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Abstract 

The aim of this research is to design an executable meta-language that supports system architects’ 
modeling process by automating certain model construction, manipulation and simulation tasks. This 
language specifically addresses the needs in systematically communicating architects’ intent with a wide 
range of stakeholders and to organize knowledge from various domains. Our investigation into existing 
architecting approaches and technologies has pointed out the need to develop a simple and intuitive, yet 
formal language, that expresses multiple layers of abstractions, provides reflexive knowledge about the 
models, mechanizes data exchange and manipulation, while allowing integration with legacy 
infrastructures. A small set of linguistic primitives, stateful objects and processes that transform them 
were identified as both required and sufficient building blocks of the meta-language, specified as an 
Object-Process Network (OPN). To demonstrate the applicability of OPN, a software environment has 
been developed and applied to define meta-models of large-scale complex system architectures such as 
space transportation systems. 

OPN provides three supporting aspects of architectural modeling. As a declarative language, OPN 
provides a diagrammatic formal language to help architects specify the space of architectural options. As 
an imperative language, OPN automates the process of creating architectural option instances and 
computes associated performance metrics for those instances. As a simulation language, OPN uses a 
function-algebraic model to subsume and compose discrete, continuous, and probabilistic events within 
one unified execution engine. 

To demonstrate its practical value in large-scale engineering systems, the research applied OPN to two 
space exploration programs and one aircraft design problem. In our experiments, OPN was able to 
significantly change the modeling and architectural reasoning process by automating a number of manual 
model construction, manipulation, and simulation tasks. 
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1 Introduction 

This thesis concerns a domain-neutral meta-language that automates certain mechanical tasks in 

architectural reasoning for complex socio-technical systems. In this thesis, the term 

“architecture” denotes the stable properties of the system of interest [1-3]. The phrase 

“architectural reasoning” is therefore defined as a transformative process that utilizes knowledge 

about stable properties in a system to achieve certain global objectives. The phrase “complex 

socio-technical systems” refers to systems involving multiple stakeholders and requiring multiple 

knowledge domains. Practical experience and well-known research literature have demonstrated 

and articulated the advantages of designing complex socio-technical systems using architectural 

reasoning techniques [4-8].  

Consequently, architectural reasoning techniques have flourished in various domain-specific 

disciplines. Civil structures, computer hardware and software are among many other domains 

that have developed disciplinary-specific architectural reasoning techniques. In the process of 

architecting complex socio-technical systems that involve multiple knowledge domains, 

translating domain-specific vocabulary and transferring information across different knowledge 

domains often becomes a considerable challenge [9]. This challenge presents two interrelated 

research opportunities. First, certain domain-independent architectural reasoning techniques, 

such as computationally intensive simulations and model generation techniques, can be 

leveraged over multiple disciplines [10]. Second, identifying a common language across multiple 

disciplinary domains can help architects and other stakeholders communicate with people and 

organizations outside of their domain expertise. Therefore, the objective of this thesis is to 

formulate a domain-independent reasoning technique in terms of communication and 
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computation. The aim is to design a general-purpose meta-language that specifies and automates 

the mechanical elements of communication and computation tasks in architectural reasoning.  

This chapter presents: 

• Background that motivated the development of a meta-language for system architecting 

• Aims of this research work 

• Research approach 

• Structure by which this thesis is documented 

1.1 Background 

In 1911, Alfred North Whitehead wrote: 

“Civilization advances by extending the number of important operations which we can 

perform without thinking about them.” [11] 

Since 1911, our capacity to automatically perform a large number of important operations has 

increased dramatically. The tasks of conceiving and designing large-scale socio-technical 

systems have become increasingly difficult. As rapid advancements in component-level 

technologies change the way we implement and operate large-scale systems, the corresponding 

system design and management problems are becoming intractable due to an increasingly large 

number of interacting factors [10]. To extend the number of thorough and effective reasoning 

operations without thinking about them, we need to streamline the tasks of communication and 

computation, so that thinking can be distributed and verified through multiple organizational 

levels and physical scales. The complexity of reasoning through an architectural decision is not 

only a quantitative problem, but also a qualitative problem. These interacting factors may be 
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related to different knowledge domains and could be interpreted differently under different 

contexts. Making architectural decisions for a socio-technical system is analogous to comparing 

apples and oranges: it is hard to arrive at a stable answer under the influence of multiple 

stakeholders. The quest to arrive at critical architectural decisions are challenged by: [12, 1, 13-

16] 

1. Limited resources to fully analyze the impact of intentional decisions 

2. Knowledge and experience about the actual system is scarce 

3. The operating environment is entrenched with high degree of uncertainty 

At the same time, the guiding forces in the reasoning processes are: [17, 18, 15, 19-23] 

1. Stakeholder defined metrics 

2. Anticipated performance range for the system 

3. Available implicit and explicit knowledge 

The process of system architecting can hardly be executed as an isolated sequence of analytical 

routines. Instead, the decision process can be more suitably described as an evolving set of 

interactive events [24]. These interactive events may take place concurrently and trigger multiple 

iterations of deliberation cycles before reaching an architectural decision. Figure 1-1 provides a 

visual representation of this recursive process. 
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Figure 1-1 Architecting as communication and computation 

This iterative process in system architectural decisions can be illustrated as a recursive 

composition of communication and computation activities. Figure 1.1 shows an interactive 

model of architectural decision-makers and other stakeholders. In this diagram, each instance of 

architectural decision is modeled as a “source message”, it can be transported to a group of 

stakeholders through a “message passing” process. The stakeholders then interpret the 

architectural decision as a “destination message”. The “destination message” may differ from the 

“source message” because the “message passing” process might inject noise or the message 

might be interpreted differently due to a shift in temporal and spatial contexts.  The “destination 

message” may stimulate stakeholder reactions and invokes new messages to be propagated 

through the system. It may incur changes to the architectural model, or propose new architectural 

decisions. New instances of architectural decisions are then propagated through the system as 

new instances of “source messages” and henceforth create iterative cycles of communication. 

Messages inducing changes to the “architectural model” can be thought of as instructions in a 

computation process. The changed “architectural model” may change the underlying model of 

communication that controls the “message passing” process, and therefore produces different 

“destination messages”. This may cause a cascade of iterative computation and communication 

activities throughout the whole system.  
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In the model of communication, the “messages passing” process and the evolving “architectural 

model” can be viewed as a channel of communication among stakeholders. In the model of 

computation, the “source message” and the “model evolving” process can be viewed as an 

execution mechanism for an architectural model construction program. To reason through the 

interactive consequences of communication and computation, architects need to simultaneously 

improve performance on two fronts: 

1. Effectively communicate and negotiate system level consequences with a large 

number of interacting stakeholders. 

2. Effectively compute and/or assess the emerging consequences of subsystem 

interactions across multiple abstraction layers and physical scales. 

To tackle the first challenge, a reliable and precise model of communication is needed to 

establish a set of efficient protocols for knowledge exchange between stakeholders. 

Simultaneously, architects also need a flexible and practical model of computation to compile 

knowledge derived from stakeholder interactions and other sources to support architectural 

decisions. In designing large-scale socio-technical systems such as NASA’s interplanetary 

transportation systems, architects need an adaptive and practical instrument to improve the 

quality of communication and computation. Due to various theoretical and technical barriers, 

which will be further discussed in Chapter 2, a general-purpose instrument for architectural 

reasoning has not yet emerged. 
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1.2 Aim and Objectives 

The aim of this thesis is to provide a solution for the automation of the architectural reasoning 

tasks in large-scale socio-technical systems. The objectives of this thesis are to  

1. Identify the needs in architectural reasoning 

2. Propose a meta-language to address those needs 

3. Implement the meta-language as an automation tool 

4. Demonstrate the use of the meta-language 

1.3 Research Approach 

Our research approach is presented here in three phases: theory development, tool 

implementation and application illustration.  

1.3.1 Theory  

Existing methods and tools in constructing system models were surveyed. In various application 

contexts, each of these tools and methods partially support the three tasks in system architecting: 

represent the space of architectural alternatives, generate instances of architectural alternatives, 

and establish a preference order among known instances of architectural alternatives. To tackle 

the three tasks in an integrated manner, we found that an executable meta-language can 

adaptively support all three tasks in various application contexts. In order to demonstrate that this 

meta-language-based method can be generally applied to a wide range of system architecting 

tasks, we need to prove three things. First, the meta-language itself must be able to describe the 

structures and behaviors of arbitrary systems in finite terms. Second, we need to show that all 
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finite-sized models can be fully enumerated within finite time. Third, we need to adaptively 

control the enumeration mechanism to derive analytical results within affordable computational 

resources. We proposed a simple meta-language schema, with three basic linguistic primitives, 

and demonstrated that it satisfies all three criteria. From a computational perspective [25], this 

meta-language approach is not restricted to specific application contexts. Therefore, it provides a 

generally applicable computational reasoning framework to support multiple applications 

domains. 

1.3.2 Tool  

A practical implementation of our meta-language is necessary to verify and validate its 

conceptual benefits. Based on our proposed language schema developed in the theoretical phase, 

we implemented an executable meta-language, Object-Process Network (OPN) as an instrument 

for architectural reasoning. OPN is designed as a communication medium between machines and 

humans. Its small but highly extensible vocabulary provides a standard protocol to share 

structural and behavioral specification across different machines. A graphical user interface is 

designed to reduce the amount of mental effort required for domain experts to exchange their 

domain-specific expertise. We partially adopted the graphical formalism of Object-Process 

Methodology (OPM) [26], and developed a visual modeling and simulation environment to 

represent, generate and evaluate architectural alternatives. 
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1.3.3 Application 

Three examples are illustrated in OPN to demonstrate the benefits of a meta-language based 

architectural reasoning approach. We used the Apollo Program as a retrospective example to 

explore our assumptions about architectural reasoning. We applied OPN to specify the space of 

mission architectures, enumerate alternative mission modes, and perform tedious model 

construction and metric calculation tasks. The OPN tool is also applied to an ongoing project 

sponsored by NASA to analyze mission mode alternatives for Earth-Moon-Mars space 

exploration. To demonstrate that OPN can also reason about static configurations of a system, an 

aircraft-based testing system configuration called Enhanced Ground Testing Pod (EGT-Pod) 

program is also illustrated in this thesis. 

1.4 Thesis synopsis 

Chapter 1 is this introduction. 

Chapter 2 reviews a series of interrelated theories and techniques that shaped the current 

paradigm [23, 27] in the field of system design and architecting. We will particularly point out 

that the needs in architectural reasoning are strongly associated with the needs to establish a 

flexible and efficient reasoning instrument, such as a meta-language. 

Chapter 3 describes the needs, requirements and solution profile of an executable meta-language 

designed to address the current needs of systems architecting.  

Chapter 4 presents the formal language schema and the language execution mechanisms of the 

meta-language, Object-Process Network (OPN).  
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Chapter 5 describes the software engineering aspects of OPN. We will explain the design 

rationale, the user interface design strategy, and how a simple language schema influence the 

software implementation activities. 

Chapter 6 presents a retrospective application of our meta-language approach to NASA’s Apollo 

Program. We used OPN to construct reasoning models, and perform metric calculation based on 

similar assumptions used in the original program. We also discuss how this method is being 

applied to the latest space exploration programs. This chapter also includes the third example 

about static aircraft configuration. 

Chapter 7 presents the contribution of this thesis. It compares our solution with existing methods 

and instruments designed for architectural reasoning. We specifically compare the features of 

OPN and what are the unique opportunities this instrument could offer to streamline a wide 

range of reasoning tasks in the architectural decision-making process.  

Chapter 8 summarizes the thesis’s conclusions. 

______________________________________________________________________________ 

The following section will discuss the prior art that is directly relevant to our research. 
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2 Literature Review 

This chapter describes the prior art related to the representation and analysis of complex 

socio-technical systems. This chapter is separated into two sections: 

• Theories and methods of system design and architecting, and  

• The languages that are used as instruments to improve the reasoning activities in 

system architecting.  

2.1.1 Theoretical Foundation 

In “Anatomy of Large Scale Systems”, Moses pointed out: 

“The mathematical field of abstract algebra can provide a language for discussing 

systems taken as a whole. A structured or anatomical view of engineering systems when 

coupled with concepts and intuition from abstract algebra can give us a relatively deep 

understanding of certain system issues, such as flexibility.“ 

      Joel Moses, 2002 [28] 

The ability to design a flexible system is limited by the flexibility of the underlying modeling 

language. According to Moses, abstract algebra as a modeling language permits architects to 

flexibly and economically change the model of a complex engineering system to match the 

evolving analytical needs. Without a holistic modeling language, the cost of model construction 

and the effort required to integrate various system models may present critical concerns to be 

reflected in the resulting system architecture. 

The power of abstract algebra comes from its ability to reason through the logical consequences 

of system interactions using a concise and consistent set of mathematical axioms and notations. 
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This formal language can also be visualized in a diagrammatic form, called Category Theory. 

Category theory [29, 3, 30, 31] can be thought of as the graphical representation of abstract 

algebra. It provides a diagrammatic language to reason about the relationships between classes of 

mathematical objects, not just the individual instances of numeric or symbolic values. Each 

category is a diagram made of a set of “objects” and “arrows”. Figure 2-1 is a category with 

three “arrows” that represents three functions from their respective source and target “objects”. 

 

Figure 2-1 A category with three arrows and three objects 

The objects A, B, and C represent domains of possible values. They can be in either qualitative 

or quantitative value domains [32]. Arrows f, g and h in this category represent “total functions”. 

(A total function is a function that defines output values for all its input values. We will refer to 

them as functions unless otherwise noted.) Category theory utilizes the structural information of 

a graph to illustrate how functions can be composed or decomposed into other functions. The 

category shown in Figure 2-1 indicates that the function h can be decomposed into two functions 

f and g. Conversely, f and g can be replaced by one function h. System modelers can apply these 

compositional rules to create and refine functions, expose and hide the internal structures of a 

category. Furthermore, categories with complex internal structures can be modeled as “objects” 

and further composed into a higher-level diagram for mathematical analysis. It provides a 

recursive mechanism to organize and compress a system of functions and abstract objects into 

more compact diagrams that fits the cognitive capacity of well-trained mathematicians.  
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The connections between abstract algebra and formal language design were formally established 

in the late 1960s by Dana Scott’s work on Domain Theory [33]. Scott’s work is useful to 

architectural reasoning because it provides a computational framework to reason about the 

“partial” or “incomplete” information about a system. However, it is challenging to introduce 

domain theory, category theory or abstract algebra to non-mathematicians. It requires significant 

amounts of training and practice to adequately utilize these mathematical languages. To make 

abstract algebra and category theory useful to architects of socio-technical systems, we need to 

preserve their formal structures, while presenting the core concepts in a more accessible format.  

Ashby’s “Introduction to Cybernetics”[17] provides a more accessible mathematical language 

that describes large-scale socio-technical systems. The book presents a mathematically rigorous 

“theory of machines”. He used a set of intuitively understandable concepts to present the theory 

in terms of “what does a machine do”, rather than “what a machine is”. This book is useful and 

important because it shows that a wide range of “machines” can be uniformly modeled in a 

consistent mathematical abstraction. Ashby stated the two scientific virtues of Cybernetics as: 

1. “…it offers a single vocabulary and a single set of concepts suitable for 

representing the most diverse types of system(sic). … Cybernetics offers one 

set of concepts that, by having exact correspondences with each branch of 

science, can thereby bring them into exact relation with one other(sic).” 

2. Cybernetics is likely to reveal a great number of interesting and suggestive 

parallelisms between machine and brain and society. And it can provide the 

common language by which discoveries in one branch can readily be made 

use of in the others. 
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Ross Ashby [17]  

The language of Cybernetics is based on concepts and structures similar to abstract algebra. It is 

a formal language that can be executed using a modern computer. It raises the question of 

whether mechanical execution of formal language statements can augment human reasoning 

capabilities. In the book, “Cybernetics”, Wiener [34], proposed the creation of a chess machine: 

“… which shall offer interesting opposition to a player at some(sic) one of the many levels at 

which human chess players find themselves.” In May 1997, IBM’s Deep Blue, a special purpose 

super computer won the chess game against the reigning world champion in chess. Clearly, a 

chess game is a discrete-state system with bounded variability. In contrast, architects of complex 

socio-technical systems often need to reason about systems with both continuous and discrete 

variables without well-specified knowledge boundaries. Can one construct a machine that can 

augment architects’ ability to reason through an unbounded range of variability? 

2.1.2 Qualitative Methods 

When facing an unbounded problem, system architects often need to integrate and compose 

knowledge across different domain boundaries. Carlile [9] applied concepts derived from 

Cybernetics to model stakeholder interaction in terms of boundary objects. Domain boundaries 

are categorized into three types: syntactic boundary, semantic boundary, and pragmatic boundary. 

The syntactic objects provide a common set of representational symbols to “transfer” 

information from one domain to the other. The semantic objects provide the interpretive 

functions to “translate” the meaning of transferred information according to corresponding 

domain-specific contexts. The pragmatic objects are the exchange currency for the interacting 
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stakeholders to “transform” the meaning of symbolic information into commensurable [27] 

interests that lead to certain tradeoff decisions. Carlile calls this model the 3T framework. It is 

visualized as a triangle in Figure 2-2.  

 

Figure 2-2 3T Framework: managing knowledge across boundaries (Courtesy of Carlile) 

Carlile further characterized knowledge management as an iterative language development 

process. 

1. Develop a common lexicon to transfer information across domain boundaries. 

2. Apply domain-specific knowledge to translate the meaning of the transferred information 

in context. 

3. Arrive at system-level decisions by iteratively transferring and translating information 

between different stakeholders to negotiate tradeoffs. 
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4. Evolve the boundary objects by transforming the common lexicon and enriching domain-

specific knowledge through iterative stakeholder interaction. 

According to the 3T framework, boundary objects such as email messages, computer simulation 

models, and physical prototypes can be treated as three instances of common languages that 

transfer, translate, and transform knowledge between different knowledge domains. Although the 

3T framework presents a theoretical metaphor to view all artifacts in a socio-technical context as 

different types of languages, it does not present the concept of a domain-neutral language that 

can serve the purpose of communication and negotiation amongst all participating domain 

experts. In 3T framework terms, such a domain-neutral language would be an ideal boundary 

object for architectural reasoning. 

2.1.2.1 Domain-neutral languages 

Within the product development and process engineering communities, the utilities of domain-

neutral representational techniques for describing system interactions have been broadly 

recognized. Design Structure Matrix (DSM) [13], Quality Function Deployment (QFD) [35], 

TRIZ [36], and Language Processing Method [37, 38] have been adopted by various companies 

and application domains. Each of these methods provides a domain-neutral language to interact 

with architects and other stakeholders to reason about the architectural decisions. In comparison 

to abstract algebra and category theory, these methods are much more accessible to business and 

engineering practitioners. However, these analytical methods are analytical tools only useful for 

the early phases in system design. They do not include a consistent and extensible mechanism 

like abstract algebra that can incrementally reason through layers of technical details. To conduct 

analysis at each different level of technical detail, a different engineering method or tools must 
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be incorporated to support the analytical activities. How to incorporate these application-specific 

methods or tools is often not specified in these methods. The architectural decisions arrived at 

through these methods are qualitative in nature. They are not designed to produce precise 

quantitative performance metrics of the system of interest. To establish a holistic architectural 

reasoning process, qualitative methods should be integrated with quantitative methods and 

quantitative performance assessment tools. It is highly desirable to create a system analysis tool 

that can handle both qualitative and quantitative analytical tasks.  

2.1.3 Quantitative Methods 

Identifying generally applicable metrics that quantifies the quality of a complex system is 

intellectually and technically challenging. There are many quantitative methods to reason about 

the design axioms or decision strategies of a system. This section describes two quantitative 

approaches to reason about design decisions. Suh’s Axiomatic Design is illustrated here as an 

example of constraint-based quantitative design method. Nash’s game theory is illustrated here 

as a quantitative method to analyze the interactive consequences of a system. 

2.1.3.1 Reasoning about system constraints 

Suh’s Axiomatic Design [39, 40] proposes a formal framework to reason about system design. It 

introduces two design axioms. The first axiom is the independence axiom. This axiom leads 

designers to formulate design requirements in logical expressions, so that the likelihood of 

success of each functional requirement can be assessed statistically or analytically. It explicitly 

specifies the need to state independent functional requirements, so that each functional 

requirement specifies a design space that can be considered to be statistically independent. This 
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is a critical assumption in formulating a design. It serves two purposes. First, it allows designers 

to cover the maximum amount of design space with non-interacting design constraints. Secondly, 

it allows the total system’s likelihood of success to be calculated using this conditionally 

independent assumption.  

The second axiom is the information axiom. It specifies that lower content of information results 

in better designs. The information content of a design is a logarithm measure calculated from the 

likelihood of satisfying all functional requirements for that design.  

  Information content = I = log2(1/p) 

where 

 p : probability of satisfying functional requirement(s) 

 I: information content of the design 

An “ideal design”, in Axiomatic Design, is one that guarantees to satisfy all functional 

requirements. For the likelihood of satisfying the requirements to be one hundred percent, the 

information content, I, would have to be zero, meaning no uncertainty is involved. The 

information content measure establishes a preference order between design alternatives. 

Information content was calculated based on the joint probability of satisfying multiple 

functional requirements stated in conditionally independent logical statements. However, it is 

hard to formulate functional requirements in conditionally independent terms, therefore, 

calculating the joint probability of success is rather difficult. In Suh’s 1990 book, “The Principles 

of Design”, he proposed the use of a logic programming language, Prolog, to automate various 

aspects of Axiomatic Design reasoning tasks [39]. Suh’s proposal also indicates a need in 

computationally supported architectural reasoning. 
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2.1.3.2 Reasoning about system interactions 

John Nash’s mathematical formulation of “Two Person Cooperative Games” [41] provided a 

rigorous approach to quantify system interactions in a sequence-sensitive setting. The paper 

defines game players’ alternative courses of actions as abstract mathematical objects called 

“strategies.” [41] How the strategies are executed in sequence is described in explicitly defined 

stages. These stages can be thought of as an executable process, which Nash calls the “formal 

negotiation model”. Based on certain mathematical properties of the payoff functions defined in 

the game, Nash showed that his procedural model of negotiation derives the same payoff values 

as an axiomatic approach. This result is significant for two reasons. First, it provides a 

mathematical foundation to analyze sequence-dependent interactive systems. Second, and more 

relevant to this thesis, is that Nash demonstrated a reasoning technique that derived new 

knowledge by comparing analytical results from procedural specification and axiomatic rules. A 

procedural specification is an imperative language; it contains vocabulary and syntax to specify 

the sequence of activities or instructions. An axiomatic system is a kind of declarative language; 

its language only contains sequence-independent logical constraints. The unifying formal 

language that supported both aspects of Nash’s analysis is abstract algebra. It further validates 

Moses’s and Ashby’s idea about how a unified language framework facilitates flexible reasoning 

and the discovery of new ideas. In other words, Nash’s work provides a mathematical foundation 

for architectural reasoning, because it demonstrates how to formally represent stable properties 

of interactive systems in either dynamic (procedural specification) or static (axiomatic) terms. 

Computer scientists have utilized this insight to develop algorithms that automatically reason 

about tradeoff decisions in complex socio-technical systems [42]. 
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2.2 Languages for Architecting 

This section reviews existing language-based frameworks that represent, generate, and analyze 

alternatives for large-scale systems. 

2.2.1 Pattern languages 

Christopher Alexander is a civil architect who inspired the development of “pattern languages” 

[43] across multiple application domains. He articulated the prominent role of languages in 

architecting of all systems: 

"Every creative act relies on language. It is not only those creative acts which are part of 

a traditional society which rely on language: all creative acts rely on pattern languages: 

the fumbling inexperienced constructions of a novice are made within the language which 

he has. The works of idiosyncratic genius are also created within some part of language 

too. And the most ordinary roads and bridges are all built within a language too." [1] 

As Alexander's statement implies, architects may simultaneously employ multiple languages. He 

initially proposed a pattern language with 253 patterns [43]. In his latest book series, he proposed 

a pattern language with only fifteen patterns. The newly proposed patterns are more abstract. 

They are also more domain-neutral than the original patterns. This trend demonstrates that 

pattern languages can be simplified, yet maintain or expand their expressiveness.  

The use of pattern languages to reason about architectures of systems has become particularly 

popular in the software community [44]. The most notable use of pattern language is Software 

Design Patterns by Gamma et al. [45]. It provides a set of well-documented software design 

templates to promote design reuse. Pattern language is useful because it aggregates fine-grained 
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(more concrete) design tasks into coarse-grained design solutions. It reduces the system 

complexity by decomposing a large combinatorial design problem into a smaller combinatorial 

design problem based on a coarse-grained (more abstract) vocabulary. A common design 

vocabulary expressed in terms of patterns also helps to communicate design ideas. However, 

most pattern languages, software patterns included, are mostly collections of heuristic rules. 

They do not include a formal model of computation. They can be used as standard vocabulary in 

declarative languages to specify the building blocks of a design. Pattern languages rarely provide 

imperative information to create an overall system design. They do not specify how to compose 

these building blocks into a specific design instance. To better utilize pattern languages in 

automated architectural reasoning, one must develop computational techniques that make use of 

the declarative information represented by pattern languages. 

2.2.2 System Description Languages 

System description languages such as Entity-Relationship model (E-R model), Unified Modeling 

Language (UML), and Object-Process Methodology (OPM) each provide a set of syntactic rules 

and semantic definitions to help system architects specify a concrete composition of building 

blocks that represent systems in the real-world. We choose these three languages because of their 

distinct language design goals. E-R model provides a graphical formalism that focuses on the 

static structural relationships between abstract entities. UML is a comprehensive language family 

that presents the same system through multiple diagrammatic views, which include static, 

dynamic, physical assets, and human-machine interactions. OPM is a holistic system modeling 

methodology that subsumes multiple graphical formalisms into one diagrammatic view and one 
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English-like representation to complement each other to represent the structure and behavioral 

aspects of real-world systems. They are briefly described below. 

2.2.2.1 Entity-Relationship Modeling 

E-R diagram presents an intuitive and mathematically rigorous view of data. It is a widely 

adopted modeling technique for relational database systems. In Chen’s original words: 

1. E-R model adopts the more natural view that the real world consists of entities and 

relationships. 

2. It incorporates some of the important semantic information about the real world. 

3. The model can achieve a high degree of data independence and is based on set theory 

and relation theory. 

One of the most extensive uses of E-R is to represent data structures. An E-R diagram is a rather 

mature graphical data description language. The most popular form of E-R uses three binary 

relationship types, they are: one-to-one relationship, one-to-many relationship, and many-to-

many relationship. In Figure 2-3, each rectangle represents an entity. The numbers represent the 

cardinality constraints of the relationship types. One-to-one relationship binds all data entries in 

one entity with all data entries in the other with one-to-one correspondence. Imagine a database 

that stores bill of material for a car manufacturer. As shown in Figure 2-3, a car and its steering 

wheel have a one-to-one cardinality constraint, represented by a simple line connecting the two 

elements. The car and its four tires can be modeled as a one-to-many relationship, represented by 

a line with a “chicken feet” symbol attached to the “many” end of the relationship. Many-to-

many relationship is represented through an intermediate entry. In this case, the tires of a car and 

the seats in the same car can be mapped through the car as a many-to-many relationship. An E-R 
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diagram provides a visually intuitive notation to fully specify the static data structures of a wide 

range of systems. 

 

Figure 2-3 An example of E-R diagram  

The E-R diagram as a declarative language can be extended to represent other types of structural 

relationships. It can be extended to represent specialization-generalization relationships such as 

class inheritance diagrams for Object-Oriented Design [26]. However, the E-R diagram only 

describes the static structure of a system. Most E-R diagrams ignore the dynamic aspect of a 

system. However, architects must be able to reason about both the static and dynamic 

consequences of system-level decisions. To enhance E-R models with additional knowledge 

about dynamic behavior of the system, additional graphical notation must be added.  

2.2.2.2 Unified Modeling Language (UML) 

Since 1997, UML has become a converging standard that absorbs other system description 

languages. Data modeling languages such as E-R diagrams are incorporated into the structural 

view. However, the focus of UML is still limited to software development needs. According to 

UML Specification 1.5, published by the Object Management Group (OMG), the non-profit 

organization that administers the UML standard [46]: 
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The Unified Modeling Language (UML) is a language for specifying, constructing, 

visualizing, and documenting the artifacts of a software-intensive system. 

UML was primarily designed for professional software engineers. Due to its popularity, the 

language design scope has expanded beyond pure software systems [47]. Its main functional 

views are specifically targeted at managing the concept, structure, behavior, and deployment of 

engineering systems. The four main functional views are: use case view, structure view, behavior 

view and implementation view. Figure 2-4 shows a partial set of UML graphical notations of 

these views. 

 

Figure 2-4 UML's graphical notations of four views 

Each of these views often employs more than one diagrammatic language to visualize the 

relationships between different components in the view. For example, in the behavioral view, 

there are four diagrammatic languages to illustrate the dynamic properties of a system. They are 
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state-chart diagram, activity diagram, sequence diagram, and collaboration diagram. These 

diagrammatic languages do not have direct one-to-one semantic mapping between each other. 

These diagrams are designed as illustrations of design concepts; they are not inherently 

computable graph structures.  

According to UML Specification 1.5, UML is not a programming language, it doesn’t specify a 

run-time model, and it doesn’t define an organizational process to produce software. Although 

different software vendors have created tools to generate executable code based on UML 

diagrams, they are proprietary technologies and they are not part of UML standard specification 

[48, 46, 47, 49, 50] 

UML was originally designed for software-intensive systems. Its graphical symbols were 

intended to represent certain software development artifacts and activities. To represent the 

structures and behavior of generic systems, its language specification has undergone significant 

changes. In the introduction statement of UML Infrastructure 2.0 Specification (Adopted Draft 

copy), UML is defined as [47]: 

“The Unified Modeling Language is a visual language for specifying, constructing and 

documenting the artifacts of systems. It is a general-purpose modeling language that can 

be used with all major object and component methods, and that can be applied to all 

application domains (e.g., health, finance, telecom, aerospace) and implementation 

platforms.” 

Expanding the scope of UML beyond the software industry may introduce additional layers of 

complexity to an already complex language. In UML specification 1.4, there were more than 200 

different graphical primitives and 9 diagram types [48]. To tackle the language complexity 



Massachusetts Institute of Technology  Benjamin Koo 
Engineering Systems Division    
 
 
 

 Page 32 of 168  

problem, the UML 2.0 tries to modularize the unified language into multiple independent sub-

languages [50]. OMG also promotes concepts such as Model Driven Architecture (MDA) to 

manage model complexity issues by introducing a meta-model language architecture based on 

four layers of meta-language schemas. In other words, UML has become so complex that it 

needs four kinds of meta-languages to manage model abstractions. Each complexity management 

tool appears to introduce an additional layer of complexity. As UML grows in its popularity, the 

“language bloat” problem must be addressed. Otherwise, the adoption of UML would become a 

liability in architectural reasoning tasks. 

2.2.2.3 Object-Process Methodology (OPM) 

Many software engineers, researchers and the committee members on UML’s revision task force 

have acknowledged that UML’s complexity is a hindrance to system modeling [50]. Due to the 

size of its user community, UML needs time to incrementally refine its original language 

specification. In “Why Significant Change in UML is Unlikely” [51] , Dori’s assessment on 

UML is summarized here:  

1. Model multiplicity resulting from excess diagram types and symbols 

2. Confused behavior modeling  

3. Obscuring influence of programming languages 

To avoid UML’s Model-Multiplicity problem [52], Dori suggested that Object-Process 

Methodology (OPM), a visual modeling language with a single diagrammatic view and a small 

set of symbols, offers a superior alternative to UML. Soderborg et al. [53], demonstrated that 

Object-Process Methodology (OPM) can be used to specify both the structural and behavioral 

aspects of a system, using one language framework with two representational forms, graphical 
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and textual. The graphical representation, Object-Process Diagram (OPD), is a diagrammatic 

language as shown in the upper panel in Figure 2-5. The textual representation, Object-Process 

Language (OPL), is a set of formal English statements that translates the meaning of the diagram 

into sentences understandable by humans, shown in the lower panel in Figure 2-5. Dori and his 

students built OPCAT (Object-Process CASE Tool) [54], a modeling software environment, to 

demonstrate the feasibility and capability of this bi-modal modeling approach. Figure 2-5 is a 

screen shot of OPCAT. 

 

Figure 2-5 OPM's Modeling Environment, OPCAT (courtesy of Dori et al.) 

OPM as a visual modeling language provides a limited set of rules to specify the precedence of 

process execution order. However, it does not specify a formal computational model for either 

discrete or continuous event systems. Nevertheless, its flexible definition of Object and Process 



Massachusetts Institute of Technology  Benjamin Koo 
Engineering Systems Division    
 
 
 

 Page 34 of 168  

can be mapped onto operands and operators of a wide range of formal computational models. 

Koo and Fry designed and implemented a hybrid Petri-Net and Bayesian Network inference 

engine using OPM’s graphical semantics and the Water Programming Language [55]. In Figure 

2-6, we compare OPM’s graphical notation against the other graphical models of computation.  

 

Figure 2-6 A range of Graphical formalisms 

2.2.3 Generative Modeling Techniques  

Due to the complexity of system architecting processes, computers and computational techniques 

have been employed by architects to perform alternative generation tasks [56]. Civil architects 

and mechanical engineers have been studying shape grammar as a means to generate geometrical 

forms. They write computer programs to recursively apply shape specification rules to create 
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geometric structures [57]. The ability to use a small number of rules to create complex shapes 

helps architects understand and interact with the logical structures behind geometrical objects. It 

also extends architects’ ability to reason through larger and more complex geometrical 

configurations in buildings and other physical objects alike. Generative shape theorists are 

interested in generating instances of shapes that inspire new design ideas. It is not necessary to 

exhaustively enumerate all possible shapes. 

Shape grammar studies focus on the forms of alternative architectures. For certain socio-

technical systems, the system properties may not have a direct analogy to geometrical forms. 

They may be better studied in the functional domain. To study the functional properties of 

system interactions, Wolfram [25] devised a number theoretical approach to study cellular 

automata by exhaustively enumerating simple automaton rules and then applying these rules to 

generate visual patterns. The goal is to use human perception and computer programs in 

combination to identify simple rules that can generate complex visual patterns. Rules that 

generate interesting patterns can then be further studied for their functional properties.  

Wolfram’s approach is applicable to architectural reasoning because it:  

1. Demonstrated that exhaustive enumeration of certain classes of simple rules, not the 

generated patterns, is computationally viable. 

2. Studied the functional properties of simple rules by visualizing the generated patterns 

and categorizing them with different complexity classes.  

3. Used a modeling language to dynamically generate, manipulate, and analyze both 

functions (rules) and forms (shapes) during simulation.  

An example of the rule and the generated form is illustrated in Figure 2-7. 
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Figure 2-7 A cellular automaton rule and its generated pattern (Courtesy of MathWorld) 

Figure 2-7 shows that an irregular pattern can be generated using “rule 30”, the thirtieth rule out 

of all 256 possible rules in a rule space made of three bits [25]. Each of these rules explicitly 

specifies the color of the cells in the next step according to the eight possible three-neighboring-

cell configurations. For example, rule 30’s eight possible configurations and their color 

transformation results are shown graphically on the upper half of Figure 2-7. The horizontal axis 

in Figure 2-7 represents the spatial dimension; the vertical axis represents the temporal 

dimension, each row represents one time step. Some of the rules in the 256-rule space, such as 

rule 110, have been proven to be Turing Complete [58]. In the field of computational theory, this 

result is rather remarkable, because it shows that the algorithmic properties of a Turing Machine 

can be encoded in one simple transformation rule. This result is also an inspiration to the study of 

complex systems because it suggests the possibility that seemingly complex interactive 

phenomena may be governed by some simple and stable rules. 

It is rather non-intuitive to assemble a complex engineering system using rules illustrated in pure 

binary forms. The instrument for architectural reasoning also needs to help architects assemble 

complex rules to produce simple or complex behaviors. Leslie Ann Goldberg’s Ph.D. thesis 

studies algorithms that enumerate complex combinatorial structures [59]. Her work was to 
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identify algorithms that can efficiently generate combinatorial structures that are either simple or 

complex. The efficiency of algorithms is measured by the required amount of storage space and 

computing time. Her research motivation can be expressed in the following terms: 

1. Design useful algorithms for application-specific problems 

2. Discover general methods for algorithm design 

3. Establish an algorithmic framework to classify and generate other algorithms 

Efficient enumeration algorithms for combinatorial structures can generate both algorithms and 

static structures. Some of Goldberg’s algorithms can be applied to reduce the required 

computational resources to generate architectural alternatives.  

Genetic programming (GP) and genetic algorithms (GA) are analogies borrowed from the 

biological field to create complex systems with simple building blocks. John Holland [60, 21, 61, 

22] and Karl Sims [62] have applied evolutionary rules such as crossover and mutation to 

dynamically generate models of complex systems. These techniques have mixed results due to 

the difficulties associated with constructing context sensitive fitness functions. In most cases, it 

is difficult to randomly sample a very large genetic space and expect good results within 

practical limits. To accommodate these short comings, Holland [22] proposed the concept of 

dynamic models, or models whose basic building blocks and executable rules may change during 

simulation time. For example, Kim and de Weck [63] developed genetic algorithms that use 

variable chromosome lengths to solve structural optimization problems. If one considers the 

programmatic modification of chromosome length as a way to adaptively change the size of 

search space, variable chromosome length GA can be considered as an algorithm that 

dynamically modifies its own algorithmic properties during execution. Adaptive algorithms that 
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evolve during execution time may need special programming language features to better support 

their implementation and debugging tasks. Specifically, functional programming languages are 

particularly designed to implement software programs that manipulate programs [64]. To study 

the architectural properties of complex evolutionary systems, architects often employ 

programming languages with dedicated features to simulate the properties of interest. 

2.2.4 Simulation Languages 

Zeigler [65] proposed a categorization scheme that distinguishes formal simulation models into 

five dimensions:  

• Continuous time vs. discrete time 

• Discrete state vs. continuous state 

• Deterministic model vs. non-deterministic model 

• Autonomous model vs. non-autonomous model 

• Time invariant vs. time varying.  

Continuous time models are models whose clock increments in infinitesimal time units. Discrete 

time models are models whose clock increments in integer time units. Discrete and continuous 

state models are models that contain discrete and continuous state variables respectively. Hybrid 

state models are models that contain both kinds of variables. Deterministic models contain no 

random variables, where non-deterministic or stochastic models contain at least one random 

variable.  Models that are completely isolated from influences in their environments are 

considered to be autonomous; the opposite kind of model is non-autonomous, requiring external 

stimulus to perform simulation. The last categorization of model is based on whether the model 
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changes during its simulation time. If the rules of interaction change during simulation time, it is 

considered to be a time variant model. If the rule of interaction doesn’t change during its 

simulation time, it is considered to be a time invariant model.  

To model a complex socio-technical system, it is likely that all these model categories need to be 

combined and used at different points in the system development process. In this thesis, we will 

focus on three types of graphical formalisms: Probabilistic Graph Model, Petri Net, and System 

Dynamics. These three graphical formalisms are presented here because each of them has been 

extensively developed to accommodate a wide range of real-world applications. They have been 

extended to cover other areas of simulation needs, and therefore developed different levels of 

hybrid simulation capabilities within each of the three types. We will use these three basic types 

of graphical formalism to illustrate the state-of-the-art simulation languages. 

2.2.4.1 Probabilistic Graph Models 

Causal structures such as Bayesian Belief Networks [66-68], Markov Chains, and Factor Graphs 

[69] are graph-based models for analyzing decisions or events under uncertainty. They provide a 

reasoning framework for people or machines to reach rational decisions even when there is not 

enough information [70]. Probabilistic graph models and their supporting computational 

algorithms can also be used to formulate and solve N-person games based on Nash’s equilibrium 

assumptions [41]. Jordan best articulated the power of probabilistic graphical models: 

“Graphical models are a marriage between probability theory and graph theory. They 

provide a natural tool for dealing with two problems that occur throughout applied 

mathematics and engineering -- uncertainty and complexity. … The graphical model 

framework provides a way to view all of these systems as instances of a common 
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underlying formalism. This view has many advantages -- in particular, specialized 

techniques that have been developed in one field can be transferred between research 

communities and exploited more widely.” 

        Michael Jordan, 1998 

The strength in using probabilistic graphical models lies in its ease of model construction. 

However, solving the problem computationally has been demonstrated to be a 

combinatorially explosive problem [71]. Research activities in this area focus on finding 

efficient algorithms to solve a problem with large number of variables and states. Algorithms 

that find approximate solutions for large size problems have been developed [72].  

Solving a Probabilistic Graphical Model is about calculating marginal probability distribution 

functions for each of the variables in the graph model. In 1988, Pearl first presented a “belief 

propagation algorithm” to solve the marginal probability calculation problem for acyclic 

graphs. Since then, many algorithms have been developed based on this concept, which 

includes the bucket elimination algorithm [73], the variable elimination algorithm [74], and 

the sum-product algorithm [69]. 

The sum-product algorithm can be thought of as a generalization of the belief propagation 

originally developed by Pearl [66]. It follows a simple computational rule to propagate 

change messages and update the marginal probability functions throughout the graph. 

Kschischang et al.’s [69], demonstrated that the sum-product algorithm can subsume many 

other algorithms such as the Viterbi algorithm, the Kalman filter, and certain fast Fourier 

transform algorithms. The power of this algorithm is derived from its simplicity in its 
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message propagation rule. More details of the sum-product algorithm can be found in 

Kschischang’s paper. 

The sum-product algorithm operates on a graphical data structure called a factor graph. 

Factor graph is a bi-partite graph that resembles Petri Net’s bi-partite graph formalism [75], 

and the message passing is similar to the concept of moving tokens between places and 

transitions. However, there are two main differences that separate factor graphs from Petri 

Nets. 

1. Factor graphs only use sums and products as the two arithmetic operators 

that operate on probability functions. Instead, the “transitions” in Petri Nets 

represent operators that may represent arbitrary transformation functions 

2. Factor graphs schedule message-passing events based on a customizable 

message update rule. Petri Net schedules the propagation of tokens based on 

the structure of the graph and the duration required to complete each 

transition execution event 

In the self-modifying aspect of modeling, it is particularly easy to modify Probabilistic 

Graphical Models because the connections between nodes in a graph are driven by statistical 

data, which can be mechanically retrieved through either manual or automated data feeds. 

Other probabilistic graph models such as Dynamic Bayesian Belief Network [76], and 

Learning Bayesian Networks [77] have incorporated the notion of time variant features to 

update both the structure and statistical data content during simulation.  
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2.2.4.2 Petri Nets 

Petri Net is named after C. A. Petri, whose Ph.D. thesis [78], “Kommunikation mit 

Automaten” (Communication with automata), started a major revolution in graph-based 

simulation methods. Petri originally formulated Petri Net as a theoretical basis of 

communication between asynchronous components of computing devices. This concept was 

later generalized to cover the description of causal relationships between arbitrary events. 

Petri Net has been applied to a wide range of applications, such as workflow modeling, legal 

systems, distributed computing systems, manufacturing system design, and many others [79].  

Petri Net is often employed as an analytical tool to study concurrent behavior in discrete 

event systems. Due to its extensibility, hybrid extensions such as probabilistic, fuzzy and 

continuous event models have been added to the Petri Net language family [80]. To 

encompass all the variations of Petri Net, we offer the following definition:  

A Petri Net is a directed bi-partite graph that uses tokens to represent the state of the 

system being modeled. Nodes in the graph are divided into two types, passive and active. 

Passive nodes that store the tokens are called places. Active nodes that move the token 

between places are called transitions. 

The key strengths of Petri Nets can be summarized as follows:  

1. Petri Net is a rigorous mathematical representation of interacting systems 

2. Petri Net is also an intuitive diagrammatic language that can be understood 

by non-mathematicians 
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3. Petri Net is a language with closure properties. Standard operators such as 

concatenation, union, and intersection can be applied to two or more Petri 

Nets and the resulting network would remain a Petri Net  

The closure property of Petri Nets is particularly beneficial in composing models for 

complex system. It provides the mathematical basis to automate composition of new models 

from existing models. Petri Nets can also be used as a generator of other Petri Nets, tokens 

can record the places and transitions while being moved around. The “itinerary” of the tokens 

can be represented as a Petri Net and stored in the tokens [81-83]. The ability to generate 

models through executing a Petri Net makes Petri Nets a meta-language. 

Researchers in the field of modeling languages have criticized Petri Net for its biased focus 

toward the process or dynamic aspects of a system. In contrast, the E-R diagram, System 

Dynamics, and factor graphs, which can also be represented as bi-partite graphs, provide the 

semantic elements to express the static aspects of a system. Another weakness of Petri Net is 

its reliance on graphical formalism. Even a small number of places and transitions can appear 

visually complex. However, this problem applies to all graphical models of systems. 

Petri Net has become a popular system modeling language in the real-time embedded 

systems community. It has been applied to other areas with much less popularity. 

Discounting its inherent weakness in graphical notation and its focus on system dynamics, 

the lack of popularity in socio-technical system modeling is related to the demographics of 

the Petri Net research community. Computer scientists and mathematicians wrote the 

majority of research papers and books on Petri Nets. These publications contain highly 

technical content, making them less accessible to average system modelers. When choosing a 
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modeling language for the analysis of socio-technical systems, an active research community 

that applies the language in a socio-technical context is another driving factor. 

2.2.4.3 System Dynamics 

Jay Forrester introduced System Dynamics as a modeling and simulation tool to the research 

community that studies socio-technical systems. System Dynamic models help architects of 

socio-technical systems to visualize the structural interdependencies among variables. The model 

can be executed to quantify variable interactions in a temporal context. It has been applied to 

many high-profile socio-technical problems, including urban planning, financial market 

dynamics, human population models, and product development processes [84, 85].  

System dynamic models graphically depict causal relationships as arrows that connect two kinds 

of changing variables. One kind of variable is called “stock”, they are variables that accumulate 

change over time. The other kind of variable is called “flow”, they control the rate of change 

over time. Once a graphical model is constructed to represent a system of interest, a 

computational engine will calculate the interactive effects among variables over a specified 

period of simulated time. The graphical model of System Dynamics also helps analysts visualize 

the reinforcing and balancing loops in a network of causal relationships. The historical states of 

each variable are recorded and can be used to analyze the interactions between different variables. 

System dynamics provides an instrument to help people reason about complex and dynamic 

scenarios. Forrester has the following comments [84]: 

“To deal with practical management and economical problems of pressing importance, a 

mathematical model must be able to include all of the categories leading to realistic 

representation of corporate and economic behavior.  … The model must be able to accept 
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our descriptions of organizational form, policy, and the tangible and intangible factors 

that determine how the system evolves with time.” 

The mathematical model of System Dynamics is based on a system of differential equations. 

Users specify organizational forms, policies, tangible and intangible factors in arithmetic 

equations and numeric values. These values are processed through a numeric integration 

engine that integrates changes over time. This numeric integration approach avoids two 

problems. First, it bypasses the need to solve differential equations analytically, which 

guarantees that all models can have some numeric solutions. Second, numeric integration 

breaks the cycles in the graph model by taking calculated values from the previous time step. 

Therefore, independent of the number of cycles and the arithmetic equations that specify the 

dynamic values of each variable, properly initialized models can always be simulated and 

finished within polynomial computation time. 

However, using numeric values and arithmetic equations to specify the behavior of a system 

is somewhat limiting. There are numerous cases where a system may need to trigger certain 

processes, and these events can change the structure of the model under different conditions. 

This is particularly difficult to express using numeric values and arithmetic equations, only. 

To accommodate these needs, Hines et al. [86, 87], have implemented software extensions to 

incorporate event-triggering mechanisms in the numeric integration engine. 

The effort and skills required to construct a meaningful system dynamics model are not to be 

overlooked. It takes experience and time to learn about the system of interest. It takes natural 

talent and conversational skill to translate a qualitative inquiry into numeric variables. Then, 

it takes time to interpret the model and calibrate its input manually. Most System Dynamics 
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models are “time invariant” models. The arithmetic equations and the structures of the model 

do not change during simulation time. The data structures of existing System Dynamic tools 

do not inherently support dynamic model generation and self-modification. To quote the 

introduction statement of Sterman’s book on “Business Dynamics” [85]: “The greatest 

constant of modern time is change.” To fulfill the needs of representing changes in the real 

world, we need a simulation environment that can endure and specify changes during 

simulation time. 

2.2.4.4 Textual Simulation Languages 

From a human-machine interface viewpoint, graphical modeling languages help people better 

visualize the relationships and structures of interacting variables, but a graph with a large 

number of variables can be visually incomprehensible.  

Back in 1965, Ole-Johan Dahl and Kristen Nygaard explicitly designed a programming language 

to support the analysis of socio-technical systems. In Nygaard’s own words [88]: 

“From the very outset SIMULA was regarded as a system description language … 

1. The language should be built around a general mathematical structure with few basic 

concepts. This structure should furnish the operation(s) research workers with a 

standardized approach in his description so that he can easily define and describe the 

various components of the system in terms of these concepts. 

2. It should be unifying, point out similarities and differences between various kinds of 

network systems. 

3. It should be directing, and force the operations research worker to consider all aspects of 

the network. 
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4. It should be general and allow the description of very wide classes of network systems 

and other systems which may be analyzed by simulation, and should for this purpose 

contain a general algebraic and dynamic language, as for example ALGOL and 

FORTRAN. 

5. It should be easy to read and to print, and should be suitable for communication between 

scientists studying networks. 

6. It should be problem-oriented and not computer-oriented, even if this implies an 

appreciable increase in the amount of work which has to be done by the computer.” 

SIMULA is also considered to be the first object-orientation language. Today’s popular 

languages, Smalltalk, Common Lisp Object System, Java, C++, and Python [89] have all been 

influenced by SIMULA’s original concepts in object-orientation. However, all these languages 

are textual languages. It is difficult to communicate the structure and the potential interactions in 

a complex system to non-programmers by source code of a simulation model. Ideally, textual 

and graphical modeling languages should be combined to leverage the strengths derived from 

both language types.  

A unique breed of textual language is changing the way people communicate with each other. 

The invention of Hyper Text Markup Language (HTML) and the Hyper Text Transport Protocol 

(HTTP) made a significant impact to our socio-technical system [90]. The simultaneous 

introduction of a standard syntax along with a standard data transport mechanism profoundly 

changed the way we live and learn. Berners-Lee’s invention demonstrated that a simple and 

static computer language [4], properly deployed, could unleash complex and dynamic reactions 

of many people, machines, and societies. Berners-Lee’s more recent focus on Extensible Markup 
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Language (XML) and Semantic Web Initiatives [91] further pushed the concept of sharing a 

common syntax across multiple knowledge domains.  

Many researchers and software developers have been converging toward the use of XML as a 

standard syntax for textual languages. Various middleware software vendors have adopted XML 

as a data-encoding standard to integrate their workflow systems, organize corporate information 

repositories, and compose collaborative simulation experiments [20, 92, 93].  

However, one must point out that XML was designed to encode static data. It was not intended 

to encode dynamic procedures. Researchers and software companies have made serious attempts 

to encode procedural knowledge in XML [94, 55]. Partially due to XML’s verbose syntax, an 

XML-based general-purpose modeling and simulation language has yet to become popular.  

2.2.5 Meta-languages 

Meta-languages and meta-programming are well-known solution patterns in mathematical 

reasoning [95] and in the computer science literature [96]. In software engineering, meta-

language and meta-programming are often applied to generate code and design compilers for 

programming languages. Czarnecki and Eisenecker clarify the nature of meta-languages [96]: 

“The word ‘meta’ is borrowed from the Greek word meaning “after” or 

“beyond” and is used to denote a shift in level. … In linguistics, the term “meta” 

does not imply anything speculative or mysterious, it simply implies the 

relationship of ‘being about’ something, for example, a meta-language is a 

language to describe another language. English grammar is a meta-language 

with respect to some text written in English because it explains its structure. The 
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usage of ‘meta’ in linguistics corresponds to its usage in computer science, where 

meta-programs are programs about some base-level programs.” 

Based on this definition, a meta-language is simply a language that specifies the grammatical 

structure and vocabulary of other languages. A language being described by a meta-language is 

referred to as the “object language”. An object language can be used to describe another 

language, so that it can become a meta-language in turn for its object language. Church [95] and 

Carnap [97] have a similar definition of meta-language and object language. Their definition is 

summarized below. 

Definition: Let M and O be two languages. If O can be described using vocabulary and 

grammatical rules available in M, then O is the “object language” and M is the 

“meta-language”, and vice versa. 

Milner created an executable meta-language, ML [98]. It was originally designed for 

mathematicians and computer scientists to perform automated theorem proving tasks. 

Programming language designers have been using ML to specify the syntax and semantics of 

other object languages and create instances of executable programming languages using ML. 

Other languages such as Lisp [12, 99] and Haskell [100] also support similar meta-language 

features. Meta-languages are often designed and implemented as general-purpose programming 

languages. They support declarative language features to describe arbitrary systems. They 

support imperative features to specify algorithms and execute calculation tasks. They are 

particularly suitable for generative modeling techniques, because they can manipulate data 

structures as well as algorithmic specification of other programs. However, executable meta-

languages such as ML, Lisp and Haskell are not designed for casual users. They all require 



Massachusetts Institute of Technology  Benjamin Koo 
Engineering Systems Division    
 
 
 

 Page 50 of 168  

significant programming experience to internalize the syntax and semantics of these 

programming languages. Although, executable meta-languages present many language qualities 

that are desirable in architectural reasoning, it is unlikely that system architects and stakeholders 

can directly utilize existing meta-languages as a common medium for both communication and 

computation.  

2.2.5.1 Functions of an executable meta-language  

The function of an executable meta-language is to automatically manipulate representational 

schemes, enumerate combinatorial possibilities, and perform mechanical calculation tasks. An 

executable meta-language often serves the functions of: communication and computation, 

including recursion. 

1. Communication: meta-languages are the instruments to define a common data structure 

that relays qualitative and quantitative information across machines, individuals, and 

organizations. 

2. Computation: meta-languages are instruments that map domain-specific knowledge to 

computable rules, so that people and machines can follow the formal mapping to 

interpret and execute instructions encoded in meta-language models. 

3. Recursion: meta-languages often recursively apply the same set of rules and symbols to 

adaptively define data structures and computable rules in varying context. Recursion 

allows a meta-language to define other languages in the most efficient way possible. 

Figure 2-8 shows the meta/object language relationships between two well-known programming 

languages. 
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Figure 2-8 Meta-language and object language 

The property of this introspective language definition structure is structurally similar to systems 

that are recursively composed of other systems. Therefore, meta-language as a class of modeling 

languages naturally serves as the formal representation of “systems of systems”. Architects can 

conveniently model a system of systems based on a system of languages.  

The practical advantage of defining a root meta-language is to provide consistency. Adopting a 

root meta-language provides a unified representational foundation to construct layered models 

for real systems, so that users of this language can incrementally tackle the complexity of system 

interactions, without losing sight of the possible connections between various sub-systems.  

In principle, the recursive or self-referential nature of meta-languages makes them pervasive in 

our daily thought process; one cannot think without it [101-104]. On the down side, the multiple 

levels of recursions can be counter-intuitive to people and therefore intentionally avoided in 

practical use. To break away from this dilemma, a general-purpose meta-language must be 

intuitive, so that users can utilize meta-languages at multiple levels of abstraction, without 

confusion from the depth of recursion. Then, architects and other stakeholders can better focus 

their mental effort on creative activities that are not yet computable. 
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2.3 Summary of reviewed modeling languages  

This section presents a summary of our literature review on modeling languages. We first present 

Jorgensen’s comparative results on existing modeling languages. Then, we will present a two 

dimensional diagram to summarize the space of modeling languages for system representation.  

2.3.1 Comparative Studies of modeling languages 

Jorgensen [105] conducted an extensive study on modeling languages that included UML, 

System Dynamics, Petri Nets, and other textual, informal, or semi-formal process languages. We 

cite his original words:   

1. Many languages are complex, containing numerous types and views not integrated in a 

systematic manner. This is especially the case for UML. 

2. In many cases mathematical, logical or technical concepts are applied instead of user or 

domain oriented (needs). Petri Nets and constraint-based languages exemplify this. 

3. The languages that are precise and formal enough for automatic execution offer few 

opportunities for human contributions to interactive activation. The languages do not 

handle process models with varying degrees of specificity. 

4. The semantics of language elements is generally static and not easily adopted to local 

context or multiple perspectives. 

Jogensen’s statements echo our own observations. Our literature review indicates that system 

architects are still in need of a modeling language that is simple, intuitive, and executable to 

support many tedious tasks in architectural reasoning. 
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2.3.2 Emphasis of modeling languages 

Existing modeling languages are not adequate for holistic system modeling because they are 

designed to emphasize certain aspects of modeling for their respective application domains. 

Figure 2-9 shows a two-dimensional categorization of language properties.  

 

Figure 2-9 The two dimensions of language design 

 

The horizontal dimension in Figure 2-9 represents the function vs. form emphasis. For example, 

Petri Nets and System Dynamics are designed to emphasis the functional or process aspect of 

systems. In contrast, E-R models and Probabilistic Graphical Models are mostly interested in the 

structural relationships between their components; their modeling emphasis is on the forms or 

structural configurations of the system. The vertical dimension in Figure 2-9 represents the 

tradeoff between coverage and resolution. For example, modeling languages such as E-R 

diagrams often choose words that cover the entire class of things, such as “Car” and “Steering 

Wheel”. In contrast, modeling tools for geometrical objects such as AutoCAD and Cadence, 
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must explicitly specify the shape and geometrical configuration of a car or an electronic circuit at 

a high level of resolution. At the same time, each high-resolution model looses the 

expressiveness to represent a generalized class of things. On the process side of Figure 2-9, it 

shows that programming languages such as C and Fortran are designed to precisely describe the 

algorithmic properties of dynamic systems. However, system architects might not choose them 

as a communication medium to illustrate the dynamic properties of socio-technical systems.  

We intentionally left out UML and OPM in Figure 2-9, because they both are trying to cover the 

entire two-dimensional language space. UML is a modeling language that intends to cover the 

entire language space by adding many instances of sub-languages. This ultimately led to its 

complex family of languages. In contrast, OPM tries to assimilate different languages into a 

single diagrammatic view and a matching textual representation. It avoids the model-multiplicity 

problems in UML. However, it also faces the danger of introducing too many semantic elements 

into a single set of notation, and lead to notation bloat within one language. These language 

design tradeoff questions help us rethink system architects’ language needs.  

Executable meta-languages present many desirable features for modeling complex socio-

technical systems. They are designed by mathematicians and computer scientists who are skilled 

in abstract algebra, category theory, and domain theory. The weaknesses of existing meta-

languages are related to their abstract syntax and programming semantics. It is a serious 

challenge to design an executable meta-language that preserves its flexibility, while making it 

accessible to architects and stakeholders who are not professional programmers. This challenge 

is the main focus of this thesis. 
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The following chapter will describe the needs and requirements that lead to the design and 

development of an executable meta-language, Object-Process Network. 
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3 Needs and Requirements 

This chapter describes the needs, requirements and solution profile of an executable meta-

language for system architecting. 

3.1 The needs of systems architecting 

Section 1.1 presented the motivation of this research. These language needs of system architects 

can be summarized here.  

1. Communication between stakeholders and architects and among architects in 

different knowledge domains; 

2. Computationally assess the consequences of system interaction at various layers of 

abstraction, in various knowledge domains and at different physical scales. 

Based on our literature review (Chapter 2), we found that a holistic modeling language has yet to 

be designed and implemented. Each of the modeling languages we studied has only been able to 

partially fulfill the needs of system architects of socio-technical systems. Since the underlying 

mechanisms by which we create models and perform simulations have not changed significantly 

since the late 1960’s, the effort involved in changing and sharing models of a complex socio-

technical system remains unchanged. To avoid this dilemma, we propose the following features 

of a holistic modeling language: 

1. It must be simple, yet flexible 

2. It must be mathematically rigorous, executable, and easy to understand. 

3. It must support self-modifying features and be extensible to a suite of domain specific 

needs 
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4. It needs an integrated user interface that combines both graphical and textual languages 

5. It should adopt a standard syntax for sharing models between different computers 

3.2 Three types of architectural reasoning tasks 

There are three distinctive reasoning tasks in system architecting: modeling architectural 

alternatives, generating instances of architectures, and calculating performance metrics for each 

architectural instance. Figure 3.1 is an Object-Process Network (OPN) that depicts the three 

architectural reasoning tasks.  

 

Figure 3-1 Mapping Function to Form 

The top box in Figure 3-1 indicates that architects and key stakeholders must present certain 

decisions to direct the exploration effort in the massive combinatorial space of architectural 

alternatives. They need to create a model of architectural alternatives that prescribes the space of 

alternatives. This part of the architectural modeling effort provides the declarative knowledge to 

shape the space of architectural alternatives, so that architects and stakeholders can utilize this 

knowledge to generate instances of architectural solutions.  
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In Figure 3-1, the box in the right-hand corner suggests the models of architectural alternatives 

are executable. An executable model is a program written in an imperative modeling language 

that can instruct a machine to mechanically generate architectural instances. When the number of 

architectural instances is too large, the modeling language should allow architects to adaptively 

control the number of generated architectural instances based on practical needs. When the space 

of architectural alternatives is continuous or uncountable, this modeling language should provide 

some classification scheme to systematically organize the space into a set of distinctive 

architectural solutions, so that an imperative program can be executed to enumerate the entire 

space of architectural solutions in numeric or symbolic terms.  

The box in the left-hand corner in Figure 3-1 represents a collection of architectural instances 

generated by the instance enumeration process. To select an instance of architectural solution or 

proceed with further investigative activities, we need a way to calculate the performance metrics 

for each of the architectural instances. Since each architectural instance is represented by a set of 

static numerical or symbolic values, they can be used as inputs to construct performance metrics 

calculation routines that properly reflect the structural and behavioral characteristics of each 

instance. The process of evaluating the performance metrics for each instance of system 

architecture is called system performance simulation. The performance simulation results of a 

collection of architectural instances provide a rational source of information to reach ongoing 

architectural decisions. 

This section shows that architects need a language to first declare the space of alternatives, then, 

the language also needs to provide the imperative information to specify the process of 

generating instances of alternatives. To reach an architectural decision or to decide to pursue 
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further architectural investigation, architects need a language that can faithfully simulate the 

structural and behavioral properties of the proposed system of interests.  

3.3 Requirements of the architects’ meta-language 

To support the three types of reasoning tasks illustrated in Section 3.2, an executable meta-

language for system architecting must: 

1. Formally represent and specify the space of architectural alternatives by reflecting the 

knowledge of system variability across multiple knowledge domains 

2. Automatically generate, enumerate and encode all instances of architectural alternatives 

specified in the meta-language 

3. Adaptively calculate metrics associated with each generated architectural instance to 

help architects and other stakeholders perform tradeoff analysis on all instances of 

architectural alternatives  

The following subsections describe other required features of an executable meta-language for 

system architecting. 

3.3.1 Subsume various models of computation 

Designing and architecting a system can be characterized as a process of simulating future events 

[106]. To assess the interactive consequences of various socio-technical factors, the simulation 

semantics must be able to represent the range of structural and behavioral abstractions. As more 

knowledge about the system of interest accumulates, the meta-language must be able to flexibly 

represent the range of structural and behavioral formalisms. It is a well-known property that all 
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Turing-Complete languages can represent other formal languages through a complete and finite 

translation mechanism. This property is necessary for the meta-language to incorporate new 

language formalism without reaching an inherent syntax or semantic limitation. Therefore, we 

need to show that our meta-language is Turing Complete.  

3.3.2 Generate possible subsets of alternatives within finite time 

The thoroughness or completeness of alternative analysis is defined by the ability to exhaustively 

study all possible alternatives. Two immediate challenges arise. For systems that involve 

continuous state variables, the number of combinatorial states is uncountable by definition, 

making it theoretically infeasible to enumerate all the possibilities. For systems described with 

discrete qualitative and quantitative variables, the size of combinatorial possibilities can easily 

overwhelm any available computational resources. To establish a theoretical framework that can 

be generally applicable to the study of design alternatives, we need to specify the conditions in 

which exhaustive alternative space enumeration is possible. 

3.3.3 Adaptively construct computable expressions  

Each instance of alternatives generated by the executable meta-language is an instance of an 

object language. Therefore, each generated alternative instance must contain the syntactic and 

semantic information to specify the computational behavior of an executable object language. 

This information can be utilized to construct computable expressions that can evaluate 

performance metrics for each of the generated alternative instances. Without an automated model 

construction mechanism, the large number of enumerated alternatives could not be evaluated in 
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all their unique structural and functional features. We need to utilize the structural and functional 

properties in the “object languages” to adaptively construct metric calculation models, so that the 

structural and functional properties of each instance of alternatives can be fully investigated. This 

model construction mechanism is a critical feature to thoroughly evaluate the full range of 

architectural alternatives. By ignoring some structural and functional aspects of individual 

alternative instances, many critical architectural consequences may be overlooked. A meta-

language-based simulation environment needs to preserve and utilize all the structural and 

functional models of individual alternative instances. 

3.3.4 Enable Model Introspection 

The notion of introspection [99] is a basic concept in the design of executable meta-languages. 

Introspection is the capability to programmatically examine and manipulate the internal parts of 

a program. This includes local variables, and algorithms. A simple and consistent language 

model would better facilitate language introspection. We achieve this by the use of one pair of 

meta-operand and meta-operator as the atomic units of data and computation. It provides a 

unifying mechanism to access data and procedures across any part of the language system. This 

feature is particularly useful to enable data and algorithm sharing across different object 

languages that are specified through the same meta-language. It provides a consistent mechanism 

to reduce representational redundancy, thereby reducing potential errors. Introspective data and 

procedural structures also help condense the size of the language kernel, making it concise and 

portable to various computing and communication environments. 
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3.3.5 Support layered abstraction models 

To support the analysis of complex systems, organizing different parts of the system into 

different layers of abstraction and classifying system attributes into different scales are important 

decomposition techniques to modularize model complexity. In formal representation of systems, 

three layers of abstract semantics can be classified as: declarative rules, imperative procedures, 

and customized simulation code. Declarative rules are formal statements that do not explicitly 

specify the sequence of event occurrence. For example, the expressions “A>B” and “B>C” are 

conditional statements; they do not need to be evaluated in a specific order. Due to their 

sequence-independent nature, declarative rules are particularly effective at specifying system 

properties that do involve the notion of precedence order, such as the structural relationships 

between system attributes. Imperative procedures on the other hand, provide explicit information 

to specify the sequence of event occurrence. They are effective at specifying the dynamic 

behavior of a system. Simulation code is the domain-specific library that enriches the capability 

of a general-purpose simulation environment. The semantic model must allow both declarative 

and imperative statements to conveniently utilize features offered through the library of 

simulation code.  

3.3.6 Diagrammatically represent system models 

Reasoning through diagrams is a typical technique employed by people across all disciplines. 

Larkin and Simon [107] best summarized the rationales of diagrammatic reasoning as follows: 

1. Diagrams can group together all information that is used together, thus avoiding large 

amount of search for the elements needed to make a problem solving inference. 
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2. Diagrams typically use location to group information about a single element, avoiding 

the need to match symbolic labels 

3. Diagrams automatically support a large number of perceptual inferences, which are 

extremely easy for human(sic). 

Diagrammatic representation of our meta-language is desirable because it can provide a 

cognitively appealing, consistent, interface for technical and non-technical users alike. The 

syntax of the meta-language can be visually displayed and the execution procedures of the meta-

language can be animated. These computer visualization techniques may reduce the mental labor 

required to construct and debug a complex model.  

3.3.7 Deploy across standard computing platforms 

In a world of computation and communication, meta-languages and their relevant technologies 

are pervasive. Java Virtual Machine (JVM) [108], Extensible Markup Language (XML) [94], 

Resource Definition Framework (RDF)[109] , Common Language Runtime (CRL) [96] 

environment, and other machine processable meta-languages all have an identical goal: provide 

an extensible language kernel to support a wide range of applications in various physical 

environments. The software implementation aspect of the meta-language is important because it 

affects the ability to deploy the computational and communication services to coordinate 

architects and other stakeholders across multiple geographical locations and time. A compact 

language kernel with a small number of linguistic primitives is ideal, because it reduces the 

minimum resource requirement, therefore making it feasible to deploy onto the widest possible 

collection of machines. Utilizing popular software standards such as XML and Java is also 
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important because it helps us leverage a rich set of software features that are embedded within 

standard platforms or accessible through the open-source community.  

3.4 A Solution Profile 

In order to meet the requirements listed above, we propose our meta-language to include the 

following features: 

1. Specify an executable model of communication and computation 

2. Satisfy Turing Completeness 

3. Support a three-tiered semantic model to reduce language complexity 

4. Use diagrams to visualize model structure and behavior 

5. Use one meta-operand and one meta-operator to build the language kernel 

6. Utilize technologies supported by standard platforms  

______________________________________________________________________________ 

This chapter presented the requirements and fundamental concepts of a meta-language for 

systems architecting. Chapter 4 describes OPN, the meta-language we propose in this thesis, and 

demonstrates how it meets these requirements. 
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4 An executable Meta-Language: Object-Process Network 

This chapter describes Object-Process Network (OPN), an executable meta-language for systems 

architecting. We choose the name OPN for two reasons. First, we want to acknowledge Dori’s 

work on Object-Process Diagram (OPD) that avoids the bias toward either pure Object-

Orientation or Process-Orientation in system modeling. Second, we want to distinguish OPN 

from OPD because OPN strictly follows a bi-partite network structure that only allows direct 

connections between Object-Process pairs. In contrast, OPD defines many types of connections 

to directly connect Object to Object and Processes to Process. The refined graphical syntax in 

OPN makes it easier to implement execution engines based on other graphical computational 

models that follow the bi-partite graph formalism. 

4.1 The space of modeling languages 

To perform architectural reasoning tasks, architects must visualize the interactions between 

objects and processes, and represent both the space of alternatives and architectural instances by 

choosing a language that can adaptively cover all the squares in Figure 4-1. To avoid a bias 

toward either functions or forms, we follow OPM’s [26] convention of using a rather neutral 

word, “Thing”, to represent a primitive type that can be interpreted as either object or process. 
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Figure 4-1 The space of modeling languages 

Therefore, objects and processes in OPN are modeled as Things. Things relate to each other by 

relationships to form a graph. We will illustrate a recursive data structure that utilizes Things, 

Relationships and Graphs as the three linguistic primitives to represent arbitrary data structures. 

4.2 Thing, Relationship and Graph 

At the end of Chapter 3, we specified that a meta-language should be simple and Turing 

complete. To be simple, we need to use a small vocabulary. For representational efficiency, we 

need to find a highly condensed set of linguistic primitives while maintaining universal 

expressiveness. Examining formal languages, we found a common pattern among many of them. 

Languages in general need to distinguish entities in a set, have the ability to specify directed 

relationships, and have the data structure to represent collections. Accordingly, we defined three 

primitives in our language: Thing, Relationship, and Graph. In OPN, all statements are made out 
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of things, relationships, and graphs. In terms of the typing information, it can be stored in two 

ways. First, each unique instance of thing can be considered to be a special type. The distinction 

between things, relationships and graphs is another way to make a distinction between types. To 

store information about how types and other attributes are related to Things, all Things have 

their private attributes, which are also Things. The necessary expressiveness to describe systems 

with varying levels of details can be achieved by recursive applications of this nested data 

structure pattern.  

• Thing is defined as the fundamental building block of any systems. 

• A Relationship is a special type of Thing, which defines the connection between two other 

Things. It can be thought of as a binary operator. Syntactically, it’s a Thing containing a 

RelationshipPart data structure.   

• A Graph is a special type of Thing, which is a container for Things and Relationships. 

Syntactically, it’s a Thing containing a GraphPart data structure, which can in turn be 

thought of as a set, or as a generic data structure to store information in OPN.  

Thing represents the meta-operand in this language. Graph and Relationship are special types of 

Thing. To manipulate these varying types of operands, one needs a set of operators that can 

properly utilize information encoded in each type of Thing. 

4.3 Operands and Operators 

Thing, and Eval are OPN’s meta-operand and meta-operator, respectively. Thing provides a 

flexible data model to encode a wide range of data structures. Eval provides a universal interface 
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to model various modes of interaction amongst Things. OPN utilizes this foundational 

operator/operand pair to construct its model of communication and computation. 

4.3.1 The meta-operand: Thing 

We use Backus-Naur-Form (BNF) [110],where: 

“::=” means “is defined as” 
“|”  vertical bars means “or” 
“<>”  angle brackets are used to surround user-defined variables 
“[]”  brackets surrounds elements that are optional. 
“*”   star behind an element represents it could appear 0-n 

 times 
 

The data structure of Thing is defined as follows: 

Thing ::= name = <string>; 
content = <GraphPart>|<RelationshipPart>|<string>; 
[value = <Thing>;] 

 
Thing is the meta-operand in OPN. Its content may be a string, a GraphPart, or a 

RelationshipPart. The choice of content type determines the Thing’s type.  In other 

words, string, Graph and Relationship can all be considered to be specialized types 

of Thing. An instance of Thing always has a name associated with it, which identifies 

its uniqueness within the immediate context that contains it. The attributes of a Thing 

are stored in the value, where the data content of value is an instance of Thing. We 

will elaborate the content and uses of value later. Due to the generic nature of Thing, 

we decided to use three different graphical icons to visualize their differences.  

Graph ::= name = <string>; 
Content = <GraphPart>; 
[value = <Thing>;] 
 

GraphPart ::= ThingCollection=[<Thing>*]; 
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RelationshipCollection = [<Relationship>*]; 
 

GraphPart is a data structure contained in a Thing. It contains two sets; a set of Things and a 

set of Relationships. These two types of data structures make up the structural 

information about Graph.  

Relationship ::= name = <string>; 
Content = <RelationshipPart>; 
[value = <Thing>;] 

 

RelationshipPart ::= Source=<Thing>, 

Target=<Thing>; 

RelationshipPart is also a data structure contained in a Thing, where both source and target 

are instances of Things. The third entry in Relationship, value, is also an instance of 

Thing, included by default to store user-specified information about each instance of 

Relationship. The visual representation of Relationship is an arrow. 

value ::= Thing 

The value field stores instance-specific information in any one of the specialized types of 

Thing. It is the official extension mechanism to incorporate application-specific 

information. In addition to terminal values such as literal strings or numbers which 

can be stored in value, it can also be a place where multiple levels of Graphs can be 

stored and accessed through this standard data structure.  

string ::= [character*] 

All numbers, names, symbols and universal resource identifiers (URIs) are eventually stored 

as “literal strings”. They are considered to be “terminal” because they usually require 

no further processing, unless explicitly specified otherwise. 
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4.3.2 The meta-operator: Eval 

Definition of Eval: 

Eval is a meta-operator, which contains computable knowledge to transform the state of its 

operands. It can be succinctly written in the following format: 

Context(Eval) I → O 

The above statement should be read as:  

“Given the knowledge specified in the Context of Eval, the operand I evaluates to O.”  

Thinking as a logician, one can often refer to the whole statement as a statement of a generic 

inference process. Context() and Eval together provide the resources and knowledge for the 

execution context, I is the input operand, and O is the output operand. The concept of deriving 

output O as an inference result requires some additional explanation. In the context of OPN, the 

outcome of an Eval operation, O, can be one of the following Things:  

1. Based on the information contained in input I and the Context of the Eval 

operator, Eval creates one or more new instances of Things, represented as O in 

this formal expression.  

2. O represents a new condition in I. Eval operated on I and changed its internal 

structure or content. It is optional to create a new instance of Thing O after the 

execution of Eval. 

3. O represents a new condition in Context. Eval used I as an input operand and 

inferred new conditions about the surrounding context. It is optional to create a 

new instance of Thing O after the execution of Eval. 
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4. Executing Eval could simultaneously create a new instance of Thing O as output, 

change the condition in I and Context, or a partial combination among the above 

mentioned 3 possibilities. 

OPN’s execution kernel is implemented by following this single meta-operator approach, all 

computation and communication operations in OPN context are idealized as the consequences of 

applying Eval.  Adding, removing, changing values in all Things are done through some 

recurring application of Evals. From a programmer’s viewpoint, Eval can also be viewed as the 

standard public function embedded in all Things. Each Thing may change its own “Eval” 

behavior by storing localized computable structures or expressions to overwrite the default 

behavior.  

4.3.3 Notations  

OPN is a graphical language; therefore, it has a set of graphical symbols that denotes each type 

of its linguistic primitives. To provide a visual reference for what they are, Figure 4-2 is an OPN 

Graph annotated to indicate the type of Things they represent. 

 

Figure 4-2 An annotated OPN 
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Since all data elements in OPN are represented as Things, we need additional structural 

information to distinguish the roles of these things. Therefore, each Thing should include type 

information. All data elements of OPN are stored in a Graph. OPN’s model structure is specified 

as follows:  

An OPN Graph is a Thing that uses GraphPart as its content. In the GraphPart data 

structure, the “ThingCollection” contains Objects and Processes as its two types of 

Things. Similarly, the “RelationshipCollection” contains Pre/Post Conditions as its 

two types of Relationships.  

When a Thing is deciated to store information about system states, it is considered to be 

an Object. An Object is a Thing that encodes the state of certain variables of interest. 

An Object is a passive information element in OPN. The evolutionary history of its 

state is recorded by a series of Tokens that visit the Object during execution time. 

Objects are graphically represented as a set of rectangles. 

When a Thing is dedicated to store a set of executable instructions that will change the 

state of other Things, it is considered to be a Process. A Process is a Thing that 

represents the operators in OPN, it is an active information element in OPN. Each 

Process stores its respective operational algorithm to transform the state of certain 

variables of interest. These variables are associated with relevant Objects. The 

results of transformations are stored in Tokens that trigger its operation. Processes 

are graphically represented as ellipses.  

It is also possible for a Thing to simultaneously store information about system state and 

executable instructions. When such situation occurs, the Thing is dynamically 
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determined to be a Process or an Object based on its context. The quality to become a 

different kind of Thing at different context is called polymorphism. Objects and 

Processes are two complementary types of Things that must coexist to describe 

communication and computation. To ensure syntactic integrity, OPN imposes a 

connectivity constraint between Things. All Objects and Processes can only connect 

to Things of the other type, but not the same type. This quality is quite pervasive in 

graphical representation of mathematical objects. 

A Token is an instance of Thing.  The term “token” is borrowed from Petri Net literature 

[79]. It represents a communication or computation event. By default, each instance 

of Token contains a field “starting time”, which denotes when it should be triggered 

to carry out the event. It is always associated with one Object that indicates where the 

Token is contextually situated when it is to be triggered. Once it is triggered, it serves 

as an input to Processes to trigger their operations and capture their operational 

results. As it finishes, it will be placed/associated with one Object. It will be 

scheduled to trigger another Process when its “starting time” comes. The data content 

of a Token serves as the carrier of computational results and communication 

messages by storing a collection of Things that captures the variable states encoded 

in relevant Objects at the time of visit. A unique feature in OPN is that we enable all 

Tokens to record the trajectory information in terms of all the Objects, Processes, and 

Relationships they passed through.  
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A Pre-Condition is a Relationship that specifies the relationship directed from an Object 

to a Process. It also stores a Boolean function that determines whether a Token 

placed in the associated Object should trigger the associated Process. 

A Post-Condition is a Relationship that specifies the relationships directed from a 

Process to an Object. It also stores a Boolean function that determines whether an 

outgoing Token should be placed on the associated Object after the execution of the 

associated Process. 

4.4 Syntax 

One of the critical tasks in architecting is to assess the global effects of local interactions. From a 

system viewpoint, the dependency structure of interacting variables determines how a change in 

one variable would affect the other variables in a system. In OPN, the users can construct a 

model of variable interaction by utilizing the following language constructs.  

1. OPN allows users to specify the range and resolution of variables on both the 

sending and receiving sides of the communication. This allows users to adaptively 

change the formal definition of relevant variables to accommodate the 

communication needs in a noisy environment.  

2. OPN models the effects and scope of interactions by the structure of the network. 

The presence or absence of certain relationships between objects and processes 

specifies the syntactical properties of an object language specified by OPN. 

3. Users of OPN may control variable interactions by modifying the Boolean 

functions in the Pre/Post Conditions. 
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The key idea here is that OPN uses the graphical structure to closely resemble the structure of the 

problems in their original domain. The structure of the network is the syntax of the language. 

Specifically, the benefits of using a graph structure to represent syntactical information can be 

further appreciated from the viewpoint of a programming or modeling context. OPN’s syntax has 

the following qualities: 

1. OPN’s syntax is largely represented by the graph structure. It has only two types of nodes, 

Object and Process. The graph-based approach to specify syntax helps remove the syntax 

parsing problems in text-based languages. Every time a new character-based language is 

created, any minor variation in the syntax structure may introduce new exceptions to 

language parsing. Well-designed graphical languages, such as OPN, do not have to deal 

with this kind of syntax management issue.  

2. Since OPN is designed to be a meta-language, executing OPN is about creating and 

modifying languages using OPN operators. OPN’s simple syntactic structure simplifies 

the syntactic verification of its object languages.  

3. By requiring users to specify the dependency structures between variables of interest, 

each user is effectively creating a localized syntax structure for their application-specific 

language. This makes it straightforward for OPN to function as a meta-language to 

manipulate application-specific models and put them into a common model repository. 
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4.5 Semantics 

OPN’s semantic properties can be summarized as follows: 

1. Higher-order Petri Net: OPN is a meta Petri Net, or a Petri Net that generates other Petri 

Nets [81, 82]. We store the trajectory of OPN tokens in the tokens as they run through the 

system. 

2. The meta-data model element, Thing, provides a common currency to integrate between 

different models of communication and computation. It is the portable and commonly 

known data structure that can be easily manipulated. This provides tremendous freedom 

and flexibility during its computation. 

3. Added to each Process is a general-purpose inference algorithm, so that each process can 

perform localized symbolic processing to create many instances of computable 

expressions. It manipulates the content of Tokens in terms of Graph theoretical operators, 

such as adding and removing variable names. Notice that this is not a traditional 

hierarchical Petri Net. The Petri Net model within each subnet is another Petri Net. For 

practical purposes, the process model within each process is encoded as arithmetic 

expressions, which can be efficiently stored as a parse tree. We use a specialized parser to 

convert them into symbols or numerals based on available information. 

4. The first two features combined created a mechanism to dynamically compose functions. 

It allowed the execution engine to compose computable expressions using external 

mathematical libraries and custom-made routines. The dynamically composed 
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expressions can be evaluated to produce numerical values or preserve important 

information that is specific to a particular simulation runtime context.  

4.5.1 A layered semantic model  

OPN employs a layered semantic model to manage three kinds of knowledge. The top layer is 

the token generating and scheduling facility, which is encoded in OPN’s graphical structure. The 

middle layer is the token processing facility. Each instance of Token represents a distinct event 

in OPN’s execution history. The token processing facility may be thought of as a logical 

inference engine, while the token generator and event scheduler can be thought of as a timing 

device for inference engine. 

 The lowest layer is the software and operating system facility, where OPN provides a variable 

binding mechanism to give users convenient access to third-party software libraries. OPN’s user 

interface and language semantics are designed to hide the complexity of these low-level 

computing resources and represent them as variable names or functions. Chapter 5 presents how 

these resources are organized under OPN’s implementation model. 

4.6 Token Generation and Scheduling 

The Relationships between Objects and Processes defines the token creation and scheduling 

activities. When a Pre-condition is checked and certified, it immediately creates a token to be 

transformed by the specified Process. All Tokens move from one Object to the other through an 

intermediate Process. A Process changes the states of a token according to the temporal and 

spatial context provided by its immediately neighboring Objects.  
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After a Process finishes transforming a token, the Boolean function embedded in each of the 

Post-conditions connected to the Process is evaluated. If the Boolean function returns true, a 

new token is created. The new tokens duplicate all the information stored in the token that 

triggers the Post-conditions. The triggering token may be discarded or stored for further 

analytical purposes. The new tokens are then placed onto the Objects specified by each of the 

Post-condition relationships.  

4.6.1 The execution model of Eval 

The Eval operators of OPN’s building blocks make up its token generation and scheduling 

algorithm. The best way to illustrate the event generation and scheduling algorithm is to reveal 

how the Eval operators of different types interact with each other. At the top level, OPN has a 

statically defined Eval operator, whose algorithm can be defined as follows: 

OPN.Eval 

Input(nil) # no input required 

 For all Objects contained in the “ThingCollection” 

     Trigger Object.Eval  

As an intuitive way to understand how a set of statically defined Eval algorithms can create 

infinite recursion, imagine the OPN graph structure as a subway system, where the Tokens are 

the passengers in the system, and each Object is a subway station. The Processes are the trains 

that move passengers between two adjacent stations. Pre-Conditions and Post-Conditions are 

how passengers enter and leave the boarding area of each subway station. The following 

algorithm specifies how all possible token itineraries can be generated, assuming that Pre-

Conditions and Post-Conditions evaluate to true by default. 
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The Eval operators for Object and Process are presented in the following pseudo code format: 

Object.Eval 

Input(nil) # no input required 

Get the token with earliest starting time in local Token Queue 

 For all Pre-conditions of this object 

     Trigger Pre-Condition.Eval with the token as input 

For each Pre-Condition that evaluates to true 

Create a new token with all the data content of the token 

Get the corresponding process of this Pre-Condition 

Trigger Process.Eval with the new token as input 

Repeat Object.Eval 

Until Token Queue is empty 

  

Process.Eval 

Input(token) # an incoming token is required 

Trigger token transforming Eval to process the incoming token 

 For all Post-conditions of this process 

     Trigger Post-Condition.Eval with the transformed token as input 

For each Post-Condition that evaluates to true 

Create a new token with all the data content of the token 

Get the corresponding object of this Post-Condition 

Place the token into the Token Queue of this object   

  

By default, whenever no looping structures are involved, all token generation and scheduling 

events would come to a stop. If there is a loop in the structure, it will require a customized 
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condition to determine when to stop the iteration. This set of Eval algorithms provides the 

looping and branching features necessary to emulate a Turing Machine, thereby making OPN a 

Turing Complete language; therefore, we can use it to emulate any realizable algorithms, either 

symbolic or numeric procedures. As a model of communication, it provides a simple framework 

to simulate or activate the message exchanging activities. It provides a simple yet complete 

model of interaction from either an Object or Process perspective.  

The Eval operators described above can easily include the feature to record the trajectory of each 

token as it moves through all the Objects, Process and Pre/Post Conditions. The trajectory 

information stored in each Token is a dynamically generated OPN Graph. This Graph is not 

only a part of the original OPN Graph, but it also computationally verifies that at least one 

sequence of operations can reach all the involved Objects and Processes. Since all Tokens are 

instances of Things, their content can be inspected through standard user interfaces that show the 

content of Graph, Relationship, and Things. 

 

The branching structure in OPN is graphically defined by having Relationships going outward 

from its connected Thing. The number of outgoing Relationships determines the potential 

number of tokens to be generated. As mentioned earlier, each Relationship contains a Boolean 

expression that determines whether a new token will be generated and sent toward the 

corresponding target Object or Process. The Figure 4-3 shows two examples. 
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Figure 4-3 Branching and looping in OPN 

Therefore, the number of unconstrained Relationships spanning out of a Thing provides a 

standard construct to perform token multiplication and replication. The token replication and 

“Eval” triggering mechanism is often referred to as the consumer/producer pattern in concurrent 

systems [111]. The branching and looping network structures coupled with the 

consumer/producer patterns makes OPN a Turing Complete language. The following section 

presents a proof.  

4.6.2 Turing Completeness 

This section presents a proof that shows OPN is a Turing Complete language.  

Since OPN is a graph-based data structure, all token processing activities are directed by the 

structure of the graph. Each token’s activity trajectory represents how it traverses the graph. In 

other words, they embody one feasible path of some graph traversal algorithm. In order to show 

that OPN can be used to implement any realizable algorithm, it must satisfy the condition of 

being Turing Complete. This section demonstrates that OPN is a Turing Complete language. 

As demonstrated earlier, OPN’s graphical syntax directly supports both looping and branching. 

These two complementary elements can be used to compose arbitrary looping and branching 

structures of a program. According to Böhm and Jacopini [112], looping and branching are the 
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two necessary and sufficient constructs to make up a Turing complete language. A simpler proof 

for OPN’s Turing-Completeness is constructed below:  

Theorem:  

OPN is a Turing Complete Language 

Proof:  

The tape of a Turing Machine can be mapped onto a sequence of Objects and 

Processes connected through two relationships between each pair to form a bi-directional 

chain. The Process can read and write the content onto the Objects that are directly 

connected to it. The Process therefore emulates the read and write operations of the tape 

reader of the Turing Machine. The Objects serve as the different blocks on the tape to 

record the results of write operations. A one-to-one mapping between Turing Machine 

and OPN is clearly achievable. The direction of token movement is controlled by the 

Pre/Post Conditions that connects between the Objects and Processes. The zero/one 

encoding of Turing Machine can be mapped onto the corresponding Pre/Post Conditions. 

Based on this structural isomorphism, the token movements can now perfectly emulate 

the tape reading and writing behavior of a Turing Machine. Therefore, OPN is Turing 

Complete. 

.  

4.6.3 Model Enumeration in Finite Time 

Knowing some language class is or is not Turing Complete would not normally be interesting to 

non-computer scientists. In the context of system architecting, it is more interesting for users to 

know whether an exhaustive enumeration of a finite structure can be completed within finite time 

and finite memory space. To show how OPN accomplishes this goal, we need to discuss how 

OPN creates and manipulates tokens during execution. 
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Knowing that cyclic structures create infinite cycles raises the question about the feasibility of 

exhaustively enumerating feasible models. Given a finite number of interrelated architectural 

alternatives, can one generate all the possible subsets of interrelated alternatives within finite 

time? In order to answer this question, we prove the following theorem:  

Theorem:  

For all static (time-invariant) and finite-sized OPN model structures, the exhaustive 

enumeration of all its directionally connected sub-models can be completed within finite 

storage space and execution time.  

Proof:  

We need to construct a model enumeration algorithm and prove that it would finish 

within finite time and only consume a finite amount of storage space. This can be 

accomplished in the following steps: 

1. Given a static OPN model, G, perform a search on its graph structure to find a set R 

of Objects or Processes that have no incoming Relationships (pre-conditions). Given 

G is finite, the search time and the resulting set, R should also be finite. 

2. Create an Object Oi a Process Pi and a Relationship from Oi to Pi in G. Create a set 

of Relationships that connect Oi and Pi to the Processes and Objects in R 

respectively.  These additional entries changes G to G’. Since all the above sets are 

finite, the resulting G’ is finite. 

3. Apply a cycle finding algorithm to find all the cyclic structures in G’. Cycle finding 

algorithms in static and finite graphs are finite time procedures. In the worst case, the 

algorithm is O(n!), where n is the number of Objects and Processes in OPN. The set 

of cycles in G’ (found by the cycle finding algorithm) will be stored in C. Since n is 

finite, the time and storage requirement for this procedure is also finite. 

4. Create an initialization token Ti in Object Oi. Starting from Oi and Pi, traverse G’ 

using a breadth first approach by creating one new token for each of the outgoing 

Relationships. As the token arrives at a new Object, Process, or Relationship, add it 

to a Graph entry locally stored in the token itself. For the portion of the graph that 
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includes no loops, this traversal algorithm would end in finite time. All the newly 

generated tokens make up a set of OPN models that represent the complete 

enumeration of all variations of G’ without the cyclic portion. This loop-less portion 

of model enumeration procedure would require finite time and finite storage space. 

5. For G’ with cyclic constructs, as the token constructs its local graph, it must check 

whether it contains loops as new entries are added to it. When a cyclic path emerges 

from the traversing token, the token would compare its locally stored graph with the 

set C, which stores all the cycles in G’. If this new path contains a segment that is 

already found in the set C, add this path to a set C’. C’ denotes the set of paths in 

OPN that includes cyclic structures. If this path is already in set C’, stop. Otherwise 

continue to traverse all its outgoing Relationships. Knowing that the set C is finite 

and the number of loopless paths is finite, C’ must be finite.  

6. The collection of all generated tokens is the union of C’ and the set of loopless paths 

are both finite. Knowing that all the above procedures finish within finite time and 

space, it proves that step 1-6 as a whole algorithm can be completed within finite time. 

Having proved that enumerating OPN’s directionally connected sub-models can be completed 

within finite time, we can make the following observations: 

1. Complete enumeration of interrelated sub-models provides a basis to create a 

mechanical reasoning framework to perform model decomposition  

2. It is necessary to implement a simulation engine that would construct its sub-model as it 

performs computation 

3. For graphs whose structures or parameters change during runtime, it is not possible to 

guarantee that full enumeration can be completed within finite amount of resources 

Clearly, finite time enumeration calculation may not be practically feasible. For problems whose 

computing time or storage requirements grow exponentially with their sizes, it may not be wise 

to conduct full enumeration. These problems are often associated with the term Non-Polynomial 
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complete problems, or NP hard problems. NP denotes no polynomial time or space algorithms 

are known. However, many real life problems are indeed NP hard, but when the problem size is 

small enough, even manual enumeration could solve NP hard problems. The tic-tac-toe problem 

is a good example. Computers can hardly have any advantage when the problem size is small. If 

one plays a four by four tic-tac-toe problem against a computer, the chance of the human 

winning is slim at best. Using a computer to expedite some of the exhaustive enumeration 

procedures, we can drastically expand the range of NP hard problems solvable in practice [21, 81, 

25]. A computationally enabled sub-model enumeration is still highly valuable in practical 

settings because: 

1. Probabilistic approaches can be deployed to enumerate models with controlled 

parameters. They include randomized algorithms such as genetic algorithms, simulated 

annealing, and Monte Carlo methods.  

2. This framework provides a measure of model complexity, so that we can use it to 

determine the resolution and the size of the model. 

3. Incremental development of contextually sensitive knowledge may help reduce the size of 

the enumeration results. 

However, we have not discussed how to perform exhaustive enumeration for models that contain 

continuous variables. To resolve this problem we need to convert continuous scales into discrete 

categories of mathematical objects, and then enumerate the possible variations of the model. It is 

important to note that we are not enumerating the possible state-space configurations of a 

continuous model; we only intend to enumerate all the possible sub-structures of a static model. 

If the model is changing during enumeration time, it could alter the search space during runtime. 
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Therefore, it may not be possible to know whether such an enumeration program can stop in 

finite time. Both in practice and in theory, exhaustive enumeration is only possible when dealing 

with static and deterministic models. To make this enumeration approach practical, we need to 

find a way to convert models of alternatives into static and deterministic models. With the 

assistance of Group Theory and Category Theory, many classes of real world models with 

continuous variables and with dynamic properties can be converted into finite sized static models. 

Section 6.1.2 describes this approach.  

Contextually sensitive knowledge is useful in eliminating unnecessary enumerations. In a 

simulated world, the contextual information can be emulated by computationally generated 

scenarios or manually created hypothetical conditions. 

4.7 Token Processing 

This section describes how context-sensitive information can be embedded within each 

generated token. All events of communication and computation are uniformly represented as 

Tokens carrying state information from a Source Object through a Token Transforming Process 

to a Target Object. A token is just an instance of Thing. It inherits all the qualities of Thing. We 

called it “token” because this is a commonly recognized term in the Petri Net literature. Like all 

Things, a token also has a “value” attribute that captures the specific attributes to be manipulated 

through the transformation processes. A “value” of a token can be a primitive thing, namely a 

string, a number, or a computable expression, or it can also be an abstract data structure, such as 

a graph that contains many other kinds of things. To support automated reasoning tasks in system 

architecting, we need to find a way to organize numeric and symbolic calculations in a coherent 
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model of computation. Therefore, each Process is abstractly modeled as a generic inference 

engine, which not only performs numeric and symbolic calculations, but can also compile 

available inference rules to perform mechanical inference tasks. To provide a consistent user 

interface, all numeric and symbolic rules are specified in a format similar to arithmetic 

expressions. For example, if an input token contains the following information: 

Input token = <x →  2, y → a> 

and the Process and System Context contains the following inference rules: 

System Context= <g(a) →0*a  > 

Token Transforming (Process)= <x →  3 + x,  y →  f(x), z →  g(y)*x  > 

Then, the inferred result would be: 

Output token = <x → 5,  y →  f(5),  z →  0  > 

This simple arithmetic example can be visualized in Figure 4-4.  

 

Figure 4-4 Graphical Model of Communication & Computation 

In Figure 4-4, one can see the internal state of a Token is transformed based on three pieces of 

contextually sensitive information. As the token being transformed by the “Token 
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Transforming” process, it utilizes inference rules embedded in System Context, Token 

Transforming process and the input token to solve for the values of all three named attributes.  

We will first walk through this example visually: 

 

Figure 4-5 Token Creation Activities 

As Figure 4-5 indicates, OPN interprets the transformation rules as executable graphs internally. 

All computable expressions are parsed into acyclic bi-partite graphs. In these graphs, the 

operands of the arithmetic formulas are treated as Objects and operators treated as Processes. 

Once the Token Transforming process starts, it merges all three graphs into one, and performs 

appropriate calculations. When a numeric value cannot be found, the symbolic expression and 

the function signature will be stored as Objects and Processes respectively. This simple example 

is designed to reveal a number of important features of OPN. They are listed as follows: 

1. Each Eval event triggers a series of graph-rewrite and automated inference operations 
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2. Context sensitive variable naming is supported. 

3. A token transformation process may add new attributes to the Output token. 

4.7.1.1 Context Sensitive definition of Eval  

Let I be the token at Source, O be the token that arrived at Target. S and P represent System 

Context and Token Transforming process respectively. 

The token transformation event illustrated above can be expressed in the following statement: 

S, P I → O 

(The above statement should read as: “Against the context of S and P, I evaluates to O.” ) 

S, P, and I are three separate sources of inference knowledge to determine the resulting values 

stored in O. The inference rules declared in each of these Things can be classified into three 

levels of visibility, system level, process level, and token level. As shown in the example, each 

of these levels may contribute zero or more inference rules to be included into the final inference 

graph stored in O. Clearly, S and P may contain any number of inference rules. The unique 

feature of this inference algorithm is that token “I” is effectively an O of a previous process. 

Therefore, in a multi-staged token processing scenario, the attributes and resulting values of an 

output token is constructed in the steps: 

Time = t-1  St-1, P’ I’→ O’ 

Time = t St, P  O’→ O 

where  

S t   represents the System Context’s inference rule collection at a current time step 
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S t-1 represents the System Context’s inference rule collection at a previous time step 

P’ represent the inference rule collection in the most recent Process  

I’ represents the input token’s inference rule collection prior to P’s execution.  

This equation implies that users of OPN can recursively apply this token evaluation process to 

dynamically compose a set of inference rules based on the trajectory of the token. 

Figure 4-6 helps to illustrate this point: 

 

Figure 4-6 A simple recursion 

Variable replacement and context sensitive rule applications are two corner stones of lambda-

calculus, which is regarded as the mathematical foundation for composing computable functions. 

The procedures described above demonstrate that OPN provides a graphical formalism to inform 

users about the context of computation and allows them to specify and organize the contextually 

sensitive rules in an intuitive way. For complex system modeling, this computing framework 

offers the following utilities in model construction: 

1. Process system variables and functions as algebraic symbols. It enables users to compose 

a system of variables and functions that are yet defined 

2. Provide an automated mechanism to compose inference rules 
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4.8 Variable Binding 

To make the inference rules perform more than simple arithmetic calculations, OPN’s modeling 

environment must support user specified functions and global variable declaration. A bridge 

between the inference rules and custom-made software libraries is established to allow users to 

incorporate existing software libraries and define simple procedural behavior in a system 

simulation model. The mechanism that relates variable names with specific values or custom-

defined functions is a form of variable binding. We allow users to specify variable bindings 

through a text file, “global script”, where the values and content of globally accessible variables 

and algorithms are encoded. For example, the function f(x) can be defined in a “global script” 

written in the Python programming language as: 

TRUE  = 1; 
FALSE = 0; 
 
def f(x): 
 if x > 0: 
  return TRUE; 
 else: 
  return FALSE; 

 

Each OPN model has a unique “global script” which is “evaluated” when the “Eval” of the OPN 

model is triggered. Variables and functions defined in a “global script” are bound to appropriate 

referents at the beginning of this “Eval” operation. The variable binding mechanism serves two 

purposes. 

1. It defines globally recognizable variable names and algorithms in each OPN model 

2. It serves as an interface to access software libraries beyond OPN’s core library  
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The first point is a standard variable scope control mechanism. It keeps rules in OPN model 

clean and concise. For example, if a certain number is referenced by multiple rules and must be 

constantly changed, it is highly desirable to create a globally accessible rule that statically 

defines the number with a symbolic name. Then, all the local rules that refer to this number can 

just use this globally defined name. It will dramatically reduce the cost of model verification and 

reconstruction. 

The second point is to allow users to construct new algorithms using a popular scripting 

language of users’ choice. The example shown above is a global script written in the syntax of 

Python programming language. The role of “global script” in OPN is to provide a standard 

programming interface for users to access computational resources across a wide range of 

software libraries. How to access software libraries is an implementation issue and will be 

discussed in Chapter 5. 

______________________________________________________________________________ 

This chapter presented the syntax and semantics of OPN. Chapter 5 describes the pragmatics of 

OPN, and the software architecture of our OPN implementation. 
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5 The software engineering aspects of OPN (pragmatics) 

This section will explain our implementation strategy for OPN. We will also describe the design 

rationale for the user interface. 

5.1 Implementation Objectives 

Introducing architects to a new modeling language must not further complicate their reasoning 

tasks. Therefore, the software implementation of OPN addresses these concerns: 

1. How to engage users with minimal learning and configuration effort 

2. How to leverage existing computing and communication infrastructures  

3. How to deploy the language kernel to various platforms 

Each of these issues requires significant expertise in their respective problem domains. 

Fortunately, recent advancements in software and hardware technologies have made significant 

improvements for each of them. For example, high performance computers and network 

connections are not only available at affordable prices; they have also become an integral part of 

our lives. However, to compose a system that would simultaneously touch on all three issues is 

still a highly challenging technical endeavor. The combinatorial possibilities of user needs, 

variations in configuration management and software deployment technologies present a 

dauntingly large design space. To deliver a functional system within finite time, a number of 

architectural decisions must be made early in the design and implementation process. To 

paraphrase Einstein, the implementation principle is: keep everything as simple as possible, but 

not simpler than a Turing Machine.  
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5.2 The design of the language kernel 

Using OPN as a system description language, we need to specify each system of interest as an 

executable meta-language program. The OPN simulation environment must have the ability to: 

represent the state-space of a system, specify system behaviors as executable programs, and 

provide a communication mechanism to inspect and edit the content and state of the “programs”. 

These necessary features can be mapped onto three implementation elements: a model of the 

system’s state-space, a view to present the internal state of the models, and a controller of the 

sequential actions. This Model-View-Controller (MVC) design approach originates from the 

Smalltalk software community [113]. It helps to decompose programming tasks to three 

orthogonal domains. We adopt the MVC design approach not only because it decomposes a 

complex implementation project into smaller and simpler chunks of implementation tasks, it also 

has a one-to-one mapping onto our meta-language schema. Figure 5-1 illustrates OPN’s Model, 

View and Controller software architecture. 

 

Figure 5-1 The Model View Controller of OPN 
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5.2.1 Model  

The data structure definition of Thing (presented in Section 4.4.1) serves as the meta data 

“model”. Through recursion, the data “model” of Thing can represent any model that can be 

represented as hierarchies of Things. The uniformity of this meta data model makes it easy to 

implement one standard programming interface for Thing to manipulate and export data by 

people or machines. This standard programming interface becomes the protocol that mediates 

events between various user interface elements.  

5.2.2 View 

To display the structure and content of all Things, each Thing in a different context may be 

better visualized in a different user interface component, such as graph view, matrix view, and 

tree view. Each “view” of the system provides a convenient conduit for people or machines to 

inspect or edit the data structures. Implementing a “view” in MVC is about binding an external 

program with the language kernel through a programming interface. All four types of activities, 

such as model editing, inspecting, changing, and reporting as presented in Figure 5-1, are 

accomplished through this standard programming interface. Using a standard programming 

interface makes it easier to add new views without incurring software implementation changes to 

the controller and model of the system [45]. 

5.2.3 Controller 

To control the behavior of the system represented in the model we trigger the “Eval” meta-

operator at the appropriate level of the system, to trigger all the lower level Eval operators in 



Massachusetts Institute of Technology  Benjamin Koo 
Engineering Systems Division    
 
 
 

 Page 96 of 168  

context. This one controlling framework based on the meta-operator Eval is the controller of this 

Model-View-Controller triad.  

Since OPN uses just one pair of meta-operand and meta-operator in the language specification it 

makes it particularly easy to implement this MVC approach. The simplicity of the language 

specification helps to simplify our software implementation effort. 

5.3 User Interface Design 

OPN is a graph-based language. We need to visualize the dependencies between Objects and 

Processes in a network. A screenshot is shown in Figure 5-2.  

 

Figure 5-2 A screen shot of OPN Simulation Environment 
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The “graph view” and “matrix view” are provided to help users visualize the dependencies 

between Objects and Processes. All Objects and Processes may have certain user-specified 

properties; we need to provide a mechanism to help users inspect and navigate the data structure 

and content of these properties. The “tree view” is included to enable this type of user interaction. 

When users are interested in viewing all the attributes of a Thing, such as its unique name and its 

data type, a “detailed view” is provided.   

5.3.1 Visualizing computationally generated OPN models 

OPN is a meta-language. Its execution produces instances of “object languages”. The visual 

interface should help users identify and visualize specific instances of object languages. As each 

token moves to a new “Object” (or “place” in Petri Net terms) in OPN, a new entry will appear 

in a list. The order of appearance is sorted by the token’s designated starting time. This “list” is 

shown as a table with three columns. The first column displays the name of the token. The 

second column displays the starting time of the token. The third column displays the “place” 

(Object) name of the token. The “place” is the last Object the corresponding token visited. As the 

user selects the token by using a mouse to click on the “list”, the entire itinerary of the token is 

displayed as an OPN model on the right-hand-side graph view. Each token stores its graph 

traversal itinerary as an OPN model. This mechanically generated OPN model duplicates all 

information stored in the respective Processes, Objects and Pre/Post conditions at the time of 

visit and appends some sequential number to their names to make them unique. In Figure 5-2, the 

generated OPN model represents how the selected token moves through the “meta OPN” model. 

We moved around the Objects and Processes of the generated OPN model to demonstrate its 
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traversal itinerary. The generated OPN model is a computable model just like its “meta OPN”. 

Each of the Processes, Objects and Pre/Post conditions in the new generated model is an 

identical copy of the original Thing.  

Each token also carries attributes assigned by token processing rules embedded in the Processes. 

These attributes are similar to the color attributes of tokens in Colored Petri Net [114]. Users can 

inspect each token’s attributes by using the tree view and detail view below the right-hand-side 

graph view. The horizontal and vertical sizes of these views are dynamically adjustable. Users 

can determine the size of each view by dragging the handles on the dividers of these views. 

The number of views necessary to perform a simulation task is dependent on the specific 

application scenario. Each view presented in this user interface design provides a different way 

to navigate around the data contained in OPN. The next section shows how users can specify 

inference rules and other algorithms using this user interface environment. 

5.4 User Interface Framework for Layered Semantics 

In chapter 4, we presented a layered semantic model to generate tokens and manipulate data in 

tokens. The three semantic models are token generating and scheduling, token processing, and 

variable binding. They will be discussed in the following sections. 

5.4.1 User Interface for Token Generating and Scheduling  

In this user interface, token generating and scheduling algorithms are specified through the 

structure of the graph. As shown in Figure 5-2, the graph view contains a loop made of four 

Things “G”, “D”, “E”, and “F”, and their corresponding Pre/Post conditions. By default, the 
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“__init_state” contains a token ready to be moved over to the following Process “__init_proc”. 

The “Eval” algorithm specified in Section 4.7.1 utilizes this initial condition to generate and 

schedule all the tokens according to the structure of the graph and rules embedded in the 

Pre/Post conditions. In a cyclic structure, such as the one shown in Figure 5-2, the token 

generating sequence will not stop without additional constraints. To specify this constraint, a 

computable expression that returns a binary value must be made easily accessible to the user. 

This is accomplished by providing an “inspection” panel to display and edit the computable 

expression. Inspection panels are displayed by users clicking on the box, ellipse, or arrow of the 

corresponding Thing with the middle mouse button or by holding the “shift-key” on the 

keyboard while clicking with any mouse button. As shown in Figure 5-2 and 5-3, there is a Post 

condition between Process “G” and Object “D”. Its inspection panel is the bottom “window” in 

Figure 5-3. The inspection panel contains a text area that allows users to view and change the 

computable expression. The variables in this expression can come from attributes specified in the 

passing token, or globally defined variables. As demonstrated in Figure 5-3, the function 

“f(x,MAX)” is defined in the global script inspection panel. All Things in the global scripts’ 

residing OPN can access this function, for example, it is used by the G-D Post condition. The 

global script inspection panel may define multiple functions and can be used as a simple 

interactive programming environment. Its implementation detail is discussed in Section 5-8. 
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5.4.2 User Interface for Token Processing 

The user can specify relevant “inference rules” using a Process inspection panel as shown in 

Figure 5-3. (The panel on the upper left hand corner.) In this example, the inspection panel 

shows a computable expression: 

 x = x/(y-x) 

This expression should be treated as a “rewrite rule”. A semi-colon is used to separate rules. For 

example, if three rules are presented as follows: 

z = 3 * x;   x = x/(y-x);   y = 3 

Then the token processing routine as described in Chapter 4, will rewrite these rules as: 

z = 3 * (x/(3-x));  x = x/(3-x);  y=3 

This example is to illustrate that the Process inspection panel is a user interface for logic or rule-

based programming. The rules written in the Process inspection panel describe intermediate 

stages of rule transformation. They are rules that can rewrite other rules. These rules also are 

applied to rules that are embedded in the passing token. The significance of this design is that 

OPN leverages the structure of the graph to decompose rule-based programming to the Process 

level. Users perform rule-based programming within individual Processes. Each Process is an 

independent inference engine. The interactive effect of these rules embedded in different 

Processes is realized via tokens that pass through a series of different Processes or tokens that 

pass through certain Processes repeatedly. This user interface allows different domain experts to 

visualize the global effects of local decisions based on the structure and content of the OPN 

model. Different users need only focus on their area of local expertise and specify rules in the 

corresponding Processes.  
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5.4.3 User interface for Variable Binding 

Users need a convenient user interface component to access computational resources in the 

existing information infrastructure. To satisfy this need, a global script inspection panel as shown 

in Figure 5-3 is incorporated as part of the user interface. It allows users to define arbitrary 

global variable names and specify globally accessible software functions. 

 

Figure 5-3 User Interface Elements for specifying inference rules/algorithms 

 

This variable binding mechanism gives users access to user-specified algorithms, real time 

sensor data, database content retrieval, and legacy software libraries. Through variable binding, 
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we can connect the token processing events and the Pre/Post conditions (the Boolean go/no-go 

functions) to a variety of domain-specific software libraries that are difficult or impossible to 

recreate in OPN. For example, if the OPN model needs to check the real-time price data of 

certain stocks, this piece of information must come from an external data source. It is impossible 

to specify a set of rules to generate this information. We use a user-customizable global script to 

achieve this goal, global meaning with respect to the OPN model that hosts the script.  

5.4.4 User Interface for model detail inspection 

The Objects and Processes in an OPN model may contain complex data structures. Users of 

OPN often need to access detailed information with these data structures. As shown in Figure 5-2, 

when users need to inspect the numeric value of a particular attribute embedded in an Object, 

“Tree View” and “Detailed View” provide the navigation and display facility to inspect the value. 

When users select a particular entry in the Tree View, the Detailed Panel (View) and Matrix 

View will display the information content of the selected Thing based on certain pre-defined 

display rules. In most cases, Detailed Panel simply shows the “name” and “value” of the selected 

Thing as described in Section 4.4.  When an Object represents a discrete probabilistic variable, 

the Detailed Panel not only displays the name of the Object, it also shows the marginal 

probability function in a table form. As shown in Figure 5-4, when a Process denotes a discrete 

conditional probability function, the Detailed Panel displays the associated probabilistic 

measures in a tabulated form. The Graph View also embeds certain display rules that will reflect 

the detailed information content in Things. As shown in Figure 5-4, when an Object denotes a 
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discrete probabilistic variable, the associated discrete states and the probabilistic measures for 

each state are also displayed in the Graph View.  

 

Figure 5-4 Visualizing system states in terms of probabilistic measures 

The Graph View also allows users to input hypothetical “observed states” by using mouse-clicks 

to select and un-select “observed state” for each Object. For instance, Figure 5-4 shows that two 

Objects, “Rain” and “WetGrass”, have their observed states set to one hundred percent “yes” and 

“wet”, respectively.  As users select or un-select an Object’s observed state, the OPN execution 

engine will conduct a “belief propagation algorithm” to calculate all the relevant Objects’ 
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marginal probability values and update the Graph View accordingly. The belief propagation 

algorithm in OPN is based on a graphical probabilistic inference model also known as Bayesian 

Belief Network [66]. In theory, belief propagation algorithms can be implemented in OPN’s 

token scheduling and processing mechanisms [69]. For performance considerations, OPN 

incorporates JavaBayes [115], a dedicated software library to compute the inference results. The 

improved performance allows architects and other stakeholders to interactively visualize the 

global impact of changing variable states. 

5.4.4.1 Visualizing OPN with a large number of nodes 

A simple interface may not be sufficiently intuitive. Human perception derives values from 

interactively arranging the dependency structure of a system to a particular visual orientation. 

That means we need to provide a storage mechanism to retain graphic layout information, such 

as the horizontal and vertical locations of nodes that appears on the screen. This piece of 

information is external to the abstract graph structure presented earlier. This additional structure 

must be stored in the language model in a non-intrusive way. Otherwise, every time certain 

changes are made to the graph the visual aspect of the information would either completely 

disappear or require significant computing time to reconcile the differences. To accomplish this 

data structure need, we simply utilized the “value” attribute of every Thing to store additional 

information about physical layout or other kind of information. The name for each additional 

piece of information is unique within the scope of the “value” attribute. When multiple attributes 

are stored in “value”, the value of Thing turns into a Graph. In other words, it stores the 

attributes as a set of Things in the GraphPart data structure of a Thing.  
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To improve users’ interactive experience with the graph editor and allow different sizes of 

graphs to be visualized intuitively, we incorporated the graphics library “Picollo”, designed and 

implemented by the Human Computer Interface Laboratory at University of Maryland. “Picollo” 

is a Java implementation of a “zoomable user interface” [116]. Users can easily drag their mouse 

to zoom and pan the diagram to inspect the structure and perform data structure edits on the 

graphs visually. The graphics performance of this library is better than many competing open 

source and commercial products. Without this software technology, a visual programming 

environment would not be cognitively appealing to human users. 

5.5 Enabling Technologies 

To attain portability across a large number of platforms and reduce configuration effort, Java was 

chosen as the primary implementation language. This choice enables the OPN simulation 

environment to execute on any computers that run the Java 2 Platform Standard Edition (J2SE). 

All algorithms specified in the earlier chapters are implemented and statically compiled using the 

Java programming language. For model storage and other communication related functions all 

instances of OPN models are stored in an industry standard format called Extensible Markup 

Language (XML). This textual format of data encoding allows one to send OPN models as a 

stream of characters over the network so that different simulation models and simulation results 

could be shared and distributed across multiple locations. For users who desire instant feedback 

from the simulation environment, we incorporate Jython [117], a Python language interpreter 

implemented in Java, to provide an interactive programming mode so that users can issue any 
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Java function calls without having to compile and link the intermediate object code (bytecode) 

[108]. 

5.5.1.1 Layered Software Architecture  

The overall software implementation strategy can be visualized as a layered architecture. Starting 

from the bottom, the source code of OPN is divided into three packages: OPN Persistence, OPN 

Language Core, and OPN User Interface. The overall code structure is presented in the following 

block diagram. 

 

Figure 5-5 Software components 

OPN Persistence is a set of bidirectional data storage and extraction algorithms written in Java 

that translate between OPN models stored in standard XML form and an in-memory data 

structure that can be interpreted by algorithms specified in OPN’s Language Core. The standard 

XML form also enables communication with other software applications that read and write data 

in standard XML form. The Language Core package contains the data structure definition, token 

scheduling/creation and token processing algorithms that are all implemented in the OPN 

language core. Variable binding and algorithms that require responses from remote 

computational services such as Mathematica’s or Matlab’s kernel can be accessed through 
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Jython or specialized adaptors implemented in Java. The OPN Language Core does not have any 

dependency on the OPN User Interface package. This independence allows the Language Core 

package to be deployed to computing environments that do not require user interfaces. The OPN 

User Interface package contains the user event management routines that allow users to navigate 

around OPN models stored in local memory. The software architecture is designed in a way to 

enable any instance of OPN to be inspected by User Interface programs running on remote 

computers.  

5.5.1.2 Language Core and Models of Computation 

On a digital computer, all models of computation are emulated through discrete events. To 

provide a maximum level of flexibility in representing real world systems, the events in OPN’s 

are assumed to be asynchronous. In other words, events that are being executed should not force 

later events to wait for them to finish. This was easily accomplished using Java’s threading 

features. However, when the language needs to be implemented on other languages that do not 

support threading, the asynchronous issue must be explicitly addressed. 

The key reason for us to choose Java as an implementation language is its popularity. A wide 

variety of open source libraries are available. For instance, to perform probabilistic inference 

calculation we incorporated JavaBayes [115], an open source library that includes efficient 

algorithms for solving probabilistic network inference problems. Another key element of our 

language model is the ability to interpret Python expressions through a Java library called Jython 

[117]. Jython gives us an expression interpreter to make Java function calls during model 

simulation time. 



Massachusetts Institute of Technology  Benjamin Koo 
Engineering Systems Division    
 
 
 

 Page 108 of 168  

The combination of Java and Jython gives us a number of powerful libraries to perform string 

manipulation. The token processing mechanism is implemented in Java. For user specified 

functions we use Jython as the programming interface to encode procedural code specification. 

Jython allows users to directly call any functions implemented in Java. If a complex software 

function is implemented in languages other than Java, it is still technically feasible to perform 

function calls through Java’s Native Interface.  

________________________________________________________________________ 

This chapter presented how OPN was implemented. Chapter 6 presents how OPN can be applied 

to large-scale socio-technical projects such as the Apollo Program.  
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6 Case Studies 

This chapter provides three case studies on applying OPN to reason about architectural decisions; 

they are: 

• The Apollo Program (retrospective) 

• NASA’s Space Exploration Initiative (current) 

• Enhanced-Ground Testing Pod 

6.1 The Apollo Program (retrospective) 

President Kennedy’s historical remarks best explain our choice of performing a retrospective 

case study on the Apollo Program using OPN: 

“We choose to go to the moon. We choose to go to the moon in this decade and do the 

other things, not because they are easy, but because they are hard, because that goal will 

serve to organize and measure the best of our energies and skills, because that challenge 

is one that we are willing to accept, one we are unwilling to postpone, and one which we 

intend to win, and the others, too.” 

        J.F.K. September 12, 1962 

 
To paraphrase JFK’s language of persuasion, we choose Apollo as the benchmark project for 

architectural reasoning because it is still hard. It is still expensive and complex. It embodies all 

the qualities of a large scale socio-technical system. We choose Apollo to demonstrate that 

architects must be able to utilize a domain independent language to organize resources and 

measure complexity in their respective projects. A well-executed program such as Apollo must 
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seamlessly connect many human organizations and technical disciplines. Similarly a well-

designed meta-language should serve as a medium to connect organizations and disciplines by 

enabling seamless exchange of knowledge. We will demonstrate that the concept, theory, and 

tools for manipulating meta-language can help architects formally describe spaces of alternatives, 

generate alternatives, and calculate performance metrics. The goal is to demonstrate that meta-

language as an instrument for reasoning is applicable to a wide range of socio-technical 

challenges such as Apollo and the others, too.  

6.1.1 Where an executable meta-language is applicable 

To illustrate that an executable meta-language framework is applicable to large-scale projects 

like Apollo, a series of executable models expressed as OPN object languages are developed 

using an OPN model as the meta-language. Three instances of object languages are defined. 

Mission-Space utilizes the declarative language features of OPN to specify the space of mission 

modes. Mission-Enum utilizes the imperative language features of OPN to generate individual 

mission modes. Metric-Calc utilizes the simulation language features of OPN to perform metric 

calculation. 

6.1.1.1 Specify the space of mission alternatives 

Kennedy’s declarative language defined the game, “Reaching the Moon first”, as a common 

language for two nations of people1. To mobilize a wide range of stakeholders and organizations 

to participate in his game plan, Kennedy used a declarative statement to enable efficient 

                                                             
1 November, 1989, three Americans, Kerrebrock, Young, and Crawley [Korolev, p.306], took pictures of the N-1 
program’s remaining equipment at the museum of Moscow Aviation Institute which confirmed the existence of the 
former Soviet Moon-bound program. 
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communication and justify resource allocation. On the highest level, Kennedy articulated a goal 

in a political language that robustly justified the value of the proposed program across multiple 

system levels and in a global context. Kennedy implicitly specified the space of mission 

alternatives by explicitly stating that Americans must go to the Moon within a decade. 

6.1.1.2 Enumerate mission alternatives 

Architects also need a mechanism to create individual instances of mission alternatives to 

compare and contrast the pros and cons among them before a mission architectural decision can 

be made. A declarative language can only specify what to do; it doesn’t provide the how. 

Brainerd Holmes, Apollo’s program manager, presented the following statements before the 

House Committee on Science and Astronautics, one day after NASA internally selected the 

Lunar Orbit Rendezvous mission mode from other contending alternatives [118, 119]: 

“It was quite apparent last fall this mission mode really had not been studied in enough 

depth to commit the tremendous resources involved, financial and technical, for the 

periods involved, without making … detailed system engineering studies to a much 

greater extent than had been possible previously. … but investigation could go on 

forever, …, at some point one must make a decision and say now we go…” 

Holme’s argument clearly indicated that a comprehensive study is desirable but not affordable, 

even considering the tremendous risk and consequences involved in a politically important 

project. However, the role of an architect for a large socio-techno system is to avoid unnecessary 

risk by making informed decisions. If any critical decisions must be changed at a later time, the 

entire project could fail. The ability to reason about critical decisions with incomplete 

information is an inherent challenge in most architecting process. 
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In the context of the Apollo Program, the LOR decision was announced in 1962. This decision 

was highly controversial. To visualize the gap of available knowledge between the point of 

decision and the point of realization, NASA’s budget allocation for Apollo serves as a good 

reference. The budget allocation over time is visualized in Figure 6-1. 

 

Figure 6-1 Apollo Funding Breakdown 

Figure 6-1 shows that at the point of LOR decision, the Apollo Program was only about one year 

old and the total amount of allocated budget was $160 million. This is less than 1 percent of the 

$19 billion dollar program. This historical evidence demonstrates that architecture decisions are 

often made at a time when limited knowledge is available, and significant risk and uncertainty 

are inevitable. 

6.1.1.3 Making tradeoff decisions about mission architectures  

The Apollo program can be formulated as a constraint satisfaction problem: how to get to the 

moon and back by the deadline given finite resources. In this problem, all three elements can be 
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expressed in definite terms. We know where the moon is, the deadline for touch down is known, 

and the budget is not infinite. However, the number of possible configurations for the program is 

infinite. For an experienced program manager, to reduce complexity of this combinatorial 

problem, the essential variables must be identified and contained. Apollo’s organizational 

structures, technology development tasks, physical devices, and geographical locations of 

various teams evolved around one central theme, the high level trajectory and operational 

sequence of the spacecrafts. It was so important in the program that an official term was assigned 

to it: “mission mode”. Any slight alteration in the mission mode may trigger costly changes 

across the entire program. Therefore, the chosen mission mode is the common protocol that 

defines the organizational interfaces and design activities among various operational and 

technology development teams. If the mission mode were fatally flawed, the consequences 

would be unthinkable. The mission mode, in this context, defines the base architecture of the 

program. As indicated earlier, architects and other stakeholders are extremely interested in 

rigorously reasoning through the space of trajectory alternatives. 

6.1.2 Specifying mission architectures in formal languages 

To reason about Apollo’s architectural alternatives, we need a declarative model to 

comprehensively specify the space of possible trajectories in terms of where and how the 

vehicles move between the Earth and the Moon. To generate all trajectory instances, an 

imperative model is needed to specify an efficient algorithm and generate the complete set of 

trajectories. Finally, we need a simulation model to assess performance metrics for each of the 

generated trajectories. Each of these three models can be considered as an instance of language. 
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All these instances of language can be created using Object-Process Network’s visual language 

construction environment. We develop the three functional languages in successive steps. They 

are identified as: 

1. Mission-Space: the declarative language that specifies the space of trajectory alternatives 

2. Mission-Enum: the imperative language that generates trajectory instances 

3. Metric-Calc: the simulation language that calculates the metrics to compare and rank the 

competing mission architectures  

Describing these abstract languages successively has two advantages. First, we can define a 

domain-specific vocabulary to discuss the formal properties in each area of the architectural 

reasoning task. Second, we can utilize the concepts and structures developed in an earlier model 

to support functional requirements in related reasoning tasks. In other words, these object 

languages are meta-languages themselves. They can be used as a basic language structure and 

incrementally evolve into domain-specific languages to better utilize knowledge in various 

contexts. These three languages also extensively utilize the layered semantic model, as described 

in Section 4.5.1. 

6.1.2.1 Issues related to representational economy 

In a continuous space, the number of trajectories between two spatial locations is infinite. It 

would be infeasible to comprehensively enumerate all possible trajectory models if continuous 

parameters are involved in the enumeration. Based on the theorem proven in Section 4.7.3, we 

know that as long as the meta-model is discrete and finite, we can enumerate all possible sub-

models in finite time. To accomplish this conversion, we need a finite set of operands and 

operators that can comprehensively describe the dynamics of the system. Group theory [120] 
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provides a mathematical foundation to convert formulas that describe continuous spaces into a 

finite set of operators and operands. Frazolli [121] utilized these mathematical methods to 

formulate a modeling technique that “quantizes” the description of continuous dynamic systems 

into a finite set of motion primitives. Frazolli’s idea is illustrated in the following diagrams: 

 

Figure 6-2 A continuous space quantized in discrete vocabulary 

By dissecting the motion of an aircraft or any object into two classes of motion primitives, 

namely repeatable and finite time motions, Frazolli created a simple language that uses two kinds 

of linguistic primitives to describe the space of all possible continuous trajectories. As shown in 

the figure above, the two kinds of motions are shown in different colors. Motions at constant 

speeds or constant accelerations are classified as repeatable motions, such as “Trim”, “Surface”, 

and “Orbit”. All other (non-constant) motion speeds and accelerations are considered to be finite 

time (transient) motions, such as “Direct Decent”, “Orbit Attaining”, and “Orbit Departing”. This 

elegant formulation was applied by Frazzoli to build modeling tools for motion planning of 

autonomous vehicles. To employ these theoretical techniques requires sophisticated 

mathematical knowledge, which may not be intuitively communicable to non-technical 

stakeholders in a program like Apollo. Therefore, a meta-language needs to play the bridging 
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role to hide the technical complexity and communicate the logical ideas to a wide range of 

stakeholders. 

Using a graphical meta-language, such as OPN, the motion primitive idea can be mapped onto a 

bi-partite graph. In the context of the Apollo program, Frazolli’s language of quantized motion 

primitives can be used to model all possible mission modes in OPN.  

6.1.2.2 Representing Apollo’s space of architectural alternatives 

Having illustrated the theoretical aspect of the modeling vocabulary, a domain specific 

vocabulary must be injected to make this system useful. Given the context of the Apollo program, 

a spacecraft’s possible trajectories can be modeled in the following language: Mission-Space. 

 

Figure 6-3 Specialized Vocabulary for the Apollo Program 
Mission-Space is an OPN model that utilizes Apollo-specific vocabulary to describe the space of 

mission mode alternatives. We associate repeatable motions with the Objects, shown as the 

rectangles and finite motions with the Processes, shown as the ellipses. The following textual 

description illustrates the nomenclature in detail: 
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Mission-Space is an instance of Thing. In its ThingCollection, it contains 

Finite_Time_Motion and Repeatable_Motion as its two types of Things.   

Mission-Space ::= ThingCollection, RelationshipCollection, value  

ThingCollection ::= Finite_Time_Motion, Repeatable_Time_Motion 

RelationshipCollection ::=  Pre-Condition*, Post-Condition*  

value ::= starting_location 

where 

Repeatable_Motion is a set of Objects that represents all the repeatable motions in the 

language of mission modes. To make the language easily readable, we use the 

“location” of the vehicle to denote a specific instance of motion primitive. For 

example, “Earth Launch Site” is used as the name for the first repeatable motion 

because the vehicle is at rest where its speed and acceleration are both zero. The 

other instances of Objects are “Earth Orbit”, “Moon Orbit”, and so on. 

Finite_Time_Motion is a set of Processes that represents all the finite time motions (or 

maneuver operations) in the language of mission modes. For each maneuver 

operation, a matching Process is named by a verb in a gerund form to denote a 

specific operational task. For instance, “Direct Ascending” denotes the vehicle 

moving from the “Earth Launch Site” into “Inter-planetary Transit”. During this 

transitional phase, the vehicle is moved through a series of complicated acceleration 

and deceleration stages. The vehicles’ speed and acceleration profiles are constantly 

changing, therefore, making it a finite time motion. The other finite time motions that 
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were considered by the Apollo program office are represented as Processes 

respectively. 

Pre-Condition is a set of arrows that specifies the acceptable transitions between 

repeatable motions (Objects) and finite-time motions (Processes). Each arrow 

represents a binary conditional statement that determines whether a vehicle can or 

cannot be transitioned from a specific repeatable motion state into a specific finite-

time motion. By default, the conditional statements all evaluate to true. Users can 

customize these conditional-statements based on domain-knowledge. 

Post-Condition is a set of arrows that specifies the acceptable transitions between finite 

time motions (Processes) and repeatable motions (Objects). As the complementary 

knowledge of Pre-Condition, it checks whether the finite time motion can be 

stabilized into a repeatable time motion. By default, the conditional statements all 

evaluate to true. Users can customize these conditional-statements based on domain-

knowledge. 

value is a Thing that specifies the vehicle’s starting location. It specifies the 

boundary/initial condition of each trajectory alternative space. For the Apollo 

program, the starting-location is evidently the “Earth Launch Site”. 

6.1.2.3 Mission-Space is a declarative language 

This description of alternative space provides the formal syntax and semantics to describe all 

possible instances of architectural alternatives. The Objects and Processes in the above 

mentioned models serve as the nouns and verbs of the mission mode language. Instead of giving 

each mission mode a specific name, each mission mode is a unique composition of motion 
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primitives. The graph structures of these models are analogous to the grammatical rules of these 

languages. The arrow directs the possible sequential transitions between two primitives. In the 

classification scheme of languages, these descriptive languages belong to a class of languages 

called “declarative language”. Declarative languages only specify what can be said without 

providing imperative instructions on how to create individual instances of them.  

6.1.3 Generate all possible trajectories 

The models presented above only serve as declarative specification of architectural alternatives. 

It only shapes the space of alternatives without providing a mechanism to produce concrete 

instances. In practice, architects need efficient algorithms to generate concrete instances or 

distinctive classes of architectural alternatives, so that they can further investigate the qualities of 

varying architectural alternatives. An imperative language is needed to specify the sequences of 

actions that computing devices could follow, to generate architectural instances sequentially. 

Using the motion quantization methods, we have compressed the space of continuous motion 

into a language based on discrete representational symbols, we now need to introduce imperative 

semantics to the language. An imperative language must allow its users to specify the execution 

order of its instruction sets. 

6.1.3.1 An imperative language extension to Mission-Space  

To enumerate all possible mission modes, we need to specify an algorithmic model to construct 

all the possible mission modes. Mission-Enum is created to provide imperative language 

features to the declarative language Mission-Space. Based on information already encoded in 

Mission-Space, we can utilize the graph structure to control the direction of alternative space 
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exploration. Therefore, Mission-Enum extends Mission-Space by adding a generic execution 

algorithm that is applicable to all “programs” written in the language Mission-Space. The 

algorithm can be specified as follows: 

Mission-Enum.Eval 

Input(Mission-Space, destination Object)  

Get the “starting_location” Object from Mission-Space 

Create a token that represents a vehicle 

Set the starting_time of the token to “0” 

Place the token into the Token Queue of the “starting_location” Object 

 Trigger the Eval operator of the “starting_location” Object  

 While at least one Object’s Token Queue is not empty 

  Wait 

If all Objects Token Queues are empty 

  Report the History List the specified destination Object 

 

In this language, all the Objects and Processes implement the same Eval algorithm as specified 

here. 

Object.Eval # All Objects are instances of Repeatable Motion 

Input(nil) # no input required 

Get the token with earliest starting time in local Token Queue 

 For all Pre-conditions of this object 

     Trigger Pre-Condition.Eval with the token as input 

For each Pre-Condition that evaluates to true 

Create a new token  

Copy all the data content of the selected token to new token 
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Get the corresponding process of this Pre-Condition 

 Set the starting_time of the new token based on current time 

Trigger Process.Eval(new token) # new token as the input 

Repeat Object.Eval 

Until Token Queue is empty 

 

The algorithms for Process’s Eval is specified here. 

  

Process.Eval # All Processes are some instances of finite time motion 

Input(token) # an incoming token is required 

Construct or modify the token’s trajectory information by: 

Add the following Things to the incoming token’s trajectory 

The token’s originating Object, and the Pre-Condition  

Add the duration of processing time to the token’s starting_time 

 For all Post-conditions of this process 

     Trigger Post-Condition.Eval with the transformed token as input 

For each Post-Condition that evaluates to true 

Duplicate transformed token data into the newly created token  

Get the corresponding object of this Post-Condition 

 Construct or modify the new token’s trajectory information by: 

Add the following Things to the token’s trajectory 

The current Process, and the Post-Condition  

Place the token into the Token Queue of this Object 

Place the same token into the History List of this Object 
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Executing the Eval algorithm of Mission-Enum, returns a complete set of feasible mission 

modes. 

This approach has the following properties: 

1. It visually and sequentially resembles how spacecrafts travel through space, therefore 

making it easy to intuitively verify the dynamics of the enumeration algorithm. 

2. All the tokens placed in varying Objects’ History List by evaluated Processes are verified 

by all the constraints specified in the Mission-Space language. All generated tokens in 

the History Lists are considered to be feasible by definition.  

3. Each token records its trajectory information in terms of all the primitive motions and 

Pre/Post-conditions it visited. Therefore, once the Mission-Enum algorithm is executed, 

it not only creates a report that contains a set of possible mission modes. Each mission 

mode report is a computable model by itself. One can think of Mission-Enum as a 

generic enumeration engine for graph-based simulation models. 

6.1.3.2 Computational Results of Mission-Enum  

The following screen shot illustrates the user interface and one instance of the mission mode 

automatically generated by the Mission-Enum language. 
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Figure 6-4 A Screen Shot of the OPN Simulation Environment 

This interface displays the original model that specifies the space of mission alternatives on the 

upper left hand corner. The table in the middle lists all the generated mission modes. As a user 

selects one of them, a mission mode is displayed in graphic form on the upper right hand corner. 

Each mission mode is stored in a token as an OPN model. The OPN model can be extracted and 

stored as a separate model to perform more focused analysis on that mission mode. This interface 

provides an interactive environment for architects and other stakeholders to visualize mission 

mode variations. 

6.1.4 Calculating performance metrics 

Metrics of architecture are necessary means to compare the goodness of architectural alternatives. 

To arrive at a decision, a preference order must be established between all available mission 

modes. The meta-language should provide the means to compute performance metrics, otherwise, 
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a large set of unstructured lists of alternatives would provide little or no value to decision makers. 

In the case of the Apollo Program, the key driver that ultimately determined the mission mode 

was the size of the rocket [122]. The rocket, Saturn V, which was ultimately developed in the 

Apollo Program, is still the largest rocket ever built. This high technical achievement also signals 

high risk. Finding mission modes that would reduce the required rocket size would have been of 

great interest at the point of decision. 

6.1.4.1 Calculating performance metrics using Metric-Calc  

Mission-Enum gives us the ability to generate instances of mission modes. We now need to 

perform user-specified metric calculation for each of the generated mission modes. In this case, 

we would be interested in calculating the total mass and the probability of operational success of 

each mission mode. The new language should be able to support an arbitrary number of metrics 

as needed. As demonstrated earlier, Mission-Enum, only specifies the algorithm for generating 

missing mode instances, but does not have an explicit mechanism to incorporate detailed 

numeric or symbolic reasoning. To incorporate this new feature to Mission-Enum, we add these 

metric-calculation language features to it and call this new language: Metric-Calc. There are 

many advantages to directly embed metric calculation features in a language similar to Mission-

Enum; it provides a programmable interface to eliminate the unnecessary enumeration tasks 

based on calculated metric values. For example, if a certain mission presents an unacceptably 

low probability of success, a corresponding Pre/Post-Condition should detect the case and 

determine whether to generate mission modes according to a user specified Boolean expression. 
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6.1.4.2 Metric-Calc as a simulation language 

The ability to perform scenario-based metric calculation is a key feature of simulation modeling 

languages. Simulation modeling languages provide a computational instrument for architects to 

observe certain performance metrics given a set of what-if scenarios. In the field of space 

mission design, metric calculation routines can be quite complex. Some of them require iterative 

procedures that must be implemented in high precision algorithms and/or high performance 

programming languages. To accommodate performance metric calculation features, Metric-Calc 

must provide a convenient interface for users to specify either numeric or symbolic expressions.  

Therefore, the Metric-Calc language extends Mission-Enum by including an inference engine 

that can handle arithmetic equations and incorporate results from procedural algorithms. In the 

OPN modeling environment, these two features are provided through specifying rules in 

Processes and binding variables declared in “Global Script”. Two levels of programming 

interfaces are specified. All the Objects and Processes in the same language instance have access 

to variables, inference rules, and procedural algorithms defined in the “Global Script”. On the 

Process and Pre/Post Condition (Relationship) levels, all rules are specified in terms of Boolean 

expressions or arithmetic formulas. These rules differ from the declared variables and rules in the 

“Global Script”. First, they are not visible to other Processes or Pre/Post Conditions. Therefore, 

it allows users to control and isolate unnecessary interactions between variables and rules. 

Second, these localized rules are converted into inference graphs as explained in Section 4.7. 

Each token processing event creates a different inference graph based on a different execution 

context. The dynamically generated inference graph is literally a new program customized to 

solve an application specific problem. When the program does not have all the required numeric 
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values to return a numeric answer, it retains all the accumulated knowledge in a graph structure. 

If there are certain variables defined by functions that are yet to be defined, it simply treats the 

function as a symbolic variable. Whenever the numeric values or function definition are supplied, 

it will be incorporated into the inference graph. As the token moves around the OPN, it 

accumulates more knowledge in different contexts, and enriches the reasoning power of the 

inference graph incrementally.  

This incremental knowledge accumulation technique is one way to realize the concept developed 

in Domain Theory [123] and the Information-Gap Decision theory [14]. It provides an algebraic 

construct to temporarily store the “uncertain” factors in the reasoning process. As more 

knowledge becomes available, it will substitute the symbolic placeholder with more specific 

numeric or symbolic values. Since functions in the OPN modeling environment can be custom 

defined, it can be a probability distribution function, fuzzy membership function or a 

deterministic calculation routine. 

6.1.4.3 Automatically compose metric calculation formulae 

Another key issue relates to the complexity of formula construction. As Mission-Enum 

generates complex mission modes, the metric calculation routine may have been different for 

each of the mission modes. We need to formulate a model of computation so that we can rely on 

the information embedded in all specified language models to infer the proper composition of 

metric calculation formulae. In other words, we need to create a language that can automatically 

construct metric calculation formulas based on the context of each mission mode. 

To demonstrate automatic composition of formulas, calculating total mass of the vehicle at 

launch time serves as an example. The formula that calculates the required fuel mass based on a 
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given payload and specific impulse for the fuel is called the Rocket Equation. It takes the 

following form: 

 

where: 

dV :  difference in velocity over the entire period of maneuver (ΔV) 
g:  gravitational constant 
Isp:  specific impulse of the fuel employed 
MTotal:  Total mass 
Mstruct:  Structural mass 
Mpayload: Payload mass 

 

The rocket equation is often solved backward using a desired payload mass to infer the total 

mass at launch time. This backward calculation process must accommodate variations in 

structural mass and specific impulse of the chosen fuel. These two values may change due to 

varying spacecraft configurations and fuel choice. Since each mission mode representing a 

different sequence of Finite_Time_Motion often implies a different spacecraft configuration, the 

rocket equation takes on a slightly different form for each mission mode. Due to these variations, 

the calculation of initial mass must be manually formulated and programmed for each mission 

mode.  

This highly simplified composition of the rocket equation already shows signs of complexity. 

This equation could become even more complicated when multiple fuel types and ratios between 

the structure mass and propellant mass change. This thesis used the numeric assumptions 

presented in Houbolt’s report [124] to perform vehicle weight calculation. 
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To calculate probability of mission success, we treat the model as a Markov Network [66]. The 

probability measures associated with each Process can be stated in either numeric or symbolic 

terms. For the purpose of illustration, we used the following numeric assumption. This numeric 

assumption is based on an in-person interview with Dr. Robert Seamans [125]. The focus is not 

about the exact numeric values, but the relative levels of risk considerations. 

To earth orbit (first launch) 0.98 To earth orbit (second launch) 0.95
Ascend to lunar orbit 0.98 Rendezvous in earth orbit 0.95

Rendezvous in lunar orbit 0.95
Descend to lunar surface from orbit 0.95

Direct earth arrival 0.95

Departure from earth orbit 0.99 Direct ascend from earth 0.9
Lunar orbit entry 0.99 Direct descend to lunar surface 0.9

Ascend from lunar surface 0.9

Lower than reference risk

Reference Risk Higher than reference risk

Much higher than reference risk

 

Figure 6-5 Varying levels of mission risk 

Instead of having engineers manually code up a unique total mass calculation routine for each 

mission mode, the Metric-Calc language automatically constructs a computable expression for 

each of the mission modes. It utilizes the locally defined transformation rules to incrementally 

modify the algebraic content of various instances of rocket equations. This symbolic 

manipulation mechanism eliminates the need to perform backward calculation. By assigning 

local variables and isolating them from the global context, dVp and Ispp can be evaluated within 

their local context or bound to a global variable at a later time during the enumeration process. 

As long as all the numerical values and calculation routines are defined, a numerical value would 

be calculated and returned. Otherwise, a structurally equivalent computable expression would be 

produced and the corresponding string representation would be returned. Using a graph-based 

structure to localize the transformation rules in Processes, the expression construction process 



Massachusetts Institute of Technology  Benjamin Koo 
Engineering Systems Division    
 
 
 

 Page 129 of 168  

simply follows the execution paths of Mission-Enum. This approach is vastly different from 

propagating changes due to local variation. Most of these change propagation techniques only 

update dependent values in numeric terms [126].  Mission-Enum, in contrast, can use the 

changed information to enumerate a new set of computable models, each representing a new 

mission mode. At the early stage of architecting, creating a set of computable models can be 

more revealing than just observing some numerical value change. In any case, OPN allows 

architects to dynamically construct new computable models and expressions. And these models 

and expressions can be evaluated into numeric values as sufficient knowledge becomes available.  

6.1.4.4 Visualizing calculation results 

Figure 6-6 shows the metric calculation results of two key decision metrics, weight of the total 

vehicle at launch time, and probability of mission success. Based on this two-dimensional data 

plot, decision makers can apply Pareto Front analysis to visually reason about their tradeoff 

decisions. For example, if one prefers lowest amount of risk, one might choose “EO+LO”, the 

mission mode that uses one vehicle that travels through both Earth Orbit and Lunar Orbit with no 

rendezvous operation. In contrast, one might choose to use “EOR+LOR” as an alternative 

mission mode, which requires the least amount of total vehicle weight for each rocket at launch 

time. The mission mode chosen in the Apollo Program was the “LOR+EO” alternative. As 

shown in Figure 6-6, the “LOR+EO” mission mode is also located on the Pareto Front. Via 

visual inspection, the “LOR+EO” alternative is significantly lighter than the “EO+LO” mission 

mode, while having a higher probability of success than all of the other alternatives. 
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Figure 6-6 Visualizing a Two-Dimensional Metric Space 

 

Evidently, other performance metrics can be calculated using the same mechanism. The language 

Metric-Calc may calculate many performance metrics as long as the computational knowledge 

and resources become available. 

6.2 NASA’s Space Exploration Initiative (current) 

We also applied this modeling approach to NASA’s Space Exploration Initiative [127]. The 

project is called: “Concept Evaluation and Refinement (CER) Project”. The goal was to 

understand the space of possible mission architecture alternatives for space transportation 

vehicles that carry humans from Earth to the Moon or Mars. We will describe how OPN is used 

in this project below. 
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6.2.1 OPN as a mission-mode generator 

The project started in September 2004, and within the course of three months we have 

constructed an executable model to enumerate the mission possibilities from Earth to Moon and 

Mars. We also identified many user interface improvement issues that were resolved in time to 

deliver useful results. In this project, we found that Mission-Space and Mission-Enum can be 

directly applied to serve the analytical tasks of this new NASA program. 

The architecture analysis project includes a team of four people. Another twenty people 

developed Vehicle Models, ΔV Tool, Metric calculation, and LV Constraints Models. The 

project’s workflow is illustrated in Figure 6-7. 

 

Figure 6-7 Workflow of the current NASA architecture study (Courtesy of Simmons) 

One person was in charge of using OPN to create all the architectural alternatives. Due to 

memory and time considerations, various versions of Mission-Space (as described in Section 

6.1.2) are created to generate up to 1000 mission architectures for each run. These models are 

very similar to the Mission-Enum model described in Section 6.1.3. OPN as a domain-neutral 
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modeling language allows other team members to cross-examine the assumptions made in 

different versions of OPN models. Once a reasonable Mission-Enum model is constructed, it 

generates all feasible architectural models.  

6.2.2 OPN integrated with other software tools 

The integration tool and optimization tool depicted in Figure 6-7 take the results produced by 

OPN in textual data format and feed them into different performance metrics calculation routines 

created by the other twenty collaborators. Figure 6-8 shows a diagram that represents a “family” 

of missions that are defined by one entry in OPN generated mission architecture.  Each of the 

circles on this diagram represents a mission that fits a feasible Earth to Mars transportation 

architecture. 

 

Figure 6-8 An architecture visualization tool driven by OPN’s output (Courtesy of Simmons) 

At the time of this study, the concept of Metric-Calc has not been fully demonstrated to the team 

working on the NASA project. Therefore, the team proceeded to create a separate set of tools 

that take Mission-Enum’s generated mission architecture data to feed into a different tool. From 
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a software integration viewpoint, it is possible to incorporate the calculation of cost, risks, and 

ΔV calculation depicted in Figure 6-7 within OPN. The calculation example demonstrated in 

Section 6.6 of this thesis validates the feasibility. 

6.2.3 Observation on OPN’s usability 

Three key findings resulted from this new NASA program: 

1. We found that OPN is capable of expressing most of the mission variation requirements 

without adding new language constructs. 

2. We also found that by organizing missions into segments of a graph provides an intuitive 

way to manage complexity and communicate design ideas. 

3. We found that it is very simple to refine the OPN model of space transportation as new 

knowledge becomes available. Incorporating new knowledge simply involves the adding, 

removing or changing of localized properties in Objects, Process, or Pre/Post 

Conditions. 

6.3 Enhanced Ground Testing Pod 

Architects often need to make architectural decisions based on incomplete information. This 

section uses the Enhance Ground Testing Pod (EGT-Pod) as an example to illustrate how OPN 

supports the architectural reasoning process under incomplete information.  



Massachusetts Institute of Technology  Benjamin Koo 
Engineering Systems Division    
 
 
 

 Page 134 of 168  

6.3.1 What is an EGT-Pod 

EGT-Pod is an Inertia Measurement Unit (IMU) testing system under development at Draper 

Laboratory. An IMU is a sensor system that detects the position and altitude of a missile by 

measuring the accelerations and rotations applied to the missile's inertial frame. The IMU to be 

tested is a part of Trident missile’s Mk6 guidance system. The objective is to perform non-

destructive tests of IMUs by operating IMUs inside the Pod while the Pod is carried aloft by an 

F-15E Strike Eagle aircraft (see Figure 6-9). 

 

 
Figure 6-9 The EGT-Pod and its carrying vehicle (Courtesy of Chris Anderson) 
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Trident missiles are designed to launch from nuclear submarines, operated by the Navy. Under 

certain contractual agreement with the Department of Defense, Draper Lab must design EGT-

Pod based on aircraft operated by the Air Force such as the F-15E mentioned earlier. This design 

requirement creates additional logistic concerns. It raises the issues of coordinating equipment 

and personnel availability across two very large organizations. These logistic concerns also have 

impact on the architectural reasoning process. The goal is to incorporate these logistic concerns 

into the architectural reasoning process. 

6.3.2 Alternative architectures of EGT-Pod 

Two architectural alternatives are proposed. As shown in Figure 6-10, the Pod can be either 

mounted under the belly or under the wings of the aircraft. Different mounting configurations 

present different consequences in terms of aerodynamic performance. The belly mount option 

allows the aircraft to better accelerate during the test, therefore generating higher quality test data. 

In contrast, mounting under the wing allows each flight to test two Pods, therefore requiring 

fewer flights to complete the test operation. A shorter completion time for the test usually 

reduces the cost of flight operations and makes it easier to fit the schedule of available pilots and 

equipment. 

 

Figure 6-10 Two competing architectural alternatives 
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Choosing between “belly mount” and “double mount” is a challenge because precise 

relationships among customer preference, average test completion time, and data quality cannot 

be formulated ahead of time. However, this decision must be made during the early stage of the 

system development because changing it at later stages would imply significant design rework 

and incur changes on the logistic plan for the proposed test operations. These consequences 

motivate the architects of EGT-Pod to make a decision as early as possible. It also characterizes 

the fact that architects must reason through the consequences of decisions with incomplete 

information. 

6.3.3 Infer global consequences from local knowledge  

Given incomplete information, architects must present a strategy to acquire sufficient 

information to make an adequate decision. The decision would have been obvious, if the 

customer specifies that throughput (measured by the time required to complete a series of test) is 

always more important than data quality. The architect can simply choose the “double mount” 

configuration and proceed with the engineering development effort. However, most customers 

would usually demand the highest possible throughput and the best possible data quality. The 

lack of explicitly stated customer preference is often a challenge for architectural reasoning. 

However, by structuring incomplete information in a network structure, additional insight could 

emerge.  

As shown in Figure 6-11, the Inference Result table shows a base scenario for the 

analysis. The “Customer Preference” Object is assigned with equal preference between 

“throughput” and “data quality”. These two possible states of “Customer Preference” Object are 
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both assigned with fifty percent marginal probability. One can apply Bayes rule to calculate the 

marginal probability of preference order and expected value of other related variables. The 

calculation is based on the Bayes inference rule:  

P(A, B) = P(A|B) P(B)  

where  

P(A,B) represents the joint probability of A and B, 

P(A|B) represents the conditional probability of event A given B.  

P(B) represent the probability of event B. 

By multiplying the marginal probability distribution of “Customer Preference” Object with the 

conditional probability table embedded in “Architecture Selecting” Process yields the marginal 

probability values of “Mount Configuration” Object. The inference result for all four Objects in 

Figure 6-11 is summarized in the “Inference Result” table.  

 

Figure 6-11 Probabilistically infer global effects given local knowledge 
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When the probability distribution function is associated to a quantitative measure the expected 

values can be estimated. Figure 6-11 shows that “Customer Preference” Object has an equal 

probability distribution. This indicates that the lack of customer preference between 

“throughout” and “data quality” makes it impossible to choose between “double” and “belly” 

system configuration. However, by continuously applying the statistical inference calculation, 

Figure 6-11 shows that “Session Completion Time” is estimated at 9.83 days and “Data Quality” 

has a 58 percent chance of getting “high” quality results. These inferred probability values 

provide physically or contextually meaningful quantities that can be presented to the customer or 

other stakeholders. It provides a communication instrument between architects and their 

customers to negotiate the what-if scenarios in contextually meaningful terms. 

One may argue that it is difficult to formulate domain-specific knowledge in accurate 

probabilistic measures. As Glen Shafer once said: “Probability is not really about numbers, it is 

about the structure of reasoning.” Moreover, it is relatively easy to extend the structure of the 

network by adding new nodes. Architects and stakeholders can incrementally adjust the network 

to fulfill their evolving understanding and communication needs. The probabilistic inference 

mechanism can support the communication process by computing the marginal probability for all 

Objects. When necessary, simple calculation rules can be added to compute each Object’s 

corresponding expected values. In other words, an OPN model equipped probabilistic inference 

engine allows architects and stakeholders to negotiate architectural decisions in quantitative 

terms under uncertainty.  
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To support architectural negotiation between non-technical stakeholders, the marginal 

probability values for all Objects can be updated and displayed graphically and interactively. The 

user interface design is discussed in Section 5.4.4. 

6.3.3.1 Bidirectional inference mechanisms 

OPN allows architects to utilize statistical data to infer system states bi-directionally. The OPN 

model in Figure 6-11 functions as a Bayesian Belief Network (BBN). In a BBN, the arrows do 

not indicate the directions of successive event sequences; they only indicate the direction of 

inference. The Bayes rule provides a formula to reverse the direction of inference. For example, 

given joint probability P(A,B) and marginal probability P(A) or P(B), one can calculate the 

corresponding conditional probability values. The calculation formula is shown as follows: 

P(A|B)  = P(A,B) /P(B)  P(B|A) = P(A,B) / P(A)  

BBN is a general-purpose tool for reasoning about decision under uncertainty. It allows 

architects to compose domain-specific knowledge in a network, and then infer direct statistical 

relationships among any set of variables in the network. This probabilistic inference mechanism 

is often called “belief propagation”. The algorithm can be implemented using OPN’s token 

generation and scheduling execution model. Kschischang et al. [69] shows how to realize belief 

propagation based on token generation and scheduling. Section 5.4.4 discusses the software 

implementation of belief propagation in OPN.  

 
______________________________________________________________________________ 

This chapter shows that OPN can serve as a formal language to specify, generate, and construct 

computable models of either dynamical or static systems. It also provides symbolic, numeric, and 
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probabilistic computational features to support architectural decisions. The following chapter 

will discuss OPN’s intended roles in the field of system architecting. 
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7 Discussion 

This chapter presents the contribution of this thesis to the field of system architecting.  

7.1 Key Contributions 

The main contribution of this thesis is to present a domain-neutral executable meta-language that 

automates certain architectural model construction tasks. The automated tasks help reshape 

architectural reasoning processes on three operational levels. First, architects may utilize features 

of the meta-language to formally specify the space of possible systems. Conventionally, 

architectural reasoning processes rely on system description languages such as E-R model, UML, 

or other declarative modeling languages to specify system requirements. These languages 

conventionally lead the modeling effort to describe specific instances of systems. In contrast, 

OPN as a domain-neutral meta-language provides a more flexible and abstract vocabulary that 

allows architects and stakeholders to broadly specify the space of possible systems in formal 

terms. Second, executable meta-language allows architects to enumerate and generate executable 

system models. Currently, architects often use generative modeling techniques such as Genetic 

Algorithms or manually created morphological matrices to sample some parameterized 

representation of system models. OPN’s model generation and enumeration features enable 

architects to automatically generate and enumerate executable system models. Third, it allows 

certain metric calculation routines to be composed automatically. Constructing simulation 

models and relevant performance metric calculation routines is often a tedious and time-

consuming manual process. OPN’s layered semantic model provides programming features that 
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automate certain model construction tasks. In many cases, complex metric calculation routines 

can also be automatically composed. 

7.2 OPN addressing the needs in system architecting 

In Chapter 1, this thesis argues that architectural decisions are derived from interactions among 

architectural decision-makers bounded by their respective knowledge and resource constraints. 

Wegner’s Interaction Machine [24] and Gelernter’s “Mirror Worlds” [128] concepts provided 

the inspiration to model complex systems in terms of communication and computation. Simon’s 

“Bounded Rationality” [129] argument also influenced our thinking to model decisions based on 

available computational resources. Rational architects have the following communication and 

computational needs:  

1. An explicit representation of the space of decision alternatives to communicate with 

relevant stakeholders. 

2. An efficient procedure to generate alternative architectural instances for more detailed 

scenario analysis and investigation. 

3. An effective method to compute or assess the performance metrics that adequately 

reflects the variations in the generated architectural alternatives.  

In Section 6.1.2, we used OPN as a declarative language. It served as a representational medium 

to explicitly specify the space of decision alternatives. In Section 6.1.3, OPN was used as an 

imperative language. The token generating and scheduling algorithm automates the architectural 

instance generating procedures. Since OPN allows users to specify rules that control the token 

generating and scheduling events, users can apply domain specific knowledge to make the 
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alternative generation procedures focus on relevant subsets of architectural alternatives. In 

Section 6.1.4, we used OPN as a simulation language. It utilizes the variable binding mechanism 

to incorporate legacy code and domain-specific calculation routines to perform metrics 

calculation tasks.  

7.2.1 OPN implementation meets the requirements 

The OPN executable meta-language is a software tool designed to support architectural 

reasoning. The list of requirements for this tool is derived from our observation delineated in 

Section 3.3, and repeated here: 

1. Formally represent and specify the space of architectural alternatives by reflecting the 

knowledge of system variability across multiple knowledge domains 

2. Automatically generate, enumerate and encode all instances of architectural alternatives 

specified in the meta-language 

3. Adaptively calculate metrics associated with each generated architectural instance to 

help architects and other stakeholders perform tradeoff analysis on all instances of 

architectural alternatives  

These requirements are met and demonstrated in the examples illustrated in Chapter 6. Other 

related implementation requirements are: 

1. Subsume various models of computation 

2. Computationally generate individual instances of architectural models  

3. Mechanically construct metric calculation routines for each architectural models 

4. Support layered abstractions to better integrate different types of system knowledge  
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5. Provide a diagrammatic user interface to facilitate human-machine interactions 

6. Allow for the tool to be deployed across standard computing platforms 

7. Enable both individual and collaborative modeling and simulation tasks 

In Chapter 5, we presented the software engineering aspects of OPN and showed that OPN can 

support the language requirements. It provides a layered semantic model to subsume different 

computational models, and its meta-language feature can generate individual instances of 

computable models or “object languages”. It can mechanically construct arithmetic expressions 

for metric calculation. It supports a hierarchical data structure and layered semantic model to 

represent knowledge at different abstraction levels. It also provides a diagrammatic user interface 

that enables users to visualize the data content, structure, and algorithmic dynamics. 

It also showed that OPN can be implemented and deployed using popular software 

implementation tools and it runs on machines that supports Java’s J2EE standard. Its threading 

features and XML-based language model allows users to share models. OPN also provides a 

standard output mechanism to allow different tools to share simulation results. 

7.2.2 Meta-language and qualitative methods 

This thesis treats all aspects of design as language manipulation or language translation tasks. It 

aims to support the declarative, imperative, and simulation aspects of knowledge representation 

tasks using one flexible and executable language. In Section 2.1.2, we mentioned that existing 

system design methods such as Language Processing (LP), Design Structure Matrix (DSM), and 

Qualify Function Deployment (QFD) are useful in concept exploration and high-level system 

decomposition analysis. However, due to the qualitative nature of these methods, they usually 
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only provide directional guidance to a complex project. These methods can be useful in declaring 

a general direction of a design space, however, the semantics of these methods lack rigor to 

specify the dynamic properties of a complex interactive system. For example, DSM uses a binary 

matrix to represent the information flows or structural dependencies between subsystems. These 

binary matrices are often insufficient to encode the detailed information content embedded in 

subsystem relationships. Therefore, two systems with identical binary matrix markings may not 

have the same structural and behavioral qualities. Similar to DSM, QFD and Language 

Processing methods work for high-level system design. QFD provides a declarative vocabulary 

for stakeholders to establish a preference rank order of certain declared qualitative functions of a 

system. The preference order only provides some guidance on which function is more important 

than the others. It doesn’t provide additional structural or behavioral description to inform further 

design activities. Language Processing Method is also useful in guiding the thought process of 

system designers. However, it is designed as a tool for visualizing the thought process, not as a 

tool for detailed technical analysis. 

 In contrast, an executable meta-language allows users to incrementally add additional structural 

and behavioral content as more detailed knowledge becomes available. In our implementation, 

OPN as a diagrammatic tool can also serve as an electronic blackboard for these qualitative 

analysis methods such as DSM, QFD and the Language Processing Method. As shown in Section 

5.3 and 5.4, the relational dependencies between Objects and Processes can be visualized as a 

matrix. In other words, an executable meta-language can add user interface components to 

support DSM analysis as a way to communicate the structure of the system with stakeholders. 

Similar approaches can be applied to QFD analysis. In terms of the Language Processing Method, 
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OPN can serve as an electronic blackboard to support the process of extracting meaningful words 

and concepts in interactive brainstorm sessions. In other words, OPN as a graphical meta-

language is designed to support the information processing needs in qualitative analysis methods.  

 

7.2.3 Meta-language and quantitative methods 

Quantitative design theories such as Axiomatic Design, and other quantitative methods based on 

Information Theory, Network Theory or Game Theory can all benefit from adopting a formal 

and executable language. These quantitative methods usually involve significant amount of 

mechanical calculation tasks. For example, Axiomatic Design requires the rearrangement of the 

matrix as well as the calculation of information content for each of the alternative designs. These 

calculation tasks can be automated based on the algorithm specification provided with the theory. 

At the same time, Information Theory, Network Theory, and Game Theory often involve 

sophisticated probability or payoff function calculations. A graphical and executable language 

such as OPN can incorporate these calculation routines and support these design theories on an 

operational level. In Section 6.1.4, we showed that OPN calculated mission success probability 

as a Markov Network [66]. The structure of a tradeoff decision can also be formulated as a 

“graphical game” [42], which is a variation of a graphical probabilistic model. In Section 2.2.4 

and Section 4.8, we discussed how probabilistic graphical models can be incorporated into the 

meta-language execution engine. In general, when working on quantitative design evaluation 

tasks, an executable meta-language serves the function of a simulation language to assess the 
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global consequences of system interactions. In Chapter 5 and 6, we showed that OPN is designed 

to support both qualitative and quantitative design analysis methods.  

7.3 OPN as an executable meta-language 

OPN is a graphical executable meta-language designed for system architects. The design of OPN 

is influenced by ML and Lisp. For example, the notion of having a meta-operand and meta-

operator in OPN is a direct descendant of Lisp. However, ML and Lisp are textual programming 

languages designed for mathematicians and computer scientists; they are not suitable for 

communicating high-level system architectural ideas with non-technical stakeholders. We were 

also influenced by Category Theory, which is a graphical meta-language for mathematics, but 

not an executable language. We found Category Theory’s concept of manipulating mathematical 

functions and entire classes of mathematical objects as the operands of a reasoning process can 

be useful to system architects. It provides a formal framework to reason about the relationships 

between functions and forms in a complex system. Certain transformation rules in Category 

Theory such as function composition, and natural transformation can be made executable. These 

executable features are implemented in OPN. 

7.3.1 OPN and pattern languages 

Pattern languages are mostly designed to be declarative languages. They help architects to 

decompose a larger problem into smaller chunks of well-understood design patterns. However, 

most pattern languages lack the imperative language feature to specify how to compose various 

patterns into a specific instance of design. Therefore, pattern languages can be used as the basic 
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vocabulary for the declarative aspect of OPN. Then, OPN’s imperative language features can be 

utilized to automatically generate possible instances of architectures. OPN provides a generic 

imperative model to combine and evolve patterns in pattern languages. OPN is a generative 

model; it only requires users to specify the space of possible alternatives. The token generation 

and scheduling algorithm in OPN will try to enumerate all possible instances of architectures. 

Different instances of architectures are computable models by themselves and can be further 

refined and compared to derive more variations as users interact with them. In other words, by 

combining pattern languages with generative modeling features, OPN can be used by pattern 

language practitioners to explore system design in an automated fashion.  

7.3.2 OPN as a system description language 

System description languages such as E-R diagram, UML and OPM laid the foundational work 

in modeling complex socio-technical systems. They demonstrated that graphical models could be 

practically deployed in system development, software modeling and, to certain extent, automatic 

code generation for database systems or real-time control systems. They also have obvious 

limitations. As mentioned in Section 2.2.2, E-R diagram primarily focuses on the static 

relationships of a system. It doesn’t provide a model of computation for specifying the evolving 

nature of the system.  

7.3.2.1 OPN vs. UML 

UML is a highly complex language that intends to cover most of the needs in complex system 

representation. Unfortunately, the complexity of the language itself has become a serious 

hindrance to perform model integration. For simple systems, UML models can be more complex 
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than writing and debugging source code of some simple programming languages. UML contains 

a large number of sub languages. Integration between languages is often not supported formally. 

To provide formal support in language integration, UML manages language definitions by 

declaring a four-layered meta-model architecture. This meta-model architecture is static in nature, 

and it requires a centralized revision committee to make modification on the meta-model level. 

To address the language bloat problem in UML, OPN allows users to work with one executable 

meta-language to support both language definition and model execution tasks. An ideal system 

description and simulation language should avoid introducing unnecessary notations and model 

syntax to complicate the architectural reasoning tasks. Instead of forcing users to perform model 

integration tasks and learning new language standards, OPN helps users to directly focus on the 

description and simulation of domain specific problems.  

7.3.2.2 OPN vs. OPM 

OPM is a system description language designed to address the needs in simultaneously 

representing a system’s structural and behavioral properties. It avoids the “language bloat” 

problem that often stifles the development of language standards such as UML. However, 

OPM’s Object-Process Diagram (OPD) allows users to specify many types of graphical 

relationships between Objects and Processes that can be overwhelming to novice users.  

 

Figure 7-1 OPM's different link types 
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To avoid “notation bloat” in the diagrammatic language, OPN’s graphical notation strictly 

follows the bi-partite graph formalism. It only allows direct connections between Object-Process 

pairs. Only two types of relationships are allowed in OPN; Pre-Condition specifies the 

relationship from Object to Process. Post-Condition specifies the relationship from Process to 

Object. All relationship types in OPD are emulated through customizable data structures 

associated with the respective Object, Process and Pre/Post Conditions. This bi-partite graphical 

formalism provides a consistent execution language schema that associates computable functions 

with Processes and stores computational results into Objects.  

Language features in OPM that are not absolutely needed by the meta-language are not 

incorporated into OPN. For example, the “Formal English” generating feature, also known as 

Object-Process Language (OPL) is not incorporated into OPN because it can be added externally 

without affecting the structural and behavioral properties of the system of interest. The structural 

link, specialization link, enabler link, and agent link are all removed because a pair of “Pre/Post 

Relationships” and a “Process” can be customized to computationally emulate their semantic 

meaning. OPN is intentionally designed as a minimalist meta-language; it tries to avoid semantic 

definitions that can be composed from more basic linguistic constructs. The goal of this 

minimalist design approach is to make the language definition small, so it would require less 

implementation and debugging effort to create the execution environment.  

7.3.3  OPN and generative modeling techniques 

OPN’s simple language structure uses one meta-operand, Thing, and one meta-operator Eval. 

This meta-operator and meta-operand pair of OPN provides a consistent programming interface 
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that is particularly suitable for generative modeling. Its inputs, outputs, and execution algorithms 

are all modeled as Things. The processes of generating and modifying Things are modeled by 

various customizable versions of Eval. The concept of meta-operand and meta-operator pair is 

derived from functional programming language such as Lisp, Mathematica, and ML. These 

functional programming languages have served well in performing generative modeling such as 

writing code for self-modifying genetic algorithms [62] and performing computational 

experiments for interacting cellular automata [25]. However, these programming languages 

require significant programming skills, and we found it possible to graphically represent some of 

the abstract functional programming concepts, such as recursion and symbolic variable 

replacement using a graphical programming language. Allowing users to visualize the model 

generating process enables architects and non-programmers to perform model generation tasks 

without the need to construct models manually. OPN’s user interface design also enables 

architects to graphically construct and debug model generation “programs”. The user interface 

also helps system architects and stakeholders to visually explore solution alternatives by 

inspecting the generated structures and computational results interactively. 

Moreover, OPN allows GA experts and functional programming experts to formulate their 

problems in a graphical programming environment. The tokens in OPN can be treated as the 

mutating genes or the dynamically evolving computable expressions. It can be used as a platform 

to create the structure of these generative algorithms. When necessary, these generative 

algorithms can be first developed in OPN and then manually transcribed into source code of 

some high performance programming language to perform more extensive computational 

experiments. 
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7.3.4 OPN as a simulation language 

OPN as a general-purpose programming language can be customized to incorporate various 

algorithms and models of computation to support architects’ reasoning tasks. The execution 

model of OPN is based on a three-layered semantic interpretation engine. The top layer mimics 

Petri Net’s token scheduling rules. The token processing layer using inference rules to perform 

token transformation tasks. The token processing layer invokes individual rules or functions 

specified by stakeholders with process-level domain expertise. Simple algebraic equations or 

arithmetic expressions can be specified on the process level to perform calculation tasks. The 

variable binding layer allows users to access customized algorithms or perform communication 

with other computational services on the network. These customized algorithms and third party 

simulation code provide an additional layer of functionality to allow users to perform more 

sophisticated simulation tasks. To perform probabilistic reasoning, OPN may incorporate the 

message propagation algorithm [66] to perform bi-directional inference. For System Dynamic 

simulation, OPN’s token generation and scheduling mechanism and process transformation 

routines also allow users to perform numerical integration tasks and compose arithmetic 

expressions over multiple time intervals. For discrete event simulation, OPN can use the standard 

Petri Net token scheduling algorithm specified in Section 4.6 to perform discrete event 

simulation. In other words, OPN can serve as a hybrid simulation environment that integrates the 

functionalities of probabilistic, numeric, symbolic, and discrete event simulation engines.  
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7.3.4.1 OPN vs. Petri Net 

OPN’s graph formalism for the event generation and scheduling aspect is particularly similar to 

Petri Net. However, OPN subsumes Petri Net and other graphical formalisms in the following 

ways: 

1. OPN is a meta-Petri Net: During model execution time, OPN records the execution 

sequences of all tokens within the tokens themselves as computationally generated 

OPN models. Unlike Petri Net, each token firing event is simply a computational 

abstraction of some simulated external activities. OPN’s tokens not only record the 

state information during runtime, they also add the Objects, Processes and 

Relationships that created them into a locally stored OPN model. In other words, each 

OPN token processing event is a model construction activity. In the Petri Net 

literature, this meta-modeling extension is sometimes referred to as Higher Order 

Petri Net [82, 83]. 

2. Objects vs. Places: OPN organizes closely related variables into Objects; places in 

Petri Net are represented as Objects in OPN that capture state information and 

complex data structures at the Object level. Instead of defining “Places” as passive 

storage of tokens, the notion of Object provides additional graphical information on 

each instance of Object to visualize the state of a system during model execution time 

[26]. This approach is different from Colored-Petri Nets since “color” in “Colored 

Petri Net” refers to the value of the token, not the “place”. Objects with visible local 

information yield a more convenient visual formalism for continuous and 

probabilistic systems.  
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3. Processes vs. Transitions: Process in OPN replaces Transition in Petri Nets. A 

“transition” in Petri Net represents an action to occur in time. A Process in OPN 

refers to a mathematical function or relationship in general. It is not bound to an 

action in the time domain. When OPN is used as a model enumeration engine, the 

notion of “time” or “event sequence” can be conceptually ignored, the enumeration 

algorithm is simply listing combinatorial structures that may or may not contain the 

notion of time. When a Process is included in the generated model, it denotes a 

possible state-space mapping between its neighboring Objects. This “mapping” is not 

considered to be an “action”, but a declared function or a binding constraint between 

the state-spaces of its neighboring Objects. 

7.4 Future Development 

This section presents the future research opportunities based on the meta-language approach 

described in this thesis. The future development activities are divided into three broad categories: 

theory, tool, and application development. 

7.4.1 Theory development 

Two areas of theory development are of interest in the context of complex system architecting. 

The first one is related to statistical network theory. The second one is related to the 

mathematical properties of complex system models. 
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7.4.1.1 Statistical network theories and system architecting 

The concept of analyzing systems as a complex network is gaining popularity in both scientific 

and engineering research communities. Typical approaches are based on analyzing the statistical 

properties of these networks. Researchers have attempted to draw conclusions from certain 

generalized statistical qualities of complex networks in terms of small world effects [118, 130], 

scale-free networks [131-133], and power laws [134]. The explicit use of these methods for 

designing complex systems have not been wide spread, partially because these aggregate 

properties hide the detail information about context-specific design concerns. However, these 

statistical properties provide some insight into very large-scale networked systems. This is an 

area of theoretical development that is outside the scope of this thesis. 

7.4.1.2 The mathematical properties of complex system models 

One must also note the limitation of statistical network theories when applying them to reason 

about complex system models. A statistically based network analysis ignores context-specific 

information because it treats all relationships between different nodes uniformly. A relationship 

that connects two nodes in a network may contain useful and unique information that can change 

the behavior of the entire network. The analytical method must be able to identify and extract 

this information whenever necessary. A statistical approach to networks would not be able to 

accommodate this fine-grained approach. Most statistical procedures simply count the 

connectivity between nodes or assign some numeric measure to each node or arc. They 

completely ignore the intricate data structure that might be associated with individual nodes and 

relationships. 
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Modeling a network as an instance of language avoids the problem of overlooking the details. 

However, that implies two additional issues that must be addressed. 

1. The data structure required to capture the detailed information 

2. The required amount of storage space and time to manage this added information 

The first problem can be addressed by using a recursive data structure, such as the one we 

proposed in this thesis to capture all levels of details. 

The second problem requires more attention. First, storage space required to capture this 

additional information can be compressed by properly classifying the types of nodes and links. 

This concept is a well-known technique in Object-Oriented programming [135]. Gabriel [44] and 

Whitmire [136] have stated their views on how significant compression in terms of the size of 

models and the effort required to build the model can be addressed and measured using Object-

Oriented modeling techniques. Applying techniques based on Type-Calculus [137] provides a 

method to manipulate information on classes or types of object, and also provides a mechanism 

to compress the processing time required to analyze the data. Computational inference 

techniques can be applied to manipulate data based on instances of class data entries [120], not 

the instances of data entries on nodes or links. To enable these types of analysis requires a 

modeling language that can directly operate on typing information about its internal data 

structures. Many modern programming languages provide these features. The issue is that using 

these features requires significant programming skills. An alternative is to reveal these features 

in an intuitive manner, so that non-programmers can utilize these features to manipulate data 

structures. This is achievable by OPN, but not demonstrated in this thesis. A detailed case study 

showing how network-based language can enable a wide range of people to perform 
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computationally assisted reasoning on the types, not just the instances of data entries, may have 

the potential to be a highly fruitful research direction. 

7.4.2 Tool development 

Without adequate instrumentation, theories can hardly be verified and conveyed in convincing 

manner. Therefore, ongoing development on the language manipulation tools is a critical area of 

research as well. The following features in a meta-language modeling environment are highly 

desirable: 

1. Estimate the memory and time requirements before enumerating alternatives 

2. Improve speed and memory efficiency on model/object language generation routines 

3. Provide access to third party computational resources 

All the suggested research areas are challenging research topics on both technical and theoretical 

levels. The concept of sizing a problem space in common space/time terms provides an upper 

bound to determine when and how to decompose the problem into a meaningful size for 

thorough architectural alternative study. The second problem is a practical issue that requires 

innovative techniques in combinatorial algorithm development. Designing efficient algorithms to 

generate all the sub-structures of a model helps us understand the nature of the model [59]. The 

third area is an engineering problem. Integrating legacy resources is always a necessary and 

highly profitable area of system development because it provides continuity in the operational 

environment, and reduces duplicate effort during tool development. 
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7.4.3 Application Development 

OPN is a brand new language. It needs an active user community to provide design feedback, 

develop use cases for different application domains, and create supporting libraries to enrich its 

functionalities. To increase the size of user community, the following developmental activities 

are suggested: 

1. Develop self-contained tutorial that leads non-programmer to use OPN as a reasoning tool 

2. Quantify in economical terms the benefits of using OPN 

3. Create a secure data service on the Internet for OPN model/knowledge sharing 

 

 

This chapter presented the contribution of this research and compared the solutions proposed, 

implemented and demonstrated in the thesis with already existing solutions. The following 

chapter presents our conclusion. 
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8 Conclusion 

This thesis presented a domain-neutral executable meta-language, Object-Process Network 

(OPN), which automates certain mechanical communication and computational tasks in 

architectural reasoning. The introductory remarks of this thesis first provided an operational 

definition of system architecting and complex socio-technical systems. Chapter 1 also articulated 

the rationale behind modeling the architectural reasoning process in terms of computation and 

computational tasks. It also stated the research opportunities in creating a domain-neutral 

software instrument for system architects based on the theory of communication and 

computation. 

Chapter 2 of this thesis presented the prior art related to the representation and analysis of 

complex socio-technical systems. It showed that current theories and methods of system 

architecting are often designed to fit specific knowledge domains [138, 10, 56, 139], limiting 

their expressiveness to incorporate knowledge that originates from different domains. It also 

showed that general-purpose modeling languages usually contain a large set of vocabulary 

and syntactic rules, requiring a significant learning effort. Other language-based architectural 

reasoning techniques such as pattern languages [2, 43, 13, 44, 45] only capture design 

heuristics that usually lack formal models of computation, thereby providing limited 

reasoning power when applied to complex and ambiguous architecting scenarios. Research 

work that focuses on unifying formal models of computation [137, 140, 15, 75, 141-143, 78] 

presents rigorous and domain-neutral architectural reasoning techniques. However, they are 

often illustrated in pure mathematical abstraction, making them less accessible to architects 

without extensive training in mathematical reasoning.   
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Chapter 3 presented the arguments showing that architects need a domain-neutral executable 

meta-language to improve existing architectural reasoning processes. It consolidates 

principles and knowledge presented in Chapter 2 into a requirement list for building an 

operational instrument for architectural reasoning. The key design ideas of the meta-language 

are: 

1. Specify a simple and stable syntax to enable domain-neutral knowledge exchange. This 

language feature helps streamline many repetitive communication tasks. 

2. Design a simple and stable execution semantic model that satisfies Turing Completeness. 

This language feature allows architects to conduct variable kinds of computational tasks 

in an integrated environment. 

3. Organize the semantic model into a layered structure, so that different aspects of system 

complexity can be temporarily suppressed. This layered semantic model reduces users’ 

cognitive burden when constructing, navigating, and manipulating system models. 

4. Use network-like diagrams (graphs) to visualize system structure and behavior. Graphs 

are treated as the basic building blocks of the language.  

5. Use one meta-operand and one meta-operator to build the language kernel. This 

provides structural and behavioral consistency across all systems modeled using this 

meta-language. 

Chapters 4 and 5 presented the formal syntax, execution semantics, and software 

implementation pragmatics of the meta-language, OPN. Chapter 4 focuses on the 

implementation neutral aspect of the language architecture. It was intentionally written to be 

independent of implementation concerns. The concept is that a meta-language should not be 
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dependent on its underlying implementation technologies. Chapter 5 focuses on the software 

engineering considerations and the design rationale of important user interface features. It 

shows the feasibility of implementing a domain-neutral, graphical, and executable meta-

language using existing off-the-shelf technologies. Information in Chapters 4 and 5 only 

specifies the syntax and domain-independent (abstract) semantics of OPN. The domain-

dependent (concrete) semantics of OPN is later specified in Chapter 6, showing that the 

abstract OPN can be applied to different application domains.  

Chapter 6 presented three case studies to illustrate how an executable meta-language can be 

utilized in architectural reasoning processes. The result of these case studies indicates that many 

aspects of computational and communication needs in complex system architectural reasoning 

can be satisfied by OPN. It shows that OPN can either replace or co-exist with many existing 

modeling languages and computational tools. More importantly, it helps shift the mental model 

of system architects in three significant ways: 

1. OPN’s abstract vocabulary enables architects to flexibly specify the space of architectural 

alternatives, instead of trying to specify instances of architectures pre-maturely. 

2. OPN enables architects to systematically generate and enumerate executable system models. 

In the past, models of alternative architectures are often manually crafted and randomly 

sampled. 

3. OPN’s symbolic programming features help system modelers to compose certain complex 

metric calculation routines automatically. This feature allows architects to better assess 

performance metrics of certain classes of complex models without investing a significant 

amount of modeling labor. 
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Chapter 7 provided a detailed account of the main contribution of this thesis. It compared OPN 

to other modeling techniques and simulation languages. It showed that an abstract meta-language 

kernel embodies many desirable features of different system design methods and modeling 

languages. It argues that many repetitive reasoning tasks can be modeled and automated using an 

executable meta-language. It also showed that OPN as an executable meta-language satisfies 

many functional requirements of different modeling languages; therefore, it can either replace or 

emulate other modeling languages when appropriate.   

In summary, this thesis argues that the science and technologies of language manipulation can be 

systematically utilized to improve the practice of system architecting. In this thesis, we showed 

that many architecting processes are composed of three types of modeling tasks; each of them 

corresponds to a type of language. They are: 

1. Declarative language: Specify the space of architecture alternatives 

2. Imperative language: Enumerate architecture instances  

3. Simulation language: Calculate the performance metrics of a given architecture instance 

This thesis also showed that OPN, a graphical meta-language language, can be implemented and 

deployed to carry out modeling tasks in practical applications. As a modeling language, OPN 

influences architects’ reasoning processes in three systematic ways: 

1. OPN shifts the modeling focus from specifying instances of architectures to specifying the 

space of possibilities 

2. OPN offers many model generation and enumeration features that permit architects to 

programmatically explore the solution space 
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3. OPN’s meta-language features makes it possible to automatically compose performance 

metrics calculation routines that are often tedious and difficult to do in other modeling 

languages 

The objective of this thesis is to formulate a domain-independent reasoning technique in terms of 

communication and computation. This thesis substantiates this claim by showing that OPN, a 

domain-independent modeling language, can be employed by architects to communicate design 

intent, construct simulation models, and compute performance metrics. The aim of this thesis is 

to provide a solution for the automation of the architectural reasoning tasks. Based on the 

analysis of the needs and the case study results, OPN satisfies the automation needs documented 

in the thesis, and therefore qualifies to be a solution for architectural reasoning tasks. 
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