
A COMPARATIVE STUDY OF SEVERAL DYNAMIC
TIME WARPING ALGORITHMS FOR SPEECH

RECOGNITION

by

Cory S. Myers

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREES OF

BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1980

' BELL TELEPHONE LABORATORIES, INCORPORATED

Signature of Author ........................
/Department of Electrical Engineering and

(I, L/ ....... Computer Science, February 4, 1980.

Certified by...................

-7h
Thesis Supervisor ......................................Acadeic)
Thesis Supervisor (Academic)

Certified by... ...................
Company Survisor (VI-A Cooperating Company)

certified by...... . .empa.y Sug r (V tCooperating Company)

Accepted by. _._
-' hairman, Departmental Committee on Graduate Students

ARCHIVES
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUN 2 0 1980

LIBRARIES



2

A COMPARATIVE STUDY OF SEVERAL DYNAMIC
TIME WARPING ALGORITHMS FOR SPEECH

RECOGNITION

by

Cory S. Myers

Submitted to the Department of Electrical Engineering and Computer Science on February 4,
1980, in partial fulfillment of the requirements for the Degrees of Bachelor of Science and Mas-
ter of Science.

ABSTRACT

A comparative study of several dynamic time warping algorithms for speech recognition was
conducted, Performance measurements based on memory usage, recognition accuracy and
computational speed were made. The first part of the investigation involved dynamic time
warping for isolated word recognition. It was assumed that the word endpoints had been reli-
ably obtained. Factors which were considered included local continuity constraints on the
dynamic path, global range constraints and the type of normalization. Broad classifications were
made to highlight the strengths and weaknesses of the various algorithms. In addition, a new
approach to dynamic time warping for isolated word recognition was examined. This approach
applied linear normalization to both the test and the reference utterance prior to a non-linear
time warping. Results of experiments on this algorithm show comparable performance to the
other dynamic time warping algorithms investigated. The practical importance of this new
method is presented in the thesis,

In the second part of the investigation two general dynamic time warping algorithms for
word spotting and connected speech recognition are described. These algorithms are called the
fixed range and the local minimum method. The characteristics and properties of these algo-
rithms are discussed. It is shown that the local minimum method performs considerably better
than the fixed range method. Explanations of this behavior are given and an optimized method
of applying the local minimum algorithm is discussed. It is shown that, for word spotting prob-
lems, successive trials of the local minimum algorithm need not be made at every possible
starting point in order to achieve good accuracy. We also demonstrate that one reasonable
approach to connected speech recognition is to build reference strings using a single local
minimum time warp per word of the test utterance and hypothesizing the beginning of one
word based on the end of the previous word.
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Chapter 1

Introduction

1.1 Speech Recognition Systems

An important step in the realization of man-machine communications is the development of

a practical speech recognition system. Work over the past decades has advanced automatic

speech recognition systems to the point where such systems are being used (in some cases on

an experimental basis) for such diverse applications as directory assistance [1] and voice control

of machinery on an assembly line [21. However, such applications are still severely limited with

regard to vocabulary size, type of speech input, and the environment under which these recog-

nizers can properly function. These constraints arise from the inherent complexity of the

speech recognition problem along with the massive amounts of computation generally required

to "solve the broad speech recognition problem."

Several factors determine the performance of speech recognition systems. A system may be

able to handle a large vocabulary or a small one. The input speech utterances may be as simple

as single, isolated letters, digits or words, or as complex as complete sentences. Speech recog-

nition systems are also classified as being either speaker independent or speaker dependent.

Speaker dependent systems require a learning period in which the machine is trained to the

user's voice. Speaker independent systems, while more versatile in their ability to handle a

wide class of talkers without individualized training, are generally more complex and costly.

Many speech recognition systems rely on pattern matching concepts. Such systems have

many basic features in common, the major components of which are depicted in the block

diagram of Figure 1.1. First the input utterance is filtered, digitized, and analyzed to determine

the beginning and ending points of the speech (i.e. to separate the spoken text from the back-

ground silence). Next, a set of features is measured for the speech in order to represent the

utterance in a form more amenable to recognition (i.e. in a data reduced format). Common

parametrizations include some or all of the following measurements: zero crossing rates, linear
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predictive coding (LPC) coefficients, spectral coefficients, cepstral coefficients, etc. In a typical

recognition system, these parameters are calculated once every frame, where a frame is typically

20 to 50 milliseconds in duration. Usually, a new frame is calculated every 10 to 30 mil-

liseconds (i.e. frames generally overlap in time). The resulting time sequence of features for

the test utterance is defined to be a test pattern. In order to determine what speech is present

in the test utterance, the parametrized speech is compared to a set of stored reference patterns

consisting of previously parametrized words, syllables or phonemes (obtained from a training

set of data), and the "best" fit is selected as the most likely candidate for the speech utterance.

For purposes of our investigations into word recognition the unit of recognition will be isolated

words. As we shall see in Chapter 2, such an assumption will be fundamental, in that, the use

of a smaller recognition unit will require either accurate segmentation of the input utterance or

the use of an entirely different time warping procedure than the one which will be used.

In order to obtain such a "best fit", we are faced with the problem of comparing a test pat-

tern with a set of reference patterns. Generally, the time scales of the test and reference pat-

terns are incommensurate. However, even if the time scales are the same, it is highly unlikely

that the timing of the test precisely matches the timing of each reference. As such, we must

use some method of time warping to optimally register the test pattern with each reference pat-

tern. We discuss the problem of time warping in the next section.

1.2 Time Warping

In order to properly compare the parametrized representation of an input speech signal (the

test pattern) with a reference pattern, temporal variations between the two patterns, due to

differences in the way in which a speaker may say the same utterance at two different occasions,

must be compensated for. Such temporal variations can include absolute differences in the

length of a test pattern and its corresponding reference pattern, as well as local variations in

which the test utterance may be sped up at one section of time and slowed down at another

relative to the reference pattern. Time alignment, or time warping, is a procedure in which the

input utterance's temporal feature set is locally stretched and/or compressed in order to achieve
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the best possible match to the reference. Figure 1.2 shows an example of time warping one

function to fit another. art a shows the input signal and part b shows the reference to which

the input is to be matched. The time warping function is shown in part c and the resulting

match between the input and the reference is shown in part d. It is clear from this simple

example that time warping can provide significant improvements in matching two patterns.

The simplest implementation of time warping is linear compression or expansion of the

input utterance to the reference. While this method is often satisfactory for monosyllabic

words [3], it is generally unsatisfactory for polysyllabic words or sentences. In 1971, Sakoe and

Chiba proposed the use of dynamic time warping to improve the fit between reference and test

patterns [4]. In this method, a nonlinear expansion and/or compression of the time scale is

used to provide an optimal fit between the patterns. Sakoe and Chiba also suggested the use of

dynamic programming, as developed by Bellman [5] in 1962, for the efficient implementation

of the time warping algorithm. Such implementations of the time warping algorithm have sub-

sequently led to great improvements in speech recognition systems [4,6,71. The basic com-

ponents of a dynamic time warping (DTW) algorithm include a distance metric (for comparing

frames of the test and reference), the specification of local and global continuity constraints (to

determine the warping contour), and endpoint constraints (to define initial and final registration

of the test and reference). The DTW distance measure appropriate for speech recognition is

dependent on the feature set used for parametrization. For example, a log spectral difference is

suitable for bandpass filter parameters, a Euclidean distance is suitable for cepstral coefficients,

and a log likelihood ratio, as originally proposed by Itakura [6], is suitable for LPC coefficients.

Global and local continuity constraints are used to insure that time continuity is preserved in

the warped pattern, and that excessive warping is not used in the procedure - e.g. locally or glo-

bally expanding a very short utterance to match a very long one.

1.3 The Work Undertaken in this Thesis

In the work undertaken in this thesis, several previously proposed and some new dynamic

time warping algorithms are compared. For each of the algorithms, measurements of computa-
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tional efficiency, recognition accuracy and memory requirements are made. To perform these

measurements, a feature set based on an eighth order LPC analysis for each speech frame was

used. As such, the log likelihood ratio distance measure of Itakura was used as the distance

metric. A standard set of speakers and reference templates, corresponding to a set of isolated

words, was used to test all the DTW algorithms. Two major application areas of the DTW algo-

rithms are examined in this thesis; namely, dynamic time warping for isolated word recognition,

and dynamic time warping for continuous speech recognition. Tradeoffs among memory usage,

computational efficiency and recognition accuracy are investigated.

For the isolated word recognition system, we assume that a reliable set of endpoints for each

word has been found (i.e. we are not concerned here with the problems of endpoint detection).

The major variations in the DTW algorithms are related to the global path constraints, the local

continuity constraints and the type of normalization in the distance scores. Experimental

results are presented on several sets of data for each DTW algorithm, and tradeoffs among the

performance variables are discussed. The performance of the dynamic time warping algorithms

is found to be highly dependent upon the ratio of the length of the test pattern to the length of

the reference pattern. Finally, a DTW algorithm is studied in which the lengths of the test and

the reference utterances are normalized to a standard duration prior to the time warping. This

algorithm is shown to yield the best performance among all the isolated word dynamic time

warping algorithms that were studied. It is also shown that this algorithm has several practical

advantages for a hardware implementation of an isolated word recognizer.

1.4 Organization of Subsequent Chapters

The subsequent chapters may be broken into two distinct groups. Chapters 2 through 5 deal

with dynamic time warping as it is applied to isolated word recognition. Chapter 2 gives a for-

mal description of DTW algorithms for isolated word recognition and defines the variables of

interest. In Chapter 3, performance criteria and methods of evaluation of these criteria are

defined for the various dynamic time warping algorithms. Chapter 4 discusses the experiments

performed and gives the performance results. Finally, in Chapter 5, tradeoffs are examined and
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conclusions about the various DTW methods are drawn. In addition, the practical importance

of the research is discussed and further work in dynamic time warping for isolated word recog-

nition is proposed.

In the second section of the thesis, Chapters 6, 7 and 8 we discuss the application of DTW

algorithms to both word spotting and connected speech recognition. In Chapter 6 we describe

the basic principles involved in DTW applications to such areas. We also define two basic DTW

algorithms for word spotting and connected speech recognition - the fixed range and the local

minimum DTW algorithms. Chapter 7 presents results concerning the comparison of the two

algorithms and examination of the parameters of the algorithms. Finally, in Chapter 8, a sum-

mary is made and conclusions are drawn. In additions, practical applications of the DTW algo-

rithms are discussed and proposals for future research into the use of DTW algorithms for word

spotting and connected speech recognition are made.

*2
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Chapter 2

Fundamentals of Dynamic Time Warping

2.1 General Description of the Problem

Time registration of a test utterance and a reference utterance is one of the fundamental

problems in the area of automatic isolated word recognition. This problem is important because

the time scales of a test pattern and a reference pattern generally are not perfectly aligned. In

some cases the time scales can be registered by a simple linear compression or expansion; how-

ever, in most cases, a nonlinear time warping is required to compensate for local compressions

and expansions of the time scales. In such cases, a general class of procedures, collectively

referred to as time warping algorithms, has been developed. These procedures have been

shown to be applicable to the "isolated word" speech recognition problem and to greatly

improve the accuracy of automatic speech recognition systems [4,6,7].

One possible interpretation of time warping is to consider it as a method for determining an

optimal function to map one time axis into another. Optimality is determined by minimizing a

distance function (or maximizing similarity) between one pattern and the time warped version

of the other. Figure 2.1 illustrates this interpretation of time warping. We will denote a refer-

ence pattern as R(n), 0 < n < N, and a test pattern as T(m), 0 < m M. In general R(n)

and T(m) may be multidimensional feature vectors but for simplicity we show them as simple,

one-dimensional functions in Figure 2.1. We denote the range of R(n) which is of interest by

its endpoints N1 and N 2, which satisfy the trivial relation 0 < N 1 < N 2 < N, and the range of

T(m) of interest by MI and M2 where 0 < MI < M2 < M. The purpose of time warping is

to provide an optimal mapping from one time axis (the n scale) to the other (the m scale).

Figure 2.1 shows the warping function defined as

m = w(n). (2.1)

One problem inherent in the interpretation of the time warping problem as finding an

optimal mapping from one time axis to another is that such a description assumes that both
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R(n) and T(m) are continuous functions of time. This is not the usual case. Typically, R(n)

and T(m) are sampled signals, with typical sampling intervals of 10 to 30 milliseconds.

(Appendix 1 gives one proposed solution to the continuous - time, time warping problem.)

Since R(n) and T(m) are sampled signals, it is simpler to pose the time warping problem as a

path finding problem. We can, without loss of generality, assume that R(n) is defined for

n = 1,2,...,N and that T(m) is defined for m = 1,2,...,M. Once again, the time warping pro-

cedure must find a function of the form of Eq. (2.1) to minimize a total distance function, D,

of the form

A'
D = (d(R(n),T(w(n)) (2.2)

n-=1

where d(R(n),T(w(m))) is the local distance between frame n of the reference and frame

m = w(n) of the test. A typical path, w(n), is shown in Figure 2.2. It is important to notice

that w(n) is restricted to begin at the point n = 1, m = 1, to pass through the grid of points

(n,m), where n and m are integers, and to end at the point n = N, m = M.

Although w(n) has been restricted to integer values, it is still functional in nature, i.e. for

any n, the time alignment path passes through at most value of m. It is not unreasonable,

however, that the best warping may not be functional. In this situation it is necessary to create

a time warping procedure which maps both the reference pattern's time axis and the test

pattern's time axis onto a common time axis. Such a procedure requires the use of two func-

tions, i(k) and j(k), where k is the index of the common time axis. These two functions are

used to map R(n) and T(m) to the common time axis, k, according to the rules

n = i(k), k = 1,2,...,K (2.3a)

m = j(k), k = 1,2,...,K (2.3b)

where K is the length of the common time axis. Figure 2.3 shows a typical example in which

we plot i(k) and j(k) versus k, and in which we also show the resulting curve in (n,m) space.

We see that, in (n,m) space, the resulting curve can be interpreted as a monotonically increas-

ing path from the point (1,1) to the point (N,M) via several intermediate points. It is also
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clear that if the function i(k) is chosen such that n = i(k) = k then

m = j(k) = j(n) = w(n), i.e. the problem is equivalent to the discrete time version of the

problem given in Eq. (2.1). We will use the interpretation of time warping as finding an

optimal path as the general framework for the remainder of this thesis.

2.2 Time Warping as Path Finding

Based on the discussion of the previous section, we see that for the interpretation of time

warping as a path finding problem we must specify several features of the problem. The factors

which are applicable to the path finding problem are the following:

1. Endpoint constraints - i.e. the way in which the path begins and ends.

2. Local continuity constraints - i.e. the possible types of motion (e.g. directions, slopes, etc.)

of the path.

3. Global path constraints - i.e. the limitations on where the path can fall in the (n,m) plane.

4. Axis orientation - i.e. the effects of interchanging the roles of the test and reference pat-

terns.

5. Distance measures - both the local measure of similarity or distance between frames of the

reference and test patterns and the overall distance function used to determine the optimal

path.

In this section we discuss some possible (and hopefully reasonable) choices for each of the

above factors for speech recognition applications.

2.2.1 Endpoint Constraints

Endpoint considerations for speech recognition fall into two broad categories based on

whether the application is for connected words or for isolated words. We defer the question of

how to handle endpoint constraints of connected words to Chapter 6 of this thesis. For isolated

word recognition, endpoint detection is a relatively well-understood problem and several viable

solutions have been proposed [8,9]. In the next three chapters we will be solely concerned with

speech recognition systems which use simple isolated test utterances and which use reference
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patterns consisting of isolated words. For time warping algorithms involving isolated utterances

it is reasonable to assume that the endpoints of both the test and the reference patterns have

been reliably determined. Given such an assumption, a time warping algorithm should be res-

tricted to have all of its paths start at the point (1,1) (the first frame of both the reference and

the test) and end at the point (N,M) (the final frame of both the reference and the test). In

terms of the path notation we have

1i(1) = 1,1 j(1) = 1 (2.4a)

i (K) = N, j (K) = M. (2.4b)

2.2.2 Local Continuity Constraints

Local continuity constraints are another important consideration for time warping in speech

recognition systems. Local continuity constraints define what types of paths are allowable. For

example, it would not be reasonable to allow a path for which a 10 to 1 expansion or compres-

sion of the time axis occurs. Another consideration is the preservation of time order. The

functions i(k) and j (k) should both be monotonically increasing, i.e.,

i(k+l) > i(k) (2.5a)

j(k+l) > j(k). (2.5b)

Local continuity constraints are easily expressed as simple local paths which may be pieced

together to form larger paths. For example, to reach a point (n,m) it may be reasonable to

have come from the points (n-l,m-1), (n-l,m-2) or (n-2,m-1). Such a set of legal paths

may be viewed as shown in Figure 2.4, part a. Further restrictions may be placed on the local

paths. For example, the path from (n-l,m-2) to (n,m) may be forced to pass through the

point (n,m-1) and the path from (n-2,m-1) to (n,m) may be restricted to pass through the

point (n-l,m). Such restricted paths are shown pictorially in part b of Figure 2.4 and are

labeled as type I local constraints to distinguish them from other local constraints which will be

defined later.

Local constraints for time warping may be formally expressed as a set of productions in a

regular grammar. A production is a rule of the form
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(2.6)

where r signifies the r'tl production and L (r) is the length of the r 'l' production. The interpre-

tation of the (a ',P ('))'s in a production are that of the local changes (i.e. incremental

changes) allowable in a path. The interpretation of a production, P,., used to reach a point

(n,m) is as follows (proceeding from (n, n) back along the path'):

end point: (n,m)

1 ' point back: (n-a (', m-,8I 1)

2 "" point back: (n-at' -o2', m-13"' -P2')

s"' point back: (n-ia ,), m-,3 I '))s 'point back: (n-ya[",m-~fl'"')
/=1 /=1

L(,) L(r)

original point: (n- a , 'm- '),
i=1 I=1

(2.7a)

(2.7b)

(2.7c)

(2.7d)

(2.7e)

or, in terms of the path functions of Eqs. (2.3),

k'h point: i(k) = n, j(k) = m (2.8a)

(k-s) "' point:
i(k-s) = i(k) -a '

/=1

j(k-s) = j(k) - God'"
1=1

for s = 1,2,...,L (r).

As an example, the paths of Figure 2.4, part b, may be expressed by the three productions

P -(1,0) (1,1) (2.9a)

P - (1,1) (2.9b)

PI - (0,1)(1,1). (2.9c)

1. In time warping algorithms all paths are retrieved backwards from the end point (N,M) to (1,1). Paths are
retrieved backwards because the entire path is not determined until the end is reached.

(2.8b)

(r),# L(r),PP 0-
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An entire path from the point (1,1) to the point (N,M) can be expressed as a sequence of pro-

ductions tracing a path back from (N,M) to (1,1). Figure 2.5 shows an example of the path

defined by the sequence of productions, P P P2 P P P P (traced backwards from

(N,M) to (1,1)). The actual path from (N,M) back to (1,1) is given by substitution from

Eqs. (2.9) into the sequence of productions to yield the sequence (1,0) (1,1) (1,0) (1,1) (1,1)

(1,0) (1,1) (0,1) (1,1) (1,1) (1,1).

Since a' 1 and 13 '[' are simply the local changes in a path, the time ordering restrictions of

Eqs. (2.5) may be formulated as

(/"',/'> O. (2.10)

Also, restrictions on the degree of local compression and/or expansion can be incorporated into

the local paths. The maximum and minimum amount of expansion (1/compression), denoted

as Emax and Emin, can be obtained as

Emax =max a (2.1la)

L(r) L() (2.11a)

Em, = am I/"' .a ) (2.11b)

For the paths of Figure 2.4b the maximum expansion is 2 and the minimum is 1/2.

Two other local continuity constraints with the same maximum and minimum slope of 2

and 1/2 respectively are shown in Figure 2.6, parts a and b. The productions associated with

these local constraints are as follows:

Pf' - (2,1) (2.12a)

P, - (1,1) (2.12b)

PI - (1,2) (2.12c)

and
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Pt - (1,0)(1,1) (2.13a)

P H - (1,0)(1,2) (2.13b)

p -t __(1, 1) (2.13c)

P4- (1,2). (2.13d)

Type II local constraints are similar to type I, i.e. symmetric and come from the same points as

type I, but type II constraints are lacking in the use of intermediate points. Type III constraints

are somewhat different in that they are assymetric, using intermediate points in the x direction

but not in the y direction. (Type II constraints are a production rule version of the local con-

straints used by Itakura [6].) It should also be noted that all of the local constraints defined so

far have a "memory" of two. That is, to reach a point (n,m) from a point (n',m') in one pro-

duction it is necessary that n - n' K 2 and m - m' 2, i.e. the original point is no more than

two units away in either axis. As we shall see in Section 2.3, such a limited "memory" (i.e. not

infinite) is important in the efficient implementation of a path finding algorithm.

The research undertaken in this thesis involved the use of all three of the local constraints

defined thus far. For ease of reference these different local constraints are referred to as types

I, 1I and III, corresponding to the productions of Eqs. (2.9), (2.12) and (2.13) respectively. It

should be noted that type I local constraints are exactly those specified by Sakoe and Chiba

using a P value of 1, corresponding to a maximum slope of 2 and a minimum slope of 1/2

[10]. Sakoe and Chiba found that this slope constraint was optimal and, for the most part, we

will use only a maximum slope of 2 and a minimum slope of 1/2.

2.2.3 Global Path Constraints

Another factor in time warping for speech recognition is that of global range constraints.

Global range constraints specify which points (i(k),j(k)) are allowed to occur within a legal

path. These points constitute the global range. Global range constraints arise naturally as a

result of local continuity constraints. Local continuity constraints force certain points of the

(n,m) plane to be excluded from legal paths because they would require excessive expansion or

compression of the time scales. For example, the point (2,10) would be illegal (under the local
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constraints described thus far) because it would require a 9 to 1 expansion to be reached from

the point (1,1). The global constraints arising from local continuity constraints may be

expressed as

1 + ( (k)-) j(k) 1 + E+ ma(i(k)-l1) (2.14a)
Emax

M + Emax(i(k)-N) < j(k) < M + (i(k)-N) (2.14b)
Emax

where Emax is the maximum allowable expansion (and En,,i=l/Enax). The first constraint of

Eq. (2.14) may be interpreted as restricting the range of legal points to those which do not

require excessive expansion or compression in order that they be reached from the point (1,1).

The second constraint of Eq. (2.14) eliminates those points which would necessitate excessive

expansion or compression in order to eventually reach the point (N,M). One useful way to

view these constraints is as limiting all legal paths to fall within the bounds of the parallelogram

of Figure 2.7. The size of this region depends strongly on the values of N and M. Figure 2.8

shows the affects of the successive nature of N/M of 1, 3/2 and 2 on the global range of paths

for a value of maximum slope of Emax = 2. The range of legal paths decreases quickly with

increasing N/M (or MIN). These effects are often significant in speech recognition systems in

which there is a high variability among replications of the same utterance (i.e. M/N approaches

or exceeds 2, or falls below 1/2).

Another possible restriction on the global range has been proposed by Sakoe and Chiba [4].

They proposed that the absolute difference, i (k)-j(k) , be limited to be less than or equal to

some integer value, R:

jI(k)-j(k)l < R. (2.15)

This type of restriction may be interpreted as imposing a limit on the absolute time

difference which can be allowed between frames, i.e. frame i (k) of the reference pattern is res-

tricted to fall within R Ts seconds of frame j(k) of the test pattern, where T is the sampling

period for frames (typically 10 to 30 milliseconds). Pictorially, the restriction of Eq. (2.15) cuts
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j(k)=2(i(k)-l) + 
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Fig. 2.7 Global range for paths.
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Fig. 2.8 Global range for paths as a function of N/M.
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off the corners of the parallelogram of Figure 2.7, as illustrated in Figure 2.9.

For notational purposes we will refer to those time warping algorithms which use an abso-

lute time difference range constraint as range - limited algorithms and those which do not use

Eq. (2.15) as a range constraint as range - unlimited algorithms.

2.2.4 Axis Orientation

Axis orientation is another important consideration in a time warping algorithm. Axis orien-

tation determines if the functions of Eqs. (2.3) are used or if the inverse set of equations is

used, i.e.

n = j(k), k = 1,2,...,K (2.16a)

m = i(k), k = 1,2,...,K (2.16b)

The differences between Eqs. (2.3) and Eqs. (2.16) can be important when the local con-

straints are not symmetric, as with type III local constraints, or when the distance function for

determining an optimal path is not symmetric. In general, we will refer to the paths of Eqs.

(2.3) as "reference along the x-axis," as in Figure 2.3, and those paths of Eqs. (2.16) as "test

along the x-axis." (For convenience, we will use Eqs. (2.3) in all our discussions, unless other-

wise noted.)

2.2.5 Distance Measures

The final consideration in the specification of a time warping algorithm is a distance function

which is used to determine the optimal path. A typical distance function has the form

d(i(k),j(k)) W(k)
D(i(k),j(k))= &-l (2.17)

where D(i(k),j(k)) is the total distance along the path of length K (i.e. K-I arcs or K pairs

(i(k),j(k))), defined by the functions i (k) and j(k). 2 The overall distance is given as a nor-

malized, weighted sum of local distances where d(i(k),j(k)) is the value of the local distance

2.
Technically, D(i(k),j(k)) is a functional, that is, a function of a set of functions, i(k) and j(k), but, for sake of
simplicity we will refer to it as a function.
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metric at frames i(k) of the reference and ji (k) of the test, W(k) is a set of weights and N ( W)

is a normalization factor which, in general, depends on the weighting function used. The best

path is the set of functions i(k), j(k), k = 1,2,...,K which minimize the distance function.

The total distance between a test and a reference, D, is defined to be the minimum distance

achieved by the time warping algorithm, i.e.

D = min (D(i(k),j(k))). (2.18)
(K,i(k ),j(k ))

To define the total distance function we must define d(i(k),j(k)), W(k) and N(W1/).

Choice of the local distance metric, d(i(k),j(k)) is dependent on the feature set used to create

both the test and the reference patterns. Typical choices include a log spectral difference for

energy measurements, a Euclidean distance for cepstral coefficients and a log likelihood ratio

for LPC coefficients [6]. Thus, the local distance metric is independent of the particular time

warping algorithm. The weighting function and the normalization are not, however, indepen-

dent of the time warping algorithm.

Typically, a weighting function depends only on the local paths. For example, the weight

used on the path from the point (i(k-l),j(k-l)) to the point (i(k),j(k)) depends only on

i (k) - i(k-1) and j(k) - j(k-1). Typical weighting functions which are used include

W(k) = min(i(k)-i(k-l),j(k)-j(k-1)) (type a) (2.19a)

W(k) = max(i(k)-i(k-1),j(k)-j(k-)) (type b) (2.19b)

(k) = i(k) - i(k-1) (type c) (2.19c)

W(k) = i(k) - i(k-1) + j(k) - j(k-1) (type d) . (2.19d)

Weighting functions c and d have been proposed by Sakoe and Chiba [10] as weighting all

the samples of the x-axis pattern equally (type c) or as weighting all samples of both the x and

y-axis patterns equally (type d). Weighting function a weights all segments of a path equally,

regardless of their length and weighting function b weighs shorter segments less than longer

segments. As we shall see, weighting functions c and d have no particular bias in their choice

of paths, weighting function a favors longer paths over shorter paths and weighting function b

favors shorter paths over longer paths. For initialization purposes, i(O) and j(0) are defined to
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be 0 and thus W(1) = 1 for weighting functions a, b and c and W(1) = 2 for weighting func-

tion d.

A pictorial representation of these various weighting functions as applied to type II paths is

given in Figure 2.10. The number labeling the various arcs are the weighting functions associ-

ated with paths that lie along those particular arcs. Figure 2.11 shows two different representa-

tions of the various weighting functions as used with type I paths. The left hand column uses

the weighting functions exactly as defined. In the right hand column a smoothing process has

been applied. Smoothing is a procedure in which multiple segment local paths have their

weighting functions averaged. This process was first used by Sakoe and Chiba [10] to prevent

certain anomolies such as the left hand side of Figure 2.11, part a, in which some arcs have a

zero weight thus allowing a loss of information from local distances which are ignored.

In Figure 2.12 we show an example of a typical type II path with a type d weighting func-

tion. In this example the arcs along the path are labeled with the corresponding weighting

functions, the values of N, M and K are 11, 9 and 8 respectively and the overall distance is

given by

D(i(k),j(k)) = [2d(1,1)+3d(3,2)+2d(4,3)+3d(5,5) (2.20)

+ 3d(7,6)+3d(9,7)+2d(10,8)+2d( 1,9)]/N( Wd)

where N( Wd) is the normalization associated with weighting function d.

The choice of N(W) is typically made such that D(i(k),j(k)) is an average local distance

along the path defined by the functions i(k) and j(k). As such, the natural choice for N( W)

is the sum

K

N(W) = I W(k). (2.21)
k-1

For weighting functions c and d this definition leads to very simple normalization, namely,
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(a) w(k ) MIN (i (k) -(k -), (k)-j(k-1))
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(n,m)

Fig. 2.10 Weighting functions for type II paths.
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K
N(W,.) = (i(k)-i(k-1)) = i(K) - i(O) = N (2.22a)

k=l

N(Wd) = I (i(k)-i(k-)+j(k)-j(k-1)) (2.22b)
k=1

= i(K) - i(O) + j(K) - j(O) = N + M.

However, for weighting functions a and b the value of Eq. (2.21) is not a constant, but instead

depends upon the path chosen. Figure 2.13 shows two simple paths, Path 1 and Path 2, for the

case N = M. Path 1 is the straight line path of slope = 1 from (1,1) to (N,M). Path 2 has

two sections, the first of which has a slope = 1/2 and the second of which has a slope = 2. If

N(Wi) is defined as in Eq. (2.21) then the values of N(W) for weighting function a are given

approximately by

Path 1: N(W)= N (2.23a)

Path 2: N(Wa) = 2N (2.23b)
3

The value of Eq. (2.23a) is generated by N segments of weight 1 and the value of Eq.

(2.23b) is generated as 2N/3 segments of slope 1/2 (average value of Wa(k)=1/2) and N/3

segments of slope 2 (average value of Wa (k)= 1) for a total of

N(Wa,)=1/22N/3 + N/3 = 2N/3. For weighting function b the values of N(W) as defined

by Eq. (2.21) are given in an analogous manner by

Path 1: N ( Wb) = N (2.24a)

Path 2: N(Wb) = 4N (2.24b)
3

In section 2.3 we will show that, in order to solve for the optimal path efficiently, it is neces-

sary that N(W) be independent of path. Thus, for computational convenience, we define

N ( W) as follows:

N(W,) = N (2.25a)

N(Wb) = N (2.25b)

N(W,.) = N (2.25c)
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N(Wd) - N + M. (2.25d)

An important consideration of the performance of a time warping algorithm arises from the

definitions of Eqs. (2.25). Use of these definitions can create situations in which certain paths

are favored over others. An algorithm in which such a situation can arise is said to be biased.

Formally, a time warping algorithm is unbiased when the following condition is true:

if d(i(k),j(k)) = d then D(i(k),j(k)) = d, (2.26)

i.e. if the local distance is independent of i(k) and j(k) then the global distance function is

also independent of i (k) and j(k). Equivalently, if the local distance is independent of the

path chosen then there is no preferred path to be chosen.

By direct substitution of d(i(k),j(k)) = d into Eq. (2.17) we obtain

K 
d Wi(k)

D(i(k)j(k)) = (2.27)g (,'(2.27)

Thus, condition (2.26) is true if and only Eq. (2.21) is true, and is thus true for weighting

functions c and d by Eqs. (2.22). However, condition (2.26) is not true for weighting func-

tions a and b. Using the paths of Figure 2.13 we get the following values for D(i(k),j(k))

using weighting function a,

Path 1: D(i(k),j(k)) = d (2.28a)

Path 2: D(i(k),j(k)) = 2d (2.28b)
3

and using weighting function b,

Path 1: D(i(k),j(k)) = d (2.28c)

Path 2: D(i(k),j(k)) = 4 d. (2.28d)
3

Thus, we see that weighting function a has a preference for the longer path, Path 2 over

Path 1 (lower global distance function) and that weighting function b has a preference for the

shorter path, Path 1 over Path 2. This form of bias may be expected to be detrimental to the

performance of a time warping algorithm because bias may prevent the time warping algorithm
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from following the truely accurate path. 3

2.2.6 Solution for the Optimal Path

In Tables 2.1, 2.2, 2.3 and 2.4 we summarize the various features of a time warping algo-

rithm as we have presented them in the previous sections. Once all of the factors for a time

warping algorithm have been specified, the optimal path under these conditions may be found.

Several methods exist for finding this optimal path. One method is exhaustive search of all

possible paths from (1,1) to (N,M). This is, in general, prohibitively expensive and time con-

suming (on the order of 2 ' operations). Another approach would be to apply Dykstra's path

finding algorithm to the problem [11]. While faster than exhaustive search methods, this

method also can be very time consuming for large values of N and M (order of N 2 M2 opera-

tions). A better approach was suggested by Sakoe and Chiba [4]. They proposed the use of

dynamic programming to efficiently solve the problem. Dynamic programming is an efficient

method to apply because dynamic programming successively builds longer optimal paths from

smaller optimal paths [5] (order of NM operations). In the next section we discuss how

dynamic programming is applied to our problem.

2.3 Dynamic Time Warping

Two basic principles are involved in dynamic programming as applied to time warping, or

dynamic time warping (DTW), as it is referred to. The first principle is that a globally optimal

path is also locally optimal. The globally optimal path is the path which minimizes the weighted

distance from (1,1) to (N,M) according to Eq. (2.18). A locally optimal path from a point

(n',m') to a point (n,m) is the path which minimizes the weighted distance from (n',m') to

(n,m). To say that the globally optimal path is also locally optimal is equivalent to the state-

ment that for any two points (n',m') and (n,m) along the globally optimal path, the locally

optimal path from (n',m') to (n,m) is exactly the subsection of the globally optimal path from

(n',m') to (n,m). This must be true because, if there were a better locally optimal path from

3. An examination of the literature on speech recognition reveals that White and Neely [3] used weighting function b.
Such a situation may account for the lack of improvement in recognition scores using a nonlinear time warping as
compared to a linear time warping for the alphabet-digits vocabulary.
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LOCAL CONSTRAINTS

I IL~··~~·~L·~
TYPE I PICTORIAL PRODUCTIONS

I ----- I
a 0%I

P-i -0.-(t,0)(t)

I P 2 -- (1,1)

P3 -.- (0,1)( 1)
a
I
I

11 
II I

I

H I
I

P4 a- (2,1)

P2 - (1, )

P3--- (, 2)
I I

I I P 4 - (1,O)(1,I)

IP2--(0)(,2)
I P3 *(1,t)

I P4- 4,2)
9I I 

Table 2.1

Local Constraints

I

I I

I
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Endpoint Constraints

i(1) = 1, i(K) = N

j(l) = 1, tj(K) = M

Global Constraints

From Local Constraints:

(i(k)-l)EOWJ + I < j(k) < Emax(i(k)-l) + 
Emx

Emx(i(k)-N) + M <.j(k) < -(i(k)-N) + M
Emax

En,ax - Maximum Slope

Range Limited: i(k)- R < j(k) i(k) + R

Table 2.2

Endpoint and Global Constraints
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Axis Orientation

Reference along X-axis:
Test along X-axis:

n = i(k), = j()
n = j(W), i = i(k)

Overall Distance Measure

i(k),.j(k)) ;(k)

N( W)

Table 2.3

Axis Orientation and Distance Measure

- 111111l I

( (A ), j/ A),K )

.. ~~~~
I I - ......
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Weighting Functions

Type Definition Normalization
N N( W)

a W(k) = min(i(k)-i(k-1),
N

.i(k)-j(k-1))
b W(k) = max(i(k)-i(k-1),

N
j(k -,j(-1)

c W(k) = (k)- i(k-1) N

d WJ(k) = (k)- (k-1)
N + dN+M

______ + _i(k) - .i(k-1) _ _ _ _ _ _ _ _

Table 2.4

Weighting Functions
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(n',m') to (n,m) it could be substituted into the globally optimal path with a corresponding

improvement in the globally optimal path.

The other principle involved in a dynamic programming implementation of a time warping

algorithm is the dependence of the best path to a point (n,m) only on (n',m') such that

n' < n (2.29a)

m' < m. (2.29b)

This follows from the monotonicity restriction of Eqs. (2.5).

As a result of these two principles, it is possible to create a partial accumulated distance

function D(n,m). DA(n,m) is the accumulated distance from the point (1,1) to the point

(n,m) using the best possible path to reach (n,m), i.e.

DA(n,m) min d (i(k),j(k)) (k) (2.30)
( ),j ), A") kAI=1

where K' is the length of the path from (1,1) to (n,m) and where

i(1) = 1, i(K') = n (2.31a)

j(1) = 1, j(K') = m. (2.31b)

Since DA(n,m) depends only on the paths from (1,1) to (n,m) and since the optimal path to

(n,m) depends only on those points (n',m') which satisfy Eqs. (2.29), DA(n,m) can be defined

recursively in terms of (n',m') by

D4(n,m) = min[DA (n',m')+d((n',m'),(n,m))] (2.32a)

DA (1,1) = d (1,1) W(1) (2.32b)

where d((n',m'),(n,m)) is the weighted distance from (n',m') to (n,m), i.e.

I.-I
d((n',m'),(n,m)) = d (i(K'-l),j (K'-l)) J/(K'I) (2.33)

I=0

where L is the number of segments in the path from (n',m') to (n,m) and where
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i(K') = n, i(K'-L)= n' (2.34a)

j(K') = m, j(K'-L) = m'. (2.34b)

For a given set of local constraints it is possible to restrict the range of (n',m'), for a given

(n,m) to only those (n',m') which use a single production to reach (n,m) from (n',m'). For

example, the type II paths of Figure 2.6b restrict the range as follows:

(n',m') E (n-l,m-1), (n-l,m-2), (n-2,m-1)). (2.35)

Thus, Eqs. (2.32) may be interpreted as building up paths to a point (n,m) via application

of production rules to that point and minimizing the overall distance to that point. A simple

proof that Eqs. (2.32) give the best distance to all points, (n,m) may be given by two dimen-

sional induction on the grid of legal points as follows:

1. For the initial point (1,1) the shortest path to it is just the point itself and the best distance

is given by Eq. (2.32b).

2. Assume that, for any point (n,m), DA(n',m') is the distance of best path to a point

(n',m'), n'+ m' < n + m. Then, since the best path to (n,m) is given by a path from

some point (n',m') s.t. n' + m' < n + m, (as generated by a production rule), and since

the distance of this path is given by some of the distances from (1,1) to (n',m') and from

(n',m') to (n,m), then Eq. (2.32a) will give the best distance to the point (n,m).

An example of the d function for a type II local constraint with a weighting function

W(k) = i(k) - i(k-1) over the range of (n',m') given by Eq. (2.35) is given by

d((n-l,m-1),(n,m)) = d(n,m) (2.36a)

d((n-l,m-2),(n,m)) = d(n,m) (2.36b)

d((n-2,m-1),(n,m)) = 2d(n,m). (2.36c)

Combining this definition of the function dis with the definition of DA (n,m) in Eq. (2.32a) we

obtain the following recursive definition for D (n,m) when type II paths with weighting func-

tion c are used,
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D (n-l,m-l)+d(n,m),
DA(n,m) = min D (n-l,m-2)+d(n,m), (2.37)

DA (n-2,m-1)+2d(n,m)

Further examples are given in Figure 2.14.

With a partial function of the form of Eq. (2.32a) it is possible to solve the minimization

problem of Eq. (2.18) when the following condition is true,

A
d (i(k),j (k)) W(k)

D= min =1
(i(A'),A' LK) N (J/)

min I d(i(k),j(k)) W(k)

N((AW) *.j (A ).A ~A~(2.38)

This condition states that the normalization function is independent of the path chosen, or,

equivalently, a solution to the unnormalized minimization problem provides a solution to nor-

malized minimization problem. In the previous section we defined N ( W) in Eqs. (2.38) so that

condition (2.38) would be satisfied. Given N( W) independent of the path, Eq. (2.38) becomes

D (N,M) (2.39)

N(W)

Thus, since DA (n,m) is easy to compute recursively, it is possible to compute D as follows:

1. set D4(1,1) = d(1,1) W(1)

2. compute D. (n,m) recursively for

1 < n < N, 1 < m < M

3. = D (N,M)/N ( W).

This is a great savings in computation as compared to either exhaustive search or Dykstra's

algorithm.

Figure 2.15 shows the results of a typical application of a DTW algorithm. Type II local

constraints and weighting function c were used. Thus, Eq. (2.36) is the appropriate dynamic
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(a) TYPE I CONSTRAINTS

W(k)=MIN (i(k)-i(k-1), j(k)- j(k-))
SMOOTHED

DA(n,m) =MIN

1/2 (DA(n-,m-) + d(n,m),DA(n-mm-2)+ 1/2

[d(n,m-) +d (n,m)],DA(n-2,m-)+ 1/2

rd(n-,-mid4-in m.l)L-"'- '" ' -,"'"J/

(b) TYPE CONSTRAINTS
W(k)= i(k)- i(k-1) + j(k)- j(k-1)

rn In m - AIKI
"A v I III I VIIIm

(DA(n-1,m-1) +2d(nm),DA(n-1,m-2) +
3d(n,m),DA(n- 2,m-1) + 3d(n,m))

(C) TYPE m CONSTRAINTS
W(k) = i(k)-i(k-1)

DA(n,m)= MIN

(DA(n- l,m- ) +d(nm),DA(n- 1,m-2) +
d(n,m), DA(n- 2,m-1) + d(n- ,m) +
d(n,m),DA(n-2,m-2)+ d(n-1,m)+d(n,m))

Fig. 2.14 Sample accumulated distance functions.
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Fig. 2.15 Typical dynamic time warping results.
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programming equation. In Figure 2.15 the unslanted numbers represent the local distances at a

point and the slanted numbers represent the best accumulated distance to that point. The

dashed lines are the global constraints which arise from the local constraints. The solid lines

are the local paths used to reach any point (n,m) from (1,1) via the best path to that point.

Finally, the globally optimal path is indicated as a cross-hatched line. The value of DA (N,M)

is 6 and D = 6/5.

Table 2.5 summarizes the partial functions which are of interest in this thesis. In addition to

the local constraints previously defined two new entries appear in this table. One entry refers to

type IV local constraints, which are shown in Figure 2.16. Type IV constraints have a max-

imum slope of 3 and a minimum slope of 1/3. Type IV constraints are similar to type III con-

straints, i.e. assymetric, using intermediate points onlY for the x-axis pattern and Type IV con-

straints have a "memory" of three. The other unusual entry refers to Itakura's [61 accumulated

distance function, namely,

D4 (n-l,m-2)+d(n,m),
DA(n,m) = min D4(n-l,m-1)+d(n,m), (2.40)

DA (n-l,m)g(k)+d(n,m)

where

loo j(k-1)•j (k-2)

The purpose of the g(k) function is to disallow any paths which go horizontally for more than

one arc. A pictoral representation of Itakura's local constraints is given at the bottom of Figure

2.17. The crossed out arc illustrates the restriction that a path may not move horizontally for

two consecutive segments. Thus, paths generated by Itakura's algorithm also have a maximum

slope of 2 and a minimum slope of 1/2. In facts, paths generated by Itakura's algorithm obey

all the restrictions of type III paths. Also, Itakura uses weighting function c,

W(k) = i(k) - i (k-) = 1. However, Itakura's algorithm may not find the truly optimal path

that the dynamic programming solution of Type III local constraints with weighting function c

would produce. Figure 2.17 shows an example of this phoenomenon. Itakura's algorithm was
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Accumulated Distance Functions

Local Weighting Accumulated Distance
Constraints Function Function

DA (1 nm) =

min(DA (1-, m n-1 )+d( ,i),

I a DA ((n-l ,m-2)+ -d(n, n -1 ) + d(n,tn),
2 2

DA (n-2,in-l)+ Id(n-l,n)+ -d(n,m))
2 2

DA (n,) =

min(DA (n-l, n-l)+d( ,n),

b DA (n-l 1,-2)+d(d( n,m- 1 )+ d( n,,n),

D4 (,,- 2, m-1 )+d(i-1,n)+d(n,,n))

1 1c D4 (n-l,n-2)+-d(n,n-1)+-I-d(n, ),
2 2

DA (1-2, n1- )+d(n-1, I) +d(n, In))

DA (11, 71) =

m in (D (-1, n- 1) +2d(n, In),

I d DA (- 1, n-2)+ - d(n, m1n-)+ -- d(, n),

DA (n-2,/n-1)+ 2-d(n-l,)+ 3(m))
2 2

Table 2.5

Accumulated Distance Functions
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Accumulated Distance Functions

Local Weighting Accumulated Distance
Constraints Function Function

DA (11,1) =

11 a min(DA (n-n-1, nl -)+d(n, i7),

D4 (-1-2)+( )

D4 ( -2,, -1)+d( ,nm))

DA ( n, ) =

1 cb min(Dt ( -1, n-1I )+d( n, m),

DA (n-1, n-2)+2 dG( ,n.1),

DA ( -2, m-l ) +2dI( 1,i))

DA (n, ) =

DA (-2, in-1)+2 d (, n))

DA (11,171) =

II d min(DA (n-l,,-1)+2d(,. ),
DA (-1,n-2)+3d(n,,),

DA (-2, n-1)+3 d(n, mn))

Table 2.5 (continued)
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Accumulated Distance Functions

Local Weighting Accumulated Distance
Constraints Function Function

DA(n,m) =

min(DA (n-l, m-1)+d(n, m),

DA (n-1, m-2)+d(n,m),

III c DA(n-2,m-1)+d(n-l,m)+d(n, m),

DA (n-2,m-2)+d(n-l,m)+d(n,m))

D4(n,m) =

min(DA (n-l, m-)+ d(n,m),

DA (n-1, m-2)+d(n,m),

D, (n-1, m-3)+d(n,m),

DA (n-2, m-)+d(n-l,m)+d(n,m),

IV c D (n-2,m-2)+d(n-l,m)+d(n, m),

D4 (n-2 , m-3)+d(n-l,m) d(n,m),

D4(n-3, m-1)+d(n-2, m)+d(n-l, m)+d(n, m),

D, (n-3, m-2)+d(n-2, m)+d(n-l,m)+d(n,m),

DA1 (n-3, m-3)+d(n-2, m)+d(n-I, m)+d(n, m))

DA(n,m) =

min(DA (n-l, m-2)+d(n, m),

Itakura c D (n- -l) m-+d(n, m),

D, (n-l,m)g(k)+d(n,m))

g(k) -- j(k-1) - j(k-2)
looj(k-1) j(k-2)

Table 2.5 (Continued)
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m-2

n-3 n-2 n-I n

Pi -- (1,1)
P2 - (1,2)
P3 - (1,3)
P4 - (1,0) (1,1)
P5 (1,0) (1,2)
P6 - (1,0) (1,3)

P7 (1,0)TYPE 0) CONSTRAINTS(1,1)
P8 ( 1,0) (1,0) (,2)
P 9 ( 1,0) ( 1,0) (1,3)

TYPE Z' CONSTRAINTS

Fig. 2.16 Type IV local constraints.
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1111111. OPTIMAL ACCORDING TO ITAKURA

D 7/5
o0 0 0 0o TRUE OPTIMAL UNDER TYPE m CONSTRAINTS

A
D = 6/5

5 3

/

44

3
o

/o
0

0
0o
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0
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.,.
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/

4J3 4
0

4
0

5

DA (n,m) = min (DA (n_,m -2)+d(n,m),

DA (n_,m- 1) +d(n,m),

DA (n_,m) g(k)+d(n,m))

I 

* 0

Fig. 2.17 Itakura's dynamic time warping algorithm.
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run on the distances of Figure 2.15 and found a best path with D = 7/5. However, as shown in

Figure 2.15, there is a type III path using weighting function c which has a value for the best

path of D = 6/5. This problem is seen to arise at the point labeled by (*) because Itakura's

algorithm correctly finds that the best path to (3,3) from (1,1) comes in horizontally from

(2,3). However, since the best path to (4,3) from (1,1) comes in horizontally from (3,3) it is

not found because the function g (k) excludes it.

2.4 Summary

We have now defined all the variables which will be of interest for dynamic time warping for

isolated word recognition. These variables are endpoint constraints, local continuity constraints,

global range constraints, axis orientation and distance measures. We have also presented the

basic principles of dynamic programming implementations of time warping. What needs to be

considered now are methods of evaluating the performance of the various time warping algo-

rithms. We will discuss this in the next chapter of this thesis.
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Chapter 3

Performance Measures for Dynamic Time Warping Algorithms

3.1 Introduction

As discussed in the previous chapter, there exist a large number of factors which must be

considered in the specification of a DTW algorithm. Included among these factors are endpoint

constraints, local continuity constraints, global range constraints, axis orientation and the choice

of an appropriate distance measure. Based on the considerations of the previous chapter it is

not possible to specify a theoretically optimal DTW algorithm which would be applicable to any

situation. However, because DTW algorithms play such an important role in speech recogni-

tion systems which use pattern matching, it is important to understand how the various features

of a time warping algorithm interact and how they affect the overall performance of a recogni-

tion system. Thus, in this section we first describe the particular speech recognition system

which was used to measure the performance of the various time warping algorithms and in the

next section we describe the performance measures that were used to evaluate the DTW algo-

rithms.

3.1.1 The Isolated Word Recognizer

The speech recognition system which was used to measure the performance of the various

DTW algorithms is shown in the block diagram of Figure 3.1. The system is similar to the iso-

lated word recognition system originally proposed by Itakura [61, and described in detail by

Rabiner [12]. Analog speech (in the form of isolated words) is recorded off of a standard tele-

phone line, bandpass filtered from 100 to 3200 Hz (using a 24 db/octave filter) to remove hum

and to prevent aliasing, and converted to a 16 bit pulse code modulation digital format at a 6.67

kHz sampling rate. Following digitization the speech signal, s(n), is preemphasized to flatten

the speech spectrum using a first order system with the transfer function

H(z) = 1 - .95z- , (3.1)

giving
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i(n) = s(n)- .95s(n-1) . (3.2)

Following preemphasis the speech signal is analyzed by an autocorrelation technique. This

analysis takes place in NS sample long frames (NS=300 corresponding to 45 msec of data) and

occurs every MS samples (MS=100 corresponding to an overlap of 200 samples or 300 msec).

We denote the samples of a frame as x(n), 0 < n < NS - 1, irrelevant of the true value of n

for the frame. For each frame two separate operations are performed in the analysis, namely:

1. Windowing using a Hamming window. The windowed data, x(n), is obtained from x(n)

as

x(n) = x(n) W(n) , 0 < n < NS -1 (3.3)

where

W(n) = 0.54 - 0.46 cos NS-1 (3.4)

2. Autocorrelation analysis of the frame. The autocorrelation coefficients, R (), are deter-

mined according to the rule:

AS - I-I
A (I) = x (n)(n+l) , I=0,l,..,p (3.5)

,,=0

where p = 8 for this system.

The next step in the isolated word recognition system is endpoint detection. A simple end-

point detection scheme, using only energy measurements, is employed. The log intensity con-

tour of the speech, given by the time pattern of log [ (0)], is measured for silence (the lowest

energy values over the entire recording interval) and two threshold levels are set, based on the

background energy. When the intensity of the input signal exceeds these thresholds, for a

sufficient number of frames, speech is said to be present. A description of the double thres-

holding technique is given by Lamel [13]. At this point, the endpoint detector is highly suscep-

tible to artifacts such as mouth noises and breathiness. As such, the input speech is both

automatically and manually monitored and utterances with such artifacts are repeated. With

such monitoring we may be reasonably sure that an accurate determination of the endpoints of
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the isolated word is made.

Following endpoint detection an LPC analysis is performed. Since autocorrelation

coefficients for each frame of the word have been computed it is possible to solve the equations

for the LPC coefficients for each frame by Durbin's recursion:

1. initialization

(3.6)

2. for i = 1,2,...,p do steps 2-5

,-1I(i) - a'-'R(i-i)I
k = (3.7)

(For i=1 the summation from j=1 to 0 is skipped)

3.

a ( ) = k I (3.8)

4. For j = 1 to i- 1 (skip for i=l)

(3.9)

5.

E "' = (1- k,2)E'-
-

6.

E = E(1' )

a(= 1 , a = a J" , 1 j p

where E is the linear prediction residual

coefficient of the frame.

of the frame and a is the j"' linear predictive

After LPC analyses for each frame of the word has been performed, either one of two

things may occur. Either the utterance may be used as a test phrase and compared to a set of

stored reference patterns, or the utterance may be used to create (or possibly update) the

(3.11)

(3.12)

E" = (0)

a aI 
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reference patterns. If the utterance is used to create the reference pattern, then the form of

creation depends on the characteristics of the recognition system, i.e. whether it is designed as a

speaker dependent or speaker independent recognizer. Reference patterns for speaker depen-

dent systems generally consist of one or two replications of each word of the vocabulary of the

system, while reference patterns for speaker independent systems generally consist of several

patterns per word formed by the use of statistical clustering techniques [131. However, rather

than being stored directly as sequential frames of LPC coefficients, a reference pattern, R(n), is

stored as

R (n,l) = log a (3.13a)

2 alai.,

R(n,i+l) = -1 < i < p (3.13b)
I a7
/
J
=(

where R (n,i) is the i' component of the nir' frame of the reference pattern, R(n), for n = 1

(the first frame of the word) to n = N (the last frame of the word).

If, on the other hand, the utterance is to be used as a test utterance then the set of auto-

correlation coefficients and prediction residuals are transformed to a test pattern, T(m), as fol-

lows:

T(m,l) = log [E/ (0) (3.14a)

T(m,i+l) = R(i)/1R(O) , 1 < i < p (3.14b)

where T(m,i) is the i' l component of the nm' ' frame of the test pattern, T(m), for m = 1 (the

first frame of the word) to m = M (the last frame of the word).

The reason for the transformations is to simplify calculation of the local distance metric,

which is the log likelihood ratio as proposed by Itakura [6]. Using the transformed representa-

tions Itakura showed that the value of d(R(n),T(m)), the distance between frame n of the

reference and frame m of the test, becomes
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d(R(n),T(m)) =

R(n,I)-T(m,1) + log I + j R(,ij)T(,,j) (3.15)

which is simpler to compute than the original form of the log likelihood ratio, namely

d(R(n),T(,n)) =

log (3.16)

where ;(") is the .ijt LPC coefficient of the i
'

i" frame of the reference, ('")(lIi-kJ ) is the

l.i-k I' autocorrelation of the in"' frame of the test, and E') is the linear prediction residual

of the Lr'i frame of the test utterance.

The next step in the speech recognition system is application of dynamic time warping.

Given a test utterance, it is compared to every possible reference pattern and a distance score is

generated

Dt,. = min [D('(i(k),j(k )) (3.17)
( i(A ),j(k ))

where D(')(i(k),j(k)) is the global distance between the vi'" reference and the test pattern,

along the path defined by i(k) and J(k), with K being the length of the path, and where D/)"

is the minimum global distance over all paths. The calculation of Eq. (3.17) is made for all

reference patterns v, i.e. for i, = 1,2,..., V where V is the total number of reference patterns.

The final step in the recognition process is the decision as to which word (or words) is

chosen by the recognizer as the best match to the unknown input word. For our purpose the

minimum distance decision rule is always used, namely

V = arrniI [iD' )1 (3.18)

where arginin [g(x)] returns that value of x which minimizes g(x). The word associated with

V' reference pattern is chosen as the recognized word.
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In the remainder of this chapter we will discuss the specification of performance measures

for a DTW algorithm that fit into framework of the recognition system of Figure 3.1. In this

thesis we will only be concerned with this particular recognition system, although it is believed

that the results to be presented will be applicable to similar type systems (e.g. with different

feature sets and distance measures), it should be stressed that some of our assumptions may be

central to the system of Figure 3.1 and not be applicable to other systems using dynamic time

warping.

3.2 Performance Criteria and Measures

As discussed in the previous section, the DTW algorithm is an essential component of the

isolated word recognition system of Figure 3.1. The values of D"') generated by the DTW

algorithm are the basis for the decision process, thus it is important that the dynamic time

warping process be very accurate in its determination of the optimal path. Also, an examina-

tion of the amount of computation involved in the recognition process reveals - that the

majority of the computation (from 50 to 90+%, depending on the number of reference pat-

terns) in the system is involved in the DTW algorithm. Thus, we would prefer our DTW algo-

rithm to be as efficient as possible. It is also important for the DTW algorithm to fit into a

small amount of memory so that the recognition process can be easily implemented in special

purpose hardware. Since it is highly unlikely that the most accurate time warping algorithm will

be the most efficient or the most compact, it is important to understand the tradeoffs which can

be made among the factors of efficiency, size, and accuracy.

In summary, the factors, and the associated measures which will be used to measure the

performance of the various DTW algorithms, are as follows:

1. Memory requirements - the amount of storage required by the time warping algorithm,

measured by the amount of memory required for temporary variables.

2. Efficiency (Speed of Computation) - the amount of time required by the time warping

algorithm to compute the optimal path, as measured by the average computational time

and the average number of calculations of the local distance metric.
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3. Recognition accuracy - the percentage of time the reference word with the smallest dis-

tance, D~i), matches the spoken test word in a series of isolated word recognition tests.

In this section we discuss the significance of these performance measurements and we try to

predict how some of the factors of the time warping algorithms defined in Chapter 2 affect the

performance scores.

3.2.1 Memory Requirements

Memory requirements measure the amount of storage required by a particular DTW algo-

rithm. Typically, there are two components of memory usage: a fixed portion, which is

independent of the particular DTW algorithm chosen, and a variable portion which depends

upon the choice of the DTW algorithm.

Fixed storage is required for the feature vectors, R(n), n = 1,2,...,N and T(m),

m = 1,2,...,M although it is possible, in some real-time applications, to store only a single

frame of T(m), process it, and then proceed to the next frame. In our discussion, however, we

assume that all frames of R(n) and T(m) are stored. A small mount of fixed storage is also

required for scratch pad work but this amount is negligible (typically, less than ten storage loca-

tions).

The storage requirement which varies among the different time warping algorithms is the

amount of memory required for storage of the accumulated distance functions. The accumu-

lated distance function is defined over the entire (n,m) plane. Typically, DA(n,m) is com-

puted for a fixed n over the entire range of legal values for m before n is incremented again.

Thus, DA (n,m) is computed as a series of vectors and may be stored as such. Since computa-

tion of DA (n, m) typically depends only on DA (n',m') with

n- n'< 2 (3.19a)

m- m' < 2 (3.19b)

only two or three vectors for D4 (n,m) are needed at any time. In addition to the storage for

the accumulated distance functions, memory is also used to store local distances when they are
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used more than once. This occurs in local constraints types I and III, in which d(n,m) is used

both to compute DA (n,m) and DA (n+l, m). Further storage may also be used for side infor-

mation, such as Itakura's g function, which must also be stored as a vector.

Since the storage requirements of a DTW algorithm are for a series of vectors, the natural

measure for the amount of storage required by a DTW algorithm is the number of such vec-

tors.

It is possible to make at least one general statement about the amount of storage required by

a DTW algorithm. That is, that the more information which is required to compute the accu-

mulated distance function in a time warping algorithm, the more storage that will be required

by that algorithm. Thus, we would expect that time warping algorithms with type II local con-

straints would require less storage than those algorithms which use either type I or type III local

constraints.

3.2.2 Computational Efficiency (Speed of Exacution)

Computational efficiency is a measure of how fast a time warping algorithm can find an

optimal path. Computational efficiency may be broken up into two distinct components -

combinatorics and local distance calculations. Combinatorics measures the amount of time

required to compute the accumulated distance functions given the values of the local distance

metric.

The time for combinatorics will increase with an increasing number of productions in a local

constraint and with an increasing number of intermediate points used in a production. Thus,

we would expect that type II local constraints would require less computation than local con-

straints of types I or III.

The other aspect of computational speed which is of interest is the average number of local

distance calculations per dynamic time warp. This measure is strictly a function of the global

range available for legal paths because a local distance calculation must be performed for every

point in the global range. As the global range increases, more and more distance calculations

must be performed. Thus we would expect that a larger maximum slope, as in type IV local
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constraints (maximum slope, S=3), would increase the computation time relative to a smaller

maximum slope, as in local constraints of types I, II and III (maximum slope, S=2), because

the global range would be expanded. Also, we would expect that limiting the global range by

an absolute time difference would improve the computational speed because the global range

would be reduced.

3.2.3 Recognition Accuracy

Recognition accuracy measures how well the time warping algorithm actually works in the

given recognition system in a series of isolated word recognition experiments.

The natural measure of recognition accuracy is the recognition error rate,

error rate = number of improper recognitions (3.20)
number of trials

where an improper recognition occurs when the reference associated with v in Eq. (3.18) does

not represent the word which is actually the test utterance.

Another measure which can be useful when the error rate does not provide fine enough dis-

tinctions in the performance of the various DTW algorithms is a measure of the separation of

the values of D '' when the reference and the test are the same word and when they are

different. The natural means of expressing such a measure is in terms of a probability distribu-

tion. We may define the probability distributions, Ps (D) and PD(D),

Ps(D) = Prob(D ( < D the reference and the test are the same word) (3.21a)

PD(D) = Prob(D('" < Dithe reference and the test are different words). (3.21b)

The functions Ps(D) and PD(D) may be measured empirically from experimental data as

Ps.(D) = number of trials with /(D" < D
number of trials

(reference and test are the same word)

PD(D) = number of trials with (") ( D
number of trials
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(reference and test are different words).

With the definitions of PS(D) and P(D) given in Eqs. (3.21) we may define a natural

measure of their separation. If we define a threshold 4b such that when D('() • 4 we conclude

that the reference and the test are the same word then the probability of a false alarm (conclud-

ing that they are the same, when, in fact, they are not) is

Pt = PD,(O) (3.23)

and the probability of a miss (concluding that they are different when actually they are the

same is

PA = 1 - Ps(0) . (3.24)

If we equate PM and P,, we may, given PD (D) and Ps (D), compute both and P,1. We shall

use P., as our measure of the separation of the distributions Ps.(D) and PD,(D).'

In Figure 3.2 we show how the values of and PM can be determined. In part a we plot

PD(D) and 1 - Ps(D). The value of D for which Pi)(D) = 1 - Ps(D) is and the value of

PD(D) at this point is Paf. In part b we show ps(D) and pD(D), the probability densities,

defined as

dD

PD(D)=- d PD(D) . (3.25b)
dD

We show and show that Pa, is defined to be the area under ps(D) from D = 4 to D = oo

(or equivalently, under pD(D) from D = 0 to D = ). The functions ps(D) and pD(D) are

introduced because they can be easily determined from histograms of the distance scores from a

time warping algorithm.

Given a measure of accuracy it is difficult, however, to predict exactly how all of the factors

of a DTW algorithm will affect its recognition accuracy. For example, increasing the maximum

I. It should be noted that P:jx1OO00% error rate because P is used to measure separation and is based on the
assumption of a single comparison of a reference and a test pattern while the error rate is based on comparisons of
a test pattern to all reference patterns.
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allowable slope from 2 to 3 may be useful for speakers with a high degree of variability in

different replications of the same word, but may also be harmful for speakers who consistently

repeat a word at the same rate. One reasonable assumption, however, is that type I local con-

straints will, in general, provide better accuracy than type II local constraints. Type I paths use

intermediate points to compute their accumulated distance functions while type II paths do not.

Thus type II paths must lose some information relative to type I paths. Such a loss in informa-

tion is expected to reduce the accuracy of a time warping algorithm.

3.3 Summary

In this chapter we have described the various performance criteria and their associated

measures. We have also made some predictions about the behavior of various DTW algo-

rithms. However, to fully understand the behavior of the different time warping algorithms for

isolated word recognition we must have quantitative values for the performance measures. In

the next chapter we will describe the experiments performed and their resulting measures of

the performance of the different DTW algorithms.
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Chapter 4

Results on Isolated Word Recognition

4.1 Initial Experiments

In the previous chapters we have discussed some of the different factors which are impor-

tant in the implementation of a dynamic time warping algorithm for isolated word recognition.

These factors include endpoint constraints, local continuity constraints, global range constraints,

axis orientation and choice of distance measure. We have also specified the different perfor-

mance criteria by which the different DTW algorithms are compared. In this chapter we will

give the results of several experiments designed to measure the performance of the various

DTW algorithms.

All the recognition experiments were performed using the isolated word recognition system

described in the previous chapter. The test involved two different types of word recognition

test sets (based on the training), namely:

1. Speaker Dependent Set (TS1)

2. Speaker Independent Set (TS2)

The speaker dependent test set (TS1) used a 39 word vocabulary consisting of the letters

A-Z, the digits 0-9 and the command words STOP, ERROR and REPEAT. This vocabulary has

been used in applications involving directory assistance and credit card calling [1]. TS1 con-

sisted of five tokens of each word of the 39 word vocabulary for each of two talkers, denoted as

SD1 and SD2 (390 words in total). The recordings were made for use in earlier recognition

experiments [1,14]. The recognition system for TS1 used two reference templates for each

word of the vocabulary. These reference templates were generated from two separate replica-

tions of the entire vocabulary for each of the two talkers.

The speaker independent test set (TS2) used the 54 vocabulary of computer terms originally

proposed by Gold [15] and listed in Table 4.1. This vocabulary is considered to be less difficult
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54 Word Vocabulary

1. INSERT (2)

2. DELETE (2)
3. REPLACE (2)
4. MOVE (1)
5. READ (1)

6. BINARY (3)

7. SAVE (1)
8. CORE (1)

9. DIRECTIVE (3)

10. LIST (1)
11. LOAD (1)

12. STORE (i)
13. ADD (1)

14. SUBTRACT (2)
15. ZERO (2)
16. ONE (1)
17. TWO (1)

18. THREE (1)

19. FOUR (1)
20. FIVE (1)

21. SIX (1)

22. SEVEN (2)

23. EIGHT (1)

24. NINE (1)

25. MULTIPLY (3)
26. DIVIDE (2)
27. NUMBER (2)

28. NAME (1)
29. END (1)
30. SCALE (1)

31. CYCLE (2)

32. SKIP (1)
33. JUMP (1)
34. ADDRESS (2)
35. OVERFLOW (3)
36. POINT (1)

37. CONTROL (2)

38. REGISTER (3)

39. WORD (1)
40. EXCHANGE (2)
41. INPUT (2)

42. OUTPUT (2)

43. MAKE (1)
44. INTERSECT (3)
45. COMPARE (2)
46. ACCUMULATE (4)
47. MEMORY (2)

48. BITE (1)

49. QUARTER (2)
50. HALF (1)

51. WHOLE (1)
52. UNITE (2)

53. DECIMAL (3)
54. OCTAL (2)

(n) - Number of syllables in word

Table 4.1
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than the 39 word vocabulary used for TS1 because it has few acoustically similar words. The 54

word vocabulary also has the property that half of its words are polysyllabic as opposed to only

five words (W, ZERO, SEVEN, ERROR and REPEAT) in the 39 word vocabulary. Polysylla-

bic words tend to be recognized more reliably than monosyllabic words, hence one would

expect higher recognition accuracy for the 54 word vocabulary, all other factors being equal.

TS2 consisted of one token of each word of the 54 word vocabulary for each of 4 talkers,

denoted as SI1, SI2, SI3 and S14 (216 words in total). (The recordings for TS2 were also

obtained from a previous experiment [16].) The recognition system for TS2 used two reference

templates for each word of the vocabulary. The reference templates were obtained from a clus-

tering analysis of 100 tokens of each word of the vocabulary. The output of the clustering

analysis was a grouping of the 100 tokens into a small number of sets (clusters), in which the

tokens within each cluster were similar. The two reference templates were obtained from the

two largest clusters (i.e. with the most tokens) and represented an average of the tokens within

each cluster [17].

The entire experimental system was implemented in FORTRAN on a Data General Eclipse

S230 minicomputer. The results of the recognition experiments (using the two test sets of

data) were used to compare the recognition accuracies of the various DTW algorithms. Meas-

urements of memory requirements were made by examination of the FORTRAN code used to

implement the different DTW algorithms. Measurements of computational efficiency were

made by averaging the timing results of 1500 separate time warps. Timings were made using a

computer controlled clock which was accurate to + 10 microseconds. In the next section we

give the results of the various experiments.

4.2 Experimental Results

In this section we give the results of the experiments performed on the various DTW algo-

rithms. The performance criteria which we used are those described in Chapter 3, namely:

1. Memory Requirements
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2. Computational Efficiency

3. Recognition Accuracy

4.2.1 Memory Requirements

In Table 4.2 we summarize the results of measurements on the amount of storage required

by the various DTW algorithms, as a function of the local path constraints. As discussed in

Chapter 3, the unit of storage is a vector, which measures the amount of information required

to compute an accumulated distance function. The three different types of vectors include

storage for accumulated distances, local distances and side information. The results show that

Itakura's local constraints and type II local constraints require the least amount of storage, (2

vectors), followed by local constraints of types I and III (3 vectors), and finally by local con-

straints of type IV (5 vectors).

The other important factor in the measurement of storage requirements is the size of a vec-

tor. In general, all vectors must have M entries but the size of a entry may vary. Because the

side information required by Itakura's algorithm is simply a "yes" or a "no," each entry of this

vector may be encoded as a single bit. However, accumulated distance and local distance vec-

tors must be accurately encoded to several bits (32 in our implementations).

As described in Chapter 3, we found no variation in memory requirements due to any factor

aside from local constraints. Thus, Table 4.2 summarizes all the information about storage

requirements for the DTW algorithms which we examined.

4.3.2 Computational Efficiency

Computational efficiency (or speed), unlike memory usage, is dependent on several of the

factors in a dynamic time warping algorithm. As discussed in Chapter 3, computational time

has two distinct components, namely, combinatorics (the time to set up and compute the accu-

mulated distance functions), and local distance computations. We found that, for the log likeli-

hood ratio, that the average time required for distance calculations was .55 milliseconds per

point and the average time for combinations was .16 milliseconds per points. Thus, computa-
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Memory Requirements

Local Constraints

Vector I II III IV Itakura

Accumulated

Distance 2 2 2 3 1

Local

Distance 1 0 1 2 0

Side

Information 0 0 0 0 1

Total 3 2 3 5 2

Table 4.2
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tional reductions due to fewer distance calculations will have a 350% stronger effect that com-

putational reductions due to less combinations. Table 4.3 summarizes the average time (per

dynamic time warp) for combinatorics, as a function of axis orientation. Weighting function

c (W(k)=i(k)-i(k-l)) was used for all comparisons. We observe that both Itakura's local

constraints and type II local constraints are the fastest, followed by local constraints of types I

and III, and finally by local constraints of type IV. We also observe that there is no significant

difference in combinatorics between those DTW algorithms which use reference along the x-

axis and those which use test along the x-axis.

Another factor in the combinatorics time for a DTW algorithm is the particular choice of

weighting function. Table 4.4 summarizes the effects of the different weighting functions on

the combinatorics times for local constraints I and 11. We observe that weighting functions a,

b and c perform nearly the same and that weighting function d performs somewhat more

slowly.

The final factor which affects the combinatorics time is the presence or absence of range

limiting. Figure 4.1 illustrates the effects of an absolute time difference, as defined in Eq.

(2.15), on both the combinatorics time and the time for local distance computations. The

values for Figure 4.1 were all calculated using local constraints of type Ill and weighting func-

tion c. R = oo is used to denote that no range limitation was in effect. In parts a and b of

Figure 4.1 we observe that relaxing the range limit increases both the combinatorics time and

the number of local distance calculations, but in part we observe that the average combinator-

ics time per local distance calculation is reduced as the range limitation is relaxed. These

results may be explained as follows. First, since a more relaxed range limitation increases the

global range more total computation must be performed. However, there is a fixed amount of

computation, independent of the global range, and the time required for this computation

becomes proportionally smaller as the global range increases.

In Figure 4.2 we show how range limitations affect the size of the global range, i.e. the

number of local distance calculations. In part a we observe, for a fixed N and M, that mild
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Combinatorics Time by Local Constraints

Local Constraints

Orientation I II III IV Itakura

Reference Along

x-axis 85.1 63.2 82.8 249.3 63.2

Test Along

x-axis 86.5 63.6 83.0 - 63.7

Average 85.8 63.4 82.9 249.3 63.5

Average Time (Milliseconds) Per warp

Table 4.3
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Combinatorics Time by Weighting Function

Weighting Function

Local

Constraints a b c d

I 90.2 80.6 85.1 90.8

II 57.8 65.9 63.2 69.6

Average 74.0 73.3 74.2 80.2

Average Time Per Warp (Milliseconds)

Table 4.4
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range restrictions (R=11, R=14) do not significantly reduce the global range. In part b we

vary both R and M and observe that, as expected, as N/M increases or decreases from 1, the

relative space available for time warping paths (i.e. the size of the global range divided by

N.M) decreases. We also observe that when IN-MI approaches R, a very sudden reduction

in the global range occurs. Thus, the largest global range occurs when N = M and R is very

large (infinite).

In addition to range limitations, the choice of local constraints also has an effect on the

number of local distance calculations. This is summarized in Table 4.5. Because local con-

straints of type IV have a greater maximum slope, they have a larger global range and thus

require more distance calculations. There is also differentiation among the remaining local con-

straints because the number of intermediate points used in tile computation of an accumulated

distance function varies with the local constraints. We observe that as the number of inter-

mediate points increases (as in type I local constraints, relative to type 11 constraints) the

number of local distance computations also shows a slight increase.

One final point must be made about the computational efficiency of a DTW algorithm. In

the application of a DTW algorithm to a speech recognition problem it is important to know

how many time warping calculations are actually required. For example, by severely limiting

the global range, many time warps need not be performed because the difference in the lengths

of the reference and the test patterns is too large, i.e. IN - MI > R. In Figure 4.3 we show

how range limitations affect the amount of computation performed (Maximum slope = 2). The

entries labeled "same word" and "different word" refer to the percentage of possible time warp-

ing computations which are actually performed when the reference and the test were the same

word and when they were different words. Figure 4.3 shows a decrease in the number of time

warping computations as the range limit is reduced, but that such a decrease occurs more slowly

for "same words" than for "different words." The usefulness of range limiting as a method of

reducing the number of time warping computations is questionable however, because other

methods, such as Itakura's thresholding [6] technique, provide similar, or larger, reductions in

the number of time warps for different words (generally, about 50%) at a smaller risk of
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Local Distance Calculations

Local Average Number of

Constraint Distance Calculations

I 543.2

II 491.7

III 504.4

IV 781.0

Itakura 504.4

Average Calculations Per Warp

Table 4.5
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eliminating a time warp when the words are the same (generally, less than 5%) [18].

4.2.3 Recognition Accuracy

The third and perhaps the most important criterion in the measurement of the performance

of a DTW algorithm is recognition accuracy. In this section we summarize the recognition

accuracies of the various DTW algorithms as a function of their different factors. For refer-

ence, speakers SD1 and SD2 each had 39x5 = 195 tokens and speakers SI1, SI2, S13 and SI4

each had 54 tokens for a total of 195 · 2 + 54 · 4 = 606 tokens.

The first factor investigated was local continuity constraints. In Figure 4.4 we summarize

the error rates for local constraints of types I, II, III and those of Itakura (all have maximum

slope S=2). We also show the effect of axis orientation on the recognition error rate. Weight-

ing function c and no range limit were used for all comparisons. From Figure 4.4 we see only

slight differences in error rate as a function of the local constraints, with local constraints of

type I having the smallest error rate. However, it is seen that a consistent improvement in

error rate occurs when the test pattern is placed along the x-axis rather than the reference pat-

tern. This effect has been observed in earlier experiments also [19].

The effect of local constraints of type IV is illustrated in Figure 4.5. In this figure we show

measured histograms of the dynamic time warp distance for speaker SD1 using local constraints

of type III and weighting function c for two cases. Part a is the case in which the reference

and the test pattern represent the same word, and part b is the case in which the reference and

the test pattern represent different words. In parts c and d we show the results of using type

IV local constraints. We observe that the histogram of part c is essentially the same as the one

in part a, but that the histogram of part d is shifted significantly towards lower distances than

that of part b. Thus, the distributions of parts c and d overlap more than the distributions of

parts a and b and, as discussed in Chapter 3, the probability of a miss, Pa, is higher using type

IV local constraints. (In fact, we obtained 14 errors using type IV local constraints for speaker

SD1 as opposed to 11 errors using type III local constraints, and a total of 40 errors for type IV

local constraints as opposed to 37 errors for type III local constraints, using all test utterances).
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In Figure 4.6 we show how axis orientation affects a particular DTW algorithm. In particu-

lar, we use Itakura's local constraints and TS2 data. In parts a and b we show histograms of

the DTW distance scores when the reference and test patterns represent the same word (part

a) and when they represent different words (part b). Both graphs were prepared with the

reference pattern along the x-axis. In parts c and d we show the same histograms when the

test pattern is along the x-axis. It can be seen that the separation of the histograms is some-

what larger when the test is along the x-axis than when the reference is along the x-axis. This

larger separation results in a reduction of the probability of a miss, Ps,, from .087 to .079 with

a corresponding reduction in the number of errors for TS2 from 20 errors to 11 errors.

In order to understand why axis orientation is important we must examine the effects of the

choice of weighting function on the performance of the various DTW algorithms. In Table 4.6

we show the total number of errors for local constraints I and II as a function of the choice of

weighting function. The results for weighting functions a, b, c and d were computed with

reference along the x-axis. Weighting function c' is weighting function c as computed with test

along the x-axis. Weighting function c is used twice because it is the only asymmetric weight-

ing function. We observe that, while weighting function c is worst for reference along the x-

axis, it is the best overall when computed with test along the x-axis. Thus, we must conclude

that improvements in recognition accuracy that occur when the test pattern is along the x-axis

are due to some property of weighting function c. As Sakoe and Chiba observed, the use of

weighting function c is equivalent to integration along the x-axis [101. Based on the above rea-

soning, we conclude that by applying an equal weight to all test frames, a better differentiation

between "same" and "different" pairs is achieved. Examination of Table 4.6 reveals another

interesting result regarding the performance of a DTW algorithm as a function of the choice of

weighting function. We observe that, in agreement with the results previously reported by

Sakoe and Chiba [10], a symmetric weighting function (weighting function d) performs better

than an asymmetric weighting function (weighting function c) when the reference pattern is

placed along the x-axis, but that biased weighting functions (weighting functions a and b) per-

form better, not worse, than unbiased weighting functions. However, since the largest
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Error Rates by Weighting Function

Weighting Function

Speaker

SD1

SD2

SI1

SI2

SI3

SI4

Total

a

22

8

11

7

12

5

65

b

21

7

8

12

13

1

62

C

21

8

10

14

14

4

71

d

22

9

10

10

12

4

67

C,

23

7

10

7

10

2

59

Total Errors

Local Constraints Types I and II

Table 4.6
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difference between weighting functions is small, i.e. less than 15% of the error rate, and since

the relative error rates are not constant over all speakers we conclude that there is no significant

difference in the performance of a DTW algorithm regarding the choice of weighting function

but that the combination of test along the x-axis and weighting function c provides significant

improvement in recognition accuracy.

The final factor which affects the performance of a dynamic time warping algorithm is the

global range. We have already shown that increasing the global range by increasing the slope

constraint from S = 2 (local constraints of type III) to S = 3 (local constraints of type IV) does

not improve recognition accuracy. The other factor in the range of a DTW algorithm is the

presence or absence of a range limit. In Figure 4.7, part a, we show that as the range limita-

tion is relaxed (R=oo denotes no limiting), the error rate decreases (using type III local con-

straints, reference along the x-axis and weighting function c). Thus, we observe that too much

restriction on the range of a DTW algorithm is harmful to it's performance. This is also illus-

trated in part b of Figure 4.7. In this figure we show a plot of the average DTW distance as a

function of the ratio of the length of the reference to the length of the test, N/M (when refer-

ence and test are the same words). It is seen that the average distance increase as the ratio

NIM approaches 1/2 or 2. This result is expected since, as demonstrated in Figure 4.2, the

range of a DTW algorithm decreases very rapidly as NIM approaches 1/2 or 2. Thus, as NIM

approaches 1/2 or 2, there is very little area (in the (n,m) plane) in which to search for a good

time warping path.

4.3 Discussion

Examination of the previous results shows that at least one major tradeoff in DTW algo-

rithm implementation. This tradeoff is illustrated in part a of Figure 4.7 and in parts a and b

of Figure 4.1. We observe that, as a more severe range limitation is imposed on a DTW algo-

rithm the amount of computation required decreases but the error rate increases.

We would like to find a method of time warping which is not so severely affected in its

recognition accuracy by range limitations. Figure 4.7, part b, suggests that a DTW algorithm
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Fig. 4.7 Error rate plotted as a function of range limit and distance as a function of NIM.
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which operates with nearly equal size reference and test patterns should perform very well. In

the next section we describe such a method and give measurements of its performance.

4.4 Normalize/Warp Algorithm

The first step in the new algorithm is to linearly interpolate (or decimate) the length of all

reference and test patterns to a fixed length so that the resulting length ratio, (/IM), is 1. If

we denote the fixed length as N, then the normalized reference pattern, R(n), is given by

R(h) = (1-s)R(i) + sR(i+l),- = 1,...,N (4.1)

where

i- (l-1)- (N-) 1] (4.2a)

s = (h-1) (N-I) + 1-i (4.2b)
(*-1)

and Lx] is the greatest integer less than or equal to x. A similar transformation is applied to

T(m) to yield T(i),A = 1,2,...,M where M = N.

It can be shown that simple linear interpolation (or decimation) as described in Eq. (4.1) is

adequate by examining the log spectrum of any component of the reference template R(i).

Such a spectrum is shown in Figure 4.8. The log spectrum is obtained as the log magnitude of

the Fourier transform of the time signal R (n,i) the ith feature of the vector R(n). Figure 4.8

shows that the log spectrum is strongly bandlimited. It is seen that the log spectrum, for this

example, is down 30 dB for frequencies above .18 of the sampling frequency (6.67 kHz).

Hence, for such a time signal, simple linear interpolation (or decimation) is entirely adequate

so long as the sampling rate does not change by a large factor. For this implementation N was

chosen to be 40 frames (the average length of all words) so that the ratio N/N (i.e. the inter-

polation or decimation ratio) always fell within a range from 1/2 to 2 for all words in both TS1

and TS2.

After the reference and the test patterns were all normalized to the fixed length, N, a DTW

algorithm was applied to the normalized patterns. We refer to this entire process as a



0 0 0
ro) r) 

3anllIN9VV 601o

0

(O~0.
O E
z c

LLJmcm

~- 'e

loWo
'I E

c o

0

E
00'000

100

LO)

z

L

LLJ

LL)

).



101

normalize/warp algorithm. Examination of the performance of the normalize/warp algorithm

reveals some very interesting results. The memory requirements for the normalize/warp algo-

rithm are, on average, the same as those for the unnormalized version. However, since all

reference and test patterns are of the same length, and since all accumulated distance function

vectors and local distance vectors are of the same length the implementation of the algorithm is

greatly simplified. This feature is very important for hardware applications.

The computational efficiency of the normalize/warp algorithm is, on average, the same as

the efficiency of the unnormalized algorithm. Reference patterns may be normalized during

training of the system and the normalization of a test pattern (for testing/requires a negligible

amount of time (less than 5 milliseconds in our applications). Local distance calculations and

computations of the accumulated distance function are the same as in the average unnormalized

case and, in fact, range limit calculations may be reduced because the global range is fixed by

the fixed lengths of the reference and test patterns.

Two new considerations to the computational efficiency must be made with the

normalize/warp algorithm. First, because the lengths of the test and the reference patterns are

all fixed, there is no need to normalize the accumulated distance score in order to compare dis-

tance scores. Second, because we choose to normalize the lengths of the reference and the test

patterns to the same length no computation may be eliminated because the lengths of all the

reference and all the test patterns are compatible. However, as we stated previously there are

methods which are more effective in reducing the number of time warps computed (e.g.

Itakura's thresholding technique [6]) than simple comparison of the lengths of the reference

and the test patterns.

The effect on recognition accuracy for the normalize/warp algorithm is shown in Figure 4.9.

We have shown both the unnormalized warping algorithm results (normal line) and the nor-

malized warping algorithm results (dashed line). We observe that, in general, the

normalize/warp algorithm performs slitly better in alhiost all cases.

In Figure 4.10 we show the most important property of the normalize/warp algorithm. In
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this figure we show the effect of range limitations on the recognition accuracy of both the

unnormalized warping algorithm (solid line) and on the normalized warping algorithm (dashed

line). We observe that a range limitation, applied to the normalized axis, is not harmful to the

normalize/warp algorithm, but is, in fact, somewhat helpful to its performance.' Such a result

has strong practical significance because, as we have already shown, range limiting is a useful

technique for reducing the amount of computation (combinatorics and local distance calcula-

tions) required by a DTW algorithm.

In the next chapter we will summarize the results of this chapter, give implications of these

results, and suggest further areas for investigation. In Appendix 2 we give complete tables for

all of the results reported in this chapter.

1. Obviously, if improvement were to continue until R = 0 we would have shown that linear normalization performs
better than dynamic time warping. This is ot the case, however. For values of R less than 5 we found that the
error rate increased, but not extremely quickly, rising from 5.31% when R = 5 to only 8.9%' when R = 1.
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Chapter 5

Summary of Results on Dynamic Time Warping for Isolated Word Recognition

5.1 Introduction

In Chapters 2-4 we presented numerical results comparing the performance of several time

warping algorithms for isolated word recognition. We examined the effects of several imple-

mentation factors, including, local continuity constraints, global range constraints, axis orienta-

tion and choice of' distance measure, on the performance of DTW algorithm. In this chapter

we summarize and make some comments on results given in Chapter 4.

5. 1.1 Memory Requirements

As far as the memory requirements of a DTW algorithm are concerned, it was shown that

the "simpler" (fewer and smaller productions) the local constraints used in the specification of a

DTW algorithm, the smaller the memory requirements of that algorithm. No other factor in

the implementation of a DTW algorithm which contributed significantly to differences in

memory requirements was found in the investigations.

5.1.2 Computational Efficiency

The computational efficiency of a DTW algorithm was shown to be dependent upon the

local constraints of the DTW algorithm in the same manner that memory requirements were

dependent upon the local constraints, i.e. the "simpler" the local continuity constraints that are

used, the more computationally efficient (less combinatorics, fewer local distance calculations)

the DTW algorithm. We also found that computational efficiency was relatively insensitive to

axis orientation or to the choice of weighting function. In addition, we found that the imposi-

tion of a global range limit is effective in reducing the total amount of computation. This effect

is achieved by reducing both the amount of combinatorics and the number of local distance cal-

culations.
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5.1.3 Recognition Accuracy

The results for recognition accuracy are best summarized according to the various factors of

a DTW algorithm which were defined in Chapter 1. The results are as follows:

1. Local Continuity Constraints - We found that more complicated local constraints (Type I)

provide only slightly better accuracy than more simply defined local constraints. Also,

Type IV local constraints (maximum slope, S=3) performed worse than the other local

constraints (maximum slope, S=2). This result agrees with earlier work by Sakoe and

Chiba [10].

2. Global Range Constraints - We found that the presence of an absolute time difference

range limit was detrimental to the performance of a DTW algorithm. We also found that a

DTW algorithm is able to provide a better match (lower distance) between words when the

ratio of the length of the test pattern to the length of the reference pattern close to 1, than

when it is close to 2 or 1/2.

3. Axis Orientation - We have found that placing the test pattern along the x-axis (when

combined with weighting function c) performed significantly better than placing the refer-

ence pattern along the x-axis (with any choice of weighting function).

4. Distance Measure - We found that the performance of a DTW algorithm was relatively

insensitive to the choice of weighting function, including those weighting functions which

were biased. However, because weighting function c is asymmetric it was the only one

affected by axis orientation. For this weighting function better recognition accuracy was

obtained when it was combined with having the test along the x-axis than for any other

weighting function.

5.1.4 Tradeoffs

Examination of the previous results reveal two areas in which tradeoffs are possible in the

specification of a DTW algorithm, and two areas in which clear out choices are obvious. Since

recognition accuracy is improved by the combined choice of weighting function c and test along
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the x-axis, (with no apparent cost in either memory requirements or computational efficiency),

these two options should always be used. It is also worth noting that the combined choice of

weighting function c and test along the x-axis eliminates the need for normalization because

the normalization factor in Eq. (2.17) (N(.) = M for test along the x-axis) is constant for

any given test utterance.

Tradeoffs exist, however, in the choice of local continuity constraints. It was shown that it

is possible to improve the computational efficiency and reduce memory usage by the choice of a

"simple" set of local continuity constraints (e.g. Itakura's or Type 11 local constraints) but these

cases lead to a slight decrease in recognition accuracy.

Range limiting also presents a similar tradeoff. Inclusion of a range constraint helps to limit

the amount of computation required by a DTW algorithm but at a cost of reduced recognition

accuracy. However, we have suggested a method, the normalize/warp algorithm, in which

range limiting can be used without the loss of recognition accuracy. We summarize our results

on the normalize/warp algorithm in the next section.

5.2 Results Concerning the Normalize/Warp Algorithm

Our investigations have shown that a normalize/warp DTW algorithm has about the same

memory requirements as a normal DTW algorithm, but that this storage may be organized

more simply in the normalize/warp algorithm. We have also shown that a normalize/warp algo-

rithm is at least as computationally efficient as a regular DTW algorithm and may be made

more so by the careful use of the knowledge that the lengths of the reference and the test pat-

terns are fixed. More importantly, we found that the normalize/warp algorithm consistently

improved recognition accuracy and that this performance was not degraded by the addition of a

range limit.

5.3 Practical Significance

By utilizing the results which we have presented in this thesis we are able to define the type

of DTW algorithm which would perform well in many isolated word recognition systems. This

DTW algorithm would use normalized length reference and test patterns, utilize weighting
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function c with the test pattern along the x-axis, impose a moderate size range constraint and

would use a "simple" local continuity constraint (Type II or Itakura's). Such a DTW algorithm

would provide recognition accuracy comparable to, or better than, most other DTW algorithms,

be fairly simple to organize and implement in hardware, and would operate as, or more,

efficiently than any other DTW algorithm for isolated word recognition.

5.4 Future Research Areas

We have presented important results in the study of the tradeoffs involved in the implemen-

tation of a DTW algorithm for isolated word recognition. Some further issues still should be

investigated. Perhaps the major question to be answered is why DTW algorithms which use the

test pattern along the x-axis perform better than those DTW algorithms which use the refer-

ence pattern along the x-axis. Hopefully an answer to this question will give more insight into

the DTW algorithms which we have studied and might suggest new approaches to the problem.

Another question directly related to the results of this thesis is in the choice of an optimal

interpolation or decimation technique for the normalize/warp algorithm. Finally, it would be

important to know if, as assumed, our results for dynamic time warping algorithms are applica-

ble to other sets of feature vectors and distance metrics.
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Chapter 6

Issues in Dynamic Time Warping for Connected Speech Recognition

6.1 Introduction

As we have demonstrated in Chapters 2-5, dynamic time warping algorithms can be applied

to the problem of isolated word recognition yielding highly reliable and robust recognition sys-

tems. We would like, however, to extend the use of DTW algorithms to connected speech

recognition and word spotting problems. Bridle [7], and Christiansen and Rushforth [20] have

demonstrated effective DTW algorithms for word spotting, and recently Sakoe [21] and Rabiner

and Schmidt [22] have successfully applied time warping techniques to connected digit recogni-

tion. In this chapter we will describe the basic principles involved in using DTW algorithms for

word spotting and connected speech recognition, giving particular emphasis to those factors of

the problem which make it different from the isolated word recognition problem. It should be

emphasized once again that our basic unit of recognition is a word and, as such, the results

which we present may or may not be applicable to other types of recognition systems.

For the remainder of this thesis we shall assume that the test pattern consists of a sequence

of connected words, spoken in a normal manner, and that the first frame of the test pattern

represents the first frame of the spoken utterance, and that the last frame of the test pattern

represents the last frame of the spoken utterance, i.e. the global beginning and ending points of

the word sequence have been located properly. Given such a framework, the word spotting

problem is to find all subsections of the test pattern which match with a specified reference pat-

tern, called the keyword. Thus for word spotting, a multiplicity of regions in the test pattern

must be compared with the keyword pattern. The computation must be carried out in an

efficient manner or the problem quickly becomes computationally unfeasible. Furthermore, the

possibility of multiple occurrences of the keyword within the test pattern must be taken into

account.

The connected speech recognition problem, on the other hand, is to piece together reference
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patterns (obtained from isolated occurrences of the words) in order to match the test pattern.

The general approach to this problem will be the one proposed by Levinson and Rosenberg

[231, namely, finding the word that best fits a given section of the test pattern at which the

word is postulated to begin, using the ending frame of that word as an estimate of the begin-

ning frame of the next word, and continuing to concatenate reference patterns in this manner

until the test pattern is exhausted.

In the next sections we will explain why the DTW algorithms which we have defined for iso-

lated word recognition cannot be directly applied to these problems, and we will propose various

methods in which dynamic time warping algorithms are applicable to the word spotting and con-

nected speech recognition problems.

6.1.1 Basic Difficulties in Connected Speech Recognition Using Word Size Templates

Dynamic time warping algorithms, as we have described them thus far, are not directly

applicable to the connected speech recognition or word spotting problems. There are two rea-

sons why this is so. Figure 6.1 illustrates some of the problems which are encountered. In this

figure the time patterns of the log intensity for two speech utterances, "3", "8", in part a, and

"38" in part b are shown. The utterance in part a is spoken as a sequence of isolated words

(i.e. there is a discernible pause between the "3", and the "8,"), while the utterance of part b

is spoken as a connected word sequence. We observe that, in part b, it would be extremely

difficult to obtain a reliable set of beginning and ending points for either the "3" or the "8."

Thus, one of our fundamental assumptions in the use of DTW algorithms for isolated word

recognition, namely that accurate word boundaries can be obtained, is not valid for connected

speech.

Another difficulty in using DTW algorithms, based on isolated word reference templates, for

connected speech applications, is the problem of coarticulation between words. For example,

the final A/of the word "3" and the initial l/e/l of the word "8" coarticulate strongly with each

other. Thus, another fundamental assumption that has been relied on, namely that the charac-

teristics of the isolated reference words which we are trying to match to our test utterance can
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be truly found in the test pattern, is not valid. In the next section we will describe the basic

techniques which will be used to overcome these difficulties.

6.1.2 Basic Approaches to the Problems of Connected Speech Recognition

In our approach to connected word recognition and word spotting using dynamic time warp-

ing, we will make two changes from the structure of the isolated word recognizer used in

Chapters 2-5. One change is to no longer attempt to find entire isolated reference pattern in

the test utterance. We will still use isolated words as our reference patterns but we will expect

a good match in the middle of the word only, and not near the ends. (For monosyllabic words,

in which the coarticulation effects the entire word, it is possible that no good match will be

found.) Thus, we will not require that, by matching a reference pattern to a portion of the test

pattern, we will be able to accurately match the beginning and ending points of the reference

pattern to points within the test pattern. As a result, we would like to consider the possibility

of overlapping reference patterns in order to recognize connected speech. In this manner we

can account for both errors in the endpoint locations and for some of the gross features of coar-

ticulation.

Another fundamental difference in the DTW algorithms for word spotting and connected

speech recognition is the use of beginning and ending regions, rather than beginning and ending

frames. In this manner, we attempt to avoid problems inherent in requiring an accurate seg-

mentation of the test utterance. The idea of using beginning and ending regions is illustrated in

Figure 6.2. A beginning region of size B (frames), with potential starting frames between bl

and b2 (B=b 2-bl+l), is specified, and an ending region of size E, with potential ending

frames between el, and e2 (E=e 2-e+l) is also specified. The best match of the reference pat-

tern to the test pattern may begin at any frame in the beginning region and end at any frame in

the ending region. Three such possible paths are shown in Fig. 6.2. It is, of course, possible to

expand either the beginning or the ending region to incorporate the entire test pattern. Thus,

the framework of Figure 6.2 may be used for either word spotting, in which neither the begin-

ning nor the ending frame is known, or for connected word recognition, in which the ending
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Fig. 6.2 Illustration of the general time warping problem.
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frame of one word is used to postulate the beginning frame of the next. In the next section of

this chapter we will define various DTW algorithms designed to be applicable to both word

spotting and connected word recognition.

6.2 Dynamic Time Warping Algorithms

As we have discussed, the purpose of a DTW algorithm for word spotting or connected

speech recognition is to provide the optimal time alignment between a reference pattern, R(n),

and some portion of the test pattern, T(m). We shall assume, as in Chapter 2, that:

1. The best path is parameterized by the functions n = i(k), m = j(k).

2. The path is restricted to obey some local constraints.

3. The optimal path is chosen to minimize a global distance metric.

d(i(k),j(k)) ((k)
D(i(k),j(k)) N( W) (6.1)

where, as in Chapter 2, the length of the time alignment path is given by K, d(i(k),j(k)) is

the local distance metric used to measure dissimilarity between frames i(k) of the reference

pattern and j(k) of the test pattern, W(k) is one of the weighting functions defined in Chapter

2, and N ( ) is the normalization factor associated with the particular weighting function

chosen.

In our study of DTW algorithms for connected speech recognition and word spotting, we

shall be using only those local constraints defined in Chapter 2 which limit the slope of the

warping function to lie between 1/2 and 2 (types I, II and III and Itakura's). However, based

on our results for isolated word recognition, it is felt that the particular choice of local con-

straints will not be an important factor in the performance of the DTW algorithm.

Since we will be using beginning and ending regions rather than beginning and ending

frames, the initial and final values for i(k) and j(k) are defined over the range as:
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i(l)=1 , j(l)= b, bl b b2 (6.2a)

i(K)=N , j(K) =e , el < e< e 2. (6.2b)

Hence, the warping contour begins at the first frame of the reference pattern, and within the

beginning region of the test pattern, and ends at the last frame of the reference, and within the

ending region of the test.

In the most general case, it is necessary to determine the optimal path by trying every possi-

ble beginning and ending point, i.e.

= min [ min [D(i(k),j(k))s . t . j(1)=b , j(K)=e] . (6.3)
bl <b<b 2 e<l xe<e 2

D of Eq. (6.3) is the distance score of the best possible path using any possible beginning and

ending frame. The amount of computation to solve for this best path, however, can be exces-

sive, i.e. theoretically we require B-E separate time warps in the most general case. It is possi-

ble, however, to reduce the amount of computation required to solve Eq. (6.3) to a single time

warp by judicious selection of the weighting function and the axis orientation. If the reference

pattern is placed along the x-axis, and W(k) is chosen to be weighting function type c

(W',.(k)=i(k)-i(k-1)) with N(W) chosen accordingly (N(W,)=N), then D may be com-

puted efficiently by a modified DTW algorithm, as follows:

1. Set DA(1,m) = d(1,m) for bl < m < b2.

2. Compute DA(n,m) recursively for 1 < n < N, b < m < e2.

3. b= -1 min DA(N,m).
N el •mne 2

This algorithm works because step 1 initializes all possible beginning points, step 2 computes

the best possible path to a point (n,m) from any of the beginning points initialized in step 1,

and step 3 finds the best possible ending point along a path from any possible beginning point.

The particular choice of weighting function type c and reference along the x-axis is important

because only this combination is unbiased and has its normalization unaffected by the choice of

beginning and ending points, i.e. the normalization factor is N, regardless of the beginning or
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ending point. A dependence on the length of the test, on the other hand, would necessitate the

use of several separate time warps because the effective length of the test (for normalization

purposes) is different for different sets of beginning and ending points. (The effective length is

e-b+1, where e is the ending point and b is the beginning point.)

We shall assume for the remainder of this thesis that W(k), N(W) and the axis orientation

have been chosen as follows:

W(k) = i(k) - i(k-) (Type c) (6.4a)

W(1) = 1 (6.4b)

N(W) = N (6.4c)

Axis Orientation: Reference Along the x-Axis (6.4d)

As such, a single time warp encompasses the extended parallelogram of Figure 6.3 (assuming

local constraints which restrict the slope of the warping function to lie between 1/2 and 2). An

important factor to consider in the application of the DTW algorithm is the size of this global

range. If both the beginning and ending regions are known, then the size of the global range is

somewhat larger than N 2/3 + B N points in the global range (a typical N by N isolated word

DTW algorithm of size N 2/3 i.e. single beginning and ending frame, plus the extra region gen-

erated by the beginning region), but, if only the beginning region is known, then the size of the

global range can be greater than 3N 2/4 + B-N points (a single beginning point, which generates

a triangle of base 3N/2 and height N, plus the extra region generated by the beginning region).

For many applications, the ending region will not be known, and, as such, a very large amount

of computation may be required to do even a single time warp.

Two modifications to the DTW algorithm have been suggested in order to reduce this

amount of computation. In particular, Sakoe and Chiba [4] have proposed that a time warping

path not be allowed to create excessive time differences, i.e. for any i(k), j(k) is restricted

such that
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Ij(k)-i(k)-b+l < R (6.5)

where b is the center of the beginning region (b=(bl+b 2)/2) and R is the maximum time

difference which is allowed. R must be chosen (at least) to cover the entire beginning region,

i.e. 2R + 1 > B. This algorithm will be referred to as the fixed range DTW algorithm and is

illustrated in Figure 6.4, part a.

Another range reduction technique, proposed by Rabiner, Rosenberg and Levinson [191,

and described in detail by Rabiner and Schmidt [22], is illustrated in part b of Figure 6.4. Here

j(k) is restricted to be within a fixed range about the best path so far, that is, the local

minimum. Formally, we have

j(k)-c(k) < E (6.6a)

c(k) = argmin [D,1(i(k)-l,m)] (6.6b)

c(1) - b, (6.6c)

where c(k) is the position, in the vertical direction, of the local minimum of DA(i(k)-l,m),

and is the allowable range around this local minimum. Thus, if DA(n,m) is computed in

consecutive vertical strips (i.e. n is fixed and m is varied), then the range of one vertical strip

is + E about the local minimum of the previous vertical strip. This algorithm is referred to as

the local minimum DTW algorithm.

Two fundamental differences exist between these two algorithms. The fixed range DTW

algorithm, a priori, specifies the ending region by specifying the beginning region, i.e.

E = 2R + 1 (6.7a)

el= b +N-R (6.7b)

e2= + N + R, (6.7c)

while the local minimum DTW algorithm defines the ending region implicitly from the local

minimum of the last vertical strip, i.e.
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E = 2E + 1 (6.8a)

el = c(K) - E (6.8b)

e2 = c(K) + E . (6.8c)

The other fundamental difference between the two time warping algorithms involves the

number of time warps required to cover a beginning region. For the fixed range DTW algo-

rithm, the entire beginning region is most efficiently covered in a single time warp with

2R + 1 = B since adjacent time warps may be merged together without loss of accuracy.

However, an analogous specification of the local minimum time warping algorithm

(2e+I=B) may not be truly optimal. Since one application of the local minimum DTW algo-

rithm may follow only one local minimum path, erroneous decisions may be made because the

true path may be "lost," i.e. the globally best path need not be the best to any given vertical

strip nor even within + E of the local best. As such, it may be better to try several smaller

local minimum time warps, thus allowing several different local minimum paths to be tried, and

to compare the results of the different paths in order to determine the proper path. Such a pro-

cedure is illustrated in Figure 6.5. It is assumed that NTR Y local minimum time warps are to

be computed. Each time warp has a local range of + E about their respective local minima, and

the centers of two adjacent time warps are initially separated by . The entire beginning region

covered by the NTR Y time warps is given by

A = 2 E + 1 + (NTRY-1) 8. (6.9)

To cover the original beginning region, NTR Y, E and are chosen such that A = B.

In the next section of this chapter we discuss the major issues raised by the use of the fixed

range and the local minimum DTW algorithms for word spotting and connected speech recogni-

tion.

.6.3 Issues in the Dynamic Time Warping Algorithms

The main areas in which we wish to apply the DTW algorithms of Section 6.2 are word spot-
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Fig. 6.5 Illustration of the parameters in the local minimum DTW algorithm.
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ting and connected speech recognition. For such problem areas, it is important to understand

the relative performance and the range of applicability of the DTW algorithms described in the

previous section. Among the issues which must be investigated are:

1. Which of the two algorithms, (i.e. the fixed range DTW algorithm or the local minimum

DTW algorithm) gives better performance results when applied to a series of recognition

and word spotting experiments?

2. In the local minimum DTW algorithm, for a given A, what are the optimal choices of ,

NTRY and 8. In particular, the main question is whether more than one time warp is

required, and, if so, how should the parameters E, 8, and NTRY be chosen?

In order to answer these questions we have performed several recognition and word spotting

experiments. The results of these experiments will be described in the next chapter.
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Chapter 7

Experiments in Dynamic Time Warping for Connected Speech Recognition

7.1 Introduction

As discussed in Chapter 6, it is possible, in theory, to adapt dynamic time warping algo-

rithms for applications such as word spotting and connected speech recognition. In this chapter

we will present the results of several simple experiments designed to determine the relative per-

formance of the fixed range and the local minimum DTW algorithms described in Chapter 6.

For purposes of the experiments, the basic recognition system was the one described in

Chapter 3. Our experiments fall into two broad classes - namely, experiments designed to com-

pare the relative performance of the fixed range and the local minimum DTW algorithms, and

experiments designed to study the parameters of the local minimum DTW algorithm. In the

next section of this chapter we describe the results of the experiments designed to measure the

relative performance of the two DTW algorithms.

7.2 Comparison of the Two Time Warping Algorithms

In our initial experiment we compared the recognition accuracies achieved by both the fixed

range and the local minimum DTW algorithms for a modified isolated word recognition prob-

lem. The test utterances were those of test set 2 (TS2) of Chapter 4, namely one replication by

each of 4 talkers of a 54 word vocabulary, using speaker independent (2 templates per word)

reference patterns. In order to evaluate the relative performance of the two DTW algorithms,

the test utterances were modified so that a beginning region could be specified as some range

about the true beginning point. No ending region was specified. For sake of comparison, R

and E were both set equal to 8 frames, and NTR Y was set to 1. Figure 7.1 shows the recogni-

tion error rates for both algorithms, as a function of the four local constraints that were studied.

We observe that the local minimum algorithm performed consistently better than the fixed

range DTW algorithms for all local constraints.
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In another comparison we artificially imbedded (at an arbitrary frame) an isolated digit into

a connected digit sequence, both uttered by the same speaker. We then used both DTW algo-

rithms to "spot" the imbedded digit using two speaker dependent templates per digit. The

parameters of the two DTW algorithms that were used were the same ones as in our initial

experiment (E=8,R=8). In order to spot the imbedded digit every possible beginning region of

size 2 + 1 (=2R+1) was tried. The number of times that the DTW algorithm found the

(correct) best path (as determined by the lowest overall distance achieved by any beginning

region) was recorded. We also recorded the ending point of the imbedded word, as estimated

by the word spotting procedure. Both the local minimum and the fixed range DTW algorithms

were able to locate the endpoint of the imbedded word with a high degree of accuracy. (The

average error was 1.2 frames.)

In Figure 7.2 we show the relative performance for this simple word spotting experiment for

the two DTW algorithms. The count refers to the number of times that the particular DTW

algorithm found the proper path (as determined by the lowest distance score achieved) for each

of the imbedded digits. We observe from Fig. 7.2 that the local minimum DTW algorithm

almost always found the best path more often than the fixed range DTW algorithm. We also

observe that the local minimum algorithm was able to find the best path 17 times (the max-

imum number possible, 2+1) for 8 of the 10 digits, while the fixed range algorithm never

achieved this accuracy.

The results of these two experiments show that the local minimum DTW algorithm per-

formed consistently better than the fixed range DTW algorithm. In the next section of this

chapter we examine more fully some of the parameters of the local minimum time warping

algorithm.

7.3 Examination of the Parameters of the Local Minimum Dynamic Time Warping Algorithm

In order to understand the effects of the various combinations of the parameters A, 8,

NTR Y and e, on the performance of the local minimum DTW algorithm, a series of connected

digit recognition experiments were performed. A total of 80 strings of from 2 to 5 connected



0 C - LO
Nj Wq- T-

126

.o

Z
crI-
Z
0O-

C-,

H

LL

F

I I I I

0)
o 0 E0.):3

w

Oa -
I-S

2 0

D C

LO $
a Y
m x

H a

a
CO

rU

C0
INnO0

Ln

on

bb

:38
W)o
4) to



127

digits' each (20 of each length) were recorded by each of two talkers. These utterances were

taken from the data base of an earlier experiment [22]. In the recognition work we used two

speaker dependent templates per digit. The first step in the experiment was to "spot" the end-

ing point of the first digit in each string via a local minimum algorithm (=11,NTR Y=-l) using

the known beginning point of the first digit. Then an attempt was made to recognize the

second digit in the string. Because of inaccuracies in "spotting" the ending point of the first

digit, and because of coarticulation effects, it was not possible to accurately determine the

beginning point of the second digit, and, as such, the beginning region of the second digit was

centered around the ending frame of the first digit, as determined by the "spotting" procedure.

The best candidate for the second digit was chosen as that template which achieved the lowest

overall distance, regardless of where it ended. Several values of E 8, A and NTR Y were used

and the accuracies and distance scores for the recognition of the second digit were recorded.

In Figure 7.3 we plot, for a large value of A (27 in this case) the average best distance score

for all NTR Y warps as a function of 8, for several values of E. There are 2 curves shown in

each figure. The solid curve is the case when the reference word was the same as the second

word in the test string. the dashed curve represents cases when the reference was different

from the second work in the test string. Examination of Figure 7.3 shows that the average best

distance for both "same words" and "different words" increases as 8 increases. However, we

observe that when the reference is different from the second digit of the test utterance (i.e. the

dashed curves), the average distance is generally increasing as 8 increases, but, that when the

reference and the test word are the same, the average best distance is constant for small values

of 8 and increases only beyond the critical value 8 = 26 + 1. The critical value 8 = 2E + 1

(shown by a carret in the scales of Fig. 7.3) is a particularly important value of 8 because for

8 < 2E + 1, consecutive time warps overlap in their beginning regions, and for 8 > 2 + 1

there are frames between two consecutive time warps which are not covered by either begin-

ning region. From these results we conclude that, on average, there is no loss in performance

for the local minimum DTW algorithm when consecutive starting points are separated by

8 < 2e + 1. When 8 = 2e + 1 we have the case where there is no overlap in adjacent
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beginning regions, and no skipped frames between these regions.

One explanation of why overlapping of beginning regions is unnecessary is given in Figure

7.4. Here we show the progress of a set of typical paths in which the starting regions overlap.

By the nature of the local minimum DTW algorithm, best paths from overlapping time warps

tend to merge if there is a good path common to both of their beginning regions. The effects

of path merging (of the local minimum DTW algorithm) on the digit recognition accuracies is

shown in Figure 7.5. Here we plot recognition error rate for the second digit in the test

sequences as a function of 8, for various values of E. We see that, for a fixed E, it is possible to

increase 8 with essentially no loss in accuracy until 8 > 2 + 1. 

The results of the previous experiment have shown that, given a value for E, the most

appropriate choice of 8 is 8 = 2E + 1. However, the question of the most appropriate choice of

E, A and NTR Y remains. For the word spotting problem the obvious choice for A is A = M,

the length of the test. For this case optimal values for and NTR Y must still be determined.

In general, the selection of and NTR Y depend on several factors. As is increased, the

chance of a missed keyword decreases because more paths are examined, but the chance of a

false alarm increases. Also, as increases, the value of NTRY decreases (NTRY=A/(2E+I )

for 8=26+1), thereby reducing the amount of computation required. Thus, misses, false

alarms and amount of computation must be traded-off in the selection of E and NTR Y for a

word spotting application.

For connected word recognition applications, the choice of A, and NTR Y is somewhat

different from the word spotting problem in that the beginning region of a word is not the

entire test utterance but can be, in general, reduced to a considerably smaller range. For such a

situation we would like to have a simple rule for determining the optimal choice of 8, E and

NTR Y for a given A. In Figure 7.6 we plot recognition error rate for the second digit of our

test utterances for two cases, namely = (A-1)/2 (NTR Y=l), and for the best combination of

E, 8 and NTR Y. We see that, for smaller values of A, a single warp performs as well as any

1
Note that for A fixed, the largest possible 6 is A - 2E - (NTR Y=2) so that the curves for the various values of E
are defined only for values of 8 such that 86 A - 2E - 1.
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Fig. 7.4 Illustration of path merging for two adjacent local minimum time warps.
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combination of E, 8 and NTR Y, and that as A increases the differences in error rates between

the best possible , 8 and NTR Y combination and a single warp remains less than 2.5%. Since

a single warp is computationally more efficient than several time warps, and since it should be

possible to defined an accurate beginning region to within 255 milliseconds (A=17 frames at 15

milliseconds between frames), a single local minimum time warp is a reasonable approach to

the problem of connected word recognition using word size reference templates. In fact,

though we show that the minimum error rate occurred at A = 21 (in Fig. 7.6), work by Rabiner

and Schmidt [22] on connected digit recognition has shown that it is possible to reduce A,

without loss in accuracy, by more judicious positioning of the beginning region than simply

centering it around the end of the previous word. Since A could be made smaller than 17 in

this case, the results of Fig. 7.6 indicate that a single time warp would be adequate for many

connected speech recognition applications.

In the final chapter of this thesis we summarize the results, of this chapter, give implications

of these results and suggest further areas for research into the use of dynamic time warping

algorithms for word spotting and connected speech recognition.
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Chapter 8

Summary of Results on Dynamic Time Warping For Connected Speech Recognition

8.1 Introduction

In Chapters 6 and 7 we have presented two different dynamic time warping algorithms

which are applicable for both connected speech recognition and word spotting applications. The

algorithms are the fixed range and the local minimum time warping algorithms. We have com-

pared their relative performance and have examined the effects of various combinations of the

parameters of the local minimum algorithm on its performance. In this chapter we summarize

and make some comments on the results given in Chapter 7.

8.1.1 Relative Performance of the Fixed Range and the Local Minimum Time Warping Algorithms

In the imbedded digit experiment, it was shown that both the fixed range and the local

minimum DTW algorithm were able to accurately determine word boundaries when they were

very clearly defined (as in our artificially imbedded digits). We also demonstrated that, for both

word spotting and connected speech recognition, the local minimum DTW algorithm performed

significantly better than the fixed range algorithm. The local minimum algorithm achieved both

lower recognition error rates, and higher word spotting accuracy than the fixed range DTW

algorithm.

8.1.2 Optimal Choice of the Parameters of the Local Minimum Time Warping Algorithm

In our examination of the parameters A, 8, and NTR Y, of the local minimum DTW algo-

rithm we obtained two important results. First of all, it was shown that it is not necessary to

overlap successive beginning regions of the test pattern in order to achieve good time align-

ment, i.e. the best time alignment path is, in general, found from a single application of the

local minimum DTW algorithm. We also found that, for small size beginning regions (small

A), a single local minimum time warp, (with E=(A-1)/2,NTRY=l), was as accurate as (and

more computationally efficient than) any combination of the parameters E, 8, and NTR Y.



135

8.2 Practical Significance of the Results

Our results suggest some general approaches to both the word spotting and the connected

speech recognition problems. Word spotting using the local minimum DTW algorithm can be

accomplished by choosing a local range, , and then sampling the test utterance for the keyword

using a spacing of 8 = 2 + 1. This method should provide accuracy comparable to most other

word spotting algorithms using time warping.

Connected speech recognition implemented in a manner similar to word spotting, i.e. sample

the test utterance for all words of the vocabulary using a spacing of 8 = 2 + 1 and then piece

together the resulting time alignment paths to form the candidate string. Connected speech

recognition may also be accomplished by building up test strings one word at a time. In such a

method the ending point of one word is used to hypothesize the beginning region of the next

and then, using a single local minimum time warp per word of the vocabulary, an attempt is

made to match the next word of the test string. Either of these methods should, according to

our results, provide recognition accuracy comparable to other connected speech recognition

algorithms using time warping.

8.3 Future Research Areas

We have presented important results on the use of DTW algorithms for both word spotting

and connected speech recognition. However, many questions still remain to be answered. One

important question is whether the local minimum and the fixed range DTW algorithms are truly

accurate enough for most word spotting and connected speech recognition applications, or

whether a full range DTW algorithm is required for some applications. Another important

question is whether the results presented here, using the ten digits as a vocabulary, may be

extended to other vocabularies, particularly polysyllabic vocabularies. Within the context of the

local minimum time warping algorithm, we must examine the effect on performance for various

values of the local range, E. Such a question is particularly important in the word spotting prob-

lem, in which a large value of E should help to eliminate misses but will, most likely, increase

false alarms. In the connected speech recognition problem, the question of the optimal size
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and positioning of a beginning region is important. Also, questions of how to piece together

reference patterns in the presence of several good candidates, multiple beginning regions and

syntax constraints are very important in connected speech recognition. Finally, on a more fun-

damental level, the question of whether or not the DTW algorithms which we have described

can be applied to other units of recognition, such as syllables, phones, or demi-syllables, is an

important unanswered question.
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Appendix I

Time Warping for Continuous Functions

In this section we give one possible solution to the problem of time warping for continuous

functions. The problem here is to find a continuous function w(t) where

T = W(t), (Al.I)

which maps a continuous reference pattern R(t) into a continuous test pattern T(T). Without

loss of generality we may assume that R(t) has endpoints t = I and t = N and that T(') has

endpoints T = 1 and T = M. An example of a typical time warping function, w(t) is shown in

Figure Al.. R(i) and T(T) are shown as one dimensional functions of time although they are

often multidimensional. The function w(t) is shown as a curve in (t,T) space from the point

(1,1) to the point (N,M). If we assume that the endpoints are properly identified we must find

a continuous function, w(t), which preserves the endpoint locations, i.e.

w(l) = 1 (A1.2a)

w(N) = M. (AI.2b)

The choice of w(t) is made so as to provide the best possible match (i.e. minimum dis-

tance) between the reference and the time warped test pattern. The measure of similarity

which we shall use is a weighted integral of local distances, i.e.

N

D(w(t)) = d(t,w(t )) W(t,w(t ), w(t))dt (A1.3)(A1.3)

where D(w(t)) is the value of the global distance function for a particular warping function

w(t), d(t,w(t)) is the local distance between location t of the reference pattern and location

w(t) of the test pattern, w(t) is the derivative of w(t) with respect to t, and JW(t,w(t),,W(t))

is a weighting function which depends upon the shape of w(t) along the time warping curve.

The best choice for w(t) is defined to be that function w(t) which minimizes the value of

D(w(t)). Thus, the best possible match between R(t) and T(T) is given by
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Fig. Al.1 Typical continuous-time warping function.
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N

D = minD(w())= minD(w(t)) = mind(t,w(t)) 1(t,w(t),i(t))d (A1.4)
(W(t)) (,t) I

where D is the value of D(w(t)) when the best match is achieved.

Given the problem of Eq. (A1.4) we observe that this problem is identical to the classical

calculus of variations problem, i.e.

b

min f F(t, w (t), v (t)) dt (AI.5a)

with

w(a) = wa (Al.5b)

w(b) = wb (A1.5c)

where the particular problem of Eq. (A1.4) uses

a= 1, b=N (Al.6a)

wa = i, Wb =M (Al.6b)

and

F(t, w(t),iv(t)) = d(t,w(t)) W(tw(t),wi(t)). (AI.6c)

It is known that the solution to the calculus of variations problem of Eqs. (A1.5) is given by

the solution to Euler's differential equation [24], i.e.

FU. - d F4i = (A1.7)

where

FH. = F(tw,) (A1.8a)

ow

F, = .F(t,w,). (AI.8b)

Eq. (AI.7) may be further expanded to yield the following second order differential equation

F,, - F, - Fw,,, i - Fij ,i = 0 (A1.9)
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where

F.,,-= F(t,W,Wi) (Al.lOa)

Fe = d2 F(I'ww) (A1.lOb)
awaO

Fi -- F (t, w, ) (A 1.10c)

2(A d),__ =d 2 ~ (Al.10d)

For the particular problem of Eq. (AI.4) we may derive the differential equation,

(dWl~'-),,. - (dW), -( d),,,i. 6, - (dW) ¢ = 0 (Al. l)

where dW is used to denote the term d(t,w(t)) I(l,tw(),,()).

At this point we must define W(,w(t),i(t)) in order to proceed. Logically,

Wi/(t,w(t),w(t)) should be independent of and w(t) since all points in the (,T) plane should

be weighted equally. Also W(t,w(t),i()) should be twice differentiable in 6i(I) in order to

preserve the second order nature of Eq. (Al.I1). (If Eq. (Al.11) were first order it would, in

general, be impossible to both solve it and satisfy Eqs. (AI.2) simultaneously.) One logical

choice for W(t,w(t),w(l)) is

Wi(t,w(t),w(t)) = l+,i(tji, (A1.12)

i.e. the arc length. Using this definition of W(t,w(t),6(i)), Eq. (AI.3) becomes

N

D(w(t)) = d(t,w())l +i(t)2dt (A1.13)

or, simply, the line integral of d(t,w(t)) over the curve w(i) from the point (1,1) to the point

(N,M).

More sophisticated choices for W(t,w(t),i,(t)) may be made. For example,

W(t,w(t),w(t)) may be chosen to increase very rapidly for i(t) outside some range, thus

effectively limiting the amount of expansion or compression in the time warping. However, for
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simplicity we will proceed with the definition of W(t,w(t),i'(t)) as given in Eq. (A1.12).

Substitution of the definition of W(t,w(t),(t)) (Eq. (A1.12)) into Eq. (Al.ll) yields the

following differential equation

d. ( 1 + ,W2) 1/2 _ O 
(I+ W,2)I/2 (1-2)l/2

d( )( d _= 0 (A1.14)
(-+ 6:2) 

3 /2

where

d."= a cl(t, ()) (Al.15a)
aw

i = a d(t,w(t)) (A1.15b)
a I

which may be simplified to

iW = .C(1 + 2) - di, '(l+ i, 2). (A .16)

In order to evaluate the applicability of Eq. (A1.16) to actually solve for an optimal path, it

was implemented as a system of the two equations

ii = ( 1.(l+ul2) - d(l+l 2))/d (Al.17a)

wi, = i. (Al.17b)

The solution of this system was determined by a modified midpoint rule using extrapolation

[25]. Values for d,. and d, were determined by a first order two dimensional Lagrangian inter-

polation on a sampled version of d(t,w(t)) []. For the trial case R(t) and T(T) were taken to

be p = 8th order LPC coefficients and, as such, Itakura's log likelihood ratio distance was used

for d(t,w(t)) [6]. The samples of d(t,w()) were specified at t = 1,2,..,N; T = 1,2,...,M. In

the trial case, however, the differential equation solver failed to converge. Detailed examina-

tion showed that d(t,w(t)) was not smooth over the (t,T) plane. This occurs because, under

the assumptions of Itakura's log likelihood ratio, d(t,w(t)) is a chi-squared random variable

and thus, a smooth minimum distance contour is difficult to find.
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Although the algorithm, as proposed, failed to converge, further study may be useful. If an

appropriate method may be found for the solution of Eq. (A1.16) then the solution to this

equation may be used as a standard against which the performance of other time warping algo-

rithms is measured. Possible areas for improvement include use of a smoothed version of

Itakura's distance metric, use of some other feature set and distance metric, or use of a more

exact numerical method for interpolation and integration.
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Appendix 2 Performance Results

Timing Results - Average Per Warp

Local Weighting Axis Range Combinatorics Local Distance
Constraints Function Orientation Limit (Milliseconds) Calculations

I a R 00 90.2 543.2

I b R 00 80.6 543.2

I c R 00 85.1 543.2

I d R 00 90.8 543.2

II a R 00 57.8 491.7

II b R 00 65.9 491.7

II c R 00 63.2 491.7

11 d R 00 69.6 491.7

III c R 00 82.8 504.4

IV c R 00 249.3 781.0

Itakura c R 00 63.2 504.4

I c T 00 86.5 544.9

II c T oo 63.6 491.7

III c T 00 83.0 505.3

Itakura c T 00 63.7 505.3

I c R 11 81.5 520.8

II c R 11 60.6 472.4

III c R 5 58.7 328.0

III c R 8 74.1 429.9

III c R 11 82.0 482.5

III c R 14 84.9 501.1

Table A2.1



Local Constraints Type III
Range Size (N = 40)

Range Size · 100%

N.M
7.0%

17.5%

24.5%

23.1%

29.2%

28.6%

25.8%/

32.0%

31.9%

30.1%

26.2%
33.6%

33.6%

32.6 6%

29.0%

21.7%

34.2/2%

34.2%

33.5%

29.7%

22.4%

11.6%

34.2%

34.2%(/

33.4%/n

29.50/o

22.2%

11. 5%

33.9%

33.9%

32. 7/

28.6%

21.3%

10.8%

33.1%

32.6%

30.6%

26.2%

18.9%

Table A2.2
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R

00

00

00

14

00oo

14

11

00
oo

14

11il
8

oo

14

11

8

5

oo

14

11

8

5

2

00oo

14

11

8

5

2

00

14

11

8

5

2

oo

14

11

8

5

Range

Size

59
168

265

250
350

343

310

423

421

397

346

484

484
469
418

313

533

533

523

463

349
181

547

547

535

472

355

184

570

570

550
481

358
181

595

586

550

472
340

M

21

24

27

30

33

36

39

40

42

45
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M R Range Range Size · 100%

Size N M
48 o 608 31.7%

14 578 30.1%

11 524 27.3%
8 436 22.7%

51 oo 609 29.9%/

14 546 26.8%
11 474 23.2%

54 o0 598 27.7%/

14 490 22.7%
57 oo 575 25.2% m/

60 loo 540 22.5%

Table A2.2 (continued)
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Time Warps Performed

Maximum Range Speaker Possible Warps Actual Warps Percentage
Slope Limit Same Different Same Different Same Different

Word Words Word Words Word Words
5 SD1 390 14820 314 6906 80.5 46.6

SD2 390 14820 378 8627 96.9 58.2
SI 432 22896 195 7683 45.1 33.6

Total 1212 52536 887 23216 73.2 44.2
8 SDI 390 14820 365 9699 93.6 65.4

SD2 390 14820 389 11727 99.7 79.1
SI 432 22896 280 11326 64.8 49.5

Total 1212 52536 1034 32752 85.3 62.3
2 11 SDI 390 14820 379 11732 97.2 79.2

SD2 390 14820 390 13554 100.0 91.5
SI 432 22896 350 14470 81.0 63.2

Total 1212 52536 1119 39756 92.3 75.7
14 SDI 390 14820 387 13134 99.2 88.6

SD2 390 14820 390 14427 100.0 97.3
SI 432 22896 391 16980 90.5 74.2

Total 1212 52536 1165 44541 96.1 84.8
oo SDI 390 14820 390 14751 100.0 99.5

SD2 390 14820 390 14804 100.0 99.5
Sl 432 22896 431 22300 99.8 97.4

Total 1212 52536 1211 51855 99.9 98.7
3 oo SDI 390 14820 390 14820 100.0 100.0

SD2 390 14820 390 14820 100.0 100.0
SlI 432 22896 432 22850 100.0 99.8

Total 1212 52536 1212 52490 100.0 99.9

Table A2.3
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Recognition Accuracy

Errors (possible) Probability of Error
Local Weighting Axis Range SDI SD2 SI

Constraints Function Orientation Limit (195) (195) (216) SDI SD2 SI
I a R 00 12 4 18 .030 .023 .089

I b R 00 11 3 16 .027 .023 .095

I c R 00 11 4 20 .033 .020 .086
I d R 00 12 4 18 .031 .022 .076
11 a R 00 10 4 17 .032 .024 .090

II b R oc 10 4 18 .029 .022 .091

II c R 00 10 4 22 .034 .021 .090

II d R 00 10 5 18 .034 .021 .081

III c R 00 11 5 21 .033 .021 .089

IV c R 00 14 2 24 .034 .023 .100

Itakura c R 00 12 5 20 .033 .022 .087

I c T 00 12 4 13 .031 .025 .080

II c T 00 11 3 16 .032 .026 .082

III c T 00 15 4 14 .032 .026 .079
Itakura c T 00 15 4 11. .031 .025 .079

I c R 11 11 4 39 .035 .017 .076

II c R 11 10 4 41 .036 .019 .077
III c R 5 11 24 88 .039 .018 .068

lll c R 8 11 9 57 .037 .018 .072
III c R 11 11 5 39 .035 .018 .076
III c R 14 11 5 28 .034 .019 .073

Table A2.4



Average Distance Between Same Words
Weighting Function c, Reference along x-axis

Local Constraints
N/M I II III Itakura Average
.5 - .6 .482 .485 .483 .483 .483
.6 - .7 .426 .418 .417 .418 .420
.7 - .8 .353 .337 .341 .344 .344
.8 - .9 .365 .348 .350 .354 .354
.9- 1.0 .355 .338 .342 .347 .346
1.0 - 1.1 .344 .330 .332 .339 .339

1.1 - 1.2 .361 .344 .349 .358 .353
1.2 - 1.3 .366 .352 .356 .364 .360
1.3 - 1.4 .371 .368 .364 .373 .369

1.4 - 1.5 .413 .413 .405 .410 .410
1.5 - 1.6 .476 .476 .470 .478 .475
1.6 - 1.7 .696 .697 .694 .709 .699

1.7 - 1.8 .745 .754 .741 .745 .746

Table A2.5
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Recognition Accuracy of Normalize/Warp Algorithm

Errors (Possible) Change From Previous Errors
Local Weighting Axis Range SD1 SD2 SI

Constraints Function Orientation Limit (195) (195) (216) SD1 SD2 SI

I a R 00 -- -- 17 - - -1

I b R 00 -- -- 13 - -- -3

I c R 00oo 13 4 20 +2 0 0

I d R. oo -- -- 16 -- -- -2
II a R 00 -- - 15 -- -- -2

11 b R oo -- -- 15 - -- -3

11 c R 00 11 3 20 +1 -1 -2

II d R 00oo -- 17 -- -- -1

III c R 00 12 4 20 +1 -1 -1

IV c R 00 -- -- 25 -- -- +1

Itakura c R oo 12 3 20 0 -2 0

I c T oo 12 5 12 0 +1 -1

II c T oo 11 5 13 0 +2 -3

III c T oo 11 5 12 -4 +1 -2

Itakura c T oo 12 5 12 -3 +1 +1

I c R 11 -- -- 20 -- -- -19

11 c R 11 -- -- 20 -- -- -21
III c R 1 16 5 33 - - --

II c R 3 10 3 20 - - --

III c R 5 12 4 17 +1 -20 -71

III c R 8 12 4 19 +1 -5 -38

III c R 11 12 4 20 +1 -1 -19

III c R 14 11 4 20 0 -! -8

Table A2.6


