c

XQ(13=0.01
WO=WS(1)/7XQ(1)

IPT=0

CONTINUE
XQ(1)=WS(1}/U0

CALL DODEN

WP=WO

WF=KO-WS(1)

WR=WO

WN=UO

CALL MOMEN
DP=(M(13+M(2)+M(3)+M( &) JHHO+M(S5)
ADP=ABS(DP)

IF (ADP.LT.1.0E-01) 60 TO 40
IF(DP.LT.0.0) 60 TO 30
IF(IPT.NE.O) 60 TO 290
XQ(1)=XQ(1)+0.05
WOP=WO

WO=NS(1)/7XQ(1)
IF(XQ(1).6T.1.0) RETURN
60 TO 10

CONTINUE

WOP=HO
HO=(WOP+HON)/2.0

IPT=1

60 TO 16

CONTINUE

WON=KO

WO={ WOP+WON)/2.0

IPT=1

60 TO 10

CONTINUE

cceecccececeeccecceccecceccccccecccecceccceccccececcceccceeececccecececee

c
c

c

CALCULATE THE STEADY STATE MASSES AND OTHER PARAMETERS

c

AND WRITE OUT THE RESULTS OF THE STEADY STATE CALCULATION C
ceeeccecccecececcececeeccecececceceececceeeccecceececeecceecceceecece

CALL NEWPR
CALL ouT
RETURN

END
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0

SUBROUTIME LEVEL

cceeecccceeccceceececcecccecccececcccoccccceccceccececceeccccccceecee

THE PURPOSE OF THIS ROUTINE IS TO CALCULATE THE DOWNCOMER C
LEVEL GIVEN THE STEAM VOLUME IN THE STEAM DOME-DOWNCOMER. C
THE DONNCOMER GEOMETRY 1S REPRESENTED ANALYTICALLY; THE C
LEVEL IS OBTAINED BY DIRECT INVERSION OF A CUBIC EQUATION.C
THE ROUTINE ALSO CALCULATES THE HEIGHT OF SUBCOOLED LIQ- C
UID, AS WELL AS THE LENGTH OF SATURATED LIQUID IN THE c
DOKNCOMER. c

CCCCCCCCCCCCCCCCCCCCLCCCCCCLCreiCeeeeeecceceeeeeeceeceececeeeee

c

REAL UWi,KSEP,LR,LD,LTB,LP,MU,KC,LF,M,MNFD,MR,NTB,
IMTBC,MSD,MTOT, LT, MUP, LSAT, LSUB ’

COMMON /GEOM/ KSEP,LR,LTB,LP,KC,ARI,ATB,ARO,6»
1VR,VTB,DHTB,BETA(4),NST6,C0,
2AHT,R0,RY,VOP,VTBP, APT,VTH

COMMON /DOME/ VSUB,VTOT,VE,VFO, LSAT,1.8UB, VREF, LW,
1LD,AD,VD,VSD,DHD,VT,LT,VSTH,DVE:ASH,R1,R2,R3,RGs
2Z1 ° ZL2,ZL3,ZLF

COMMON /TRANS/ VOID(3),XQ(3),RB(2),UB(2),DUP(2),DUA(2),DRP(2),
1DRA,MFD(2),MR(2),MTB(2),MTBC( 2) ,HR,HN,1MSD,
2MTOT(2),S(5),M(5),VP(3),R(9,5)

COMMOM /TIME/ T,DT,ITRAN,RFNF,NSF,ITC,ICHK

IF(ITRAN.EQ.1) 60 TO 10

PI=3.141593
V1=(2.0/3.0)%PI*(R1%%3)

V2=PIN(R1#%2)%ZLY

V12=V1sv2

C1=(R2-R3}/ZL2
V3=PIR(R1#N2%ZL2-(R2HNZ-RINN3)/(3.0%C1))

V123=Vi2eV3

VLF=PI%( (R13%2 )%ZLF=~( (CI%ZLF+R3 )%3-R3ME3)/(3.0%C1))
ZL2H=UH-ZL3-LD

V2W=PI*( (R19%42 )%ZL2W-( (C1¥ZL2W+RS IA3-RIN%S)/(3.0%C1))
VFO=(V2W-VLF /4.0

ZL1234=ZL1421.2+42ZL34LD

LY=ZLF+ZL3+LD

ZL2364=2L1234-ZL1

C2=(R1-R&)/ZL3

VG=PI*( (R1343-RG¥%3)/( 3. 0%C2)-ZLINRIM2)
V1234=V123+V6

ADZPIR(RGH%2-RIN%2) "

VD=LD*AD

VTOT=V1234+VD

VT=VD+V4+VLF

VSD=VTOT-VT

VREF=VSD-VFO
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10

15

20

30

ASH=PIR(R1#2-(C1%ZL2N+R3 )¥n2 )
VR1=V1234~VFO

VR2=VTOT-VFO

LSUB=LT

LSAT=LK~-LSUB
DHD=(2.0%AD)/((R4+R3)%PI)
Ve=VTOT~-V2W~-V4-VD

RETURN

IF(V6.6T.V1) 80 T0 15

TEST=1.0
ANG=ARCOS(AM33/3.0+6,0%P1/3.0
SL=2.0%R1%COS{ANG)
LN=SL+ZL1234

LSUB=LY

LSAT=LN-LT
ASW=PI¥{RI¥%2,0-R2%¥2,0}
RITURN

IF(V6.6GE.V12) 60 TO 20
SL=(V12-VG)/(PI*R1#%2.0)
Li=SL+ZL234

LSUB=LT

LSAT=LK-LSUB
ASH=PI#(R1#%2,0~-R2#%2.0)
RETURN

IF(V6.6T.VREF) 60 TO 25
B=3.0%C1%#(V123-VG )/PI+(3,0%(R1%%2)=~(R3%%2 ) }¥R3
ARG=B/(-2.0%(R1%%3,0))}
ANG=ARCOS(ARG)/3.0+4.0%P1/3.0
SL1=COS(ANG }#2 ., 0%R1
SL=(SL1-R3)/C1

ASW=PIN( (R1%%2)=( (C1%SL+R3)%%2.0))
LR=SL+LD+ZL3

LSUB=LT

LSAT=LN-LSUB

RETURN

IF(V6.6T.V123) 60 TO 30
IF{V4.LE.VFO) 60 TO 100
B=3.0%C1¥(V123=-VG )/PI+({3.0%R1#e2-RIN2 ) N3
ARG=B/{~2.0%R1%%3_.0)
ANG=ARCOS(ARG)/3.0+4.0%P1/3.0
SL1=COS(ANG)*2.0%R]1
SL=(SL1-R3)/C1
ASW=PIN(R162-(CINSL+R3)%2.0)
LW=SL+LD+2ZL3

VI=VG+VFQ

B=(3.0%R3%%2, 0-RG#%2,0 )¥RG-3, 0%C23¥(V1234~VI)/PL
ARG=B/(~-2.0%R3%%3)
ANG=ARCOS(ARG)/3.0
SL2=2.0%R3%COS(ANG)
SL=(SL2-R4)/C2

LSUB=SL+LD

LSAT=LUW-LSUB

RETURN

IF(VG.6T.VR1? 60 TO 35
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35

40

45

100

IF(V4.LE.VFO) €0 TO 100
B=(3.0%R3%%2.0-RGH2. 0 )#¥RG~3, 0%C2%(V1234-VG)/PL
ARG=B/(-2.0%R3%x%3)
ANG=ARCOS(ARG)/3.0
SL2=2.0%R3%COS(ANG}
SL=(SL2-R4)/C2

LW=SL+LD

VI=VG+VFO

ASW=PI*( (C2%SL+RG )32 . N~-R3%%2.0)
B=(3.0%R3I%%2, 0-RG*%2, §)*RG~3, 0%C2%(V1234-VI)/PL
ARG=B/(-2.0%R3%#x3)
ANG=ARCOS(ARG)/3.0
SL2=2.0%R3%COS(ANG)
SL=(SL2-R4)/C2

LSUE ::SL+LD

LSAT=LW-LSUB

RETURN

IF(VG.6E.V1234) 60 TO 40
B=(3.0%R3%*2. 0-R4*¥#2 .0 )*¥R4G-3, 0%C2%(V1234-VG)/PI
ARG=B/{-2.0%R3%*3)
ANG=ARCOS(ARG)/3.0
SL2=2.0%R3I*COS(ANG)
SL=(SL2-R4i/C2

LW=SL+LD

VI=V6+VFO

ASH=PI#( (C2%#SL+R4G ) %2, 0~-R3%¢2.0)
LSUB=(VTOT-VI)/AD

LSAT=LW-LSUB

RETURN

IF(V6.6E.VR2) GO TO 45
LU=(VTOT-VG)/AD

VI=V6+VFO

LSUB=(VTOT-VI)/AD

ASW=AD

LSAT=LH-LSUB

RETURN

LW=(VTOT-VG5)/AD

LSAT=LW

LSUB=0.0

RETURN

IF(VG.GE.V1234) 60 TO 40
B=(3.0%R3%#2, 0-RG#%2 .0 )¥R4~3. 0%C2%(V1234~-V6)/PL
ARG=B/(-2.0%R3%%3)
ANG=ARCOS(ARG)/3.0
SL2=2.0%R3%COS(ANG)
SL=(SL2-R4)/C2

LW=SL+LD

VI=VG+VFO

ASH=PI#( (C2%SL+R4 )#%2,.0-R3#%2.0)
LSUB=(VTOT-VI )/AD

LSAT=LK-LSUB

RETURN

END
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SUBROUTINE MINV(R,A,N,D,L,M)

c
ccceecececcccececcecececcceccececececccceccecccccecceccceccceccecccecccccececceeccee

c DOCUMENTATION : PAGE 118, IBM SCIENTIFIC SOFTWARE DOCUMENT C
c o
c PURPOSE: INVERT A MATRIX c
c c
c USAGE: CALL MINV(R,A>N:D,L,M) Cc
c c
c DESCRIPTION NF PARAMETERS: Cc
c R -INPUT MATRIX. c
c -INVERSE. c
c N -ORDER OF MATRIX A. c
c D ~RESULTANT DETERMINANT. Cc
c L -WORK VECTOR OF LENGTH N. c
c M -WORK VECTOR OF LENGTH N. C
c [
c REMARKS: MATRIX A MUST BE A GENERAL MATRIX. Cc
c [of
c SUBROUTINES AND FUNCTION SUBFROGRAMS REQUIRED: NONE. c
c c
c METHOD: Cc
[ THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT C
c IS ALSO CALCULATED. A DETERMINANT OF ZERC INDICATES THAT C
c THE MATRIX IS SINGULAR c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCLCCCtCCCCLCCCCCCCeeeeece
c

DIMENSION A(1},L(N},M(N),R(1)

N2=N*N

DO 5 I=1,N2
5 A(I)=R(I)
c

cceeececcccceecceeccececeeeceeeceeecee
c SEARCH FOR LARGEST ELEMENT C
ccececoeeceeeeeccecceeceeeeceececeecee
c

D=1.0

NK=-N

DO 80 K=1,N

SNK+N

LEKI=K

MiK)I=K

KK=NK+K

BIGA=A(KK)

DO 20 J=K,N

IZ=N¥%(J=-1)

DO 20 I=K,N

1J=1Z+1

IF(ABS(BIGA)~-ABS(A(IJ))) 15,20,20
15 BIGA=A(IJ)

L(K)=I

M(K)=J
20 CONTINUE
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cceecccceccccccecececccecece
[~ INTERCHANGE RONS C
cceceeececcecceeccccececcceee
c

J=LIK)

IF(J-K) 35,35,25
25 KI=K-N

DO 30 I=1,N

KI=KI+N

HOLD=-A(KI)

JI=KI-K+J

A(KII=A(JI)
30 A(JI)=HOLD
c
cceeeeccecececcccecccececceccecec
c INTERCHANGE COLUMNS C

cceeceecceccceccceccecccccece
[
35 =M(K)

IF(1~-K) 45,45,38
38 JP=N#*(I~-1)

DO 40 J=1,N

JK=NK+J

JI=JP+J

HOLD=~-A(JK)

AC(JK)=A(JT)
40 A(JI)=HOLD
[
CCCCCLCCcCccceeccIceecceceeccecccecccccccceccceccccecceccccececceceeccet
[ DIVIDE TOLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS C
c CONTAINED IN BIGA) Cc
Ccceeeceeececcceeeceecccoccceceeccceeecccreccceeceeeeeececccceceececeeee

45 IF(BIGA} 48,46,48
46 D=0.0
RETURN
48 DO 55 I=1,N
IF(I-K) 50,55,50
50 IK=NK+I
ACIK)=ACIK}/(-BIGA)
55 CONTINUE

[~
cceeeccccececcecceecece
[ REDUCE MATRIX C
cgceeeceeceeececeeceecececee
c
DO 65 I=I,N
IK=NK+I
HOLD=A(IK)
IJ=I-N
DO 65 J=1:N
IJ=IJ+N

IF(I-K) 60,65,60
60 IF(J-K) 62,65,62
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62 KJ=IJ-I+K

A(TJ}=HOLD*A(KJ)I+A(IJ)
65 CONTINUE
c
cceeeceeecceeccccecerceceeccece
c DIVIDE RON BY PIVOT C
cceeeeceeecceecccceccecececce
c

KJ=K-N

DO 75 J=1,N

KJ=KJ+N

IF(J-K) 70,75,70
70 A(KJI=A(KJ)/BIGA
75 CONTINUE

c
cceeceecceeeencceeceecccceee
c PRODUCT OF PIVOTS €
cceeeccceceeccccccececceecee
Cc

D=D*BIGA
c

cceeccecececececcecceecceececeecceccece
c REPLACE PIVOT BY RECIPROCAL €
ceeeeececeeecccccceccecccccceccceeece
c

A(KK)=1.0/BIGA
80 CONTINUE
c
cecceeccececececceeceeecctceeccccceceeececce
c FINAL ROW AND COLUMN INTERCHANGE C
CCCCCCCCCCCCCCCCCCLCCCeCreirececeeeceeeee
c

K=N
106 K=K-1

IF(K) 150,150,105
105 I=L(K)

IF(I-K) 120,120,108
108 JQ=N*(K-1)
JR=N*(X-1)
DO 110 J=1,N
JK=JQ+d
HOLD=A(JK)
JI=JR+J
ACIK)==-AC0JT)
110 A(JI)=HOLD
120  J=M(K)
IF(J-K) 100,100,125
125  KI=K-N
DO 130 I=1,N
KI=RKI+N
HOLD=A(KI)
JI=KI-K+J
A(KI)=-A(JI}
130 A(JI)=HOLD
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150

60 TO 100
RETURN
END



SUBROUTINE MOMEN

c

CCCCCCCCCCCCCCCCCCCCCCCCCCCeCocCoocececccecoccecceccecceceeeee
c THE PURPOSE OF THIS ROUTINE IS TO CALCULATE THE c
c PARAMETERS M(I) APPEARING IN THE MOMENTUM EQUATION C

CCCCCCCCCCCCCeececcecccoccececceccccecccccecccccccccceccccceeee
c

REAL IMW,KSEP,LR,LD,LTB,LP,MU,KC,LF,M,MFD,MR,MTB,
IMTBC,MSD,MTOT, LT, MUP, LSAT, LSUB,KD

DIMENSION RE(3),F(3)

COMMON /GEOM/ KSEP,LR,LTB,LP,KC,ARI,ATB,ARD,6»
IVR,VTB,DHTB,BETA(4),NSTG,CO,
2AHT,RO,RI,VOP,VTBP,APT,VTH

COMMON /DOME/ VSUB,VTOT,VG,VFO,LSAT,LSUB,VREF, LW,
1L0,AD,VD,VSD,DHD, VT, LT,VSTM,DVG,ASK,R1,R2,R3,R4,
2ZL1,212,2ZL3,2ZLF

COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL(2),HFH(2),V6J,MI(2),
1HG>RL,RHOG, RHOF, DUS, UG ,DRHOG, DUF , UF , DRHOF , DRLP,DRLU,
2GB , POWER, PERP,HFG,RFW(2),DTSAT

COMMON /FLOWS/ WO,WS(2),WFH(2} ,WF,NP,WR,WN, DINERT

COMMON /TRANS/ VOID(3),XQ(3),RB(2),UB(2),0UP(2},DUA(2),DRP(2),
1DRA,MFD(2),MR(2),MTB(2),MTBC(2},HR,HN,MSD,
2MTOT(2),5(5),M(5),VP(3),R(9,5)

COMMON /TIME/ T,0T,ITRAN,WFWF,WSF, ITC,ICHK

COMMON /DOWCO/ KD

c

CCCCCCCCCCCCCCCCCCCCCLCCCCCCCcCCeecececceeeeee
c SUBSCRIPTS ON RE AND F MEAN c
C 1 DOKNCGMER OUTLET c
Cc 2 TUBE BUNDLE INLET =
c 3 TUBE BUNDLE CROSSFLOW TRANSITION c
€Ccececceeeececcceccceccecececcecccccceccceecccecceeee

Cc
RE( 1)=(KO*DHD }/(MU(1)%AD)
RE(2)=(WOXDHTB )/ (MU( 1 )%ATB)
RE(3)=(WP*DHTB )/(MU(2)%ATB)
Do 5 I=1,3

5 F(I)=0.184/(ABS(RE(I)}#%0.2)

c

CCCCCcCCcececoccecccccceecccoeeereeececcccecececeeee
c OBTAIN VPRIME IN TRANSIENT CALCULATION c

c AND VAPOR VOLUME FRACTIONS IN STEADY c
c STATE CALCULATIONS c
ceceeecccecccccececccecceccceeccceccceccccceeccccecceece
c

CALL ALPHA

AML1=(LP*F(2)#ABS(WO) })/(4.0%DHTBXATB¥*%2)
AM12=WO/ATB*#2

FRIC=LD

IF(LW.LE.LD) FRIC=LW
AMI3=(F(1)%FRIC*ABS(KWO) )/ (2. 0%DHD*AD%*2 )
AM16={ (1.0/7AD%*2-1.0/7ASKN*2)/2. 0} %0
AM1IS=(KD*K0)/(2.0%AD**%2.0)
M(1)=(AM11-AM12+AM13+AM14+AM15)/RL
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AM21=(LPXF(3))/(4.0%DHTB*(ATB**%2 ))+KC/2.0
AM22=VP(3)/(2.0%ATB )*WP%(1.0/ATB~1.0/ARI)
B=ABS(WP)/ATB
M(2)=AM21#PHILO(XQ(3),B)*ABS(}'P)/RHOF+AM22
AM31=(VP(1)/(2.0%ARI))*(1.0/ATB-1.0/AR0)*NR
B=ABS(WR)/ARL
MU3)=KC*PHILO(XQ(1),B)*ABS(WR)/(C.0%¥RHOF )+AM31
M(4)=(VP(2)/(2.0%AR0) }*(1.0/ARI+(KSEP+1.0)/ARO}*WN
AMS1=LTB*RL*RB( 1)%ALOG(RL/RB(1))/(RL-RB(1))+4(LR/2.0)*(RB(1)+RB(2))
AM52=LSAT*RHOF +RL*LSUB

M(5)=6*(AM51-AMS52)

RETURN

END
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SUBROUTINE NEWPR
Cc
ccceeccececccccceecccceccecocecccecccccceececceeeceeceeceeeceecee
THE PURPOSE OF THIS ROUTINE IS TO CALCULATE:
1) THO-PHASE PROPERTIES;
2) QUALITIES GIVEN THE VAPOR VOLUME FRACTIONS
USING THE DRIFT FLUX MODEL;
3) REGION MASSES;
%) VAPOR VOLUME IN THE STEAM DOME-DOWNCOMER
FOR LEVEL CALCULATION; AND,
5) HEAT TRANSFER RATE.

l(llll'lIlllllll[lllllllllllllllllllll[ll[l!lllllll!“,LLLL{,LL

0O000000O0
OO0 OO0 00O0

o0

REAL LK,KSEP,LR,LD,LT8,LP,MU,KC,LF,M,MF),MR,MTB,
1MTBC,MSU,MTOT, LT, MUP, LSAT, LSUB, MCUT
COMMON /GEOM/ KSEP,LR,LTB,LP,KC,ARI,ATB,ARG,G,
1VR,VTB,DHTB,BETA(4),NSTG,C0,
2AHT,RO,RI,VOP,VTBP,APT,VTM
COMMON /DOME/ VSUB,VTOT,VG,VFO, LSAT, LSUB,VREF, LW,
1L0,AD,VD,VSD,DHD,VT,LT,VSTM,DVG,ASW,R1,R2,R3,R4,
2ZL1,212,ZL3,2LF
COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL(2),HFR(2),VGJ,MU(2),
1HG,RL,RHOG, RHOF ,DUG, US ,DRHOG, BUF , UF , DRHOF , DRLP,DRLU,
2QB, POWER , PERP,HFE,RFW( 2),DTSAT
COMMON /FLOWS/ WO,WS(2),WFH(2),HF,WP,WR,WN,DINERT
COMMON /TRANS/ VOID(3),XQ(3),RB(2),UB(2),DUP(2),DUAL2),0RP(2),
1DRA,MFD(2),MR(2),MTB(2),MTBC{2),HR,HN,MSD,
2MTOT(2),S(5),M(5),VP(3),R(9,5)
COMMON /TIME/ T,DT,ITRAN,WFWF,USF, ITC,ICHK
COMHON /PRIME/ PPRIM,TLMTD,UO,TP(3),HP(3),RP(3),UP(3),DRPT(3],
ICUPT(3),TPIN(2),HPIN(2),WPIN(2),MUP,CPL, TKL,CPT
COMMON /HTS/ HPR,HS,RTUBE,RFOUL
COMMON /AVE/ WBAR
DRA=RHOG-RHOF
[
ccececececceccecececccccececccccceccccececccceecccecceeceecccecccreceeceee
c CALCULATE RHOBAR AND UBAR, ANDO THEIR DERIVATIVES c
cccececeeceTecceececceccececcceeccccececcceececccececeeceeccecccceeecececeee
[
Do 5 I=1,2
RB(I)=VOID(I)*RHOG+(1.0-VOID(I))I*RHOF
UB(I)=(VOID(I)*UG*RHOG+(1.0-VOID(I) )*UF#*RHOF)/RB(I)
DUA{ X )=(RHOG*UG-~RHOF*UF -DRA¥UB(I))/RB(I)
DRP(I)=VOID(I)*BRHOG+( 1.0~VOID(X ) )%*DRHOF
A=VOID(I)#*(UG*DRHOG+RHOG*DUG)
B=(1.0-VOID( 1) )¥*(RHOF*DUF +UF*DRHOF )
5 DUP(I)=(A+B-UB(I)*DRP(I))/RB{(I)
[
ceceeecececceccecceecceeceececececcee
Cc CALCULATE QUALITIES [
cceceeeeecceecceeceececcececceecce
c
RAT=RHOG/RHOF
X1=CO*RAT+RHOG*ARI¥VGJ/HWR
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X2=CO%(1.0-RAT)
XQU1)=(VOID(1)%X1)/(1.0-VOID(1)%X2)
X3I=CO*RAT+RHOG*ARO*VGJ/WN
XQ(2)=(VOID(2)*X3}/(1.0-VOID(2)%X2)
HR=HL(2)+XQ(1)*HFG
HN=HL(2)+XQU 2)*HFG
RBP=1.0/(1.0/RL  +(1.0/RB(1)-1.0/RL )%LP/LTB)
VOID(3)=(RHOF-RBP)/(RHOF-RHOG)
X4=CO¥RAT+RHOG*ATE*VGJI/WP
XQ(3)=(VOID(3)%X4)/(1.0-VOID(3)%X2)
c
ccccececcecceeecceecececcece
c CALCULATE MASSES C
ccceeeceesseecceeeeceeeece
c
IF(ITRAN.NE.1) 60 TO 10
MR{1)=MR(2)
MTB(13=MTB(2)
MTBC(1)=MTBC(2)

10  CONTINUE
MR(2)=(VR/2.0)%(RB(1)+RB(2))
C=RL/RB(1)

D=RBP/RB(1)
MTB(2)=VTB*RB(1)*RL*ALOG(C)/(RL~RB(1))
MTBC(2)=MTB(2)%*ALOG(D )/ALOG(C)
IF(ITRAN.EQ.1} GO TO 15

c

Ceereecccecccceccceceececcccceccceccccceccceccceccece
c INITIALIZE INERTANCE, WBAR, STEAM DOME- c
c DOWNCOMER MASS, AND TOTAL MASS. c

cceecccccececeececccecccececccecccecceccccecceceeccceccee

Cc
Bl=(LW-LD)%(1.0/ASK-1.0/AD)/2.0
B2=LD/AD+LP/(2.0%ATB)
BETA(1)=B14+B2
DINERT=BETA(1)+BETA(2)+BETA(3)+BETA(%) -
WBAR=(BETA( 1 )*HO+BETAL2 ) *WP+BETA( 3)¥IR+BETA{ 4 )*WN)/DINERT
DV6=0.0
vsuB=vT
MSD=(VG+VSTM )*RHOG+( VSD-VG )¥RHOF+VT*RL
MTOT(2)=MR(2)+MTB(2)+MSD
60 TO 60

15  CONTINUE

MTOT(1)=MTOT(2)
MTOT(2)=MTOT(1)+(WFH(2)-WS(2))*DT

c

geeececceccecccccceeccececccceeeeeccceecceeececeecce

« CALCULATE STEAM DOME-DOWNCOMER MASS C

cceececceccececcccecccececceeecccccececceccecee

c .
MSD=MTOT(2)-MTB(2)-MR(2)

c

ceeeeccceoccceecceeccceeceeeccceeccccececcceccecccccececee
c CALCULATE VAFOR VOLUME IN STEAM DOME-DOWNCOMER C
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cceeecccecccccecececccecccceeecicccccececcccecccececececceeeecee
c
MCUT=(VREF+VSTM)*RHOG+VFOXRHOF+VT*RL
VG61=VG
IF(MSD.GE.MCUT) GO TO 16
VE=(VSTMXRHOG+VFOXRHOF + (VTOT-VFO )*RL-MSD )/(RL~-RHOG)
DVG=(V6-V61)/DT
VSUB =VTOT-VG-VFO

GO TO 17

16 VG=(VSD*RHOF+VT*RL+VSTM*RHOG-MSD )/ (RHOF-RHOG }
vsuB=vT
OVG=(V6-VG1 )/DT

c

ccceeecccccccecceccececcccceceecccoeccecceccee

c CALCULATE LEVEL FROM VAPOR VOLUME C

cceceeccecceececceecceececcccecceccececcececcceceee
c
17 CALL LEVEL
ENTRY NEWFR1
c
coceceeecccecececeececeeccccccccccececeececceecee
c CALCULATE TUBE METAL PROPERTIES C
ccccecceecccecccececcecccecceecccececccecece
c
60 TTUBE=TLMTD/2.0+TSAT
TK=0.016%TTUBE+9.632
CPT=(1.3677E03)%TTUBE+3.3663E06
c
cccecececcececceeccceoecccccecccecceceecccccecceeccrcceeceee
c CALCULATE REYNOLDS AND PRANDTL NUMBERS FOR C
c PRIMARY FLOMW c
ccececccceccecceeccceccccececceeceecceccececccececccececee
c
RE=(HPIN(2)%Z.J%RI)/(MUP*APT)
PR=MUP*CPL/TKL
P=PSAT/1.0E05

D=AHT=TLMTD
c
ceeeceecceccecccecceeecccccceccceccecccccceccccecceceececee
c CALCULATE PRIMARY HEAT TRANSFER COEFFICIENT C

ceececcecccceeccceceeccccceccceccccceccccecccececcceccceee
c
HPR=(0.023 )% (RE**0 .8 )%( PR¥*0,4 )¥TKL/(2.0*RI)
IF(ITRAN.EQ.1)G0 TO 40
c
cceeeeecceeecceececcecceccecccccccccceeceecccecee
c STEADY STATE HEAT TRANSFER PARAMETERS C
cceceeccecccecceecececcoeccccccecceccceccecceccecece
c
RTUBE=RO*ALOG(RO/RI}/TK
QF=(QB/AHT }/1.0E06
DTS=22.65%SQRT(GF I*EXP(~-P/87.0)
HS=(QF/DTS )%#1.0EC6
GO TO 50
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c

ccccecceccececcecceecececcececccccecccceccceccecccceecee

c

CALCULATE TRANSIENT HEAT TRANSFER RATE C

ccceececccececceecceccecccecccecceccccceccececcccece

c

40

50

B=RO/(RI*HPR )+(RO*ALOG(RO/RI}/TK)+RFOUL
C=22.65%( (AHT/1.0E06 )%%0.5)%EXP(-P/87.0)
F=C*%2. 044, 3%B*D
SQRB=(SQRT(F)-C)/(2.0%B)

QB=SQB*%2.0

CONTINUE

RETURN

END
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SUBROUTINE OUT
c
CCCCCCCCCCCCCCCCCCCCCCCCCttCCCCCCCCCCICCCCCCCCLCCCCCCCCecceceece
[o4 THIS SUBROUTINE WRITES OUT THE STEADY STATE CONDITICNS C
c CALCULATED BY THE CODE c
ceceeecoceceecececccecceccecceeccccecececccceccceccccccecccececcccececcccccceccccce
Cc

REAL LH,KSEP’LR,LD)LTB’ LP,MU,KC, LF,M,MFD, MR, M1B,»

1MrBC,MSD,MTOT, LT, MUP, LSAT, LSUB

COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL{2),HFW(2),VGJ,MU(2),

1HG,RL,RHOG,RHOF ,DUG, UG, DRHOG , DUF , UF , BRHOF , DRLP,DRLU,

2QB, PONER, PERP,HFG,RFW(2),DTSAT

COMMON /FLCWS/ WO,WS(2),HWFW(2),KF,HP,KR,WN,DINERT

COMMON /TRANS/ VOID{3),XQ(33,RB(2),UB(2),DUP(2),DUA(2),DRP(2],

1DRA,MFD(21},MR(2),MTB(2),MTBC(2),HR,HN,MSD,

2MTOT(2),S(5),M(5),VP(3),R(9,5)

CO.MON /TIME/ T,DT»ITRAN,WFKF,WSF, ITC,ICHK

COMMON /PRIME/ PPRIM,TLMTD,UO,TP(3),HP(3),RP(3]},UP(3},DRPT(3),

1DUPT(3),TPIN(2),HPIN(2),KPIN(2),MUP,CPL, TKL,CPT

COMMON /HTS/ HPR,HS,RTUSE,RFQUL

WRITE(6,100) KO
[
o o o o o i o o o o o 0 2 0 o o o o oo o o o o o o o o
c ALL TEMPERATURES ARE CONVERTED TO DEGREES CELSIUS AND c
c THE SECONDARY PRESSURE IS CONVERTED TO MEGAPASCAL c
cceeeececceccececececececeeeccccceccccccececececcceccceccecceccceccceceeecee
c

TSATC=TSAT-273.15

WRITE(6,118) TSATC

PSATM=PSAT/(1.0E06)

WRITE(6,120) PSATM

WRITE(6,130) WS(1)

WRITE(6,140) XQ(1)

WRITE(6,150) MTOT(2)

TFWC=TFW(1)-273.15

WRITE(6,160) TFKC

TC1=TPIN(11)-273.15

TC2=TP(3)-273.15

WRITE(6,170) TC1

WRITE(6,180) TC2

WRITE(6,190) MPIN(2)

WRITE(6,200) RFOUL
100  FORMAT('~','DOWNCOMER FLOWRATE IS',E12.4,1X,'KG/SEC')
110 FORMAT(' *,'STEAM TEMPERATURE IS',E12.4,1X,'C’')
120  FORMAT(' ','STEAM PRESSURE IS',El12.4,1X,'MPA')
130 FORMAT(' ','STEAM FLOW IS',E12.4,1X,'KG/SEC')
149  FORMAT('® ', 'RISER QUALITY IS‘',E12.4)
150  FURMAT(® ','STEAM GENERATOR MASS CONTENT IS',E12.4,1X,'KG"')
160 FORMAT(' ','FEEDWATER TEMPERATURE IS',El12.4,1X,'C")
170  FORMAT(' ','PRIMARY INLET TEMPERATURE IS',E12.4,1%,'C*")
180 FORMAT(' ','PRIMARY OUTLET TEMPERATUREIS',El12.4,1X,'C")
190 FORMAT(' ','PRIMARY FLOWRATE IS',E12.4,1X,'KG/SEC"')
200 FORMAT(® ','FOULING FACTOR IS',E12.64,1X, 'M¥*2-K/KATT')

RETURN
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[

SUBROUTINE OUT1

cceeecceccceceecececccccececcecceeccecccccccccecccccecccccee

c

THIS ROUTINE WRITES OUT STEADY STATE HEADING C

L0 ot of o = o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o e 02

c

100

120

130

140

150

160

REAL LW,KSEP,LR,LD,LTB,LP,MU,KC,LF,M,MFD,MR,MTB,
1MTBC,MSD,MTOT, LT, MUP, LSAT, LSUB

COMMON /GEOM/ KSEP,LR,LTB,LP,KC,ARI,ATB,ARD,6,
1VR,VTB,DHTB,BETA(4),NST6,C0,

2AHT,RO,RI,VOP,VTBP,APT,VTH

COMMON /DOME/ VSUB,VTOT,V6,VFO, LSAT, L.SUB,VREF, LW,
11LD,AD,VD,VSD,DHD,VT,LT,VST,DVG,ASH,R1,k2,R3,RG,
2ZL1,2L2,2ZL3,2LF

COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL(2),HFK(2),VEJ,MUL2),
1HG,RL,RHOG,RHOF ,DUG, UG, DRHOG  DUF , UF , DRHOF , DRLP, DRLU,
2QB, POWER, PERP,HFG,RFW(2),DTSAT

COMMON /FLOWS/ WO,WS(2),KFRI2),HF,KP,WR,WN,DINERT

COMMON /TRANS/ VOID(3),XQ(3),RB(2),UB(2)},DUP(2),DUA(2]),DRP(2),
1DRA,MFD(2),MR(2),MTB(2),MTBC(2),HR,HN,MSD,
2MTOT(2),S(5).M(5)5VP(3),R(9,5)

QPOWER=POKRER/(1.0E 06)

WRITE(6,100) QPOKER

FORMAT('~', 'TOTAL REACTOR POWER IS',E12.6,1X,'MWT')
WRITE(6,120) NSTE

FORMAT('® *,'NUMBER OF STEAM GENERATORS',3X,Il1}

KRITE(6,130) LW

FORMAT(' ','STEADY STATE WATER LEVEL IS',E12.4,1X,'METERS')
SPOWER=QPOWER*PERP/NSTG

IF(PERP.6T.1.0) SPONER=QPOWER/NSTG

WRITE(6,140) SPOKER

FORMATC(' *,'STEADY STATE POWER LEVEL IS',E12.4,1X,'MWT PER')
P=PERP#100.0

WRITE(6,150) P

FORMAT('® ', 'STEAM GENERATOR OR',E12.4,1X,'PER CENT RATED °*,
1'FULL POWER')

WRITE(6,160)

FORMAT( '~',25X, "STEADY STATE CONDITIONS')
RETURN

END
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c

SUBROUTINE PDERIV

CCCCCCCCCTeCotereccecececececcecccoceceecccececccecceeecececece

c
c
c

THE PURPOSE OF THIS SUBROUTINE IS TO CALCULATE C
PRIMARY SIDE TIME DERIVATIVES AND THEN TO UPDATE C
PRIMARY SIDE PROPERTIES BY CALLING PRMPRO c

cccoccccccccceecccccececccecccceccceccccecccecccceccccecccece

c

c

DIMENSION RA(3),CA(3),DTP(3)

REAL LW.KSEP,LR,L.D,LTB,LP,MU,KC,LF,M,MFD,MR,MTB,
1MTBC,MSD, MTOT, LT, MUP, LSAT, LSUB

COMMON /GEOM/ KSEP,LR,LTB,LP,KC,ARI,ATB,ARD,G)»
1VR,VTB,DHTB,BETA(4),NSTG,CO,
2AHT,R0,RX,VOP,VTBP,APT,VT

COMMON /DOME/ VSUB,VTOT,V6,VFO, LSAT, LSUB, VREF, LN,
1LD,AD,VD,VSD,DHD,VT,LT,VSTM,DVG,ASH,R1,R2,R3,R4,
2ZL1,Z1.2,ZL3,ZLF

COMMON /STEAM/ PSAT,TFN(2),TSAT,UL,HL(2),HFW(2),VGJ,MU(2),
1HG,RL ,RHOG,RHOF , DUG, UG , BRHOG,, DUF , UF , DRHOF ,DRLP,DRLU,
2QB, POWER, PERP,HFG,RFW(2},DTSAT

COMMON /TIME/ T,OT,ITRAN,WFWF,WSF, ITC,ICHK

COMMON /PRIME/ PPRIM,TLMTD,UQ,TP(3),HP(3),RP(3),UP(3),0RPT(3),
1DUPT(3), TPIN(2),HPIN(2),WPIN(2),MUP,CPL, TKL,CPT

DATA EPS/1.0/

RAC1)=VOP*(RP(1)*DUPT( 1) +(UP(1)~(HPIN(1)+HP(1))/2.0)%DRPT(1))

RA(2)=VTBP#(RP(2)%DUPT(2)+(UP(2)-(HP(2)+HP(1))/2.0)%DRPT(2) )+
1IVTM*CPT/2.0

RA(3)=VOP%(RP( 3 )*DUPT(3)+(UP(3)-(HP(3}+HP(2))/2.0)%0RPT(3})

CCCCCUCCCCCCCCCCCCCCLCCCLCCCCCOCCCCCCCCCCCCCCieeeeeeeeece

c
c
c

USE HPIN(2) IN FOLLOWING EQUATION BECAUSE WE HAVE C
NOT YET UFDATED HPIN(I) TO CORRESFPOND TO c
CURRENT VALUES OF TPIN(I) c

CCCCCCCLCCCCCCLCCCCOCCCCCCCCCCeCCCCCCCTCCCCCCCCCeCeceece

c

5
c

CAL1)=WPIN(1)%#(HPINC(2)-HP(1))
CA(2)=WPIN(11%(HP(1)~-HP(2))-GE
CA(3)=WPIN(1)%(HP(2)-HP(3))

DO 5 I=1,3

DTP(I)=CA(I)/RA(I)
TPIIN=TP(I)+DTP(INNDT

CCCCLCCCCCCCCCCCCeeeeCeececeeeeee

UPDATE PRIMARY PROPERTIES C

CCCCCCeCececeercceceeceeeeceeeeee

c

c

CALL PRMPRO

ccececeeecccececccecececccceccececcccccccecceccceccceece

c
c
c

CALCULATE LOG-MEXN TEMPERATURE DIFFERENCE AND C
CHECK THAT TCOLD MINUS TSAT IS POSITIVE. IF NOT C
APPROXIMATE MEAN TEMPERATURE DIFFERENCE c

CCCCCCCCCCCCTCCCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCoCCereece

c
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10

DELT=TP(2)-TSAT
IF(DELT.LE.EPS) 60 TO 10
TO=(TP(1}-TSAT)/DELT
TLMTD=(TP(1)}-TP(2))/ALOG(TD)
RETURN

TH=TP(1)-TSAT
TIN=(TP(1)-TSAT-EPS)/ALOG(TH/EPS)
FAC=(TLN-EPS)/(TP(1)-TSAT-EPS)
TLMTD=FAC*TH+(1.0-FAC)*DELT
RETURN

END
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FUNCTION PHILO(Z,B)

c
ccececececcecceceececececccccececccceccceccccecccccccccececcececceecccecececcceceeee
c THE PURPOSE OF THIS FUNCTION SUEIOQUTINE IS TO CALCULATE THE C
c THE TWO-PHASE MULTIPLIER. THE ROUTINE USES THE MARTINELLI- C
c NELSON CORRELATION WITH THE JONES CORRECTION FOR MASS c
= VELOCITY c
cceecceecceccecceccccceccecceccccecccecececececccececccecceeccccccceccecececceece
[

COMMON /STEAM/ PSAT, TFW(2),TSAT,UL,HL(2),1{FU(2),VCJ,MU(2]),

1HG,RL,RHOG , RHOF ,DUG, UG, DRHOG, DUF , UF , DRHOF , DRLP, DRLU,

2QB, POWER , PERP,HFG,RFMW(2),DTSAT

R=950.0

S=B/R

IF (S.GE.1.0) GO TO 10

F=1.43+((B-R)/R)*(0.07-(7.35E-08)%PSAT)

GO TO 20

10 F=1.43+4(R/B-1.0)%(0.17-(5.0E~08)%PSAT)
20 PHILO=Fx*(1.2%({RHOF/RHOG)~1.0)%(Z%%0.826))+1.0
RETURN
END
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SUBROUTINE PRMFRO

c

cceeeceecccrecccceececrecccecccecceccecccecceecceccceccecccececcecceeccece

ALSQ

OO0 0O0

THE PURPOSE OF THIS ROUTINE IS TO EVALUATE THE PROPERTIES C
OF THE SUBCQOLED PRIMARY FLUID. THE INPUTS ARE THE PRIMARY C
PRESSURE, PPRIM, AND TEMPERATURES, TP(I). THIS ROUTINE IS C

USED TO DETERMINE PROPERTIES OF THE SUBCOOLED FEED- C

WATER. FITS ARE TAKEN FROM THERMIT. c

ccceeceecceceececccececcceecccciececcececceceeteececcceecceeccceceeccccecccccee

c
REAL

1MTBC,

LW,KSEP, LR, LD, LTB, LP,MU,KC, LF,M,MFD,MR,MTB,
MSD,MTOT, LT,MUP, LSAT,LSUB

DIMENSION UFW(2),RPIN(2),UPIN(2)

COMMON /STEAM/ PSAT,TFW(2),TSAT>UL,HL(2),HFKH(2),V6J,MU(2),
1HGRL,RHO6,RHOF , DUG, UG, DRHOG , DUF , UF , DRHOF , DRLP, DRLU,

2QB, POHER, PERP,HFG,RFW(2) ,DTSAT

COMMON /TIME/ T,DT,ITRAN,WFHF,WSF, ITC,ICHK

CoMION /PRIME/ PPRIM,TLMTD,UO,TP(3),HP(3),RP(3)},UP(3),DRPT(3),
1DUPT(3),TPIN(2),HPIN(2),NPIN(2),MUP,CPL, TKL,CPT

DATA
1
DATA
1
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
BDATA
1
DATA
1
DATA
DATA

SLO,SL1,SL2,5L3,5L% /-460.26818E03,~2.869305E03,27.450693,
-4.810832E-02,3.205932E-05/
SHO,SH1,SH2,SH3,SH4 /1.242646E09,-8.608225E06,2.236456E04,
-2.581596£01,1.117877E-02/
D1/-1.836607E-04/,D02/7.567076E-05/,D3/-1.647879E-05/
D4/1.416458E~06/,H00/3.892077E-06/,D0/3.026032E-04/
PR/6 .894575E05/
E0/1.452605E-03/,E1/-6.988009E-09/,E2/1.521023E~14/
E3/-1.23032E-20/,F0/-3.806351E-11/,F1/3.928521E-16/
F2/-1.25858E-21/,F3/1.286018E~27/,B0L/2.394907E~04/
BlL/-5.19625E-13/,C0L/1.193203E-11/,C1L/2.412704E-18/
DOL/-3.944067E-17/,D1L/~-1.680771E-24/,TK1/0.686/
TK2/-5.87E-06/,TREF/415.0/,TK3/7.3E-10/
RLO,RL1,RL2,RL3 /1735.332,-4.640684,
1.043109E-02,-9.436709E-06/
RHO,RH1,RH2,RH3,RH4G /-1.175598E06,8.143736E03,
~2.113656E01,2.43816E-02,-1.054975E-05/
RPO,RP1,RP2 /-14.664389,1.128336E-02,1.267037E-02/
SP0,SP1,5P2,SP3 /-42.0218,0.2116,~4.4587E-04,3.251E-07/

IF(ITRAN.EQ.1) 60 TO 10

c

ccceecececcccecccecccecceccccccceccecrcceccee

c
c
c
c

STEADY STATE CALCULATIONS. c
NOTATION:  UP-INTERNAL ENERGY

c
RP-DENSITY Cc
HP-ENTHALPY c

cccceececccecocececccececcceccecccceccececcccecceee

c

IF(ITC.NE.1) GO TO 10

BO 6

I=1,2

DP=PPRIM-15.0E06 !
DELDP=-EXP(SPO+TP(X)%(SPL+TR(I)*(SP2+TP(I)}®5P3}))
DRLDP=EXP(RPO+RP1I*EXP(RP2¥TP(I)))

DEL=DELDPx*DP

DRL=DRLDP*DP
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IF(TP(I).6T.576.5) GO TO 5
UP(I)=SLO+TP(I)*(SL1+TP(X)%(SL2+TP(I)%(SL3+TP(1)%SL4)))+DEL
RP(I=RLO+TP(I)*(RLISTP(I)*(RL2+TP(I)*RL3))+DRL
60 TO 6
5 UP(I)=SHO+TP{I)*(SH1+TP(I)*(SH2+TP(I)¥(SH3+TP(I)}%SH4) ) )+DEL
RP(II=RHO+TP(I)*(RH1+TP(I)#(RH2+TP(X:%(RH3+TP(I)*RHG)))+DRL
3 HP(I)=UP(I)+PPRIM/RP(I)
RETURN
10 CONTINUE
c
ccceeececesceecececeeceeeeeeececeece
c TRANSIENT CALCULATION. <
€ceceeececeeccececceceecececceccccceeee
4
DP=PPRIM-15.0E06
DO 11 I=1,2
DELDP=-EXP({SPO+TPIN( I )*(SP1+TPIN(I)*{SP2+TPIN(I)*SP3)))
DRLDP=EXF(RPO+RP1*¥EXP(RP2*TPIN(I))})
DEL=DELDP*DP
PRL=DRLDP*QP
IF(TPIN(I).GT.576.5) GO TO 14
UPIN(I)=SLO+TPIN(I)*(SLI+TPINCI)*(SL2+TPIN(I)*(SL3I+TPIN(I)*SLG)))
J+DEL
RPINCI)=RLO+TPIN(II*(RLI+TPIN(I)*{RL2+TPIN(I)*RL3))+DRL
60 TO 11
14 UPIN{I)=SHO+TPIN(I)#{SH1+TPIN(I)*(SH2+TPIN(I)*(SH3+TPIN(I)%SHG)})}
1+DEL
RPIN(X)=RHO+TPIN(I)*(KH1+TPIN( I)*(RH2+TPIN( I)%*(RH3+TPIN( I)%RHG)))
1+DRL
i1 HPINEXI)Y=UPIN(I)+PPRIM/RPIN(I)
DO 20 I=1,3
DELDP=-EXP(SPO+TP(I)#*(SP1+TP(I)*(SP2+TP(I)*SP3)))
DRLOP=EXP(RPO+RP1#EXP(RP2*TP(I)})
DEL=DELDP*DP
DRL=DRLOPX*DP
IF(TP(I).6T.576.5) 60 TO 15
UPCI)=SLO+TP(I*(SLI+TP(I)*(SL2+TP(I)*(SL3+TP(I)*SL4)))+DEL
BUPT(I)}=SL1+TP(I)¥%(2.0%SL2¢TPLI)%( 3. 0%SL3¢6.0%TP(I)*SL4G})
1 +DEL*(SP1+TP(I)%(2.0%SP2+3.0%SP3%TP(1)))
RPCII=RLO+TP{IH(RLI*TP(I)*(RL2+TP(I)*RL3))+DRL
DRPT(IJISRLI+TP(I)H(2, 0%¥RL2+TP(I)%3,0%RL3)+DRL¥RP1*RP2
1 *EXP(RP2%TP(X))
GO TO 20
18 UP(I)=SHO+TP(I)*(SHI+TP(I)¥(SH2+TP(I)*(SH3+TP(I)}%SH4)) J+DEL
DUPT(I)=SH1+TP(I)*(2,0%SH2+TP(I)%*(3,0%SH3+4.0%TP(I)%SHG))
1 +DEL%(SP1+TP(I)*(2.0%5P2+3.0%SP3*TP(I2)) ’
RP(IN=RHO+TP(I)*(RH1+TP(X)*{RH2+TP(I)*(RH3+TP(I)*RH4)))+DRL
DRPT(I)SRH1+TP(I)*(2.0%RH24+TP(I)#( 3, 0%¥RH3+TP(I}%4.0%RHG))
1 +DRL*RP1%RP2*EXP(RP2%*TP(I))
20 HP{I)=UP(I)+PPRIM/RP(I)
Y=HP(2)%(DOL+D1L*PPRIM)+COL+CLL*PPRIM
c
cceeeececececcececceeceeeccecceececcceccecccececceceeccceeccee
c CALCULATE SUBCOOLED LIQUID HEATY CAPACITY, CPL. C
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ccceecceceoeecereceeccecececcecceeccccececcececcececececeececee
c
CPL=1.0/(HP(2)%Y+BOL+B1L*PPRIM)
[
cceeececcccececccceccceceeececccccccecececcceecccceecceeececeecececee
c CALCULATE SUBCOOLED LIQUID THERMAL CONDUCTIVITY, TKL. C
cceeeececececececeeccceeccccecccecececcecceeccceeccecececcceccceecceceee
c
TKL=TK1+TK2*(TP(2)-TREF )3 ¥2. 0+TK3*PPRIM
[
cceeececeeocececceccececccceccccccecceccecccceecccecccece
c CALCULATE SUBCOOLED LIQUID VISCOSITY, MUP. C
ccceecceceeccccccecceercceccceecceeccccecceceeccecceee
c
IF(HP(2).6GE.3.94E05) 60 TO 30
E=EQ+E1%HP(2)+E2%(HP(2)#%2,0)+E3%(HP(2)%%3.0)
FSFO+F1¥HP(2)+F2#(HP(2)%%2.0)+F3%(HP(2)%%3.0)
MUP=E-F*(PPRIM-PR)
60 TO 40
30 Z=(HP(2)-401467.1)%H00
MUP=DO+D1%Z+D2%( Z%%2 ) +D3%( 233 ) +DGX#( Z¥%4 )
40 CONTINUE
RETURN
ENTRY PRMPRI
c
ccceecececcceccccecceccccececcccocceceecceec
c SUBCCOLED FEEDWATER CA’' CULATION. C
ccceeccececececeecececcceccecceerrceccecceeee
c
DO 46 I=1,2
DP=PSAT-15.0E06
DELDP=-EXP(SPO+TFR{I)%( SP1+TFR(I )*( SP2+TFH( I)%SP3)})
DRLDP=EXP(RPO+RPI®EXP(RP2*¥TFR(I})]
DEL=DELDP*DP
DRL=DRLDPXCP
IF(TFH(I).6T.576.5) 60 TO 45
UFR(TI)=SLO+TFW(I )#(SLI+TFR( I )H#(SL2+TFH( I )*(SL3+TFR(I)*SLG)))+DEL
RFW(II=SRLO+TFR(I)®(RL1+TFH(I )% (RL2+TFU(I)*RL3))+DRL
60 TO 46
45 UFW(I)=SHO+TFRITI )%(SH1+TFH( I )%(SH2+TFR( I )*(SH3+TFR(I)*SH4) ) )+DEL
RFW(I)=RHO+TFW( I )®(RH1+TFW( I )%(RH2+TFWR( I )*(RH3+TFW(I)*RHG) ) }+DRL
46 HFW(I)=UFW(I)+PSAT/RFW(I)
RETURN
END
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SUBROQUTINE STEADY
c
cceceeecccccecceccceccccecccccceecrcccceccccccccccccceccccecccceee
c THIS ROUTINE DRIVES THE STEADY-STATE CALCULATION C
ccceeecccececieeccccecececcccceeececcceccoceccccceccecceccccecee
c

REAL LW,KSEP,LR,LD,LTB,LP,MJ,KC,LF,M,MFD,MR,MTB,
1MTBC,MSD,MTOT, LT,MUP, LSAT, LSUB,KD
COMMON /GEOM/ KSEP,LR,LTB,LP,KC,ARI,ATB,ARO,G,
1VR,VTB,DHTB,BETA{4),NSTS,C0,
2AHT,R0,RI,VOP,VTBP,APT,VTM
COMMON /DOME/ VSUB,VTOT,VG,VFO,LSAT,LSUB, VREF, LW,
1LD,AD,VD,VSD,DHD,VT,LT,VSTM,DVG,ASK,R1,R2,R3,RG,
2ZL1,212,213,2ZLF
COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL(2),HFK(2),VGJ,MU(2]),
1HG,RL,RH0G ,RHOF , DUG , UG , DRHOG , DUF , UF , DRHOF , DRLP, DRLU,
2QB, PONER , PERP,HFG,RFW(2;,DTSAT :
COMMON /FLOWS/ WO,WS(2),WFR(2) s WF s WP, WR HN,DINERT
COMMON /TRANS/ VOID(3),XQ(3),RB(2),UB(2),DUP(2),DUA(2),DRP(2]),
1DRA,MFD(2}3,MR(2),MTB(2),MTBC(2),HR,HN,MSD,»
2MTOT(2),S(5),M(5),VP(3),R(9,5)
COMMON /TIME/ T,DT,ITRAN,NFWF,WSF; ITC,ICHK
COMMON /PRIME/ PPRIM,TLMYD,UO,TP(3),HP(3),RP(3),UP(3),DRPT(3),
1BUPT(3), TPIN(2),HPIN(213,NPIN(2),MUP,CPL, TKL,CPT
COMMON /HTS/ HPR,HS,RTUBE,RFOUL
COMMON /DOWCC/ KD
COMMON /AVE/ WBAR
[ o
€ccceecececececececeeccceceeececccecceeccceeeccceece
Cc READ IN STEADY-STATE OPERATING LEVEL C
mmmmm
[
READ(5,120) LW
o4
cceeeceeceeteeececcecceeoerecceeecccececeececeteccece
c INITIALIZE STEAM DOME~-DOWNCOMER GEOMETRY C
cLeeeeceecceceeceececcecececcecccceccececceeccceeeecececee
Cc
CALL LEVEL
c
ceeeeceecceccecceceteceeeeceeccececeeceececcrcecceccecceccececceceececcece
[ READ IN FER CENT FULL POWER AND FEEDWATER TEMPERATURE C
[ READ IN PRIMARY PRESSURE AND FLOWRATE Cc
ccceeeeceeceeeceeeecceeeceecceceeeeecccecceececcceeeccccececcceceee
c
READ(5,110) PERP,TFW(2)
TFW(1)=TFW(2)
READ(5,110) PPRIM,WPIN(1)
WPIN(2)=WPIN(1)
IF(PERP.6T.1.0} GO TO 10
[
CcCceteeeececceeeececceeeceeeceececceeececccceeeccccecccceeceeeee
[ CALCULATE HEAT TRANSFER RATE PER STEAM GENCRATOR C
ceeeeeccceceeteceeccceececceccececceceecceccecccecceccccececccece
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QB=POKER*PERP/NSTG

GO TO 15
c
c€ecceceeeeccecceccececccceccccccccecceccoccececccecceccceccceceeecce
c IF REACTOR IS OPERATING AT GREATER THAN FULL POWER C
c READ IN POWER VALUE AND CALCULATE HEAT TRANSFER c
c RATE PER STEAM GENERATOR c
cecceeeccccccecceecceceeccccececcccecccececcccceccecccccecccececce
c

10 READ(3,120) POWER

QB=POWER/NSTG
c
CCCCOCCCCCCCCCECCCCCCCCCCCCCCCCCCtCCCCeeeCeeeteet
c CALL STEADY STATE HEADING OUTPUT ROUTINE ¢
CCCLCCCCCaCCeCCCCCCtCCCCCCCCCCCCCCCCCeCCCCeCeeeeet
¢
15  CALL ouTl
c
CCOLCCCoCCCCCoCCCCtCCCCCCCCCCeCCeCeeeeeeee
c CALCULATE STEADY STATE CONDITIONS C
CCCLCCCCCCCCCCCCeCCeCeteCCCCCeetteceeeeeet
c

CALL ITER
116  FORMAT(2E12.3)
120  FORMAT(E12.3)

RETURN

END
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SUBROUTINE THERM

c

ceeeeeceeceeccccceccccccececeececcecceeceeccecccceeccecccccceeee
[ THE PURPCSE OF THIS ROUTINE IS TO EVALUTE SATURATED C
c FLUID PROPERTIES USING ALGEBRAIC FITS TAKEN FROM [
c THE TRAC CODE. THE INPUT FOR THIS CALCULATION IS THE C
c SECONDARY PRESSURE, PSAT. c
cceeecceccccceccccecccccecccceccecceccccecccccceccceeccccccecee

c
REAL

l“:KSEé;LR:LD,LTB,LP;HU;KC»LF,"»HFD:HR;HTBo

1MTBC,MSD,MTOT, LT»MUP, LSAT, LSUB

DIMENSION UFW(2)

COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL(2),HFU(2),VEJ,MUC2),
1HG,RL,RHOG, RHOF, DUG, UG, BRHOS , DUF , UF , DRHOF , DRLP,DRLU,

2GQB, PONER, PERP,HFS,RFW(2),DTSAT

COMMON /TIME/ T,DT,ITRAN,WFWF,WSF, ITC,ICHK

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DAT*
c

C1/117.8/,C2/0.223/,C3/255.2/,A14/1.0E-05/,C12/2.5896E06/
C13/6.35E-03/,C14/-1.0582E-09/,C15/1.0764/,C16/3.625E-10/
C17/-9.063t-17/,SL0/-1.465568E06/,SL1/6.926955E03/
SL2/-7.742307/,5L3/7.280301€E-03/,£47/1000.0/,L45/1 . 0E~06/
C48/-0.15E03/,C49/-20.0/,C51/0.657E-06/,D00/3.026032E-04/
D1/-1.836607E-04/,D2/7.567076E-05/,D03/~-1.647879E-05/
D4/1.416458E-06/,H00/3.892077E-06/,C9/1.066555/7
C10/1.02E-08/,C11/-2.548E~15.",£8/3.403E05/,C7/-4.995E10/
C6/2619410.618/,SH0/-8.9/,SH1/2.363444E04/,SH2/-77.434017/
SH3/7.021557€E-02/,H0/8.58129E-06/,EH0/6.484504E-06/
PR/6.894575E05/,A0/1.29947F-03/,A1/-".264032E-04/
A2/3.810471E-04/,43/-8.219445E-05/,A4/7.022438E-06/
B0/0.0/,B1/0.0/,82/9.0/,83/0.0/,84/0.0/
€0/1.452605E-03/,E1/-6.988009E-09/,E2/1 .521023E~-14/
E3/-1.23032E-20/,F0/-3.806351E-11/,F1/3.928521E~16/
F2/-1.25858E-21/,F3/1.286018E-27/

Cceecceceeccccccceecceceececcececceecceccccceccecceeccceceee
c CALCULATE THE SATURATION TEMPERATURE, TSAT. C
cceeecccecccecceccceccceeeccceecceccccceeeccecccceceece

c

TSAT=C1#({ ALl4*PSAT }#xC2)+C3
DTSAT=C1x%C2%A16%( (A14%PSAT )%(C2-1.0))

c

geeeeccceecceccceccccccecececcceeccccccccceccceceece
< CALCULATE PROPERTIES FOR SATURATED STEAM. C
cceccccceecccecccceccecccccececcccecceecececcceecceee

c

IF(PSAT.GE.2.0E06) 6U TO 2
UG=C6+C7%(1.0/(C8+PSAT))

" 6S=C9+(C11%PSAT+C10)IXPSAT
DGS=C10+2.0%CL1%PSAT
DUG=-C7/((CB+PSAT )#%2.0)
60 TO 3

2 CONTINUE
UG=C12+(C14¥PSAT+C13)#PSAT
6S=C15+(C17%PSAT+C16 J#PSAT
DGS=C16+2.0¥C17%PSAT
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DUG=C13+2.0%C14%PSAT
3 RHOG=PSAT/((G6S-1.0)¥S)
DRHOG=RHOG*(1.0/PSAT-DES/(6S-1.0)-DUG/UG)
HG=UG*6S
c
cccececceececceeecceeccccecececeecccecccecccecceccecceceeeee
c EVALUATE THE DRIFT VELOCITY FOR DRIFT FLUX MODEL. C
g£cceeccecceecceecececcceccecececcccccccccccccceecccceccecccee
c
VGJ=(6.41E~17)%(PSAT*#%2.0)-(5.7794E-09)%PSAT+2.0957E-01
c
cceceeccecececcecceeccceccrceecccccecece
c EVALUATE LIQUID PROPERTIES. C
g£ececececeeceeccceeeeccccecccececccccceece
c
IF(TSAT.EE.573.15) 60 TO 4
UF=SLO+SLINTSAT+SL2#(TSATN2.0)+SLIX(TSAT*%3.0)
DUF=(SL1+2.0%#SL2%TSAT+3.0%SL3%( TSAT*#2.0) )¥DTSAT
60 TO 5
4 UF=SHO+SH1%TSAT+SH2%( TSATH#2 .0 )+SHIH( TSAT#%3.0)
DUF=(SH1+2.0¥SH2¥TSAT+3. 0%SH3%( TSATH%2,0) }*¥DTSAT
5 RHOF=C47+(C45%UF )% (C48%CA5¥UF+C49 ) +C51 %PSAT
DRHOF=(2.0%(C45%%2 . 0 }XCG8¥UF +C45%C49 InDUF+C51
HL(2)=UF+PSAT/RHOF
HF6=HG-HL(2)
C
cceeeceeeccecececceceecccceeccecccececceecceeccceceeecceccceeeece
c EVALUATE FEEDWATER PROPERTIES USING SUBCOOLED TABLE. C
cecccecececececceeccccceeccccceccecececceccccccccecceececeecee
c
CALL PRMPR1
IF(ITRAN.EQ.1) 60 TO &8
N=2
60 TG 10
ENTRY THERM1
8 N=1
RL=C47+(CA5MJL ) (C48XCISHUL+CH9)+CELINPSAT
DRLP=C51
DRLU=2.0%#C48%(C45%%2 , 0 )%UL+C45XC49
HL(1)=UL+PSAT/RL
c
ceccecccceccreecceeccceececececce
c EVALUTE FLUID VISCOSITY. C
¢ceeecceeeeccceceoeccceccceeceece
c
10 DO 13 J=N,2
IF(HL(J).GE.2.76E05) 60 TO 11
X=(HL(J)-42658.4)%H0
Y=(HL(J)-55358.8 )%EHO
ASAQ+ALXX+A2%( X2 J+ATH( XIHT ) +AGR( X4 )
B=BO+B1#Y+B2%( Y33%2 ) +BIN( Y¥#3 ) +B4¥#( Y3364 )
MU(J)=A-BR(PSAT-PR)
GO TO 13
11 IF(HL(J).GE.3.94E05) 60 TO 12
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12

13

ESEO+EINHL(J)#E2%#(HL(J)¥%2 0 )+E3I*(HL( J)*%3.0)
FSFO+FLIXHLOJ)+F2%¥(HL(J)3%2 . 0)+F3%(HL(J)*%3.0)
MUCJ I=E-F#({ PSAT-FR)

60 TO 13

Z=(HL(J)-401467.1)%H0O

MUCJ)I=DO+DINZ+D2%( Z3#2 )+DI%( Z21%3 ) +D4%( Z#%4 )
CONTINUVE

RETURN

END

J-49



c

SUBROUTINE TOUT

CCCCCCCCCCCCCCC e eceeeeeeereeecereeereccceeeceeececeeee

OO0 0C

THIS ROUTINE WRITES OUT TRANSIENT INFORMATION. C

ALL TEMPERATURES ARE CONVERTED TO DEGREES c
CELSIUS AND PRESSURES TO MEGAPASCALS. c
OUTLET PLENUM EXIT TEMPERATURE IS PROCESSED c
THROUGH A SENSOR MODEL. c

cececececceccecceecececcecccccccececcceceececccceceeceeececcecce

c

100
110

REAL WW,KSEP,LR,LD,LTB,LP,MU,KC,LF,M,MFD,MR,MTB,
1MTBC,MSD,MTOT, LT, MUP, LSAT, LSUB

COMMON /GEOM/ KSEP,LR,LTB,LP,KC,ARI,ATB;ARO,G,
1VR,VTB,DHTB,BETA(4),NSTG,L0,
2AHT,RO,RX,VOP,VTBP,APT,VTM

COMMON /DOME/ VSUG,VTOT,VG,VFO, LSAT,LSUB,VREF, LW,
1LD,AD»VD,VSD,DHD,VT,LT,VETH,DVG,ASH,R1,R2,R3,RG,
2ZL1,2L2,ZL3,2ZLF

COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL(2),HFR(2),VGJ,MU(2),
1HG,RL,RHOG , RHOF ,DUG , UG, DRHOG , DUF , UF , BRHOF , DRLP,DRLY,
2Q8,POWER , PERP,HFG,RFH( 2} ,DTSAT

COMMON /FLOWS/ HO,RS(2),WNFH(2),WF,NP,WR,WN,DINERT

COMMON /TRANS/ VOID(3),XQ(3),RB(2),UB(2),DUP(2),BUA(2),DRP(2]),
10RA,MFD(2),MR(2),MTB(2),MTBC(2),HR,HN,MSD,
2MTOT(2),S5(35),M(5),VP(3),R(9,5)

COMMON /TIME/ T,DT,ITRAN,NWFWF,NSF, ITC,ICHK

COMMON /PRIME/ PPRIM, TLMTD,UO,TP(3),HP(3),RP(3),UP(3),DRPT(3),
1IDUPT(3), TPIN(2),HPIN(2) ;NPIN(2),MUP,CPL,TKL,CPT

COMMON /FILTER/ TFOLD,TAUC

CTFW=TFW(2)~-273.15

TCIN=TPIN(2)-273.15

TC1=TP(1)-273.15

TC2=TP(2)-273.15

TF=(TP(3)%CT+TFOLD*TAUC)/(DT+TAUC)

TFOLD=TF

TC3=TF-273.15

CTSAT=TSAT-273.15

TAVE=(TCIN+TC3)/2.0

WRITE(6,100) T,LH,PSAT,QB,KS(2),HFW(2),CTFW,K0,MTOT(2),XQ(1)

WRITE(6,110) TCIN,TC1,TC2,TC3,WPIN(2),CTSAT,PPRIM, TAVE

FORMATC' ', 9(E12.4,3X),E12.4)

FORMAT(' *,15%,7(E12.4,3X),E12.4)

RETURN

END
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c

SUBROUTINE TOUT1(TDT,NPRIN)

ccceeccceeccececcecccceccceccccecccccecccccccececceeccccecceeecee

c

THIS ROUTINE WRITES OUT TRANSIENT OUTPUT HEADINGS C

cccceeeceeccceccecccceeccecceceececececceececceeeeceececceeceee

c

100
110
115
120

130

140

150

160

WRITE(6,100)

WRITE(6,110) TOT

WRITE(6,115) NPRIN

HRITE(6,120)

WRITE(6,130)

WRITE(6,140)

WRITE(6,150}

WRITE(6,160)

FORMAT('1',15X, 'TRANSIENT EDIT')

FORMAT('~-', 'TIME S1EP SIZE IS',El12.4,1X,'SEC')

FORMAT(' °*,'EDIT EVERY',1X,I2,1X,'TIME STEPS')

FORMAT( '~"*,4X, 'TIME®,10X, '"WATER ', 9X, ' PRESSURE ' ,8X, ' POKER' »
110X, *STEAM',10X, 'FEED',11X, 'FEED*, 10X, 'DOMNCOMER* , 7X, '"MASS’,
210X, *TUBE EXIT')

FORMAT(' ',4X,'(S)',10X.'LEVEL (M)*,9X, '(PA)*,9X, '(WATTS)',7X,
1'FLOW (KG6/S)',4X, 'FLON (K6/S)',4X, 'TEMP (C)',7X, 'FLOW (KG/S)*,
23X, 'CONTENT (KG)',5X, '"QUALITY*)

FORMAT(' ', 18X, "PRIMARY',8X, " TUBE',12X, ‘TUBE',10X, 'PRIMARY"’
1,8X, *PRIMARY" ,8X, ' SATURATION® ,6X» ' FRIMARY ' ,8X; * PRIMARY' )

FORMAT(' *,18X, "INLET',10X, 'INLET",10X, ‘OUTLET",9X, ‘OUTLET®
1,9X, *FLOW® 5 11X, *TEMPERATURE ' » 5X, *PRESSURE ', 7X, *TAVE ')

FORMAT(® ', 17X, "TEMPERATURE' »4X, ' TEMPERATURE" ,4X, ' TEMPERATURE®
1,4X, ' TEMPERATURE ')

RETURN

END
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c

SUBROUTINE TRANST

CLLLALLLLLLLLLLLLLLLLLLLLTLLLLLLCLLTCLCCCCCLCCLcCecccccccccCcct

i~

THIS IS THE MAIN TRANSIENT CALCULATION DRIVING ROUTINE C

CLLLLLLLLLLLLLLLLLLLLLLLLCLLLlCClLLcCCccCecccCcccccecececceccce

c

c

REAL LMW,KSEP,LR,LD,LTB,LP,MU,KC,LF,M,MFD,MR,MTB,
1MTBC,MSD, MTOT, LT,MUP, LSAT, LSUB,KD

DIMENSION TIMC41),TPI(41),THS(41),THFN(41), TTFH(41),PVAL(4L)
1,HPI(41),PPRI(41),IFRINT(5),TPINF(2)

COMMON /RESP/ VALK,IFW(41),PVALV,TTRIP,AK,AKB,VALKO,M3,MSM,
1MSV, TMST, TSV, TISO,ISTM(41),ISV(4)

COMMON /VALVES/ F,FMST,FB,FS1,FS2,FS3,FS4

COMMON /GEOM/ KSEW,LR,LTB,LP,KC,ARI,ATB,ARO,G,
1VR,VTB,DHTB,BETA(4),NSTG,CO,

2AHT,RO,RI,VOP,VTBP,APT,VTM

COMMON /DOME/ VSUB,VTOT,VG,VFO,LSAT,LSUB,VREF, LI,
1LD,AD,VD,VSD,DHD, VT, LT,VSTM,DVG,ASK,R1,R2,R3,R4,
2Z1L1,2L2,ZL3,2LF

COMMON /STEAM/ PSAT,TFW(2),TSAT,UL,HL{2),HFK(2),V6J,MUC2],
1HG,RL , RHOG , RHOF , DUG , UG, DRHOG , DUF , UF , DRHOF , DRLP , DRLU,

2QB, POMER, PERP,HFG,RFW(2),DTSAT

COMMON /FLOWS/ WO,WS{2),WFH(2),HF, NP, WR,WN,DINERT

COMMON /TRANS/ VOID(3),XQ(3),RB(2),UB(2),DUP(2),DUA(2),DRP(2),
1DRA,MFD(2),MR(2),MTB(2),MTBC(2),HR,HN,MSD,
2MTOT(2),S(5),M(5),VP(3),R(9,5)

COMMON /TIME/ T,DT,ITRAN,NFWF,WSF, ITC,ICHK

COMMON /PRIME/ PPRIM,TLMTD,UD,TP(3),HP(3),RP(3),UP(3),DRPT(3),
1DUPT(3), TPINC2),HPINC 2),KPIN(2),MUP,CPL s TKL,CPT

COMMON /HTS/ HPR,HS,RTUBE,RFOUL

COMMON /DOKCO/ KD

COMMON /AVE/ WBAR

COMMON /FILTER/ TFOLD,TAUC

cceeeceeecececceeececeeccceeeceee

c

INITIALXZE PARAMETERS c

ccrececcceececececccecececceccceeeeee

c

70

IF(ITRAN.EQ.1) 60 YO 40
TFOLD=TP(3)

DO 70 L=1,5
S(L)=0.0

DO 70 N=1,9
R(N,L)=0.0
ITRAN=1
NSTEP=0

K=0

J=2

7=0.0
TIM(1)=0.0
TTFW(1)=TFH(1)
PVAL(1)=PERP
TRS(1)=WS(1)
TWFH(1)=UWS(1)
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WFR(1)=WS(1)

WFR(2 )=WFRN(1 )Y

WS(2)=KS(1)

TPI(1)=TPIN(2)

TPINC1)=TPIN(2)

TPINF(1)=TPIN(2)

TPINF(2)=TPIN(2)

WPI(1)=WPIN(1)

PPRI(1)=PPRIM
c
ceeeceeecccececeeeceeeccececcccceeceececcceceececcecceceecceee
c READ IN NUMBER OF TIME ZONES AND TIME STEP SIZE C
cceecececcecccccecceccccoccerecccccceccececcecceeceecceccce
c

READ(5,100) NPT,TDT

NPT=NPT+1
100 FORMAT(I2,El12.3)
c
cceeccececcecceccecceceeceececccecececceecccccccceccccccccceccccceccece
c READ IN PRINT FREQUENCY AND FLAGS FOR DUMP,BYPASS AND SAFETY C
c SYSTEMS COPERATION c
ceecceccecceeecceececccecccecccccecccecccceccececrceeceecccecceeeccecceeccee
c

READ(5,110) NPRIN,MSM,MB,MSV
112 FORMAT(412)

c READ IN TURBINE STOP AND CONTROL VALVE CLOSING SPEED, SAFETY C
c VALVE CLOSING SPEED(NOT USED HERE BUT PROVIDED IF MODIFICATION C
c IS DESIRED), ISOLATION VALVE CLOSING SPEED(NOT USED HERE BUT C
c PROVIDED FOR CONVENIENCE IF MODIFICATION IS DESIRED) c
ceeeccecceceecceccececccccecccccceccectececcccecccececcccccecccccecececce
c

READ(5,112) TMST,TSV,TISO
112 FORMAT(3E12.3)
c
Lo o o oo oot o o o o o o o o o o o oo o o
c READ IN TURBINE TRIP TIME(NOT USED IF STEAM FLOWS ARE PROVIDED)C
Lo T oo oo ol o o ol o o e oo o o o oo o o o o o o o o ool o o
c
READ(5,111) TTRIP
111 FORMAT(E12.3)
KPRIN=NPRIN
c
o o o oo ot o o o o o o o o o o e o o o
c READ IN FLAGS FOR EACH SAFETY VALVE BANK €
(oo oo oo T oo e oo o el o o o o o oL o o oo
c
READ(5,203) (ISV(I),I=i,4)
203 FORMAT(4I2)
c
Lo oo oo o o o o o o o o o
c READ IN TIME CONSTANTS FOR TEMPERATURE SENSORS €
(7 o oo o e o o e o o e o o o e oo e o
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c
READ(5,900) TAUH,TAUC
900 FORMAT(2E12.3)
c
gceeccecccccccececcecccccccccccceceeeeccee
c READ IN TRANSIENT INPUT TABLE C
ccceeccececceccccececcecceecccacccccceeccee
c
DO 5 I=2,NPT
READ(5,120) TIM(I),TPI(I)>TTFR(I),THS(I),TWFR(I),PVAL(I)
$ READ(5,121) WPI(I),PPRI(I),IFW(I),ISTM(I)
120 FCRMAT(6E12.3)
121  FORMAT(2El2.3,212)
c
ceeeceeccceecccceeccccceccecececccecececceeeecccceeccececcececcccecceccce
c WRITE OUT TRANSIENT OUTPUT HEADINGS AND INITIAL CONDITIONS C
cceeceeccececccceceeccceccceccceccceececccecceccccecccceccccceecccccccccecee
c
CALL TOUT1(TDT,NFRIN)}
DT=TDT
CALL TOuT
40  CONTINUE
c
CCCCCCLCCCCCCCCCCCCCCCCCCCeeeececececceeeeececcecceccececece
c DETERMINE NWRMBER OF TIME STEPS IN THIS TIME ZONE C
Cc NOTE THAT TIME STEP SIZE IS FIXED c
cccececcececccececccccececcceeccceccccecereeceeeceeccceececece
c
0T=T0T
DEL=TIM(J)-TIM(J~1)
X=DEL/DT
Y=X+0.50
IZ=IFIX(X)
IZ1=IFIX(Y)
IF (IZ.EQ.IZ1) 60 TO 10
N=I2Z1
G0 TO 11
10 N=IZ
11 CONTINUE
DO 12 I=I,N
NSTEP=NSTEP+1
T=NSTEP*DT
c
ceeecereceeccecceccceccceccececcececcecccecccccecccccccccceceee
c UPDATE FORCING FUNCTIONS USING LINEAR INTERPOLATION C
c ON INPUT TABLE FOR THE APPROFRIATE TIME ZONE c
c¢eceeceecccecccecccceccecccccecceccecceccecccceeccccccececceecc
c
HS(1)=WS(2)
WFH(1)=WFW(2)
IF(ISTM(J).EQ.1) 60 TO 20
WS(2)=WS( 1 )+DT*( TUS(J)-TWS(J-1))/DEL
20 IF(IFW(J).EQ.1) 60 TO 21
WFWC(2)=HFW(L )+DT%( THFR(J )-TWFW(J-1))/DEL
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21 TFH(1)=TFH{2)
TFW(2)=TFR(1)+DTR(TTFR(J)-TTFH(J~1) }/DEL
TPINF(1)=TPINF(2)
TPINF(2)=TPINF(1)+DT*(TPI(J)-TPI(J-1))/DEL

c

cceceeccececieceeeceecceecceeccccececeeecceecececceeccee
c USE SENSOR MODEL TO CALCULATE APPROPRIATE c
[ PRIMARY INLET TEMPERATURE c

COCCCCCCLCCCCCCCCCCCCCCCCCCeeoceeeoceeereeececececcececece

c

TPIN(1)=TPIN(2)
TPIN(Z)=(TPI{J)-TPI(J-1))/DEL¥TAUH+TPINF(2)
WPIN(1)=WPIN(2)
WPIN(2)=KPIN(1)+DT*(WPI(J)-KPI(J-1))/DEL
PPRIM=PPRIN+DT*(PPRI(J)-PPRI(J~1))/DEL
c
ccceceeeeccecceecccceccceccecccccececcccccccceecececceeeccccececeececceecce
c CALCULATE ADVANCED TIME STATE VARIABLES FOR SECONDARY SIDE C
cceeeeceocceeceeececcccececetceccceccecceceecceeccecceecccececeeeeececee
c
CALL UPDATE
c
cccecececeecccccccceccececceccececceeccccccececeee
c DETERMINE NEW SECONDARY PROPERTIES C
cceeccececececceeeecceccceccececcceccceeeccccceec
c
CALL THERM
Cc
ceeecceeceeecceeceeccececececcceecececereecceeecceecceeecceeeeccececececee
c CALCULATE ADVANCED TIME PRIMARY STATE VARIABLES AND PROPERTIES C
cceeceeecececceercccccceceecceccceceeecceccececeecceceeeecceececcccececeeccet
c
CALL PUERIV
c
ccececceeceecocceceeeeeceeceecccceecceeereeeeeeeeceecceeceeeeeece
c CHECK FLAGS FOR MAIN STEAM AND FEEDWATER SYSTEM MODELS C
€ceeeccceececccceecceceeeceeececceeccceccecccceecccceeceecccecceccece
c
IF(IFH{J).NE.1) GO TO 22
CALL CONTRO
22 IF(ISTM(J).NE.1) GO TO 23
PVALV=PVAL(J-1)+{PVAL(J)-PVAL(J-1))/DEL¥(T-TIM(J-1))
CALL CHOKE
c
cceceecceceeccccecceceeececccecccecceecceeeeccccceeeecceeee
c UPDATE MASSES, TWO-PHASE PROPERTIES, LEVEL, c
c AND HEAT TRANSFER RATE. GET MOMENTUM c
c EQUATION PARAMETERS, M(I) c
cceeecececeeccccecceccceccccccceccecceccccecccecceccceececce
c
23  CALL NEWPR
CALL MOMEN
c
cceeecceeeeccccocccceeccceccceccccccccceeccccecce
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c 'SCLVE MOMENTUM EQUATION AND UPDATE WBAR C
€ceeeccecccececcecececccecccccccecceccceeccceccecccceece

c
KBDOT=(-1.0)%(M(1)#R0+M( 2 ) %UP+M( 3 )¥WR+M( 4 ) ¥WN+M(5) }/DINERT
KBAR=WBAR+DT*WEDOT

300 K=K+1

c

cceeececcecceecceecccceccececccecccee

c CHECK FOR TRANSIENT PRINT C

ccceeeeecceeececececcccecceccceeecce

c
IF(K.NE.KPRIN) 60 TO 12
CALL TOuT
KPRIN=KPRIN+NPRIN

12 CONTINUE

c

ccceeeccceecccecceccceccceceeccecceeeccccececccecccee
c CHECK FOR END OF TRANSIENT SIMULATION C
cccceececcecceccceececececcceccecccceccececcccccccccece
c

IF (J.EQ.NPT) 60 TO 14

J=J+l

GO TO 40

14  CONTINUE
RETURN
END
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[

SUBROUTINE UPDATE

cceeceecccecceececcccecceecccecceecccccecccccceccecccececcecccoececececcecccee

0O0000

THE PURPOSE OF THIS SUBROUTINE IS TO EVALUATE THE RELUCED
STATE EQUATION WITH THE STATE VECTOR (U0,VS,VOID(1),VOID(2),
PSAT) TO OBTAIN THE TIME DERIVATIVE OF THE STATE VECTOR.

THE FLOWRATES ARE THEN CALCULATED. FINALLY, THE STATE VECTOR
IS UPDATED.

00000

cceeececcceccecceccccccecccceecccecceeccccccccecccecccccecccceccecccceccceeccece

c

c

REAL LW;KSEP,LR,LD,LYB,LP,MU,KC,LF,M,MFD,MR,MTB,»

IMTBL ,MSD,MTOT, LT, MUP, LSAT, LSUB

DIMENSION RA(5,5),RAINV(5,5),E(4),XG(5)

COMMON /GEOM/ KSEP,LR,LTB,LP,KC,ARI,ATB,ARO,G,
1VR,VTB,BHTB»BETA(4),NSTG,CO»

2AHT,RO,RI,VOP,VTBP,APT,VTH

COMMON /DOME/ VSUB,VTOT,VG,VFO, LSAT, LSUB,VREF, LN,
ILD,AD,VD,YSD,0HD,VT,LT,VSTM,DVG,ASW,R1,R2,R3,R4»
2ZL1,2L2,ZL3,2ZLF

COMMON /STEAM/ PSAT, TFH(2),TSAT,UL,HL(2),HFH(2),VEJ,MU(2),
1HG,RL ,RHOG, RHOF , DUG , UG, GRHOG , DUF , UF , DRHOF , DRLP,DRLU)»

2QB, PORER, PERP,HFG,RFIW(2),DTSAT

COMMON /FLOWS/ HO,R3(2),WFH(2),KF,HP,WR,WN,DINERT

COMMON /TRANS/ VOID(3),XQ{3),RB(2),l8(2),DUP(2),DUA(Z),DRP(2),
10RA,MFD(2),MR(2),MTB(2),MTBC(2),HR,HN,MSD,
2MTOT(2),S(5),M(5),VP(3),R(9,5) .

COMMON /TIME/ T,DT,ITRAN,WFWF,HNSF, ITC,ICHK

COMMON /PRIME/ PPRIM,TLMTD,UD,TP(3),HP(3),RP(3),UP{3),DRPT(3),
IDUPT(3), TPINIZ),HPIN(2),WPIN(2),MUP,CPL,TKL,CPT

COMMON /AVE/ WBAR

DATA RA(1,2)/0.0/,RA(2,2}3/70.0/

cceeceeeccceecceececeecceecceeeeceeceeecccceeccececcceecceccesececceeeceeee
EVALUATE THE VARIOUS DERIVATIVES OF THE MASS AND ENERGY CONTENTS C

c
c

OF THE STEAM GENERATOR SECONDARY REGIONS.

c

ceeeecccecececcecccceecceecccccceceecccecccceccecececcececceccccccecccccceece

c

DEL=RL-RB(1)

Q1=RL/RB(1)

RAT=ALOG(Q1)

DEL2=DEL»2

RAT2=RAT#%2

DELU=UL-UB(1)

GAM=LP/LTB
R(1,1)=(RB(1)/DEL)*(VTB-MTB(2)}/RL)*DRLU
R{1,3)=(RL/DEL)*(MTB(2)/RB(1)-VTB)*DRA
R(1,5)=R(1,1)*DRLP/DRLU+R(1,3)%DRP(1)/DRA
SRI=MTB(2)*DELU*(1.0/(RL*RAT2)-RB(1)/DEL2)
SR2=MTB(2)#DELUX(RL/DEL2-1.0/(RB(1)*RAT2))
SR3=MTB(2)%#(1.0/RAT-RB(1;/DEL)
SR4=MTBI(2)%(RL/DEL~1.0/RAT)
RS=(-1.0%DELU}/RAT+(RL*UL-RB(1)%UB(1))/DEL
R(2,1)=R(1,1)%R5+SR4+SRI*DRLY
R(2,3)=R(.i,3)*R5+SR2*DRA+SR3I*DUA(L)
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c

R{2,5)=R(1,5)%R5+SR1*DRLP+SR2*DRP(1)+SR3%DUP(1)
1+(VITMHCPT/2. 0 )%0DTSAT
R61=(VTB®{1.-GAM)*(RB(1)¥#%2))/(DEL*(GAMXRL+{1.0-GAM)*RB(1)))
R62=MTBC(2)%RB(1)/(RLXDEL)

Ro=R61-R62

R71=(RL/DEL )%{MTBC(2)/RB(1)-VTB)
R72=(VTBXGAMM(RL¥®%2) }/(DEL*(GAMXRL+(1.0-GAM)I*RB(1)))
R7=R71+R72

R(3,1)=R6%DRLU

R(3,3)=R7%DRA

R(3,5)=R6*DNLP+R7*DRP(1)

R(4,3)=DRA®VR/2.0

R(4,4)=R(4,3)

R(4,5)=(DRP(1)+DRP(2))%VR/2.0

cceeeeccceccceeccccccccececcceecceee

c

CALCULATE THE INERTANCE C

ceeeeecceceecccceeccececccececcee

c

c

Bl=(LN-LD)#*#(1.0/ASK-1.0/AD)/2.0

B2=LD/AD+LP/(2.0%ATB )

BETA(1)=B1+B2

B3=BETA(2)+BETA(3)+BETA(4)

DINERT=BETA(1)+83
E(1)=(BETA(2)%R(3,1)-B3%R(1,1))/DINERT
E(2)=(BETA(2)%R(3,3)-B3*R(1,3)-BETA(4)*R(4,3) )/DINERT
E(3)=-BETA(4)*R(4,4)/DINERT
E(4)=(BET+.(2)%R(3,5)-B3*R(1,5)-BETA(4)%R(4,5) )/DINERT
DO 5 I=1,2

R(5,I+2)=(UB(I)*DRA+RB(I)XDUA(T))I*VR/2.0
R(5,5)=(UB(1)%DRP(1)+RB(1)%DUP(1)+UB(2)*DRP(2)+RB(2)*BUP(2))

1#VR/2.0

R&=HL(1)-HR

CCCeecceeeeceeeeeccecceecceeecceceecececeeccecccecceceeeeceee

c
c

CALCULATE MATRIX COMPONENTS FOR TUBE BUNDLE ANG C
RISER ENERGY EQUATICNS c

ceceeeTeecceecceeeeceececceceeccceeececeecececcecceceeeceece

c

c

RA(1,13=R(2,]1)-HR®R(1,1)+E(1)%R8
RA(3,3)=R(2,3)-HR*R(1,3)+E(2)*R8
RA(1,4)=E(3)%R8
RA(1,5)=R(2,5)-HAR(1,5)+E(4)I%R8
R81=HR-HN

RA(2,1)=(R(1,1)+E(1))¥*R81
RA(2,3)=R(5,3)-HN*R(4,3)+(R(1,3)+E(2) )*R81
RA(2,4)=R(5,4)-HN*R(4,4)+E(3)¥RB1
RA(2,5)=R(5,5)-HnN*R(4,5)+(R(1,5)+E(4))*R81
R72=RHOG*UG-RHOF #UF
R751=RHOG*DUG+UG*DRHOG
R752=RHOF*DUF +UF *DRHOF

ccceeeceececcecceccecccccecceecceccececceccecccceeccecececccececececeeccee

c

CALCULATE THE SATURATED AND SUBCOOLED MATRIX COMPONENTS FOR C
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c

THE CASE WHEN THE STEAM DOME-DOWNCOMER VOLUMES ARE FIXED

c

cceeceeecceccccceccececcccccecccceececcccccceceeccecereeccecceecceeee

c

c

cceceeccececereccecceceeccceccecececceceecceceeceeeeceecececccecceect
CALCULATE SATURATED AND SUBCOGLED ENERGY EQUATION RIGHT C
HAND SIDES FOR THE FIXED VOLUME CASE
cccceeccccceecccccceecceececcceeccccecceceecceceecceececcceeccecee

c
c

c

10

c

IF(V6.6T.VREF) 60 TO 10
R(6,2)=RHOG-RHOF

R(6,5)=(VG+VSTM)*DRHOG+( VSD-VG }*DRHOF

R75=(VG+VSTM)IXR751+(VSD-VG ) ¥R 752
R(7,2)=R72

R(7,5)=R75

R(8,1)=VT*DRLU

R(8,2)=0.0

R(8,5)=VT*DRLP
R(9,1)SVT*RL+VTXUL*DRLU
R19,5)=VT*UL*DRLP

R82=HN-HL(2)}
RA(3,1)=(R(1,1)+E(1))nR82
RA(3,2)=R(7,2)-HLI2)%R(6,2)
RA(3,3)=(R(1,3)+R(4,3)+E(2))*R82
RA(3,4)2(R(4,4)+E(3) )%R82

RA(3,5)=R(7,5)-HL(2)%R(6,5)+(R(1,5)+R(4,5)+E(4)I*R82

R83=HL(1)-HL(2)

RA(451)2R(9,1)-HLI2)¥R(8,1)-E(1)¥R83

RA(4,2)=20.0
RA(4,3)=-E(2)%R83
RA(4,4)=-E(3)%R83

RA(4»5)=R(9,5)-HL(2)*R(8,5)-E(4)*RE3

S{3)=MBARNRE2-HS( ] )*HF G

S(4)=WFU( 1 )#(HFR(1)-HL(2))-WBAR®RS3

60 TO 11
CONTINUE

ccceeeceeccccecceececcecceccceeecccceccecceceeecceeceecceecceceecce
CALCULATE MATRIX COMPONENTS FOR THE SUBCOOLED AND SATURATED C

c
c
c

ENERGY EQUATIONS FOR THE CASE WHERE THE VOLUMES ARE NOT

FIXED

c
C

cceceeeeeecccecececeteceeeecceccoccceccceoceecececeeceecceeecececceccceceee

c

=2
R(6,2)=RHOG
R(6,5)=(VG+VSTM }*DRHOG+VFG*DRHOF
DVEL=(WNF/RHOF )-X6(2)
IF(DVEL.LT.0.0) K=1
R(7,2)=RHOG*UG
R(7,53=(VSTM+VG ) *¥R751 +VFO*R752
R(8,1)=VSUBXDRLU
R(8,2)=-RL
R(8,5)=VSUB*DRLP
R(9,1)=VSUB#(RL+UL*DRLU)
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R(9,2)=-RL¥L

R(97,5)=VSUB#UL®DRLP

RB4=HN-HL(K)}

RA(3,1)=(R(1,1)+E(1))*R8¢

RA(3,2)=R(7,2)-HLIK)*R(6,2)+PSAT

RA(3,3)=(R(1,3)+R(4,3)+E(2))%R84

RA(3,4)=(R(4,4)+E(3))*R84

RA(3,5)=R(7,5)-HLIK)*R(6,5)+(R(1,5)+R(4,5)+E(4))*R84

R85=HL(1)-HL(K)

RA(4,1)=R(9,1)-HLIK)*R(8,1)-E(1)%R85

RA(4,2)2R(9,2)-HLIK)*R(8,2}-PSAT

RA(4,3)=-E(2)%R85

RA(G,4)=-E(3)%R85

RA(4,5)=R(9,5)-HL(K)*R(8,5)-E(4)*RE5
c
cceeeceecccecccceceecccccccececccecececcceeccceccecccecceeeccecee
c CALCULATE THE RIGHT HAND SIDES OF THE SATURATED AND C
c SUBCOOLED ENERGY EQUATIONS FOR THE CASE WHEN THE c
c VOLUMES ARE NOT FIXED c
ccececeeceecceecceceecceccecceececeeeccececeeceeceeceecececece
c

S(3)=WBARREG-HS( 1 )R(HE-HL(K))

SC4)=HFN(1 )#(HFN(1)-HL(K) )-HBAR¥RSES
11 CONTINUE
c
CCCCCCCCCCCCCCCCCCCCCCCtCCCCitCCCCCLCCCLCtCCCCLCCCTCLLCCCTCCee
c CALCULATE MATRIX COMPONENTS FOR THE OVERALL MASS BALANCE C
CCCCCCCCCCLCCCCCCCtCCCCCCCCCCCCCCCCCCLCCCCCCCCCCLCCLeCtCeeee
c

DO 12 I=1,5
12 RA(5,I)ZR(1,I)+R(4>,I)+R(6,I)+R(8,1)

c CALCULATE THE RIGHT HAND SIDES OF THE RISER AND TUBE BUNDLE C
c ENERGY EQUATIONS AND THE OVERALL MASS BALAMCE EQUATIONS
CCCCCCLLCCCCCCCCCCCCCLCCCLCCCCCCCCerttCCCCCCCtCCCCCCCCCCCCereeeee

c
S(1)=HBAR*R8+QB
S(2)=WBARXRS1
S(5)=UWFN(1)-WS(1)
c
cceceececeeecccecccecececceece
c INVERT THE MATRIX c
cccececccecceeccceerncececeee
c
CALL MINV(RA,RAINV,5,DD,L,M)
c

5 o o L 8 X DL O
c OBTAIN THE DERIVATIVE OF THE STATE VECTOR BY MULTIPLYING
c THE INVERSE OF RA BY TH VECTOR S
o ol oo o e e L e R e R P R e S R P R B S
c
DO 20 I=1,5
X6(1)20.0
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D0 20 J=1,5
20 KGII)=XG(I)+RAINVIIJI%S(J)
c
ccceecccceecccececccecccecccecccccceccccccccccccceecee
c CALCULATE THE OLD TIME DOWNCOMER FLOWRATE C
ceeeeccececceeccecceeccecceccccececccececceccccccaccece
c

ESUM=XG(1)%E(1)

DO 21 K=3,5
21 ESUM=ESUM+XG(K I*E(K~1)

=WEAR-ESUM

c
cccceccecceccecceccceceeccceccccecceceee
c CALCULATE MASS STORAGE RATES C
ccececceecccececccceeecceccccceecccecece
c

DMTBC=0.0

DMTB=0.0

DMR=0.0

00 22 I=1,5

OMTBC=DMTBC+XG{ I)*R(3,1)

DMTB=DMTB+XG(I)I*R(1,I)
22 DMR=DMR+XG(I)*R(4,I)
c
Cceeeecccrcccceecceeceecccecceeceeeccecccccecccceeecccecee
c CALC 'LATE OLD TIME RECIRCULATION FLOW PATTERN C

CCCCCCCCL! ZTCecLecceeecccecccceeccececcreeccccceceececcee
c

KN="0~-DMTB-DMR

WR=. 'N4DMR

WP=WR+DMTBC

c CALCULATE OLD TIME SATURATED LIGQUID FLON FROM SATURATED C
c REGICN TC SUBCOOLED REGION c
cceeeocecceeeecceceeeeoeeceeceeceecceeccecceecceccerccececcecceeceee
c

V6=VG+XG( 2)*DT
IF(V6.GT.VREF) 60 TO 30
WF=R(8,1)%XG{1)+R(8,5)#XE(5)-WFN(2)+N0
60 TO 31
30 WF=k(8,1)%XG(1)+(RHOF+R(8,2) }%¥XG(2)+R(8,5)%XG(5)-WFW(2)+WO
c
ccceeecececceecceccceccceccccecceceececeeceece
c UPUATE UL,VOID (1 AND 2),AND PSAT €
cceeeecccecceceeccceccececcececceccecceceecceeee
c
31 UL=UL+DT®XE(1)
VOXD(1)=VOID(1)+DT#XG(3)
VOID( 2)=VOID(2)+DT*XG(4)
PSAT=PSAT+DTHXE(5)
RETURN
END
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Appendix K

DOWNCCMER GEOMETRIC REPRESENTATION FOR
WATER LEVEL CALCULATION

The purpose of this appendix is to discuss the geomet-
ric representation of the steam dome - downcomer used to
calculate the water level given the volume of saturated
steam present in the steam dome - downcomer. Figure K-1 is
a schematic of this idealized geometry showing the nomen-
clature used in this presentation. .

Table K-1 gives the volume of the five regions making
up our idealized steam dome - downcomer. Also given in this
table is the liquid volume within a given region i, vtIQ’
assuming that the volume is neither empty nor full of wa-
ter. The region liquid volume is given as a function of the
liquid 1eve1,.L, measured from the bottom of the region.

The water level is calculated as follows:

1.) Using Vy determire in which region the wa-

ter level is located. That is, compare Vy
to Vl, V1 + Vz, V1 + V2 + Va, and so forth
until Vy is less than the sum of the region
volumes and call the sum [y. The last re-
gion volume appearing in the suﬁmation used

to obtain }y corresponds to the region

where the water level is located.
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2.)

30)

Subtract Vy from ], to obtain the liquid
volume corntained in the region determined in

Step 1. That is,

where the superscript I corresponds to the
region where the water level is located. The
form of viIQ as a function of the level, L,
as measured from the bottom of the region,
for each region, is given in Table K-1.

Solve the resulting algebraic equation for

L. As can be seen from Table K-1, this equa-
tion is either linea: in L or cubic in L.

The solution of the linear equation is tri-

vial. It turns out that the cubic equation

is always of the form:

L "+ aL +b = 0

where ab #+ 0. This equation has an analytic

solution, which is obtained using the trans-

formation, L = m cos 6. The solution is:

m
L = m cos (61 + 5—) n = 0,2,4.
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where,

m = 2fE§

-1 (3h

cos
4.) The water level, 1y, is then obtained by
adding L. to the vertical height of the bottom
of the region in which the water level is
located.
The water level equations as functions of Vy; are given in
Table K-2.

Another calculation performed using the idealized steam
dome - downcomer representation is the determination of the
quantities fgatT and fgyp, which are used in the momentum
equation. We must consider two cases (see Chapter 3 Sec-
tion 3):

1.) fixed interface between saturated and sub-

cooled volumes; and, .

2.) moving interface between saturated and sub-

cooled volumes.
The first quantity we must determine is the vapor volume at
which the transition from a stationary to a moving interface
occurs; we call this vapor volume Vpgf. In Chapter 5 we
state that the transition occurs when the liquid volume is
equal to the volume of the downcomer plus 25 percent of the

volume of saturated liquid present in the steam dome at
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normal full power operation. Thus, Vypegs is simply the to-

tal volume of the steam dome - downcomer, Vror
S
(v = Y V,), minus this liquid volume. The volume of the
TOT i=1 i
downcomer, Vp, is simply the volume extending from the

bottom of the steam dome - downcomer to the feedwater ring,

or:

= 3
VD = V5 + V4 + VLIQ(zF)

where ViIQ(zF) indicates.that the expression for VEIQ given
in Table K-1 is to be evaluated at L = 2p. We assume
that the water level at normal full power cond{tions, Lwo >
is loccated in region 3 and is above the feedwater ring.
Letting Vg denote 25 percent of the volume of saturated

liquid present in the steam dome at normal full power, we

get:

3
Vo ~ °°25[V§IQ(‘wo =23 = 4y) = V()]

Thus,

When Vy is less than or equal to Vpesr, the interface

between the saturated and subcooled regions is.fixed, so the
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height of the subcooled liquid, igyg, is fixed and is

given by:

2
[
Py
+
Py
+
Py
<
I
<

ref

In Chapter 3 we assume that when Vy, is greater than
Vreef, the volume of saturated liquid is constant and equal
to Vgg. In this situation the interface between the
saturated and subcooled regions is moving and fyg is no
longer constant. We can determine fgyg by using the same
scheme used to determine the water level except that we
replace Vv by Vv + V,.. Thus, for Vv greater than V

fo
2gy is determined using the water level equations given

ref’

in Table K-2 with V§ replaced by VV + Vfo and 4%,rep1aced by
L sSuB-
Finally, once zSUB and zw are known, ‘%AT is determined

from the relationship,

which is always true.

The final quantity that we must determine is the area
at the liquid-vapor interface in the steam dome - down-
comer. These areas are listed in Table K-2. Note that the
areas in regions 1 and 2, where we would not expect to find
the water level, are given by the minimum flow area located

at the top of region 3.
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Hl

NOMENCLATURE

Most of the nomenclature is defined locally in the

This is a brief list of some symbols for convenience.

Areas (m2)

Lower Downcomer Area (m2)

Riser Inlet Flow Area (m2)

Riser Outlet Flow Area (m2)

Area at Liquid-Vapor Interface (m2)

Specific Heat Capacity (EE—%_-—

=)
Hydraulic Diameter (m)

Energy Content (J)

Friction Factor (-)

Acceleration of Gravity (Eﬁ)
s

Specific Enthalpy (%E

Specific Enthalpy of Flowing Mixture (H , + xH ) (}:—g-

Heat Transfer Coefficient (;§—¥—:E)
Subscript s for secondary

Subscript p for primary

Inertance (m-1) or /-1

Crossflow Loss Coefficient (m—2)

Loss Coefficient at Downcomer Exit (-)
Separator Loss Coefficient (-)

Length (m)

Length of Lower Downcomer (m)

Nom-1

)



AT M

ct

Length of Parallel Flow Portion of Tube Bundle (m)
Mass Content {kg)
Pa - s
Momentum Equation Parameters (—_EE——]
Pressure (Pa)
Power or Heat Transfer Rate (W)
Heat Flux (15)
m

m”~ - °K
Fouling Factor (=)
Tube Inner Radius (m)
Tube Outer Radius (m)

Coordinate for Integration Around Recirculation Loop
(m)

Temperature (°K)

Log-Mean Temperature Difference (°K)
Time(s)

Time Step Size

Specific Internal Energy (%E)

Velocity (%)

Volume (m3)

Volume of Lower Downcomer (m3)
Momentum Specific Volume (E;)
Flowrate (%5)

Saturated Steam Flow [%g)

Quality (=)

Nom-2



Vapor Volume Fraction (-)

2
¢£O Two-Phase Multiplier (-)
) Density (E%)
m
T Transport Time or Time Constant (s)
A Eigenvalue (-)

Subscripts

fw Feedwater

] Liquid

L0 Liquid Omnly

] Saturated Liquid

Lvs Indicates Eyyg = &yg ~ &g

n Riser Cutlet

o Downcomer Exit

P Parallel-to-Crossflow Transition
r Riser Inlet

R Riser

SAT Saturated

STM Main Steam Line

SUB Subcooled

t Tube Metal

TB Tube Bundle

TBC Tcbe Bundle Crossflow Region
TBP Tube Bundle Primary Side

T™ Tube Metal Volume
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v Vapor

vs Saturated

Other Notation

Vapor

that £ is a Matrix
that £ is a Vector

Time Derivative of £

Defined in Appendix A.

£ Indicates
g Indicates
g Indicates
3

<g>

Egy

€g>yg

Nom-4



(A1)

(A2)

(B1)

(B2)

(B3)

(B4)

(B5)

(B6)
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