

A Meta-language for Systems Architecting
by

Hsueh-Yung Benjamin Koo

M.S. in Engineering Systems and Management

Massachusetts Institute of Technology, 2001

Submitted to the Engineering Systems Division
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2005

© 2005 Hsueh-Yung Benjamin Koo. All rights reserved

Author……………………………………………………………………………………………...................

Engineering Systems Division
January 31, 2005

Certified by………………………………………………………………………………..............................

Edward F. Crawley
Professor of Aeronautics and Astronautics and Engineering Systems

Thesis Supervisor

Certified by………………………………………………………………………………..............................
Christopher Magee

Professor of the Practice of Engineering Systems and Mechanical Engineering
Thesis Advisor

Certified by………………………………………………………………………………..............................
Dov Dori

Associate Professor of Industrial Engineering, Technion, Israel Institute of Technology
Thesis Advisor

Certified by………………………………………………………………………………..............................

Olivier L. de Weck
Assistant Professor of Aeronautics and Astronautics and Engineering Systems

Thesis Advisor

Accepted by……………………………………………………………………………….............................
Richard de Neufville

Professor of Civil and Environmental Engineering and Engineering Systems
Chair, Engineering Systems Division Education Committee

A Meta-language for Systems Architecting
by

Hsueh-Yung Benjamin Koo

Submitted to the Engineering Systems Division
on January 31, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The aim of this research is to design an executable meta-language that supports system architects’
modeling process by automating certain model construction, manipulation and simulation tasks. This
language specifically addresses the needs in systematically communicating architects’ intent with a wide
range of stakeholders and to organize knowledge from various domains. Our investigation into existing
architecting approaches and technologies has pointed out the need to develop a simple and intuitive, yet
formal language, that expresses multiple layers of abstractions, provides reflexive knowledge about the
models, mechanizes data exchange and manipulation, while allowing integration with legacy
infrastructures. A small set of linguistic primitives, stateful objects and processes that transform them
were identified as both required and sufficient building blocks of the meta-language, specified as an
Object-Process Network (OPN). To demonstrate the applicability of OPN, a software environment has
been developed and applied to define meta-models of large-scale complex system architectures such as
space transportation systems.

OPN provides three supporting aspects of architectural modeling. As a declarative language, OPN
provides a diagrammatic formal language to help architects specify the space of architectural options. As
an imperative language, OPN automates the process of creating architectural option instances and
computes associated performance metrics for those instances. As a simulation language, OPN uses a
function-algebraic model to subsume and compose discrete, continuous, and probabilistic events within
one unified execution engine.

To demonstrate its practical value in large-scale engineering systems, the research applied OPN to two
space exploration programs and one aircraft design problem. In our experiments, OPN was able to
significantly change the modeling and architectural reasoning process by automating a number of manual
model construction, manipulation, and simulation tasks.

Thesis Supervisor: Edward Crawley

Thesis Advisor: Christopher Magee

Thesis Advisor: Dov Dori

Thesis Advisor: Olivier de Weck

Financial assistance provided by: the Charles Stark Draper Laboratory, Inc. and NASA.

Acknowledgement

My deepest gratitude goes to Prof. Edward Crawley whose inexhaustible ideas and energy fueled the
development of this thesis. He also taught me how to think on my feet and survive in this fertile and often
overwhelming research area. The concepts of an abstract and flexible meta-language and executable
software tool as described in this thesis would not have taken a concrete form without his unwavering
support in this extremely risky project. Due to his contribution, members of our research team have often
attached his name to the executable meta-language: Crawley Machine.
Prof. Dov Dori, inventor of Object Process Methodology (OPM), whose pioneering work on a domain-
neutral bi-modal language framework paved the road for my research. He was also my masters’ thesis
advisor, which eventually led to the development of my research work in the doctoral program. Prof. Dori
has not only served as a thesis advisor, he has also created many important career development
opportunities for me. I am extremely grateful for his support in work and in life.
Prof. Chris Magee led me to demonstrate the practical value of my research. His wisdom helped me see
the philosophical foundation of my research in a different light. His vision into the practical use of my
work helped me develop a more intuitive articulation of architectural reasoning.
Thanks also go to Prof. Daniel Hastings, Prof. Paul Carlile, and Prof. Olivier de Weck. These professors
went out of their ways to get me admitted as one of the students in the pilot doctoral program at the
Engineering Systems Division. During my doctoral studies, they actively formulated many educational
opportunities that are particularly beneficial to my intellectual development.
The experimental knowledge about two of the case studies are provided by Dr. Robert C. Seamans and
Mr. Willard Simmons. Dr. Seamans went through the historical account of the Apollo Program and gave
me access to valuable documents that would not be easily attainable. Mr. Simmons applied the untested
software tool and helped me develop the computational techniques to better demonstrate the practical
value of my work. Mr. Christopher Fry’s work on the first software prototype gave me significant support
in developing the technologies that ultimately lead to the development of the software tool documented in
this thesis.
Mr. Jay Conne and Dr. Geilson Lorero offered epistemological insights and expertise in system
engineering to better organize my thesis. Their ongoing efforts to identify potential applications of OPN
inspired my further understanding of the issues and its potential for practical uses.
Many people reviewed the drafts of my thesis. They provided many useful and insightful comments. They
are David Loda, Dr. Roger Chang, Jason Cawley, Ryan Boas, Matt Silver, Elim Qiu, Russ Wertenberg,
Annie-Pierre Hurd, Charlie Stromeyer, Daniel Krech, and Chun-Ming Yang.
I am also grateful to many friends who devoted their personal time to help me on both intellectual and
personal levels. It is their support that got me through the hurdles during the years in my doctoral study.
Beside the names mentioned above, they include: Liu Chih-Hung, Peter Panetta, Prof. Zhong Xia Liang,
Karen Marais, Rudolf Smaling, Prof. James Hines, James Rice, Dr. J. C. Duh, Kathi Grace, Yuan Gao, Dr.
Daniel Whitney, Prof. Thomas Malone, Dr. David Willmes, Keen Sing Lee, Wilfried Hofstetter, Brennan
McCarragher, William Litant, Dr. Stephan Wolfram, Prof. Nam Suh, Thomas Coffee, Prof. Joel Cutcher-
Gershenfeld, Prof. Joel Moses, Prof. David Mindell, James Cheng, Prof. James Utterback, Dr. Robert
Bayt, Dr. Pengju Kang, Col. Peter Young, Victor Tang, Chris Anderson, Dr. Abbott Weiss, James Tsao,
Dr. Ernst Fricke, Prof. Dennis Mahoney, Joost Bonsen, Lois Slavin, Prof. Paul Lagace, and Prof. Pat Hale.
During the last year of my doctoral program, I met and married Michi Wang. She provides a great source
of joy and a sense of direction in my life. For that, I am forever grateful. I also want to thank my parents,
Tawo Koo and Yuan Chen Yen, for their loving support. My father's interests in linguistics seeded my
intellectual roots. My mother's creativity and perseverance inspired me to see opportunities in every
difficult situation. Without their dedication and patience toward me, this work would not have begun.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 5 of 168

TABLE OF CONTENTS

1 INTRODUCTION..8
1.1 BACKGROUND..9
1.2 AIM AND OBJECTIVES ...13
1.3 RESEARCH APPROACH ..13

1.3.1 Theory...13
1.3.2 Tool...14
1.3.3 Application ...15

1.4 THESIS SYNOPSIS ...15
2 LITERATURE REVIEW...17

2.1.1 Theoretical Foundation...17
2.1.2 Qualitative Methods ..20
2.1.3 Quantitative Methods ..23

2.2 LANGUAGES FOR ARCHITECTING ...26
2.2.1 Pattern languages..26
2.2.2 System Description Languages...27
2.2.3 Generative Modeling Techniques...34
2.2.4 Simulation Languages ...38
2.2.5 Meta-languages ...48

2.3 SUMMARY OF REVIEWED MODELING LANGUAGES...52
2.3.1 Comparative Studies of modeling languages...52
2.3.2 Emphasis of modeling languages ...53

3 NEEDS AND REQUIREMENTS..56
3.1 THE NEEDS OF SYSTEMS ARCHITECTING...56
3.2 THREE TYPES OF ARCHITECTURAL REASONING TASKS ..57
3.3 REQUIREMENTS OF THE ARCHITECTS’ META-LANGUAGE..59

3.3.1 Subsume various models of computation ...59
3.3.2 Generate possible subsets of alternatives within finite time...60
3.3.3 Adaptively construct computable expressions ...60
3.3.4 Enable Model Introspection..61
3.3.5 Support layered abstraction models...62
3.3.6 Diagrammatically represent system models ..62
3.3.7 Deploy across standard computing platforms...63

3.4 A SOLUTION PROFILE..64
4 AN EXECUTABLE META-LANGUAGE: OBJECT-PROCESS NETWORK ...65

4.1 THE SPACE OF MODELING LANGUAGES...65
4.2 THING, RELATIONSHIP AND GRAPH ...66
4.3 OPERANDS AND OPERATORS...67

4.3.1 The meta-operand: Thing..68
4.3.2 The meta-operator: Eval ...70
4.3.3 Notations ..71

4.4 SYNTAX..74
4.5 SEMANTICS ..76

4.5.1 A layered semantic model ...77
4.6 TOKEN GENERATION AND SCHEDULING ..77

4.6.1 The execution model of Eval ...78
4.6.2 Turing Completeness ...81
4.6.3 Model Enumeration in Finite Time ..82

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 6 of 168

4.7 TOKEN PROCESSING ..86
4.8 VARIABLE BINDING...91

5 THE SOFTWARE ENGINEERING ASPECTS OF OPN (PRAGMATICS) ...93
5.1 IMPLEMENTATION OBJECTIVES...93
5.2 THE DESIGN OF THE LANGUAGE KERNEL..94

5.2.1 Model..95
5.2.2 View ..95
5.2.3 Controller...95

5.3 USER INTERFACE DESIGN ...96
5.3.1 Visualizing computationally generated OPN models..97

5.4 USER INTERFACE FRAMEWORK FOR LAYERED SEMANTICS..98
5.4.1 User Interface for Token Generating and Scheduling ..98
5.4.2 User Interface for Token Processing ...100
5.4.3 User interface for Variable Binding...101
5.4.4 User Interface for model detail inspection ..102

5.5 ENABLING TECHNOLOGIES ...105
6 CASE STUDIES ...109

6.1 THE APOLLO PROGRAM (RETROSPECTIVE) ..109
6.1.1 Where an executable meta-language is applicable ...110
6.1.2 Specifying mission architectures in formal languages..113
6.1.3 Generate all possible trajectories ..119
6.1.4 Calculating performance metrics ...123

6.2 NASA’S SPACE EXPLORATION INITIATIVE (CURRENT)...130
6.2.1 OPN as a mission-mode generator ..131
6.2.2 OPN integrated with other software tools ...132
6.2.3 Observation on OPN’s usability...133

6.3 ENHANCED GROUND TESTING POD ..133
6.3.1 What is an EGT-Pod..134
6.3.2 Alternative architectures of EGT-Pod..135
6.3.3 Infer global consequences from local knowledge ...136

7 DISCUSSION ...141
7.1 KEY CONTRIBUTIONS ..141
7.2 OPN ADDRESSING THE NEEDS IN SYSTEM ARCHITECTING ..142

7.2.1 OPN implementation meets the requirements ...143
7.2.2 Meta-language and qualitative methods..144
7.2.3 Meta-language and quantitative methods..146

7.3 OPN AS AN EXECUTABLE META-LANGUAGE..147
7.3.1 OPN and pattern languages ...147
7.3.2 OPN as a system description language..148
7.3.3 OPN and generative modeling techniques...150
7.3.4 OPN as a simulation language ...152

7.4 FUTURE DEVELOPMENT ..154
7.4.1 Theory development ..154
7.4.2 Tool development...157
7.4.3 Application Development..158

8 CONCLUSION...159

9 BIBLIOGRAPHY ..164

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 7 of 168

 LIST OF FIGURES

FIGURE 1-1 ARCHITECTING AS COMMUNICATION AND COMPUTATION...11
FIGURE 2-1 A CATEGORY WITH THREE ARROWS AND THREE OBJECTS ...18
FIGURE 2-2 3T FRAMEWORK: MANAGING KNOWLEDGE ACROSS BOUNDARIES (COURTESY OF CARLILE)21
FIGURE 2-3 AN EXAMPLE OF E-R DIAGRAM...29
FIGURE 2-4 UML'S GRAPHICAL NOTATIONS OF FOUR VIEWS ..30
FIGURE 2-5 OPM'S MODELING ENVIRONMENT, OPCAT (COURTESY OF DORI ET AL.) ..33
FIGURE 2-6 A RANGE OF GRAPHICAL FORMALISMS ..34
FIGURE 2-7 A CELLULAR AUTOMATON RULE AND ITS GENERATED PATTERN (COURTESY OF MATHWORLD)36
FIGURE 2-8 META-LANGUAGE AND OBJECT LANGUAGE..51
FIGURE 2-9 THE TWO DIMENSIONS OF LANGUAGE DESIGN..53
FIGURE 3-1 MAPPING FUNCTION TO FORM ..57
FIGURE 4-1 THE SPACE OF MODELING LANGUAGES ...66
FIGURE 4-2 AN ANNOTATED OPN ..71
FIGURE 4-3 BRANCHING AND LOOPING IN OPN...81
FIGURE 4-4 GRAPHICAL MODEL OF COMMUNICATION & COMPUTATION..87
FIGURE 4-5 TOKEN CREATION ACTIVITIES ..88
FIGURE 4-6 A SIMPLE RECURSION ..90
FIGURE 5-1 THE MODEL VIEW CONTROLLER OF OPN..94
FIGURE 5-2 A SCREEN SHOT OF OPN SIMULATION ENVIRONMENT ...96
FIGURE 5-3 USER INTERFACE ELEMENTS FOR SPECIFYING INFERENCE RULES/ALGORITHMS..101
FIGURE 5-4 VISUALIZING SYSTEM STATES IN TERMS OF PROBABILISTIC MEASURES..103
FIGURE 5-5 SOFTWARE COMPONENTS ..106
FIGURE 6-1 APOLLO FUNDING BREAKDOWN ...112
FIGURE 6-2 A CONTINUOUS SPACE QUANTIZED IN DISCRETE VOCABULARY ..115
FIGURE 6-3 SPECIALIZED VOCABULARY FOR THE APOLLO PROGRAM ...116
FIGURE 6-4 A SCREEN SHOT OF THE OPN SIMULATION ENVIRONMENT ...123
FIGURE 6-5 VARYING LEVELS OF MISSION RISK...128
FIGURE 6-6 VISUALIZING A TWO-DIMENSIONAL METRIC SPACE ...130
FIGURE 6-7 WORKFLOW OF THE CURRENT NASA ARCHITECTURE STUDY (COURTESY OF SIMMONS).........................131
FIGURE 6-8 AN ARCHITECTURE VISUALIZATION TOOL DRIVEN BY OPN’S OUTPUT (COURTESY OF SIMMONS)132
FIGURE 6-9 THE EGT-POD AND ITS CARRYING VEHICLE (COURTESY OF CHRIS ANDERSON)134
FIGURE 6-10 TWO COMPETING ARCHITECTURAL ALTERNATIVES ...135
FIGURE 6-11 PROBABILISTICALLY INFER GLOBAL EFFECTS GIVEN LOCAL KNOWLEDGE ...137
FIGURE 7-1 OPM'S DIFFERENT LINK TYPES..149

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 8 of 168

1 Introduction

This thesis concerns a domain-neutral meta-language that automates certain mechanical tasks in

architectural reasoning for complex socio-technical systems. In this thesis, the term

“architecture” denotes the stable properties of the system of interest [1-3]. The phrase

“architectural reasoning” is therefore defined as a transformative process that utilizes knowledge

about stable properties in a system to achieve certain global objectives. The phrase “complex

socio-technical systems” refers to systems involving multiple stakeholders and requiring multiple

knowledge domains. Practical experience and well-known research literature have demonstrated

and articulated the advantages of designing complex socio-technical systems using architectural

reasoning techniques [4-8].

Consequently, architectural reasoning techniques have flourished in various domain-specific

disciplines. Civil structures, computer hardware and software are among many other domains

that have developed disciplinary-specific architectural reasoning techniques. In the process of

architecting complex socio-technical systems that involve multiple knowledge domains,

translating domain-specific vocabulary and transferring information across different knowledge

domains often becomes a considerable challenge [9]. This challenge presents two interrelated

research opportunities. First, certain domain-independent architectural reasoning techniques,

such as computationally intensive simulations and model generation techniques, can be

leveraged over multiple disciplines [10]. Second, identifying a common language across multiple

disciplinary domains can help architects and other stakeholders communicate with people and

organizations outside of their domain expertise. Therefore, the objective of this thesis is to

formulate a domain-independent reasoning technique in terms of communication and

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 9 of 168

computation. The aim is to design a general-purpose meta-language that specifies and automates

the mechanical elements of communication and computation tasks in architectural reasoning.

This chapter presents:

• Background that motivated the development of a meta-language for system architecting

• Aims of this research work

• Research approach

• Structure by which this thesis is documented

1.1 Background

In 1911, Alfred North Whitehead wrote:

“Civilization advances by extending the number of important operations which we can

perform without thinking about them.” [11]

Since 1911, our capacity to automatically perform a large number of important operations has

increased dramatically. The tasks of conceiving and designing large-scale socio-technical

systems have become increasingly difficult. As rapid advancements in component-level

technologies change the way we implement and operate large-scale systems, the corresponding

system design and management problems are becoming intractable due to an increasingly large

number of interacting factors [10]. To extend the number of thorough and effective reasoning

operations without thinking about them, we need to streamline the tasks of communication and

computation, so that thinking can be distributed and verified through multiple organizational

levels and physical scales. The complexity of reasoning through an architectural decision is not

only a quantitative problem, but also a qualitative problem. These interacting factors may be

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 10 of 168

related to different knowledge domains and could be interpreted differently under different

contexts. Making architectural decisions for a socio-technical system is analogous to comparing

apples and oranges: it is hard to arrive at a stable answer under the influence of multiple

stakeholders. The quest to arrive at critical architectural decisions are challenged by: [12, 1, 13-

16]

1. Limited resources to fully analyze the impact of intentional decisions

2. Knowledge and experience about the actual system is scarce

3. The operating environment is entrenched with high degree of uncertainty

At the same time, the guiding forces in the reasoning processes are: [17, 18, 15, 19-23]

1. Stakeholder defined metrics

2. Anticipated performance range for the system

3. Available implicit and explicit knowledge

The process of system architecting can hardly be executed as an isolated sequence of analytical

routines. Instead, the decision process can be more suitably described as an evolving set of

interactive events [24]. These interactive events may take place concurrently and trigger multiple

iterations of deliberation cycles before reaching an architectural decision. Figure 1-1 provides a

visual representation of this recursive process.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 11 of 168

Figure 1-1 Architecting as communication and computation

This iterative process in system architectural decisions can be illustrated as a recursive

composition of communication and computation activities. Figure 1.1 shows an interactive

model of architectural decision-makers and other stakeholders. In this diagram, each instance of

architectural decision is modeled as a “source message”, it can be transported to a group of

stakeholders through a “message passing” process. The stakeholders then interpret the

architectural decision as a “destination message”. The “destination message” may differ from the

“source message” because the “message passing” process might inject noise or the message

might be interpreted differently due to a shift in temporal and spatial contexts. The “destination

message” may stimulate stakeholder reactions and invokes new messages to be propagated

through the system. It may incur changes to the architectural model, or propose new architectural

decisions. New instances of architectural decisions are then propagated through the system as

new instances of “source messages” and henceforth create iterative cycles of communication.

Messages inducing changes to the “architectural model” can be thought of as instructions in a

computation process. The changed “architectural model” may change the underlying model of

communication that controls the “message passing” process, and therefore produces different

“destination messages”. This may cause a cascade of iterative computation and communication

activities throughout the whole system.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 12 of 168

In the model of communication, the “messages passing” process and the evolving “architectural

model” can be viewed as a channel of communication among stakeholders. In the model of

computation, the “source message” and the “model evolving” process can be viewed as an

execution mechanism for an architectural model construction program. To reason through the

interactive consequences of communication and computation, architects need to simultaneously

improve performance on two fronts:

1. Effectively communicate and negotiate system level consequences with a large

number of interacting stakeholders.

2. Effectively compute and/or assess the emerging consequences of subsystem

interactions across multiple abstraction layers and physical scales.

To tackle the first challenge, a reliable and precise model of communication is needed to

establish a set of efficient protocols for knowledge exchange between stakeholders.

Simultaneously, architects also need a flexible and practical model of computation to compile

knowledge derived from stakeholder interactions and other sources to support architectural

decisions. In designing large-scale socio-technical systems such as NASA’s interplanetary

transportation systems, architects need an adaptive and practical instrument to improve the

quality of communication and computation. Due to various theoretical and technical barriers,

which will be further discussed in Chapter 2, a general-purpose instrument for architectural

reasoning has not yet emerged.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 13 of 168

1.2 Aim and Objectives

The aim of this thesis is to provide a solution for the automation of the architectural reasoning

tasks in large-scale socio-technical systems. The objectives of this thesis are to

1. Identify the needs in architectural reasoning

2. Propose a meta-language to address those needs

3. Implement the meta-language as an automation tool

4. Demonstrate the use of the meta-language

1.3 Research Approach

Our research approach is presented here in three phases: theory development, tool

implementation and application illustration.

1.3.1 Theory

Existing methods and tools in constructing system models were surveyed. In various application

contexts, each of these tools and methods partially support the three tasks in system architecting:

represent the space of architectural alternatives, generate instances of architectural alternatives,

and establish a preference order among known instances of architectural alternatives. To tackle

the three tasks in an integrated manner, we found that an executable meta-language can

adaptively support all three tasks in various application contexts. In order to demonstrate that this

meta-language-based method can be generally applied to a wide range of system architecting

tasks, we need to prove three things. First, the meta-language itself must be able to describe the

structures and behaviors of arbitrary systems in finite terms. Second, we need to show that all

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 14 of 168

finite-sized models can be fully enumerated within finite time. Third, we need to adaptively

control the enumeration mechanism to derive analytical results within affordable computational

resources. We proposed a simple meta-language schema, with three basic linguistic primitives,

and demonstrated that it satisfies all three criteria. From a computational perspective [25], this

meta-language approach is not restricted to specific application contexts. Therefore, it provides a

generally applicable computational reasoning framework to support multiple applications

domains.

1.3.2 Tool

A practical implementation of our meta-language is necessary to verify and validate its

conceptual benefits. Based on our proposed language schema developed in the theoretical phase,

we implemented an executable meta-language, Object-Process Network (OPN) as an instrument

for architectural reasoning. OPN is designed as a communication medium between machines and

humans. Its small but highly extensible vocabulary provides a standard protocol to share

structural and behavioral specification across different machines. A graphical user interface is

designed to reduce the amount of mental effort required for domain experts to exchange their

domain-specific expertise. We partially adopted the graphical formalism of Object-Process

Methodology (OPM) [26], and developed a visual modeling and simulation environment to

represent, generate and evaluate architectural alternatives.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 15 of 168

1.3.3 Application

Three examples are illustrated in OPN to demonstrate the benefits of a meta-language based

architectural reasoning approach. We used the Apollo Program as a retrospective example to

explore our assumptions about architectural reasoning. We applied OPN to specify the space of

mission architectures, enumerate alternative mission modes, and perform tedious model

construction and metric calculation tasks. The OPN tool is also applied to an ongoing project

sponsored by NASA to analyze mission mode alternatives for Earth-Moon-Mars space

exploration. To demonstrate that OPN can also reason about static configurations of a system, an

aircraft-based testing system configuration called Enhanced Ground Testing Pod (EGT-Pod)

program is also illustrated in this thesis.

1.4 Thesis synopsis

Chapter 1 is this introduction.

Chapter 2 reviews a series of interrelated theories and techniques that shaped the current

paradigm [23, 27] in the field of system design and architecting. We will particularly point out

that the needs in architectural reasoning are strongly associated with the needs to establish a

flexible and efficient reasoning instrument, such as a meta-language.

Chapter 3 describes the needs, requirements and solution profile of an executable meta-language

designed to address the current needs of systems architecting.

Chapter 4 presents the formal language schema and the language execution mechanisms of the

meta-language, Object-Process Network (OPN).

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 16 of 168

Chapter 5 describes the software engineering aspects of OPN. We will explain the design

rationale, the user interface design strategy, and how a simple language schema influence the

software implementation activities.

Chapter 6 presents a retrospective application of our meta-language approach to NASA’s Apollo

Program. We used OPN to construct reasoning models, and perform metric calculation based on

similar assumptions used in the original program. We also discuss how this method is being

applied to the latest space exploration programs. This chapter also includes the third example

about static aircraft configuration.

Chapter 7 presents the contribution of this thesis. It compares our solution with existing methods

and instruments designed for architectural reasoning. We specifically compare the features of

OPN and what are the unique opportunities this instrument could offer to streamline a wide

range of reasoning tasks in the architectural decision-making process.

Chapter 8 summarizes the thesis’s conclusions.

__

The following section will discuss the prior art that is directly relevant to our research.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 17 of 168

2 Literature Review

This chapter describes the prior art related to the representation and analysis of complex

socio-technical systems. This chapter is separated into two sections:

• Theories and methods of system design and architecting, and

• The languages that are used as instruments to improve the reasoning activities in

system architecting.

2.1.1 Theoretical Foundation

In “Anatomy of Large Scale Systems”, Moses pointed out:

“The mathematical field of abstract algebra can provide a language for discussing

systems taken as a whole. A structured or anatomical view of engineering systems when

coupled with concepts and intuition from abstract algebra can give us a relatively deep

understanding of certain system issues, such as flexibility.“

 Joel Moses, 2002 [28]

The ability to design a flexible system is limited by the flexibility of the underlying modeling

language. According to Moses, abstract algebra as a modeling language permits architects to

flexibly and economically change the model of a complex engineering system to match the

evolving analytical needs. Without a holistic modeling language, the cost of model construction

and the effort required to integrate various system models may present critical concerns to be

reflected in the resulting system architecture.

The power of abstract algebra comes from its ability to reason through the logical consequences

of system interactions using a concise and consistent set of mathematical axioms and notations.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 18 of 168

This formal language can also be visualized in a diagrammatic form, called Category Theory.

Category theory [29, 3, 30, 31] can be thought of as the graphical representation of abstract

algebra. It provides a diagrammatic language to reason about the relationships between classes of

mathematical objects, not just the individual instances of numeric or symbolic values. Each

category is a diagram made of a set of “objects” and “arrows”. Figure 2-1 is a category with

three “arrows” that represents three functions from their respective source and target “objects”.

Figure 2-1 A category with three arrows and three objects

The objects A, B, and C represent domains of possible values. They can be in either qualitative

or quantitative value domains [32]. Arrows f, g and h in this category represent “total functions”.

(A total function is a function that defines output values for all its input values. We will refer to

them as functions unless otherwise noted.) Category theory utilizes the structural information of

a graph to illustrate how functions can be composed or decomposed into other functions. The

category shown in Figure 2-1 indicates that the function h can be decomposed into two functions

f and g. Conversely, f and g can be replaced by one function h. System modelers can apply these

compositional rules to create and refine functions, expose and hide the internal structures of a

category. Furthermore, categories with complex internal structures can be modeled as “objects”

and further composed into a higher-level diagram for mathematical analysis. It provides a

recursive mechanism to organize and compress a system of functions and abstract objects into

more compact diagrams that fits the cognitive capacity of well-trained mathematicians.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 19 of 168

The connections between abstract algebra and formal language design were formally established

in the late 1960s by Dana Scott’s work on Domain Theory [33]. Scott’s work is useful to

architectural reasoning because it provides a computational framework to reason about the

“partial” or “incomplete” information about a system. However, it is challenging to introduce

domain theory, category theory or abstract algebra to non-mathematicians. It requires significant

amounts of training and practice to adequately utilize these mathematical languages. To make

abstract algebra and category theory useful to architects of socio-technical systems, we need to

preserve their formal structures, while presenting the core concepts in a more accessible format.

Ashby’s “Introduction to Cybernetics”[17] provides a more accessible mathematical language

that describes large-scale socio-technical systems. The book presents a mathematically rigorous

“theory of machines”. He used a set of intuitively understandable concepts to present the theory

in terms of “what does a machine do”, rather than “what a machine is”. This book is useful and

important because it shows that a wide range of “machines” can be uniformly modeled in a

consistent mathematical abstraction. Ashby stated the two scientific virtues of Cybernetics as:

1. “…it offers a single vocabulary and a single set of concepts suitable for

representing the most diverse types of system(sic). … Cybernetics offers one

set of concepts that, by having exact correspondences with each branch of

science, can thereby bring them into exact relation with one other(sic).”

2. Cybernetics is likely to reveal a great number of interesting and suggestive

parallelisms between machine and brain and society. And it can provide the

common language by which discoveries in one branch can readily be made

use of in the others.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 20 of 168

Ross Ashby [17]

The language of Cybernetics is based on concepts and structures similar to abstract algebra. It is

a formal language that can be executed using a modern computer. It raises the question of

whether mechanical execution of formal language statements can augment human reasoning

capabilities. In the book, “Cybernetics”, Wiener [34], proposed the creation of a chess machine:

“… which shall offer interesting opposition to a player at some(sic) one of the many levels at

which human chess players find themselves.” In May 1997, IBM’s Deep Blue, a special purpose

super computer won the chess game against the reigning world champion in chess. Clearly, a

chess game is a discrete-state system with bounded variability. In contrast, architects of complex

socio-technical systems often need to reason about systems with both continuous and discrete

variables without well-specified knowledge boundaries. Can one construct a machine that can

augment architects’ ability to reason through an unbounded range of variability?

2.1.2 Qualitative Methods

When facing an unbounded problem, system architects often need to integrate and compose

knowledge across different domain boundaries. Carlile [9] applied concepts derived from

Cybernetics to model stakeholder interaction in terms of boundary objects. Domain boundaries

are categorized into three types: syntactic boundary, semantic boundary, and pragmatic boundary.

The syntactic objects provide a common set of representational symbols to “transfer”

information from one domain to the other. The semantic objects provide the interpretive

functions to “translate” the meaning of transferred information according to corresponding

domain-specific contexts. The pragmatic objects are the exchange currency for the interacting

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 21 of 168

stakeholders to “transform” the meaning of symbolic information into commensurable [27]

interests that lead to certain tradeoff decisions. Carlile calls this model the 3T framework. It is

visualized as a triangle in Figure 2-2.

Figure 2-2 3T Framework: managing knowledge across boundaries (Courtesy of Carlile)

Carlile further characterized knowledge management as an iterative language development

process.

1. Develop a common lexicon to transfer information across domain boundaries.

2. Apply domain-specific knowledge to translate the meaning of the transferred information

in context.

3. Arrive at system-level decisions by iteratively transferring and translating information

between different stakeholders to negotiate tradeoffs.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 22 of 168

4. Evolve the boundary objects by transforming the common lexicon and enriching domain-

specific knowledge through iterative stakeholder interaction.

According to the 3T framework, boundary objects such as email messages, computer simulation

models, and physical prototypes can be treated as three instances of common languages that

transfer, translate, and transform knowledge between different knowledge domains. Although the

3T framework presents a theoretical metaphor to view all artifacts in a socio-technical context as

different types of languages, it does not present the concept of a domain-neutral language that

can serve the purpose of communication and negotiation amongst all participating domain

experts. In 3T framework terms, such a domain-neutral language would be an ideal boundary

object for architectural reasoning.

2.1.2.1 Domain-neutral languages

Within the product development and process engineering communities, the utilities of domain-

neutral representational techniques for describing system interactions have been broadly

recognized. Design Structure Matrix (DSM) [13], Quality Function Deployment (QFD) [35],

TRIZ [36], and Language Processing Method [37, 38] have been adopted by various companies

and application domains. Each of these methods provides a domain-neutral language to interact

with architects and other stakeholders to reason about the architectural decisions. In comparison

to abstract algebra and category theory, these methods are much more accessible to business and

engineering practitioners. However, these analytical methods are analytical tools only useful for

the early phases in system design. They do not include a consistent and extensible mechanism

like abstract algebra that can incrementally reason through layers of technical details. To conduct

analysis at each different level of technical detail, a different engineering method or tools must

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 23 of 168

be incorporated to support the analytical activities. How to incorporate these application-specific

methods or tools is often not specified in these methods. The architectural decisions arrived at

through these methods are qualitative in nature. They are not designed to produce precise

quantitative performance metrics of the system of interest. To establish a holistic architectural

reasoning process, qualitative methods should be integrated with quantitative methods and

quantitative performance assessment tools. It is highly desirable to create a system analysis tool

that can handle both qualitative and quantitative analytical tasks.

2.1.3 Quantitative Methods

Identifying generally applicable metrics that quantifies the quality of a complex system is

intellectually and technically challenging. There are many quantitative methods to reason about

the design axioms or decision strategies of a system. This section describes two quantitative

approaches to reason about design decisions. Suh’s Axiomatic Design is illustrated here as an

example of constraint-based quantitative design method. Nash’s game theory is illustrated here

as a quantitative method to analyze the interactive consequences of a system.

2.1.3.1 Reasoning about system constraints

Suh’s Axiomatic Design [39, 40] proposes a formal framework to reason about system design. It

introduces two design axioms. The first axiom is the independence axiom. This axiom leads

designers to formulate design requirements in logical expressions, so that the likelihood of

success of each functional requirement can be assessed statistically or analytically. It explicitly

specifies the need to state independent functional requirements, so that each functional

requirement specifies a design space that can be considered to be statistically independent. This

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 24 of 168

is a critical assumption in formulating a design. It serves two purposes. First, it allows designers

to cover the maximum amount of design space with non-interacting design constraints. Secondly,

it allows the total system’s likelihood of success to be calculated using this conditionally

independent assumption.

The second axiom is the information axiom. It specifies that lower content of information results

in better designs. The information content of a design is a logarithm measure calculated from the

likelihood of satisfying all functional requirements for that design.

 Information content = I = log2(1/p)

where

 p : probability of satisfying functional requirement(s)

 I: information content of the design

An “ideal design”, in Axiomatic Design, is one that guarantees to satisfy all functional

requirements. For the likelihood of satisfying the requirements to be one hundred percent, the

information content, I, would have to be zero, meaning no uncertainty is involved. The

information content measure establishes a preference order between design alternatives.

Information content was calculated based on the joint probability of satisfying multiple

functional requirements stated in conditionally independent logical statements. However, it is

hard to formulate functional requirements in conditionally independent terms, therefore,

calculating the joint probability of success is rather difficult. In Suh’s 1990 book, “The Principles

of Design”, he proposed the use of a logic programming language, Prolog, to automate various

aspects of Axiomatic Design reasoning tasks [39]. Suh’s proposal also indicates a need in

computationally supported architectural reasoning.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 25 of 168

2.1.3.2 Reasoning about system interactions

John Nash’s mathematical formulation of “Two Person Cooperative Games” [41] provided a

rigorous approach to quantify system interactions in a sequence-sensitive setting. The paper

defines game players’ alternative courses of actions as abstract mathematical objects called

“strategies.” [41] How the strategies are executed in sequence is described in explicitly defined

stages. These stages can be thought of as an executable process, which Nash calls the “formal

negotiation model”. Based on certain mathematical properties of the payoff functions defined in

the game, Nash showed that his procedural model of negotiation derives the same payoff values

as an axiomatic approach. This result is significant for two reasons. First, it provides a

mathematical foundation to analyze sequence-dependent interactive systems. Second, and more

relevant to this thesis, is that Nash demonstrated a reasoning technique that derived new

knowledge by comparing analytical results from procedural specification and axiomatic rules. A

procedural specification is an imperative language; it contains vocabulary and syntax to specify

the sequence of activities or instructions. An axiomatic system is a kind of declarative language;

its language only contains sequence-independent logical constraints. The unifying formal

language that supported both aspects of Nash’s analysis is abstract algebra. It further validates

Moses’s and Ashby’s idea about how a unified language framework facilitates flexible reasoning

and the discovery of new ideas. In other words, Nash’s work provides a mathematical foundation

for architectural reasoning, because it demonstrates how to formally represent stable properties

of interactive systems in either dynamic (procedural specification) or static (axiomatic) terms.

Computer scientists have utilized this insight to develop algorithms that automatically reason

about tradeoff decisions in complex socio-technical systems [42].

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 26 of 168

2.2 Languages for Architecting

This section reviews existing language-based frameworks that represent, generate, and analyze

alternatives for large-scale systems.

2.2.1 Pattern languages

Christopher Alexander is a civil architect who inspired the development of “pattern languages”

[43] across multiple application domains. He articulated the prominent role of languages in

architecting of all systems:

"Every creative act relies on language. It is not only those creative acts which are part of

a traditional society which rely on language: all creative acts rely on pattern languages:

the fumbling inexperienced constructions of a novice are made within the language which

he has. The works of idiosyncratic genius are also created within some part of language

too. And the most ordinary roads and bridges are all built within a language too." [1]

As Alexander's statement implies, architects may simultaneously employ multiple languages. He

initially proposed a pattern language with 253 patterns [43]. In his latest book series, he proposed

a pattern language with only fifteen patterns. The newly proposed patterns are more abstract.

They are also more domain-neutral than the original patterns. This trend demonstrates that

pattern languages can be simplified, yet maintain or expand their expressiveness.

The use of pattern languages to reason about architectures of systems has become particularly

popular in the software community [44]. The most notable use of pattern language is Software

Design Patterns by Gamma et al. [45]. It provides a set of well-documented software design

templates to promote design reuse. Pattern language is useful because it aggregates fine-grained

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 27 of 168

(more concrete) design tasks into coarse-grained design solutions. It reduces the system

complexity by decomposing a large combinatorial design problem into a smaller combinatorial

design problem based on a coarse-grained (more abstract) vocabulary. A common design

vocabulary expressed in terms of patterns also helps to communicate design ideas. However,

most pattern languages, software patterns included, are mostly collections of heuristic rules.

They do not include a formal model of computation. They can be used as standard vocabulary in

declarative languages to specify the building blocks of a design. Pattern languages rarely provide

imperative information to create an overall system design. They do not specify how to compose

these building blocks into a specific design instance. To better utilize pattern languages in

automated architectural reasoning, one must develop computational techniques that make use of

the declarative information represented by pattern languages.

2.2.2 System Description Languages

System description languages such as Entity-Relationship model (E-R model), Unified Modeling

Language (UML), and Object-Process Methodology (OPM) each provide a set of syntactic rules

and semantic definitions to help system architects specify a concrete composition of building

blocks that represent systems in the real-world. We choose these three languages because of their

distinct language design goals. E-R model provides a graphical formalism that focuses on the

static structural relationships between abstract entities. UML is a comprehensive language family

that presents the same system through multiple diagrammatic views, which include static,

dynamic, physical assets, and human-machine interactions. OPM is a holistic system modeling

methodology that subsumes multiple graphical formalisms into one diagrammatic view and one

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 28 of 168

English-like representation to complement each other to represent the structure and behavioral

aspects of real-world systems. They are briefly described below.

2.2.2.1 Entity-Relationship Modeling

E-R diagram presents an intuitive and mathematically rigorous view of data. It is a widely

adopted modeling technique for relational database systems. In Chen’s original words:

1. E-R model adopts the more natural view that the real world consists of entities and

relationships.

2. It incorporates some of the important semantic information about the real world.

3. The model can achieve a high degree of data independence and is based on set theory

and relation theory.

One of the most extensive uses of E-R is to represent data structures. An E-R diagram is a rather

mature graphical data description language. The most popular form of E-R uses three binary

relationship types, they are: one-to-one relationship, one-to-many relationship, and many-to-

many relationship. In Figure 2-3, each rectangle represents an entity. The numbers represent the

cardinality constraints of the relationship types. One-to-one relationship binds all data entries in

one entity with all data entries in the other with one-to-one correspondence. Imagine a database

that stores bill of material for a car manufacturer. As shown in Figure 2-3, a car and its steering

wheel have a one-to-one cardinality constraint, represented by a simple line connecting the two

elements. The car and its four tires can be modeled as a one-to-many relationship, represented by

a line with a “chicken feet” symbol attached to the “many” end of the relationship. Many-to-

many relationship is represented through an intermediate entry. In this case, the tires of a car and

the seats in the same car can be mapped through the car as a many-to-many relationship. An E-R

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 29 of 168

diagram provides a visually intuitive notation to fully specify the static data structures of a wide

range of systems.

Figure 2-3 An example of E-R diagram

The E-R diagram as a declarative language can be extended to represent other types of structural

relationships. It can be extended to represent specialization-generalization relationships such as

class inheritance diagrams for Object-Oriented Design [26]. However, the E-R diagram only

describes the static structure of a system. Most E-R diagrams ignore the dynamic aspect of a

system. However, architects must be able to reason about both the static and dynamic

consequences of system-level decisions. To enhance E-R models with additional knowledge

about dynamic behavior of the system, additional graphical notation must be added.

2.2.2.2 Unified Modeling Language (UML)

Since 1997, UML has become a converging standard that absorbs other system description

languages. Data modeling languages such as E-R diagrams are incorporated into the structural

view. However, the focus of UML is still limited to software development needs. According to

UML Specification 1.5, published by the Object Management Group (OMG), the non-profit

organization that administers the UML standard [46]:

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 30 of 168

The Unified Modeling Language (UML) is a language for specifying, constructing,

visualizing, and documenting the artifacts of a software-intensive system.

UML was primarily designed for professional software engineers. Due to its popularity, the

language design scope has expanded beyond pure software systems [47]. Its main functional

views are specifically targeted at managing the concept, structure, behavior, and deployment of

engineering systems. The four main functional views are: use case view, structure view, behavior

view and implementation view. Figure 2-4 shows a partial set of UML graphical notations of

these views.

Figure 2-4 UML's graphical notations of four views

Each of these views often employs more than one diagrammatic language to visualize the

relationships between different components in the view. For example, in the behavioral view,

there are four diagrammatic languages to illustrate the dynamic properties of a system. They are

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 31 of 168

state-chart diagram, activity diagram, sequence diagram, and collaboration diagram. These

diagrammatic languages do not have direct one-to-one semantic mapping between each other.

These diagrams are designed as illustrations of design concepts; they are not inherently

computable graph structures.

According to UML Specification 1.5, UML is not a programming language, it doesn’t specify a

run-time model, and it doesn’t define an organizational process to produce software. Although

different software vendors have created tools to generate executable code based on UML

diagrams, they are proprietary technologies and they are not part of UML standard specification

[48, 46, 47, 49, 50]

UML was originally designed for software-intensive systems. Its graphical symbols were

intended to represent certain software development artifacts and activities. To represent the

structures and behavior of generic systems, its language specification has undergone significant

changes. In the introduction statement of UML Infrastructure 2.0 Specification (Adopted Draft

copy), UML is defined as [47]:

“The Unified Modeling Language is a visual language for specifying, constructing and

documenting the artifacts of systems. It is a general-purpose modeling language that can

be used with all major object and component methods, and that can be applied to all

application domains (e.g., health, finance, telecom, aerospace) and implementation

platforms.”

Expanding the scope of UML beyond the software industry may introduce additional layers of

complexity to an already complex language. In UML specification 1.4, there were more than 200

different graphical primitives and 9 diagram types [48]. To tackle the language complexity

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 32 of 168

problem, the UML 2.0 tries to modularize the unified language into multiple independent sub-

languages [50]. OMG also promotes concepts such as Model Driven Architecture (MDA) to

manage model complexity issues by introducing a meta-model language architecture based on

four layers of meta-language schemas. In other words, UML has become so complex that it

needs four kinds of meta-languages to manage model abstractions. Each complexity management

tool appears to introduce an additional layer of complexity. As UML grows in its popularity, the

“language bloat” problem must be addressed. Otherwise, the adoption of UML would become a

liability in architectural reasoning tasks.

2.2.2.3 Object-Process Methodology (OPM)

Many software engineers, researchers and the committee members on UML’s revision task force

have acknowledged that UML’s complexity is a hindrance to system modeling [50]. Due to the

size of its user community, UML needs time to incrementally refine its original language

specification. In “Why Significant Change in UML is Unlikely” [51] , Dori’s assessment on

UML is summarized here:

1. Model multiplicity resulting from excess diagram types and symbols

2. Confused behavior modeling

3. Obscuring influence of programming languages

To avoid UML’s Model-Multiplicity problem [52], Dori suggested that Object-Process

Methodology (OPM), a visual modeling language with a single diagrammatic view and a small

set of symbols, offers a superior alternative to UML. Soderborg et al. [53], demonstrated that

Object-Process Methodology (OPM) can be used to specify both the structural and behavioral

aspects of a system, using one language framework with two representational forms, graphical

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 33 of 168

and textual. The graphical representation, Object-Process Diagram (OPD), is a diagrammatic

language as shown in the upper panel in Figure 2-5. The textual representation, Object-Process

Language (OPL), is a set of formal English statements that translates the meaning of the diagram

into sentences understandable by humans, shown in the lower panel in Figure 2-5. Dori and his

students built OPCAT (Object-Process CASE Tool) [54], a modeling software environment, to

demonstrate the feasibility and capability of this bi-modal modeling approach. Figure 2-5 is a

screen shot of OPCAT.

Figure 2-5 OPM's Modeling Environment, OPCAT (courtesy of Dori et al.)

OPM as a visual modeling language provides a limited set of rules to specify the precedence of

process execution order. However, it does not specify a formal computational model for either

discrete or continuous event systems. Nevertheless, its flexible definition of Object and Process

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 34 of 168

can be mapped onto operands and operators of a wide range of formal computational models.

Koo and Fry designed and implemented a hybrid Petri-Net and Bayesian Network inference

engine using OPM’s graphical semantics and the Water Programming Language [55]. In Figure

2-6, we compare OPM’s graphical notation against the other graphical models of computation.

Figure 2-6 A range of Graphical formalisms

2.2.3 Generative Modeling Techniques

Due to the complexity of system architecting processes, computers and computational techniques

have been employed by architects to perform alternative generation tasks [56]. Civil architects

and mechanical engineers have been studying shape grammar as a means to generate geometrical

forms. They write computer programs to recursively apply shape specification rules to create

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 35 of 168

geometric structures [57]. The ability to use a small number of rules to create complex shapes

helps architects understand and interact with the logical structures behind geometrical objects. It

also extends architects’ ability to reason through larger and more complex geometrical

configurations in buildings and other physical objects alike. Generative shape theorists are

interested in generating instances of shapes that inspire new design ideas. It is not necessary to

exhaustively enumerate all possible shapes.

Shape grammar studies focus on the forms of alternative architectures. For certain socio-

technical systems, the system properties may not have a direct analogy to geometrical forms.

They may be better studied in the functional domain. To study the functional properties of

system interactions, Wolfram [25] devised a number theoretical approach to study cellular

automata by exhaustively enumerating simple automaton rules and then applying these rules to

generate visual patterns. The goal is to use human perception and computer programs in

combination to identify simple rules that can generate complex visual patterns. Rules that

generate interesting patterns can then be further studied for their functional properties.

Wolfram’s approach is applicable to architectural reasoning because it:

1. Demonstrated that exhaustive enumeration of certain classes of simple rules, not the

generated patterns, is computationally viable.

2. Studied the functional properties of simple rules by visualizing the generated patterns

and categorizing them with different complexity classes.

3. Used a modeling language to dynamically generate, manipulate, and analyze both

functions (rules) and forms (shapes) during simulation.

An example of the rule and the generated form is illustrated in Figure 2-7.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 36 of 168

Figure 2-7 A cellular automaton rule and its generated pattern (Courtesy of MathWorld)

Figure 2-7 shows that an irregular pattern can be generated using “rule 30”, the thirtieth rule out

of all 256 possible rules in a rule space made of three bits [25]. Each of these rules explicitly

specifies the color of the cells in the next step according to the eight possible three-neighboring-

cell configurations. For example, rule 30’s eight possible configurations and their color

transformation results are shown graphically on the upper half of Figure 2-7. The horizontal axis

in Figure 2-7 represents the spatial dimension; the vertical axis represents the temporal

dimension, each row represents one time step. Some of the rules in the 256-rule space, such as

rule 110, have been proven to be Turing Complete [58]. In the field of computational theory, this

result is rather remarkable, because it shows that the algorithmic properties of a Turing Machine

can be encoded in one simple transformation rule. This result is also an inspiration to the study of

complex systems because it suggests the possibility that seemingly complex interactive

phenomena may be governed by some simple and stable rules.

It is rather non-intuitive to assemble a complex engineering system using rules illustrated in pure

binary forms. The instrument for architectural reasoning also needs to help architects assemble

complex rules to produce simple or complex behaviors. Leslie Ann Goldberg’s Ph.D. thesis

studies algorithms that enumerate complex combinatorial structures [59]. Her work was to

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 37 of 168

identify algorithms that can efficiently generate combinatorial structures that are either simple or

complex. The efficiency of algorithms is measured by the required amount of storage space and

computing time. Her research motivation can be expressed in the following terms:

1. Design useful algorithms for application-specific problems

2. Discover general methods for algorithm design

3. Establish an algorithmic framework to classify and generate other algorithms

Efficient enumeration algorithms for combinatorial structures can generate both algorithms and

static structures. Some of Goldberg’s algorithms can be applied to reduce the required

computational resources to generate architectural alternatives.

Genetic programming (GP) and genetic algorithms (GA) are analogies borrowed from the

biological field to create complex systems with simple building blocks. John Holland [60, 21, 61,

22] and Karl Sims [62] have applied evolutionary rules such as crossover and mutation to

dynamically generate models of complex systems. These techniques have mixed results due to

the difficulties associated with constructing context sensitive fitness functions. In most cases, it

is difficult to randomly sample a very large genetic space and expect good results within

practical limits. To accommodate these short comings, Holland [22] proposed the concept of

dynamic models, or models whose basic building blocks and executable rules may change during

simulation time. For example, Kim and de Weck [63] developed genetic algorithms that use

variable chromosome lengths to solve structural optimization problems. If one considers the

programmatic modification of chromosome length as a way to adaptively change the size of

search space, variable chromosome length GA can be considered as an algorithm that

dynamically modifies its own algorithmic properties during execution. Adaptive algorithms that

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 38 of 168

evolve during execution time may need special programming language features to better support

their implementation and debugging tasks. Specifically, functional programming languages are

particularly designed to implement software programs that manipulate programs [64]. To study

the architectural properties of complex evolutionary systems, architects often employ

programming languages with dedicated features to simulate the properties of interest.

2.2.4 Simulation Languages

Zeigler [65] proposed a categorization scheme that distinguishes formal simulation models into

five dimensions:

• Continuous time vs. discrete time

• Discrete state vs. continuous state

• Deterministic model vs. non-deterministic model

• Autonomous model vs. non-autonomous model

• Time invariant vs. time varying.

Continuous time models are models whose clock increments in infinitesimal time units. Discrete

time models are models whose clock increments in integer time units. Discrete and continuous

state models are models that contain discrete and continuous state variables respectively. Hybrid

state models are models that contain both kinds of variables. Deterministic models contain no

random variables, where non-deterministic or stochastic models contain at least one random

variable. Models that are completely isolated from influences in their environments are

considered to be autonomous; the opposite kind of model is non-autonomous, requiring external

stimulus to perform simulation. The last categorization of model is based on whether the model

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 39 of 168

changes during its simulation time. If the rules of interaction change during simulation time, it is

considered to be a time variant model. If the rule of interaction doesn’t change during its

simulation time, it is considered to be a time invariant model.

To model a complex socio-technical system, it is likely that all these model categories need to be

combined and used at different points in the system development process. In this thesis, we will

focus on three types of graphical formalisms: Probabilistic Graph Model, Petri Net, and System

Dynamics. These three graphical formalisms are presented here because each of them has been

extensively developed to accommodate a wide range of real-world applications. They have been

extended to cover other areas of simulation needs, and therefore developed different levels of

hybrid simulation capabilities within each of the three types. We will use these three basic types

of graphical formalism to illustrate the state-of-the-art simulation languages.

2.2.4.1 Probabilistic Graph Models

Causal structures such as Bayesian Belief Networks [66-68], Markov Chains, and Factor Graphs

[69] are graph-based models for analyzing decisions or events under uncertainty. They provide a

reasoning framework for people or machines to reach rational decisions even when there is not

enough information [70]. Probabilistic graph models and their supporting computational

algorithms can also be used to formulate and solve N-person games based on Nash’s equilibrium

assumptions [41]. Jordan best articulated the power of probabilistic graphical models:

“Graphical models are a marriage between probability theory and graph theory. They

provide a natural tool for dealing with two problems that occur throughout applied

mathematics and engineering -- uncertainty and complexity. … The graphical model

framework provides a way to view all of these systems as instances of a common

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 40 of 168

underlying formalism. This view has many advantages -- in particular, specialized

techniques that have been developed in one field can be transferred between research

communities and exploited more widely.”

 Michael Jordan, 1998

The strength in using probabilistic graphical models lies in its ease of model construction.

However, solving the problem computationally has been demonstrated to be a

combinatorially explosive problem [71]. Research activities in this area focus on finding

efficient algorithms to solve a problem with large number of variables and states. Algorithms

that find approximate solutions for large size problems have been developed [72].

Solving a Probabilistic Graphical Model is about calculating marginal probability distribution

functions for each of the variables in the graph model. In 1988, Pearl first presented a “belief

propagation algorithm” to solve the marginal probability calculation problem for acyclic

graphs. Since then, many algorithms have been developed based on this concept, which

includes the bucket elimination algorithm [73], the variable elimination algorithm [74], and

the sum-product algorithm [69].

The sum-product algorithm can be thought of as a generalization of the belief propagation

originally developed by Pearl [66]. It follows a simple computational rule to propagate

change messages and update the marginal probability functions throughout the graph.

Kschischang et al.’s [69], demonstrated that the sum-product algorithm can subsume many

other algorithms such as the Viterbi algorithm, the Kalman filter, and certain fast Fourier

transform algorithms. The power of this algorithm is derived from its simplicity in its

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 41 of 168

message propagation rule. More details of the sum-product algorithm can be found in

Kschischang’s paper.

The sum-product algorithm operates on a graphical data structure called a factor graph.

Factor graph is a bi-partite graph that resembles Petri Net’s bi-partite graph formalism [75],

and the message passing is similar to the concept of moving tokens between places and

transitions. However, there are two main differences that separate factor graphs from Petri

Nets.

1. Factor graphs only use sums and products as the two arithmetic operators

that operate on probability functions. Instead, the “transitions” in Petri Nets

represent operators that may represent arbitrary transformation functions

2. Factor graphs schedule message-passing events based on a customizable

message update rule. Petri Net schedules the propagation of tokens based on

the structure of the graph and the duration required to complete each

transition execution event

In the self-modifying aspect of modeling, it is particularly easy to modify Probabilistic

Graphical Models because the connections between nodes in a graph are driven by statistical

data, which can be mechanically retrieved through either manual or automated data feeds.

Other probabilistic graph models such as Dynamic Bayesian Belief Network [76], and

Learning Bayesian Networks [77] have incorporated the notion of time variant features to

update both the structure and statistical data content during simulation.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 42 of 168

2.2.4.2 Petri Nets

Petri Net is named after C. A. Petri, whose Ph.D. thesis [78], “Kommunikation mit

Automaten” (Communication with automata), started a major revolution in graph-based

simulation methods. Petri originally formulated Petri Net as a theoretical basis of

communication between asynchronous components of computing devices. This concept was

later generalized to cover the description of causal relationships between arbitrary events.

Petri Net has been applied to a wide range of applications, such as workflow modeling, legal

systems, distributed computing systems, manufacturing system design, and many others [79].

Petri Net is often employed as an analytical tool to study concurrent behavior in discrete

event systems. Due to its extensibility, hybrid extensions such as probabilistic, fuzzy and

continuous event models have been added to the Petri Net language family [80]. To

encompass all the variations of Petri Net, we offer the following definition:

A Petri Net is a directed bi-partite graph that uses tokens to represent the state of the

system being modeled. Nodes in the graph are divided into two types, passive and active.

Passive nodes that store the tokens are called places. Active nodes that move the token

between places are called transitions.

The key strengths of Petri Nets can be summarized as follows:

1. Petri Net is a rigorous mathematical representation of interacting systems

2. Petri Net is also an intuitive diagrammatic language that can be understood

by non-mathematicians

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 43 of 168

3. Petri Net is a language with closure properties. Standard operators such as

concatenation, union, and intersection can be applied to two or more Petri

Nets and the resulting network would remain a Petri Net

The closure property of Petri Nets is particularly beneficial in composing models for

complex system. It provides the mathematical basis to automate composition of new models

from existing models. Petri Nets can also be used as a generator of other Petri Nets, tokens

can record the places and transitions while being moved around. The “itinerary” of the tokens

can be represented as a Petri Net and stored in the tokens [81-83]. The ability to generate

models through executing a Petri Net makes Petri Nets a meta-language.

Researchers in the field of modeling languages have criticized Petri Net for its biased focus

toward the process or dynamic aspects of a system. In contrast, the E-R diagram, System

Dynamics, and factor graphs, which can also be represented as bi-partite graphs, provide the

semantic elements to express the static aspects of a system. Another weakness of Petri Net is

its reliance on graphical formalism. Even a small number of places and transitions can appear

visually complex. However, this problem applies to all graphical models of systems.

Petri Net has become a popular system modeling language in the real-time embedded

systems community. It has been applied to other areas with much less popularity.

Discounting its inherent weakness in graphical notation and its focus on system dynamics,

the lack of popularity in socio-technical system modeling is related to the demographics of

the Petri Net research community. Computer scientists and mathematicians wrote the

majority of research papers and books on Petri Nets. These publications contain highly

technical content, making them less accessible to average system modelers. When choosing a

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 44 of 168

modeling language for the analysis of socio-technical systems, an active research community

that applies the language in a socio-technical context is another driving factor.

2.2.4.3 System Dynamics

Jay Forrester introduced System Dynamics as a modeling and simulation tool to the research

community that studies socio-technical systems. System Dynamic models help architects of

socio-technical systems to visualize the structural interdependencies among variables. The model

can be executed to quantify variable interactions in a temporal context. It has been applied to

many high-profile socio-technical problems, including urban planning, financial market

dynamics, human population models, and product development processes [84, 85].

System dynamic models graphically depict causal relationships as arrows that connect two kinds

of changing variables. One kind of variable is called “stock”, they are variables that accumulate

change over time. The other kind of variable is called “flow”, they control the rate of change

over time. Once a graphical model is constructed to represent a system of interest, a

computational engine will calculate the interactive effects among variables over a specified

period of simulated time. The graphical model of System Dynamics also helps analysts visualize

the reinforcing and balancing loops in a network of causal relationships. The historical states of

each variable are recorded and can be used to analyze the interactions between different variables.

System dynamics provides an instrument to help people reason about complex and dynamic

scenarios. Forrester has the following comments [84]:

“To deal with practical management and economical problems of pressing importance, a

mathematical model must be able to include all of the categories leading to realistic

representation of corporate and economic behavior. … The model must be able to accept

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 45 of 168

our descriptions of organizational form, policy, and the tangible and intangible factors

that determine how the system evolves with time.”

The mathematical model of System Dynamics is based on a system of differential equations.

Users specify organizational forms, policies, tangible and intangible factors in arithmetic

equations and numeric values. These values are processed through a numeric integration

engine that integrates changes over time. This numeric integration approach avoids two

problems. First, it bypasses the need to solve differential equations analytically, which

guarantees that all models can have some numeric solutions. Second, numeric integration

breaks the cycles in the graph model by taking calculated values from the previous time step.

Therefore, independent of the number of cycles and the arithmetic equations that specify the

dynamic values of each variable, properly initialized models can always be simulated and

finished within polynomial computation time.

However, using numeric values and arithmetic equations to specify the behavior of a system

is somewhat limiting. There are numerous cases where a system may need to trigger certain

processes, and these events can change the structure of the model under different conditions.

This is particularly difficult to express using numeric values and arithmetic equations, only.

To accommodate these needs, Hines et al. [86, 87], have implemented software extensions to

incorporate event-triggering mechanisms in the numeric integration engine.

The effort and skills required to construct a meaningful system dynamics model are not to be

overlooked. It takes experience and time to learn about the system of interest. It takes natural

talent and conversational skill to translate a qualitative inquiry into numeric variables. Then,

it takes time to interpret the model and calibrate its input manually. Most System Dynamics

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 46 of 168

models are “time invariant” models. The arithmetic equations and the structures of the model

do not change during simulation time. The data structures of existing System Dynamic tools

do not inherently support dynamic model generation and self-modification. To quote the

introduction statement of Sterman’s book on “Business Dynamics” [85]: “The greatest

constant of modern time is change.” To fulfill the needs of representing changes in the real

world, we need a simulation environment that can endure and specify changes during

simulation time.

2.2.4.4 Textual Simulation Languages

From a human-machine interface viewpoint, graphical modeling languages help people better

visualize the relationships and structures of interacting variables, but a graph with a large

number of variables can be visually incomprehensible.

Back in 1965, Ole-Johan Dahl and Kristen Nygaard explicitly designed a programming language

to support the analysis of socio-technical systems. In Nygaard’s own words [88]:

“From the very outset SIMULA was regarded as a system description language …

1. The language should be built around a general mathematical structure with few basic

concepts. This structure should furnish the operation(s) research workers with a

standardized approach in his description so that he can easily define and describe the

various components of the system in terms of these concepts.

2. It should be unifying, point out similarities and differences between various kinds of

network systems.

3. It should be directing, and force the operations research worker to consider all aspects of

the network.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 47 of 168

4. It should be general and allow the description of very wide classes of network systems

and other systems which may be analyzed by simulation, and should for this purpose

contain a general algebraic and dynamic language, as for example ALGOL and

FORTRAN.

5. It should be easy to read and to print, and should be suitable for communication between

scientists studying networks.

6. It should be problem-oriented and not computer-oriented, even if this implies an

appreciable increase in the amount of work which has to be done by the computer.”

SIMULA is also considered to be the first object-orientation language. Today’s popular

languages, Smalltalk, Common Lisp Object System, Java, C++, and Python [89] have all been

influenced by SIMULA’s original concepts in object-orientation. However, all these languages

are textual languages. It is difficult to communicate the structure and the potential interactions in

a complex system to non-programmers by source code of a simulation model. Ideally, textual

and graphical modeling languages should be combined to leverage the strengths derived from

both language types.

A unique breed of textual language is changing the way people communicate with each other.

The invention of Hyper Text Markup Language (HTML) and the Hyper Text Transport Protocol

(HTTP) made a significant impact to our socio-technical system [90]. The simultaneous

introduction of a standard syntax along with a standard data transport mechanism profoundly

changed the way we live and learn. Berners-Lee’s invention demonstrated that a simple and

static computer language [4], properly deployed, could unleash complex and dynamic reactions

of many people, machines, and societies. Berners-Lee’s more recent focus on Extensible Markup

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 48 of 168

Language (XML) and Semantic Web Initiatives [91] further pushed the concept of sharing a

common syntax across multiple knowledge domains.

Many researchers and software developers have been converging toward the use of XML as a

standard syntax for textual languages. Various middleware software vendors have adopted XML

as a data-encoding standard to integrate their workflow systems, organize corporate information

repositories, and compose collaborative simulation experiments [20, 92, 93].

However, one must point out that XML was designed to encode static data. It was not intended

to encode dynamic procedures. Researchers and software companies have made serious attempts

to encode procedural knowledge in XML [94, 55]. Partially due to XML’s verbose syntax, an

XML-based general-purpose modeling and simulation language has yet to become popular.

2.2.5 Meta-languages

Meta-languages and meta-programming are well-known solution patterns in mathematical

reasoning [95] and in the computer science literature [96]. In software engineering, meta-

language and meta-programming are often applied to generate code and design compilers for

programming languages. Czarnecki and Eisenecker clarify the nature of meta-languages [96]:

“The word ‘meta’ is borrowed from the Greek word meaning “after” or

“beyond” and is used to denote a shift in level. … In linguistics, the term “meta”

does not imply anything speculative or mysterious, it simply implies the

relationship of ‘being about’ something, for example, a meta-language is a

language to describe another language. English grammar is a meta-language

with respect to some text written in English because it explains its structure. The

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 49 of 168

usage of ‘meta’ in linguistics corresponds to its usage in computer science, where

meta-programs are programs about some base-level programs.”

Based on this definition, a meta-language is simply a language that specifies the grammatical

structure and vocabulary of other languages. A language being described by a meta-language is

referred to as the “object language”. An object language can be used to describe another

language, so that it can become a meta-language in turn for its object language. Church [95] and

Carnap [97] have a similar definition of meta-language and object language. Their definition is

summarized below.

Definition: Let M and O be two languages. If O can be described using vocabulary and

grammatical rules available in M, then O is the “object language” and M is the

“meta-language”, and vice versa.

Milner created an executable meta-language, ML [98]. It was originally designed for

mathematicians and computer scientists to perform automated theorem proving tasks.

Programming language designers have been using ML to specify the syntax and semantics of

other object languages and create instances of executable programming languages using ML.

Other languages such as Lisp [12, 99] and Haskell [100] also support similar meta-language

features. Meta-languages are often designed and implemented as general-purpose programming

languages. They support declarative language features to describe arbitrary systems. They

support imperative features to specify algorithms and execute calculation tasks. They are

particularly suitable for generative modeling techniques, because they can manipulate data

structures as well as algorithmic specification of other programs. However, executable meta-

languages such as ML, Lisp and Haskell are not designed for casual users. They all require

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 50 of 168

significant programming experience to internalize the syntax and semantics of these

programming languages. Although, executable meta-languages present many language qualities

that are desirable in architectural reasoning, it is unlikely that system architects and stakeholders

can directly utilize existing meta-languages as a common medium for both communication and

computation.

2.2.5.1 Functions of an executable meta-language

The function of an executable meta-language is to automatically manipulate representational

schemes, enumerate combinatorial possibilities, and perform mechanical calculation tasks. An

executable meta-language often serves the functions of: communication and computation,

including recursion.

1. Communication: meta-languages are the instruments to define a common data structure

that relays qualitative and quantitative information across machines, individuals, and

organizations.

2. Computation: meta-languages are instruments that map domain-specific knowledge to

computable rules, so that people and machines can follow the formal mapping to

interpret and execute instructions encoded in meta-language models.

3. Recursion: meta-languages often recursively apply the same set of rules and symbols to

adaptively define data structures and computable rules in varying context. Recursion

allows a meta-language to define other languages in the most efficient way possible.

Figure 2-8 shows the meta/object language relationships between two well-known programming

languages.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 51 of 168

Figure 2-8 Meta-language and object language

The property of this introspective language definition structure is structurally similar to systems

that are recursively composed of other systems. Therefore, meta-language as a class of modeling

languages naturally serves as the formal representation of “systems of systems”. Architects can

conveniently model a system of systems based on a system of languages.

The practical advantage of defining a root meta-language is to provide consistency. Adopting a

root meta-language provides a unified representational foundation to construct layered models

for real systems, so that users of this language can incrementally tackle the complexity of system

interactions, without losing sight of the possible connections between various sub-systems.

In principle, the recursive or self-referential nature of meta-languages makes them pervasive in

our daily thought process; one cannot think without it [101-104]. On the down side, the multiple

levels of recursions can be counter-intuitive to people and therefore intentionally avoided in

practical use. To break away from this dilemma, a general-purpose meta-language must be

intuitive, so that users can utilize meta-languages at multiple levels of abstraction, without

confusion from the depth of recursion. Then, architects and other stakeholders can better focus

their mental effort on creative activities that are not yet computable.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 52 of 168

2.3 Summary of reviewed modeling languages

This section presents a summary of our literature review on modeling languages. We first present

Jorgensen’s comparative results on existing modeling languages. Then, we will present a two

dimensional diagram to summarize the space of modeling languages for system representation.

2.3.1 Comparative Studies of modeling languages

Jorgensen [105] conducted an extensive study on modeling languages that included UML,

System Dynamics, Petri Nets, and other textual, informal, or semi-formal process languages. We

cite his original words:

1. Many languages are complex, containing numerous types and views not integrated in a

systematic manner. This is especially the case for UML.

2. In many cases mathematical, logical or technical concepts are applied instead of user or

domain oriented (needs). Petri Nets and constraint-based languages exemplify this.

3. The languages that are precise and formal enough for automatic execution offer few

opportunities for human contributions to interactive activation. The languages do not

handle process models with varying degrees of specificity.

4. The semantics of language elements is generally static and not easily adopted to local

context or multiple perspectives.

Jogensen’s statements echo our own observations. Our literature review indicates that system

architects are still in need of a modeling language that is simple, intuitive, and executable to

support many tedious tasks in architectural reasoning.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 53 of 168

2.3.2 Emphasis of modeling languages

Existing modeling languages are not adequate for holistic system modeling because they are

designed to emphasize certain aspects of modeling for their respective application domains.

Figure 2-9 shows a two-dimensional categorization of language properties.

Figure 2-9 The two dimensions of language design

The horizontal dimension in Figure 2-9 represents the function vs. form emphasis. For example,

Petri Nets and System Dynamics are designed to emphasis the functional or process aspect of

systems. In contrast, E-R models and Probabilistic Graphical Models are mostly interested in the

structural relationships between their components; their modeling emphasis is on the forms or

structural configurations of the system. The vertical dimension in Figure 2-9 represents the

tradeoff between coverage and resolution. For example, modeling languages such as E-R

diagrams often choose words that cover the entire class of things, such as “Car” and “Steering

Wheel”. In contrast, modeling tools for geometrical objects such as AutoCAD and Cadence,

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 54 of 168

must explicitly specify the shape and geometrical configuration of a car or an electronic circuit at

a high level of resolution. At the same time, each high-resolution model looses the

expressiveness to represent a generalized class of things. On the process side of Figure 2-9, it

shows that programming languages such as C and Fortran are designed to precisely describe the

algorithmic properties of dynamic systems. However, system architects might not choose them

as a communication medium to illustrate the dynamic properties of socio-technical systems.

We intentionally left out UML and OPM in Figure 2-9, because they both are trying to cover the

entire two-dimensional language space. UML is a modeling language that intends to cover the

entire language space by adding many instances of sub-languages. This ultimately led to its

complex family of languages. In contrast, OPM tries to assimilate different languages into a

single diagrammatic view and a matching textual representation. It avoids the model-multiplicity

problems in UML. However, it also faces the danger of introducing too many semantic elements

into a single set of notation, and lead to notation bloat within one language. These language

design tradeoff questions help us rethink system architects’ language needs.

Executable meta-languages present many desirable features for modeling complex socio-

technical systems. They are designed by mathematicians and computer scientists who are skilled

in abstract algebra, category theory, and domain theory. The weaknesses of existing meta-

languages are related to their abstract syntax and programming semantics. It is a serious

challenge to design an executable meta-language that preserves its flexibility, while making it

accessible to architects and stakeholders who are not professional programmers. This challenge

is the main focus of this thesis.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 55 of 168

The following chapter will describe the needs and requirements that lead to the design and

development of an executable meta-language, Object-Process Network.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 56 of 168

3 Needs and Requirements

This chapter describes the needs, requirements and solution profile of an executable meta-

language for system architecting.

3.1 The needs of systems architecting

Section 1.1 presented the motivation of this research. These language needs of system architects

can be summarized here.

1. Communication between stakeholders and architects and among architects in

different knowledge domains;

2. Computationally assess the consequences of system interaction at various layers of

abstraction, in various knowledge domains and at different physical scales.

Based on our literature review (Chapter 2), we found that a holistic modeling language has yet to

be designed and implemented. Each of the modeling languages we studied has only been able to

partially fulfill the needs of system architects of socio-technical systems. Since the underlying

mechanisms by which we create models and perform simulations have not changed significantly

since the late 1960’s, the effort involved in changing and sharing models of a complex socio-

technical system remains unchanged. To avoid this dilemma, we propose the following features

of a holistic modeling language:

1. It must be simple, yet flexible

2. It must be mathematically rigorous, executable, and easy to understand.

3. It must support self-modifying features and be extensible to a suite of domain specific

needs

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 57 of 168

4. It needs an integrated user interface that combines both graphical and textual languages

5. It should adopt a standard syntax for sharing models between different computers

3.2 Three types of architectural reasoning tasks

There are three distinctive reasoning tasks in system architecting: modeling architectural

alternatives, generating instances of architectures, and calculating performance metrics for each

architectural instance. Figure 3.1 is an Object-Process Network (OPN) that depicts the three

architectural reasoning tasks.

Figure 3-1 Mapping Function to Form

The top box in Figure 3-1 indicates that architects and key stakeholders must present certain

decisions to direct the exploration effort in the massive combinatorial space of architectural

alternatives. They need to create a model of architectural alternatives that prescribes the space of

alternatives. This part of the architectural modeling effort provides the declarative knowledge to

shape the space of architectural alternatives, so that architects and stakeholders can utilize this

knowledge to generate instances of architectural solutions.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 58 of 168

In Figure 3-1, the box in the right-hand corner suggests the models of architectural alternatives

are executable. An executable model is a program written in an imperative modeling language

that can instruct a machine to mechanically generate architectural instances. When the number of

architectural instances is too large, the modeling language should allow architects to adaptively

control the number of generated architectural instances based on practical needs. When the space

of architectural alternatives is continuous or uncountable, this modeling language should provide

some classification scheme to systematically organize the space into a set of distinctive

architectural solutions, so that an imperative program can be executed to enumerate the entire

space of architectural solutions in numeric or symbolic terms.

The box in the left-hand corner in Figure 3-1 represents a collection of architectural instances

generated by the instance enumeration process. To select an instance of architectural solution or

proceed with further investigative activities, we need a way to calculate the performance metrics

for each of the architectural instances. Since each architectural instance is represented by a set of

static numerical or symbolic values, they can be used as inputs to construct performance metrics

calculation routines that properly reflect the structural and behavioral characteristics of each

instance. The process of evaluating the performance metrics for each instance of system

architecture is called system performance simulation. The performance simulation results of a

collection of architectural instances provide a rational source of information to reach ongoing

architectural decisions.

This section shows that architects need a language to first declare the space of alternatives, then,

the language also needs to provide the imperative information to specify the process of

generating instances of alternatives. To reach an architectural decision or to decide to pursue

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 59 of 168

further architectural investigation, architects need a language that can faithfully simulate the

structural and behavioral properties of the proposed system of interests.

3.3 Requirements of the architects’ meta-language

To support the three types of reasoning tasks illustrated in Section 3.2, an executable meta-

language for system architecting must:

1. Formally represent and specify the space of architectural alternatives by reflecting the

knowledge of system variability across multiple knowledge domains

2. Automatically generate, enumerate and encode all instances of architectural alternatives

specified in the meta-language

3. Adaptively calculate metrics associated with each generated architectural instance to

help architects and other stakeholders perform tradeoff analysis on all instances of

architectural alternatives

The following subsections describe other required features of an executable meta-language for

system architecting.

3.3.1 Subsume various models of computation

Designing and architecting a system can be characterized as a process of simulating future events

[106]. To assess the interactive consequences of various socio-technical factors, the simulation

semantics must be able to represent the range of structural and behavioral abstractions. As more

knowledge about the system of interest accumulates, the meta-language must be able to flexibly

represent the range of structural and behavioral formalisms. It is a well-known property that all

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 60 of 168

Turing-Complete languages can represent other formal languages through a complete and finite

translation mechanism. This property is necessary for the meta-language to incorporate new

language formalism without reaching an inherent syntax or semantic limitation. Therefore, we

need to show that our meta-language is Turing Complete.

3.3.2 Generate possible subsets of alternatives within finite time

The thoroughness or completeness of alternative analysis is defined by the ability to exhaustively

study all possible alternatives. Two immediate challenges arise. For systems that involve

continuous state variables, the number of combinatorial states is uncountable by definition,

making it theoretically infeasible to enumerate all the possibilities. For systems described with

discrete qualitative and quantitative variables, the size of combinatorial possibilities can easily

overwhelm any available computational resources. To establish a theoretical framework that can

be generally applicable to the study of design alternatives, we need to specify the conditions in

which exhaustive alternative space enumeration is possible.

3.3.3 Adaptively construct computable expressions

Each instance of alternatives generated by the executable meta-language is an instance of an

object language. Therefore, each generated alternative instance must contain the syntactic and

semantic information to specify the computational behavior of an executable object language.

This information can be utilized to construct computable expressions that can evaluate

performance metrics for each of the generated alternative instances. Without an automated model

construction mechanism, the large number of enumerated alternatives could not be evaluated in

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 61 of 168

all their unique structural and functional features. We need to utilize the structural and functional

properties in the “object languages” to adaptively construct metric calculation models, so that the

structural and functional properties of each instance of alternatives can be fully investigated. This

model construction mechanism is a critical feature to thoroughly evaluate the full range of

architectural alternatives. By ignoring some structural and functional aspects of individual

alternative instances, many critical architectural consequences may be overlooked. A meta-

language-based simulation environment needs to preserve and utilize all the structural and

functional models of individual alternative instances.

3.3.4 Enable Model Introspection

The notion of introspection [99] is a basic concept in the design of executable meta-languages.

Introspection is the capability to programmatically examine and manipulate the internal parts of

a program. This includes local variables, and algorithms. A simple and consistent language

model would better facilitate language introspection. We achieve this by the use of one pair of

meta-operand and meta-operator as the atomic units of data and computation. It provides a

unifying mechanism to access data and procedures across any part of the language system. This

feature is particularly useful to enable data and algorithm sharing across different object

languages that are specified through the same meta-language. It provides a consistent mechanism

to reduce representational redundancy, thereby reducing potential errors. Introspective data and

procedural structures also help condense the size of the language kernel, making it concise and

portable to various computing and communication environments.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 62 of 168

3.3.5 Support layered abstraction models

To support the analysis of complex systems, organizing different parts of the system into

different layers of abstraction and classifying system attributes into different scales are important

decomposition techniques to modularize model complexity. In formal representation of systems,

three layers of abstract semantics can be classified as: declarative rules, imperative procedures,

and customized simulation code. Declarative rules are formal statements that do not explicitly

specify the sequence of event occurrence. For example, the expressions “A>B” and “B>C” are

conditional statements; they do not need to be evaluated in a specific order. Due to their

sequence-independent nature, declarative rules are particularly effective at specifying system

properties that do involve the notion of precedence order, such as the structural relationships

between system attributes. Imperative procedures on the other hand, provide explicit information

to specify the sequence of event occurrence. They are effective at specifying the dynamic

behavior of a system. Simulation code is the domain-specific library that enriches the capability

of a general-purpose simulation environment. The semantic model must allow both declarative

and imperative statements to conveniently utilize features offered through the library of

simulation code.

3.3.6 Diagrammatically represent system models

Reasoning through diagrams is a typical technique employed by people across all disciplines.

Larkin and Simon [107] best summarized the rationales of diagrammatic reasoning as follows:

1. Diagrams can group together all information that is used together, thus avoiding large

amount of search for the elements needed to make a problem solving inference.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 63 of 168

2. Diagrams typically use location to group information about a single element, avoiding

the need to match symbolic labels

3. Diagrams automatically support a large number of perceptual inferences, which are

extremely easy for human(sic).

Diagrammatic representation of our meta-language is desirable because it can provide a

cognitively appealing, consistent, interface for technical and non-technical users alike. The

syntax of the meta-language can be visually displayed and the execution procedures of the meta-

language can be animated. These computer visualization techniques may reduce the mental labor

required to construct and debug a complex model.

3.3.7 Deploy across standard computing platforms

In a world of computation and communication, meta-languages and their relevant technologies

are pervasive. Java Virtual Machine (JVM) [108], Extensible Markup Language (XML) [94],

Resource Definition Framework (RDF)[109] , Common Language Runtime (CRL) [96]

environment, and other machine processable meta-languages all have an identical goal: provide

an extensible language kernel to support a wide range of applications in various physical

environments. The software implementation aspect of the meta-language is important because it

affects the ability to deploy the computational and communication services to coordinate

architects and other stakeholders across multiple geographical locations and time. A compact

language kernel with a small number of linguistic primitives is ideal, because it reduces the

minimum resource requirement, therefore making it feasible to deploy onto the widest possible

collection of machines. Utilizing popular software standards such as XML and Java is also

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 64 of 168

important because it helps us leverage a rich set of software features that are embedded within

standard platforms or accessible through the open-source community.

3.4 A Solution Profile

In order to meet the requirements listed above, we propose our meta-language to include the

following features:

1. Specify an executable model of communication and computation

2. Satisfy Turing Completeness

3. Support a three-tiered semantic model to reduce language complexity

4. Use diagrams to visualize model structure and behavior

5. Use one meta-operand and one meta-operator to build the language kernel

6. Utilize technologies supported by standard platforms

__

This chapter presented the requirements and fundamental concepts of a meta-language for

systems architecting. Chapter 4 describes OPN, the meta-language we propose in this thesis, and

demonstrates how it meets these requirements.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 65 of 168

4 An executable Meta-Language: Object-Process Network

This chapter describes Object-Process Network (OPN), an executable meta-language for systems

architecting. We choose the name OPN for two reasons. First, we want to acknowledge Dori’s

work on Object-Process Diagram (OPD) that avoids the bias toward either pure Object-

Orientation or Process-Orientation in system modeling. Second, we want to distinguish OPN

from OPD because OPN strictly follows a bi-partite network structure that only allows direct

connections between Object-Process pairs. In contrast, OPD defines many types of connections

to directly connect Object to Object and Processes to Process. The refined graphical syntax in

OPN makes it easier to implement execution engines based on other graphical computational

models that follow the bi-partite graph formalism.

4.1 The space of modeling languages

To perform architectural reasoning tasks, architects must visualize the interactions between

objects and processes, and represent both the space of alternatives and architectural instances by

choosing a language that can adaptively cover all the squares in Figure 4-1. To avoid a bias

toward either functions or forms, we follow OPM’s [26] convention of using a rather neutral

word, “Thing”, to represent a primitive type that can be interpreted as either object or process.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 66 of 168

Figure 4-1 The space of modeling languages

Therefore, objects and processes in OPN are modeled as Things. Things relate to each other by

relationships to form a graph. We will illustrate a recursive data structure that utilizes Things,

Relationships and Graphs as the three linguistic primitives to represent arbitrary data structures.

4.2 Thing, Relationship and Graph

At the end of Chapter 3, we specified that a meta-language should be simple and Turing

complete. To be simple, we need to use a small vocabulary. For representational efficiency, we

need to find a highly condensed set of linguistic primitives while maintaining universal

expressiveness. Examining formal languages, we found a common pattern among many of them.

Languages in general need to distinguish entities in a set, have the ability to specify directed

relationships, and have the data structure to represent collections. Accordingly, we defined three

primitives in our language: Thing, Relationship, and Graph. In OPN, all statements are made out

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 67 of 168

of things, relationships, and graphs. In terms of the typing information, it can be stored in two

ways. First, each unique instance of thing can be considered to be a special type. The distinction

between things, relationships and graphs is another way to make a distinction between types. To

store information about how types and other attributes are related to Things, all Things have

their private attributes, which are also Things. The necessary expressiveness to describe systems

with varying levels of details can be achieved by recursive applications of this nested data

structure pattern.

• Thing is defined as the fundamental building block of any systems.

• A Relationship is a special type of Thing, which defines the connection between two other

Things. It can be thought of as a binary operator. Syntactically, it’s a Thing containing a

RelationshipPart data structure.

• A Graph is a special type of Thing, which is a container for Things and Relationships.

Syntactically, it’s a Thing containing a GraphPart data structure, which can in turn be

thought of as a set, or as a generic data structure to store information in OPN.

Thing represents the meta-operand in this language. Graph and Relationship are special types of

Thing. To manipulate these varying types of operands, one needs a set of operators that can

properly utilize information encoded in each type of Thing.

4.3 Operands and Operators

Thing, and Eval are OPN’s meta-operand and meta-operator, respectively. Thing provides a

flexible data model to encode a wide range of data structures. Eval provides a universal interface

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 68 of 168

to model various modes of interaction amongst Things. OPN utilizes this foundational

operator/operand pair to construct its model of communication and computation.

4.3.1 The meta-operand: Thing

We use Backus-Naur-Form (BNF) [110],where:

“::=” means “is defined as”
“|” vertical bars means “or”
“<>” angle brackets are used to surround user-defined variables
“[]” brackets surrounds elements that are optional.
“*” star behind an element represents it could appear 0-n

 times

The data structure of Thing is defined as follows:

Thing ::= name = <string>;
content = <GraphPart>|<RelationshipPart>|<string>;
[value = <Thing>;]

Thing is the meta-operand in OPN. Its content may be a string, a GraphPart, or a

RelationshipPart. The choice of content type determines the Thing’s type. In other

words, string, Graph and Relationship can all be considered to be specialized types

of Thing. An instance of Thing always has a name associated with it, which identifies

its uniqueness within the immediate context that contains it. The attributes of a Thing

are stored in the value, where the data content of value is an instance of Thing. We

will elaborate the content and uses of value later. Due to the generic nature of Thing,

we decided to use three different graphical icons to visualize their differences.

Graph ::= name = <string>;
Content = <GraphPart>;
[value = <Thing>;]

GraphPart ::= ThingCollection=[<Thing>*];

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 69 of 168

RelationshipCollection = [<Relationship>*];

GraphPart is a data structure contained in a Thing. It contains two sets; a set of Things and a

set of Relationships. These two types of data structures make up the structural

information about Graph.

Relationship ::= name = <string>;
Content = <RelationshipPart>;
[value = <Thing>;]

RelationshipPart ::= Source=<Thing>,

Target=<Thing>;

RelationshipPart is also a data structure contained in a Thing, where both source and target

are instances of Things. The third entry in Relationship, value, is also an instance of

Thing, included by default to store user-specified information about each instance of

Relationship. The visual representation of Relationship is an arrow.

value ::= Thing

The value field stores instance-specific information in any one of the specialized types of

Thing. It is the official extension mechanism to incorporate application-specific

information. In addition to terminal values such as literal strings or numbers which

can be stored in value, it can also be a place where multiple levels of Graphs can be

stored and accessed through this standard data structure.

string ::= [character*]

All numbers, names, symbols and universal resource identifiers (URIs) are eventually stored

as “literal strings”. They are considered to be “terminal” because they usually require

no further processing, unless explicitly specified otherwise.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 70 of 168

4.3.2 The meta-operator: Eval

Definition of Eval:

Eval is a meta-operator, which contains computable knowledge to transform the state of its

operands. It can be succinctly written in the following format:

Context(Eval) I → O

The above statement should be read as:

“Given the knowledge specified in the Context of Eval, the operand I evaluates to O.”

Thinking as a logician, one can often refer to the whole statement as a statement of a generic

inference process. Context() and Eval together provide the resources and knowledge for the

execution context, I is the input operand, and O is the output operand. The concept of deriving

output O as an inference result requires some additional explanation. In the context of OPN, the

outcome of an Eval operation, O, can be one of the following Things:

1. Based on the information contained in input I and the Context of the Eval

operator, Eval creates one or more new instances of Things, represented as O in

this formal expression.

2. O represents a new condition in I. Eval operated on I and changed its internal

structure or content. It is optional to create a new instance of Thing O after the

execution of Eval.

3. O represents a new condition in Context. Eval used I as an input operand and

inferred new conditions about the surrounding context. It is optional to create a

new instance of Thing O after the execution of Eval.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 71 of 168

4. Executing Eval could simultaneously create a new instance of Thing O as output,

change the condition in I and Context, or a partial combination among the above

mentioned 3 possibilities.

OPN’s execution kernel is implemented by following this single meta-operator approach, all

computation and communication operations in OPN context are idealized as the consequences of

applying Eval. Adding, removing, changing values in all Things are done through some

recurring application of Evals. From a programmer’s viewpoint, Eval can also be viewed as the

standard public function embedded in all Things. Each Thing may change its own “Eval”

behavior by storing localized computable structures or expressions to overwrite the default

behavior.

4.3.3 Notations

OPN is a graphical language; therefore, it has a set of graphical symbols that denotes each type

of its linguistic primitives. To provide a visual reference for what they are, Figure 4-2 is an OPN

Graph annotated to indicate the type of Things they represent.

Figure 4-2 An annotated OPN

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 72 of 168

Since all data elements in OPN are represented as Things, we need additional structural

information to distinguish the roles of these things. Therefore, each Thing should include type

information. All data elements of OPN are stored in a Graph. OPN’s model structure is specified

as follows:

An OPN Graph is a Thing that uses GraphPart as its content. In the GraphPart data

structure, the “ThingCollection” contains Objects and Processes as its two types of

Things. Similarly, the “RelationshipCollection” contains Pre/Post Conditions as its

two types of Relationships.

When a Thing is deciated to store information about system states, it is considered to be

an Object. An Object is a Thing that encodes the state of certain variables of interest.

An Object is a passive information element in OPN. The evolutionary history of its

state is recorded by a series of Tokens that visit the Object during execution time.

Objects are graphically represented as a set of rectangles.

When a Thing is dedicated to store a set of executable instructions that will change the

state of other Things, it is considered to be a Process. A Process is a Thing that

represents the operators in OPN, it is an active information element in OPN. Each

Process stores its respective operational algorithm to transform the state of certain

variables of interest. These variables are associated with relevant Objects. The

results of transformations are stored in Tokens that trigger its operation. Processes

are graphically represented as ellipses.

It is also possible for a Thing to simultaneously store information about system state and

executable instructions. When such situation occurs, the Thing is dynamically

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 73 of 168

determined to be a Process or an Object based on its context. The quality to become a

different kind of Thing at different context is called polymorphism. Objects and

Processes are two complementary types of Things that must coexist to describe

communication and computation. To ensure syntactic integrity, OPN imposes a

connectivity constraint between Things. All Objects and Processes can only connect

to Things of the other type, but not the same type. This quality is quite pervasive in

graphical representation of mathematical objects.

A Token is an instance of Thing. The term “token” is borrowed from Petri Net literature

[79]. It represents a communication or computation event. By default, each instance

of Token contains a field “starting time”, which denotes when it should be triggered

to carry out the event. It is always associated with one Object that indicates where the

Token is contextually situated when it is to be triggered. Once it is triggered, it serves

as an input to Processes to trigger their operations and capture their operational

results. As it finishes, it will be placed/associated with one Object. It will be

scheduled to trigger another Process when its “starting time” comes. The data content

of a Token serves as the carrier of computational results and communication

messages by storing a collection of Things that captures the variable states encoded

in relevant Objects at the time of visit. A unique feature in OPN is that we enable all

Tokens to record the trajectory information in terms of all the Objects, Processes, and

Relationships they passed through.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 74 of 168

A Pre-Condition is a Relationship that specifies the relationship directed from an Object

to a Process. It also stores a Boolean function that determines whether a Token

placed in the associated Object should trigger the associated Process.

A Post-Condition is a Relationship that specifies the relationships directed from a

Process to an Object. It also stores a Boolean function that determines whether an

outgoing Token should be placed on the associated Object after the execution of the

associated Process.

4.4 Syntax

One of the critical tasks in architecting is to assess the global effects of local interactions. From a

system viewpoint, the dependency structure of interacting variables determines how a change in

one variable would affect the other variables in a system. In OPN, the users can construct a

model of variable interaction by utilizing the following language constructs.

1. OPN allows users to specify the range and resolution of variables on both the

sending and receiving sides of the communication. This allows users to adaptively

change the formal definition of relevant variables to accommodate the

communication needs in a noisy environment.

2. OPN models the effects and scope of interactions by the structure of the network.

The presence or absence of certain relationships between objects and processes

specifies the syntactical properties of an object language specified by OPN.

3. Users of OPN may control variable interactions by modifying the Boolean

functions in the Pre/Post Conditions.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 75 of 168

The key idea here is that OPN uses the graphical structure to closely resemble the structure of the

problems in their original domain. The structure of the network is the syntax of the language.

Specifically, the benefits of using a graph structure to represent syntactical information can be

further appreciated from the viewpoint of a programming or modeling context. OPN’s syntax has

the following qualities:

1. OPN’s syntax is largely represented by the graph structure. It has only two types of nodes,

Object and Process. The graph-based approach to specify syntax helps remove the syntax

parsing problems in text-based languages. Every time a new character-based language is

created, any minor variation in the syntax structure may introduce new exceptions to

language parsing. Well-designed graphical languages, such as OPN, do not have to deal

with this kind of syntax management issue.

2. Since OPN is designed to be a meta-language, executing OPN is about creating and

modifying languages using OPN operators. OPN’s simple syntactic structure simplifies

the syntactic verification of its object languages.

3. By requiring users to specify the dependency structures between variables of interest,

each user is effectively creating a localized syntax structure for their application-specific

language. This makes it straightforward for OPN to function as a meta-language to

manipulate application-specific models and put them into a common model repository.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 76 of 168

4.5 Semantics

OPN’s semantic properties can be summarized as follows:

1. Higher-order Petri Net: OPN is a meta Petri Net, or a Petri Net that generates other Petri

Nets [81, 82]. We store the trajectory of OPN tokens in the tokens as they run through the

system.

2. The meta-data model element, Thing, provides a common currency to integrate between

different models of communication and computation. It is the portable and commonly

known data structure that can be easily manipulated. This provides tremendous freedom

and flexibility during its computation.

3. Added to each Process is a general-purpose inference algorithm, so that each process can

perform localized symbolic processing to create many instances of computable

expressions. It manipulates the content of Tokens in terms of Graph theoretical operators,

such as adding and removing variable names. Notice that this is not a traditional

hierarchical Petri Net. The Petri Net model within each subnet is another Petri Net. For

practical purposes, the process model within each process is encoded as arithmetic

expressions, which can be efficiently stored as a parse tree. We use a specialized parser to

convert them into symbols or numerals based on available information.

4. The first two features combined created a mechanism to dynamically compose functions.

It allowed the execution engine to compose computable expressions using external

mathematical libraries and custom-made routines. The dynamically composed

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 77 of 168

expressions can be evaluated to produce numerical values or preserve important

information that is specific to a particular simulation runtime context.

4.5.1 A layered semantic model

OPN employs a layered semantic model to manage three kinds of knowledge. The top layer is

the token generating and scheduling facility, which is encoded in OPN’s graphical structure. The

middle layer is the token processing facility. Each instance of Token represents a distinct event

in OPN’s execution history. The token processing facility may be thought of as a logical

inference engine, while the token generator and event scheduler can be thought of as a timing

device for inference engine.

 The lowest layer is the software and operating system facility, where OPN provides a variable

binding mechanism to give users convenient access to third-party software libraries. OPN’s user

interface and language semantics are designed to hide the complexity of these low-level

computing resources and represent them as variable names or functions. Chapter 5 presents how

these resources are organized under OPN’s implementation model.

4.6 Token Generation and Scheduling

The Relationships between Objects and Processes defines the token creation and scheduling

activities. When a Pre-condition is checked and certified, it immediately creates a token to be

transformed by the specified Process. All Tokens move from one Object to the other through an

intermediate Process. A Process changes the states of a token according to the temporal and

spatial context provided by its immediately neighboring Objects.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 78 of 168

After a Process finishes transforming a token, the Boolean function embedded in each of the

Post-conditions connected to the Process is evaluated. If the Boolean function returns true, a

new token is created. The new tokens duplicate all the information stored in the token that

triggers the Post-conditions. The triggering token may be discarded or stored for further

analytical purposes. The new tokens are then placed onto the Objects specified by each of the

Post-condition relationships.

4.6.1 The execution model of Eval

The Eval operators of OPN’s building blocks make up its token generation and scheduling

algorithm. The best way to illustrate the event generation and scheduling algorithm is to reveal

how the Eval operators of different types interact with each other. At the top level, OPN has a

statically defined Eval operator, whose algorithm can be defined as follows:

OPN.Eval

Input(nil) # no input required

 For all Objects contained in the “ThingCollection”

 Trigger Object.Eval

As an intuitive way to understand how a set of statically defined Eval algorithms can create

infinite recursion, imagine the OPN graph structure as a subway system, where the Tokens are

the passengers in the system, and each Object is a subway station. The Processes are the trains

that move passengers between two adjacent stations. Pre-Conditions and Post-Conditions are

how passengers enter and leave the boarding area of each subway station. The following

algorithm specifies how all possible token itineraries can be generated, assuming that Pre-

Conditions and Post-Conditions evaluate to true by default.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 79 of 168

The Eval operators for Object and Process are presented in the following pseudo code format:

Object.Eval

Input(nil) # no input required

Get the token with earliest starting time in local Token Queue

 For all Pre-conditions of this object

 Trigger Pre-Condition.Eval with the token as input

For each Pre-Condition that evaluates to true

Create a new token with all the data content of the token

Get the corresponding process of this Pre-Condition

Trigger Process.Eval with the new token as input

Repeat Object.Eval

Until Token Queue is empty

Process.Eval

Input(token) # an incoming token is required

Trigger token transforming Eval to process the incoming token

 For all Post-conditions of this process

 Trigger Post-Condition.Eval with the transformed token as input

For each Post-Condition that evaluates to true

Create a new token with all the data content of the token

Get the corresponding object of this Post-Condition

Place the token into the Token Queue of this object

By default, whenever no looping structures are involved, all token generation and scheduling

events would come to a stop. If there is a loop in the structure, it will require a customized

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 80 of 168

condition to determine when to stop the iteration. This set of Eval algorithms provides the

looping and branching features necessary to emulate a Turing Machine, thereby making OPN a

Turing Complete language; therefore, we can use it to emulate any realizable algorithms, either

symbolic or numeric procedures. As a model of communication, it provides a simple framework

to simulate or activate the message exchanging activities. It provides a simple yet complete

model of interaction from either an Object or Process perspective.

The Eval operators described above can easily include the feature to record the trajectory of each

token as it moves through all the Objects, Process and Pre/Post Conditions. The trajectory

information stored in each Token is a dynamically generated OPN Graph. This Graph is not

only a part of the original OPN Graph, but it also computationally verifies that at least one

sequence of operations can reach all the involved Objects and Processes. Since all Tokens are

instances of Things, their content can be inspected through standard user interfaces that show the

content of Graph, Relationship, and Things.

The branching structure in OPN is graphically defined by having Relationships going outward

from its connected Thing. The number of outgoing Relationships determines the potential

number of tokens to be generated. As mentioned earlier, each Relationship contains a Boolean

expression that determines whether a new token will be generated and sent toward the

corresponding target Object or Process. The Figure 4-3 shows two examples.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 81 of 168

Figure 4-3 Branching and looping in OPN

Therefore, the number of unconstrained Relationships spanning out of a Thing provides a

standard construct to perform token multiplication and replication. The token replication and

“Eval” triggering mechanism is often referred to as the consumer/producer pattern in concurrent

systems [111]. The branching and looping network structures coupled with the

consumer/producer patterns makes OPN a Turing Complete language. The following section

presents a proof.

4.6.2 Turing Completeness

This section presents a proof that shows OPN is a Turing Complete language.

Since OPN is a graph-based data structure, all token processing activities are directed by the

structure of the graph. Each token’s activity trajectory represents how it traverses the graph. In

other words, they embody one feasible path of some graph traversal algorithm. In order to show

that OPN can be used to implement any realizable algorithm, it must satisfy the condition of

being Turing Complete. This section demonstrates that OPN is a Turing Complete language.

As demonstrated earlier, OPN’s graphical syntax directly supports both looping and branching.

These two complementary elements can be used to compose arbitrary looping and branching

structures of a program. According to Böhm and Jacopini [112], looping and branching are the

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 82 of 168

two necessary and sufficient constructs to make up a Turing complete language. A simpler proof

for OPN’s Turing-Completeness is constructed below:

Theorem:

OPN is a Turing Complete Language

Proof:

The tape of a Turing Machine can be mapped onto a sequence of Objects and

Processes connected through two relationships between each pair to form a bi-directional

chain. The Process can read and write the content onto the Objects that are directly

connected to it. The Process therefore emulates the read and write operations of the tape

reader of the Turing Machine. The Objects serve as the different blocks on the tape to

record the results of write operations. A one-to-one mapping between Turing Machine

and OPN is clearly achievable. The direction of token movement is controlled by the

Pre/Post Conditions that connects between the Objects and Processes. The zero/one

encoding of Turing Machine can be mapped onto the corresponding Pre/Post Conditions.

Based on this structural isomorphism, the token movements can now perfectly emulate

the tape reading and writing behavior of a Turing Machine. Therefore, OPN is Turing

Complete.

.

4.6.3 Model Enumeration in Finite Time

Knowing some language class is or is not Turing Complete would not normally be interesting to

non-computer scientists. In the context of system architecting, it is more interesting for users to

know whether an exhaustive enumeration of a finite structure can be completed within finite time

and finite memory space. To show how OPN accomplishes this goal, we need to discuss how

OPN creates and manipulates tokens during execution.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 83 of 168

Knowing that cyclic structures create infinite cycles raises the question about the feasibility of

exhaustively enumerating feasible models. Given a finite number of interrelated architectural

alternatives, can one generate all the possible subsets of interrelated alternatives within finite

time? In order to answer this question, we prove the following theorem:

Theorem:

For all static (time-invariant) and finite-sized OPN model structures, the exhaustive

enumeration of all its directionally connected sub-models can be completed within finite

storage space and execution time.

Proof:

We need to construct a model enumeration algorithm and prove that it would finish

within finite time and only consume a finite amount of storage space. This can be

accomplished in the following steps:

1. Given a static OPN model, G, perform a search on its graph structure to find a set R

of Objects or Processes that have no incoming Relationships (pre-conditions). Given

G is finite, the search time and the resulting set, R should also be finite.

2. Create an Object Oi a Process Pi and a Relationship from Oi to Pi in G. Create a set

of Relationships that connect Oi and Pi to the Processes and Objects in R

respectively. These additional entries changes G to G’. Since all the above sets are

finite, the resulting G’ is finite.

3. Apply a cycle finding algorithm to find all the cyclic structures in G’. Cycle finding

algorithms in static and finite graphs are finite time procedures. In the worst case, the

algorithm is O(n!), where n is the number of Objects and Processes in OPN. The set

of cycles in G’ (found by the cycle finding algorithm) will be stored in C. Since n is

finite, the time and storage requirement for this procedure is also finite.

4. Create an initialization token Ti in Object Oi. Starting from Oi and Pi, traverse G’

using a breadth first approach by creating one new token for each of the outgoing

Relationships. As the token arrives at a new Object, Process, or Relationship, add it

to a Graph entry locally stored in the token itself. For the portion of the graph that

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 84 of 168

includes no loops, this traversal algorithm would end in finite time. All the newly

generated tokens make up a set of OPN models that represent the complete

enumeration of all variations of G’ without the cyclic portion. This loop-less portion

of model enumeration procedure would require finite time and finite storage space.

5. For G’ with cyclic constructs, as the token constructs its local graph, it must check

whether it contains loops as new entries are added to it. When a cyclic path emerges

from the traversing token, the token would compare its locally stored graph with the

set C, which stores all the cycles in G’. If this new path contains a segment that is

already found in the set C, add this path to a set C’. C’ denotes the set of paths in

OPN that includes cyclic structures. If this path is already in set C’, stop. Otherwise

continue to traverse all its outgoing Relationships. Knowing that the set C is finite

and the number of loopless paths is finite, C’ must be finite.

6. The collection of all generated tokens is the union of C’ and the set of loopless paths

are both finite. Knowing that all the above procedures finish within finite time and

space, it proves that step 1-6 as a whole algorithm can be completed within finite time.

Having proved that enumerating OPN’s directionally connected sub-models can be completed

within finite time, we can make the following observations:

1. Complete enumeration of interrelated sub-models provides a basis to create a

mechanical reasoning framework to perform model decomposition

2. It is necessary to implement a simulation engine that would construct its sub-model as it

performs computation

3. For graphs whose structures or parameters change during runtime, it is not possible to

guarantee that full enumeration can be completed within finite amount of resources

Clearly, finite time enumeration calculation may not be practically feasible. For problems whose

computing time or storage requirements grow exponentially with their sizes, it may not be wise

to conduct full enumeration. These problems are often associated with the term Non-Polynomial

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 85 of 168

complete problems, or NP hard problems. NP denotes no polynomial time or space algorithms

are known. However, many real life problems are indeed NP hard, but when the problem size is

small enough, even manual enumeration could solve NP hard problems. The tic-tac-toe problem

is a good example. Computers can hardly have any advantage when the problem size is small. If

one plays a four by four tic-tac-toe problem against a computer, the chance of the human

winning is slim at best. Using a computer to expedite some of the exhaustive enumeration

procedures, we can drastically expand the range of NP hard problems solvable in practice [21, 81,

25]. A computationally enabled sub-model enumeration is still highly valuable in practical

settings because:

1. Probabilistic approaches can be deployed to enumerate models with controlled

parameters. They include randomized algorithms such as genetic algorithms, simulated

annealing, and Monte Carlo methods.

2. This framework provides a measure of model complexity, so that we can use it to

determine the resolution and the size of the model.

3. Incremental development of contextually sensitive knowledge may help reduce the size of

the enumeration results.

However, we have not discussed how to perform exhaustive enumeration for models that contain

continuous variables. To resolve this problem we need to convert continuous scales into discrete

categories of mathematical objects, and then enumerate the possible variations of the model. It is

important to note that we are not enumerating the possible state-space configurations of a

continuous model; we only intend to enumerate all the possible sub-structures of a static model.

If the model is changing during enumeration time, it could alter the search space during runtime.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 86 of 168

Therefore, it may not be possible to know whether such an enumeration program can stop in

finite time. Both in practice and in theory, exhaustive enumeration is only possible when dealing

with static and deterministic models. To make this enumeration approach practical, we need to

find a way to convert models of alternatives into static and deterministic models. With the

assistance of Group Theory and Category Theory, many classes of real world models with

continuous variables and with dynamic properties can be converted into finite sized static models.

Section 6.1.2 describes this approach.

Contextually sensitive knowledge is useful in eliminating unnecessary enumerations. In a

simulated world, the contextual information can be emulated by computationally generated

scenarios or manually created hypothetical conditions.

4.7 Token Processing

This section describes how context-sensitive information can be embedded within each

generated token. All events of communication and computation are uniformly represented as

Tokens carrying state information from a Source Object through a Token Transforming Process

to a Target Object. A token is just an instance of Thing. It inherits all the qualities of Thing. We

called it “token” because this is a commonly recognized term in the Petri Net literature. Like all

Things, a token also has a “value” attribute that captures the specific attributes to be manipulated

through the transformation processes. A “value” of a token can be a primitive thing, namely a

string, a number, or a computable expression, or it can also be an abstract data structure, such as

a graph that contains many other kinds of things. To support automated reasoning tasks in system

architecting, we need to find a way to organize numeric and symbolic calculations in a coherent

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 87 of 168

model of computation. Therefore, each Process is abstractly modeled as a generic inference

engine, which not only performs numeric and symbolic calculations, but can also compile

available inference rules to perform mechanical inference tasks. To provide a consistent user

interface, all numeric and symbolic rules are specified in a format similar to arithmetic

expressions. For example, if an input token contains the following information:

Input token = <x → 2, y → a>

and the Process and System Context contains the following inference rules:

System Context= <g(a) →0*a >

Token Transforming (Process)= <x → 3 + x, y → f(x), z → g(y)*x >

Then, the inferred result would be:

Output token = <x → 5, y → f(5), z → 0 >

This simple arithmetic example can be visualized in Figure 4-4.

Figure 4-4 Graphical Model of Communication & Computation

In Figure 4-4, one can see the internal state of a Token is transformed based on three pieces of

contextually sensitive information. As the token being transformed by the “Token

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 88 of 168

Transforming” process, it utilizes inference rules embedded in System Context, Token

Transforming process and the input token to solve for the values of all three named attributes.

We will first walk through this example visually:

Figure 4-5 Token Creation Activities

As Figure 4-5 indicates, OPN interprets the transformation rules as executable graphs internally.

All computable expressions are parsed into acyclic bi-partite graphs. In these graphs, the

operands of the arithmetic formulas are treated as Objects and operators treated as Processes.

Once the Token Transforming process starts, it merges all three graphs into one, and performs

appropriate calculations. When a numeric value cannot be found, the symbolic expression and

the function signature will be stored as Objects and Processes respectively. This simple example

is designed to reveal a number of important features of OPN. They are listed as follows:

1. Each Eval event triggers a series of graph-rewrite and automated inference operations

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 89 of 168

2. Context sensitive variable naming is supported.

3. A token transformation process may add new attributes to the Output token.

4.7.1.1 Context Sensitive definition of Eval

Let I be the token at Source, O be the token that arrived at Target. S and P represent System

Context and Token Transforming process respectively.

The token transformation event illustrated above can be expressed in the following statement:

S, P I → O

(The above statement should read as: “Against the context of S and P, I evaluates to O.”)

S, P, and I are three separate sources of inference knowledge to determine the resulting values

stored in O. The inference rules declared in each of these Things can be classified into three

levels of visibility, system level, process level, and token level. As shown in the example, each

of these levels may contribute zero or more inference rules to be included into the final inference

graph stored in O. Clearly, S and P may contain any number of inference rules. The unique

feature of this inference algorithm is that token “I” is effectively an O of a previous process.

Therefore, in a multi-staged token processing scenario, the attributes and resulting values of an

output token is constructed in the steps:

Time = t-1 St-1, P’ I’→ O’

Time = t St, P O’→ O

where

S t represents the System Context’s inference rule collection at a current time step

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 90 of 168

S t-1 represents the System Context’s inference rule collection at a previous time step

P’ represent the inference rule collection in the most recent Process

I’ represents the input token’s inference rule collection prior to P’s execution.

This equation implies that users of OPN can recursively apply this token evaluation process to

dynamically compose a set of inference rules based on the trajectory of the token.

Figure 4-6 helps to illustrate this point:

Figure 4-6 A simple recursion

Variable replacement and context sensitive rule applications are two corner stones of lambda-

calculus, which is regarded as the mathematical foundation for composing computable functions.

The procedures described above demonstrate that OPN provides a graphical formalism to inform

users about the context of computation and allows them to specify and organize the contextually

sensitive rules in an intuitive way. For complex system modeling, this computing framework

offers the following utilities in model construction:

1. Process system variables and functions as algebraic symbols. It enables users to compose

a system of variables and functions that are yet defined

2. Provide an automated mechanism to compose inference rules

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 91 of 168

4.8 Variable Binding

To make the inference rules perform more than simple arithmetic calculations, OPN’s modeling

environment must support user specified functions and global variable declaration. A bridge

between the inference rules and custom-made software libraries is established to allow users to

incorporate existing software libraries and define simple procedural behavior in a system

simulation model. The mechanism that relates variable names with specific values or custom-

defined functions is a form of variable binding. We allow users to specify variable bindings

through a text file, “global script”, where the values and content of globally accessible variables

and algorithms are encoded. For example, the function f(x) can be defined in a “global script”

written in the Python programming language as:

TRUE = 1;
FALSE = 0;

def f(x):
 if x > 0:
 return TRUE;
 else:
 return FALSE;

Each OPN model has a unique “global script” which is “evaluated” when the “Eval” of the OPN

model is triggered. Variables and functions defined in a “global script” are bound to appropriate

referents at the beginning of this “Eval” operation. The variable binding mechanism serves two

purposes.

1. It defines globally recognizable variable names and algorithms in each OPN model

2. It serves as an interface to access software libraries beyond OPN’s core library

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 92 of 168

The first point is a standard variable scope control mechanism. It keeps rules in OPN model

clean and concise. For example, if a certain number is referenced by multiple rules and must be

constantly changed, it is highly desirable to create a globally accessible rule that statically

defines the number with a symbolic name. Then, all the local rules that refer to this number can

just use this globally defined name. It will dramatically reduce the cost of model verification and

reconstruction.

The second point is to allow users to construct new algorithms using a popular scripting

language of users’ choice. The example shown above is a global script written in the syntax of

Python programming language. The role of “global script” in OPN is to provide a standard

programming interface for users to access computational resources across a wide range of

software libraries. How to access software libraries is an implementation issue and will be

discussed in Chapter 5.

__

This chapter presented the syntax and semantics of OPN. Chapter 5 describes the pragmatics of

OPN, and the software architecture of our OPN implementation.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 93 of 168

5 The software engineering aspects of OPN (pragmatics)

This section will explain our implementation strategy for OPN. We will also describe the design

rationale for the user interface.

5.1 Implementation Objectives

Introducing architects to a new modeling language must not further complicate their reasoning

tasks. Therefore, the software implementation of OPN addresses these concerns:

1. How to engage users with minimal learning and configuration effort

2. How to leverage existing computing and communication infrastructures

3. How to deploy the language kernel to various platforms

Each of these issues requires significant expertise in their respective problem domains.

Fortunately, recent advancements in software and hardware technologies have made significant

improvements for each of them. For example, high performance computers and network

connections are not only available at affordable prices; they have also become an integral part of

our lives. However, to compose a system that would simultaneously touch on all three issues is

still a highly challenging technical endeavor. The combinatorial possibilities of user needs,

variations in configuration management and software deployment technologies present a

dauntingly large design space. To deliver a functional system within finite time, a number of

architectural decisions must be made early in the design and implementation process. To

paraphrase Einstein, the implementation principle is: keep everything as simple as possible, but

not simpler than a Turing Machine.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 94 of 168

5.2 The design of the language kernel

Using OPN as a system description language, we need to specify each system of interest as an

executable meta-language program. The OPN simulation environment must have the ability to:

represent the state-space of a system, specify system behaviors as executable programs, and

provide a communication mechanism to inspect and edit the content and state of the “programs”.

These necessary features can be mapped onto three implementation elements: a model of the

system’s state-space, a view to present the internal state of the models, and a controller of the

sequential actions. This Model-View-Controller (MVC) design approach originates from the

Smalltalk software community [113]. It helps to decompose programming tasks to three

orthogonal domains. We adopt the MVC design approach not only because it decomposes a

complex implementation project into smaller and simpler chunks of implementation tasks, it also

has a one-to-one mapping onto our meta-language schema. Figure 5-1 illustrates OPN’s Model,

View and Controller software architecture.

Figure 5-1 The Model View Controller of OPN

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 95 of 168

5.2.1 Model

The data structure definition of Thing (presented in Section 4.4.1) serves as the meta data

“model”. Through recursion, the data “model” of Thing can represent any model that can be

represented as hierarchies of Things. The uniformity of this meta data model makes it easy to

implement one standard programming interface for Thing to manipulate and export data by

people or machines. This standard programming interface becomes the protocol that mediates

events between various user interface elements.

5.2.2 View

To display the structure and content of all Things, each Thing in a different context may be

better visualized in a different user interface component, such as graph view, matrix view, and

tree view. Each “view” of the system provides a convenient conduit for people or machines to

inspect or edit the data structures. Implementing a “view” in MVC is about binding an external

program with the language kernel through a programming interface. All four types of activities,

such as model editing, inspecting, changing, and reporting as presented in Figure 5-1, are

accomplished through this standard programming interface. Using a standard programming

interface makes it easier to add new views without incurring software implementation changes to

the controller and model of the system [45].

5.2.3 Controller

To control the behavior of the system represented in the model we trigger the “Eval” meta-

operator at the appropriate level of the system, to trigger all the lower level Eval operators in

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 96 of 168

context. This one controlling framework based on the meta-operator Eval is the controller of this

Model-View-Controller triad.

Since OPN uses just one pair of meta-operand and meta-operator in the language specification it

makes it particularly easy to implement this MVC approach. The simplicity of the language

specification helps to simplify our software implementation effort.

5.3 User Interface Design

OPN is a graph-based language. We need to visualize the dependencies between Objects and

Processes in a network. A screenshot is shown in Figure 5-2.

Figure 5-2 A screen shot of OPN Simulation Environment

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 97 of 168

The “graph view” and “matrix view” are provided to help users visualize the dependencies

between Objects and Processes. All Objects and Processes may have certain user-specified

properties; we need to provide a mechanism to help users inspect and navigate the data structure

and content of these properties. The “tree view” is included to enable this type of user interaction.

When users are interested in viewing all the attributes of a Thing, such as its unique name and its

data type, a “detailed view” is provided.

5.3.1 Visualizing computationally generated OPN models

OPN is a meta-language. Its execution produces instances of “object languages”. The visual

interface should help users identify and visualize specific instances of object languages. As each

token moves to a new “Object” (or “place” in Petri Net terms) in OPN, a new entry will appear

in a list. The order of appearance is sorted by the token’s designated starting time. This “list” is

shown as a table with three columns. The first column displays the name of the token. The

second column displays the starting time of the token. The third column displays the “place”

(Object) name of the token. The “place” is the last Object the corresponding token visited. As the

user selects the token by using a mouse to click on the “list”, the entire itinerary of the token is

displayed as an OPN model on the right-hand-side graph view. Each token stores its graph

traversal itinerary as an OPN model. This mechanically generated OPN model duplicates all

information stored in the respective Processes, Objects and Pre/Post conditions at the time of

visit and appends some sequential number to their names to make them unique. In Figure 5-2, the

generated OPN model represents how the selected token moves through the “meta OPN” model.

We moved around the Objects and Processes of the generated OPN model to demonstrate its

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 98 of 168

traversal itinerary. The generated OPN model is a computable model just like its “meta OPN”.

Each of the Processes, Objects and Pre/Post conditions in the new generated model is an

identical copy of the original Thing.

Each token also carries attributes assigned by token processing rules embedded in the Processes.

These attributes are similar to the color attributes of tokens in Colored Petri Net [114]. Users can

inspect each token’s attributes by using the tree view and detail view below the right-hand-side

graph view. The horizontal and vertical sizes of these views are dynamically adjustable. Users

can determine the size of each view by dragging the handles on the dividers of these views.

The number of views necessary to perform a simulation task is dependent on the specific

application scenario. Each view presented in this user interface design provides a different way

to navigate around the data contained in OPN. The next section shows how users can specify

inference rules and other algorithms using this user interface environment.

5.4 User Interface Framework for Layered Semantics

In chapter 4, we presented a layered semantic model to generate tokens and manipulate data in

tokens. The three semantic models are token generating and scheduling, token processing, and

variable binding. They will be discussed in the following sections.

5.4.1 User Interface for Token Generating and Scheduling

In this user interface, token generating and scheduling algorithms are specified through the

structure of the graph. As shown in Figure 5-2, the graph view contains a loop made of four

Things “G”, “D”, “E”, and “F”, and their corresponding Pre/Post conditions. By default, the

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 99 of 168

“__init_state” contains a token ready to be moved over to the following Process “__init_proc”.

The “Eval” algorithm specified in Section 4.7.1 utilizes this initial condition to generate and

schedule all the tokens according to the structure of the graph and rules embedded in the

Pre/Post conditions. In a cyclic structure, such as the one shown in Figure 5-2, the token

generating sequence will not stop without additional constraints. To specify this constraint, a

computable expression that returns a binary value must be made easily accessible to the user.

This is accomplished by providing an “inspection” panel to display and edit the computable

expression. Inspection panels are displayed by users clicking on the box, ellipse, or arrow of the

corresponding Thing with the middle mouse button or by holding the “shift-key” on the

keyboard while clicking with any mouse button. As shown in Figure 5-2 and 5-3, there is a Post

condition between Process “G” and Object “D”. Its inspection panel is the bottom “window” in

Figure 5-3. The inspection panel contains a text area that allows users to view and change the

computable expression. The variables in this expression can come from attributes specified in the

passing token, or globally defined variables. As demonstrated in Figure 5-3, the function

“f(x,MAX)” is defined in the global script inspection panel. All Things in the global scripts’

residing OPN can access this function, for example, it is used by the G-D Post condition. The

global script inspection panel may define multiple functions and can be used as a simple

interactive programming environment. Its implementation detail is discussed in Section 5-8.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 100 of 168

5.4.2 User Interface for Token Processing

The user can specify relevant “inference rules” using a Process inspection panel as shown in

Figure 5-3. (The panel on the upper left hand corner.) In this example, the inspection panel

shows a computable expression:

 x = x/(y-x)

This expression should be treated as a “rewrite rule”. A semi-colon is used to separate rules. For

example, if three rules are presented as follows:

z = 3 * x; x = x/(y-x); y = 3

Then the token processing routine as described in Chapter 4, will rewrite these rules as:

z = 3 * (x/(3-x)); x = x/(3-x); y=3

This example is to illustrate that the Process inspection panel is a user interface for logic or rule-

based programming. The rules written in the Process inspection panel describe intermediate

stages of rule transformation. They are rules that can rewrite other rules. These rules also are

applied to rules that are embedded in the passing token. The significance of this design is that

OPN leverages the structure of the graph to decompose rule-based programming to the Process

level. Users perform rule-based programming within individual Processes. Each Process is an

independent inference engine. The interactive effect of these rules embedded in different

Processes is realized via tokens that pass through a series of different Processes or tokens that

pass through certain Processes repeatedly. This user interface allows different domain experts to

visualize the global effects of local decisions based on the structure and content of the OPN

model. Different users need only focus on their area of local expertise and specify rules in the

corresponding Processes.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 101 of 168

5.4.3 User interface for Variable Binding

Users need a convenient user interface component to access computational resources in the

existing information infrastructure. To satisfy this need, a global script inspection panel as shown

in Figure 5-3 is incorporated as part of the user interface. It allows users to define arbitrary

global variable names and specify globally accessible software functions.

Figure 5-3 User Interface Elements for specifying inference rules/algorithms

This variable binding mechanism gives users access to user-specified algorithms, real time

sensor data, database content retrieval, and legacy software libraries. Through variable binding,

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 102 of 168

we can connect the token processing events and the Pre/Post conditions (the Boolean go/no-go

functions) to a variety of domain-specific software libraries that are difficult or impossible to

recreate in OPN. For example, if the OPN model needs to check the real-time price data of

certain stocks, this piece of information must come from an external data source. It is impossible

to specify a set of rules to generate this information. We use a user-customizable global script to

achieve this goal, global meaning with respect to the OPN model that hosts the script.

5.4.4 User Interface for model detail inspection

The Objects and Processes in an OPN model may contain complex data structures. Users of

OPN often need to access detailed information with these data structures. As shown in Figure 5-2,

when users need to inspect the numeric value of a particular attribute embedded in an Object,

“Tree View” and “Detailed View” provide the navigation and display facility to inspect the value.

When users select a particular entry in the Tree View, the Detailed Panel (View) and Matrix

View will display the information content of the selected Thing based on certain pre-defined

display rules. In most cases, Detailed Panel simply shows the “name” and “value” of the selected

Thing as described in Section 4.4. When an Object represents a discrete probabilistic variable,

the Detailed Panel not only displays the name of the Object, it also shows the marginal

probability function in a table form. As shown in Figure 5-4, when a Process denotes a discrete

conditional probability function, the Detailed Panel displays the associated probabilistic

measures in a tabulated form. The Graph View also embeds certain display rules that will reflect

the detailed information content in Things. As shown in Figure 5-4, when an Object denotes a

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 103 of 168

discrete probabilistic variable, the associated discrete states and the probabilistic measures for

each state are also displayed in the Graph View.

Figure 5-4 Visualizing system states in terms of probabilistic measures

The Graph View also allows users to input hypothetical “observed states” by using mouse-clicks

to select and un-select “observed state” for each Object. For instance, Figure 5-4 shows that two

Objects, “Rain” and “WetGrass”, have their observed states set to one hundred percent “yes” and

“wet”, respectively. As users select or un-select an Object’s observed state, the OPN execution

engine will conduct a “belief propagation algorithm” to calculate all the relevant Objects’

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 104 of 168

marginal probability values and update the Graph View accordingly. The belief propagation

algorithm in OPN is based on a graphical probabilistic inference model also known as Bayesian

Belief Network [66]. In theory, belief propagation algorithms can be implemented in OPN’s

token scheduling and processing mechanisms [69]. For performance considerations, OPN

incorporates JavaBayes [115], a dedicated software library to compute the inference results. The

improved performance allows architects and other stakeholders to interactively visualize the

global impact of changing variable states.

5.4.4.1 Visualizing OPN with a large number of nodes

A simple interface may not be sufficiently intuitive. Human perception derives values from

interactively arranging the dependency structure of a system to a particular visual orientation.

That means we need to provide a storage mechanism to retain graphic layout information, such

as the horizontal and vertical locations of nodes that appears on the screen. This piece of

information is external to the abstract graph structure presented earlier. This additional structure

must be stored in the language model in a non-intrusive way. Otherwise, every time certain

changes are made to the graph the visual aspect of the information would either completely

disappear or require significant computing time to reconcile the differences. To accomplish this

data structure need, we simply utilized the “value” attribute of every Thing to store additional

information about physical layout or other kind of information. The name for each additional

piece of information is unique within the scope of the “value” attribute. When multiple attributes

are stored in “value”, the value of Thing turns into a Graph. In other words, it stores the

attributes as a set of Things in the GraphPart data structure of a Thing.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 105 of 168

To improve users’ interactive experience with the graph editor and allow different sizes of

graphs to be visualized intuitively, we incorporated the graphics library “Picollo”, designed and

implemented by the Human Computer Interface Laboratory at University of Maryland. “Picollo”

is a Java implementation of a “zoomable user interface” [116]. Users can easily drag their mouse

to zoom and pan the diagram to inspect the structure and perform data structure edits on the

graphs visually. The graphics performance of this library is better than many competing open

source and commercial products. Without this software technology, a visual programming

environment would not be cognitively appealing to human users.

5.5 Enabling Technologies

To attain portability across a large number of platforms and reduce configuration effort, Java was

chosen as the primary implementation language. This choice enables the OPN simulation

environment to execute on any computers that run the Java 2 Platform Standard Edition (J2SE).

All algorithms specified in the earlier chapters are implemented and statically compiled using the

Java programming language. For model storage and other communication related functions all

instances of OPN models are stored in an industry standard format called Extensible Markup

Language (XML). This textual format of data encoding allows one to send OPN models as a

stream of characters over the network so that different simulation models and simulation results

could be shared and distributed across multiple locations. For users who desire instant feedback

from the simulation environment, we incorporate Jython [117], a Python language interpreter

implemented in Java, to provide an interactive programming mode so that users can issue any

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 106 of 168

Java function calls without having to compile and link the intermediate object code (bytecode)

[108].

5.5.1.1 Layered Software Architecture

The overall software implementation strategy can be visualized as a layered architecture. Starting

from the bottom, the source code of OPN is divided into three packages: OPN Persistence, OPN

Language Core, and OPN User Interface. The overall code structure is presented in the following

block diagram.

Figure 5-5 Software components

OPN Persistence is a set of bidirectional data storage and extraction algorithms written in Java

that translate between OPN models stored in standard XML form and an in-memory data

structure that can be interpreted by algorithms specified in OPN’s Language Core. The standard

XML form also enables communication with other software applications that read and write data

in standard XML form. The Language Core package contains the data structure definition, token

scheduling/creation and token processing algorithms that are all implemented in the OPN

language core. Variable binding and algorithms that require responses from remote

computational services such as Mathematica’s or Matlab’s kernel can be accessed through

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 107 of 168

Jython or specialized adaptors implemented in Java. The OPN Language Core does not have any

dependency on the OPN User Interface package. This independence allows the Language Core

package to be deployed to computing environments that do not require user interfaces. The OPN

User Interface package contains the user event management routines that allow users to navigate

around OPN models stored in local memory. The software architecture is designed in a way to

enable any instance of OPN to be inspected by User Interface programs running on remote

computers.

5.5.1.2 Language Core and Models of Computation

On a digital computer, all models of computation are emulated through discrete events. To

provide a maximum level of flexibility in representing real world systems, the events in OPN’s

are assumed to be asynchronous. In other words, events that are being executed should not force

later events to wait for them to finish. This was easily accomplished using Java’s threading

features. However, when the language needs to be implemented on other languages that do not

support threading, the asynchronous issue must be explicitly addressed.

The key reason for us to choose Java as an implementation language is its popularity. A wide

variety of open source libraries are available. For instance, to perform probabilistic inference

calculation we incorporated JavaBayes [115], an open source library that includes efficient

algorithms for solving probabilistic network inference problems. Another key element of our

language model is the ability to interpret Python expressions through a Java library called Jython

[117]. Jython gives us an expression interpreter to make Java function calls during model

simulation time.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 108 of 168

The combination of Java and Jython gives us a number of powerful libraries to perform string

manipulation. The token processing mechanism is implemented in Java. For user specified

functions we use Jython as the programming interface to encode procedural code specification.

Jython allows users to directly call any functions implemented in Java. If a complex software

function is implemented in languages other than Java, it is still technically feasible to perform

function calls through Java’s Native Interface.

__

This chapter presented how OPN was implemented. Chapter 6 presents how OPN can be applied

to large-scale socio-technical projects such as the Apollo Program.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 109 of 168

6 Case Studies

This chapter provides three case studies on applying OPN to reason about architectural decisions;

they are:

• The Apollo Program (retrospective)

• NASA’s Space Exploration Initiative (current)

• Enhanced-Ground Testing Pod

6.1 The Apollo Program (retrospective)

President Kennedy’s historical remarks best explain our choice of performing a retrospective

case study on the Apollo Program using OPN:

“We choose to go to the moon. We choose to go to the moon in this decade and do the

other things, not because they are easy, but because they are hard, because that goal will

serve to organize and measure the best of our energies and skills, because that challenge

is one that we are willing to accept, one we are unwilling to postpone, and one which we

intend to win, and the others, too.”

 J.F.K. September 12, 1962

To paraphrase JFK’s language of persuasion, we choose Apollo as the benchmark project for

architectural reasoning because it is still hard. It is still expensive and complex. It embodies all

the qualities of a large scale socio-technical system. We choose Apollo to demonstrate that

architects must be able to utilize a domain independent language to organize resources and

measure complexity in their respective projects. A well-executed program such as Apollo must

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 110 of 168

seamlessly connect many human organizations and technical disciplines. Similarly a well-

designed meta-language should serve as a medium to connect organizations and disciplines by

enabling seamless exchange of knowledge. We will demonstrate that the concept, theory, and

tools for manipulating meta-language can help architects formally describe spaces of alternatives,

generate alternatives, and calculate performance metrics. The goal is to demonstrate that meta-

language as an instrument for reasoning is applicable to a wide range of socio-technical

challenges such as Apollo and the others, too.

6.1.1 Where an executable meta-language is applicable

To illustrate that an executable meta-language framework is applicable to large-scale projects

like Apollo, a series of executable models expressed as OPN object languages are developed

using an OPN model as the meta-language. Three instances of object languages are defined.

Mission-Space utilizes the declarative language features of OPN to specify the space of mission

modes. Mission-Enum utilizes the imperative language features of OPN to generate individual

mission modes. Metric-Calc utilizes the simulation language features of OPN to perform metric

calculation.

6.1.1.1 Specify the space of mission alternatives

Kennedy’s declarative language defined the game, “Reaching the Moon first”, as a common

language for two nations of people1. To mobilize a wide range of stakeholders and organizations

to participate in his game plan, Kennedy used a declarative statement to enable efficient

1 November, 1989, three Americans, Kerrebrock, Young, and Crawley [Korolev, p.306], took pictures of the N-1
program’s remaining equipment at the museum of Moscow Aviation Institute which confirmed the existence of the
former Soviet Moon-bound program.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 111 of 168

communication and justify resource allocation. On the highest level, Kennedy articulated a goal

in a political language that robustly justified the value of the proposed program across multiple

system levels and in a global context. Kennedy implicitly specified the space of mission

alternatives by explicitly stating that Americans must go to the Moon within a decade.

6.1.1.2 Enumerate mission alternatives

Architects also need a mechanism to create individual instances of mission alternatives to

compare and contrast the pros and cons among them before a mission architectural decision can

be made. A declarative language can only specify what to do; it doesn’t provide the how.

Brainerd Holmes, Apollo’s program manager, presented the following statements before the

House Committee on Science and Astronautics, one day after NASA internally selected the

Lunar Orbit Rendezvous mission mode from other contending alternatives [118, 119]:

“It was quite apparent last fall this mission mode really had not been studied in enough

depth to commit the tremendous resources involved, financial and technical, for the

periods involved, without making … detailed system engineering studies to a much

greater extent than had been possible previously. … but investigation could go on

forever, …, at some point one must make a decision and say now we go…”

Holme’s argument clearly indicated that a comprehensive study is desirable but not affordable,

even considering the tremendous risk and consequences involved in a politically important

project. However, the role of an architect for a large socio-techno system is to avoid unnecessary

risk by making informed decisions. If any critical decisions must be changed at a later time, the

entire project could fail. The ability to reason about critical decisions with incomplete

information is an inherent challenge in most architecting process.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 112 of 168

In the context of the Apollo Program, the LOR decision was announced in 1962. This decision

was highly controversial. To visualize the gap of available knowledge between the point of

decision and the point of realization, NASA’s budget allocation for Apollo serves as a good

reference. The budget allocation over time is visualized in Figure 6-1.

Figure 6-1 Apollo Funding Breakdown

Figure 6-1 shows that at the point of LOR decision, the Apollo Program was only about one year

old and the total amount of allocated budget was $160 million. This is less than 1 percent of the

$19 billion dollar program. This historical evidence demonstrates that architecture decisions are

often made at a time when limited knowledge is available, and significant risk and uncertainty

are inevitable.

6.1.1.3 Making tradeoff decisions about mission architectures

The Apollo program can be formulated as a constraint satisfaction problem: how to get to the

moon and back by the deadline given finite resources. In this problem, all three elements can be

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 113 of 168

expressed in definite terms. We know where the moon is, the deadline for touch down is known,

and the budget is not infinite. However, the number of possible configurations for the program is

infinite. For an experienced program manager, to reduce complexity of this combinatorial

problem, the essential variables must be identified and contained. Apollo’s organizational

structures, technology development tasks, physical devices, and geographical locations of

various teams evolved around one central theme, the high level trajectory and operational

sequence of the spacecrafts. It was so important in the program that an official term was assigned

to it: “mission mode”. Any slight alteration in the mission mode may trigger costly changes

across the entire program. Therefore, the chosen mission mode is the common protocol that

defines the organizational interfaces and design activities among various operational and

technology development teams. If the mission mode were fatally flawed, the consequences

would be unthinkable. The mission mode, in this context, defines the base architecture of the

program. As indicated earlier, architects and other stakeholders are extremely interested in

rigorously reasoning through the space of trajectory alternatives.

6.1.2 Specifying mission architectures in formal languages

To reason about Apollo’s architectural alternatives, we need a declarative model to

comprehensively specify the space of possible trajectories in terms of where and how the

vehicles move between the Earth and the Moon. To generate all trajectory instances, an

imperative model is needed to specify an efficient algorithm and generate the complete set of

trajectories. Finally, we need a simulation model to assess performance metrics for each of the

generated trajectories. Each of these three models can be considered as an instance of language.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 114 of 168

All these instances of language can be created using Object-Process Network’s visual language

construction environment. We develop the three functional languages in successive steps. They

are identified as:

1. Mission-Space: the declarative language that specifies the space of trajectory alternatives

2. Mission-Enum: the imperative language that generates trajectory instances

3. Metric-Calc: the simulation language that calculates the metrics to compare and rank the

competing mission architectures

Describing these abstract languages successively has two advantages. First, we can define a

domain-specific vocabulary to discuss the formal properties in each area of the architectural

reasoning task. Second, we can utilize the concepts and structures developed in an earlier model

to support functional requirements in related reasoning tasks. In other words, these object

languages are meta-languages themselves. They can be used as a basic language structure and

incrementally evolve into domain-specific languages to better utilize knowledge in various

contexts. These three languages also extensively utilize the layered semantic model, as described

in Section 4.5.1.

6.1.2.1 Issues related to representational economy

In a continuous space, the number of trajectories between two spatial locations is infinite. It

would be infeasible to comprehensively enumerate all possible trajectory models if continuous

parameters are involved in the enumeration. Based on the theorem proven in Section 4.7.3, we

know that as long as the meta-model is discrete and finite, we can enumerate all possible sub-

models in finite time. To accomplish this conversion, we need a finite set of operands and

operators that can comprehensively describe the dynamics of the system. Group theory [120]

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 115 of 168

provides a mathematical foundation to convert formulas that describe continuous spaces into a

finite set of operators and operands. Frazolli [121] utilized these mathematical methods to

formulate a modeling technique that “quantizes” the description of continuous dynamic systems

into a finite set of motion primitives. Frazolli’s idea is illustrated in the following diagrams:

Figure 6-2 A continuous space quantized in discrete vocabulary

By dissecting the motion of an aircraft or any object into two classes of motion primitives,

namely repeatable and finite time motions, Frazolli created a simple language that uses two kinds

of linguistic primitives to describe the space of all possible continuous trajectories. As shown in

the figure above, the two kinds of motions are shown in different colors. Motions at constant

speeds or constant accelerations are classified as repeatable motions, such as “Trim”, “Surface”,

and “Orbit”. All other (non-constant) motion speeds and accelerations are considered to be finite

time (transient) motions, such as “Direct Decent”, “Orbit Attaining”, and “Orbit Departing”. This

elegant formulation was applied by Frazzoli to build modeling tools for motion planning of

autonomous vehicles. To employ these theoretical techniques requires sophisticated

mathematical knowledge, which may not be intuitively communicable to non-technical

stakeholders in a program like Apollo. Therefore, a meta-language needs to play the bridging

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 116 of 168

role to hide the technical complexity and communicate the logical ideas to a wide range of

stakeholders.

Using a graphical meta-language, such as OPN, the motion primitive idea can be mapped onto a

bi-partite graph. In the context of the Apollo program, Frazolli’s language of quantized motion

primitives can be used to model all possible mission modes in OPN.

6.1.2.2 Representing Apollo’s space of architectural alternatives

Having illustrated the theoretical aspect of the modeling vocabulary, a domain specific

vocabulary must be injected to make this system useful. Given the context of the Apollo program,

a spacecraft’s possible trajectories can be modeled in the following language: Mission-Space.

Figure 6-3 Specialized Vocabulary for the Apollo Program
Mission-Space is an OPN model that utilizes Apollo-specific vocabulary to describe the space of

mission mode alternatives. We associate repeatable motions with the Objects, shown as the

rectangles and finite motions with the Processes, shown as the ellipses. The following textual

description illustrates the nomenclature in detail:

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 117 of 168

Mission-Space is an instance of Thing. In its ThingCollection, it contains

Finite_Time_Motion and Repeatable_Motion as its two types of Things.

Mission-Space ::= ThingCollection, RelationshipCollection, value

ThingCollection ::= Finite_Time_Motion, Repeatable_Time_Motion

RelationshipCollection ::= Pre-Condition*, Post-Condition*

value ::= starting_location

where

Repeatable_Motion is a set of Objects that represents all the repeatable motions in the

language of mission modes. To make the language easily readable, we use the

“location” of the vehicle to denote a specific instance of motion primitive. For

example, “Earth Launch Site” is used as the name for the first repeatable motion

because the vehicle is at rest where its speed and acceleration are both zero. The

other instances of Objects are “Earth Orbit”, “Moon Orbit”, and so on.

Finite_Time_Motion is a set of Processes that represents all the finite time motions (or

maneuver operations) in the language of mission modes. For each maneuver

operation, a matching Process is named by a verb in a gerund form to denote a

specific operational task. For instance, “Direct Ascending” denotes the vehicle

moving from the “Earth Launch Site” into “Inter-planetary Transit”. During this

transitional phase, the vehicle is moved through a series of complicated acceleration

and deceleration stages. The vehicles’ speed and acceleration profiles are constantly

changing, therefore, making it a finite time motion. The other finite time motions that

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 118 of 168

were considered by the Apollo program office are represented as Processes

respectively.

Pre-Condition is a set of arrows that specifies the acceptable transitions between

repeatable motions (Objects) and finite-time motions (Processes). Each arrow

represents a binary conditional statement that determines whether a vehicle can or

cannot be transitioned from a specific repeatable motion state into a specific finite-

time motion. By default, the conditional statements all evaluate to true. Users can

customize these conditional-statements based on domain-knowledge.

Post-Condition is a set of arrows that specifies the acceptable transitions between finite

time motions (Processes) and repeatable motions (Objects). As the complementary

knowledge of Pre-Condition, it checks whether the finite time motion can be

stabilized into a repeatable time motion. By default, the conditional statements all

evaluate to true. Users can customize these conditional-statements based on domain-

knowledge.

value is a Thing that specifies the vehicle’s starting location. It specifies the

boundary/initial condition of each trajectory alternative space. For the Apollo

program, the starting-location is evidently the “Earth Launch Site”.

6.1.2.3 Mission-Space is a declarative language

This description of alternative space provides the formal syntax and semantics to describe all

possible instances of architectural alternatives. The Objects and Processes in the above

mentioned models serve as the nouns and verbs of the mission mode language. Instead of giving

each mission mode a specific name, each mission mode is a unique composition of motion

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 119 of 168

primitives. The graph structures of these models are analogous to the grammatical rules of these

languages. The arrow directs the possible sequential transitions between two primitives. In the

classification scheme of languages, these descriptive languages belong to a class of languages

called “declarative language”. Declarative languages only specify what can be said without

providing imperative instructions on how to create individual instances of them.

6.1.3 Generate all possible trajectories

The models presented above only serve as declarative specification of architectural alternatives.

It only shapes the space of alternatives without providing a mechanism to produce concrete

instances. In practice, architects need efficient algorithms to generate concrete instances or

distinctive classes of architectural alternatives, so that they can further investigate the qualities of

varying architectural alternatives. An imperative language is needed to specify the sequences of

actions that computing devices could follow, to generate architectural instances sequentially.

Using the motion quantization methods, we have compressed the space of continuous motion

into a language based on discrete representational symbols, we now need to introduce imperative

semantics to the language. An imperative language must allow its users to specify the execution

order of its instruction sets.

6.1.3.1 An imperative language extension to Mission-Space

To enumerate all possible mission modes, we need to specify an algorithmic model to construct

all the possible mission modes. Mission-Enum is created to provide imperative language

features to the declarative language Mission-Space. Based on information already encoded in

Mission-Space, we can utilize the graph structure to control the direction of alternative space

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 120 of 168

exploration. Therefore, Mission-Enum extends Mission-Space by adding a generic execution

algorithm that is applicable to all “programs” written in the language Mission-Space. The

algorithm can be specified as follows:

Mission-Enum.Eval

Input(Mission-Space, destination Object)

Get the “starting_location” Object from Mission-Space

Create a token that represents a vehicle

Set the starting_time of the token to “0”

Place the token into the Token Queue of the “starting_location” Object

 Trigger the Eval operator of the “starting_location” Object

 While at least one Object’s Token Queue is not empty

 Wait

If all Objects Token Queues are empty

 Report the History List the specified destination Object

In this language, all the Objects and Processes implement the same Eval algorithm as specified

here.

Object.Eval # All Objects are instances of Repeatable Motion

Input(nil) # no input required

Get the token with earliest starting time in local Token Queue

 For all Pre-conditions of this object

 Trigger Pre-Condition.Eval with the token as input

For each Pre-Condition that evaluates to true

Create a new token

Copy all the data content of the selected token to new token

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 121 of 168

Get the corresponding process of this Pre-Condition

 Set the starting_time of the new token based on current time

Trigger Process.Eval(new token) # new token as the input

Repeat Object.Eval

Until Token Queue is empty

The algorithms for Process’s Eval is specified here.

Process.Eval # All Processes are some instances of finite time motion

Input(token) # an incoming token is required

Construct or modify the token’s trajectory information by:

Add the following Things to the incoming token’s trajectory

The token’s originating Object, and the Pre-Condition

Add the duration of processing time to the token’s starting_time

 For all Post-conditions of this process

 Trigger Post-Condition.Eval with the transformed token as input

For each Post-Condition that evaluates to true

Duplicate transformed token data into the newly created token

Get the corresponding object of this Post-Condition

 Construct or modify the new token’s trajectory information by:

Add the following Things to the token’s trajectory

The current Process, and the Post-Condition

Place the token into the Token Queue of this Object

Place the same token into the History List of this Object

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 122 of 168

Executing the Eval algorithm of Mission-Enum, returns a complete set of feasible mission

modes.

This approach has the following properties:

1. It visually and sequentially resembles how spacecrafts travel through space, therefore

making it easy to intuitively verify the dynamics of the enumeration algorithm.

2. All the tokens placed in varying Objects’ History List by evaluated Processes are verified

by all the constraints specified in the Mission-Space language. All generated tokens in

the History Lists are considered to be feasible by definition.

3. Each token records its trajectory information in terms of all the primitive motions and

Pre/Post-conditions it visited. Therefore, once the Mission-Enum algorithm is executed,

it not only creates a report that contains a set of possible mission modes. Each mission

mode report is a computable model by itself. One can think of Mission-Enum as a

generic enumeration engine for graph-based simulation models.

6.1.3.2 Computational Results of Mission-Enum

The following screen shot illustrates the user interface and one instance of the mission mode

automatically generated by the Mission-Enum language.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 123 of 168

Figure 6-4 A Screen Shot of the OPN Simulation Environment

This interface displays the original model that specifies the space of mission alternatives on the

upper left hand corner. The table in the middle lists all the generated mission modes. As a user

selects one of them, a mission mode is displayed in graphic form on the upper right hand corner.

Each mission mode is stored in a token as an OPN model. The OPN model can be extracted and

stored as a separate model to perform more focused analysis on that mission mode. This interface

provides an interactive environment for architects and other stakeholders to visualize mission

mode variations.

6.1.4 Calculating performance metrics

Metrics of architecture are necessary means to compare the goodness of architectural alternatives.

To arrive at a decision, a preference order must be established between all available mission

modes. The meta-language should provide the means to compute performance metrics, otherwise,

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 124 of 168

a large set of unstructured lists of alternatives would provide little or no value to decision makers.

In the case of the Apollo Program, the key driver that ultimately determined the mission mode

was the size of the rocket [122]. The rocket, Saturn V, which was ultimately developed in the

Apollo Program, is still the largest rocket ever built. This high technical achievement also signals

high risk. Finding mission modes that would reduce the required rocket size would have been of

great interest at the point of decision.

6.1.4.1 Calculating performance metrics using Metric-Calc

Mission-Enum gives us the ability to generate instances of mission modes. We now need to

perform user-specified metric calculation for each of the generated mission modes. In this case,

we would be interested in calculating the total mass and the probability of operational success of

each mission mode. The new language should be able to support an arbitrary number of metrics

as needed. As demonstrated earlier, Mission-Enum, only specifies the algorithm for generating

missing mode instances, but does not have an explicit mechanism to incorporate detailed

numeric or symbolic reasoning. To incorporate this new feature to Mission-Enum, we add these

metric-calculation language features to it and call this new language: Metric-Calc. There are

many advantages to directly embed metric calculation features in a language similar to Mission-

Enum; it provides a programmable interface to eliminate the unnecessary enumeration tasks

based on calculated metric values. For example, if a certain mission presents an unacceptably

low probability of success, a corresponding Pre/Post-Condition should detect the case and

determine whether to generate mission modes according to a user specified Boolean expression.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 125 of 168

6.1.4.2 Metric-Calc as a simulation language

The ability to perform scenario-based metric calculation is a key feature of simulation modeling

languages. Simulation modeling languages provide a computational instrument for architects to

observe certain performance metrics given a set of what-if scenarios. In the field of space

mission design, metric calculation routines can be quite complex. Some of them require iterative

procedures that must be implemented in high precision algorithms and/or high performance

programming languages. To accommodate performance metric calculation features, Metric-Calc

must provide a convenient interface for users to specify either numeric or symbolic expressions.

Therefore, the Metric-Calc language extends Mission-Enum by including an inference engine

that can handle arithmetic equations and incorporate results from procedural algorithms. In the

OPN modeling environment, these two features are provided through specifying rules in

Processes and binding variables declared in “Global Script”. Two levels of programming

interfaces are specified. All the Objects and Processes in the same language instance have access

to variables, inference rules, and procedural algorithms defined in the “Global Script”. On the

Process and Pre/Post Condition (Relationship) levels, all rules are specified in terms of Boolean

expressions or arithmetic formulas. These rules differ from the declared variables and rules in the

“Global Script”. First, they are not visible to other Processes or Pre/Post Conditions. Therefore,

it allows users to control and isolate unnecessary interactions between variables and rules.

Second, these localized rules are converted into inference graphs as explained in Section 4.7.

Each token processing event creates a different inference graph based on a different execution

context. The dynamically generated inference graph is literally a new program customized to

solve an application specific problem. When the program does not have all the required numeric

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 126 of 168

values to return a numeric answer, it retains all the accumulated knowledge in a graph structure.

If there are certain variables defined by functions that are yet to be defined, it simply treats the

function as a symbolic variable. Whenever the numeric values or function definition are supplied,

it will be incorporated into the inference graph. As the token moves around the OPN, it

accumulates more knowledge in different contexts, and enriches the reasoning power of the

inference graph incrementally.

This incremental knowledge accumulation technique is one way to realize the concept developed

in Domain Theory [123] and the Information-Gap Decision theory [14]. It provides an algebraic

construct to temporarily store the “uncertain” factors in the reasoning process. As more

knowledge becomes available, it will substitute the symbolic placeholder with more specific

numeric or symbolic values. Since functions in the OPN modeling environment can be custom

defined, it can be a probability distribution function, fuzzy membership function or a

deterministic calculation routine.

6.1.4.3 Automatically compose metric calculation formulae

Another key issue relates to the complexity of formula construction. As Mission-Enum

generates complex mission modes, the metric calculation routine may have been different for

each of the mission modes. We need to formulate a model of computation so that we can rely on

the information embedded in all specified language models to infer the proper composition of

metric calculation formulae. In other words, we need to create a language that can automatically

construct metric calculation formulas based on the context of each mission mode.

To demonstrate automatic composition of formulas, calculating total mass of the vehicle at

launch time serves as an example. The formula that calculates the required fuel mass based on a

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 127 of 168

given payload and specific impulse for the fuel is called the Rocket Equation. It takes the

following form:

where:

dV : difference in velocity over the entire period of maneuver (ΔV)
g: gravitational constant
Isp: specific impulse of the fuel employed
MTotal: Total mass
Mstruct: Structural mass
Mpayload: Payload mass

The rocket equation is often solved backward using a desired payload mass to infer the total

mass at launch time. This backward calculation process must accommodate variations in

structural mass and specific impulse of the chosen fuel. These two values may change due to

varying spacecraft configurations and fuel choice. Since each mission mode representing a

different sequence of Finite_Time_Motion often implies a different spacecraft configuration, the

rocket equation takes on a slightly different form for each mission mode. Due to these variations,

the calculation of initial mass must be manually formulated and programmed for each mission

mode.

This highly simplified composition of the rocket equation already shows signs of complexity.

This equation could become even more complicated when multiple fuel types and ratios between

the structure mass and propellant mass change. This thesis used the numeric assumptions

presented in Houbolt’s report [124] to perform vehicle weight calculation.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 128 of 168

To calculate probability of mission success, we treat the model as a Markov Network [66]. The

probability measures associated with each Process can be stated in either numeric or symbolic

terms. For the purpose of illustration, we used the following numeric assumption. This numeric

assumption is based on an in-person interview with Dr. Robert Seamans [125]. The focus is not

about the exact numeric values, but the relative levels of risk considerations.

To earth orbit (first launch) 0.98 To earth orbit (second launch) 0.95
Ascend to lunar orbit 0.98 Rendezvous in earth orbit 0.95

Rendezvous in lunar orbit 0.95
Descend to lunar surface from orbit 0.95

Direct earth arrival 0.95

Departure from earth orbit 0.99 Direct ascend from earth 0.9
Lunar orbit entry 0.99 Direct descend to lunar surface 0.9

Ascend from lunar surface 0.9

Lower than reference risk

Reference Risk Higher than reference risk

Much higher than reference risk

Figure 6-5 Varying levels of mission risk

Instead of having engineers manually code up a unique total mass calculation routine for each

mission mode, the Metric-Calc language automatically constructs a computable expression for

each of the mission modes. It utilizes the locally defined transformation rules to incrementally

modify the algebraic content of various instances of rocket equations. This symbolic

manipulation mechanism eliminates the need to perform backward calculation. By assigning

local variables and isolating them from the global context, dVp and Ispp can be evaluated within

their local context or bound to a global variable at a later time during the enumeration process.

As long as all the numerical values and calculation routines are defined, a numerical value would

be calculated and returned. Otherwise, a structurally equivalent computable expression would be

produced and the corresponding string representation would be returned. Using a graph-based

structure to localize the transformation rules in Processes, the expression construction process

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 129 of 168

simply follows the execution paths of Mission-Enum. This approach is vastly different from

propagating changes due to local variation. Most of these change propagation techniques only

update dependent values in numeric terms [126]. Mission-Enum, in contrast, can use the

changed information to enumerate a new set of computable models, each representing a new

mission mode. At the early stage of architecting, creating a set of computable models can be

more revealing than just observing some numerical value change. In any case, OPN allows

architects to dynamically construct new computable models and expressions. And these models

and expressions can be evaluated into numeric values as sufficient knowledge becomes available.

6.1.4.4 Visualizing calculation results

Figure 6-6 shows the metric calculation results of two key decision metrics, weight of the total

vehicle at launch time, and probability of mission success. Based on this two-dimensional data

plot, decision makers can apply Pareto Front analysis to visually reason about their tradeoff

decisions. For example, if one prefers lowest amount of risk, one might choose “EO+LO”, the

mission mode that uses one vehicle that travels through both Earth Orbit and Lunar Orbit with no

rendezvous operation. In contrast, one might choose to use “EOR+LOR” as an alternative

mission mode, which requires the least amount of total vehicle weight for each rocket at launch

time. The mission mode chosen in the Apollo Program was the “LOR+EO” alternative. As

shown in Figure 6-6, the “LOR+EO” mission mode is also located on the Pareto Front. Via

visual inspection, the “LOR+EO” alternative is significantly lighter than the “EO+LO” mission

mode, while having a higher probability of success than all of the other alternatives.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 130 of 168

Figure 6-6 Visualizing a Two-Dimensional Metric Space

Evidently, other performance metrics can be calculated using the same mechanism. The language

Metric-Calc may calculate many performance metrics as long as the computational knowledge

and resources become available.

6.2 NASA’s Space Exploration Initiative (current)

We also applied this modeling approach to NASA’s Space Exploration Initiative [127]. The

project is called: “Concept Evaluation and Refinement (CER) Project”. The goal was to

understand the space of possible mission architecture alternatives for space transportation

vehicles that carry humans from Earth to the Moon or Mars. We will describe how OPN is used

in this project below.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 131 of 168

6.2.1 OPN as a mission-mode generator

The project started in September 2004, and within the course of three months we have

constructed an executable model to enumerate the mission possibilities from Earth to Moon and

Mars. We also identified many user interface improvement issues that were resolved in time to

deliver useful results. In this project, we found that Mission-Space and Mission-Enum can be

directly applied to serve the analytical tasks of this new NASA program.

The architecture analysis project includes a team of four people. Another twenty people

developed Vehicle Models, ΔV Tool, Metric calculation, and LV Constraints Models. The

project’s workflow is illustrated in Figure 6-7.

Figure 6-7 Workflow of the current NASA architecture study (Courtesy of Simmons)

One person was in charge of using OPN to create all the architectural alternatives. Due to

memory and time considerations, various versions of Mission-Space (as described in Section

6.1.2) are created to generate up to 1000 mission architectures for each run. These models are

very similar to the Mission-Enum model described in Section 6.1.3. OPN as a domain-neutral

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 132 of 168

modeling language allows other team members to cross-examine the assumptions made in

different versions of OPN models. Once a reasonable Mission-Enum model is constructed, it

generates all feasible architectural models.

6.2.2 OPN integrated with other software tools

The integration tool and optimization tool depicted in Figure 6-7 take the results produced by

OPN in textual data format and feed them into different performance metrics calculation routines

created by the other twenty collaborators. Figure 6-8 shows a diagram that represents a “family”

of missions that are defined by one entry in OPN generated mission architecture. Each of the

circles on this diagram represents a mission that fits a feasible Earth to Mars transportation

architecture.

Figure 6-8 An architecture visualization tool driven by OPN’s output (Courtesy of Simmons)

At the time of this study, the concept of Metric-Calc has not been fully demonstrated to the team

working on the NASA project. Therefore, the team proceeded to create a separate set of tools

that take Mission-Enum’s generated mission architecture data to feed into a different tool. From

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 133 of 168

a software integration viewpoint, it is possible to incorporate the calculation of cost, risks, and

ΔV calculation depicted in Figure 6-7 within OPN. The calculation example demonstrated in

Section 6.6 of this thesis validates the feasibility.

6.2.3 Observation on OPN’s usability

Three key findings resulted from this new NASA program:

1. We found that OPN is capable of expressing most of the mission variation requirements

without adding new language constructs.

2. We also found that by organizing missions into segments of a graph provides an intuitive

way to manage complexity and communicate design ideas.

3. We found that it is very simple to refine the OPN model of space transportation as new

knowledge becomes available. Incorporating new knowledge simply involves the adding,

removing or changing of localized properties in Objects, Process, or Pre/Post

Conditions.

6.3 Enhanced Ground Testing Pod

Architects often need to make architectural decisions based on incomplete information. This

section uses the Enhance Ground Testing Pod (EGT-Pod) as an example to illustrate how OPN

supports the architectural reasoning process under incomplete information.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 134 of 168

6.3.1 What is an EGT-Pod

EGT-Pod is an Inertia Measurement Unit (IMU) testing system under development at Draper

Laboratory. An IMU is a sensor system that detects the position and altitude of a missile by

measuring the accelerations and rotations applied to the missile's inertial frame. The IMU to be

tested is a part of Trident missile’s Mk6 guidance system. The objective is to perform non-

destructive tests of IMUs by operating IMUs inside the Pod while the Pod is carried aloft by an

F-15E Strike Eagle aircraft (see Figure 6-9).

Figure 6-9 The EGT-Pod and its carrying vehicle (Courtesy of Chris Anderson)

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 135 of 168

Trident missiles are designed to launch from nuclear submarines, operated by the Navy. Under

certain contractual agreement with the Department of Defense, Draper Lab must design EGT-

Pod based on aircraft operated by the Air Force such as the F-15E mentioned earlier. This design

requirement creates additional logistic concerns. It raises the issues of coordinating equipment

and personnel availability across two very large organizations. These logistic concerns also have

impact on the architectural reasoning process. The goal is to incorporate these logistic concerns

into the architectural reasoning process.

6.3.2 Alternative architectures of EGT-Pod

Two architectural alternatives are proposed. As shown in Figure 6-10, the Pod can be either

mounted under the belly or under the wings of the aircraft. Different mounting configurations

present different consequences in terms of aerodynamic performance. The belly mount option

allows the aircraft to better accelerate during the test, therefore generating higher quality test data.

In contrast, mounting under the wing allows each flight to test two Pods, therefore requiring

fewer flights to complete the test operation. A shorter completion time for the test usually

reduces the cost of flight operations and makes it easier to fit the schedule of available pilots and

equipment.

Figure 6-10 Two competing architectural alternatives

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 136 of 168

Choosing between “belly mount” and “double mount” is a challenge because precise

relationships among customer preference, average test completion time, and data quality cannot

be formulated ahead of time. However, this decision must be made during the early stage of the

system development because changing it at later stages would imply significant design rework

and incur changes on the logistic plan for the proposed test operations. These consequences

motivate the architects of EGT-Pod to make a decision as early as possible. It also characterizes

the fact that architects must reason through the consequences of decisions with incomplete

information.

6.3.3 Infer global consequences from local knowledge

Given incomplete information, architects must present a strategy to acquire sufficient

information to make an adequate decision. The decision would have been obvious, if the

customer specifies that throughput (measured by the time required to complete a series of test) is

always more important than data quality. The architect can simply choose the “double mount”

configuration and proceed with the engineering development effort. However, most customers

would usually demand the highest possible throughput and the best possible data quality. The

lack of explicitly stated customer preference is often a challenge for architectural reasoning.

However, by structuring incomplete information in a network structure, additional insight could

emerge.

As shown in Figure 6-11, the Inference Result table shows a base scenario for the

analysis. The “Customer Preference” Object is assigned with equal preference between

“throughput” and “data quality”. These two possible states of “Customer Preference” Object are

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 137 of 168

both assigned with fifty percent marginal probability. One can apply Bayes rule to calculate the

marginal probability of preference order and expected value of other related variables. The

calculation is based on the Bayes inference rule:

P(A, B) = P(A|B) P(B)

where

P(A,B) represents the joint probability of A and B,

P(A|B) represents the conditional probability of event A given B.

P(B) represent the probability of event B.

By multiplying the marginal probability distribution of “Customer Preference” Object with the

conditional probability table embedded in “Architecture Selecting” Process yields the marginal

probability values of “Mount Configuration” Object. The inference result for all four Objects in

Figure 6-11 is summarized in the “Inference Result” table.

Figure 6-11 Probabilistically infer global effects given local knowledge

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 138 of 168

When the probability distribution function is associated to a quantitative measure the expected

values can be estimated. Figure 6-11 shows that “Customer Preference” Object has an equal

probability distribution. This indicates that the lack of customer preference between

“throughout” and “data quality” makes it impossible to choose between “double” and “belly”

system configuration. However, by continuously applying the statistical inference calculation,

Figure 6-11 shows that “Session Completion Time” is estimated at 9.83 days and “Data Quality”

has a 58 percent chance of getting “high” quality results. These inferred probability values

provide physically or contextually meaningful quantities that can be presented to the customer or

other stakeholders. It provides a communication instrument between architects and their

customers to negotiate the what-if scenarios in contextually meaningful terms.

One may argue that it is difficult to formulate domain-specific knowledge in accurate

probabilistic measures. As Glen Shafer once said: “Probability is not really about numbers, it is

about the structure of reasoning.” Moreover, it is relatively easy to extend the structure of the

network by adding new nodes. Architects and stakeholders can incrementally adjust the network

to fulfill their evolving understanding and communication needs. The probabilistic inference

mechanism can support the communication process by computing the marginal probability for all

Objects. When necessary, simple calculation rules can be added to compute each Object’s

corresponding expected values. In other words, an OPN model equipped probabilistic inference

engine allows architects and stakeholders to negotiate architectural decisions in quantitative

terms under uncertainty.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 139 of 168

To support architectural negotiation between non-technical stakeholders, the marginal

probability values for all Objects can be updated and displayed graphically and interactively. The

user interface design is discussed in Section 5.4.4.

6.3.3.1 Bidirectional inference mechanisms

OPN allows architects to utilize statistical data to infer system states bi-directionally. The OPN

model in Figure 6-11 functions as a Bayesian Belief Network (BBN). In a BBN, the arrows do

not indicate the directions of successive event sequences; they only indicate the direction of

inference. The Bayes rule provides a formula to reverse the direction of inference. For example,

given joint probability P(A,B) and marginal probability P(A) or P(B), one can calculate the

corresponding conditional probability values. The calculation formula is shown as follows:

P(A|B) = P(A,B) /P(B) P(B|A) = P(A,B) / P(A)

BBN is a general-purpose tool for reasoning about decision under uncertainty. It allows

architects to compose domain-specific knowledge in a network, and then infer direct statistical

relationships among any set of variables in the network. This probabilistic inference mechanism

is often called “belief propagation”. The algorithm can be implemented using OPN’s token

generation and scheduling execution model. Kschischang et al. [69] shows how to realize belief

propagation based on token generation and scheduling. Section 5.4.4 discusses the software

implementation of belief propagation in OPN.

__

This chapter shows that OPN can serve as a formal language to specify, generate, and construct

computable models of either dynamical or static systems. It also provides symbolic, numeric, and

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 140 of 168

probabilistic computational features to support architectural decisions. The following chapter

will discuss OPN’s intended roles in the field of system architecting.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 141 of 168

7 Discussion

This chapter presents the contribution of this thesis to the field of system architecting.

7.1 Key Contributions

The main contribution of this thesis is to present a domain-neutral executable meta-language that

automates certain architectural model construction tasks. The automated tasks help reshape

architectural reasoning processes on three operational levels. First, architects may utilize features

of the meta-language to formally specify the space of possible systems. Conventionally,

architectural reasoning processes rely on system description languages such as E-R model, UML,

or other declarative modeling languages to specify system requirements. These languages

conventionally lead the modeling effort to describe specific instances of systems. In contrast,

OPN as a domain-neutral meta-language provides a more flexible and abstract vocabulary that

allows architects and stakeholders to broadly specify the space of possible systems in formal

terms. Second, executable meta-language allows architects to enumerate and generate executable

system models. Currently, architects often use generative modeling techniques such as Genetic

Algorithms or manually created morphological matrices to sample some parameterized

representation of system models. OPN’s model generation and enumeration features enable

architects to automatically generate and enumerate executable system models. Third, it allows

certain metric calculation routines to be composed automatically. Constructing simulation

models and relevant performance metric calculation routines is often a tedious and time-

consuming manual process. OPN’s layered semantic model provides programming features that

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 142 of 168

automate certain model construction tasks. In many cases, complex metric calculation routines

can also be automatically composed.

7.2 OPN addressing the needs in system architecting

In Chapter 1, this thesis argues that architectural decisions are derived from interactions among

architectural decision-makers bounded by their respective knowledge and resource constraints.

Wegner’s Interaction Machine [24] and Gelernter’s “Mirror Worlds” [128] concepts provided

the inspiration to model complex systems in terms of communication and computation. Simon’s

“Bounded Rationality” [129] argument also influenced our thinking to model decisions based on

available computational resources. Rational architects have the following communication and

computational needs:

1. An explicit representation of the space of decision alternatives to communicate with

relevant stakeholders.

2. An efficient procedure to generate alternative architectural instances for more detailed

scenario analysis and investigation.

3. An effective method to compute or assess the performance metrics that adequately

reflects the variations in the generated architectural alternatives.

In Section 6.1.2, we used OPN as a declarative language. It served as a representational medium

to explicitly specify the space of decision alternatives. In Section 6.1.3, OPN was used as an

imperative language. The token generating and scheduling algorithm automates the architectural

instance generating procedures. Since OPN allows users to specify rules that control the token

generating and scheduling events, users can apply domain specific knowledge to make the

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 143 of 168

alternative generation procedures focus on relevant subsets of architectural alternatives. In

Section 6.1.4, we used OPN as a simulation language. It utilizes the variable binding mechanism

to incorporate legacy code and domain-specific calculation routines to perform metrics

calculation tasks.

7.2.1 OPN implementation meets the requirements

The OPN executable meta-language is a software tool designed to support architectural

reasoning. The list of requirements for this tool is derived from our observation delineated in

Section 3.3, and repeated here:

1. Formally represent and specify the space of architectural alternatives by reflecting the

knowledge of system variability across multiple knowledge domains

2. Automatically generate, enumerate and encode all instances of architectural alternatives

specified in the meta-language

3. Adaptively calculate metrics associated with each generated architectural instance to

help architects and other stakeholders perform tradeoff analysis on all instances of

architectural alternatives

These requirements are met and demonstrated in the examples illustrated in Chapter 6. Other

related implementation requirements are:

1. Subsume various models of computation

2. Computationally generate individual instances of architectural models

3. Mechanically construct metric calculation routines for each architectural models

4. Support layered abstractions to better integrate different types of system knowledge

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 144 of 168

5. Provide a diagrammatic user interface to facilitate human-machine interactions

6. Allow for the tool to be deployed across standard computing platforms

7. Enable both individual and collaborative modeling and simulation tasks

In Chapter 5, we presented the software engineering aspects of OPN and showed that OPN can

support the language requirements. It provides a layered semantic model to subsume different

computational models, and its meta-language feature can generate individual instances of

computable models or “object languages”. It can mechanically construct arithmetic expressions

for metric calculation. It supports a hierarchical data structure and layered semantic model to

represent knowledge at different abstraction levels. It also provides a diagrammatic user interface

that enables users to visualize the data content, structure, and algorithmic dynamics.

It also showed that OPN can be implemented and deployed using popular software

implementation tools and it runs on machines that supports Java’s J2EE standard. Its threading

features and XML-based language model allows users to share models. OPN also provides a

standard output mechanism to allow different tools to share simulation results.

7.2.2 Meta-language and qualitative methods

This thesis treats all aspects of design as language manipulation or language translation tasks. It

aims to support the declarative, imperative, and simulation aspects of knowledge representation

tasks using one flexible and executable language. In Section 2.1.2, we mentioned that existing

system design methods such as Language Processing (LP), Design Structure Matrix (DSM), and

Qualify Function Deployment (QFD) are useful in concept exploration and high-level system

decomposition analysis. However, due to the qualitative nature of these methods, they usually

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 145 of 168

only provide directional guidance to a complex project. These methods can be useful in declaring

a general direction of a design space, however, the semantics of these methods lack rigor to

specify the dynamic properties of a complex interactive system. For example, DSM uses a binary

matrix to represent the information flows or structural dependencies between subsystems. These

binary matrices are often insufficient to encode the detailed information content embedded in

subsystem relationships. Therefore, two systems with identical binary matrix markings may not

have the same structural and behavioral qualities. Similar to DSM, QFD and Language

Processing methods work for high-level system design. QFD provides a declarative vocabulary

for stakeholders to establish a preference rank order of certain declared qualitative functions of a

system. The preference order only provides some guidance on which function is more important

than the others. It doesn’t provide additional structural or behavioral description to inform further

design activities. Language Processing Method is also useful in guiding the thought process of

system designers. However, it is designed as a tool for visualizing the thought process, not as a

tool for detailed technical analysis.

 In contrast, an executable meta-language allows users to incrementally add additional structural

and behavioral content as more detailed knowledge becomes available. In our implementation,

OPN as a diagrammatic tool can also serve as an electronic blackboard for these qualitative

analysis methods such as DSM, QFD and the Language Processing Method. As shown in Section

5.3 and 5.4, the relational dependencies between Objects and Processes can be visualized as a

matrix. In other words, an executable meta-language can add user interface components to

support DSM analysis as a way to communicate the structure of the system with stakeholders.

Similar approaches can be applied to QFD analysis. In terms of the Language Processing Method,

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 146 of 168

OPN can serve as an electronic blackboard to support the process of extracting meaningful words

and concepts in interactive brainstorm sessions. In other words, OPN as a graphical meta-

language is designed to support the information processing needs in qualitative analysis methods.

7.2.3 Meta-language and quantitative methods

Quantitative design theories such as Axiomatic Design, and other quantitative methods based on

Information Theory, Network Theory or Game Theory can all benefit from adopting a formal

and executable language. These quantitative methods usually involve significant amount of

mechanical calculation tasks. For example, Axiomatic Design requires the rearrangement of the

matrix as well as the calculation of information content for each of the alternative designs. These

calculation tasks can be automated based on the algorithm specification provided with the theory.

At the same time, Information Theory, Network Theory, and Game Theory often involve

sophisticated probability or payoff function calculations. A graphical and executable language

such as OPN can incorporate these calculation routines and support these design theories on an

operational level. In Section 6.1.4, we showed that OPN calculated mission success probability

as a Markov Network [66]. The structure of a tradeoff decision can also be formulated as a

“graphical game” [42], which is a variation of a graphical probabilistic model. In Section 2.2.4

and Section 4.8, we discussed how probabilistic graphical models can be incorporated into the

meta-language execution engine. In general, when working on quantitative design evaluation

tasks, an executable meta-language serves the function of a simulation language to assess the

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 147 of 168

global consequences of system interactions. In Chapter 5 and 6, we showed that OPN is designed

to support both qualitative and quantitative design analysis methods.

7.3 OPN as an executable meta-language

OPN is a graphical executable meta-language designed for system architects. The design of OPN

is influenced by ML and Lisp. For example, the notion of having a meta-operand and meta-

operator in OPN is a direct descendant of Lisp. However, ML and Lisp are textual programming

languages designed for mathematicians and computer scientists; they are not suitable for

communicating high-level system architectural ideas with non-technical stakeholders. We were

also influenced by Category Theory, which is a graphical meta-language for mathematics, but

not an executable language. We found Category Theory’s concept of manipulating mathematical

functions and entire classes of mathematical objects as the operands of a reasoning process can

be useful to system architects. It provides a formal framework to reason about the relationships

between functions and forms in a complex system. Certain transformation rules in Category

Theory such as function composition, and natural transformation can be made executable. These

executable features are implemented in OPN.

7.3.1 OPN and pattern languages

Pattern languages are mostly designed to be declarative languages. They help architects to

decompose a larger problem into smaller chunks of well-understood design patterns. However,

most pattern languages lack the imperative language feature to specify how to compose various

patterns into a specific instance of design. Therefore, pattern languages can be used as the basic

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 148 of 168

vocabulary for the declarative aspect of OPN. Then, OPN’s imperative language features can be

utilized to automatically generate possible instances of architectures. OPN provides a generic

imperative model to combine and evolve patterns in pattern languages. OPN is a generative

model; it only requires users to specify the space of possible alternatives. The token generation

and scheduling algorithm in OPN will try to enumerate all possible instances of architectures.

Different instances of architectures are computable models by themselves and can be further

refined and compared to derive more variations as users interact with them. In other words, by

combining pattern languages with generative modeling features, OPN can be used by pattern

language practitioners to explore system design in an automated fashion.

7.3.2 OPN as a system description language

System description languages such as E-R diagram, UML and OPM laid the foundational work

in modeling complex socio-technical systems. They demonstrated that graphical models could be

practically deployed in system development, software modeling and, to certain extent, automatic

code generation for database systems or real-time control systems. They also have obvious

limitations. As mentioned in Section 2.2.2, E-R diagram primarily focuses on the static

relationships of a system. It doesn’t provide a model of computation for specifying the evolving

nature of the system.

7.3.2.1 OPN vs. UML

UML is a highly complex language that intends to cover most of the needs in complex system

representation. Unfortunately, the complexity of the language itself has become a serious

hindrance to perform model integration. For simple systems, UML models can be more complex

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 149 of 168

than writing and debugging source code of some simple programming languages. UML contains

a large number of sub languages. Integration between languages is often not supported formally.

To provide formal support in language integration, UML manages language definitions by

declaring a four-layered meta-model architecture. This meta-model architecture is static in nature,

and it requires a centralized revision committee to make modification on the meta-model level.

To address the language bloat problem in UML, OPN allows users to work with one executable

meta-language to support both language definition and model execution tasks. An ideal system

description and simulation language should avoid introducing unnecessary notations and model

syntax to complicate the architectural reasoning tasks. Instead of forcing users to perform model

integration tasks and learning new language standards, OPN helps users to directly focus on the

description and simulation of domain specific problems.

7.3.2.2 OPN vs. OPM

OPM is a system description language designed to address the needs in simultaneously

representing a system’s structural and behavioral properties. It avoids the “language bloat”

problem that often stifles the development of language standards such as UML. However,

OPM’s Object-Process Diagram (OPD) allows users to specify many types of graphical

relationships between Objects and Processes that can be overwhelming to novice users.

Figure 7-1 OPM's different link types

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 150 of 168

To avoid “notation bloat” in the diagrammatic language, OPN’s graphical notation strictly

follows the bi-partite graph formalism. It only allows direct connections between Object-Process

pairs. Only two types of relationships are allowed in OPN; Pre-Condition specifies the

relationship from Object to Process. Post-Condition specifies the relationship from Process to

Object. All relationship types in OPD are emulated through customizable data structures

associated with the respective Object, Process and Pre/Post Conditions. This bi-partite graphical

formalism provides a consistent execution language schema that associates computable functions

with Processes and stores computational results into Objects.

Language features in OPM that are not absolutely needed by the meta-language are not

incorporated into OPN. For example, the “Formal English” generating feature, also known as

Object-Process Language (OPL) is not incorporated into OPN because it can be added externally

without affecting the structural and behavioral properties of the system of interest. The structural

link, specialization link, enabler link, and agent link are all removed because a pair of “Pre/Post

Relationships” and a “Process” can be customized to computationally emulate their semantic

meaning. OPN is intentionally designed as a minimalist meta-language; it tries to avoid semantic

definitions that can be composed from more basic linguistic constructs. The goal of this

minimalist design approach is to make the language definition small, so it would require less

implementation and debugging effort to create the execution environment.

7.3.3 OPN and generative modeling techniques

OPN’s simple language structure uses one meta-operand, Thing, and one meta-operator Eval.

This meta-operator and meta-operand pair of OPN provides a consistent programming interface

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 151 of 168

that is particularly suitable for generative modeling. Its inputs, outputs, and execution algorithms

are all modeled as Things. The processes of generating and modifying Things are modeled by

various customizable versions of Eval. The concept of meta-operand and meta-operator pair is

derived from functional programming language such as Lisp, Mathematica, and ML. These

functional programming languages have served well in performing generative modeling such as

writing code for self-modifying genetic algorithms [62] and performing computational

experiments for interacting cellular automata [25]. However, these programming languages

require significant programming skills, and we found it possible to graphically represent some of

the abstract functional programming concepts, such as recursion and symbolic variable

replacement using a graphical programming language. Allowing users to visualize the model

generating process enables architects and non-programmers to perform model generation tasks

without the need to construct models manually. OPN’s user interface design also enables

architects to graphically construct and debug model generation “programs”. The user interface

also helps system architects and stakeholders to visually explore solution alternatives by

inspecting the generated structures and computational results interactively.

Moreover, OPN allows GA experts and functional programming experts to formulate their

problems in a graphical programming environment. The tokens in OPN can be treated as the

mutating genes or the dynamically evolving computable expressions. It can be used as a platform

to create the structure of these generative algorithms. When necessary, these generative

algorithms can be first developed in OPN and then manually transcribed into source code of

some high performance programming language to perform more extensive computational

experiments.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 152 of 168

7.3.4 OPN as a simulation language

OPN as a general-purpose programming language can be customized to incorporate various

algorithms and models of computation to support architects’ reasoning tasks. The execution

model of OPN is based on a three-layered semantic interpretation engine. The top layer mimics

Petri Net’s token scheduling rules. The token processing layer using inference rules to perform

token transformation tasks. The token processing layer invokes individual rules or functions

specified by stakeholders with process-level domain expertise. Simple algebraic equations or

arithmetic expressions can be specified on the process level to perform calculation tasks. The

variable binding layer allows users to access customized algorithms or perform communication

with other computational services on the network. These customized algorithms and third party

simulation code provide an additional layer of functionality to allow users to perform more

sophisticated simulation tasks. To perform probabilistic reasoning, OPN may incorporate the

message propagation algorithm [66] to perform bi-directional inference. For System Dynamic

simulation, OPN’s token generation and scheduling mechanism and process transformation

routines also allow users to perform numerical integration tasks and compose arithmetic

expressions over multiple time intervals. For discrete event simulation, OPN can use the standard

Petri Net token scheduling algorithm specified in Section 4.6 to perform discrete event

simulation. In other words, OPN can serve as a hybrid simulation environment that integrates the

functionalities of probabilistic, numeric, symbolic, and discrete event simulation engines.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 153 of 168

7.3.4.1 OPN vs. Petri Net

OPN’s graph formalism for the event generation and scheduling aspect is particularly similar to

Petri Net. However, OPN subsumes Petri Net and other graphical formalisms in the following

ways:

1. OPN is a meta-Petri Net: During model execution time, OPN records the execution

sequences of all tokens within the tokens themselves as computationally generated

OPN models. Unlike Petri Net, each token firing event is simply a computational

abstraction of some simulated external activities. OPN’s tokens not only record the

state information during runtime, they also add the Objects, Processes and

Relationships that created them into a locally stored OPN model. In other words, each

OPN token processing event is a model construction activity. In the Petri Net

literature, this meta-modeling extension is sometimes referred to as Higher Order

Petri Net [82, 83].

2. Objects vs. Places: OPN organizes closely related variables into Objects; places in

Petri Net are represented as Objects in OPN that capture state information and

complex data structures at the Object level. Instead of defining “Places” as passive

storage of tokens, the notion of Object provides additional graphical information on

each instance of Object to visualize the state of a system during model execution time

[26]. This approach is different from Colored-Petri Nets since “color” in “Colored

Petri Net” refers to the value of the token, not the “place”. Objects with visible local

information yield a more convenient visual formalism for continuous and

probabilistic systems.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 154 of 168

3. Processes vs. Transitions: Process in OPN replaces Transition in Petri Nets. A

“transition” in Petri Net represents an action to occur in time. A Process in OPN

refers to a mathematical function or relationship in general. It is not bound to an

action in the time domain. When OPN is used as a model enumeration engine, the

notion of “time” or “event sequence” can be conceptually ignored, the enumeration

algorithm is simply listing combinatorial structures that may or may not contain the

notion of time. When a Process is included in the generated model, it denotes a

possible state-space mapping between its neighboring Objects. This “mapping” is not

considered to be an “action”, but a declared function or a binding constraint between

the state-spaces of its neighboring Objects.

7.4 Future Development

This section presents the future research opportunities based on the meta-language approach

described in this thesis. The future development activities are divided into three broad categories:

theory, tool, and application development.

7.4.1 Theory development

Two areas of theory development are of interest in the context of complex system architecting.

The first one is related to statistical network theory. The second one is related to the

mathematical properties of complex system models.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 155 of 168

7.4.1.1 Statistical network theories and system architecting

The concept of analyzing systems as a complex network is gaining popularity in both scientific

and engineering research communities. Typical approaches are based on analyzing the statistical

properties of these networks. Researchers have attempted to draw conclusions from certain

generalized statistical qualities of complex networks in terms of small world effects [118, 130],

scale-free networks [131-133], and power laws [134]. The explicit use of these methods for

designing complex systems have not been wide spread, partially because these aggregate

properties hide the detail information about context-specific design concerns. However, these

statistical properties provide some insight into very large-scale networked systems. This is an

area of theoretical development that is outside the scope of this thesis.

7.4.1.2 The mathematical properties of complex system models

One must also note the limitation of statistical network theories when applying them to reason

about complex system models. A statistically based network analysis ignores context-specific

information because it treats all relationships between different nodes uniformly. A relationship

that connects two nodes in a network may contain useful and unique information that can change

the behavior of the entire network. The analytical method must be able to identify and extract

this information whenever necessary. A statistical approach to networks would not be able to

accommodate this fine-grained approach. Most statistical procedures simply count the

connectivity between nodes or assign some numeric measure to each node or arc. They

completely ignore the intricate data structure that might be associated with individual nodes and

relationships.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 156 of 168

Modeling a network as an instance of language avoids the problem of overlooking the details.

However, that implies two additional issues that must be addressed.

1. The data structure required to capture the detailed information

2. The required amount of storage space and time to manage this added information

The first problem can be addressed by using a recursive data structure, such as the one we

proposed in this thesis to capture all levels of details.

The second problem requires more attention. First, storage space required to capture this

additional information can be compressed by properly classifying the types of nodes and links.

This concept is a well-known technique in Object-Oriented programming [135]. Gabriel [44] and

Whitmire [136] have stated their views on how significant compression in terms of the size of

models and the effort required to build the model can be addressed and measured using Object-

Oriented modeling techniques. Applying techniques based on Type-Calculus [137] provides a

method to manipulate information on classes or types of object, and also provides a mechanism

to compress the processing time required to analyze the data. Computational inference

techniques can be applied to manipulate data based on instances of class data entries [120], not

the instances of data entries on nodes or links. To enable these types of analysis requires a

modeling language that can directly operate on typing information about its internal data

structures. Many modern programming languages provide these features. The issue is that using

these features requires significant programming skills. An alternative is to reveal these features

in an intuitive manner, so that non-programmers can utilize these features to manipulate data

structures. This is achievable by OPN, but not demonstrated in this thesis. A detailed case study

showing how network-based language can enable a wide range of people to perform

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 157 of 168

computationally assisted reasoning on the types, not just the instances of data entries, may have

the potential to be a highly fruitful research direction.

7.4.2 Tool development

Without adequate instrumentation, theories can hardly be verified and conveyed in convincing

manner. Therefore, ongoing development on the language manipulation tools is a critical area of

research as well. The following features in a meta-language modeling environment are highly

desirable:

1. Estimate the memory and time requirements before enumerating alternatives

2. Improve speed and memory efficiency on model/object language generation routines

3. Provide access to third party computational resources

All the suggested research areas are challenging research topics on both technical and theoretical

levels. The concept of sizing a problem space in common space/time terms provides an upper

bound to determine when and how to decompose the problem into a meaningful size for

thorough architectural alternative study. The second problem is a practical issue that requires

innovative techniques in combinatorial algorithm development. Designing efficient algorithms to

generate all the sub-structures of a model helps us understand the nature of the model [59]. The

third area is an engineering problem. Integrating legacy resources is always a necessary and

highly profitable area of system development because it provides continuity in the operational

environment, and reduces duplicate effort during tool development.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 158 of 168

7.4.3 Application Development

OPN is a brand new language. It needs an active user community to provide design feedback,

develop use cases for different application domains, and create supporting libraries to enrich its

functionalities. To increase the size of user community, the following developmental activities

are suggested:

1. Develop self-contained tutorial that leads non-programmer to use OPN as a reasoning tool

2. Quantify in economical terms the benefits of using OPN

3. Create a secure data service on the Internet for OPN model/knowledge sharing

This chapter presented the contribution of this research and compared the solutions proposed,

implemented and demonstrated in the thesis with already existing solutions. The following

chapter presents our conclusion.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 159 of 168

8 Conclusion

This thesis presented a domain-neutral executable meta-language, Object-Process Network

(OPN), which automates certain mechanical communication and computational tasks in

architectural reasoning. The introductory remarks of this thesis first provided an operational

definition of system architecting and complex socio-technical systems. Chapter 1 also articulated

the rationale behind modeling the architectural reasoning process in terms of computation and

computational tasks. It also stated the research opportunities in creating a domain-neutral

software instrument for system architects based on the theory of communication and

computation.

Chapter 2 of this thesis presented the prior art related to the representation and analysis of

complex socio-technical systems. It showed that current theories and methods of system

architecting are often designed to fit specific knowledge domains [138, 10, 56, 139], limiting

their expressiveness to incorporate knowledge that originates from different domains. It also

showed that general-purpose modeling languages usually contain a large set of vocabulary

and syntactic rules, requiring a significant learning effort. Other language-based architectural

reasoning techniques such as pattern languages [2, 43, 13, 44, 45] only capture design

heuristics that usually lack formal models of computation, thereby providing limited

reasoning power when applied to complex and ambiguous architecting scenarios. Research

work that focuses on unifying formal models of computation [137, 140, 15, 75, 141-143, 78]

presents rigorous and domain-neutral architectural reasoning techniques. However, they are

often illustrated in pure mathematical abstraction, making them less accessible to architects

without extensive training in mathematical reasoning.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 160 of 168

Chapter 3 presented the arguments showing that architects need a domain-neutral executable

meta-language to improve existing architectural reasoning processes. It consolidates

principles and knowledge presented in Chapter 2 into a requirement list for building an

operational instrument for architectural reasoning. The key design ideas of the meta-language

are:

1. Specify a simple and stable syntax to enable domain-neutral knowledge exchange. This

language feature helps streamline many repetitive communication tasks.

2. Design a simple and stable execution semantic model that satisfies Turing Completeness.

This language feature allows architects to conduct variable kinds of computational tasks

in an integrated environment.

3. Organize the semantic model into a layered structure, so that different aspects of system

complexity can be temporarily suppressed. This layered semantic model reduces users’

cognitive burden when constructing, navigating, and manipulating system models.

4. Use network-like diagrams (graphs) to visualize system structure and behavior. Graphs

are treated as the basic building blocks of the language.

5. Use one meta-operand and one meta-operator to build the language kernel. This

provides structural and behavioral consistency across all systems modeled using this

meta-language.

Chapters 4 and 5 presented the formal syntax, execution semantics, and software

implementation pragmatics of the meta-language, OPN. Chapter 4 focuses on the

implementation neutral aspect of the language architecture. It was intentionally written to be

independent of implementation concerns. The concept is that a meta-language should not be

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 161 of 168

dependent on its underlying implementation technologies. Chapter 5 focuses on the software

engineering considerations and the design rationale of important user interface features. It

shows the feasibility of implementing a domain-neutral, graphical, and executable meta-

language using existing off-the-shelf technologies. Information in Chapters 4 and 5 only

specifies the syntax and domain-independent (abstract) semantics of OPN. The domain-

dependent (concrete) semantics of OPN is later specified in Chapter 6, showing that the

abstract OPN can be applied to different application domains.

Chapter 6 presented three case studies to illustrate how an executable meta-language can be

utilized in architectural reasoning processes. The result of these case studies indicates that many

aspects of computational and communication needs in complex system architectural reasoning

can be satisfied by OPN. It shows that OPN can either replace or co-exist with many existing

modeling languages and computational tools. More importantly, it helps shift the mental model

of system architects in three significant ways:

1. OPN’s abstract vocabulary enables architects to flexibly specify the space of architectural

alternatives, instead of trying to specify instances of architectures pre-maturely.

2. OPN enables architects to systematically generate and enumerate executable system models.

In the past, models of alternative architectures are often manually crafted and randomly

sampled.

3. OPN’s symbolic programming features help system modelers to compose certain complex

metric calculation routines automatically. This feature allows architects to better assess

performance metrics of certain classes of complex models without investing a significant

amount of modeling labor.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 162 of 168

Chapter 7 provided a detailed account of the main contribution of this thesis. It compared OPN

to other modeling techniques and simulation languages. It showed that an abstract meta-language

kernel embodies many desirable features of different system design methods and modeling

languages. It argues that many repetitive reasoning tasks can be modeled and automated using an

executable meta-language. It also showed that OPN as an executable meta-language satisfies

many functional requirements of different modeling languages; therefore, it can either replace or

emulate other modeling languages when appropriate.

In summary, this thesis argues that the science and technologies of language manipulation can be

systematically utilized to improve the practice of system architecting. In this thesis, we showed

that many architecting processes are composed of three types of modeling tasks; each of them

corresponds to a type of language. They are:

1. Declarative language: Specify the space of architecture alternatives

2. Imperative language: Enumerate architecture instances

3. Simulation language: Calculate the performance metrics of a given architecture instance

This thesis also showed that OPN, a graphical meta-language language, can be implemented and

deployed to carry out modeling tasks in practical applications. As a modeling language, OPN

influences architects’ reasoning processes in three systematic ways:

1. OPN shifts the modeling focus from specifying instances of architectures to specifying the

space of possibilities

2. OPN offers many model generation and enumeration features that permit architects to

programmatically explore the solution space

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 163 of 168

3. OPN’s meta-language features makes it possible to automatically compose performance

metrics calculation routines that are often tedious and difficult to do in other modeling

languages

The objective of this thesis is to formulate a domain-independent reasoning technique in terms of

communication and computation. This thesis substantiates this claim by showing that OPN, a

domain-independent modeling language, can be employed by architects to communicate design

intent, construct simulation models, and compute performance metrics. The aim of this thesis is

to provide a solution for the automation of the architectural reasoning tasks. Based on the

analysis of the needs and the case study results, OPN satisfies the automation needs documented

in the thesis, and therefore qualifies to be a solution for architectural reasoning tasks.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 164 of 168

9 Bibliography
[1] C. Alexander, The timeless way of building. New York: Oxford University Press, 1979.
[2] C. Alexander, The nature of order: an essay on the art of building and the nature of the universe. Berkeley,

Calif.: Center for Environmental Structure, 2002.
[3] S. Mac Lane, Mathematics, form and function. New York: Springer-Verlag, 1986.
[4] T. Berners-Lee, "Web Architecture from 50,000 feet," vol. Dec. 2004. Cambridge. MA: World Wide Web

Consortium, 1998.
[5] R. M. Henderson and K. B. Clark, "Architectural Innovation - the Reconfiguration of Existing Product

Technologies and the Failure of Established Firms," Administrative Science Quarterly, vol. 35, pp. 9-30,
1990.

[6] D. E. Ingber, "The architecture of Life," Scientific American, pp. 48-57, 1998.
[7] L. Lessig, Code: and other laws of cyberspace. [New York, N.Y.]: Basic Books, 1999.
[8] J. M. Utterback, Mastering the dynamics of innovation: how companies can seize opportunities in the face

of technological change. Boston, Mass.: Harvard Business School Press, 1994.
[9] P. Carlile, "Transferring, Translating, and Transforming: An Integrative Framework for Managing

Knowledge Across Boundaries," Organization Science, vol. 15, pp. 555-568, 2004.
[10] R. M. Murray, "Panel on Future Directions in Control, Dynamics, and Systems," California Institute of

Technology, 2002.
[11] A. N. Whitehead, An introduction to mathematics. New York: H. Holt and company, 1911.
[12] H. Abelson, G. J. Sussman, and J. Sussman, Structure and interpretation of computer programs, 2nd ed.

Cambridge, Mass.: MIT Press, 1996.
[13] C. Y. Baldwin and K. B. Clark, Design rules. Cambridge, Mass.: MIT Press, 2000.
[14] Y. Ben-Haim, Information-gap decision theory: decisions under severe uncertainty. San Diego, Calif.:

Academic Press, 2001.
[15] A. W. Burks, Chance, cause, reason; an inquiry into the nature of scientific evidence. Chicago: University

of Chicago Press, 1977.
[16] M. Resnick, Turtles, termites, and traffic jams: explorations in massively parallel microworlds. Cambridge,

Mass.: MIT Press, 1994.
[17] W. R. Ashby, An introduction to cybernetics. London: Chapman & Hall, 1961.
[18] E. Borger, Architecture design and validation methods. Berlin; New York: Springer, 2000.
[19] B. Chandrasekaran, J. Glasgow, and N. H. Narayanan, Diagrammatic reasoning: cognitive and

computational perspectives. Cambridge, Mass.: MIT Press, 1995.
[20] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly, "The DoD High Level Archiutecture: An Update,"

presented at Winter Simulation Conference, 1998.
[21] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to

biology, control, and artificial intelligence, 1st MIT Press ed. Cambridge, Mass.: MIT Press, 1992.
[22] J. H. Holland, Emergence: from chaos to order. Reading, Mass.: Addison-Wesley, 1998.
[23] T. S. Kuhn, The structure of scientific revolutions, [2d, enl. ed. Chicago]: University of Chicago Press,

1970.
[24] P. Wegner, "Why interaction is more powerful than algorithms," Communications of the ACM, vol. 40,

1997.
[25] S. Wolfram, A new kind of science. Champaign, IL: Wolfram Media, 2002.
[26] D. Dori, Object-Process Methodology: A Holistic Systems Paradigm: Springer-Verlag, 2002.
[27] T. S. Kuhn, J. Conant, and J. Haugeland, The road since structure: philosophical essays, 1970-1993, with

an autobiographical interview. Chicago: University of Chicago Press, 2000.
[28] J. Moses, "The Anatomy of Large Scale Systems," in Engineering Systems Internal Symposium: MIT ESD,

2002.
[29] A. Asperti and G. Longo, Categories, types, and structures: an introduction to category theory for the

working computer scientist. Cambridge, Mass.: MIT Press, 1991.
[30] S. Mac Lane, Categories for the working mathematician, 2nd ed. New York: Springer, 1998.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 165 of 168

[31] B. C. Pierce, Basic category theory for computer scientists. Cambridge, Mass.: MIT Press, 1991.
[32] S. Abramsky and A. Jung, "Domain theory," in Handbook of Logic in Computer Science, vol. III, S.

Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds.: Oxford University Press, 1994.
[33] D. Scott, "Data types as lattices," presented at International Summer Institute and Logic Colloquium, Kiel,

1975.
[34] N. Wiener, Cybernetics: or, Control and communication in the animal and the machine, 2d paperback ed.

Cambridge, Mass.: M.I.T. Press, 1965.
[35] D. Clausing, Total quality development: a step-by-step guide to world class concurrent engineering. New

York, NY: ASME Press, 1993.
[36] G. S. Altshuller, Creativity as an exact science: the theory of the solution of inventive problems. New York:

Gordon and Breach Science Publishers, 1984.
[37] S. D. Shiba, A. Graham, D. Walden, T. H. Lee, R. Stata, and Center for Quality Management (Cambridge

Mass.), A new American TQM: four practical revolutions in management. Cambridge, Mass.; Norwalk,
Conn.: Productivity Press, 1993.

[38] S. D. Shiba, D. Walden, and S. D. Shiba, Four practical revolutions in management: systems for creating
unique organizational capability. Cambridge, Mass.: Center for Quality of Management, 2001.

[39] N. P. Suh, The principles of design. New York: Oxford University Press, 1990.
[40] N. P. Suh, Axiomatic design: advances and applications. New York: Oxford University Press, 2001.
[41] H. W. Kuhn and S. Nasar, The essential John Nash. Princeton, N.J. Chichester: Princeton University Press,

2002.
[42] M. Kearns, M. Littman, and S. Singh, "Graphical models for game theory," Proceedings of the Conference

on Uncertainty in Artificial Intelligence, pp. 253-260, 2001.
[43] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern language: towns, buildings, construction. New

York: Oxford University Press, 1977.
[44] R. P. Gabriel, Patterns of software: tales from the software community. New York: Oxford University Press,

1996.
[45] E. Gamma, Design patterns: elements of reusable object-oriented software. Boston, Mass.: Addison-

Wesley, 1995.
[46] OMG, "Unified Modeling Language (UML), version 1.5," vol. 1: Object Management Group, 2003.
[47] P. Rivett, "UML 2.0 Infrastructure Final Adopted Specifcation," vol. 1: Object Management Group, 2004.
[48] OMG, "Unified Modeling Language (UML), version 1.4," vol. 1: Object Management Group, 2001.
[49] B. Selic, "UML 2.0 Superstructure Final Adopted specification," vol. 1: Object Management Group, 2004.
[50] B. Selic, "UML 2.0: Exploiting Abstration and Automation," in Software Development Times: SD Times,

2004.
[51] D. Dori, "Why Significant Change in UML is Unlikely," Communications of ACM, pp. pp. 82-85, 2002.
[52] M. Peleg and D. Dori, "The Model Multiplicity Problem: Experimenting with Real-Time Specification

Methods," IEEE Trans. Software Engineering, vol. 26(8), pp. 742-759, 2000.
[53] N. R. Soderborg, E. F. Crawley, and D. Dori, "System function and architecture: OPM-based definitions

and operational templates," Communications of ACM, vol. 46(10), pp. 67-72, 2003.
[54] D. Dori, I. Reinhartz-Berger, and A. Sturm, "Developing Complex Systems with Object-Process

Methodology with OPCAT," presented at Conceptual Modeling - ER 2003, 2003.
[55] M. Plusch, "Water: simplified Web services and XML programming." Indianapolis, Ind.: Wiley Pub., 2003.
[56] A. J. M. Rocha and Massachusetts Institute of Technology. Dept. of Architecture., "Architecture theory,

1960-1980: emergence of a computational perspective," 2004, pp. 175 leaves.
[57] M. Leyton, A generative theory of shape. Berlin; New York: Springer, 2001.
[58] M. Cook, "Mathew Cook showing Rule 110 is Turing Complete," vol. Dec. 2004: Wikipedia, 1998.
[59] L. A. Goldberg, Efficient algorithms for listing combinatorial structures. Cambridge; New York:

Cambridge University Press, 1993.
[60] J. H. Holland, Induction: processes of inference, learning, and discovery. Cambridge, Mass.: MIT Press,

1986.
[61] J. H. Holland, Hidden order: how adaptation builds complexity. Reading, Mass.: Addison-Wesley, 1995.
[62] K. Sims, "Evolving Virtual Creatures," Computer Graphics, pp. 15-22, 1994.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 166 of 168

[63] I. L. Kim and O. d. Weck, "Variable Length Chromosome Genetic Algorithm for Progressive Refinement
in Topology Optimization," Structure and Multidisciplinary Optimization, vol. 1, 2005.

[64] C. Jacob, Illustrating evolutionary computation with Mathematica. San Francisco: Morgan Kaufmann Pub.,
2001.

[65] B. P. Zeigler, Theory of modelling and simulation. New York: Wiley, 1976.
[66] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo, Calif.:

Morgan Kaufmann Publishers, 1988.
[67] J. Pearl, "Belief Networks Revisited," Artificial Intelligence, vol. 59, pp. 49-56, 1993.
[68] J. Pearl, "Decision making under uncertainty," Acm Computing Surveys, vol. 28, pp. 89-92, 1996.
[69] F. Kschischang, B. Frey, and H.-A. Loeliger, "Factor Graphs and the Sum-Product Algorithm," IEEE

Transactions on Information Theory, vol. 47, 2001.
[70] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Englewood Cliffs, N.J.: Prentice

Hall, 1995.
[71] E. Charniak, "Bayesian Networks without Tears," in AI magazine, 1991.
[72] M. Jordan, Z. Ghaharamani, T. Jaakkola, and L. Saul, "An introduction to variational methods for graphical

models.," in Learning in Graphical Models., M. Jordan, Ed., 1998.
[73] R. Detcher, "Bucket elimination: a unifying framework for processing hard and soft constraints," ACM

Computing Surveys, vol. 28, 1996.
[74] F. G. Cozman, "Generalizing Variable Elimination in Bayesian Networks," Proceedings of the

IBERAMIA/SBIA 2000 Workshops, pp. 27-32, 2000.
[75] H. Ehrig, Unifying Petri nets: advances in Petri nets. Berlin London: Springer, 2001.
[76] Z. Ghahramani, " Learning Dynamic Bayesian Networks," in Adaptive Processing of Sequences and Data

Structures, C. L. G. a. M. G. (eds.), Ed. Berlin: Springer-Verlag, 1998.
[77] R. E. Neapolitan, Learning Bayesian networks. Harlow: Prentice Hall, 2003.
[78] C. A. Petri, "Kommunikation mit Automaten," vol. Ph.D.: University of Bonn, 1962.
[79] J. L. Peterson, Petri net theory and the modeling of systems. Englewood Cliff, N.J.: Prentice-Hall, 1981.
[80] X. Li, W. Yu, and F. Lara-Rosano, "Dynamic Knowledge Inference and Learning under Adaptive Fuzzy

Petri Net Framework," IEEE Trans. on Systems, Man, and Cybernetics, 2000.
[81] J. W. Janneck and R. Esser, "Higher-order Petri net modeling:techniques and applications," 23rd

International Conference on the Application and Theory of Petri Nets, 2002.
[82] C. A. Lakos, "Object Petri Net: Definition and Relationship to Coloured Petri Net," Computer Science

Department, vol. TR94-3, 1994.
[83] C. A. Lakos, "From Coloured Petri Net to Object Petri Net," Proceedings of the 15th International

Conference on the Application and Theory of Petri Nets, vol. 815, 1995.
[84] J. W. Forrester, Industrial dynamics. Waltham, MA: Pegasus Communications, 1999.
[85] J. Sterman, Business dynamics: systems thinking and modeling for a complex world. Boston:

Irwin/McGraw-Hill, 2000.
[86] T. W. Malone, K. Crowston, and G. A. Herman, Organizing business knowledge: the MIT process

handbook. Cambridge, Mass.: MIT Press, 2003.
[87] J. Patten, H. Ishii, J. Hines, and G. Pangaro, "Sensetable: a wireless object tracking platform for tangible

user interfaces," Proceedings of the SIGCHI conference on Human factors in computing systems, 2001.
[88] K. Nygaard and O.-J. Dahl, "The development of the SIMULA languages," ACM SIGPLAN Notices, The

first ACM SIGPLAN conference on History of programming languages, vol. 13, 1978.
[89] T. W. Christopher, Python programming patterns. Upper Saddle River, NJ: Prentice Hall, 2002.
[90] T. Berners-Lee and M. Fischetti, Weaving the Web: the original design and ultimate destiny of the World

Wide Web by its inventor, 1st ed. [San Francisco]: HarperSanFrancisco, 1999.
[91] T. Berners-Lee, "Semantic Web Road map," vol. Dec. 2004. Cambridge. MA: World Wide Web

Consortium, 1998.
[92] J. Ferber, Multi-agent systems: an introduction to distributed artificial intelligence. Harlow; New York:

Addison-Wesley, 1999.
[93] R. L. Hobbs, "Using XML to Support Military Decision-Making," presented at XML Conference and

Exposition 2003, Philadelphia, PA, 2003.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 167 of 168

[94] D. Fensel, Spinning the semantic Web: bringing the World Wide Web to its full potential. Cambridge, Mass.:
MIT Press, 2003.

[95] A. Church, Introduction to mathematical logic. Princeton: Princeton University Press, 1956.
[96] K. Czarnecki and U. Eisenecker, Generative Programming: Methods, Tools, and Applications. New York:

Addison-Wesley Pub, 2000.
[97] R. Carnap and R. Carnap, Introduction to semantics, and Formalization of logic. Cambridge: Harvard

University Press, 1961.
[98] R. Milner, M. Tofte, and R. Harper, The definition of Standard ML. Cambridge, Mass.: MIT Press, 1990.
[99] J. Sturdy, "A Lisp through the looking glass," University of Bath, 1991.
[100] A. J. T. Davie, An introduction to functional programming systems using Haskell. Cambridge; New York,

NY, USA: Cambridge University Press, 1992.
[101] C. Chomsky, The acquisition of syntax in children from 5 to 10. Cambridge, Mass.: M.I.T. Press, 1969.
[102] N. Chomsky, Aspects of the theory of syntax. Cambridge: M.I.T. Press, 1965.
[103] G. Lakoff and M. Johnson, Metaphors we live by. Chicago: University of Chicago Press, 1980.
[104] G. Lakoff and R. E. Nunez, Where mathematics comes from: how the embodied mind brings mathematics

into being. New York: Basic Books, 2000.
[105] H. D. Jørgensen, "Interactive Process Models," in Department of Computer and Information Sciences, vol.

Ph. D.: Norwegian University of Science and Technology, 2003, pp. 304.
[106] H. A. Simon, The sciences of the artificial, 3rd ed. Cambridge, Mass.: MIT Press, 1996.
[107] J. Larkin and H. Simon, " Why a diagram is (sometimes) worth ten thousand words," Cognitive Science,

vol. 11, pp. 65-99, 1987.
[108] T. Lindholm and F. Yellin, The Java virtual machine specification. Reading, Mass.: Addison-Wesley, 1997.
[109] M. C. Daconta, L. J. Obrst, and K. T. Smith, The Semantic Web: a guide to the future of XML, Web services,

and knowledge management. Indianapolis, Ind.: Wiley Pub., 2003.
[110] D. Howe, "Free On-Line Dictionary of Computing," Imperial College Department of Computing, 2004.
[111] D. Lea, Concurrent programming in Java: design principles and patterns. Reading, Mass.: Addison

Wesley, 1997.
[112] C. Böhm and G. Jacopini, "Flow diagrams, turing machines and languages with only two formation rules,"

Communications of ACM, vol. 9, pp. 366-371, 1966.
[113] A. Goldberg and D. Robson, Smalltalk-80: the language. Reading, Mass.: Addison-Wesley, 1989.
[114] K. Jensen, Coloured Petri nets: basic concepts, analysis methods, and practical use. Berlin; New York:

Springer-Verlag, 1992.
[115] G. F. Cozman, "JavaBayes version 0.346," vol. 2004, 2004.
[116] B. B. Bederson, J. Grosjean, and J. Meyer, "Toolkit Design for Interactive Structured Graphics," CiteSeer,

2004.
[117] S. Pedroni and N. Rapping, Jython essentials. Sebastopol, Calif.: O'Reilly, 2002.
[118] C. G. Brooks, J. M. Grimwood, and L. S. Swenson, Chariots for Apollo: a history of manned lunar

spacecraft. Washington: Scientific and Technical Information Branch, National Aeronautics and Space
Administration, 1979.

[119] C. R. Pellegrino and J. Stoff, Chariots for Apollo: the making of the lunar module, 1st ed. New York:
Atheneum, 1985.

[120] D. Joyner, Adventures in group theory: Rubik's Cube, Merlin's machine, and other mathematical toys.
Baltimore, Md.: Johns Hopkins University Press, 2002.

[121] E. Frazzoli, "Robust hybrid control for autonomous vehicle motion planning," Ph. D. :Massachusetts
Institute of Technology. Dept. of Aeronautics and Astronautics., 2001, pp. 150 p.

[122] C. G. Brooks, J. M. Grimwood, and J. Loyd S. Swenson, "Chariots for Apollo: A History of Manned Lunar
Spacecraft," NASA, 1979.

[123] G.-Q. Zhang, Domain theory, logic, and computation: proceedings of the 2nd International Symposium on
Domain Theory, Sichuan, China, October 2001. Dordrecht; Boston: Kluwer Academic, 2004.

[124] J. Houbolt, "Manned Lunar-Landing through use of Lunar-Orbit," vol. 1, NASA, Ed.: NASA, 1961, pp. 99.
[125] J. Hansen, "Enchanted Rendezvous: John Houbolt and the Genesis of the Lunar Orbit Rendezvous

Concept," NASA, 1999.
[126] D. Wallace, "Integrated Product Design Simulation," vol. 2005: MIT CADlab, 2002.

Massachusetts Institute of Technology Benjamin Koo
Engineering Systems Division

 Page 168 of 168

[127] NASA, "The Vision for Space Exploration," vol. 2005: NASA, 2004.
[128] D. H. Gelernter, Mirror worlds, or, The day software puts the universe in a shoebox--: how it will happen

and what it will mean. New York: Oxford University Press, 1991.
[129] H. A. Simon, Models of bounded rationality. Cambridge, Mass.: MIT Press, 1982.
[130] D. J. Watts, Small worlds: the dynamics of networks between order and randomness. Princeton, N.J.:

Princeton University Press, 1999.
[131] A. L. Barabasi, "The physics of the Web," Physics World, vol. 14, pp. 33-38, 2001.
[132] A. L. Barabasi, R. Albert, and H. Jeong, "Scale-free characteristics of random networks: the topology of the

World-Wide Web," Physica A, vol. 281, pp. 69-77, 2000.
[133] A. L. Barabasi, E. Ravasz, and T. Vicsek, "Deterministic scale-free networks," Physica A, vol. 299, pp.

559-564, 2001.
[134] J. Doyle and J. M. Carlson, "Power laws, highly optimized tolerance, and generalized source coding,"

Physical Review Letters, vol. 84, pp. 5656-5659, 2000.
[135] B. Meyer, Object-oriented software construction. New York: Prentice-Hall, 1988.
[136] S. A. Whitmire, Object-oriented design measurement. New York: Wiley Computer Pub., 1997.
[137] M. Abadi and L. Cardelli, A theory of objects. New York: Springer, 1996.
[138] J. L. Hennessy, D. A. Patterson, D. Goldberg, and K. Asanovi, Computer architecture: a quantitative

approach, 3rd ed. San Francisco: Morgan Kaufmann Publishers, 2003.
[139] M. Shaw and D. Garlan, Software architecture: perspectives on an emerging discipline. Upper Saddle

River, N.J.: Prentice Hall, 1996.
[140] L. v. Bertalanffy, General system theory: foundations, development, applications. Harmondsworth:

Penguin, 1973.
[141] A. H. M. t. Hofstede, E. Lippe, and T. P. v. d. Weide, "A Categorical Framework for Conceptual Data

Modeling: Definition, Application, and Implementation," in Technical Report. Nijmegen: Computing
Science Institute, University of Nijmegen, 1995.

[142] A. H. M. t. Hofstede, H. A. Proper, and T. P. v. d. Weide, "Formal Definition of a Conceptual Language
for the Description and Manipulation of Information Models," in Information Systems, 1993.

[143] J. Pearl, Causality: models, reasoning, and inference. Cambridge, U.K.; New York: Cambridge University
Press, 2000.

