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Abstract

This research effort presents the design and implementation of a supervisory controller for
a 3DOF helicopter. This safety critical system is used in undergraduate laboratories in the
Department of Aeronautics and Astronautics at MIT. There already exists a framework
for designing a supervisory safety controller for motions about one axis. It is based on
an analytical description of the safety region in state space. However, this framework
cannot be easily extended to more complicated systems such as a 3DOF helicopter. In this
thesis we present a different approach which uses a real-time simulation of linearized plant
dynamics with a feedback law to ensure the system’s safety. We describe the development
of the system model, the design and implementation of the supervisory safety controller,
integration of the safety controller as part of a remote laboratory and its evaluation based
on its performance during laboratory exercises.
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Chapter 1

Introduction

1.1 Motivation

Design of supervisory control for safety critical systems is a challenging problem because
of its conflicting objectives. On one hand, the designer wants to guarantee the safety of
the system, and on the other hand, he wants to give maximum freedom to the user in his
choice of command inputs. For example, aircraft use automatic flight envelope protection to
improve overall confidence and safety of the system while enabling aggressive maneuvering
close to the envelope limits [19]. Some techniques have been developed to analyze the
safety of a decoupled motion of a body about a single axis. These techniques use an
analytical state space description of the safety region and do its verification using Hybrid
Input/Output Automata [10]. In fact, it is possible to prove that the system’s safety can be
guaranteed using a feedback law consisting of a bang-bang controller followed by a linear
quadratic regulator (LQR) [1]. However, this framework cannot be easily extended to more
complicated nonlinear systems because it is analytically difficult to characterize a region in
the state space where the safe operation of a plant can be guaranteed by a feedback control
law. Instead, we show that a supervisory controller consisting of a real-time lookahead
simulation of the closed-loop dynamics, which runs in parallel with the user’s controller, is
sufficient to ensure the system’s safety. The supervisor takes as inputs the current system
states and user’s controller outputs and decides whether a feedback law in the form of a
LQR would be able to keep the machine in a safe region by a timely override of user’s
control inputs. We do not have a theoretical proof that this scheme would keep the system
always safe, but it has been implemented and works well in practice.

The safety critical system used in this research effort is a 3 Degree-of-Freedom (DOF)
helicopter (Figure 1-1). This system has been a part of a laboratory facility provided by the
MIT Department of Aeronautics and Astronautics since 1998. The laboratory facility has
a total of six 3DOF helicopters. Three types of experiments are usually performed in the
laboratory: a plant identification experiment, a 1DOF control experiment (e.g. control of
the elevation angle θ), and a 3DOF control experiment (e.g. control of the elevation angle
θ and travel velocity ψ̇). Each year a hundred students on average use the machines for
a period of six weeks. Over the lifetime of the lab, two machines have had to be replaced
because of the unintentional misuse by the students. This 3DOF helicopter is a complex
system which can be easily damaged if it hits the table support or strains its own joints.
Direct interaction with the equipment can also present physical danger to an inexperienced
user due to fast moving parts. The goal of this research is to reduce the hardware damage
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and maintenance costs by redesigning the laboratory while preserving its functionality and
providing a safe, educational and satisfying laboratory experience for the students.

Figure 1-1: An illustration of the 3DOF helicopter [12].

As part of this research, we have made the 3DOF helicopter accessible from the In-
ternet as a remote laboratory. The remote laboratories allow for utilization of the shared
resources, make the laboratory experience more efficient, provide off-hours accessibility to
the equipment, and provide educational opportunities for distance-learning students [6].
Remote laboratories also open up collaborations between different universities and allow
students to use facilities not available in their own school. Of course, operation of such
laboratories raises concerns about the robustness and safety of the equipment, as well as
security. Therefore, most of the systems used as experimental platforms for remote labora-
tories are inexpensive and often non-safety critical systems. Some of the remote laboratories
used in other universities include DC motors, water tanks, inverted pendulums, 2DOF he-
licopters [7], [4], [8]. In fact, the manufacturer of the 3DOF helicopter used in this research
developed a remote laboratory, WebLab [2], but it was never made available to the pub-
lic. The supervisory controller developed in this research effort allows us to use this safety
critical system as an experimental platform for a remote laboratory.

To summarize, this research effort consists of three objectives. Firstly, a supervisory
controller which ensures the safety of the system has to be developed; secondly, the controller
has to be implemented and integrated as part of a remote laboratory to be available for
distance learning; and, lastly, the functionality of the modified laboratory and student
experiences using traditional and remote laboratories need to be evaluated and compared.

1.2 Thesis Overview

As the first step in the supervisory controller design, we develop a nonlinear dynamic
model using basic physical principles. Then, we obtain the linearized model to be used
for controller design. The system description and model development are presented in
Chapter 2.

The linearized system model is used to develop a LQR controller which is a part of
the supervisory controller. The supervisory controller prevents the 3DOF helicopter from
hitting the table’s surface or stressing the joints. It consists of three parts: initialization,
real-time monitoring, ensuring the system’s safety by a timely override of the user-designed
controller, and landing. The design of the supervisory controller is described in Chapter 3.
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Then we integrate the supervisory controller into the remote laboratory so that the
3DOF helicopter can be operated remotely through a standard web browser with the visual
feedback to the user provided via live streaming video. The remote operation is hosted
by the Automatic Control Telelab at the University of Siena, Italy [4]. The Telelab’s
architecture and implementation are reviewed in Chapter 4.

To compare student experiences using the remote and traditional laboratories, a set of
laboratory experiments is performed . The experimental subjects are advanced undergrad-
uate students taking a feedback control systems course. They are given two surveys to fill
out: the first one as they are doing the laboratory and the second one to be filled out once
the laboratory is completed. The results of the comparison are presented in Chapter 5.

In Chapter 6, the summary and contributions of the research are provided and future
work is discussed.
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Chapter 2

System Description and Model
Development

2.1 System Description

The experimental platform used in this research is a three degree-of-freedom (3DOF) he-
licopter. The assembly is depicted in Figure 1-1, and in Figures 2-1 and 2-2 we show the
schematics of the helicopter.

The 3DOF helicopter is mounted on a table top and its primary components are the
main beam, the twin rotor assembly and the counterweight. The main beam is mounted on
a bearing and slip-ring assembly which allows the rotor assembly to rotate in continuous
circles without entangling the wires. This rotational motion is called travel. It occurs about
a vertical axis which goes through the slip-ring and is perpendicular to the table. At the
bearing and slip-ring assembly there is a pivot point which allows the main beam to raise
and lower. This motion is described as pitch or elevation, and it occurs about an axis which
goes through the slip-ring assembly and is parallel to the table. At the longer end of the
main beam, there is another bearing whose axis is parallel to the beam. It allows a set of
twin rotors driven by DC motors to pivot around that bearing. The rotational motion of
the rotors is referred to as roll, and it occurs about an axis going through the main beam.
The DC motors can provide either collective or differential (cyclic) voltage. The collective
voltage results in the pitch motion of the main beam, and the differential voltage results in

x

y

z

θ

φ

ψ R

L

Figure 2-1: Schematic of the 3DOF helicopter

Right

Left
l_h

L
ψ

Figure 2-2: Top view
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the roll motion. The roll motion of the rotors in turn gives rise to the travel motion of the
assembly. At the other end of the main beam, there is a counterweight which reduces the
power requirements on the motors by reducing the effective weight of the rotor assembly
to only 31 grams in the horizontal position, but keeping the moment of inertia at 0.93 Nm.
In order to derive the dynamic equations of the system, a coordinate system is used with
its origin at the bearing and slip-ring assembly, with travel (ψ) being the circular motion
of the main beam, pitch (θ) being the up and down motion of the beam, and roll (φ) being
the motion of the rotor assembly. The corresponding angles are shown in Figure 1-1.

2.1.1 Nonlinear Model

The 3DOF helicopter model is derived applying Newton’s second law to the rate of change
of angular momentum. Jxx, Jyy and Jzz denote the corresponding moments of inertia. The
moments of inertia terms can be found using the definition assuming that the point mass
weight is concentrated at the motors and the counterweight. The moment of inertia of the
main beam is approximated by a hollow cylinder formula whose dimensions can be measured
and whose mass can be estimated based on the density of aluminum. The cross-product
terms of the moments of inertia are difficult to measure; and, since they are usually small,
they can be neglected. As shown in Figure 2-2, L is the length of the main beam from the
slip-ring pivot to the rotor assembly and lh is the distance from the rotor pivot to each of the
propellers. The pitch motion of the helicopter is controlled by collective thrust applied to
both propellers, defined as TL and TR, and is defined to be positive up from the horizontal
position. If the force generated by the left motor is greater than the force generated by the
right, then the resulting thrust differential produces a positive change in roll angle. If the
roll angle is non-zero, then the components of thrust will produce a torque around the travel
axis. Positive roll results in positive change of travel angle. There are also two moments
due to the pendulum like motions of the appropriate centers of mass around the x and y
axes. Lastly, there is aerodynamic drag affecting the travel motion of the helicopter. All
the constants have been determined experimentally and are given in Table 2.1.

The equations of motion are as follows:

Jyy θ̈ = −Mglθ sin(θ + θ0) + (TL + TR)L cos(φ) (2.1)

Jxxφ̈ = (TL − TR)lh − mglφ sin(φ) (2.2)

Jzzψ̈ = (TL + TR)L cos(θ) sin(φ) + (−TL + TR)lh sin(θ) sin(φ) − Drag (2.3)

(2.4)

where

TL = CL
T ρ(ΩLR)2πR2 (2.5)

TR = CR
T ρ(ΩRR)2πR2 (2.6)

Drag =
1

2
ρ(ψ̇L)2(S0 + S′

0 sin(φ)) (2.7)

• R is the radius of the helicopter blades

• Ω is the frequency of the rotating blades (L = left motor and R = right motor)

• CT is the thrust coefficient given by Equation 3.157 of Padfield [11]

• S0 and S′

0 are the effective drag coefficients times the reference area
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• M is the total mass of the helicopter assembly

• m is the mass of the rotor assembly

Thrust Calculations

In order to obtain the nonlinear equations of motion, we develop an accurate model for the
thrust based on the model presented in Padfield [11, pp. 115–124]. The equations for thrust
are given in the previous section, where the thrust coefficient is

CT =
a0σ

2
(θ0(

1

3
+

µ2

2
) + (

µz − λ0

2
) +

1

4
(1 + µ2)θtw). (2.8)

Here, a0 is the blade lift curve, σ is the solidity ratio (σ = NbladesChord
πR

), θ0 is the pitch
at the root of the blade, θtw is the blade twist, λ0 is the inflow, µz is the normalized inflow
velocity (µz = Vz

ΩR
), and µ is the advance ratio (µ = V

ΩR
) . The varying parameters are µz

and µ. They can be determined geometrically as

µL
z =

1

ΩLR
[−ψ̇ cos(θ) sin(φ)L − θ̇ cos(φ)L − φ̇lh]

µL =
1

ΩLR
[ψ̇ cos(θ) cos(φ)L − θ̇ sin(φ)L]

µR
z =

1

ΩRR
[−ψ̇ cos(θ) sin(φ)L − θ̇ cos(φ)L + φ̇lh]

µR =
1

ΩRR
[ψ̇ cos(θ) cos(φ)L − θ̇ sin(φ)L]

Since CT and λ0 depend on each other, an iterative routine is implemented to compute
CT (µ, µz) [11]. To determine the constant parameters in Eq. (2.8), the helicopter’s thrust
is computed in the hover position. Hover is defined as the position in which the main beam
of the helicopter is horizontal and all the angles are zero. The rotors are weighted in this
position and the thrust, denoted by T e

L + T e
R, needed to keep them in that position is taken

to be equal to the weight. A strobe light is then used to determine the frequency of rotation
for the blades at hover, which is denoted by Ωe. A strobe light is also used to build a lookup
table which describes the relationship between the frequencies of revolution (ΩL and ΩR)
of the motors and the voltages applied to them.

Pendulum Effect

As the rotors rotate about the x-axis, the center of mass of the rotor assembly is displaced in
a pendulum-like motion which results in a restoring torque. In order to find the displacement
of the center of mass, which can also be referred to as the length of the pendulum, lφ, the
following procedure is used. The equation for a simple pendulum in Eq. (2.9) is reduced to
the linearized equation for small angles in Eq. (2.10) giving an expression for the natural

19



frequency in Eq. (2.12):

Jxxφ̈ − mglφ sin(φ) = 0 (2.9)

Jxxφ̈ + mglφφ = 0 (2.10)

φ̈ +
glφ

lh
2
φ = 0 (2.11)

ω =

√

glφ

lh
(2.12)

Then the period of oscillation is measured and T = 2π
ω

is used to find the length of the
pendulum lφ.

For the pitch motion of the helicopter, an analogous procedure can be used to find the
displacement of the center of mass of the main beam (lθ). The restoring torque term in
Eq. (2.1) should also be modified in order to account for the non-zero angle θ0 at which
the whole assembly is in equilibrium. Equilibrium in this case is defined by the state in
which both motors are turned off and the assembly is resting at its natural equilibrium.
The elevation angle is defined to be zero at the hover position.

Drag Calculations

The drag force is computed using the standard equation Drag = 1

2
CDρv2A, where CD is

the drag coefficient, ρ is the density of air, v is the flow speed, and A is the cross-sectional
area of the body. In our case Drag = 1

2
ρ(ψ̇L)2(S0 + S′

0 sin(φ)), where S0 and S′

0 are the
effective drag coefficients times the reference area.

2.1.2 Linearized Model

In this section we describe the linearization of the nonlinear model around the hover position.
First, the thrust T = CT (µ, µz)ρ(ΩR)2πR2 is linearized using the Taylor series expansion

T = T e +
∂T

∂Ω

∣

∣

∣

∣

∣

hover

∆Ω +
∂T

∂CT

∂CT

∂µ

∣

∣

∣

∣

∣

hover

∆µ +
∂T

∂CT

∂CT

∂µz

∣

∣

∣

∣

∣

hover

∆µz

where µe = µe
z = 0, θe = φe = ψe = 0, T e = T e

L = T e
R, Ωe = Ωe

R = Ωe
L are the hover

equilibrium conditions.

Padfield is used to find ∂CT

∂µz
, and the ∂CT

∂µ
term is approximated numerically by solving for

different values of CT around the hover position while varying µ and keeping µz constant [11,
p. 219]. As a result, the following equations are obtained:

∂T

∂Ω

∣

∣

∣

∣

∣

hover

= 2ρ(ΩeR2)πR2(
a0σ

2
(
1

3
θ0 −

λ0

2
+

1

4
θtw)

∂T

∂µ

∣

∣

∣

∣

∣

hover

= ρ(ΩeR)2πR2 ∂CT

∂µ

∣

∣

∣

∣

∣

hover

∂T

∂µz

∣

∣

∣

∣

∣

hover

= ρ(ΩeR)2πR2 2a0σλe
0

16λe
0 + a0σ
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and

∆µL
z =

1

ΩeR
[−Lθ̇ − lhφ̇]

∆µR
z =

1

ΩeR
[−Lθ̇ + lhφ̇]

∆µL =
1

ΩeR
[Lψ̇]

∆µR =
1

ΩeR
[Lψ̇]

Finally, using the evaluated Taylor series for TL and TR and defining ∆TL = TL − T e
L

and ∆TR = TR − T e
R , the linearized system equations are written as:

θ̈ =
1

Jyy
[L(∆TL + ∆TR) − Mglθ cos(θ0)∆θ]

φ̈ =
1

Jxx
[lh(∆TL − ∆TR) − mglφ∆φ]

ψ̈ =
1

Jzz
[L(T e

R + T e
L)∆φ]

where

∆TL + ∆TR =
∂T

∂Ω
∆ΩL +

∂T

∂Ω
∆ΩR − 2

∂T

∂µz

∣

∣

∣

∣

∣

hover

1

ΩeR
Lθ̇ + 2

∂T

∂µ

∣

∣

∣

∣

∣

hover

1

ΩeR
Lψ̇

∆TL − ∆TR =
∂T

∂Ω
∆ΩL +

∂T

∂Ω
∆ΩR − 2

∂T

∂µz

∣

∣

∣

∣

∣

hover

1

ΩeR
lhφ̇

The linear simulation step response and the system step response are compared in
Figure 2-3 and Figure 2-4. The final system state matrices are presented in Appendix B.
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Figure 2-4: Pitch response
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2.2 Frequency Response Identification

As part of a different research project, both linear and nonlinear models of the 3DOF
helicopter have been developed using frequency response identification methods [5]. In that
research, the models are derived using the Comprehensive Identification from FrEquency
Responses (CIFER) tool developed by NASA [16]. These models assume that the DC motors
behave as first-order systems in response to voltage inputs and hence use the collective and
cyclic voltages as the model inputs. Since this description eliminates the need to model
the thrust coefficient and makes the nonlinear model quite simple and intuitive, the models
described below are provided to remote laboratory users for simulation.

2.2.1 Nonlinear model derived using CIFER

Figure 2-1 shows a simplified representation of a 3DOF helicopter, where the three degrees
of freedom are: the roll motion (φ), the pitch or elevation motion (θ), and the travel motion
(ψ). We also denote the rolling moment generated by the rotors as τcyc, and the elevation
moment as τcoll.

Using a combination of first-principle modeling and identification, the coupled nonlinear
dynamic equations are:

ψ̈ = −a1ψ̇ + a2(ατcoll + 1) sinφ (2.13)

φ̈ = −b1φ̇ − b2 sinφ + b3τcyc (2.14)

θ̈ = −d1θ̇ − d2 sin θ + d3τcoll cos φ (2.15)

where

• Eq. (2.13) describes travel dynamics. Here, −a1ψ̇ is the aerodynamic drag (as well
as some amount of mechanical friction at the hinge) and −a2(ατcoll + 1) sin φ is the
propulsive thrust component.

• Eq. (2.14) describes roll dynamics. Here, the second order equation of motion accounts
for the lightly-damped oscillatory characteristics: −b1φ̇ is the rotor damping, −b2 sinφ
is the restorative spring torque (pendulum) and b3τcyc is the rotor torque.

• Eq. (2.15) describes elevation dynamics. Here, the second order equation of motion
accounts for the pendulum-like oscillatory characteristic due to the presence of the
counterweight. −d1θ̇ is the aerodynamic and mechanical damping torque; −d2 sin θ is
the restorative spring torque and d3τcoll cos φ is the vertical lift thrust component.

The helicopter system is actuated by two rotors each driven by an electric DC motor.
The rotors can operate collectively, to produce lift (elevation torque), or differentially to
produce a rolling torque. The two modes can be superimposed. The actuation control
inputs are:

• Vcyc – electric voltage that results in differential change in the two rotor speeds. A
positive voltage produces a positive rolling moment, and

• Vcol – electric voltage that controls the speed of the two propellers collectively. A
positive voltage produces a positive lifting moment.
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The first-order actuation dynamics account for the inertial and electric motor lag in-
volved in the development of the rotor thrust and can be described by the following differ-
ential equations:

τ̇cyc = −c1τcyc + c2Vcyc

τ̇coll = −e1τcoll + e2Vcoll

The model parameters as well as their identified values are given in Table 2.2.

2.2.2 Linear model derived using CIFER

A nonlinear model described in the previous section is linearized using the Taylor series
expansion technique. The linearized dynamics can be presented as:

δẋ =

[

∂f(x,u)

∂x

]

∗

δx +

[

∂f(x,u)

∂u

]

∗

δu,

where * denotes x = xtrim, u = utrim, and δx = x − xtrim and δu = u − utrim. The state
vector is x = [ψ ψ̇ φ φ̇ θ θ̇ τcyc τcoll]

T , and the input vector is u = [Vcyc Vcoll]
T . Then, the

linearized system ẋ = Ax + Bu is given by
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For the trim condition at hover, we have ψ̇ = φ̇ = θ̇ = 0 and ψ = φ = θ = 0, and the
matrices reduce to the ones given in Appendix B. The coefficients have been adjusted to
fit the model better by observing the system step responses and comparing them to the
simulation.

The nonlinear and linearized simulations are implemented in Simulink and the final dia-
gram of the helicopter model is shown in Figure 2-5. For reference, the nonlinear simulation
implemented as a MATLAB S-function is provided in Appendix A.

23



V_cyc

V_col

psi

dpsi

phi

dphi

theta

dtheta

tau_cyc

tau_col

Nonlinear Model

psi

dpsi

phi

dphi

theta

dtheta

tau_cyc

tau_col

dpsi_com

theta_com

V_cyc

V_col

Controller

dpsi_command

theta_command

Command

Figure 2-5: Simulink simulation model
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Table 2.1: Parameter Values
Parameter Value Unit Description

m 1.15 kg mass of the rotor assembly

M 3.57 kg mass of the whole setup

m0 0.031 kg effective mass at hover

L 0.66 m length from pivot point to the heli body

lh 0.177 m length from pivot point to the rotor

Jxx 0.036 Nm moment of inertia about x-axis

Jyy 0.93 Nm moment of inertia about y-axis

Jzz 0.93 Nm moment of inertia about z-axis

R 0.1 m radius of the rotor

ρ 1.23 kg/m3 density of air

g 9.8 m/s2 gravitational constant

lφ 0.004 m length of pendulum for roll axis

lθ 0.014 m length of pendulum for pitch axis

θ0 0.45 rad neutral theta == setup in equilibrium

θtw -0.93 blade twist

σ 0.14 rotor solidity

a0 4.5 rotor blade CLα

S0 0.012 m2 CD times the reference area when φ = 0

S′

0 0.168 m2 CD times the reference area when φ = π

Ωe
L 183 rad/s left rotor frequency at hover

Ωe
R 183 rad/s right rotor frequency at hover

T e
L 0.15 N left rotor thrust at hover

T e
R 0.15 N right rotor thrust at hover

Table 2.2: CIFER Nonlinear Parameter Values
Parameter a1 a2 b1 b2 b3 c1 c2

Value 0.2517 0.2105 0.3290 1.5664 16.2 7.32 1

Parameter d1 d2 d3 e1 e2 α

Value 0.1011 0.504 1.34 6.16 1 4
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Chapter 3

Controller Development

3.1 Supervisory Controller

The main goal of a supervisory control for a safety critical system is to ensure the system’s
safety while interfering with the user’s controller as little as possible. A common architecture
of the supervisory control is shown in Figure 3-1. In the figure, the supervisor takes as inputs
the current system states and user’s controller outputs and decides whether to feedthrough
or override the user’s control inputs to keep the system safe.

- g -
C(s)

-
Sup

-
P (s)-6

r y
−

r = user reference

y = state measurement

C(s) = user controller

P (s) = Plant

Sup = supervisory controller

Figure 3-1: Block diagram of the supervisory control

3.1.1 Elevation Safety

One way to design a supervisory controller is to analytically define the safe region of the plant
in the state space and then verify if a certain feedback law can guarantee the safe operation
of the system. This approach is used to analyze the safety of a decoupled elevation motion of
the 3DOF helicopter [10]. In [10], the simplified equation of elevation dynamics is considered
and an analytical state space description of the safe region is determined by solving the
equation of motion assuming the worst possible user input. Following the description of
the safe region, a feedback law in the form of a bang-bang controller followed by a LQR
controller is shown to guarantee the safety of a 1DOF system. The verification of system
safety is then done using the modeling framework of Hybrid Input/Output Automata. This
verification framework is able to account for both continuous (plant dynamics) and discrete
(sampling rate) aspects of the system. The supervisory controller is designed such that it
is running in parallel with the user’s controller observing the elevation angle and velocity
and overriding the user’s controller if the estimated next worst possible state of the system
is not in the safe region.
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3.1.2 Full 3DOF Safety

It is difficult to extend this technique to the three degree of freedom motion of the helicopter.
In particular, in order to obtain an analytical description of a safe region in three dimensions,
one would have to find a closed form solution to a set of nonlinear differential equations
describing the system dynamics. The nonlinear differential equations would have to be
solved for the case of the worst possible user input, which is not easily determined for the
full 3DOF motion of the helicopter. Hence, we follow a different approach to ensure the
safety of the system. Namely, we use a lookahead simulation as a part of a structured
supervisory controller which operates in three phases:

1. Initialization of the Plant.

2. Real-time monitoring of the Plant with lookahead simulation.

3. Returning the Plant to its initial position after finishing the experiment.

Initialization

The 3DOF helicopter used in this research can hit the table either if the elevation angle
is too low following the negative Vcol command or if the roll angle is too high following
a large Vcyc command. The mechanical system is designed such that when it is in hover
position and the roll angle is 90◦, the rotor assembly barely clears the table’s surface.
The roll dynamics of the plant are highly undamped and are the fastest in the system,
followed by the elevation dynamics which are in turn followed by the travel dynamics. The
mechanical setup is mounted on the edge of the table such that when it is not used, it is
resting on the table’s surface. The initial position coordinates are [θ, ψ] = [−20◦,−180◦].
If one moves the 3DOF helicopter by 180◦ in travel while applying hover voltage, it is then
located over a free space not constrained by the table’s surface. The coordinates of this
position are [θ, ψ] = [0◦, 0◦]. While in this position, the 3DOF helicopter can still strain
the pitch joint if excessive collective voltage is applied. We also note that student’s initial
trial of the controller usually destabilizes the system and is most dangerous for system’s
integrity. Following these observations, we design a supervisory controller such that it
always initializes the plant by bringing it to the [0, 0] position before the user’s controller
is turned on. The initialization takes place during a preset time after the user turns on the
3DOF helicopter. This is done so that the user knows exactly when his controller becomes
active. Our Initialization controller completes its operation in thirty seconds.

Real-time monitoring

Once the initialization is complete, the supervisory control is achieved through real-time
monitoring of the system. We design the supervisory controller assuming the user’s con-
troller is arbitrary. The supervisory controller consists of a real-time lookahead simulation
of the dynamic response of the closed-loop system which runs in parallel with the user’s
controller. The supervisor takes as inputs the current system states and user’s controller
outputs and decides whether a feedback law would be able to keep the machine in a safe
region by a timely override of user’s control inputs. The simulated dynamic response of the
closed-loop system consists of a system model linearized over an appropriate trim point and
a LQR controller whose command is to bring the 3DOF helicopter to the nearest trim state.

28



The following trim points are chosen for the linearization of the model presented in Chap-
ter 2: [θ, ψ̇] = [0, 0], [0.175, 0], [−0.175, 0], [0, 0.5], [0, 1]. The units are [θ, ψ̇] = [rad, rad/sec].
Then, a LQR controller for each set of trim points is designed based on an appropriate lin-
earized model. The controller used in the lookahead simulation is the actual controller
which would be used should the supervisor decide to override user’s commands. It would
have been ideal if we could use a combination of nonlinear dynamic simulation with an
appropriate LQR controller, however, the nonlinear simulation cannot be implemented be-
cause it takes more time than the real-time system clock can afford. This difficulty can
potentially be alleviated in the future. We simulate the system response for a lookahead
time of six seconds, which is determined experimentally and is constrained by the real-time
nature of the process.

The safe region is determined by considering the physical limitations of the plant and
describes the relationship between the plant’s elevation, roll and travel angles. The safe
region is not uniform since the movement of the 3DOF helicopter is less constrained around
the [0, 0] position and more constrained when the rotors have the possibility of hitting the
table. We determine the maximum and minimum elevation angles which can be reached
without straining the upper and lower joints as a result of excessive collective commands.
We also derive a relationship between the elevation and roll angles allowing us to check if the
rotors are able to clear the table support. This relationship depends on the current travel
position of the plant. The safe region used for the lookahead simulation is a subset of the
actual safe region. The safe region in the simulation has been determined experimentally.

In addition to the real-time simulation, we are using the hardbound saturations on the
user reference inputs and voltage commands enforced by the physical limitations of the
system.

We do not have a theoretical proof that this scheme would keep the system always
safe, but it has been implemented and works well in practice. Experimental testing of this
supervisory controller keeps the system out of the unsafe region in 95% of the runs and
can be made even better if the safe region in the simulation is defined more conservatively.
The rare cases of over-stressed joints are still safer compared to the flipped machines of the
unsupervised laboratory.

Landing

When the user sends the stop command to the 3DOF helicopter, the Landing controller
brings the machine to hover over the initial position and safely lands it on the table.

3.1.3 Supervisor in action

Figure 3-2 shows the “θ with super lqr” data from an actual run of the user’s controller of
the elevation angle. It takes t0 seconds for the machine to initialize at the beginning of the
experiment. At t0, the user’s controller is turned on and when it is deemed unsafe at time t1,
the supervisor subsequently overrides the user’s commands and brings the machine to the
initial position. The elevation angle reaches the maximum of 0.614 radians which is marked
by the lower horizontal line in the figure. Note that the supervisor is implemented such that
the user can only view the data between the times t0 and t1. The other plot on the figure
is “θ no super lqr” . This plot shows the data from the run of the same user’s elevation
angle controller with the supervisory controller consisting of the initialization and landing
phases but no real-time monitoring. As can be seen in the figure, the user’s controller goes
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unstable and eventually hits the support joint at elevation angle 0.643 radians marked by
the upper horizontal line in the figure.
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Figure 3-2: An illustration of an Elevation Controller run

3.2 Control System Design

Since full state feedback is available, a linear quadratic regulator was chosen as the system
controller due to its inherent robustness properties [1], [14]. Several LQR controllers are used
for each task of the supervisory controller outlined in the previous section. The pseudocode
of the supervisory controller is presented in Algorithm 3.2.1.

Algorithm 3.2.1: Supervisory Controller(states, user col, user cyc)

if (StopExperiment)

then







land lqr(−20◦, 180◦)
V col = land col
V cyc = land cyc

else if (time < 30 sec)

then







init lqr(0, 0)
V col = init col
V cyc = init cyc

else































safe flag ← do lookahead sim(states, u col, u cyc)

if (safe flag)

{

V col = u col
V cyc = u cyc

else







super lqr(θ trim, ψ̇ trim)
V col = super col
V cyc = super cyc

return (V col, V cyc)
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3.2.1 Real-time monitoring controller (super lqr)

The real-time monitoring uses a LQR with the Elevation and Travel Velocity ([θ, ψ̇]) as the
tracking variables. Here we present the design procedure for this controller. Our task is to
compute the feedback gains K of u = Kx for the plant input which is defined as

u = [Ωsum Ωdiff ]T

where Ωsum = ΩL+ΩR

2
and Ωdiff = ΩL−ΩR

2
.

We start out by augmenting the original state vector to include the integrators in order
to guarantee zero steady state error:

x = [θ ψ φ θ̇ ψ̇ φ̇]T =⇒ x̄ = [θ φ θ̇ ψ̇ φ̇ θi Vi]
T

where θ̇i = θcmd − θ and V̇i = ψ̇cmd − ψ̇.

The feedback gains for this system are calculated using a linear quadratic regulator
approach with diagonal Q and R matrices used in the quadratic cost function.

∫

∞

0

(xT Qx + uT Ru) dt

The initial entries of Q and R are picked using Bryson’s rule [3] and the details of ob-
taining final Q and R matrices and feedback gains K using the lqr function in MATLAB
are presented in Appendix C. The feedback gains are designed such that the closed loop
frequencies of the system are lower than its natural frequencies and the damping ratio is
near 0.7. Finally, we partition the 2x7 matrix K such that

u = Kx =⇒ u = K1(x
cmd
1 − x1) − K2x2 − K3x3

where x1 = [θ ψ̇]T , x2 = [φ θ̇ φ̇]T , and x3 = [θi Vi]
T .

Using the partitioned feedback gains, we present the final controller structure in Figure 3-
3:
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s
- K3

- d -P (s)

¾K2

?

- K1

66

xcmd
1

−x1

x3 −
−

x1

x2
xerr

1 u

Figure 3-3: Traditional LQR setup

The final controller is presented in Algorithm 3.2.2. This implementation ensures the
proper initialization of the control u and limits the control to the physical voltage saturation
limits. It also ensures that the integrators, which are incremented using Euler’s method, do
not wind up in the case of external disturbances.
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Algorithm 3.2.2: Elevation/TravelVelocity Controller(x)

comment: Compute u = Kx

xerr
1

← xcmd
1

− x1

if INITIALIZED

then







x3 ← x3 + xerr
1

dt
u = K1x

err
1

− K2x2 − K3x3

u = LIMIT (u,umin,umax)

else

{

u ← 0
INITIALIZED ← 1

x3 ← K−1

3
(−u + K1x

err
1

− K2x2)
return (u)

3.2.2 Initialization controller (init lqr)

We use a LQR with the Elevation and Travel Angles ([θ, ψ]) as the tracking variables to
initialize the 3DOF helicopter. This controller is designed similar to the super lqr except
the state is augmented to be

x = [θ ψ φ θ̇ ψ̇ φ̇]T =⇒ x̄ = [θ ψ φ θ̇ ψ̇ φ̇ θi]
T

where θ̇i = θcmd − θ is an added integrator state. Since we use large travel commands, we
need to limit the travel rate and hence have a different structure for the travel loop of the
controller. This modified structure is presented in Figure 3-4, where “Sat” block represents
the enforced saturation of the travel rate.

- d - Kψ
- Sat - d - Kψ̇

- d - Kφ
- d -P (s)

Kφ̇

6666

ψcmd

ψ ψ̇ φ
φ̇

ψ̇cmd φcmd δa

Figure 3-4: ψ loop setup with rate limit

3.2.3 Landing controller (land lqr)

The land lqr controller consists of two parts, the first one brings the rotor assembly to hover
above the initial starting point and is identical to the init lqr. The second one ensures a
smooth landing on the table’s surface from the hover position using the decaying exponential
command for the elevation angle in the form:

θcmd = θ0 exp−
t−t0

τ

where time constant τ was determined experimentally and θ0 is the elevation angle at time
t0.
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Chapter 4

Implementation

4.1 Hardware Structure

The supervisory controller is implemented on a 3DOF helicopter manufactured by Quanser
[12]. The hardware setup consists of a mechanical system shown in Figure 1-1, sensors,
amplifiers, data acquisition board and a computer. The mechanical system is powered
by a pair of amplifiers driving the motors while the angle measurements are done using
mounted optical encoders. The slip-ring transmits the electric signals to and from the
3DOF helicopter. An ISA MultiQ3 data acquisition board enables the computer to access
measurements from the sensors and to command voltages to the amplifiers. We use a PC
with a Pentium III processor. A second Pentium III PC equipped with a webcam provides
visual feedback via live streaming video.

4.2 Software Structure

4.2.1 Traditional Laboratory

The traditional laboratory setup uses the WinCon software developed by Quanser for the
Windows OS [12]. It controls the operation of the 3DOF helicopter in real-time. The
WinCon application allows students to design their controllers in Simulink (similar to the
diagram in Figure 2-5), then to replace the nonlinear simulation block with the ISA Mul-
tiQ3 Input/Output block in order to interface with the actual machine. Once the Simulink
diagram is completed, it is built using MATLAB Real-Time Workshop (RTW) [9] to gener-
ate C code. Finally, the Visual C++ compiler (VC++) produces a WinCon client library
file. The WinCon client runs in real-time while the WinCon Server is a separate graphical
interface which allows users to change the input parameters or plot real-time data. The
WinCon Sever and Client communicate over a TCP/IP connection. The remote laboratory’s
architecture is similar to the traditional one.

4.2.2 Remote Laboratory

The objective of making the system remotely available has been achieved in collaboration
with the University of Siena Automatic Control Telelab (ACT) [4]. The overall architecture
of the remote laboratory is shown in Figure 4-1. Firstly, a client web browser connects
to the University of Siena web server optionally submitting a user-defined controller as a
Simulink model. Secondly, the web server provides the client with the information necessary
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Figure 4-1: The remote laboratory architecture

to connect to the local server. The local server directly controls the 3DOF helicopter.
Then, the client establishes a connection with the local server and optionally provides an
integrated model of the user-defined controller. If the integrated model is provided, the
local server first compiles it and builds an executable. Finally, the local server starts a
new process controlling the 3DOF helicopter and provides a Java applet as a user interface
to this process. The Java applet communicates with the controlling process over a TCP
connection. The client also connects to the webcam, which provides live streaming video of
the process, using another Java applet.

This remote architecture gives users an opportunity to use either a predefined controller,
such as an Elevation PID controller, or to design their own controllers in Simulink. Once
uploaded to the local server, a user-defined controller is built with RTW. The resulting
code is compiled and linked with the ACT library to produce an executable. For maximum
portability, the client is a standard web browser that can handle HTML forms and run
Java applets. In fact, the user does not need to install any software to run the remote
laboratory. The applet allows the client to change parameters, such as controller gains, and
references, such as step or sinusoidal inputs, and to observe the outputs in real-time on
graphical displays. Once the experiment session is completed, the output data are stored
in the MATLAB format and can be downloaded for off-line analysis. The session is limited
to five minutes to prevent a single user from hogging the system.

The local server programs run on Windows 98 due to incompatibility of the existing
Quanser software and an ISA card with more recent version of Windows. The Real-Time
Extension software [13] (provided with the current version of WinCon) and a Q8 PCI card
from Quanser should enable the use of more recent version of Windows. We are using
MATLAB 5.3/Simulink 3.0 environment in addition to the Visual C++ 6.0 compiler. The
supervisor is written in C S-function format and a sample template file of the Simulink
model used to generate an executable for the Elevation Controller is shown in Appendix D.
The HTTP server used on the local machine is Apache 1.3.20 with PHP 4.0.6.

4.2.3 Connection Management Module

The experiments used in the University of Siena Telelab are non-safety critical systems;
therefore, managing client connections is not an important issue for the ACT architecture.
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In our case, we cannot simply stop the executable controlling the 3DOF helicopter when the
client clicks the “Stop Experiment” button or when the connection between the client and
the server is lost. To ensure that the supervisory controller lands the 3DOF helicopter, we
have developed an additional software module to supplement the ACT architecture. The
software module consists of a proxy server which runs on the local machine and checks the
signals coming from the client and modifies them accordingly to ensure that the supervisor
completes the landing before the machine is turned off.

4.2.4 Telepresence

The users are able to observe the experiment using graphical interface displaying a live
streaming video. Webcam32 [17] software captures images from a video camera and makes
them available on the Internet. A JavaCamPush applet displays the real-time streaming
video from Webcam32 in the user’s browser. Since Webcam32’s built-in HTTP is not
compatible with the most common version of Java (Java 1.4.2.), the applet is served from
a HTTP 1.1 compatible web server, Apache 1.3.29, instead. It is important to note that a
separate PC is required to run the camera. Webcam32 software requires a lot of RAM in
order to work efficiently and might interfere with the control experiments if the camera is
placed on the same computer as the actual setup.

4.3 Laboratory Description

In this section we give an overview of the available remote experiments. The 3DOF heli-
copter is currently setup to have three experiments: identification of the plant, elevation
angle controller, and elevation angle and travel velocity controller.

4.3.1 Identification Experiment

This experiment has been set up so that users can collect open loop data by applying collec-
tive and cyclic voltages to the plant at hover. The collective voltage (Vcol) for the identifica-
tion is limited to [−0.2, 0.3] volts, and the cyclic voltage (Vcyc) is limited to [−0.2, 0.2] volts.
The users can apply either a step or a sine input as the reference. This choice of reference
inputs allows users to analyze step response data and fit them to a second degree model or
to do a frequency sweep of the system and obtain a more accurate system description using
Bode analysis techniques. To facilitate the identification of the elevation dynamics, we are
also providing an option of using a “Roll Controller”, which keeps the 3DOF helicopter
from swinging in the roll. Without the roll controller, any plant disturbance, such as air
currents in the room, induce the motion of the 3DOF helicopter in the travel direction.

4.3.2 Elevation Control Experiment

In this experiment, users can test the elevation angle controllers they have designed for
the 3DOF helicopter. Users can test either a predefined Elevation PID controller whose
parameters (Proportional, Integral, and Derivative controller gains) can be changed, or
design and upload their own controllers.

In order to implement a user-defined controller, the template Simulink model shown
in Figure 4-2 has to be used. This template consists of two subsystems: one for the con-
troller (“ACT CONTROLLER”) and one for the references (“ACT REFERENCE”). Both
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subsystems can be modified using the Simulink library blocks. For instance, one can in-
crease the number of available reference inputs by adding other Simulink Sources to the
“ACT REFERENCE” subsystem [9]. The predefined PID controller serves as an example
for a user-defined controller and is shown in Figure 4-3. Just like for a predefined controller,
a user-defined controller can have parameters which can be changed in real-time. To do that,
users must prefix the names of the parameters in the “ACT CONTROLLER” subsystem
with “ACT TP ” (ACT Tuning Parameter). Ultimately, the user-defined controller is inte-
grated with the main Simulink template file shown in Appendix D. The main Simulink dia-
gram consists of the following subsystems: “ACT REFERENCE”, “ACT CONTROLLER”,
“ACT GRAPHICS”, “Supervisor C S-function”, “Heli 3DOF”, and “Roll Ctrl”. The

“ACT REFERENCE” and “ACT CONTROLLER” subsystems consist of default references
and a predefined PID controller unless a user uploads his own references and a controller
as described above. The “Supervisor C S-function” contains the supervisor code which
initializes, monitors safety and lands the machine. The “Heli 3DOF” subsystem contains
an ISA MultiQ3 Input/Output block which provides an interface with the actual machine.
The “ACT GRAPHICS” block sets up real-time plotting of the outputs and saves them at
the end of the experiment in MATLAB (.mat) file format. The “Roll Ctrl” subsystem gives
students an option to use a roll controller to stabilize the roll motion of the plant.

A screen shot of the user interface for testing the elevation controller is shown in Figure 4-4.

Modify ACT_REFERENCE
to have new reference inputs

Modify ACT_CONTROLLER
to have user−defined controller

do NOT connect ACT_REFERENCE and ACT_CONTROLLER blocks

ACT_REFERENCE

Reference

Elevation

Cmd 

ACT_CONTROLLER

Figure 4-2: A template Simulink diagram for implementing user-defined controller

To change parameteres in real time, call them ACT_TP_Parameter Name

Modify the controller using your design and Simulink blocks

1

Cmd, volts 

s

1

Integrator

du/dt

Derivative

7

ACT_TP_Proportional Gain

2

ACT_TP_Integral Gain

8

ACT_TP_Derivative Gain

2

Elevation, rad

1

Reference, rad

Figure 4-3: A Simulink diagram of the “ACT CONTROLLER” subsystem
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4.3.3 LQR Experiment

The LQR Experiment setup can be used in graduate level classes for designing controllers
using full state feedback. This setup allows students to control the elevation and travel
axes of the 3DOF helicopter. There is no predefined controller for this experiment, so users
are expected to use the template file similar to the one in Figure 4-2 to implement their
controllers. The user template and main template file structures are practically identical to
the ones used in the Elevation Control Experiment.
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Figure 4-4: A screen shot of the Web interface
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Chapter 5

Laboratory Evaluation

5.1 Description of Experiments

In this chapter we evaluate the 3DOF helicopter remote laboratory. This evaluation is based
on the comparison of the student experiences using the traditional and remote laborato-
ries. Since MIT’s Department of Aeronautics and Astronautics routinely runs the control
laboratories using the 3DOF helicopters, we have had a unique opportunity to analyze the
laboratories using a two-group design. In a two-group design, the control group of subjects
gets no treatment, and the experimental group gets some treatment [18]. The treatment in
this case is the remote control laboratory with the supervisory controller, and the measure
of comparison is the satisfaction of laboratory requirements and student satisfaction.

In our experiment, the control group consisted of ten students performing the traditional
laboratory, and the experimental group consisted of ten students performing the remote
laboratory. The subjects for the experiments were advanced undergraduate students taking
a feedback control systems course. All students had prior experience using the 3DOF
helicopter system. The 3DOF helicopter laboratory experiment consisted of two parts: the
identification of the elevation plant dynamics and the design of an elevation angle controller.
Both groups of students were required to satisfy identical laboratory requirements. To
collect students’ feedback, they were given two surveys to fill out: the first one as they were
doing the laboratory and the second one to be filled out once the laboratory was completed.
The in-lab survey asked students to record the type of reference inputs they used each time
they turned on the machine. It also asked students if they recorded the data for each run,
if the machine became unstable or if it was hard landed on the table. The post-lab survey
asked students to rate their laboratory experience on a numerical scale upon the completion
of the assignment. The survey is included in Appendix E along with the compiled responses
in Tables E.2 and E.3. The averaged results of student responses to the post-lab survey are
presented in Table E.1. Only six remote laboratory users and ten traditional laboratory
users submitted their surveys for analysis. All students submitted their lab reports. We
include sample graded laboratory reports of remote and traditional users on a CD. The
remote and traditional laboratory instructions are included in Appendices F and G. The
analysis of the survey responses and the laboratory reports is presented below.

5.1.1 Identification Experiment

The first part of the laboratory involves the identification of the elevation dynamics of the
plant around the hover position. In particular, students apply step and sinusoidal inputs
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to the system, collect the system response data and analyze it using the techniques from
the course lectures. To get an average system response, students are expected to collect
several sets of data for each combination of amplitude and frequency. Since the traditional
laboratory is run open-loop from the moment the machine is turned on, it is difficult to
bring the machine to the same initial conditions near the hover position. In the traditional
laboratory, students usually do data collection with a partner because one person has to
stabilize the machine in the horizontal position while the other person records the system
response. In the remote laboratory, the supervisory controller initializes the system and
then waits for user’s reference input while running open-loop with the predefined hover
voltages. The supervisory controller ensures that the machine always starts from the same
position and hence makes the data sets more repeatable and reduces the number of times
the data have to be collected for each reference input.

The student responses showed that the average number of hours spent collecting data
in the traditional laboratory was 5.4 hours, while for the remote laboratory users it was 4.8
hours. The remote laboratory users indicated that it was easy to initialize the machine for
the data collection while the traditional laboratory users considered it difficult. We also
found that the remote laboratory users did not record data during 11% of the runs, while the
traditional users did not take data during only 2% of the runs. We attribute this to the fact
that the remote laboratory users had to get acquainted with the laboratory procedures, while
the traditional laboratory users had used the setup before. The students also reported that
the remote laboratory crashed their Internet browser in 5% of the cases, and two times the
3DOF helicopter was hard landed on the table when the Internet connection was dropped.
Currently, we deal correctly with the dropped connections in the software module described
in Chapter 4.

To compare the technical aspects of the laboratory, we asked students to record the
reference inputs they used. The control group of students used the gains within [0.1, 0.35]
range and the frequencies within [0.1, 50] range. The remote group used the gains within
[0.1, 0.3] range and the frequencies within [0.05, 100] range. These ranges show that the
remote laboratory users were able to adequately identify the plant by observing its response
to certain inputs. Remote users also indicated that the supervisor took over the control in
about 7% of the runs.

5.1.2 Elevation Control Experiment

For the controller part of the laboratory, the students were required to design an eleva-
tion angle controller with specified bandwidth and phase margin requirements. They were
expected to use either a phase-lead/phase-lag compensation or a PID design technique.
Two remote laboratory users used a PID controller while the rest of the users used a phase-
lead/phase-lag compensator or a phase-lead compensator. The difference in controller choice
was probably due to the fact that a PID controller was a predefined controller in the remote
laboratory. For a predefined controller, students needed only to change the gain parameters
in order to achieve the desired response. However, any other type of compensator had to be
first implemented in Simulink before being tested on the system. Overall, the performance
of a closed-loop system was comparable for both groups of students. It was difficult to
judge how many times the students tested their controllers on the actual system and how
many times the system became unstable because students were not diligent in completing
the in-lab surveys. Laboratory reports indicated that both groups of students tested their
controllers within a [−5◦, 15◦] range. This range allowed the remote laboratory users to test
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stable controllers without the interference of the supervisory controller. Survey responses
also showed that the remote laboratory users had adhered more closely to a “healthy” con-
troller design procedure, which recommends testing the controller in Simulink before using
it on the actual system. The amount of time spent by both groups of students testing their
controller on the system was practically the same.

5.2 Overall Comparison

Here, we summarize the survey responses presented in Appendix E. The survey was mainly
structured around the three important aspects of the laboratory: its availability, the clarity
of the instructions, and the safety and integrity of the equipment.

Even though the remote laboratory was available twenty four hours a day, the demand
was so high that we needed to schedule the access to the machine. To eliminate time con-
flicts, we asked the students to sign up for using the remote laboratory. The schedule was
posted on the class website and updated as students changed their preferences. However,
several students did not adhere to the schedule making it difficult to access the machine
the night before the deadline. Nevertheless, most students praised the ease of access to the
remote laboratory. In fact, later in the semester, as students were doing a different labora-
tory assignment, some students expressed interest in performing the remote laboratory due
to the scheduling conflicts with the traditional one.

According to the survey, the opinions concerning the clarity of the instructions for
running the machine and changing the input parameters were strictly divided. Half of
the remote laboratory respondents indicated that the instructions were very difficult to
understand, while the other half found them very easy. Apparently, some students were
confused about the units used in the laboratory because the real-time displays showed data
in degrees but the MATLAB data were saved in radians. Some students were confused on
the conceptual level. Specifically, they could not understand how the references used for
the identification part had units of volts, and the references used in the control experiment
had units of radians. Once these points were clarified, the rest of the students found the
instructions easier to understand. In addition, some students had problems implementing
their controller in the Simulink diagram. Currently, we are providing several template files
for user-defined controllers to make the implementation easier.

As for the safety and integrity of the equipment, the traditional laboratory did not
have any built-in safety features. The students were requested to use a kill-switch to turn
off the amplifiers should the machine become unstable. The traditional laboratory also
did not have built-in initialization and landing. Its users indicated that on average each
student hard landed the machine on the table about 8 times while running the experiments.
The remote laboratory was hard landed on the table only twice when the connection was
accidentally dropped. The hard landing of the helicopter led to the fracture of the rotor
support structure in at least two machines used in the traditional laboratory. The traditional
laboratory users indicated that in addition to hitting the table’s surface, the machine hit
or strained the bearing about 3.5 times on average while running the experiments. The
remote laboratory users indicated that the machine strained the bearing about 10 times.
However, we have found that the question was posed ambiguously in the survey and the
remote laboratory users thought we had asked how many times a supervisory controller
took over during the experiments. The oral feedback provided by the remote lab users
indicated that the machine strained the bearing about 1.5 times on average while running
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the experiments. Observing the recorded output data, we determined that the supervisory
control took over successfully in about 95% of the cases before straining the top of the
structure and the remote system hit the table’s surface twice.

The grading of the laboratory was done objectively by an undergraduate grader. The
average grade of the remote laboratory users was ∼ 6% lower than the average grade of
the traditional laboratory users. The average was lower due to the fact that several remote
laboratory students did not have the time to test disturbance rejection because of scheduling
conflicts close to the deadline. The remote laboratory grade average was adjusted later by
the course instructor to be equal to the one of the traditional laboratory reports. As for the
overall laboratory experience, both groups found it to be both stimulating and frustrating.

5.3 Discussion of the Results

We would like to point out certain positive aspects of the remote laboratory based on the
students’ feedback.

• The remote laboratory allows students to reduce the data collection time necessary for
system identification. This is usually a very tedious procedure, so students appreciate
easier initialization of the machine in the remote laboratory.

• We believe that the remote laboratory, which has a supervisory controller, improves
students’ controller design technique. It encourages students to test the simulated
response of a closed loop system before trying it on a real system. The structure
of the remote laboratory encourages the students to follow this procedure because
the initialization and landing phases add more time overhead. This controller design
technique is usually employed by successful hardware projects in the real world. For
example, the miniature acrobatic helicopter designers first test their controllers in
software simulation, then hardware in the loop simulation and only then test them
on the actual hardware [15]. This design procedure allows for considerable savings in
the setup costs.

• The comparison of the student reference inputs and controller commands indicates
that, both for the identification and the elevation control experiments, the stable
controllers can be tested within the desired range without the supervisory controller
interference. This indicates that the basic functionality is preserved in the remote
laboratory setting.

• The supervisory control reduces hardware maintenance because it overrides excessive
user inputs that lead to misalignment and structural damage.

• The remote laboratory provides a safe environment for the students because they are
not in physical contact with the hardware.

• The remote laboratory is convenient because of its high availability.

• The remote laboratory saves resources. It allows for use of a single machine by a large
number of students. Moreover, the remote laboratory setup can be placed anywhere
clearing the prime laboratory space for other projects in the department.
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We also observe some negative aspects of the remote laboratory. Since the laboratory is
available at all times, it prompts students to do their assignment at the last minute. This
is not a good working habit. However, stricter enforcement of the schedule should be able
to fix this problem. Also, the students found the remote laboratory slightly less motivating
than the traditional one. This can be potentially improved through the modifications in
the telepresence. For instance, we plan to provide an audio feedback to the students by
using a microphone in addition to the video camera. We can also equip the system with
a physical device which would produce a loud buzzing sound whenever the helicopter is
being taken over by a supervisory controller. This could make the remote laboratory a
more educationally entertaining and stimulating experience.

43



44



Chapter 6

Summary and Future Work

6.1 Results and Conclusions

In this thesis we have designed and successfully implemented a remote laboratory for a
safety-critical system. The main contributions of this work are:

• The development of a system model for a 3 DOF helicopter.

• The development of a structured supervisory controller which ensures the system’s
safety.

• The implementation of the supervisory controller on a real physical system as part of
a remote laboratory.

• The evaluation of the new laboratory based on students’ responses and graded labo-
ratory reports.

The remote laboratory developed in this research is available at

http://webchopper.lids.mit.edu

The overall reaction of the students to the highly available software-supervised machine has
been extremely positive and encouraging. The assessment of the two student groups shows
that while the remote and traditional laboratories both meet the educational objectives, the
remote laboratory also ensures the safety of the equipment and the students. The remote
laboratory is an attractive practical alternative to the traditional one. It simplifies mainte-
nance of the equipment, allows for reuse of the resources and saves prime laboratory space.
Furthermore, the ease of access to the experimental platform encourages interdepartmental
collaboration and opens new possibilities for distance-learning students.

6.2 Future Work

Telepresence is an important part of the laboratory that needs to be improved. In particular,
we need to address the hands-on aspect of the laboratory so that the students realize that
they are working with a safety critical system. As a first step, we plan to add a microphone
to the setup and implement an audio alarm for the students to hear when the supervisor
turns on.
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We are working on a stronger theoretical framework for the real-time supervisory con-
trol. In particular, instead of simulating the closed loop system response consisting of a
linearized plant and a given LQR controller, we can ensure the system’s safety by finding
over approximation of the reachable sets of the system. Specifically, one can pose the finite-
time reachability set problem as a Linear Matrix Inequalities (LMI) problem. The LMI,
in turn, can be solved using MATLAB LMI toolbox to find the ellipsoid containing the
reachable set. If that ellipsoid intersects the unsafe region, the supervisor will then override
user’s control inputs. This method presents an attractive alternative because one can derive
LMI for the nonlinear system dynamics and use the LMI toolbox to solve the inequalities
without drastically increasing the computational cost. The reachable sets would still have
to be evaluated at each time step as the real plant dynamics evolve, but their computa-
tion should take less time than the current real-time simulation. Other controller-design
techniques, such as H2/H-Infinity optimal control, are going to be investigated.

The concept of the structured supervisory controller designed for the 3DOF helicopter
can potentially be extended to other safety-critical systems. In particular, we are considering
extending the setup to other safety critical experimental platforms in the department, such
as the Aero/Astro wind tunnel.

Since the student feedback and the results have been positive, it has been proposed
that we equip other machines in the department with the supervisory safety controller in
the near future. The remote laboratory should be made autonomous from the University
of Siena server and become part of the MIT OpenCourseWare to be available for distance
learning.
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Appendix A

/*=================================================================

* nonlinear_smodel.c

*

* The calling syntax is:

*

* [THETA, PSI, PHI] = nonlinear_smodel(OMEGA_LEFT. OMEGA_RIGHT)

*

* INPUTS:

* u = [Omega_leftMotor, Omega_rightMotor] in SI units [rad/sec]

*

* OUTPUTS:

* y = [THETA, PSI, PHI] in SI units [rad]

*

* STATES:

* x = [THETA, PHI, PSI, DTHETA, DPHI, DPSI]

*

*=================================================================*/

#define S_FUNCTION_NAME nonlinear_smodel_mod

#define S_FUNCTION_LEVEL 2

#include ‘‘simstruc.h’’

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#define PI 3.14159265358979

#define THETA 0

#define PHI 1

#define PSI 2

#define DTHETA 3

#define DPHI 4

#define DPSI 5

#define OMEGAL 0

#define OMEGAR 1

#define TINYLAMBDA 1e-6
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#define ABS(A) ((A)<0?-(A):(A))

#define MIN(A,B) (((A)<(B))?(A):(B))

#define MAX(A,B) (((A)>(B))?(A):(B))

#define LIMIT(A,B,C) (((A)<(B))?(B):(MIN(A,C)))

static int_T doThrustInflowIteration (real_T *CT, /* Thrust coefficient */

real_T *lambda0, /* Inflow coefficient */

real_T mi, /* Advance ratio */

real_T mi_z, /* normalized w */

real_T theta0, /* collective pitch */

real_T theta_tw, /* blade twist */

real_T s, /* rotor solidity */

real_T a0); /* rotor blade C_{L_\alpha} */

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

/*====================*

* S-function methods *

*====================*/

/* Function: mdlInitializeSizes ===========================================

* The sizes information is used by Simulink to determine the S-function

* block’s characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 6);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 2);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 3);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);
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/* Take care when specifying exception free code - see sfuntmpl.doc */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

/* Function: mdlInitializeSampleTimes =======================================

* Specifiy that we have a continuous sample time.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ========================================

* Initialize both continuous states to zero.

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *x0 = ssGetContStates(S);

x0[THETA] = 0.0;

x0[PHI] = 0.0;

x0[PSI] = 0.0;

x0[DTHETA] = 0.0;

x0[DPHI] = 0.0;

x0[DPSI] = 0.0;

}

/* Function: mdlOutputs =====================================================

* y = Cx + Du

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x = ssGetContStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

y[0] = x[THETA];

y[1] = x[PSI];

y[2] = x[PHI];

}

#define MDL_DERIVATIVES

/* Function: mdlDerivatives ================================================

* xdot = Ax + Bu

*/

static void mdlDerivatives(SimStruct *S)

{

real_T *dx = ssGetdX(S);
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real_T *x = ssGetContStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* define constant parameters */

const real_T rho = 1.23; /* [kg/m^3] density of air */

const real_T R_rotor = 0.1; /*[m] Radius of propeller */

const real_T l_h = 0.177; /* (m)length from pivot point to one motor */

const real_T L = 0.66; /* (m)length from pivot point to heli body */

const real_T Jyy = 0.93; /* [kg*m2] */

const real_T Jzz = 0.93; /* [kg*m2] */

const real_T Jxx = 0.0360; /* [kg*m2] */

const real_T mh = 0.031; /*[kg] effective mass at hover */

const real_T m_rotors = 1.15; /*[kg] mass of the rotors (from specs) */

const real_T g = 9.8; /*[m/s^2] */

const real_T pend_rotors = 0.004;/*[m] length of pendulum for rotors */

const real_T pend_beam = 0.014; /*[m] length of pend for long beam */

const real_T mass_all = 3.57; /*[kg] mass of the whole setup */

const real_T thetaNeutral = 0.45; /*[rad] neutral theta */

const real_T theta0 = 0.91; /* collective pitch */

const real_T theta_tw = -0.93; /* blade twist */

const real_T sigma = 0.14; /* rotor solidity */

const real_T a0 = 4.5; /* rotor blade C_{L_\alpha} */

const real_T Cd = 2; /* aerodynamic drag coefficient */

const real_T SrfA0 = 0.006; /* [m^2] horz surface area of heli */

const real_T SrfA = 0.084; /* [m^2] surface area when roll != 0 */

/* declare Thrust */

real_T ThrustL = 0.0;

real_T ThrustR = 0.0;

real_T CtL = 0.0;

real_T CtR = 0.0;

real_T lambdaL = 0.0;

real_T lambdaR = 0.0;

/* declare normalized velocities */

real_T mu_zL = 0.0;

real_T mu_zR = 0.0;

real_T mu_L = 0.0;

real_T mu_R = 0.0;

real_T temp_OR_L = 0.0;

real_T temp_OR_R = 0.0;

/* inputs */

double u_left = U(OMEGAL);

double u_right = U(OMEGAR);

/* other variables */

double cPhi = cos(x[PHI]);
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double sPhi = sin(x[PHI]);

double cTheta = cos(x[THETA]);

double sTheta = sin(x[THETA]);

/* define normalized velocities */

temp_OR_L = 1/((u_left + 0.1)*R_rotor);

temp_OR_R = 1/((u_right + 0.1)*R_rotor);

mu_zL = temp_OR_L*(-x[DPSI]*cTheta*sPhi*L-x[DTHETA]*cPhi*L - x[DPHI]*l_h);

mu_zR = temp_OR_R*(-x[DPSI]*cTheta*sPhi*L-x[DTHETA]*cPhi*L + x[DPHI]*l_h);

mu_L = temp_OR_L*( x[DPSI]*cTheta*cPhi*L-x[DTHETA]*sPhi);

mu_R = temp_OR_R*( x[DPSI]*cTheta*cPhi*L-x[DTHETA]*sPhi);

/* find Thrust */

doThrustInflowIteration (&CtL,&lambdaL,mu_L,mu_zL,theta0,theta_tw,sigma,a0)

doThrustInflowIteration (&CtR,&lambdaR,mu_R,mu_zR,theta0,theta_tw,sigma,a0)

ThrustL = CtL*rho*u_left*u_left*R_rotor*R_rotor*R_rotor*R_rotor*PI;

ThrustR = CtR*rho*u_right*u_right*R_rotor*R_rotor*R_rotor*R_rotor*PI;

/* find derivatives */

dx[THETA] = x[DTHETA];

dx[PHI] = x[DPHI];

dx[PSI] = x[DPSI];

dx[DTHETA] = 1/Jyy*((ThrustL + ThrustR)*L*cPhi -

mass_all*g*pend_beam*sin(x[THETA] + thetaNeutral));

dx[DPHI] = 1/Jxx*((ThrustL - ThrustR)*l_h - m_rotors*g*pend_rotors*sPhi);

dx[DPSI] = 1/Jzz*((ThrustL + ThrustR)*L*sPhi*cTheta +

(ThrustR - ThrustL)*l_h*sPhi*sTheta -

0.5*rho*(x[DPSI]*L)*(x[DPSI]*L)*Cd*(SrfA0 + SrfA*sPhi));

}

static int_T doThrustInflowIteration (real_T *CT,/* Thrust coefficient */

real_T *lambda0, /* Inflow coefficient */

real_T mi, /* Advance ratio */

real_T mi_z, /* normalized w */

real_T theta0, /* collective pitch */

real_T theta_tw, /* blade twist */

real_T s, /* rotor solidity */

real_T a0) /* rotor blade C_{L_\alpha} */

{

/* the following is based mainly on:

G.D. Padfield: ‘‘Helicopter Flight Dynamics: The Theory and Application

of Flying Qualities and Simulation Modeling’’, page 123 */

static const real_T SOLVEGAIN = 0.6; /* Stabil. gain for NR iteration */

static const int_T MAXIT = 1000; /* max number of iterations */

static const real_T DLAMBDA0 = 1.e-8;/* maxError (~ 1% lambda0 hover) */

int_T it; /* iteration counter */
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real_T oldlambda = *lambda0; /* used for convergence test */

real_T h, Lambda, sqrtLambda; /* funcsdefined in Padfield, pg. 123 */

for (it = 0; it < MAXIT; it++)

{

Lambda = mi * mi + (*lambda0 - mi_z) * (*lambda0 - mi_z);

/* avoid singularity close to vortex ring state (lambda==mi_z) */

if (Lambda < TINYLAMBDA) Lambda = TINYLAMBDA;

sqrtLambda = sqrt (Lambda);

*CT = a0 * s / 2 * (theta0 * (1. / 3. + mi * mi / 2) +

(mi_z - *lambda0) / 2. +

(1 + mi * mi) * theta_tw / 4.);

/* NOTE: in the above formula (Padfield eq. 3.157, pg. 123),

the term in theta1_sw and p_w has been neglected

(second order terms, and a contribution that is not

directed along the normal of the rotor disk anyway...) */

h = -(2 * (*lambda0) * sqrtLambda - (*CT)) /

(2 * sqrtLambda + a0 * s / 4 - (*CT) / Lambda

* (mi_z - (*lambda0)));

*lambda0 += SOLVEGAIN * h;

if (fabs (*lambda0 - oldlambda) < DLAMBDA0) /* if converged... */

break; /* exit the loop */

oldlambda = *lambda0;

}

/* update CT to the best estimate */

*CT =

a0 * s / 2 * (theta0 * (1. / 3. + mi * mi / 2) + (mi_z - *lambda0) / 2.

+ (1 + mi * mi) * theta_tw / 4.);

return it;/* if equal to MAXINT, then didn’t have convergence at all!*/

}

/* Function: mdlTerminate =================================================

*/

static void mdlTerminate(SimStruct *S)

{

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include ‘‘simulink.c’’ /* MEX-file interface mechanism */

#else

#include ‘‘cg_sfun.h’’ /* Code generation registration function */

#endif
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Appendix B

Linearized Model:

The state is given by
x = [θ ψ φ θ̇ ψ̇ φ̇]T (B.1)

and the input is given by
u = [Ωsum Ωdiff ]T (B.2)

where Ωsum = ΩL+ΩR

2
and Ωdiff = ΩL−ΩR

2
.

Then ẋ = Ax + Bu is given by

A =

















0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000

−0.5264 0 0 −0.0810 0.0027 0
0 0 0.2129 0 0 0
0 0 −1.4150 0 0 −0.3486

















B =

















0 0
0 0
0 0

0.0027 0
0 0
0 0.0209

















eig(A) =

















0
−0.0405 + 0.7244j
−0.0405 − 0.7244j
−0.1743 + 1.1767j
−0.1743 − 1.1767j

−0.0000

















This linear model was obtained by manually linearizing the nonlinear model. It is also
possible to obtain the linearized model using the linmod function in MATLAB.
As can be seen in the eigenvalues plots, the linear CIFER model directly captures the motor
poles. The linearized model derived using basic physical principles captures motor poles
indirectly through the lookup table which describes the relationship between the frequencies
of revolution of the motors and the voltages applied to them.
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Linear Model using CIFER:

The state is given by
x = [ψ ψ̇ φ φ̇ θ θ̇ τcyc τcoll]

T (B.3)

and the input is given by
u = [Vcyc Vcoll]

T (B.4)

Then ẋ = Ax + Bu is given by

A =

























0 1.0000 0 0 0 0 0 0
0 −0.2517 0.1671 0 0 0 0 0
0 0 0 1.0000 0 0 0 0
0 0 −1.4220 −0.3260 0 0 16.2000 0
0 0 0 0 0 1.0000 0 0
0 0 0 0 −0.5544 −0.1008 0 1.34
0 0 0 0 0 0 −7.3200 0
0 0 0 0 0 0 0 −6.16

























B =

























0 0
0 0
0 0
0 0
0 0
0 0

0.9500 0
0 1.4000

























eig(A) =

























0
−0.2517

−0.1630 + 1.1813j
−0.1630 − 1.1813j
−0.0504 + 0.7429j
−0.0504 − 0.7429j

−7.3200
−6.1600
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Figure B-1: eig(ALinearized)
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Figure B-2: eig(ACIFER)
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Appendix C

LQR controller for θ and ψ̇:

The augmented state is given by

x̄ = [θ φ θ̇ ψ̇ φ̇ θi Vi]
T (C.1)

where where θ̇i = θcmd − θ and V̇i = ψ̇cmd − ψ̇. The input is given by

u = [Ωsum Ωdiff ]T (C.2)

where Ωsum = ΩL+ΩR

2
and Ωdiff = ΩL−ΩR

2
.

Then ˙̄x = Āx̄ + B̄ū is given by

Ā =





















0 0 1.0000 0 0 0 0
0 0 0 0 1.0000 0 0

−0.5264 0 −0.0810 0.0027 0 0 0
0 0.2129 0 0 0 0 0
0 −1.4150 0 0 −0.3486 0 0

−1.0000 0 0 0 0 0 0
0 0 0 −1.0000 0 0 0





















B̄ =





















0 0
0 0

0.0027 0
0 0
0 0.0209
0 0
0 0





















Set initial R:

R =

(

ū−2
1 0

0 ū−2
2

)

where ū1 = 10 and ū2 = 10.
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Set initial Q using Bryson’s rule [3]:

Q =

























θ̄−2 0 0 0 0 0 0
0 φ̄−2 0 0 0 0 0

0 0 ˙̄θ
−2

0 0 0 0

0 0 0 ˙̄ψ−2 0 0 0

0 0 0 0 ˙̄φ−2 0 0

0 0 0 0 0 θ̄−2
i 0

0 0 0 0 0 0 V̄ −2
i 0

























where initial Q is given by:

θ̄ = 0.14 [rad] ≡ spring

φ̄ = 0.07 [rad] ≡ spring

˙̄θ = π [rad/sec] ≡ dashpot

˙̄ψ = π/2 [rad/sec] ≡ dashpot

˙̄φ = π/4 [rad/sec] ≡ dashpot

θ̄i = 0.7 [radsec] ≡ θsteady state

V̄i = 10 [rad] ≡ ψ̇steady state

after playing with the controller in MATLAB to get desirable closed loop properties, the
final parameters in Q are as follows:

θ̄ = 0.14 [rad]

φ̄ = 0.49 [rad]

˙̄θ = 0.3142 [rad/sec]

˙̄ψ = 3.14 [rad/sec]

˙̄φ = 1.3352 [rad/sec]

θ̄i = 0.3 [radsec]

V̄i = 0.5
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Using MATLAB’s [K] = lqr(A bar, B bar, 100*diag(Q), R), one obtains the following K:

K =

(

865.1398 0.0531 828.3765 0.9939 0.0057 −333.3333 −0.0117
−0.1474 245.7066 0.0437 768.0719 154.8216 0.0195 −200.0000

)

and MATLAB’s damp(A bar - B bar*K) produces the following:

























Eigenvalue Damping Freq.(rad/s)
−3.15e − 01 + 3.14e − 01i 7.08e − 01 4.45e − 01
−3.15e − 01 − 3.14e − 01i 7.08e − 01 4.45e − 01
−4.45e − 01 + 0.00e + 00i 1.00e + 00 4.45e − 01
−9.48e − 01 + 1.07e + 00i 6.63e − 01 1.43e + 00
−9.48e − 01 − 1.07e + 00i 6.63e − 01 1.43e + 00
−1.48e + 00 + 1.52e + 00i 6.97e − 01 2.12e + 00
−1.48e + 00 − 1.52e + 00i 6.97e − 01 2.12e + 00

























The closed loop eigenvalues are shown in Figure C-1.
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Figure C-1: eig(Ā − B̄K)
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Appendix E

The compiled response to the questionnaire is presented below. The numbers have been
averaged for presentation. Six remote laboratory students submitted the survey, and ten
traditional laboratory users submitted the survey. In Table E.1 we present the mean and
standard deviation of the data for the remote and traditional laboratories. The complete
survey responses are presented in the next two sections.

Table E.1: Student Responses to Post-Lab Survey
Question # RemMean TradMean RemStDev TradStDev

1 Yes Yes N/A N/A

2 N/A N/A N/A N/A

3 4.8 5.4 1.1 3.2

4 1.3 4.2 0.7 2.0

5 4.2 4.1 3.2 2.2

6 2.5 3.3 1.1 1.7

7 4.3 3.4 1.7 1.7

8 4.3 4.5 1.6 1.6

9 5.2 4.2 0.7 1.9

10 4.0 2.1 1.8 1.6

11 3.7 1.5 1.5 0.8

12 1.2 2.3 0.4 1.5

13 1.7 3.1 0.7 1.6

14 4.3 3.2 1.5 1.5

15 5.2 2.3 1.5 1.0

16 9.7∗ 3.5 7.5 5.9

17 0.2 7.9 0.4 7.4

18 5.0 4.5 0.7 1.7

19 4.8 4.6 1.3 1.7

20 4.3 4.6 0.7 1.6

21 2.3 2.5 1.8 1.6

∗: As was mentioned in Chapter 5, this question was misinterpreted by the students. They
thought we had asked how many times the supervisor took over the control before the
stops were hit. Oral feedback provided by students indicates that, on average, the 3DOF
helicopter hit the stops about 1.5 times while doing the remote laboratory assignment.

The actual questionnaire is presented on the next page.
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Massachusetts Institute of Technology
Department of Aeronautics and Astronautics

16.30 Estimation and Control of Aerospace Systems
Spring 2004: Post Quanser Lab Questionnaire

Please, fill out the following questionnaire and submit it with your lab report.

DO NOT put your name on this questionnaire (unless you really want to):

1. Have you used Quanser in your other classes prior to 16.30?

Yes No

2. For 16.30, which lab did you do:

Web lab Regular Lab

3. How much time did you spend to collect data for the identification part of the lab?

4. For the identification experiment, was it easy to initialize the Quanser (bring it to
hover)?

Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

5. How much time did you spend in the actual lab working on your controller?

6. How accurately did you follow the healthy controller design procedure of:
(1) obtaining a linear model
(2) designing the controller
(3) testing the controller using the model
(4) testing the controller on the actual equipment

Extremely Closely 1 2 3 4 5 6 7 Quite Loosely

7. How easy was it to access the actual equipment?

Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

8. Were the lab requirements easy to understand?

Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

9. Is it easy to do the lab without staff support and presence during the sessions?

Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

10. How easy was it to figure out which files should be used to run the lab?

Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

11. How easy was it to understand how to change input parameters?

64



Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

12. How easy was it to turn on the data displays (plots of angles and rates)?

Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

13. How easy was it to manipulate the data displays?

Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

14. How easy was it to understand the instructions on running the machine?

Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

15. How easy was it to implement your controller in the final Simulink diagram?

Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

16. How many times did your Quanser hit the stops/table because of your controller
design?

17. How many times did you hard land the machine on the table after finishing the
experiment?

18. If you worked with a partner, how easy would it have been to perform the identification
lab on your own?

Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

19. What about the controller design lab?

Extremely Easy 1 2 3 4 5 6 7 Extremely Difficult

20. How did you find the overall lab experience?

Dull 1 2 3 4 5 6 7 Stimulating

21. How did you find the overall lab experience?

Frustrating 1 2 3 4 5 6 7 Satisfying

22. Please, write below any additional comments about the lab and your experiences:
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E.1 Survey results for the remote laboratory users

Table E.2: Survey results for the remote lab
Question # #1 #2 #3 #4 #5 #6

1 Yes Yes Yes Yes Yes Yes

2 N/A N/A N/A N/A N/A N/A

3 4 4 4 5.5 4 7

4 1 1 1 3 1 1

5 6 10 2 1 1 5

6 3 4 3 1 3 1

7 2 6 3 6 6 3

8 4 5 5 2 7 3

9 6 5 5 6 5 4

10 5 2 3 2 7 5

11 2 3 4 2 5 6

12 1 1 1 2 1 1

13 1 1 2 2 3 1

14 3 3 5 7 3 5

15 5 5 3 7 7 4

16 2 7 6 20 20 3

17 0 N/A 1 N/A 0 0

18 5 6 5 N/A N/A 4

19 4 6 6 N/A N/A 3

20 4 4 4 6 4 4

21 3 2 1 1 1 6

Responses to Question 22:

• Weblab failed a few times → very frustrating, otherwise very useful and convenient.
Many thanks to Masha. The Quanser hit the stops 2 times, could not test disturbance
rejection (the system took over before collision).

• Purpose of lab should be more straight forward. Shorter, quicker examples. Shorter,
but more labs would be better for me.

• Be very clear about what units all the numbers are in, please. Deg, rad, volt, times
10? This cost us hours.

• WebLab units not consistent. Roll/travel controller not good enough. Simulink di-
agram made no sense. Weblab access (windows only, java version, scheduling) frus-
trating.

• It would be nice if we could script the data collection, so students wouldn’t sit for
7 hours collecting data. Notes on how many data sets should be sufficient to get a
reasonable model would be nice. The ability to resize the graphs so we can better see
the transient response of the system. Wider angle camera. Better description of the
input fields and how to make a working Simulink controller(i.e. we input degrees not
volts when designing the controller).
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• The lab experience overall was somewhat frustrating, not because of any problems
with the equipment (other than units), but only because it took such a long time
(we spent about 20 hours in the lab — this included performing our analyses, but
did not include writing our reports). Our time spent may have been above average
because it took me longer than expected to develop the Mathematica scripts we used
for processing our data. We also spent a long time trying to figure out why the
observed compensated system behavior was different from our predictions, without
success. In general, the web set-up was very well done, and the lab directions were
clear. The general idea of the lab was also fun and interesting.
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E.2 Survey results for the traditional laboratory users

Table E.3: Survey results for the traditional lab
Question # #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 10 10 3.5 3 5 2.5 10 3.5 5 1.5

4 1 3 6 2 4 7 5 6 6 2

5 5 1 8.5 2 3 5.5 5 6 3 1.5

6 2 2 3 4 2 6 1 5 2 6

7 5 3 4 2 6 6 3 3 1 1

8 6 4 4 2 7 5 4 5 6 2

9 6 5 3 3 1 6 5 6 6 1

10 1 2 5 1 5 1 3 1 1 1

11 1 1 1 1 1 3 3 2 1 1

12 1 2 5 2 1 5 3 2 1 1

13 1 2 6 2 3 6 3 3 3 2

14 4 2 5 1 2 5 3 4 5 1

15 1 2 2 2 2 3 4 4 2 1

16 5.5 0 2 0 1 5 20 1 0 0

17 20 3 20 1 5 3 1 15 10 1

18 3 N/A 4 2 6 7 5 N/A N/A N/A

19 2 N/A 4 3 6 7 5.5 N/A N/A N/A

20 5 6 5 6 1 6 3 4 4 6

21 1 2.5 2 5 N/A 1 3 2 2 6

Responses to Question 22:

• TAs should be present in the lab more often. Lab should be open after 5pm. Instruc-
tion sheet should be much clearer, clearly bulleting the needed data, what’s going to
be graded. Instruction sheet should be more step by step, not in machine operation,
but in outlining what exactly needs to be done to properly complete the lab.

• It was good time for a first iteration of a controller design – not enough time or
opportunities to ask for help to IMPROVE first design.

• Hard landed machine on the table almost every time – damn thing needs landing gear,
without a partner it’s hard to avoid this. Cool project, pain in the ass to carry out.

• The total time I’ve spent on this lab has been something close to over twenty hours.
As this is a twelve unit class, that may want to be considered. Another option would
be to not have the lab be due on a week when most people have midterms. In general,
there need to be better directions, and more office hours for help. If something is done
incorrectly in this lab, the error propagates through the results, causing the need to
go back and redo previous portions of the lab. Thus it is important for students to
have the ability to ask questions and show data in person.

68



• Clearer instructions would be helpful, such as plot Input with output!!! Don’t have
TA’s office hours at beginning of week.

• Would help to have a staff member downstairs giving a tutorial or something before
the actual lab.

• Didn’t work with partner. I really enjoyed playing with the Quanser and felt that the
lab was interesting and educational. However, this lab was in fact almost identical
to what we did in 16.060 (except that we characterized pitch instead of elevation in
.060). I would have liked to develop a more sophisticated controller for the lab, such
as one that would simultaneously control all 3 degrees of freedom.
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Appendix F

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Aeronautics and Astronautics

16.30: Estimation and Control of Aerospace Systems
Spring 2004

Remote Lab 1: Elevation Dynamics and Control
Due: 03/15/2004

Objective

The objectives of this lab are:

1. To use a collective motor voltage to experimentally determine the plant transfer func-
tion for the elevation axis of the Quanser from both step response and frequency
response characteristics.

2. To design a controller for the elevation axis which achieves bandwidth of about 3
rad/sec and phase margin of at least 45◦ with no steady state error.

3. To implement the controller and compare its performance to that of he open loop
system in terms of step response characteristics and disturbance rejection.

Administrative

You can do this lab individually or with one partner. Should you have any questions, e-mail
ishut@mit.edu.

Introduction

Quanser helicopter is a mechanical device that essentially emulates the flight of a reduced
degree of freedom (DOF) helicopter. Instead of the usual six DOF of a free-flying helicopter,
the Quanser only exhibits three: the roll motion φ, the elevation motion θ, and the travel
motion ψ. The Quanser system is actuated by two rotors and the inputs to the system
are Vcyc, which is an electric voltage that results in differential change in the two rotor
speeds, and Vcol, which is an electric voltage that controls the speed of the two propellers
collectively. The voltage is limited to 3 volts. The outputs of the system are the three
angles: the roll φ, the elevation θ, and the travel ψ. Please keep the limits of the system in
mind, in particular, the voltage is limited to [−3, 3] Volts, pitch motion should be limited
to [−40◦, 40◦], the elevation motion should be limited to [−15◦, 25◦].
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Getting Started to do Identification

1. You should install Java (http://java.sun.com/products/archive/j2se/1.4.0 03/). The
camera does not work with Java 1.4.2 so if you have that version, uninstall it and
install Java 1.4.0. It is best to use Internet Explorer. Now, make sure you can
see Java applets. You might want to check if you can see the camera by going to
http://webchopper.mit.edu/javacampush. The experiment is set-up to run only from
MIT IP addresses, let ishut@mit.edu know if that is problem.

2. Connect to http://webchopper.mit.edu, click run experiment, then here. You’ll be
taken to the University of Siena interface, scroll down to the 3DOF Helicopter exper-
iment.

3. Click ”Control Experiment”. Enter appropriate personal data, and click ”Identifica-
tion” → ”Run Experiment”.

4. Unless there is a “Process Busy” message, which means someone else is using the
machine, a java window should pop up. On the right you should have a camera
window, if it is showing “Loading...Please Wait...”, right click your mouse and choose
“Restart”.

5. This experiment has been set up for you to collect open loop data by applying Vcol

and Vcyc. The collective voltage for the identification is limited to [-0.2, 0.3] volts,
and the cyclic voltage is limited to +/- 0.2 volts. For this lab, you will only be
changing the Vcol. You can apply either a Step input, or a Sine input, do not forget
to click “Update Reference” if you want changes to take effect. For you information,
at hover, Vcol = 1.55 volts. In the Sine input options, Frequency has units of Hertz
(1 Hz = 6.28 rad/sec), and Center is the offset of the sine on the y-axis. In order to
keep the Quanser from swinging in the roll, you have an option to turn on a “Roll
Controller” by changing “Reference Panel” → “Roll Cont” → “Step Value” to some
nonzero number.

6. Click “Start Experiment”. It takes 30 seconds for the experiment to initialize. Click
on “Reference Panel” → “Show”, here you can change your inputs. To see the output
click on the appropriate box in the Graphics Panel. Note that when the supervisor
control is on (plot shows 1), such as during initialization, stopping or when it overrides
the user’s actions, the outputs are shown to be zero. For visualization purposes, the
reference input’s amplitude has been multiplied by 10 and all the angles have units of
degrees.

7. When you are done, click ”End Session”. You can save the outputs for later plotting
in Matlab in either .mat or .zip format. You can follow these commands to plot the
results:

• load filename.mat

• who

• plot(rt tout, rt ElevationOutput);

All the angles here have units of radians. Note that the time to do an individual exper-
iment is limited to 5 minutes. Also, if the helicopter approaches its safety boundaries,
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a supervisor controller turns on and shuts off your experiment, so you will have to
start over.

Getting Started to test Controller

There are two ways to test your controller. The first one is using the predefined PID con-
troller, where you just input Proportional, Integral, and Derivative gains for the elevation.
The second one is by downloading your own controller designed in Simulink, you can also
set that one up to change gains in real time.

Predefined PID

1. Before you plug in your controller, you should test it with the developed transfer
function in Simulink.

2. If you choose to use a PID controller. Follow the links to the “Control Experiment”,
but now click “Run Experiment” for the “Elevation PID Controller”.

3. Unless there is a “Process Busy” message, which means someone else is using the
machine, a java window should pop up. On the right you should have a camera
window, if it is showing “Loading...Please Wait...”, right click your mouse and choose
“Restart”.

4. Click “Start Experiment”. After 30 second initialization, a pre-set PID controller is
turned on, you can change the appropriate gains by opening “Parameters Panel”. Do
not forget to click “Update Reference” if you want changes to take effect. In the
“Reference Panel” you can choose an appropriate input, the units are in degrees (they
are internally converted to radians). Here, you also have an option of turning on the
Roll Controller by changing “Reference Panel” → “Roll Cont” → “Step Value” to
some nonzero number. You can see if the “Roll Cont” in on (on = 1) by clicking
on “Roll Control” button in the Graphics Panel. To see the output click on the
appropriate box in the Graphics Panel. Note that when the supervisor control is
on, such as during initialization, stopping or when it overrides the user’s actions, the
outputs are shown to be zero.

5. When you are done, click ”End Session”. You can save the outputs for later plotting
in Matlab in either .mat or .zip format. Note that the time to do an individual
experiment is limited to 5 minutes.

User-defined Elevation Controller

1. Before you plug in your controller, you should test it with the developed transfer
function in Simulink.

2. If you choose not to use a PID controller. Follow the links to the “Control Ex-
periment”. To the left of the “Elevation PID Controller” you will see “Download
Model”, download the model onto your hard drive and modify it with your controller
in Simulink. Remember that angles are measured in radians. If you want to mod-
ify some parameters real time, give them names in the form of ACT TP Var Name,
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the way it is done in the template file. It IS case-sensitive.Save it as a Simulink
3.0 version. Now go back to that page and upload your controller into “Controller
Model” field. “Controller Data” should be left blank, and the “Sample time” should
be set to 10 msec. Press “Send Controller”. It takes some time for you controller to
compile.

3. Click “Start Experiment”. After 30 second initialization, you controller is turned on.

Lab Procedure

1. Obtain and record the open-loop step response of the transfer function from the motor
collective voltage to the elevation. From this data, identify the transfer function as
well as you can.

2. Obtain experimental steady-state frequency response data to produce a Bode mag-
nitude and phase plots for the transfer function from the motor collective voltage to
the elevation angle. Since you don’t get perfect sinusoids and you can’t make perfect
measurements, at each frequency, you should have a range of possible magnitudes and
a range of possible phases. In getting the frequency response, let the system come to
steady state at each frequency you try. You may want to run your signals through
gains and/or summers with offset constants so that you can get the input and the
output at the same magnitude and offset on the same plot in order to make a good
phase measurement. Pick your frequencies wisely; start at dc, then 0.03 Hz and up.
Please remember that the amplification of the plant is different at different frequen-
cies. Pick the size of your inputs large enough to see the output easily (10-15 degrees
is good).

3. Design a controller for the elevation axis that achieves a bandwidth of about 3 rad/sec
and phase margin of at least 45◦ with no steady state error. Test your controller by
making a Simulink simulation of your plant and the controller. Finally, implement
your controller on the plant. Obtain and record the response of the elevation of your
controlled system to a step command input of a change in elevation. Obtain and record
the step response of the elevation of your controlled system to a step disturbance at
the controller output or plant input.

Post Processing, Requirements and Write-up

• The write-up should be clear and concise. Include graphs or tables of your data as
appropriate.

• Include the final model obtained using the open loop step response and the model
obtained using frequency identification. Compare the performance of controlled sys-
tem to the response of the open loop system. Compare the response of the controlled
system to the one simulated.
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Appendix G

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Aeronautics and Astronautics

16.30: Estimation and Control of Aerospace Systems
Spring 2004

Traditional Lab 1: Elevation Dynamics and Control
Due: 03/15/2004

Objective

The objectives of this lab are:

1. To use a collective motor voltage to experimentally determine the plant transfer func-
tion for the elevation axis of the Quanser from both step response and frequency
response characteristics.

2. To design a controller for the elevation axis which achieves bandwidth of about 3
rad/sec and phase margin of at least 45◦ with no steady state error.

3. To implement the controller and compare its performance to that of the open loop
system in terms of step response characteristics and disturbance rejection.

Administrative

The machines are located in the lab in Room 33-017. The lab is open 9am-5pm weekdays.
There will be a TA available for you on Monday 3-5pm downstairs in the lab to answer any
questions. You can do this lab individually or wi th one partner.

Introduction

Quanser helicopter is a mechanical device that essentially emulates the flight of a reduced
degree of freedom (DOF) helicopter. Instead of the usual six DOF of a free-flying helicopter,
the Quanser only exhibits three: the roll/pitch motion φ, the elevation motion θ, and the
travel motion ψ. The Quanser system is actuated by two rotors and the inputs to the
system are Vcyc, which is an electric voltage that results in differential change in the two
rotor speeds, and Vcol, which is an electric voltage that controls the speed of the two
propellers collectively. The outputs of the system are the three angles: the pitch φ, the
elevation θ, and the travel ψ. For this lab, you are going to be working with the elevation
mode. Please keep the limits of the system in mind, in particular, the voltage is limited to
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[−5, 5] Volts, pitch motion should be limited to [−40◦, 40◦], the physical limits on elevation
are [−25◦, 30◦].

Getting Started on Computer

1. On the computer, make yourself a directory in C:/MATLAB6p1/work/16.30/. Copy
the files lab1 ident.mdl and lab1 ctrl.mdl to your directory. IMPORTANT NOTE: at
the end of the lab session, you should save all of your work to a floppy disk (or scp it
to your Athena account) and clean out the directory on the hard drive. You only need
to save your .mdl files and your data. Simulink creates a lot of runtime files that you
don’t need to save. IF YOU LEAVE YOUR FILES ON THE HARD DRIVE THEY
MAY BE DELETED.

2. Make sure you are working in your own directory. Double click on lab1 ident.mdl
to start Matlab. You should see the beginnings of a Simulink model appear. The
“Quanser Subsystem” block is the computer’s interface to the Quanser. It applies
the given voltages to the two engines and reads the elevation angle in radians. Be
aware that the Quanser takes all measurements to be zero when you click Run. The
elevation angle has been adjusted so that it reads zero at hover if you start on the
table.

3. You will need to use step and sine inputs to obtain the model. Work with the
file lab1 ident.mdl. Obtain the corresponding input blocks in the Simulink Library
Browser → Sources → Step and adjust parameters accordingly. Click OK. Connect
the blocks to the Collective voltage inputs. The hover voltage has been set for you
to keep the Quanser horizontal. You are also given an option to turn on a Pitch
Controller in order to keep the Quanser from swinging. To do that double-click on
the “Quanser Subsytem” block and check off the box for the “Turn on the Pitch
Controller”.

4. Build the Simulink model by choosing Tools/Real Time Workshop/Build (or Ctrl-B).

5. Before you start your system, set up your scope to capture the data. In the WinCon
Server window choose Plot/New/Scope. Open the ’Elevation’ folder. The measure-
ments are done in radians. In the Axis menu of the scope plot choose Auto Scaled.
In the Update menu, choose Real time and choose Buffer, set it to the time you want
to run the experiment.

6. Press Run and record the response. After the Quanser reaches a steady state, go to
Update- Freeze Plot. You can now save the data to the Matlab workspace by choosing
’File/Save/Save to Workspace’. Or you can press Stop and save the data as before.

7. The plot data is now stored in Matlab. To see its name, type who at the Matlab
prompt. Two arrays have been created: PLOT TIME stores the x-axis (time) and
lab1 elev rad stores the y-axis (elev angle). We need to save the data to a different
Matlab variable. We also need to truncate the vector (so that all of our responses are
the same length). We will keep the first 25,000 elements of the response. To rename
lab1 elev rad to STEP1 and truncate, type ’STEP1 = lab1 elev rad (1:25000,1);’ at
the Matlab prompt. Note that your plot data may have a slightly different name.
Plot the response in Matlab: ’plot(PLOT TIME, STEP1)’.
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8. To implement your controller, you might want to use lab1 ctrl.mdl file and modify
it accordingly. Again, you have an option to turn on the Pitch Controller by double
clicking on the “Quanser Subsystem”.

Lab Procedure

1. Record the number of the machine and the position of the counterweight. Should
anything go wrong, apply the kill switch, i.e. flip the lighted button on the table.

2. Turn on the machine so that it is at hover, always start on the table to ensure that
the angle is zero when the arm is horizontal.

3. Obtain and record the open-loop step response of the transfer function from the motor
collective voltage to the elevation. From this data, identify the transfer function as
well as you can.

4. Obtain experimental steady-state frequency response data to produce a Bode mag-
nitude and phase plots for the transfer function from the motor collective voltage to
the elevation angle. Since you don’t get perfect sinusoids and you can’t make perfect
measurements, at each frequency, you should have a range of possible magnitudes and
a range of possible phases. In getting the frequency response, let the system come to
steady state at each frequency you try. You may want to run your signals through
gains and/or summers with offset constants so that you can get the input and the
output at the same magnitude and offset on the same plot in order to make a good
phase measurement. Pick your frequencies wisely; start at dc, then 0.3 rad/sec and
up. Please remember that the amplification of the plant is different at different fre-
quencies. Pick the size of your inputs large enough to see the output easily (10-15
degrees is good).

5. Design a controller for the elevation axis that achieves a bandwidth of about 3 rad/sec
and phase margin of at least 45◦ with no steady state error. Test your controller by
making a Simulink simulation of your plant and the controller. Finally, implement
your controller on the plant. Obtain and record the response of the elevation of your
controlled system to a step command input of a change in elevation. Obtain and record
the step response of the elevation of your controlled system to a step disturbance at
the controller output or plant input.

Post Processing, Requirements and Write-up

• The write-up should be clear and concise. Include graphs or tables of your data as
appropriate.

• Include the final model obtained using the open loop step response and the model
obtained using frequency identification. Compare the performance of controlled sys-
tem to the response of the open loop system. Compare the response of the controlled
system to the one simulated.
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