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ABSTRACT 
The high temperature transport properties of langasite, La3Ga5SiO14, were investigated 
with special attention focused on their potential impact on the utilization of langasite as a 
mass sensitive resonant platform for high temperature sensor applications. The electrical 
properties of acceptor and donor doped langasite were examined at temperatures ranging 
from 700 to 1000oC, and pO2 of 1 to 10-25atm. Acceptor doped langasite was shown to 
exhibit mixed ionic-electronic conductivity behavior, with predominant ionic conduction 
due to mobile oxygen vacancies at high pO2, and n-type electronic conduction due to 
electrons at low pO2. Increasing acceptor level resulted in the appearance of p-type hole 
conduction at high pO2 and increased ionic conductivity, while the n-type electron 
conduction was depressed. Donor doped langasite was shown to be electronic at all 
temperatures and pO2.  
  
The electron mobility of langasite was found to be activated (polaron hopping) with an 
activation energy of 0.15(±0.01)eV, whereas the holes were assumed to be quasi free 
carriers. The activation energy for oxygen vacancy migration was estimated to be 
0.91(±0.01)eV under dilute solution conditions and 1.27(±0.02)eV for 1%Sr level under 
concentrated solution conditions. Both values of activation energy of ionic conductivity-
temperature product are consistent with activation energy of oxygen self-diffusivity in the 
respective materials.  
 
The electrical properties were related to the underlying defect and transport processes 
using defect modeling. The self consistent defect model established the defect chemistry 
of langasite, enabling important parameters describing reduction (Er=5.70±0.06eV and 
6.57±0.24eV for acceptor and donor doped langasite respectively) and oxidation 
(Eo=2.18±0.08eV), intrinsic electron-hole generation (Eg≈4.0-4.4eV) and defect 
ionization (ED_ion=1.52±0.06eV for Nb ionization), to be extracted. The predictive defect 
model was used to calculate the dependence of the partial ionic and electronic 
conductivities and mass change as functions of temperature, dopant level and pO2. Given 
that the magnitudes of conductivity and mass change directly affect the resolution and 
sensitivity limits of langasite resonators, their predictions allowed for the definition of 
acceptable operating limits and/or the design of properties for optimum resolution and 
sensitivity.   
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Two high temperature applications of resonant sensors were studied.  Praseodymium-
cerium oxide was selected for oxygen partial pressure monitoring and is representative of 
films which change mass upon absorption or desorption of gaseous species. Barium 
carbonate film was selected for NO2 sensing and is representative of films which change 
mass upon reaction with the gas phase to form a new product phase. Both sensors showed 
sensitivity to their respective target chemicals and demonstrated the feasibility of high 
temperature sensor applications. The performance of each sensor was discussed and 
suggestions for improving sensor performance were presented. 
 
 
Thesis Advisor: Harry L. Tuller 
 
Title: Professor of Ceramics and Electronic Materials 
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Chapter 1: Background 

1.1 Introduction 

1.1.1 Motivations 

Growing interest in environmental monitoring for health and security reasons, for 

achieving improved combustion efficiency and feedback control in industrial processes 

have all stimulated interest in chemical sensors. To achieve improved sensitivity and 

selectivity coupled with low cost, attention is being focused on sensor miniaturization, 

and their integration with electronic circuits and devices. Many different approaches are 

being pursued for chemical monitoring including electrochemical, chemoresistive, mass 

spectroscopic, optical and acoustic approaches. In this work we focus on acoustic wave 

devices given their characteristically high sensitivity, relatively low power consumption 

and suitability for wireless operation [1-8]. Increasingly, miniaturized resonators are 

being utilized, either singly or as an element in an array [9-13], to achieve increased 

sensitivity and selectivity (in the case of an array) and to lower power consumption.  

 

One important application area is in-situ high temperature monitoring of various 

chemical processes, including emissions monitoring and/or process control. Acoustic 

wave sensors are good candidates for monitoring several industrial parameters 

simultaneously. Beside their inherent sensitivity to chemical species via mass loading 

(e.g. adsorption), they also exhibit sensitivity to fluid flow, temperature, and viscosity  

[14-21]. In addition, passive acoustic sensors (e.g. surface acoustic wave devices) can be 

wirelessly interrogated through inductive coupling, making it attractive for sensing 

applications in hostile environments [22-26]. By using an array of such sensors, a 

complete sensor system can, in principle, be designed. 

 

To date, acoustic wave devices have rarely been used in high temperature applications 

given that few materials are known to remain stable as well as retain their piezoelectric 

properties under these conditions. For example, the most commonly used acoustic 
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sensing material is single crystal alpha-quartz. Quartz is limited by high losses at high 

temperature and a destructive phase transformation (from alpha to beta quartz) at 573oC  

[27-30]. The other commonly used or investigated materials, such as LiNbO3 [31, 32], 

LiTaO3 [33, 34] and Li2B4O7 [35, 36], for related reasons, also have maximum operating 

temperatures between 300 and 500oC [37]. Hence, there is the need for alternative 

materials which can operate at higher temperatures. Understanding the relationships 

between the material and device properties at high temperatures and their impact on 

sensor performance are the motivations behind this work. 

 

1.1.2 Acoustic Devices as Chemical Sensors  

The performance of a chemical sensor can be characterized by its sensitivity, selectivity, 

response time, reproducibility and long term stability [3, 38-41]. Definitions of these 

performance parameters are general to all sensor types. Sensitivity is defined as the ratio 

of the change in the sensor response to the change in the quantity of the target chemical. 

Selectivity is the ability of a sensor to differentiate between different chemical species, i.e. 

the ratio of sensitivity to different chemical species. Response time is defined as the time 

it takes for the sensor to achieve 90% of its steady state response. Reproducibility refers 

to the reversibility of each reading and the consistency of response to the same chemical 

species. The speed of that process also influences the maximum number of measurements 

the sensor can repeat in a certain time frame, which may be important in some 

applications. Long term stability refers to drift in sensor reading over an extended period 

of time. All of these are important factors determining the viability of the sensor as a 

commercial product. 

 

An acoustic wave chemical sensor responds to changes in chemical potential by detecting 

changes in its mass via a change in resonant frequency [20, 39, 42]. The operation of the 

device depends on the use of an active film, supported on the resonator, which interacts 

with the gas phase. Thus, understanding the roles that the resonator and the active film 

play in the sensor operation is important in striving for sensor optimization. For example, 

the total sensitivity of a chemical acoustic sensor is influenced by both the mass 
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sensitivity of the resonator and the chemical sensitivity of the active layer. The selectivity 

largely depends, however, on the active layers. This allows the independent optimization 

of the acoustic device for high mass sensitivity and the active film for selectivity, giving 

many interesting application possibilities. 

 

1.2 Bulk Acoustic Wave Resonator 

1.2.1 Theory  

A resonator can be used as a sensor by monitoring the change in wave velocity and/or 

attenuation when it interacts with the environment. A bulk transverse shear mode (TSM) 

is commonly utilized with the prime example being the quartz crystal microbalance 

(QCM) [5, 43-45]. A schematic of a QCM resonator is shown in Figure 1.  

 

 

In a TSM resonator, an alternating voltage is applied to the electrodes to generate 

standing shear waves with maxima at the crystal surfaces (Figure 1, right), making the 

resonator sensitive to perturbations at the faces.  The wavelength λ, the resonant 

frequency fN , and the shear wave velocity vs are given by: 

 λ = 2ts/N or  (1) 

 fN = Nvs/2ts and (2) 

 vs = (µq/ρq)1/2 (3) 

 Surface of resonator 

Surface of resonator 

fundamental 

3rd harmonic 

Quartz 

Electrode 

 

Figure 1: Quartz Crystal Microbalance, a transverse shear wave resonator. The 

allowable wavelengths are determined by the resonator thickness (see Eq.(1)) with 

maxima at the two surfaces of resonator (see right). 
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where N= odd integers, ts = thickness of resonator, µq: shear stiffness and ρq: mass 

density of resonator.  

 

The basis for detection of surface perturbations, e.g. mass change, is given by the 

Rayleigh criterium. The Rayleigh criterium states that ‘resonance in a mechanical system 

occurs at frequencies at which the peak kinetic energy exactly balances the peak 

potential energy. The accumulation of mass on the crystal surface causes an increase in 

kinetic energy without changing the potential energy’ [39]. During a mass change on the 

surface, in order that Up (peak potential energy) and Uk (peak kinetic energy) are equal, 

the resonator will therefore change its resonant frequency, resulting in:  
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where ρs is the areal mass density (i.e. mass per unit area) of mass layer on resonator   

and (Nπ/ts)(µq/ρq)1/2 = ωo as shown in Eq. (2) (see Figure 2). 
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Figure 2: ∆f/f versus percentage mass change. If the mass change is small, a linear 

approximation is valid (see insert). 
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For a small mass change (i.e. 2% or less, see Figure 2), a linear approximation can be 

made and Eq. (4) can be rewritten as:  
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Eq. (5) indicates that a fractional shift in resonant frequency is equal to a fractional 

change in mass. By combining Eq. (4) and (5), we obtain the so-called Sauerbrey 

equation, commonly used to relate change in TSM resonant frequency to changes in 

surface mass density ρs:  

 2/1

2
1

)(
2

qq

sff
ρµ

ρ
−=∆  (6) 

where f1=fundamental frequency, ρs=mass/area of the layer whose mass is changing, 

ρq=mass/volume of resonator, µq=shear stiffness. 

 

The Sauerbrey equation makes the assumption of ideal mass layer (no energy lost). On a 

TSM resonator, a film is considered ideal if it is thin and rigid, and therefore moves 

synchronously with the oscillating surface. More quantitatively, the acoustic phase shift φ 

across the film must fulfill φ <<π, in which the phase shift can be calculated using:  
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where ρ: film density, G: shear modulus, t: thickness. 

 

Furthermore, a quality factor Q can be defined. Several definitions exist, one of which 

uses the Up (peak potential energy) and Pd (power loss in lossy medium), which is 

defined as Pd = 2αPoe-2αx, where x is the distance from the wave source and α is the loss 

coefficient. In this case, the quality factor, Q, is defined as:  

 Q = ωUp/Pd (8) 

where ω is the angular frequency.  
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A more visual definition is:  

Q = fo/∆f (9) 

where fo is the resonant frequency and ∆f is the width at half-height. Q represents the 

resonant stability of the resonator and affects the resolution at which the resonant 

frequency can be measured. Hence, for high resolution mass detection, a high Q is 

necessary. 

 

1.2.2 Equivalent Circuit Model 

Above, the theory of mass detection in piezoelectric resonators was discussed. Practically, 

one must be able to measure the mechanical resonant frequency electrically, which is 

simpler to implement and compatible with sensing electronics. In order to establish the 

relationship between the measured electrical response and the mechanical properties, the 

resonant system can be approximated by an equivalent circuit model know as 

Butterworth-van Dyke circuit [46]: 

Cp is the static capacitance (from the layer sandwiched by the two electrodes and the 

parasitic capacitance from the test fixture). Rs, Cs and Ls give the motional contributions 

due to the electromechanical coupling of the piezoelectric material. The static capacitance 

dominates the electrical behavior far from resonance and the motional contribution 

dominates near the resonance. The model provides simulation of the TSM resonator 

electrical characteristic near the resonant frequency. 

Cp

Rs Cs Ls  

Figure 3: Butterworth-van Dyke equivalent circuit. 
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The elements of the circuit correspond to physical properties of the resonator as listed 

below [46]: 

Static Component 
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where: 

 ηq = effective viscosity 

 µq= shear stiffness 

 K2 = electromechanical coupling coefficient 

 ρq = mass density 

 ωs = angular series resonant frequency (unperturbed) 

 ε22 = dielectric permittivity 

 A = electrode area 

 ts = resonator thickness 
 

From the equivalent circuit, the following equations can be written to describe the circuit 

behavior [46]: 
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From this Butterworth-van Dyke circuit (Figure 3) and Eq. (14), six characteristic 

frequencies can be defined and measured (Figure 4). They are:  

1. fm: frequency at which |Z| is at the minimum  

2. fn: frequency at which |Z| is at the maximum 

3. fs: series frequency defined as 2/1)(2
1

ss
s CL

f
π

=  (15) 

4. fp: parallel frequency defined as 
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5. fr: resonant frequency where Im(Z) is zero  

6. fa: antiresonant frequency where Im(Z) is also zero (fa > fr) 

 

 

In the circuit model, another definition of quality factor Q can be derived: Q = ωsLs/Rs, 

where ωs is the series angular frequency, and is not unlike the Q defined in mechanical 

terms. 

 

  |Z| 

Re(Z

Im(Z

  fm   fs   fr   fa   fp   fn  

Figure 4: Re(Z) and Im(Z) plot of the equivalent circuit near the resonant 

frequency. Various characteristic frequencies are shown [46]. 
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All these frequencies are shown again in the complex plot of Z of the equivalent circuit 

(Figure 5). For finite Q, fm < fs < fr, and the fn < fp < fa. The higher the Q, the closer fm is to 

fr, and fn to fa. At infinite Q,  fm = fr = fs, and fn = fa = fp. 

 

With the addition of a general surface perturbation (e.g. surface mass change), an 

additional motional impedance Ze can be added to the equivalent circuit.  

 mme LjRZ ω+=  (17) 

 

Rm and Lm in Eq. (17) are defined as: 
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where ( ) 2/1
qqqZ µρ=  and 

x

xy
s v

T
Z = , Txy is the force/area in the x-direction on the 

resonator surface (assume y-face), vx is surface shear particle velocity in the x-direction. 
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 fs 
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Figure 5: Im(Z) vs Re(Z) plot with the positions of the characteristic 

frequencies.  
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The new equivalent circuit, taking into account mass perturbation, is shown in Figure 6, 

which results in a shift in the characteristic frequencies. And the motional impedance is 

now given by:  

 ( ) ( )
s
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LLjRRZ

ω
ω 1

++++=  (20) 

 

Due to this, the series resonant frequency will change according to (Rm is zero, assuming 

mass layer is ideal): 
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From [46], it is shown that: 
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The shift in series resonant frequency could be obtained by substituting Eq. (22) into 

Eq.(21), giving the Sauerbrey Equation, similar to that obtained from a mechanical 

derivation (Eq. (6)): 
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Figure 6: Equivalent circuit with additional Ze simulating surface 

perturbation. 
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1.2.3 High Temperature Circuit Model 

Due to the increased electrical conductivity at high temperature, electric losses in the 

resonator become significant. To describe that phenomenon, an additional circuit element, 

a parallel resistance Rp, has to be added to the equivalent circuit (Figure 6) to account for 

the resistive loss [47, 48]. The final circuit model used is shown in Figure 7. 

 

 

The additional resistive element Rp is the bulk resistance, which becomes sufficiently 

small (i.e. when Rp is within an order of magnitude of Rs) at elevated temperature and 

certain oxygen partial pressures, causing the attenuation of the resonant signal (i.e. 

electrical losses), e.g. Figure 8. The increased electrical losses that are associated with 

that decrease in bulk resistance can be controlled through material design, e.g. decreasing 

electrical conductivity via doping. In addition, with the addition of Rp, a new Q-factor can 

be defined [49]: 
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Figure 7: Modified equivalent circuit for resonator at high temperature. 
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Figure 8: Increasing attenuation of resonant signal of a langasite resonator at 

pO2=1atm. The left shows the attenuation of the resonant signal, and the right 

shows the decrease in quality factor Q with temperature [50]. 
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1.3 High Temperature Piezoelectric Materials 

Materials that show promise for high temperature operation include: La3Ga5SiO14 (LGS 

or langasite) [51-57], (Al,Ga)N [58-61] and GaPO4 [49, 62-67]. Langasite appears 

attractive given the absence of phase transitions up to its melting point of 1470oC (see 

Table 1 ). Indeed, surface acoustic (SAW) devices, based on langasite have been operated 

up to a temperature of 1000oC [68]. These developments together point to the potential 

use of langasite resonators as the basis of a chemical sensor platform, with ability to 

operate at elevated temperatures. This provides the opportunity to extend the operation of 

resonant sensors to harsh environments including the realm of automotive and industrial 

process control applications. 

 

Growth of single crystal langasite is suitable for large-scale commercial production. Up 

to 3” wafers of langasite have been grown on a consistent basis [69, 70], and larger wafer 

sizes were grown experimentally [71, 72]. The langasite family also contains other 

materials with similar structure such as La3Ga5.5Nb0.5O14 (langanite) and La3Ga5.5Ta0.5O14 

(langatate), which were also investigated [55-57, 73]. On the other hand, (Al,Ga)N 

oxidizes at about 1040oC and cannot be grown as large single crystals [58-61]; and while 

Table 1: Temperature limitation of piezoelectric materials. 

Piezoelectric Material Max Operating Temp (oC) Remarks 

LiNbO3 ≈ 300 High Li vapor pressures 

LiTaO3 ≈ 300 High Li vapor pressures 

α-Quartz 573 Phase transformation 

Li2B4O7 ≈ 230 Excessive ionic conductivity 

AlPO4 580 Phase transformation 

GaPO4 933 Phase transformation 

La3Ga5SiO14 (langasite) 1470 Melting point 

AlN ≈ 1040 Oxidation 



 36

GaPO4 has an operation ceiling of 933oC, it is not available as large size wafers due to 

difficulties with the growth process [64, 66, 68]. 

To date, studies on langasite have concentrated on its applications at or near room 

temperature (e.g. radio frequency filters as quartz replacements, Mitsubishi Materials 

Corp). Key properties of langasite are listed in Table 2 [56, 74-77]. 

 

Table 2: Properties of langasite. 

Physical 

Density (kg/m3) 5764 

Melting point (oC) 1470 

Phase transition temperatures (oC) None (from room temperature to its melting 

point) 

Moh’s hardness 6.6 

Crystal Structure Trigonal, point group 32, space group P321  

Lattice parameter (Å) a = 8.1-8.2, c = 5.1-5.2 

Coeff. Thermal Expansion (ppm/K) α11 = 5.1   α33 = 3.6 

Elastic compliances (1012 M2/N) s11 = 8.75, s33 = 5.31 

s12 = -4.02, s13 = -1.88 

s44 = 21.99, s66=25.54 

  

Piezoelectric (Y-cut when not specified) 

K2 (%) 0.3-0.4 

Acoustic velocity (m/s) 2400 

Temperature coefficient (ppm/K) 1-2 (room temp) 

Frequency constant (kHz.mm) 1380 

Piezoelectric constant (1012 C/N) d11 = -6.2, d14=5.4 

Attenuation value (dB/cm) 1.9 (shear mode), 0.5(long. mode) 
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Langasite has a chemical formula of A3BC3D2O14 [37, 78], where A, B, C and D indicate 

particular cation sites. A is a decahedral (Thomson cube) site coordinated by 8 oxygen 

atoms. B is octahedral site coordinated by 6 oxygen atoms, and C and D are tetrahedral 

sites coordinated by 4 oxygen atoms. The crystal structure is shown in Figure 9 [78]. The 

attractiveness of langasite is further enhanced by the possibility of materials design (i.e. 

modifying electrical or piezoelectric properties) within the langasite family [54, 55, 79-

81] through cation substitutions and doping. 

 

 

Growth of langasite single crystals has been investigated by several groups [78, 82-87]. 

The most successful and hence most common growth technique has been the Czochralski 

method, in which crystallization is initiated on a rotating seed crystal lowered into the 

melt followed by pulling from the melt. The growth atmosphere is usually Ar or N2 with 

 

 
 

Cations Sites occupied 
La3+ A 
Ga3+ B, C and half of D 
Si4+ Half of D 
 

 

Figure 9: Crystal structure of langasite (La3Ga5SiO14). 
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up to 5% O2. The use of O2 in the growth environment is reported to suppress Ga loss 

from the melt; however, too high a O2 level can lead to Pt dissolution in the melt [78]. 

Crucibles used are often platinum (m.p. = 1769oC). Other materials tend to react with 

langasite during growth, leading to the incorporation of impurities [88, 89]. Coloration of 

langasite is also reported to be due to impurity incorporation [89], which may also have 

an influence on its electrical characteristics [90]. The growth of langasite is primarily 

along the Z-direction. Currently the 3-inch langasite boules produced commercially have 

growth rates of 1.5 to 5mm/hr. The quality of the crystals tends to improve as the growth 

rate is reduced. 

 

1.4 BAW Resonant Sensor at High Temperature 

1.4.1 BAW Resonator for Chemical Sensing 

Nearly all current sensor designs deal with measurements at low or ambient temperatures, 

due either to operating limitations characteristic of the piezoelectric materials, and/or of 

the active films, typically polymers, which decompose at elevated temperatures. By 

utilizing langasite and a suitable active layer, we hope to design and implement a high 

temperature, high performance gas sensor. 

 

Utilizing the resonator as a chemical sensor is a matter of selecting a suitable film which 

responds to the target chemical species. Typically, such a response is a change in mass, 

which can be accurately measured by the resonator. Alternatively, temperature responses 

produced during reactions between the film and the target chemical have also been used 

[91, 92]. In general, when acoustic resonators are used for mass measurement, the effects 

of temperature and stress must be eliminated or minimized. Hence it is important to 

maximize the sensitivity to mass and to minimize sensitivity to other perturbations. The 

mass sensitivity of a resonator is defined as [8, 20, 42]:  

 Sf = 2f 2 / (ρqv) (25) 

where f: resonant frequency, ρq: density of resonator, and v: velocity of shear wave. Note 

that percentage mass change must be less than 2% for Eq. (25) to be valid. 
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To maximize mass sensitivity, the most obvious way is to increase the resonant frequency 

of the resonator. In the case of bulk TSM acoustic resonators, this is done by reducing the 

resonator thickness (Eq. (2)). However, this also increases its response to other 

perturbations. Hence, the more acceptable approach is to increase the sensitivity of the 

active film towards the target chemicals.  

 

In addition, minimization of cross sensitivity towards temperature and stress is important 

for a practical implementation of a resonator as a high temperature sensor.  Stresses can 

be induced at the interface between the deposited film and the resonator, leading to 

resonance shifts. In general, for a uniform biaxial lateral stress of Tq in the resonator, the 

fractional frequency shift can be written as [45]: 

 qKT
f
f

=
∆  (26) 

where K is a constant for a given crystallographic orientation.  

 

Stress relaxation can occur between the resonator and its electrodes at high temperatures 

[93], which leads to changes in resonant frequency. In addition, the change in 

stoichiometry of active films, when exposed to changing temperatures and atmosphere, 

might lead to stresses large enough to affect the resonant frequency. 

 

The effect of cross-sensitivity to temperature is significant since many applications at 

high temperature involve rapid temperature fluctuations. Several methods can be used to 

minimize the effect of temperature variations on sensor performance. The first is to find a 

temperature compensated cut (where df/dT ≈ 0) for the temperature range in which the 

sensor will operate; for example, using AT-cut quartz resonator for near-room 

temperature applications. However, this only works if the operating temperature range is 

small. With a wide dynamic range, the temperature coefficient would likely be 

sufficiently large to mask the mass change.  
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An alternative method uses another identical resonator without the active film (the 

reference resonator) for compensation. To ensure proper operation, one must maintain 

both resonators under identical environments. It is therefore desirable to fashion both 

resonators on the same wafer – thereby providing physical proximity. This method also 

has the additional advantage of compensating out other spurious effects, such as stress 

change between the film and resonator, and temperature change due to heat of reaction 

(e.g. if the active film catalyzes gas phase reactions). However, if great care is not taken, 

temperature effects might not be compensated for completely due to large temperature 

gradients between sensor and reference. 

 

More sophisticated compensation techniques are available. One that is often mentioned is 

the use of dual mode resonators, implemented with microcomputers [50, 94-98]. The 

basis of the technique is to utilize the difference in temperature coefficients of two 

resonant frequencies obtained with two modes of operation in a single resonator crystal. 

The two modes used can be, for example, the fundamental and the third harmonic, f1 and 

f3 respectively. In this case [50], given temperature coefficients of nth harmonic (i.e. fn) 

be cn and the frequency shift due to mass change be ∆fm,n, the total change in resonant 

frequency ∆fn (due to mass and temperature changes) is: 

 Tcff nnmn ∆+∆=∆ ,  (27) 

 

A characteristic frequency, ∆fo, which is mass dependent and temperature independent 

can be defined as follow: 
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Eq. (28) removes the need for a temperature sensor at the resonator, and provides 

excellent temperature-compensated measurements for sensing applications. 
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1.4.2 Active Films for Chemical Sensing 

In our studies, we have identified and categorized films relying on mass change into three 

general types (Figure 10). Bulk based, relying on changes in stoichiometry of the entire 

film volume. Surface based, relying on adsorption of the target chemical onto the film.  

Here films are often selected to achieve quick recovery and high selectivity. Reaction 

based, relying on specific reaction pathways resulting in a reaction product between 

vapor and films with associated mass change. 

 

 

Sensor utilizing bulk based film 

Oxide films exhibit oxygen non-stoichiometry which is sensitive to oxygen partial 

pressure variations [99-102]. Changing the oxygen partial pressure of the environment 

modifies the concentration of point defects within the film. For example, increasing 

oxygen partial pressure will increase the oxygen content of oxide, i.e. reducing the 

oxygen vacancy concentration or increasing the oxygen interstitial concentration, thereby 

changing the film mass . The mass change will have a power law dependence on oxygen 

partial pressure; depending on several factors (see 1.5.2 for details on defect chemistry). 

 

Apart from using the bulk based film as part of an oxygen partial pressure resonant 

sensor, similar setups can be used for experimental determination of film mass change 

 

Figure 10: Three different operation modes of active films used in chemical sensing. 

Bulk based, surface based and reaction based films (left to right). 
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due to, for example, stoichiometry changes, ion intercalations, corrosion reactions, and 

film deposition. The film of interest can be deposited onto the resonator, and the mass 

change of the film can be measured via changes in resonant frequency. Therefore, the 

resonator essentially operates as a mass balance. Although quartz crystal microbalances 

are currently used in such capacities [43, 103-108]  and even as a micro-thermal 

gravimetric analyzers (micro-TGA) [109], the use of a high temperature piezoelectric will 

markedly extend such measurements to include elevated temperatures. In earlier 

collaborative work, titanium oxide (TiO2) thin films on langasite [48, 110] were 

investigated as the basis of a gas sensor. Dramatic resonant frequency changes were 

recorded when the resonator was subjected to a reducing environment at 600oC. The 

ability to do such measurements on thin films is important, since materials in thin film 

and bulk form sometimes exhibit very different properties [111, 112].  

 

In this thesis work, praseodymium-cerium oxide (PCO) was chosen as the active film for 

its oxygen partial pressure sensitivity given its highly non-stoichiometric nature at high 

oxygen partial pressures [113-115]. This allows us to evaluate a relatively large mass 

shift without interference from possible redox processes active in langasite at much more 

highly reducing conditions and temperatures, as demonstrated below in later sections.  

 

Sensor utilizing surface based film 

Surface active films have been used extensively for chemical sensing with acoustic 

devices for some time [1, 2, 6, 7, 9, 13, 41, 44, 92, 116-118]. Many of these sensing 

applications occur near room temperature.  

 

One low temperature application we have examined that utilized surface based film is a 

chemical sensor based on AT-cut quartz resonator with SiO2 active film. This sensor was 

fabricated for sensing a chemical agent simulant, dimethyl methylphosphonate (DMMP). 

DMMP is a simulant for the chemical agent, Sarin, and it readily adsorbs on the SiO2 thin 

films. Chemical and biological weapons are a serious threat to national security and pose 

a potential danger to both civilians and military personnel. Sensors, sensitive to toxic 

biological and chemical agents, when deployed at strategic locations, can detect their 
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release and thus minimize their impact. Sensors are also required for monitoring 

suspected chemical and biological production facilities.  Due to the nature of their roles, 

such sensors need to be highly sensitive and selective, and resonant sensors are 

appropriate for these roles.  

 

However, as this work was performed at relatively low temperature using only quartz 

resonator and therefore not directly related to the thesis, it is included only in Appendix A 

for reference and is not discussed in the main body of this thesis. 

 

Sensor utilizing reaction based film 

Reaction based films rely on chemical reactions between the chemical species and the 

active film for detection. One example is the corrosion of metal films [107, 119, 120]. In 

this thesis work, a reaction based film is used for detection of NO2. 

 

Diesel engines provide power to nearly every type of vehicle used in commerce, as well 

as to electrical power generating equipment. The diesel exhaust includes particulate 

matter (PM), oxides of nitrogen (NOx), sulfur dioxide (SO2) and various hydrocarbons. 

NOx, which includes the nitrogen compounds (NO2 and NO), plays an important role in 

atmospheric reactions that create harmful ground-level ozone (smog) and acid rain and is 

the focus of legislation, both in the US and Europe, which stipulates large reductions in 

emission levels beginning in 2007 [121]. In an effort to limit NOx emissions for vehicles, 

the lean NOx trap (LNT) has been proven to be promising.  

 

The LNT system [122, 123] removes NOx by storing NO2 (NO in exhaust is preoxidized 

to NO2 by Pt catalyst) in a compound containing an alkaline base metal (e.g. barium 

carbonate) as the nitrate (Figure 11). The storage stage occurs during lean burn operation 

of the diesel engine: 

 NO + ½ O2  NO2 (29) 

 BaCO3 + 2 NO2 + ½ O2  Ba(NO3)2 + CO2 (30) 
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When the storage site is saturated, the engine switches briefly to rich burn operation. The 

NO2 is then released and reduced by the excess hydrocarbons and carbon monoxide in the 

presence of a Pt catalyst into N2, H2O, and CO2. This is known as the purge stage: 

 Ba(NO3)2  BaO + 2 NO2 + ½ O2 (31) 

BaO + CO2  BaCO3  (32) 

 

For LNT, NO2 storage capacity needs to be monitored in order to maximize fuel 

efficiency. It is undesirable for the engine to prematurely switch to the rich burn mode or 

to remain excessively long in the rich burn mode resulting in reduced fuel economy. 

Hence, for optimum functioning of LNT, rapid and effective feedback is necessary and a 

monitor is needed to determine when the storage sites are saturated during lean burn, and 

when they are fully purged during rich burn. 

 

In this thesis, the langasite-based resonant sensor system will be configured for 

monitoring NO2 concentration levels in a given atmosphere.  Typical diesel operating 

conditions can reach temperature as high as 700-800°C (although 250-300°C is typical), 

making langasite resonators an excellent choice. The reaction based active film is BaCO3 

which is converted to Ba(NO3)2 in the presence of NO2 (Eq. (30)) with a large associated 

mass change. However, since the reaction product is stable under lean burn condition, the 

frequency shift is irreversible in this instant; the sensor will act as a NO2 concentration 

integrator. The film will only be regenerated when the engine is switched to rich burn, 

converting Ba(NO3)2 back to BaCO3 (Eq. (31) and (32)).  

 

Pt 
BaCO3 (NO2 storage 
medium) 

NO2 

NO, O2 O2 

Storage 

Pt 
Ba(NO3)2 (NO2 
storage medium) 

NO2 

HC, CO, 
H2 

H2O, CO2, 
N2, H2 

Purge 

 
 

Figure 11: LNT Storage and Purge mechanism. 
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1.4.3 Requirements for Resonator and Active Film at High 

Temperature 

For operating at extreme conditions, additional requirements for the piezoelectric 

resonator are: 

1. Chemical stability – the resonator has to be chemically inert in the operating 

environment (e.g. no phase transformation, irreversible mass loss). Lack of 

reactions between the electrode-film-resonator is important as well. 

2. Negligible mass change – reducing and oxidizing environments can change the 

oxygen stoichiometry of an oxide piezoelectric material, such as langasite. The 

proper operation of the resonator must occur in the pO2 range for which 

negligible oxidation and reduction of the resonator material takes place.  

3. Low electrical losses – this requirement has been discussed in 1.2.3 and the 

repercussion of high loss can be seen in Figure 8. The resultant low Q values 

adversely affect the resolution and signal-to-noise ratio of the resonant signals. 

 

Defect chemistry will provide us the ability to modify langasite properties to achieve the 

optimum performance in term of stability, negligible mass change and low loss.  

 

For active films of chemical sensors, in addition to chemical and structural stability at 

high temperatures, there are other requirements for achieving high sensitivity, and, 

depending on what type of film is used, these requirements are: 

1. For bulk-based films, a significant stoichiometry change at the target oxygen 

partial pressure range and temperatures. 

2. For surface-based films, a large number of selective adsorption sites (e.g. high 

surface area). 

3. For reaction-based films, a significant associated mass change with the reaction. 

 

Generally, the kinetics of any of interactions between the film and target chemicals 

should be rapid, together with fast recovery with the removal of the chemicals. Cross 

sensitivity to other chemicals should be limited, i.e. high selectivity, and long term 

stability is desirable. 
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1.5 Defect Chemistry and Model 

1.5.1 Introduction 

The aim of defect analysis is to create a model based on analyzed raw electrical, mass 

transport and stoichiometry data of a material that describes the sources of electrical 

conductivity, diffusion, nonstoichiometry, etc, and identifies the dominant mechanisms 

over a wide range of temperatures and pO2 [100, 124-134].  Using an accurate defect 

model allows systematic enhancement of the electrical and transport properties of the 

material through cation substitution (doping), as well as prediction of stable operating 

conditions. Defect analysis is important to understand the mechanisms of resistive losses 

and their dependence on temperatures and pO2, the kinetics of various transport pathways, 

and to identify the stability regime of langasite-related materials.  The latter two are 

important to ensure that langasite continues to be a stable platform for mass 

measurements.  With the defect model in place, we will optimize langasite for low loss 

(i.e. high resistivity) and stability at high temperatures by cation substitution.  In this 

regard, langasite is particularly accommodating since nearly every size cation can be 

accommodated on one of its four different cation sites [54].  Cation substitutions have 

already been successfully applied in langasite to modify its electromechanical properties 

(e.g. piezoelectric constants, acoustic velocity and Q-values) [54, 56, 79-82, 135-140]. 

 

1.5.2 Theory 

The defect chemical approach, which assumes dilute solutions, requires one to select the 

key defect reactions incorporating the dominant electronic and ionic defects.  These 

normally include oxidation/reduction, intrinsic lattice defect generation, intrinsic 

electron-hole generation, and ionization reactions as well as overall charge and mass 

balance relations. The reaction equations (that are commonly occuring for oxide 

semiconducting materials) and their respective mass action laws1 are listed below [141-

143]: 
                                                 
1 The unit for defect concentration and pO2 used throughout this work would be cm-3 and atm respectively. 

This makes the dimensions of ks be cm-69, kF be cm-6, ke be cm-6, kr be cm-9atm0.5, and ko be cm-3atm-0.5. 
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 Schottky Reaction 

 '''''''''' 5314 SiGaLaO VVVVnull +++→ ••  (33) 

 [ ] [ ] [ ] [ ] 






 −
== ••

kT
E

kVVVVK s
sSiGaLaOs exp''''5'''3'''14  (34) 

 

Anion Frenkel Reaction  

 ″+→ ••
iO

X
O OVO  (35) 

 [ ][ ] 





 −

== ••

kT
EkOVK F

FiOF exp''  (36) 

 

Generation Reaction 

 'ehnull +→ •  (37) 

 






 −
==

kT
E

knpK g
ee exp  (38) 

 

Reduction Reaction 

 22
1'2 OeVO O

X
O ++→ ••  (39)  

 [ ] 






 −
== ••

kT
E

kpOnVK r
rOr exp2

1

2
2  (40)  

 

Oxidation Reaction 

 ••• +→+ hOVO x
oo 222

1  (41) 

 [ ] 





 −

== −−••

kT
EkpOVpK O

OoO exp2
1

2
12  (42) 
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For either acceptor or donor doped material, an additional ionization equation for the 

dopant can be written2. For acceptor doped material, the ionization equation, together 

with its mass action law, will be: 

 •+→ hAA c
'  (43) 

 [ ] 






 −
==

kT
E

kpAK ionA
AccAc

_' exp  (44)  

 

And for donor doped material, they are: 

 'eDD c +→ •  (45)  

 [ ] 






 −
== •

kT
E

knDK ionD
DncDn

_exp  (46) 

 

In addition, for all the charged species, a general electrical neutrality equation 

incorporating all the defect species mentioned above can be written as (assuming Anion 

Frenkel dominates): 

 [ ] [ ] [ ] [ ]••• ++=++ COCi DVpAOn 22 '''   (47) 

 

By solving the appropriate equations above, it would be possible to determine the 

concentration of electrical species present at a given temperature, oxygen partial pressure 

and dopant level. It is then possible to predict the electrical conductivity of the material in 

conjunction with mobility information of the electrical species.  

 

However, simultaneously solving the above set of equations is normally difficult and so 

the so-called Brouwer approximation is often applied, in which the neutrality and mass 

balance equations are simplified to include only one defect species on either side of the 

equality over restricted ranges of pO2 and temperature [141-143]. The defect regions are 

defined by a dominant defect chemical reaction over restricted ranges of pO2 and 

temperatures. Commonly, for acceptor and donor-doped materials, four defect regions 

                                                 
2 The dimensions of kAc and kDn are both cm-6. 
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can be defined: reduction, ionic compensation, electronic compensation, and oxidation 

regions. In each region, the neutrality equation, Eq. (47), can be simplified as shown 

below: 

Reduction 

 [ ]••≈ OVn 2  (48) 

 

Ionic Compensation 

 Acceptor: [ ] [ ]'2 cO AV ≈••  (49) 

 Donor: [ ] [ ]•≈ ci DO ''2  (50) 

 

Electronic Compensation  

 Acceptor: [ ]'
cAp ≈  (51) 

 Donor: [ ]•≈ cDn  (52) 

 

Oxidation 

 [ ]''2 iOp ≈  (53) 

 

By applying the above approximations, it allows us to characterize the oxygen partial 

pressure and temperature dependence of the electrical species; which is key in analyzing 

raw electrical data in term of defect chemistry. For example, in acceptor doped material, 

the approximation for the reduction reaction dominant region, Eq. (48), can be substituted 

into Eq. (40), giving: 

 





 −

= −

kT
EkpOn r

r 3
exp2 3

1
6
1

3
1

2  (54) 

 

Eq. (54) tells us two crucial pieces of information. First, the electrical conductivity at the 

reduction dominant region will have a 6
1

2
−pO  dependence due to electron (i.e. electronic 

conductivity instead of ionic), and, secondly, the activation energy obtained from the 
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Arrhenius plot of electrical conductivity at that region will give us 1/3 of the reduction 

enthalpy, plus a mobility activation energy (if the conduction mechanism is activated 

hopping). 

 

To continue to obtain similar equations for other electrical species in this reduction 

dominant region, the following analysis is performed: 

 

Substituting Eq. (54) into Eq. (38), the oxygen partial pressure dependence for holes 

is: 

 
( )








 −
−= −+−

kT
EE

kkpOp rg
er

3
1

2 exp2 3
1

6
1

3
1

 (55) 

 

Substituting Eq. (48) into Eq. (54), the oxygen partial pressure dependence for 

oxygen vacancies is: 

 [ ] 





 −

= −−••

kT
EkpOV r

rO 3
exp2 3

1
6
1

3
2

2  (56) 

 

Substituting Eq. (56) into Eq. (36), the oxygen partial pressure dependence for 

oxygen interstitials is: 

 [ ] ( )







 −
−= −+

kT
EE

kkpOO rF
Fri

3
1

2
'' exp2 3

1
6
1

3
2

 (57) 

 

Similar analyses can be done for the three other regions, and the results are summarized 

in Table 3. The equations in the table give the pO2 dependence of the electrical species, 

and the enthalpy associated with their generation in a particular defect region.  
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In addition, a Kroger-Vink diagram (Figure 12) can be drawn for the acceptor doped 

material after solving for all 4 regions, showing the oxygen partial dependence and 

relative carrier density of various electrical species. Note that the acceptor concentration 

represents the ionized acceptor concentration. 

 

From the Kroger-Vink diagram for acceptor doped material (Figure 12), it can be 

observed that, for example, in Region I, electrons and oxygen vacancies are the dominant 

defects. Region I, however, is likely to have purely electronic conduction since the 

mobility of electrons is usually orders of magnitude higher than that of oxygen vacancies. 

In Region II, oxygen vacancies begin to dominate as the electron density decreases with 

increasing pO2. In Region III, holes become the dominant charge carriers, and this likely 

carries into Region IV, since the mobility of holes is generally much higher than that of 

oxygen interstitials.  
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Figure 12: Kroger-Vink diagram for acceptor doped material. 
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For donor doped material, the oxygen partial pressure dependence is summarized in 

Table 4, and its Kroger-Vink diagram is shown in Figure 13. Similarly, the donor 

concentration in the Kroger-Vink diagram represents the ionized donor concentration. 

 

Similar to the acceptor doped case, for donor doped materials in Region I (see Figure 13), 

the electron is expected to be the dominant electrical carrier with a 6
1

2
−pO -dependence. 

Region II would be pO2 independent with the electron density fixed by the concentration 

of ionized donors. As the pO2 increases further, progressing to Region III, the electrical 

conductivity could switch to ionic towards the middle of this region if the intrinsic 

electron-hole product becomes low enough.  At sufficiently high pO2, increasing numbers 

of holes will again shift the balance to electronic conduction. In Region IV, the material 

is expected to be dominated by hole conduction but now with a 61
2pO dependence. 
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Figure 13: Kroger-Vink diagram for donor doped material. 
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1.5.3 Application of Defect Chemistry and Model 

To apply defect analysis to a material, its total bulk electrical conductivity needs to be 

collected over a range of temperatures and oxygen partial pressures. The total 

conductivity of a material is a summation of contributions by all electrically charged 

species, i.e.: 

 ∑=
i

iiitotal cqZ µσ   (58) 

where q is the elemental charge, Z is the valence, c is the concentration, and µ is the 

mobility of the species. 

 

The bulk conductivity data at each temperature are plotted as function of pO2. The plot 

gives information about the defect region that the material is in. Relying on Table 3 or 

Table 4 for acceptor or donor doped material respectively, the pO2-dependence of the 

electrical conductivity across the pO2 range allows us to establish the possible defect 

chemical reactions that are dominant under those conditions, and hence establish which 

electrical species dominate. In addition, the activation energy of the bulk electrical 

conductivity acquires physical meaning, as it can then be related to specific defect 

reactions (after accounting for the mobility activation energy). 

 

However, to solve the defect equations presented in Table 3 or Table 4 so as to establish a 

predictive defect model for a material, the mobility must be known. For ionic species, the 

process for determining the mobility is through systematic acceptor or donor doping. In 

the ionic compensation region (Eq. (49) and (50), p.49), the oxygen vacancies or 

interstitials are fixed at the ionized acceptor or donor level respectively. With known 

dopant level, the mobility can then be extracted from the bulk conductivity data (see Eq. 

(58))3.  

 

                                                 
3 This is assuming that there is no association between defects (e.g. between ionized acceptors and oxygen 

vacancies). Effect of defect association is discussed in the Discussion section. 
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For electronic species, their concentration and type (hole or electron) can be determined 

using thermoelectric power (TEP) measurements. By combining the bulk conductivity 

and TEP data, the electron or hole mobility can be extracted. In TEP measurement (also 

know as the Seebeck measurement), a temperature gradient is created across the sample. 

The dominant electronic species will migrate from the hot end where they have higher 

kinetic energy to the cool end. The resultant voltage and polarity at the cold end can be 

measured and correlated to the electronic species concentration. In the case of electrons 

being the majority carrier, negative voltage will be measured at the cold end. The voltage 

measurements are repeated for different temperature gradients at a certain temperature, 

and dV versus dT can be plotted. The slope of dV versus dT will then be the TEP or the 

Seebeck coefficient, Q, at that temperature: 

 
dT
dVQ =  (59) 

 

The electron density, n, can be calculated from the TEP, assuming it is the majority 

carriers, by [141]: 
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Alternatively, the hole density, p, can be calculated from the TEP, assuming it is the 

majority carriers, by: 
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In the case where neither electrons nor holes are dominant and, therefore, both contribute 

to the electrical conductivity, the Seebeck coefficient is defined as: 
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In semiconducting oxides,  the heat of transport, H*,  is typically small and is usually 

neglected [134].  



 57

For a case where electron is the majority carrier, with its concentration derived from TEP 

and conductivity from impedance measurements, the electron mobility can be calculated 

using Eq. (58). TEP can also serve as an alternative method to impedance measurements 

for checking the pO2-dependence of the concentration of electronic species, allowing for 

independent verification of the model. 

 

Concentration cell measurements allow the determination of ionic species contribution to 

the total conductivity, and thereby provide a further mean for verifying the defect model. 

The fractional ionic, electron and hole contributions to the total electrical conductivity are 

defined by their respective transference number, ti, te and th as: 
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Concentration cell measurements are used for determining ionic transference numbers. 

The open circuit voltage, V, measured across a specimen, with one side kept at a 

reference (e.g. air) while the other is exposed to a varying oxygen partial pressure. The 

average ionic transference number, ti, is related to V by: 
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=  (64) 

When ti is unity, the voltage, V, is simply the Nernst potential [143]. 

 

To obtain a precise ti at a specific oxygen partial pressure, a differential form of the above 

equation can to be used [144]: 
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In order that the first derivative can be taken from a V versus pO2 plot, an equation that 

relates V to pO2 is needed [144]: 
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where Pp and Pn are the pO2’s at which the electronic transference numbers of holes and 

electrons are 0.5 respectively, pO2
I is the reference pO2, and pO2

II is the working pO2. By 

fitting Eq. (66) to the V versus pO2 plot, and taking the first derivative of the fitted 

equation with respective to log pO2, the precise ionic transport number (ti) can be 

obtained (Eq. (65)). 
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Chapter 2: Objectives 

2.1 Langasite Transport Properties and Stability Limits 

In order to utilize langasite as a piezoelectric for a viable bulk acoustic wave resonator at 

high temperatures, it is necessary to understand its electrical properties (with 

contributions from both ionic and electronic species) and ionic transport properties. To 

achieve this aim, we will measure its bulk electrical properties using impedance 

spectroscopy, in conjunction with thermoelectric power and concentration cell 

measurements to distinguish between ionic and electronic contributions. Diffusion studies, 

performed with collaborators, will allow us to obtain further information about ionic 

transport properties of langasite. With data from these studies, it will be possible to 

predict the electrical and defect properties, and subsequently, be able to minimize 

resistive losses and assist in the derivation of the stability regime of langasite at high 

temperatures.  

 

2.2 Langasite BAW Resonant Chemical Sensor 

For applying the langasite resonator platform together with a sensitive film as a chemical 

sensor, not only must the langasite resonator be stable and its loss kept to a minimum, but 

the sensitive film must exhibit significant mass change associated with exposure to the 

target chemicals. Hence, we will evaluate the sensitivity of films to target chemicals, 

using quartz for test of concept since the result can be transferred readily to langasite 

resonators for more extreme conditions. 

 

In the sensor application studies, we focused on two applications that demonstrated high 

temperature resonant sensor applications, namely: 

1. Detection of oxygen partial pressure change due to oxygen stoichiometry change 

in oxide materials, as an example of a bulk-based film. 

2. Detection of NOx through reaction with BaCO3 film, as an example of a reaction-

based film. 
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We also seek to understand the processes that control sensitivity and response time, and 

will attempt to improve them through optimization of microstructures and addition of 

catalyst.  
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Chapter 3: Experimental 

3.1 General 

In this chapter, we describe the experimental procedures used in our work. Experiments 

were designed in order to achieve the stated objectives in Chapter 2, and they can be 

classified into two areas: (a) transport property measurements, and (b) high temperature 

sensor applications. In both areas, sample/device preparations, sample/device setup, and 

data acquisition equipment and techniques are described. 

 

3.2 Transport Properties of Langasite 

3.2.1 Sample Preparations 

Because single crystal langasite was found [145] to exhibit slow reduction-oxidation 

kinetics, even at elevated temperatures, we utilized polycrystalline specimens with 

interconnected porosity in this study to examine equilibrium electrical and defect 

properties. Polycrystalline undoped, 1%Sr-doped and 5%Nb-doped langasite samples 

were produced using the mixed oxide route. Sr and Nb were chosen as an acceptor and 

donor respectively, because they have been known to form solid solutions with or 

completely substituting a cation in materials with the langasite-type structure [54, 82, 

135-137, 140]. Since the cation sites they substituted into are known (i.e. Sr replaces La, 

and Nb replaces Ga), the dopant behaviors are more predictable. The amount of dopant 

required was calculated as molecular percentage of the targeted cation site4, instead of 

total weight percentage of langasite (which would be different, see Table 5).  
 

Table 5: Amount of acceptor and donor in mol% and wt%. 

Dopant Mol %  Wt % of Langasite 

Sr 1 mol% of La 0.4 wt% 

Nb 5 mol% of Ga 2.2 wt% 

                                                 
4 This definition is used in this thesis unless otherwise stated. 
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Stoichiometric amounts of La2O3, Ga2O3, SiO2, Sr(CO3) (for 1%Sr doped) and Nb2O5 

(for 5%Nb doped) powders (Alfa Aesar, 99.99% metal basis) were mixed and ball-milled 

in deionized water for approximately 24hrs.  The mixture was then dried at 110oC while 

stirred, and then uniaxially pressed into 1” pellets. The pellets were calcined at 950oC for 

3 hours and then sintered at 1450oC for 10 hours. The pellets were placed on powder beds 

(with composition identical to the pellets’) to prevent reactions with the alumina sintering 

dishes used.  

 

Density achieved for undoped langasite was greater than 94% and for both the doped 

samples was greater than 90%. In all cases, grain sizes on the order of 10 µm were 

obtained. X-ray diffraction showed the material to be langasite with no observable second 

phases. Previous attempts where sintering steps were performed at 1200oC or lower 

showed the formation of LaGaO3 as a second phase.  

 

3.2.2 Two-point Impedance Spectroscopy Measurements 

Pellets of nominally undoped, 5%Nb-doped and 1%Sr-doped langasite were cut into bars 

with effective cross sectional area of 6.5-7.0mm2 and length of 5.5-6.5mm. The bars were 

electroded with platinum using platinum ink paint from Engelhard-Clal and then cured at 

850oC for 3 hours. AC complex impedance measurements were conducted using a 

frequency response analyzer (Solartron 1260). Samples were heated in a tube furnace 

(Thermolyne 21100 Tube Furnace) to temperatures of 700-1000oC (controlled using 

Eurotherm 818 programmable controller) with the oxygen partial pressure controlled with 

Ar/O2 (for high pO2 range) or CO/CO2 (for low pO2 range) gas mixtures. The schematic 

of the experimental setup is shown in Figure 14. Samples were allowed to equilibrate 

from a day (at 700oC) to 2hr (at 1000oC). 
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A polycrystalline material has, in general, 3 different contributions to its total resistance: 

the bulk, the grain boundaries, and the electrodes/contacts. When 2-point impedance 

measurements are performed, three semicircles appear on the impedance plot under ideal 

conditions for which the different time constants of each contribution are sufficiently 

distinct (Figure 15). 
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Figure 14: Experimental setup for two-point impedance measurements. 
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Figure 15: Idealized impedance plot for a polycrystalline material. 
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The electrical conductivity at a certain temperature and pO2 is then analyzed by fitting the 

corresponding impedance spectrum (using Zview software program, Scribner Associates 

Inc., Version 2.0) with an equivalent circuit that contains parallel R-C elements, one each 

for electrodes, grain boundary and bulk (Figure 16). The resistance contribution from 

each contribution can then be extracted from the diameter of the corresponding semicircle. 

The conductivity is then calculated by normalizing by the bulk geometry even for the 

interfacial contributions. This allows one to continue to compare the relative 

contributions in a log conductivity versus reciprocal temperature plot. Note, in this study, 

only the bulk component of the conductivity is examined in any detail. The extracted 

bulk electrical conductivities at different temperatures for all three samples were plotted 

as function of pO2 for further analysis. Tests for reversibility were performed after 

measurements at low pO2 by repeating the measurements at higher pO2. 

 

3.2.3 Thermoelectric Power Measurements 

Thermoelectric power (TEP) measurements were performed on polycrystalline 5%-Nb 

doped langasite to confirm the sign and concentration of its majority carrier. It also 

served to independently verify the prediction made by the defect model that electrons 

rather than ions were the dominant carriers. In addition, with the determination of the 

majority carrier density, it became possible to determine the carrier mobility. 

 

 

Grain boundaries Electrodes Bulk  
Figure 16: Equivalent circuit modeling R-C contributions from electrodes, grain 

boundaries and bulk. 
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A 12mm long of 5%-Nb doped langasite sample, in the shape of a parallelepiped, was cut 

from the pellet used for impedance measurements. Pt wires, together with a pair of type-S 

thermocouples, were attached to each end. The schematic of the experimental setup is 

shown in Figure 17. Samples were heated in a tube furnace (Thermolyne 21100 Tube 

Furnace) to temperatures of 700-1000oC (controlled using Eurotherm 818 programmable 

controller) with the oxygen partial pressure controlled with Ar/O2 (for high pO2 range) or 

CO/CO2 (for low pO2 range) gas mixtures. The temperature difference was naturally 

generated in the furnace by moving the sample along the length of the furnace outside of 

the central isothermal region. The sample was allowed to equilibrate for 2hr between 

each set of measurements before measurements were made. The voltage and polarity of 

the hot end was measured using a nano-voltmeter (Keithley 197), while simultaneously 

measuring the temperatures (using thermometer, Omega HH506R) at the hot and cold 

ends using two pairs of type-S thermocouples.  

 

The measurement was performed at a constant temperature, but at different temperature 

gradients dT. The resultant dV was plotted against dT to obtain the TEP coefficient, Q 

(Eq.(59), p.56). 
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Figure 17: Experimental setup for thermoelectric power measurements. 
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3.2.4 Concentration Cell Measurements 

Concentration cell measurements were performed on undoped langasite and 5%Nb-doped 

langasite to determine their ionic transference numbers. This is important for 

independently verifying the predictions of the defect model. 

 

Slabs of undoped and 5%Nb-doped polycrystalline langasite were cemented onto one end 

of alumina tubes using a high temperature cement (Ceramabond 569, Aremco Products 

Inc, Valley Cottage NY). After the cement dried at room temperature overnight, the 

interface was sealed against gas leakage using a glass frit dispersed in deionized water 

(Glass #13, Elan Technology, Midway GA), which was fired at 1000oC before 

measurements were performed. The experiment was performed in a tube furnace 

(Thermolyne 21100) with temperature varying from 700 to 1000oC (controlled using 

Eurotherm 818), and the oxygen partial pressure was varied by using CO/CO2 or O2/Ar 

gas mixtures. The open circuit voltage (Voc) was measured (using Keithley 196) after 

equilibrating the setup at a set condition for 2hrs. The experimental apparatus for 

obtaining the ionic transport number is shown in Figure 18. 

 

The open circuit voltage was then plotted as function of pO2, and fitted with Eq. (66) 

(p.57). The first derivative of the fit was then taken. The first derivative of that plot at 

various pO2 was related to the ionic transport number and ionic transport numbers at 

various temperatures can be obtained as function of pO2 using Eq. (65) (p.57).  
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Figure 18: Experimental setup for concentration cell measurements. 
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3.2.5 Oxygen Exchange and Diffusion studies 

Oxygen exchange experiments were performed by our colleagues and collaborators at the 

University of Clausthal in Clausthal, Germany. Due to their importance in the 

understanding of the transport properties of langasite, a brief description is given here. 

The samples used were prepared by us as in 3.2.1 so that they could be compared directly 

against the results from impedance studies. 

 

Oxygen diffusion in langasite was studied and reported recently by M. Schulz et al [146], 

our collaborators, using the oxygen isotope exchange method. It utilized the exchange of 

stable tracer isotope 18O with the naturally occurring 16O in our langasite samples. The 

samples were exposed to 18O-rich oxygen mixture at temperatures from 400-1000oC to 

allow for 18O-16O exchange. Secondary Ion Mass Spectrometry (SIMS) was then utilized 

to evaluate the concentration profile of oxygen in the langasite samples. The oxygen self-

diffusivity is then extracted by fitting the oxygen concentration profile. In polycrystalline 

material, one has to take into account the different diffusion mechanism that is in play in 

the grain boundaries; the details are given in [146]. In this study, the profiles for Nb-

doped langasite were found to be too noisy due to high porosity and therefore only 1%Sr-

doped and the undoped samples were analyzed. 

 

3.3 Sensor Studies 

3.3.1 Device Preparations 

Langasite single crystals were cut in the Y-direction, grounded and polished into discs. 

The resonator was loaded into the sputtering chamber and pumped down to a vacuum of 

5×10-6 torr. To deposit the electrodes, 10nm of titanium were first sputtered as an 

adhesion layer, followed by 120nm of platinum using a contact mask. The deposition was 

done using 50W of DC power at room temperature, with working pressure of around 5 

mtorr. The deposition rates for both titanium and platinum were determined to be ~10 

nm/min. The final resonant frequency for the langasite resonators created ranged from 3.5 

to 4.0MHz. 
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We also obtained AT-cut quartz crystal microbalances (QCM) for testing of various 

active films for sensing applications. It allows us to evaluate the sensitivity of film 

materials cheaply and quickly before depositing them on langasite resonators. The AT-

cut QCM were obtained from Maxtek Inc, with resonant frequencies of 5MHz (Part 

#149211-2). Electrodes in al the QCM were gold, with chromium as adhesion layer. 

 

Active films were deposited onto the resonators using pulsed laser deposition (PLD) and 

PMMA templating technique. The two methods are detailed below. 

 

Pr0.15Ce0.85O2 film preparation using PLD 

Solid solution Pr0.15Ce0.85O2 (praseodymium-cerium oxide, PCO) was deposited onto a 

single crystal Y-cut langasite resonator (resonant frequency of 4.0MHz) with Pt 

electrodes using pulsed laser deposition (PLD). A PCO target was prepared using the 

mixed oxide route by combining appropriate amounts of praseodymium oxide (Pr2O3) 

and cerium oxide (CeO2) (Alfa Aesar, 99.99% metal basis). The target was first 

uniaxially and then equiaxially pressed, and then sintered at 1100oC in air. The PCO 

target was then used for PLD, which allowed precise stoichiometric PCO to be deposited 

onto the langasite resonator. 

 

The langasite resonator (Y-cut) was loaded into the vacuum chamber. The chamber was 

then pumped down to 3.5×10-6 torr for deposition. The deposition was performed at room 

temperature, with the excimer laser set at 700mJ (~2.809J/cm2) and ablation frequency of 

20Hz. The final PCO thickness obtained was 150nm, with average deposition rate of 

0.02nm/pulse. 

 

BaCO3 film preparation using PMMA templating technique 

This technique was introduced to our group by T. Hyodo, and both BaCO3 and SiO2 films 

were coated onto the resonators by him. This technique has been shown [147] to improve 

sensing properties tin oxide towards NOx and H2, and allows us to deposit highly porous 

films for high specific surface area. 
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BaCO3 (barium carbonate) films were deposited using the PMMA templating technique 

[148] onto 5MHz (Maxtek Inc) AT-cut quartz resonators respectively. In addition, 

BaCO3 films were also deposited onto 3.6MHz Y-cut langasite resonators. The first step 

of this technique is to create a 3-D array of PMMA microspheres. For that, about 0.20g 

(800nm in diameter) or 0.16g (400 nm in diameter) of PMMA microspheres (Soken 

Chem. & Eng. Co., Ltd.) was dispersed in 10 ml deionized water using ultrasonicator for 

10min. The suspension was then dripped by pipette onto one electrode face of quartz 

resonators and allowed to dry at room temperature over night. Only the 800nm PMMA 

template was used on the langasite resonator. The resultant scanning electron microscope 

(SEM) images of the structures are shown in Figure 19. 

 

 

For the BaCO3 film, 1.5M Ba(CH3COO)2 aqueous solution was permeated (using a 

pipette) into the interstices of the 3-D array of PMMA microspheres, in vacuo, at room 

temperature. Additional platinum chloride (~0.075mol/liter) was added to the 
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Figure 19: 3-D arrays of PMMA microspheres with different diameters (left-400nm, 

right-800nm). 
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Ba(CH3COO)2 on the Y-cut langasite resonator to include Pt catalyst in the active film. 

Thereafter, the resultant film was subjected to heat treatment at 400°C for 2hr to remove 

the PMMA microspheres through thermal decomposition and to obtain the porous BaCO3 

framework. The resultant microstructures of the BaCO3 films are shown in Figure 20, 

with interconnected pores derived from PMMA size. 

 

 

 

 P-400 P-800 

 

Figure 20: Microstructures of BaCO3 films from 400nm and 800nm diameter 

PMMA microspheres (without Pt catalyst). 
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3.3.2 Sensor Testing 

Sensor testing was performed in an air-tight chamber in a furnace (Thermolyne 21100 

tube furnace with controller) for atmospheric and temperature control. Gas species of 

interest were continuously flowed into the chamber, and the flow rate and gas 

composition were controlled manually using mass flow controllers (4 flow valves, MKS 

1259C, with multi-channel mass flow controller MKS 647A). Two resonators, the sensor 

and the reference, were placed in close proximity in the test chamber. The sensor was a 

resonator with the appropriate active film that was selective towards the chemical of 

interest. A reference, a resonator without the active film, was used for compensation of 

extraneous effects, e.g. temperature fluctuations.   

 

The resonant frequency was monitored using a network analyzer (Agilent E5100A5). A 

low-loss high frequency power splitter (Agilent 11850C) was used to divide the output 

power so that both resonators (sensor and reference) were excited simultaneously. A pair 

of K-type thermocouples was placed near the sensor for temperature measurements and 

the thermocouple voltage was recorded by the HP 3478A multimeter.  

 

The computer with GPIB controller and Labview (National Instrument) program 

recorded the differences in resonant frequency changes of both sensor and reference (∆f = 

∆fsensor – ∆fref) and the thermocouple voltage reading, with about 0.5 second interval 

between frequency and voltage readings. Following a set of readings, it paused for 6 

second before another set of readings was taken. This allowed us to plot ∆f versus time 

for sensor testing. 

 

The schematic of the setup is shown in Figure 21, which was used for testing three 

different sensors as detailed below. 

                                                 
5 The setting up and calibration of Agilent E5100A are outlined in Appendix D. 



 72

 

Oxygen partial pressure sensing with PCO active film 

The solid solution Pr0.15Ce0.85O2 (PCO) was used as the active film on a single crystal Y-

cut langasite resonator with Pt electrodes. The fabrication details of this sensor were 

described in previous section (using PLD, see 3.3.1). The resonant sensor was placed at 

600°C at varying pO2 controlled by changing the ratio of O2/Ar in the gas mixture. 

Before measurement, the sensor was first annealed in 100% O2 at 600°C for a day. The 

base line was re-zeroed for drift at 30 minutes intervals each time pure oxygen was 

introduced.  

 

NO2 sensing with BaCO3 active film 

Two sensors were tested: a 5MHz AT-cut QCM (Maxtek Inc) and a Y-cut langasite 

resonator were coated with BaCO3 films (using PMMA templating technique) and used 

for NO2 sensing testing. The fabrication details of this sensor were described in previous 

section (3.3.1). Gas compositions were controlled using mass flow controllers by varying 

the flow rate of 100ppm NO2/Ar, pure Ar and CO/CO2 gas mixtures. Readings were 

taken approximately every 6 seconds using Labview (National Instrument) software. 

During testing, the sensor was equilibrated in Ar for 15 min, exposed to 100 ppm NO2/Ar 

for 30 min, reduced in 50%CO/CO2 mixtures for another 30 min, and finally flushed with 

argon for 15 min.  Temperature ranges for the tests were 250-400oC for QCM based 

sensor and 250-700oC for langasite based sensor. 

 
 

Figure 21: Schematic setup for sensor testing.  
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Chapter 4: Results 

4.1 General 

This chapter contains results from both the transport and sensor studies, divided into two 

subsections. The transport studies examine the electrical and transport properties of 

langasite at high temperatures and over a range of oxygen partial pressures. They also 

examine the influence of dopants on those properties. The sensor studies examine the 

sensitivities and response times of the resonant sensors to their respective target 

chemicals. 

 

4.2 Transport Studies 

4.2.1 Impedance Spectroscopy 

Two-point impedance spectroscopy studies were performed on nominally undoped, 

1%Sr-doped and 5%-Nb doped langasite samples. Examples of typical impedance spectra 

obtained for 1%Sr-doped langasite in 100%O2 atmosphere at different temperatures are 

shown in Figure 22, with symbols representing the impedance of the material at a certain 

frequency and the solid lines are the fitted lines to the data using the equivalent circuit 

(Figure 16, p.64).   

 

Zview software (Scribner Associates Inc., Version 2.0) was used for fitting the spectra. 

The equivalent circuit (Figure 16, p.64) was defined in the software and the fitting 

routines generated fitted values for each element in the equivalent circuit. The high 

frequency arc (i.e. the largest arc in a spectrum in Figure 22), with the corresponding 

resistance and capacitance, can be attributed to the bulk resistance. Similar analyses were 

performed for all three different samples at all the experimental pO2 and temperature 

ranges. Bulk conductivities were then extracted as function of pO2 and temperature. DC 

biasing up to 2V shows no effect on the impedance spectra. 
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4.2.2 Electrical Conductivity of Nominally Undoped Langasite 

The bulk electrical conductivity, as functions of oxygen partial pressure and temperature, 

of nominally undoped langasite were extracted from impedance spectroscopy spectra 

using the equivalent circuit described in section 3.2.2 (Figure 16, p.64).  

 

Figure 23 shows the bulk electrical conductivity and its dependence on oxygen partial 

pressure. The symbols represent the measured bulk conductivity data. The dashed lines 

are fitted conductivity values based on defect model derived below (see in 1.5, p.46). One 

observes that at high pO2, the bulk electrical conductivity is pO2 independent. Under 

reducing conditions, the bulk electrical conductivity begins to acquire a dependence on 

pO2. At sufficiently low pO2, the conductivity approaches a 4
1

2
−pO -dependence, as we 

demonstrate below. This is indicative of an acceptor-type defect behavior in Region II, 

where the pO2-independent conductivity is ionic in nature and fixed by the acceptor and 

the electron and hole density follow a 4
1

2
−pO  and 4

1

2pO -dependence respectively.  
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Figure 22: Impedance spectra for 1%Sr-doped langasite at different temperature 

in 100% O2 atmosphere. 
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Since it is ascertained that the nominally undoped langasite is in Region II (the shaded 

area in the Kroger-Vink diagram, see Figure 24), the bulk electrical conductivity will be 

the sum of contributions from electrons and oxygen vacancies (contributions from other 

electrical species is negligible, Figure 24). The ionic conductivity can then be separated 

from the electronic conductivity. 
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Figure 23: Bulk conductivity of nominally undoped langasite as function of 

temperatures and pO2. 
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From the bulk conductivity data (Figure 23), the ionic conductivity is then simply the 

pO2-independent conductivity (high pO2 regime). Ionic conductivity is defined as: 

 
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iiionic exp
µ

µσ  (67) 

where Z is the amount of charge carried by the ionic specie, q is the elemental charge, Ci 

is the specie concentration, µ is the ionic mobility and Em is the ionic migration energy. 

 

In order to obtain the migration energy, Em, we have to plot logσionicT as function of 

inverse temperature. For the nominally undoped langasite, the product of ionic 

conductivity, contributed by oxygen vacancies, and temperature is plotted as function of 

inverse temperatures in Figure 25. The activation energy calculated from the plot, 

assuming an Arrhenius-type relationship, is calculated to be 0.91(±0.01)eV. The 

Arrhenius relationship, used for the activated process, is: 

 
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




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kT
E

Ay aexp  (68) 

 
Figure 24: Kroger-Vink diagram of acceptor-doped material with grayed-out 

area indicating the regime nominally undoped langasite was operating. 
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where y is a physical quantity that is temperature activated, A is the Arrhenius coefficient 

and Ea is the activation energy. Hence if log y is plotted against 1/T, the gradient of the 

plot will give –Ea/(k ln10).  

The electronic conductivity can then be extracted by subtracting the ionic conductivity 

from the total conductivity in the lower pO2 regime, where the electrical conductivity 

becomes pO2-dependent. The extracted electronic conductivity is plotted in Figure 26. 

The electronic conductivity at each temperature fits well to a -1/4 slope (except at the 

highest pO2’s where we expect a larger error) indicating good agreement with the defect 

model (Region II, Table 3, p.51) where n has a predicted 4
1

2
−pO -dependence. Furthermore, 

the electronic conductivity is conveniently extrapolated to logpO2=0 and the Arrhenius 

plot of the electronic conductivity (Figure 27) gives the activation energy of 3.0(±0.02) 

eV. With expressions for the electronic and ionic conductivities, the total conductivity 

(sum of the electronic and ionic conductivity) can then be fitted as shown in Figure 23 

(dotted lines). 
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Figure 25: Ionic conductivity-temperature product of nominally undoped langasite. 
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Figure 26: Electronic conductivity of nominally undoped langasite as function of 

temperature and pO2. 
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Figure 27: Temperature dependence of electronic conductivity (extrapolated to 

logpO2=0) of nominally undoped langasite. 
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4.2.3 Electrical Conductivity of 1%Sr-doped Langasite 

Similarly, the bulk electrical conductivity, as functions of oxygen partial pressure and 

temperature, of 1%Sr-doped langasite were extracted from impedance spectroscopy 

spectra using the equivalent circuit described in the Experimental Section (Figure 16, 

p.64). Figure 28 shows the bulk electrical conductivity and its dependence on oxygen 

partial pressure for a series of isotherms from 700-1000oC. The symbols represent 

measured values, and the dashed lines are fitted values based on the defect model (see in 

1.5, p.46). 
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Figure 28: Bulk conductivity of 1%Sr-doped langasite as functions of temperature 

and pO2. 
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In Figure 28, it can be observed that at high pO2, the bulk electrical conductivity at a 

fixed temperature has slight pO2 dependence, while under more reducing conditions, the 

bulk electrical conductivity becomes pO2-independent. This electrical conductivity 

behavior is indicative of a material in Region II of the defect model (as shown in the 

shaded regime of Figure 29), with its total conductivity contributed mainly by oxygen 

vacancies and holes. Hole conductivity at high pO2 is predicted to have a 4
1

2
+pO -

dependence (Table 3, p.51), hence explaining the slightly pO2 dependence in Figure 28. 

The change in behavior when compared to the nominally undoped langasite can be 

attributed to the addition of Sr.  Since Sr is an acceptor, increasing its level will depress n, 

consistent with the suppression of n-type conductivity at lower pO2, and increase the 

ionic and p-type conductivity at higher pO2, as observed in Figure 28 (Table 3, p.51).  

 
Figure 29: Kroger-Vink diagram of acceptor-doped material with grayed-out area 

indicating the regime 1%Sr-doped langasite was operating. 
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Similar to the case for nominally undoped langasite, the electronic (p-type hole) 

conductivity can be extracted by subtracting the pO2-independent ionic conductivity at 

low pO2 from the total conductivity at high pO2. The product of ionic conductivity, 

contributed by oxygen vacancies, and temperature is plotted as function of inverse 

temperatures in Figure 30.  The calculated activation energy calculated from the plot is 

1.27(±0.02)eV. The extracted electronic conductivity is plotted in Figure 31, and is fitted 

with a +1/4 slope. The fit is acceptable, considering the relatively small hole conductivity, 

and remains in good agreement with the defect model. The hole conductivity at log 

pO2=0 is plotted as function of inverse temperature in Figure 32, giving an activation 

energy of 1.09(±0.04)eV. The sum of the expressions for the hole and ionic conductivity 

is then used to calculate the predicted total conductivity as shown in Figure 28 (dotted 

lines). 
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Figure 30: Ionic conductivity-temperature product of 1%Sr-doped langasite. 
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Figure 31: Electronic conductivity of 1%Sr-doped langasite as 

functions of temperature and pO2. 
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Figure 32: Temperature dependence of electronic conductivity of 

1%Sr-doped langasite at log pO2=0 
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4.2.4 Electrical Conductivity 5%Nb-doped Langasite 

The bulk electrical conductivity, as functions of oxygen partial pressure and temperature, 

of 5%Nb-doped langasite were extracted from impedance spectroscopy spectra using the 

equivalent circuit described in the Experimental Section (Figure 16, p.64). Figure 33 

shows the bulk electrical conductivity and its dependence on oxygen partial pressure for 

isotherms ranging from 700-1000°C. The symbols represent measured bulk conductivity 

data, and the dashed lines are fitted values based on the defect model (detailed in Chapter 

5, p.124). 
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Figure 33: Bulk conductivity of 5%Nb-doped langasite as functions of 

temperature and pO2. 
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In the conductivity data for 5%Nb-doped langasite, it can be observed that at high pO2, 

the bulk electrical conductivity at a fixed temperature is pO2-independentand becomes 

pO2-dependent at lower pO2 as for the acceptor doped material. However, since donors 

depress oxygen vacancies, we need to look for an alternate explanation. Turning to the 

defect model for donor-type material in Regions I and II (see shaded regime of Figure 34). 

In Region I, n is 6
1

2
−pO -dependent, and, at higher pO2, in Region II, n becomes pO2-

independent, fixed by the ionized donor concentration (Table 4, p.54). It also means that 

the conductivity data of 5%Nb-doped langasite in Figure 33 is n-type electronic in nature, 

i.e. contributed predominantly by electrons, throughout the measured pO2 range. 

 

 
Figure 34: Kroger-Vink diagram of donor-doped material with grayed-out area 

indicating the regime 5%Nb-doped langasite was operating. 
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As before, we analyze the data of 5%Nb-doped langasite at the high pO2 (flat regime) and 

at the low pO2 ( 6
1

2
−pO -dependent regime) where the Brouwer approximations can be used. 

The pO2-independent electrical conductivity data is plotted as function of temperature in 

Figure 35 for which one calculates an activation energy of 0.91(±0.01)eV. 

 

 

At low pO2, by extrapolating the electrical conductivity using a 6
1

2
−pO -dependence to 

pO2=10-35atm, the activation energy for Region I can be obtained by plotting the result as 

function of inverse temperature (Figure 36). The activation energy of the pO2-dependent 

n-type electrical conductivity at the pO2-dependent is calculated to be 2.34(±0.07)eV. 
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Figure 35: Conductivity at pO2-independent regime for 5%Nb-doped langasite. 
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Figure 36: Conductivity at 6
1

2
−pO -dependent regime for 5%Nb-doped langasite. 
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4.2.5 Thermoelectric Power Measurements 

Thermoelectric power (TEP) measurements were performed on 5%Nb-doped langasite so 

that electrons can be confirmed as the dominant conductive species at high pO2 and the 

electron density could be evaluated from the TEP, Q, using Eq. (60) (p. 56), as function 

of temperature and pO2. The raw ∆V versus ∆T data in air at different temperatures are 

presented in Figure 37. The insert shows the normalized plot where intercepts are fixed at 

the origin. It clearly illustrates that the slope, which is proportional to Q, decreases with 

increasing temperatures, indicting increasing n as temperature rises as per Eq. (60) (p. 56). 

The thermoelectric power or Seebeck coefficients, Q, at all the temperatures, were then 
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Figure 37: Raw TEP data of ∆V against ∆T for 5%Nb-doped langasite in air 

obtained at different temperatures. The insert is a normalized plot, where the 

intercepts are fixed at the origin. 
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evaluated and plotted in Figure 38. By using Eq. (60) (p. 56), Figure 38 allows the 

determination of the electron density, n, as a function of temperatures. The calculated 

electron density is plotted versus inverse temperature in Figure 39, giving an activation 

energy of 0.76(±0.03)eV. 

 

Using the electron density (Figure 39) and conductivity data from the pO2-independent 

regime presented in Figure 35 (p.85), the electron mobility, (µe= σe/nq), as function of 

temperature is obtained. Note that the actual data for both electron density and 

conductivity are used, not the fitted results. The results are plotted in Figure 40. The 

electron mobility, µe, is temperature-dependent with a calculated activation energy of 

0.15(±0.01)eV. 
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Figure 38: TEP or Seebeck coefficients of 5%Nb-doped 

langasite in air as a function of temperature. 
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Figure 39: Electron density of 5%Nb-doped langasite in air as 

function of temperatures. 
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Figure 40: Electron mobility as function of temperature. 



 90

TEP measurements were also performed as function of pO2 for 5%Nb-doped langasite at 

a fixed temperature of 950oC. A similar range of pO2 to the conductivity measurements 

was used so that both sets of results could be easily compared. Q as function of pO2 is 

obtained from the gradients of ∆V versus ∆T (Figure 41) for pO2’s from 10-19atm to 1atm 

using Eq. (60) (p. 56). The results are plotted in Figure 42. 
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Figure 41: Raw TEP data of ∆V against ∆T for 5%Nb-doped langasite at 950oC 

obtained at different pO2. The insert is a normalized plot, where the intercepts are 

fixed at the origin. 
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With Eq. (60) (p. 56), the electron density, n, calculated from Figure 42 and its pO2 

dependence at 950oC is shown in Figure 43. These data confirm that both the pO2-

independent conductivity at high pO2 and the pO2-dependent conductivity at low pO2 are 

both controlled by electrons in contrast to the situation earlier described for acceptor 

doped langasite. The data also confirms the predicted 6
1

2
−pO -dependence of n at low pO2. 
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Figure 42: TEP or Seebeck coefficients of 5%Nb-doped langasite at 950oC as 

function of pO2. 
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4.2.6 Concentration Cell Measurements 

The concentration cell measurements were performed on nominally undoped and 5%Nb-

doped langasite samples. For nominally undoped langasite, the raw open circuit voltage, 

Voc, versus pO2 data at various temperatures were fitted using Eq. (66) (p.57), as shown in 

Figure 44. Note that voltages up to the order of 1V were obtained confirming a major 

contribution of ionic to the total conductivity. The first derivatives of the resultant curves 

at any pO2 can be related to the ionic transference number, ti, at that specific pO2 (Eq.(65), 

p.57). The ionic transference number ti for nominally undoped langasite as function of 

pO2 is shown in Figure 45. 
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Figure 43: Electron density of 5%Nb-doped langasite at 950oC as function of pO2. 

The symbols represent n values derived from the TEP data collected over a range 

of pO2. The solid curve is the electron density calculated from conductivity 

measurements (Figure 33, p.83) using the electron mobility determined in (Figure 

40, p.89). 
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In Figure 45, the solid lines, derived from the concentration cell data, show the ionic 

conductivity to be dominant at high pO2. The fall-off in ti under reducing conditions is 

expected based on our expectation of the electron conductivity becoming dominant under 

those conditions. Likewise, as expected, ti begins to fall off at higher pO2 as temperature 

increases. The concentration cell results are compared with ti derived from the 

conductivity data with the aid of the defect model for nominally undoped langasite in 

Figure 45. The ionic transference number ti derived from the conductivity data was 

calculated by taking the ratio of ionic conductivity (Figure 25, p.77) to the total 

conductivity (Figure 23, p.75) of undoped langasite. Good agreement is observed 

between the two types of data. 
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Figure 44: Voc versus pO2 concentration cell data for nominally undoped 

langasite. 
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For 5%Nb-doped langasite, the open circuit voltage versus pO2 data at various 

temperatures are plotted in Figure 46. The data show a great deal of scatter, but more 

importantly, the voltages were on the order of mV rather than hundreds of mV as in the 

case of nominally undoped langasite. Linear curves were fitted to the data at all three 

temperatures in Figure 46. The average ti’s were evaluated using the obtained gradients 

(Eq.(64), p.57) and they are at most on the order of 0.1%, consistent with the expectation 

that the electrical conductivity, even in the pO2 independent regime is largely n-type 

electronic. 
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Figure 45: Ionic transport number, ti, at various temperatures for nominally 

undoped langasite as function of pO2. Solid lines are from concentration cell 

measurements, and dotted lines are derived from conductivity data with the aid of 

the defect model. 



 95

4.2.7 Oxygen Exchange and Diffusion Studies 

Oxygen exchange experiments for nominally undoped and 1%Sr-doped langasite 

polycrystalline ceramics were performed by M. Schulz et al [146], our collaborators at 

the University of Clausthal in Germany.  The results are presented in Figure 47 along 

with results for langasite single crystals, which are included for comparison. 

 

The oxygen self-diffusivity is shown to be thermally activated, with activation energy of 

1.4eV and 1.1eV for nominally undoped and 1%Sr-doped langasite respectively. Note 

that for nominally undoped langasite, the data consists of only two points and hence a 

large error is expected. As comparison, the activation energy for oxygen self-diffusion in 

single crystals from several sources (Tohuku and IKZ) is about 1.4eV.  Figure 47 also 

shows that 1%Sr addition increases the oxygen self-diffusivity by about an order of 

magnitude. 
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Figure 46: Voc versus pO2 concentration cell data for 5%Nb-doped 

langasite. 
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Gallium diffusion measurements were performed to alleviate the suspicion that gallium 

rather than oxygen could be the mobile ionic specie (Si is, in general, covalent and La is 

large, making both species unlikely to easily migrate within the structure). One observes 

in Figure 47 that the gallium self-diffusivity, with an activation energy of 3.13eV, is 

many orders of magnitude lower than that of oxygen. This confirms our assumption that 

oxygen is the most mobile ion. 
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Figure 47: Oxygen and gallium self diffusion versus reciprocal temperature in a series 

of langasite specimens  [146]. 



 97

4.3 Sensor Studies 

4.3.1 Sensor Utilizing Bulk Based Film 

The Y-cut langasite resonator coated with a PCO active film had a resonant frequency, fr, 

of 4.08266MHz, following annealing at 600oC for one day in a pO2 of 1atm. The resonant 

frequency was recorded as a function of temperature and plotted in Figure 48. The 

temperature coefficient of resonant frequency, dfr/dT, as a function of temperature, was 

also calculated. The determined dfr/dT in Figure 48 show the increased temperature 

dependence of fr as temperature increased. 

 

The changes in resonant frequency ∆f (averaged over 10 6-second readings) with time, as 

pO2 was varied, are plotted in Figure 49. The time dependent temperature fluctuations are 

also presented. As there is little correlation between the temperature and the frequency 

change, we can conclude that the temperature compensation was effective in 

compensating out most temperature effects.  

 

0 100 200 300 400 500 600 700 800

4.06

4.08

4.10

4.12

4.14

4.16

4.18

-300

-250

-200

-150

-100

-50

0

50

f r (M
H

z)

T (oC)

fr (MHz)= 4.15987 - 3.57435x10-6T - 1.79553x10-7T2 + 1.00443x10-11T3

 dfr /dT (H
z/ oC

)

dfr/dT (Hz) = -3.57435x10-6 - 3.59106x10-7 T + 3.01329x10-11 T2

 
Figure 48: Temperature dependence of resonant frequency of Y-cut 

langasite resonator.  
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The frequency shift ∆f is replotted as a function of oxygen partial pressure in Figure 50. 

The smoothed first derivative of that response is also plotted in Figure 50, which shows 

that the sensitivity of the sensor drops to nearly zero at or below pO2=10-3atm. 

 

 

 

 

 

0 200 400 600 800 1000 1200 1400
-700

-600

-500

-400

-300

-200

-100

0

100

600

605

610

615

620

625

630

635

640

645

650

∆
f (

H
z)

t (min)

pO2=1atmpO2=1atmpO2=1atm

pO2=10-4atmpO2=10-2atmpO2=10-1atm

pO2=1atm

 T
(o C

)

pO2=10-3atm

 
Figure 49: PCO active film on langasite resonator response to oxygen partial 

pressures. The bottom graph shows that variations in temperature.  
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Figure 50: Frequency response of PCO/langasite sensor to pO2 in the environment.  
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4.3.2 Sensor Utilizing Reaction Based Film 

5MHz AT-cut QCM 

Porous active films of BaCO3 were prepared from two different PMMA templates (800 

and 400nm diameter PMMA microspheres) on 5MHz AT-cut QCMs. Sensitivity to NO2 

was tested with two different NO2 concentration (50ppm and 100ppm NO2 in Ar), with 

subsequent recovery in a 50/50 CO/CO2 gas mixture.  

 

The frequency shifts induced in resonators coated with BaCO3 active films (prepared 

with the 800nm PMMA template) by exposure to 50ppm and 100ppm NO2 are recorded 

in Figure 51 and Figure 52 respectively. The corresponding frequency shifts for films 

prepared using the 400nm PMMA template are shown in Figure 53 and Figure 54, for 

50ppm and 100ppm NO2 respectively. For all sets of data, no frequency shifts are 

observed below 300oC. The response to a given concentration of NO2 increases with 

increasing temperature, up to the maximum test temperature of 400oC. Figure 55 

summarizes the temperature dependence of the frequency shifts and incremental 

sensitivity for the different film microstructures and NO2 levels. The incremental 

sensitivity of the sensor between 50 and 100ppm NO2 as function of temperature was 

calculated using the following methodology: 

 

1. Sensor response (∆f vs T in Figure 55) for 50 and 100ppm NO2 concentration 

was fitted and shown as solid and dotted lines respectively. The ∆f for 400nm and 

800nm templated films at each NO2 concentration were fitted as an average. 

2. The response curve fit (solid line in Figure 55) of 50ppm NO2 was subtracted 

from that of 100ppm NO2 (dotted line in Figure 55), giving ∆f(T) per 50ppm NO2. 

3. Dividing that difference, ∆f(T) per 50ppm NO2, from (2) with the concentration 

difference (50ppm), gives incremental sensitivity of the sensor between 50 and 

100ppm NO2, ∆f/∆[ppm]. 

 

The negative sensitivity and frequency change observed at all temperatures and for all 

microstructures are consistent with weight increase as NO2 reacts with the BaCO3 films. 
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Figure 51: Response of BaCO3 (prepared using 800nm PMMA template) to 

50ppm NO2 at temperatures from 250 to 400oC. 

0 10 20 30 40 50 60 70 80 90
-2400

-2200

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

50%CO/CO2
100ppmNO2/Ar Ar

∆
f (

H
z)

t (min)

  T oC
  250
  300
  350
  400

Ar

 
Figure 52: Response of BaCO3 (prepared using 800nm PMMA template) to 

100ppm NO2 at temperatures from 250 to 400oC. 
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Figure 53: Response of BaCO3 (prepared using 400nm PMMA template) to 

50ppm NO2 at temperatures from 250 to 400oC. 
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Figure 54: Response of BaCO3 (prepared using 400nm PMMA template) to 

100ppm NO2 at temperatures from 250 to 400oC. 
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Y-cut Langasite Resonator 

Porous active film of BaCO3 was prepared from a 800nm PMMA template on 3.057MHz 

Y-cut langasite resonator crystal wafer. Sensitivity to NO2 was tested with two different 

NO2 concentrations (50ppm and 100ppm NO2 in Ar), with subsequent recovery in 50/50 

CO/CO2 gas mixture.  

 

The response of the sensor to 100ppm NO2 at temperatures ranging from 250 to 750oC is 

shown in Figure 56. One observes that signal noise increases as temperature increases; at 
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Figure 55: Summary of frequency shifts and incremental sensor sensitivity to NO2 

as function of temperature.  
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750oC, the fluctuations in resonant frequency were about ±200Hz. As for the quartz 

based sensor, full recovery was achieved at all temperatures after exposure to the 

CO/CO2 gas mixture. The frequency changes induced by exposure to 100ppm NO2 are 

plotted as function of temperature in Figure 57, while the incremental sensitivity between 

50 and 100ppm NO2 (calculated using the same methodology as in the case of quartz 

resonator, presented previously, p.100) is plotted in Figure 58. Note the sharp increase in 

response and sensitivity in the vicinity of 400ºC. 

.  
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Figure 56: Response of BaCO3 (prepared using 800nm PMMA template) on 

langasite resonator to 100ppm NO2 at temperatures from 250 to 750oC. 
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Figure 57: Sensor response to 100ppm NO2 as function of temperature. 
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curve for the NO2 sensor based on langasite resonator. 
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Chapter 5: Discussion 

5.1 General 

The transport properties of langasite have been systematically studied, within the defect 

chemistry framework, to provide insights into how temperature, oxygen partial pressure 

and dopants can affect them. In general, the transport property studies served to identify 

the dominant mobile electrically charged species for various conditions, and related these 

findings to the measured diffusion and electrical conductivity data. The model also 

demonstrated the influences that intentional dopants or unintentional impurities could 

have on these properties in langasite. This understanding will be applied towards 

developing a predictable approach for reducing the electrical losses of langasite resonator 

at high temperature.  

 

The utility of high temperature resonator as mass sensitivity platforms for chemically 

selective films has been demonstrated. Three examples, representing three general 

categories of active films were presented, illustrating the possibilities afforded by 

extending the operating temperature of resonant sensors. The promising high-temperature 

sensor performance further emphasizes the need for understanding langasite’s defect and 

transport properties at extreme conditions. 

 

In the following, we discuss results presented in Chapter 4. The transport property data is 

analyzed using the defect chemical framework, as outlined in Chapter 3. The major 

experimental findings will be summarized, and a predictive model, which computes 

electrical conductivity as function of temperature, oxygen partial pressure and dopant 

levels, will be presented. The impact of langasite’s transport properties on langasite 

resonator performance and stability will also be discussed.  

 

The sensor data presented in Chapter 4 will be examined and explained in term of non-

stoichiometry, surface area, and/or reaction kinetics/thermodynamics, depending on the 



 108

type of active film. Other crucial issues, e.g. temperature cross-sensitivity, noise and 

stability, will also be discussed. 

 

5.2 Transport Properties 

5.2.1 Acceptor-doped Langasite 

Nominally undoped langasite 

The bulk electrical data of nominally undoped and 1%Sr-doped langasite, together with 

the concentration cell measurement, enable us to apply our developed defect model 

towards explaining the electrical transport properties of acceptor-doped langasite. 

Nominally undoped langasite exhibited a pO2-independent conductivity at higher pO2 and 

4
1

2
−pO -dependent electronic conductivity at lower pO2. As discussed in Chapter 4, this is 

indicative of an acceptor-doped material in the ionic compensation regime (Region II, as 

shown in Figure 24 p.76). Using this model, the pO2-independent conductivity is 

attributed to conduction by doubly-charged oxygen vacancies ( ••
OV ), and the 4

1

2
−pO -

dependent conductivity is attributed to electrons (e’). 

 

Therefore, the total conductivity in nominally undoped langasite is: 

 [ ] eVoOundoped nqVq µµσ += ••2  (69) 

 

With the oxygen vacancy concentration fixed by the background acceptor, [ ] [ ]'2 AVO ≈•• , 

we can rewrite Eq. (69): 

 [ ] eVoundoped nqAq µµσ += '  (70) 

 

The different oxygen partial pressure dependence of ions and electrons enabled the 

deconvolution of the contributions from electrons and oxygen vacancies. This in turn 

enabled the ionic transference number to be calculated by taking the ratio of the ionic 

conductivity to the total conductivity. Further confirmation of the defect model was 
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provided by the close agreement obtained for the oxygen partial pressure dependence of 

the ionic transference number from an analysis of the conductivity measurements and the 

concentration cell measurements (see Figure 45, p.94). 

 

The nominally undoped langasite is hence shown to be a mixed electronic-ionic 

conductor with background acceptor impurities. The activation energies for the ionic 

conductivity-temperature product and electronic conductivity, derived in Chapter 4 

(Figure 25 and Figure 27), were found to be 0.91(±0.01) and 3.0(±0.02)eV respectively. 

These experimentally derived activation energies can now, with the assistance of the 

defect model, be readily correlated to enthalpies of defect generation and transport. For 

example, Table 3 (p.51) shows that in Region II of the defect model for acceptor-doped 

langasite, the activation energy for electron generation equals ½Er (half of reduction 

enthalpy) plus electron migration energy 
e

Eµ , while that for oxygen vacancy generation 

is zero since the vacancy concentration is fixed by the acceptor level. 

 

As activation energy of conductivity consists of both the defect formation and migration 

energies.  Thus for the electronic conductivity (see Figure 27, p.78): 

 eVEEE
ee r )02.0(0.32

1 ±=+= µσ  (71) 

 

Values for the migration energy for electrons were determined from measurements on Nb 

doped langasite in which 
e

Eµ was found to be 0.15(±0.01)eV (see Figure 40, p.89).  

Consequently, one derives a value for the reduction enthalpy of 

 eVEr )06.0(70.5 ±=  (72) 

 

Since the formation enthalpy for vacancies in this defect regime is zero, then: 

 eVEE
VoiT

)01.0(91.0 ±== µσ  (73) 

where 
Vo

Eµ  is the migration energy for oxygen vacancies. 
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Estimation of oxygen vacancy mobility 

We now proceed to estimate the oxygen vacancy mobility. Na was determined to be a 

major impurity specie (with concentration of 1.5×1019 cm-3, see Appendix B) in 

nominally undoped langasite. It acts as an acceptor on La site (see Appendix B) and, in 

ionic conductivity regime, should produce the same concentration of oxygen vacancy 

(according to Brouwer approximation ••≈ OLa VNa '' ). The ionic conductivity of nominally 

undoped langasite, contributed by oxygen vacancy, was determined and presented in 

Figure 25 (p.77). With the ionic conductivity and information on oxygen vacancy 

concentration, oxygen vacancy mobility can be calculated. The oxygen vacancy mobility 

is plotted as function of temperature in Figure 59. 

 

Figure 59 shows that the activation energy for the oxygen vacancy mobility-temperature 

product is 0.91(±0.01) eV (which is equal to ionic migration energy of nominally 

undoped langasite, Eq. (73), p.109). The calculated oxygen vacancy mobility equation is: 

 Vscm
kT

eV
T

TVo /)01.0(91.0exp217)( 2





 ±
−=µ  (74) 
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Figure 59: Oxygen vacancy mobility-temperature product plotted as 

function of temperature. 
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Sr-doped langasite 

Acceptor doping by Sr increases the pO2-independent conductivity and p-type 4
1

2
+pO -

dependent electronic conductivity at higher pO2, while at the same time totally depressing 

the n-type 4
1

2
−pO -dependent conductivity. This is consistent with the assertion that the 

electrical properties of undoped langasite are dominated by background acceptor 

impurities. 

 

Like nominally undoped langasite, 1%Sr-doped langasite is found to be a mixed 

electronic-ionic conductor.  The experimentally observed pO2 dependence of the 

conductivity places it in the ionic acceptor compensation regime (Region II, as shown in 

Figure 24 p.76). Only in this case, the electronic conductivity comes from holes at high 

pO2 rather than electrons at low pO2. The total conductivity is therefore the sum of the 

ionic and hole conductivity: 

 [ ] hVoLadoped pqSrq µµσ += '  (75) 

 

In Chapter 4, the activation energies of the ionic conductivity-temperature product and 

hole conductivity are determined to be 1.27(±0.02)eV (Figure 30) and 1.09(±0.04)eV 

(Figure 32) respectively. The activation energy for hole conduction should equal half the 

oxidation enthalpy plus the hole migration energy: 

 eVEEE
hh o )04.0(09.12

1 ±=+= µσ  (76) 

 

Since we have no independent information, we will assume that holes move through the 

lattice in a nonactivated manner, and thus the oxidation enthalpy is given by: 

 eVEo )08.0(18.2 ±≅  (77) 

 

Note that the activation energy of the ionic conductivity-temperature product in 1%Sr-

doped langasite exceeds that in nominally undoped langasite by 0.36(±0.03)eV 

(1.27±0.02 vs 0.91±0.01eV). One possible explanation for the disparity between the 

activation energy of ionic conductivity-temperature product in 1%Sr-doped and undoped 
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samples is defect association [142, 149], in which oppositely charged defects (i.e. ••
OV  

and '
LaSr ) form defect pairs such as •••− )( '

OLa VSr . Under these circumstances, only the 

dissociated defects contribute to conduction.  One can describe the dissociation reaction 

by: 

 ••••• +↔− OLaOLa VSrVSr '' )(  (78) 

 

with the corresponding mass action relation given by6: 

 





−=

−
= •••

••

kT
Ek

VSr
VSrK assoc

assoc
OLa

OLa
assoc exp

])[(
]][[

'

'

 (79) 

 

The following mass conservation law applies: 

 ])[(][][ '' •••−+= OLaLatotal VSrSrSr  (80) 

 

The following electroneutrality also applies: 

 ])[(][2][ '' ••••• −+= OLaOLa VSrVSr  (81) 

 

Substituting Eq.(80) into Eq.(79), gives: 

 





−=

−
=

••

kT
E

k
SrSr

SrV
K assoc

assoc
Latotal

LaO
assoc exp

][][
]][[
'

'

 (82) 

 

It is useful to examine the predictions of this model at the extremes of low and high 

temperature, i.e., very low dissociation and nearly full dissociation.  For a high degree of 

association at low temperatures, based on Eq.(81): 

 ])[(][ '' •••−≅ OLaLa VSrSr  (83) 

 

Substituting this expression into Eq.(79) results in the following expression for the 

unassociated oxygen vacancy concentration (see Regime III in Figure 60): 

                                                 
6 Since the unit for concentration is cm-3 (used throughout this thesis), the dimension of kassoc is cm-3. 



 113

 






−=••

kT
E

kV assoc
assocO exp][  (84) 

On the other hand, at high enough temperature, dissociation becomes nearly complete 

(Regime I in Figure 60) and then Eq. (81) becomes: 

 ][][2][ '
totalOLa SrVSr ≅= ••  (85) 

 

Thus, the vacancy concentration is predicted to shift from an activated process at low 

temperature to a constant value at high temperature. In the transition from the low to high 

temperature regime, one expects to observe curvature in the log ][ ••
OV  vs 1/T plot (Regime 

II in Figure 60).  

 

The disparity between the activation energy of ionic conductivity-temperature product in 

1%Sr-doped and undoped langasite (1.27±0.02 vs 0.91±0.01eV) could in principle be 

attributed to defect association as discussed above.  Indeed, we can calculate the ionic 

conductivity of 1%Sr-doped langasite assuming that defect association is the correct 

explanation for the larger activation energy. To do that, we define x as: 

 
][

][

total

O

Sr
Vx

••

=  (86) 
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Figure 60: Dissociated oxygen vacancy concentration as function of reciprocal 

temperature. In Regime I, defects are nearly completely dissociated while in 

Regime III, defects are nearly fully associated. 
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Using Eq. (80) and (81): 

 
][
][

2
1 '

total

La

Sr
Srx =+  (87) 

 

Substituting Eq.(86) and (87) into Eq.(82): 

 
( )







−=

−
+

=
kT

EkSr
x

xx
K assoc

assoctotalassoc exp][
2
1

2
1

 (88) 

 

The pre-exponential kassoc is defined as the product of degree of freedom of the defect pair 

and the number of oxygen lattice sites in langasite (~1.7×1023cm-3) [141, 142, 149], and 
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Figure 61: Ionic conductivity-temperature product plot of 1%Sr-doped langasite 

– comparison between extracted values from impedance spectroscopy and 

calculated values (with insert showing the calculated ][ ••
OV ) assuming a defect 

association model.  
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the Eassoc is 0.36(±0.03)eV (see Eq. (84)), which is the difference in activation energy for 

ionic conductivity-temperature product between 1%Sr-doped and nominally undoped 

langasite. Solving Eq. (88) gives us the concentration of unassociated oxygen vacancies 

(see insert, Figure 61) and, with the oxygen mobility derived in Eq. (74) (p.110), the ionic 

conductivity that is based on the defect association model can be calculated (Figure 61). 

From Figure 61, it can be seen that for the temperature range examined in the 

conductivity measurements (700-1000oC), the defect pairs would be largely dissociated 

(Regime I in Figure 60) and the activation energy should only reflect the oxygen vacancy 

migration energy (0.91eV). In order to observe Eassoc of 0.36eV (for a total activation 

energy of 1.27eV as seen in the case of 1%Sr-doped langasite), its conductivity would 

have to be measured at temperatures below 300oC. Therefore, defect association cannot 

explain the disparity between the activation energy of ionic conductivity-temperature 

product in 1%Sr-doped and undoped langasite. 

 

The alternative explanation for the larger activation energy for oxygen ion conductivity in 

1%Sr-doped langasite can be explained on the basis of the failure of the dilute solution 

approximation at the 1% Sr level. For concentrated solutions, long range defect 

interactions must be taken into account. Wang et al [150], for example, observed that the 

activation energy for oxygen ion conductivity in Y2O3 doped CeO2 increased 

systematically as the yttrium content increased from 1 to 40 mol%. In this and other 

fluorite and pyrochlore systems [151-153] this has been attributed to long range defect 

ordering which serves to create deeper potential wells for the oxygen vacancies to 

overcome as they move through the lattice. This would explain the higher activation 

energy for ionic conductivity-temperature product (i.e. the ••
OV  migration energy) in 

1%Sr-doped langasite when compared to nominally undoped langasite which remains in 

dilute solution.  

 

Diffusion studies on acceptor-doped langasite 

The activation energy of oxygen vacancy mobility can be verified from the results of 

oxygen exchange diffusion studies. Schulz et al [146] measured the oxygen self 

diffusivity of 1%Sr-doped and undoped langasite and obtained activation energies of 
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1.1eV and 1.4eV respectively. The activation energy of the mobility- temperature product, 

µvT, and the self-diffusivity, D,  should be identical, as suggested by Nernst-Einstein 

equation [142]: 

 
ZqkT

D vµ
=  (89) 

The diffusivity is relation to self diffusivity through: 

 
v

self

M
D

D =  (90) 

where Mv is the mole fraction of vacancy, and Dself is the diffusivity we observed in the 

oxygen exchange experiment.  

 

Substituting Eq.(90) into (89): 

 
ZqkTM

D v

v

self µ
=  (91) 

 

In the case of 1%Sr-doped langasite, the activation energy for conductivity-temperature 

product of 1.27(±0.02)eV and the oxygen self-diffusion activation energy of 1.1eV are 

close indeed. The self-diffusion data also shows that oxygen diffusion in 1%Sr-doped 

langasite is about one order of magnitude higher than that of undoped langasite (Figure 

47, p.96). However, for nominally undoped langasite, the disparity between the mobility-

temperature (0.91±0.01eV) and self-diffusion activation energies (1.4eV) is about 0.5eV. 

However, it should be noted that the data for nominally undoped langasite consists only 

of two points7; the activation energy derived from these data should therefore be viewed 

as suspect. 

 

Referring again to Figure 47, it is clear that the addition of Sr increases the oxygen 

diffusivity by an order of magnitude, similar to the effect on the electrical conductivity of 

                                                 
7 Due to the existing pores in polycrystalline langasite, it was difficult to obtain good oxygen-18 profile. 

This also resulted in higher uncertainty in the oxygen diffusivity data for polycrystalline langasite. 
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adding Sr to nominally undoped langasite. One can express the ionic conductivity with 

the aid of the Nernst-Einstein equation (noting that ]/[][ x
ooV OVM ••= ): 

 self
x
oVo DO

kT
Zq ][

2

=σ  (92) 
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Figure 62: Ionic conductivity-temperature product plot of langasite (single crystals 

and polycrystalline samples). Calculated values (A-D) are derived from oxygen self 

diffusion measurements with the aid of Nernst-Einstein Equation. Ionic 

conductivity values for 1%Sr-doped and undoped langasite extracted from the 

impedance measurements are plotted for comparison. The measured conductivity 

values from [154] for single crystal samples are also included (represented by  

and ). 
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The self diffusivity data is then converted to conductivity data by use of Eq. (92) ( ][ x
oO  ≈ 

4.76×1022 cm-3 from the langasite crystal structure) (see Figure 62). It can be seen that the 

calculated values using diffusion data for both 1%Sr-doped and nominally undoped 

langasite are systematically lower (by about 2 orders of magnitude) than the measured 

conductivity values. On the other hand, ionic conductivities derived from diffusion 

measurements performed on single crystal langasite (see curve D in Figure 62) are much 

closer to measured conductivity values. Furthermore, Fritze et al [154] measured the 

conductivity of single crystal samples after annealing at 1050oC for several hours; their 

conductivities were remarkably similar to the measured conductivity of nominally 

undoped polycrystalline langasite (see Figure 62, curve E). The large discrepancy in 

magnitude between measured and diffusion-derived conductivity data for polycrystalline 

specimens points to the difficulties in accurately fitting diffusion data for polycrystalline 

samples where grain boundaries and porosity interfere with the analyses.  

 

While the experimental data (conductivity, concentration cell and oxygen diffusivity) are 

generally consistent with the ionic conductivity being largely due to the motion of 

oxygen ions, there remains the possibility of another charged mobile specie contributing 

to the ionic conductivity. Out of the 3 cations in the langasite crystal structure, Ga is 

suspected due to its smaller size and ionicity. Si is, in general, covalent and La is large, 

making both species unlikely to easily migrate within the structure. Ga diffusion 

measurements were also performed by Schulz et al. [146] on single crystal langasite. The 

results show that gallium diffusion is orders of magnitude lower than oxygen diffusion 

and so can be dismissed with respect to ionic conductivity contributions (Figure 47, p.96). 

 

Stability of langasite 

The reversibility of electrical measurements, low cation diffusion and reports in the 

literature suggest that langasite remains stable even at high temperature. To examine 

langasite’s stability, particularly under highly reducing conditions, nominally undoped 

langasite powder, providing relatively high surface area, was annealed in 5%H2/Ar at 

1000oC for 2 days. No observable second phase could be observed by X-ray diffraction. 
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This further reinforces the notion that langasite remains stabile under extreme conditions 

(as described in section 1.3). 

 

Reduction and oxidation constants: Kr and Ko 

For nominally undoped langasite, electron density n at pO2=1atm can be calculated from 

the electron mobility (Figure 43, p.92) and extrapolating its n-type electronic 

conductivity. The calculated n at pO2=1atm as function of temperatures is shown in 

Figure 63. 

Kr can be related to n, pO2 and dopant level (Table 3, Region II, p.51) for acceptor-doped 

langasite. With calculated n at pO2=1atm above and known dopant level (for nominally 

undoped langasite, the background acceptor is Na at 1.5×1019cm-3, see Appendix B), Kr 

function for acceptor-doped langasite is established: 

 5.0967 06.07.5exp10 atmcm
kT

eVK r
−
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
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 ±
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Figure 63: Electron density of nominally undoped langasite at pO2=1atm as 

function of temperature. 
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By adding reduction and oxidation reactions, i.e. Eq.(39)+Eq.(41) (p.47), the resultant 

reaction would be simply twice of generation reaction, Eq.(37). The mass action laws 

relationship will be Ke = (KrKo)0.5. And as kr is now known from Eq.(93) and ke is simply 

NvNc, where Nv and Nc are the density of states for hole and electron respectively, ko can 

be determined subsequently.  

 

With the hole mobility assumed to be nonactivated, it follows that the semiconductor 

model for the density of states (as described in, for example, [155]) can be applied: 

 319* 10
300

5.2
2
3

−×





= cm

K
TmN hv  (94) 

where *
hm  is the effective mass of hole (which is usually 2-10 in oxides [142]) and T is 

the temperature in kelvin. Using the equation, Nv can be estimated (assuming *
hm ≈2 and 

T≈1000) to be about 4×1020 cm-3. 

 

Electron mobility in langasite is activated and is described by polaron hopping. The 

density of state for electron is, therefore, the lattice site density. In order to decide which 

cation lattice site electrons utilized during activated hopping, the bandgaps of the 

individual constituent oxides were examined. The bandgaps of La2O3, Ga2O3 and SiO2 

are reported to be 5.5eV[156], 4.9eV[157] and 9.0eV[158] respectively. The most likely 

cation lattice sites the electrons utilize for hopping is the one with the lowest energy level, 

which is the Ga lattice in this case. The density of states for electron, Nc, in langasite is 

therefore: 

 322107.1 −×=−= cmsitesGaNc  (95) 

 

The value for ke (=NcNv) is calculated to be 6.8×1042 cm-6 and ko can be estimated to be 

4.6×1018cm-3atm-0.5. The Ko function for acceptor-doped langasite is then: 

 5.0318 08.018.2exp106.4 −−





 ±
−×= atmcm

kT
eVKO  (96) 
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Estimation of hole mobility 

The hole density, p, can be determined using the equation given in Table 3, Region II (p. 

51). Since the hole conductivity of 1%Sr-doped langasite is known (Figure 31, p.82), 

hole mobility can be calculated and is plotted in Figure 64. The decrease in hole mobility 

with temperature is due to increased scattering at higher temperatures. If the log of hole 

mobility is plotted vs 1/T, the activation energy would be very small and negative (about 

-0.01eV), which is consistent with the assumption made above that hole mobility is 

nonactivated. 

 

5.2.2 Donor-doped Langasite 

Nb-doped langasite 

The bulk electrical conductivity data of 5%Nb-doped langasite, together with the TEP 

and concentration cell measurements, enable us to apply a defect model in explaining the 

electrical transport properties of donor-doped langasite. As briefly discussed in Chapter 4, 

the conductivity data for 5%Nb-doped langasite falls within defect Regions I and II of 

donor-doped langasite, with the electronic conductivity (electrons) dominating 
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Figure 64: Hole mobility as function of temperature. 
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throughout. The dominant electronic conductivity is confirmed also by concentration cell 

measurements, which confirm that ti ≈ 0 (Figure 46, p.95). 

 

The activation energy at the pO2-independent regime of Figure 33 (p.83) is found to be 

0.91(±0.01) eV (Figure 35). According to Table 4 (p.54), n is fixed by the ionized donor 

concentration.  Due to the high activation energy, it was deemed highly unlikely that the 

electron mobility migration energy would be the sole contributor to that activation energy. 

Alternatively, if the donor level is deep and therefore are not fully ionized, then the 

activation energy would represent the sum of electron migration energy and half the 

donor ionization energy8 (Eq. (46), p.48). This hypothesis was confirmed by the TEP 

results, which demonstrated that n (n ≈ [D⋅]) is a strong function of temperature even in 

the pO2 plateau region.  

 

The donor ionization energy can be obtained from TEP measurements (Figure 39, p.89). 

The ionization reaction is presented in Eq. (45) (p.48), with the mass action law in Eq. 

(46). The activation energy (0.76±0.03 eV) from Figure 39 therefore represents half the 

donor ionization energy; the donor ionization energy is 1.52(±0.06)eV, indicating Nb as a 

deep donor. With the ionization energy, the electron mobility energy is calculated to be 

0.15(±0.01)eV, a value which is typically associated with polaron hopping. The electron 

mobility is shown to be independent of pO2 and only dependent on temperature as shown 

in Figure 43 (p.92); the calculated n from conductivity (using electron mobility values in 

air) as function of pO2 fit well with n obtained from TEP measurements taken over a 

range of pO2. 

 

The 6
1

2
−pO -dependent regime is dominated by the reduction reaction (Eq.(39), p.47) and 

the activation energy in this regime represents the electron migration energy plus 1/3 of 

the reduction enthalpy (see Region I in Table 4, p.54). Note that the activation energy 

was calculated far from the transition to ensure that ionization process was not a 

significant source of electrons, and the activation energy of conductivity at that regime is 
                                                 
8 It is half the donor ionization energy because of the Brouwer approximation, n ≈ [D⋅]. 
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2.34(±0.07)eV (Figure 36, p.86). The reduction enthalpy for donor-doped langasite is 

therefore calculated to be 6.57(±0.24)eV, larger than the value obtain for acceptor-doped 

langasite of 5.7(±0.06)eV. Such difference is not surprising as the high concentrations of 

added dopants means that deviation from dilute solution approximation is expected. 

Similar change in reduction enthalpy was observed by Tuller and Nowick [144]. They 

reported that doping CeO2 with 5mol% Y2O3 (acceptor) decreased the reduction enthalpy 

from 4.7eV (of undoped ceria) to 4.0eV.  

 

Calculating Kr for donor-doped langasite 

Given our knowledge of the electron mobility, n can be determined from the conductivity 

data which in turn allows us to check for consistency in the calculation Kr(T). In Figure 

36 (p.86), the extrapolated conductivity at pO2=10-35atm is presented as function of 

temperature. This data is converted into n(T, pO2=10-35atm), and with the equation in 

Table 4 (p.54) relating n with pO2, Kr(T); the calculated values of Kr(T) are plotted in 

Figure 65.  
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Figure 65: Kr as function of temperature for langasite. 
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The activation energy for Kr is the reduction enthalpy (Eq. (40), p.47), Er = 

6.57(±0.24)eV, which is identical with result calculated above (Er = 6.57(±0.24)eV); this 

was expected since both calculations used the same set of data (i.e. electron mobility and 

electronic conductivity). 

 

In Chapter 4, we did not describe the process we used to fit the donor electrical 

conductivity as it involves references to defect model and is more suitable to discuss here 

after the model has been established. The fitted conductivity curves (dotted lines) in 

Figure 33 (p.83) are obtained using the following defect analysis: 

1. Neutrality equation for the major defects for donor-doped langasite is: 

 [ ] [ ]( )••• −= NbnVo 2
1  (97) 

 

2. The neutrality equation is substituted into the mass action law for reduction 

process (Eq. (40), p.47), giving: 

 [ ] 02 2
1

2
23 =−− −• pOKnNbn r  (98) 

3. In Figure 39, the equation for the electron density of the Nb-doped langasite in air 

is given. Since in air, n ≈ [Nb⋅], that equation can be rewritten to give the 

concentration of ionized Nb as function of temperature (and independent of pO2): 

 [ ] 





−×=







 −
=•

kT
eV

kT
E

kNb ionD
Dn 2

52.1exp1075.2
2

exp 20_2
1

 (99) 

 

2
1

Dnk  is defined as total donor concentration, totalNb , and is equal to 8.5×1020cm-3, 

the amount of Nb added. This value is comparable to the pre-exponential, 

2.75×1020cm-3, of Eq. (99). 

 

4. With Kr and [Nb⋅], Eq. (98) allows us to fit the bulk conductivity of donor doped 

langasite. The reason for not using the simplifying Brouwer approximations (in 

Table 4, p.54) is that the conductivity data overlaps the transition between the two 
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defect regions; the Brouwer approximations cannot adequately address the 

transition region from Region I to II. 

 

The defect models for acceptor and donor-doped langasite presented earlier in the chapter 

has been verified using independent means such as TEP and concentration cell 

measurements. This section discusses a few other calculations performed to ensure 

consistency within the model. 

 

Transition pO2 for 5%Nb-doped langasite 

For the donor doped material, the pO2 at which the material goes from Region I to II can 

be used to verify the reduction enthalpy. The transition pO2 is defined in Figure 66, and it 

can be viewed as the point at which the contributions to conductivity from the reduction 

reaction and donors are equal, i.e. electron densities in Region I and II (in Table 4, p.54) 

are equal: 

 






 −
=






 −−

kT
E

k
kT
E

kpO ionD
Dn

r
rtransition 2

exp
3
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2
1

3
1

6
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3
1

 (100) 

 

Rearranging: 

 ( )23_
,2 4log

log
32

log rDn
ionDr

transition kk
ekT

EE
pO −+

−
−=  (101) 

  
Figure 66: Definition of transition pO2 for donor doped material. 
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The transition pO2 for 5%Nb-doped langasite are determined and the values are plotted in 

Figure 67 as function of reciprocal temperature. The derived activation energy from the 

plot is 8.62(±0.38)eV, which should correspond to 2Er-3ED_ion. As calculated previously, 

Er=6.57(±0.24)eV (donor-doped) and ED_ion=1.52(±0.06)eV, giving the value of 

8.64(±0.66)eV for 2Er-3ED_ion which is essentially identical to the activation energy 

obtained in Figure 67. 

 

We can also verify the consistency of kr with the intercept of Figure 67 that represents 

( )234log rDnkk − . The 2
1

Dnk  given in Eq.(99) (p.124) is about 1020cm-3, and the log kr obtained 

in Figure 65 (p.123) is 71(±1), giving the ( )234log rDnkk − ≈ 22, which is comparable with 

the intercept value of 23.1 obtained in Figure 67.  

 

0.75 0.80 0.85 0.90 0.95 1.00 1.05
-24

-22

-20

-18

-16

-14

-12

-10
1050 1000 950 900 850 800 750 700

 

lo
g 

O
2,

tra
ns

iti
on

 (a
tm

)

1/T (x10-3 K-1)

log pO2,transition = -(43518±1899) 1/T + (23.1±1.71)

Ea = 8.62±0.38 eV

 T (oC)

 
Figure 67: Transition pO2 at which 5%Nb-doped langasite switches 

between Defect Region I and II. 
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Relationship between Eg, Er and Eo 

If the reduction and oxidation reactions are added together, i.e. Eq.(39)+Eq.(41) (p.47), 

they gave: 

 '22 ehnull +→ •  (102) 

 

which suggests that the sum of enthalpies of reduction and oxidation is equal to twice the 

thermal bandgap of the material, i.e.: 

 gOr EEE 2=+  (103) 

 

We have derived the reduction and oxidation enthalpy of langasite, Er=5.7(±0.06)eV 

(acceptor) or 6.57(±0.24)eV (donor) and Eo=2.18(±0.08)eV, which an estimated Eg 

(thermal bandgap) that ranges from 4.0 to 4.4eV.  
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Figure 68: Transmission spectra of single crystal langasite (left:Tohuku, 

right:IKZ).  
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The optical bandgap of various single crystal langasite samples obtained from optical 

transmission measurements done by Dubovik et al [89] was about 4.1-4.9eV. Optical 

transmission experiment has also been performed on double-side polished thin disc of 

single crystal langasite (from two sources, Tohuku and IKZ) and the optical bandgaps of 

the two crystals appear to be 4.1eV (Figure 68). The close correlation of thermal and 

optical bandgap reinforces the credibility of the defect model used. 

 

On electron and oxygen vacancy mobility 

In the 5%Nb-doped material, it has been determined that the conductivity across the 

entire range of pO2 is electronic (electrons) in nature. We have obtained expressions for n 

and Kr as function of temperature. This should allow us to determine oxygen vacancy 

concentrations using Eq. (40) (p.47) as function of temperature and pO2. The 

concentrations of these two major defect species at 1000oC are plotted as a function of 

pO2 in Figure 69. From it, it can be observed that at the pO2-dependent regime (Defect 

Region I), the concentration of oxygen vacancy approaches that of electrons. Hence, in an 

electronic-dominant conductivity of 5%Nb-doped langasite, for this defect model to be 

valid, the oxygen vacancy mobility must be order of magnitude lower.  
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Figure 69: Concentration of major defect species of 5%Nb-

doped langasite at 1000oC. 
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As shown in Figure 70, the electron mobility is several orders of magnitude higher that of 

oxygen vacancy. And thus at the pO2-dependent regime (Defect Region I), even as the 

concentration of oxygen vacancy approaches that of electron, the conductivity remains 

predominantly electronic (as confirmed by concentration cell measurements, Figure 46, 

p.95).  
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Figure 70: Comparison of Vo (Eq.(74), p.110) and e′ mobilities 

(Figure 40, p.89). 
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5.2.3 Brouwer Diagrams 

With the defect models (Table 3 and Table 4), the conductivity data, and the previously 

derived expressions for mobility of different electrical species, the Brouwer diagrams for 

nominally undoped, 1%Sr-doped and 5%Nb-doped langasite can be calculated, which 

show the concentrations of defect species in those materials. The Brouwer diagrams for 

nominally undoped, 1%Sr-doped and 5%Nb-doped langasite at 1000oC were plotted in 

Figure 71, Figure 72 and Figure 73 respectively. Concentrations of oxygen interstitials 

was not calculated as we did not have the pre-exponential and the activation energy for 

KF (Eq.(36), p.47). 

 

 

 

 

 

7

9

11

13

15

17

19

21

23

-35 -30 -25 -20 -15 -10 -5 0

log pO2 (atm)

lo
g 

[ ]
 (c

m
-3

)

Na''

e'

h·

Vo
··

 
Figure 71: Brouwer diagram for nominally undoped langasite at 1000oC. 
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Figure 72: Brouwer diagram for 1%Sr-doped langasite at 1000oC. 
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Figure 73: Brouwer diagram for 5%Nb-doped langasite at 1000oC. 
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5.2.4 Bulk Conductivity Prediction of Langasite 

Summary of defect model of langasite 

The defect model was successfully applied to acceptor and donor-doped langasite and 

allowed the extraction of valuable parameters which permit the prediction of the bulk 

conductivity properties of langasite. The summary of the defect model parameters is 

given in Table 6. The functions listed will be used in the modeling of bulk conductivity 

of langasite. Note that distinct Kr functions are utilized for acceptor and donor doped 

langasite respectively. 

 

Table 6: Summary of langasite defect model parameters 

 Acceptor-doped Donor-doped 

Kr  

(cm-9atm0.5) 






 ±
−=

kT
eVK r

06.07.5exp1067  





 ±
−=

kT
eVK r

24.057.6exp1071  

Ko 

(cm-3atm-0.5) 






 ±
−×=

kT
eVKO

08.018.2exp106.4 18  
N/A 

Ke (cm-6) 






 ±
−×=

kT
eVK e

07.094.3exp108.6 42 N/A 

Dopant 

Ionization 

N/A [ ] 





 ±
−=•

kT
eVkD Dn 2

06.052.1exp2
1  

µe (cm2/Vs) N/A 






 ±
−=

kT
eV

e
01.015.0exp011.0µ  

µh (cm2/Vs) )002.0096.0()1.09.4( ±−±= Thµ  N/A 

µVo (cm2/Vs) 






 ±
−=

kT
eV

TVo
01.091.0exp217µ  

N/A 

 

Bulk conductivity prediction for acceptor doped langasite 

As acceptor doped langasite is a mixed ionic-electronic conductor, its total bulk 

conductivity is the sum of electronic and ionic conductivity: 

 electronicionictotal σσσ +=  (104) 

 [ ] heVoototal pqnqVq µµµσ ++= ••2  (105) 
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And since the acceptor-doped langasite is in Region II and the Brouwer approximation 

[ ] [ ]'2 cO AV ≈••  can be applied, Eq.(105) can be written as: 

 [ ] [ ] [ ] 2
1

4
1

2
1

2
1

4
1

2
1

2
'

2
1

2
'' 2 OhreVototal KpOAqKpOAqAq µµµσ ++= −−  (106) 

 

Using parameters in Table 6, σtotal can be predicted as function of temperature, pO2, and 

acceptor concentration. In all predictions, we assume no defect association or ordering 

(dilute solution assumption). We also assume that the cation stoichiometry is perfect (i.e. 

no intrinsic defect compensation). 

 

Bulk conductivity prediction for donor doped langasite 

As for donor doped langasite which is dominantly electronic, the total conductivity is 

simply the electronic conductivity: 

 eqnµσ =  (107) 

    

The following showed the widely-known method for obtaining closed form solution for 

cubic equation. From Eq. (98) (p.124): 

 [ ]•+−= Duvn 3
1  (108) 

where: 

 3
32

2742
pqqu ++=  (109)  

 
u
pv

3
=  (110) 

The p and q in Eq. (109) and (110) are defined by: 

 [ ]2
3
1 •−= Dp  (111) 

 [ ]3
27
2

2
2
1

2 •− +−= DKpOq r  (112)  

 

The electron density, n, can then be solved in closed-form. Using parameters in Table 6 

(p.132), σ for donor doped langasite can be predicted as function of temperature, pO2, 

and donor concentration (assumed ionization process is involved). 
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Examples of bulk conductivity prediction for langasite 

The predictive model was built in Microsoft Excel using the defect chemistry framework, 

and a few examples are illustrated here to demonstrate the usefulness of the model in 

looking at how the bulk conductivity can be minimized as functions of different variables 

(i.e. acceptor concentration, temperature, pO2). Figure 74 shows the effect of acceptor 

concentration on acceptor doped langasite at 1000oC, showing the expected depressed n-

type conductivity, and enhanced p-type and ionic conductivity with increased acceptor 

concentration. 

 

Figure 75 shows that when T=1000oC and log pO2 is set to 0, -10 and -20, the minimum 

conductivity (for minimizing electrical losses) depends on the operating pO2. In this case, 

if a langasite resonator is fabricated for operation in air, the lower the acceptor 

concentration, the lower the conductivity. However, if the operation is in a reducing 

environment, for example when logpO2 = -10, the minimum conductivity will be at ~1018 

cm-3 acceptor level. This will be valuable information when growing langasite crystals to 

achieve certain desired electrical properties. 
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Figure 74: Conductivity of acceptor doped langasite with [A’] 

at 6×1020 and 8×1019 cm-3 at 1000oC. 
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Figure 75: Conductivity of acceptor doped langasite as function of 

acceptor concentration at 1000oC. 
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Figure 76: Conductivity of donor doped langasite as function of donor 

concentration at 1000oC. 
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In donor doped langasite, when T=1000oC and log pO2 were set to 0, -10 and -20, the 

conductivity of donor doped langasite with various donor levels can be calculated, as 

shown in  Figure 76. In that plot, it can be observed, if langasite were to be used at 

pO2=1atm, in order to achieve minimum conductivity (for minimizing electrical losses) 

donor concentration needs to be at 1017cm-3
 or lower, when the conductivity becomes 

reduction controlled; above 1017cm-3
, the conductivity is controlled by donor 

concentration. Figure 76 also shows that for donor doped langasite, the donor 

concentration has little influence on the conductivity in more reducing environments, 

since they are reduction controlled at all pO2’s. 

 

Figure 77 shows the prediction of langasite conductivity as function of dopant level, both 

acceptor and donor. It is possible to infer from the figure that the lowest conductivity can 

be obtained when langasite is intrinsic. However, to eliminate impurities totally from 

langasite, a large bandgap material, via dopant compensation will be difficult. Alternative 

 
Figure 77: Conductivity and ionic transport number prediction for langasite at 

3 different pO2 and 800oC as function of dopant level. 
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doping strategies for langasite resonators operating at 800oC can be devised based on 

Figure 77. If langasite resonator is to be used in normal or slightly reducing environment 

(e.g. pO2 from 1 to 10-10 atm), low concentration of donor doping will ensure a lower 

conductivity than using acceptor dopants. However, at extremely reducing environment 

(pO2=10-20 atm), low acceptor dopants ensure a lower conductivity than donor dopants. 

 

The situation changes when the temperature is increased to 1000oC (Figure 78). In air 

(pO2 ~1atm), a low concentration of donor dopant will allow for low conductivity. At a 

reducing environment (pO2 =10-10atm), a low acceptor dopant concentration will actually 

produce lower conductivity than donor doping. At extremely reducing environments (pO2 

=10-20atm), the minimum conductivity is produced with an acceptor doping level of about 

0.2%. This ability to incorporate operating conditions (i.e. temperatures and pO2) into 

processing considerations enables the design of langasite properties for improved 

operation performance (i.e. low electrical losses). 

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.0

0.5

1.0
 

 

lo
g 

σ 
(S

/c
m

)

 log pO2 =
  0
 -10
 -20

 t i  

 

 [A]-[D] %
 

Figure 78: Conductivity and ionic transport number prediction for langasite 

at 3 different pO2 and 1000oC as function of dopant level. 
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5.2.5 Mass Change Prediction for Langasite 

The changing oxygen vacancy concentration with temperature or pO2 will result in a 

corresponding mass change in a langasite resonator, and, if it is significant, can interfere 

with the frequency shifts induced in the active layer during sensor applications. 

Predicting the mass change will assist in delimiting the operating conditions of the 

resonator before excessive oxidation and reduction processes interfere with the sensing 

process.  

 

In the defect model for acceptor doped langasite, Brouwer approximation was applied 

fixing the oxygen vacancy concentration to the acceptor level ( [ ] [ ]'2 AVO ≈•• ) in the ionic 

conduction regime. Nevertheless, it should be noted that reduction process still occurs at 

those pO2’s as apparent from the generation of electrons (see Region II of Figure 12, 

p.52). Brouwer approximations are reasonable for defect analysis since the generation of 

oxygen vacancies is negligible compared to the total oxygen vacancy concentration, but 

inadequate in the mass change prediction. In this case, the oxygen vacancy creation 

accompanying the generation of electron has to be taken into account.  

 

In the ionic conduction regime of acceptor doped langasite, the neutrality condition is as 

follow: 

 [ ] [ ]'2 AVn O −= ••  (113) 

 

Substituting Eq.(113) into Eq.(40) (p.47) and rearranging gives: 

 [ ] [ ] [ ] [ ] 02
1

24
12'

4
123

=−+− −••••••
rOOO KpOVAVV  (114) 

 

Using Eq.(114) and the Kr function listed in Table 6 (p.132), total oxygen vacancy 

concentration [ ]••
OV can be calculated and n can then be determined as function of 

temperature, pO2 and acceptor concentration using Eq. (40) (p.47). The change in oxygen 

vacancy concentration accompanying the generation of electrons is simply:  

 [ ]••∆=∆ OVn 2  (115) 
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The change in the vacancy concentration during operation (as temperature or pO2 

changes) can than be correlated to mass change. 

 

 

In Figure 79, the fractional mass change (∆m/m) in langasite (normalizing to pO2=1atm) 

was predicted at 1000oC and at 3 different acceptor dopant levels. The fractional change 

with each order of magnitude of pO2 was calculated in Figure 80. The fractional mass 

change can be related to fractional frequency change using Eq.(5)(p.27), which 

essentially states that ∆m/m = -∆f/f. For a bulk acoustic wave resonator fabricated from a 

0.1% acceptor doped langasite operating at a typical resonant frequency of 10 MHz, a ∆f 

of 32Hz is expected if the oxygen partial pressure changes from pO2=1atm to       

pO2=10-20atm due to generation of oxygen vacancies (∆m/m=-∆f/f =-3.2×10-6). This 

would theoretically limit the sensitivity limit and resolution of the resonator if it is to be 
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Figure 79: Fractional mass change (relatively to langasite in air) in langasite with 3 

acceptor levels at 1000oC.  
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used as a mass balance for investigating thin film oxygen stoichiometry which requires 

change in oxygen partial pressure of that magnitude, for example.  

 

In Figure 79, it can also be observed that the level of acceptor have small effect on the 

magnitude of mass change occurs. Therefore, acceptor effects on both ionic and 

electronic conductivity, which are considerably higher, will having larger impacts on the 

resolution and mass sensitivity limit of the resonator (i.e. from electrical losses). 
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Figure 80: Fractional mass change/logpO2 in langasite with 3 acceptor 

levels at 1000oC. 
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The donor doped langasite is electronically compensated and the oxygen vacancy 

concentration varies with pO2, either with -1/4 or -1/6 power law depending on the defect 

region, Figure 69 (p.128). The mass change in donor doped langasite can be calculated 

using Kr (Table 6, p.132 ) and n (Eq.(108), p.133), which give oxygen vacancy 

concentration as function of temperature, donor level and pO2. Figure 81 and Figure 82 

show the fractional mass change of 3 different donor doped langasite at 1000oC as 

function of pO2. The fractional change with each order of magnitude of pO2 was also 

calculated and presented in Figure 83. When compared to the acceptor case, it can be 

observed that donor concentration has even lesser effect on the mass change (Figure 82). 

For a bulk acoustic wave resonator fabricated from donor doped langasite operating at 

10MHz, ∆f of 50Hz is expected if the oxygen partial pressure changes from pO2=1atm to 

pO2=10-20atm due to generation of oxygen vacancies (∆m/m=-∆f/f =-5×10-6, irregardless 

of the dopant level). The frequency change in this case is comparable to the acceptor 

doped case. 
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Figure 81: Fractional mass change (relatively to langasite in air) in 

langasite with 3 donor levels at 1000oC (high pO2). 
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Figure 82: Fractional mass change (relatively to langasite in air) in 

langasite with 3 donor levels at 1000oC (low pO2). 
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Figure 83: Fractional mass change/logpO2 in langasite with 3 donor 

levels at 1000oC. 
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5.2.6 Impact of Transport Properties on Resonator 

With the ability to predict bulk conductivity and intrinsic mass change in langasite as 

functions of temperature, dopant level and pO2, it becomes possible to either define the 

acceptable operating range (temperature and pO2) for a langasite resonator, or to 

intentionally dope langasite for operation within specific conditions.  

 

One way to define the operating requirements is to state an acceptable Q value (Eq.(24), 

p.33) from which the required Rp and hence the required conductivity (depending on 

resonant frequency, Eq.(2), p.25) can be calculated. Using an isoconductivity plot, the 

possible conditions can be defined. For example, Figure 84 plots the isoconductivity lines 

of nominally undoped langasite (used in this work). If the required conductivity is 10-4 

S/cm or lower and the required pO2 is ~10-15atm, the operating temperature must be 

950oC or lower. In addition to electrical losses, significant mass change for nominally 

undoped langasite must be considered and could further restrict operating conditions. 
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Figure 84: Isoconductivity plot for nominally undoped langasite. 
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The expression for Q (see Eq.(24), p.33) can also be used for examining the influence of 

decreasing resonator resistance on Q. As temperature increases, Rp decreases while Rs 

increases. At high temperature (at approximately 900oC or above for a 2MHz Y-cut 

langasite crystal resonator studied previously [48, 159]), the values of Rp and Rs converge. 

At those temperatures, Rp becomes smaller than Rs, making Q proportional to Rp. Q is 

also inversely proportional to the half-height-width (HHW) of the spectrum obtained by 

the network analyzer (Eq. (9), p.28), which can be equated to the uncertainty, δ, in 

resonant frequency of the resonator. Hence, Rp can be related and is inversely 

proportional to the uncertainty (δ). This relationship shows that increasing the 

conductivity by an order of magnitude (due to dopant or reduction/oxidation) can 

increase δ and thereby lower the sensitivity limit of the resonator by one order of 

magnitude at temperatures when electrical losses are high. 

-30 -25 -20 -15 -10 -5 0
200

300

400

500

600

700

800

900

1000

1100

1200

1300

1

10

100

1k

10k

 T 
(o C

)

log pO2 (atm)

Q = 100k

 
Figure 85: Iso-Q map of 2MHz langasite crystal (0.1% acceptor dopant) as 

function of temperature and pO2. 
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In fact, for the abovementioned 2MHz Y-cut langasite crystal resonator (with electrode 

area of 2cm2
 and assuming a 0.1% acceptor level), Q can be calculated as function of 

temperature and pO2, and an iso-Q map can be derived (Figure 85). This map gives us the 

operating limits of the resonator for a certain Q. For example, if the Q is designed to be 

1000, the resonator must operate below 611oC, whereas if Q must be greater than 100, the 

temperature must be kept below 850oC and 775oC for pO2=10-1 and 10-26 atm 

respectively. 

 

 

The fractional frequency change (∆f/f) due to change in oxygen vacancy concentration 

can also be related to the theoretical sensitivity limit for resonator. The fractional 

frequency change cause by decreasing pO2 20 orders of magnitude from pure oxygen at 

1000oC is in the order of ~10-6
 (at 1000oC for both acceptor and donor doped langasite), 

which translates to ~10Hz sensitivity limit in a 10MHz langasite resonator. It has been 

stated in previous section that, in theory, the frequency change would limit the resolution 

and sensitivity limit of the resonator. In practice, at high temperatures, the errors in 
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Figure 86: Resolution limits of langasite resonator as function of 

temperature and pO2. 
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resonant frequency measurements will be tens of hertz; the frequency change of a few 

tens of hertz due to intrinsic mass change in langasite will play insignificant role in 

limiting its resolution and sensitivity limit.  

 

Figure 87 shows a map of resolution limit of langasite resonator. Since dopant levels play 

an insignificant role in the determination of ∆f/f, this map can be used for all dopant level 

to estimate the operation limits (i.e. the temperature and pO2) of the langasite resonator. 

For example, if the required ∆f/f is 1ppm (for around 10Hz change due to oxygen non-

stoichiometry in a 10MHz crystal resonator), the operating condition must be below the 

1ppm line in Figure 87.  
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5.3 Sensor Studies 

5.3.1 Bulk Based Active Film 

From Figure 50 (p.99), we observe that the response saturates below 1%O2/Ar, with a 

frequency change of about -360Hz. In comparison to TiO2 [48, 110], for which frequency 

change (~-500Hz) occurs at 6%H2/Ar and no observable change at higher pO2, the 

frequency shifts occur at much higher oxygen partial pressure for PCO on langasite. This 

confirms that the film controls the response to changes in oxygen partial pressure under 

oxidizing conditions.  

 

Figure 87 shows a plot of the oxygen nonstoichiometry of PCO at 600oC; the 

measurements were performed by T.S. Stefanik [114] on bulk PCO samples. The PCO 

thin film on the langasite resonator was 15%PCO (i.e. Pr0.15Ce0.85O2), expected to have 

similar oxygen nonstoichiometry behavior as the 20%PCO. As observed in Figure 87, the 

oxygen stoichiometry changes drastically from air to pO2 of about 10-3atm before 

 
Figure 87: Oxygen nonstoichiometry of different PCO composition at 600oC [114]. 
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reaching a plateau. The frequency change of the sensor was observed to plateau (Figure 

50, p.99) at pO2=10-2atm, showing a close correlation to the oxygen nonstoichiometry of 

PCO.  

 

Although there was good correlation in pO2 at which frequency changes occurred, the 

sensitivity was found to be too high to be attributed to mass change alone. A similar 

resonator used in [50] had a mass sensitivity of approximately –21.9 cm2 Hz µg-1 at 

600°C. Based on that mass sensitivity, the areal mass density change for the sensor used 

in this study would be 16.4 µg/cm2 at 1%O2/Ar and lower oxygen partial pressure. The 

areal mass density of the PCO deposited, assuming a fully dense material (density at ~7.1 

g/cm3), would be ~320 µg/cm2. This represents a 5% increase in mass of the PCO film. 

This could not be explained on the basis of mass change alone, since the magnitude is too 

large for oxygen non-stoichiometry, and the direction of frequency change indicates a 

mass increase (instead of a mass decrease during reduction of the PCO film). 

 

Both the anomalous high frequency change and the direction of the shift suggest a cross 

effect not directly related to the mass change of the PCO film. Stress induced by the 

dilation of the PCO lattice upon reduction was suspected of being one of the likely 

sources of the sensor sensitivity. Another possible explanation for the anomalous high 

frequency change was put forward in Appendix C. It was suggested that the increase in 

conductivity of the thin film, which extended beyond the electrode onto the resonator, 

increases the effective electrode area, leading to a large decrease in apparent areal mass 

density of the active film and hence a large frequency change. However, this explanation 

cannot account for the direction of the frequency change in this case. Both explanations 

would be interesting to examine in future work; in Appendix C preliminary work 

examining the effect of electrode area on resonant frequency was described.  
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5.3.2 Reaction Based Active Film 

On quartz resonator 

Strong and reversible sensitivity to NO2 is observed for temperatures of 300°C and above 

(Figure 55, p.103), with full recovery upon introduction of CO/CO2. The large 

fluctuations around 15, 45 and 75 min in the response plots (Figure 51 to Figure 54) 

resulted from gas switching. Similar results were observed from sensor with BaCO3 film 

prepared with 800nm PMMA templates. Two different PMMA templates were used with 

the expectation that they have different surface areas, and hence the amount of 

conversion to Ba(NO3)2 would be different. The similar responses between the two 

different microstructures were examined by investigating their surface areas.  
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Figure 88: Specific surface area of BaCO3 film prepared using different PMMA 

templates. The effects of annealing at higher temperature on the surface areas 

are shown; the high surface area of the templated preparation dropped to a 

value similar to that of an untemplated sample at 600oC. 
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Figure 88 shows that the surface areas of the two templated BaCO3 films are nearly 

identical (surface areas were investigated for BaCO3 films on Si/SiO2 wafers, not quartz), 

and therefore the similar responses of two sensors is understandable. It also shows that 

the surface area of templated samples begin to decrease with increasing temperature; by 

600oC, the surface area dropped an order of magnitude decrease to that of an untemplated 

sample. This instability of the templated BaCO3 microstructure will be problematic if the 

sensor were to be utilized in diesel engines as the exhaust occasionally reaches such 

temperatures during rich burn conditions. 

 

Since sensors based on quartz resonators were not heated beyond 400oC, the problem of 

instability was not apparent. Both quartz-based NO2 sensors exhibit excellent sensitivity 

to NO2, with sensitivity of ~10Hz/ppm NO2 at 350oC (Figure 55, p.103). Hence we 

believe that the potential exists for low level detection of NO2. 
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Figure 89: Chemical diffusivity extracted from Figure 52 (p.101). 
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We have also observed the kinetics of conversion to Ba(NO3)2 (Figure 51 to Figure 54) 

upon the introduction of NO2 to be slow (several minutes to reach stabilization). Fitting 

the response curves of Figure 52 (p.101) and extracting the chemical diffusivity shows 

that the diffusivity has little thermal activation (Figure 89). The negligible thermal 

activation suggests that the experimental setup could be a limiting factor; the large sensor 

chamber means that gas exchange will take minutes and that will be observed as an 

apparent low chemical diffusion. 

 

The kinetics of the recovery phase (during flow of 50/50 CO/CO2 gas mixture), which 

represents the recovery of BaCO3 from Ba(NO3)2, were found to be considerably slower 

than the kinetics characterizing the sensing phase, i.e., the kinetics relating to the 

conversion of BaCO3 to Ba(NO3)2. If the kinetics of the sensing phase were limited by the 

apparatus, the recovery phase must be related to the slow conversion of BaCO3 back to 

Ba(NO3)2. The recovery time, surprisingly, increased with increasing temperature (Figure 

51 to Figure 54), most probably due to a need to convert a larger amount of reacted 

Ba(NO3)2 (formed at elevated temperatures due to more rapid kinetics as suggested by 

the larger ∆f) back to BaCO3.  
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On langasite resonator 

 

The use of langasite resonator allowed us to investigate sensitivity of BaCO3 towards 

NO2 at higher temperature. The langasite-based sensor shows sensitivity to NO2 at a 

lower temperature (~250oC) (Figure 57, p.105). Similar to the quartz-based sensor, the 

sensitivity increases as temperature increases, reaching a maximum at around 400oC. 

However, beyond that the sensitivity starts to drop reaching close to zero at around 650oC. 

If the sensitivity of the quartz and langasite-based sensors (both calculated at 100ppm 

NO2) are compared (Figure 90), they appear similar and it seems that the Pt catalyst 

added to the BaCO3 film in the langasite-based sensor had little effect. However, Eq.(25) 

(p.38) states that the mass sensitivity of a resonator is proportional to the square of the 

resonant frequency. As the quartz resonator was 5MHz and the langasite resonator was 

3.6MHz, the sensitivity values have to be normalized; Figure 90 is replotted by 

recalculating the sensitivity of quartz as if it was 3.6MHz. 
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Figure 90: Comparison of sensitivity (calculated at 100ppm NO2) of langasite and 

quartz-based NO2 sensors. 
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In Figure 91, it appears that the Pt increases the sensitivity, shifting the maximum 

sensitivity towards lower temperature (~350oC). Interestingly, [123] showed that 

maximum storage of a NOx trap occurred at 350oC, with storage capacity dropping 

quickly down to zero at around 500oC. This is consistent with our observations of 

langasite-based NO2 sensor.  

However, the Pt catalyst seems to have little effect on the kinetics during the sensing 

phase and recovery phase. The slow kinetics at the sensing phase has been hypothesized 

to be due to the limits imposed by the experimental setup. Efforts were made to improve 

the kinetics of the recovery phase by heating the sensor up to 700oC. However, it was not 

successful as the BaCO3 films began to peel off after some time at that temperature. 
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Figure 91: Normalized sensitivity (to resonant frequency of 3.6MHz) at 

100ppm NO2 of langasite and quartz-based NO2 sensors 
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Signal noise 

Signal noise during the NO2 sensor operation posed a major challenge especially at 

higher temperatures, where errors of ±100-200Hz were common. This was not 

compensated out completely using the reference resonator. One source of the noise was 

the small temperature fluctuations near the sensor, causing larger resonant frequency 

shifts as temperature increased due to the higher temperature-dependence of resonant 

frequency. Alternative methods to negate the temperature effect are needed for such 

sensors to be commercially utilized. 

 

The quality and stability of the BaCO3 film were other possible sources of signal noise. 

The acoustic phase shift due to the relatively thick film (~1µm) (Eq. (7), p.27) and 

structural instability (Figure 88, p.149) of the film could result in additional energy loss, 

resulting in a lower Q when compared to an uncoated resonator (Figure 92). As the 

uncertainty (δ) of resonant frequency measurement is inversely proportional to Q, a lower 

Q leads to a higher uncertainty and therefore a corresponding increase in signal 

fluctuations. A dense film deposited using thin film techniques (e.g. sputtering or pulsed 

laser deposition) should be considered in future work to reduce damping from the film. 
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Figure 92: Q of langasite resonator, both blank and with BaCO3 film, as function 

of temperature (right). The corresponding |Y| vs f/fo (fo: peak frequency) of 

selected temperatures are also shown (left). The lower Q’s of BaCO3 coated 

langasite resonator resulted in greater uncertainty in measurements. 
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Chapter 6: Conclusion 

6.1 Summary 

The transport properties of langasite were investigated at temperatures ranging from 700 

to 1000oC, and at pO2’s of 1 to 10-25atm. Acceptor and donor doped langasite samples 

were examined using 2-point impedance, concentration cell and thermoelectric power 

measurements. The high temperature annealing of langasite shows the material to be 

chemically stable at high temperatures, under reducing as well as oxidizing conditions. A 

defect model was developed and used to describe the electrical properties as functions of 

temperature, dopant levels and pO2, and provides a framework for explaining the 

observed transport properties and the underlying physical processes. 

 

Acceptor doped langasite exhibits mixed ionic-electronic conductivity behavior. At high 

pO2, nominally undoped (with background acceptors) langasite was predominantly an 

ionic conductor due to mobile oxygen vacancies. The ionic conductivity was pO2-

independent and was essentially fixed by background acceptors. At low pO2, the 

conductivity becomes increasingly n-type electronic dominated by electrons generated by 

the reduction process. Increasing acceptor levels increase the ionic and p-type electronic 

conductivity, while depressing the n-type electronic conductivity – observations 

consistent with predictions of the defect model. In the Sr-doped langasite, defect ordering 

leads to in deeper potential wells for the oxygen vacancies resulting in the higher oxygen 

vacancy migration energy (0.91±0.01 versus 1.27±0.02eV for nominally undoped and 

1%Sr-doped langasite respectively).  

 

In donor doped langasite, the conductivity was electronic at all examined temperatures 

and pO2’s, as confirmed by concentration cell measurements that showed negligible ionic 

transference numbers. The electrons dominated the conductivity, leading to a donor 

compensated regime at high pO2 and a reduction dominated regime at low pO2. Nb was 

found to be a deep donor with ionization energy of 1.52(±0.06)eV, as confirmed by 

thermoelectric power measurements.  
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The electronic mobilities of langasite for both electrons and holes were also determined. 

The electron mobility of langasite was found to be activated (polaron hopping) with an 

activation energy of 0.15(±0.01)eV, whereas the holes were assumed to be quasi free 

carriers.  

 

Using the defect model, a number of important constants were derived. The oxidation 

enthalpy was determined to be 2.18(±0.08eV) for acceptor doped langasite. The reduction 

enthalpy was determined to be 5.70(±0.06)eV and  6.57(±0.24)eV for acceptor and donor 

doped langasite respectively. The reliability of the reduction and oxidation enthalpies was 

reinforced given the consistency with values of the optical bandgap obtained 

independently through optical transmission experiments.  

 

The derived defect model was utilized in building a predictive model for langasite. This 

model was used to calculate the bulk electrical conductivity and intrinsic mass change of 

langasite due to oxygen vacancy generation as functions of temperature, dopant level and 

pO2. The establishment of defect specie concentrations and their mobilities as function of 

pO2 and temperature allowed us to define the acceptable operating range and/or design 

the properties of langasite for minimum resistive loss and intrinsic mass change, which 

affect the resolution and sensitivity limit of the resonator. At high temperature (900oC or 

higher for 2MHz langasite resonator), the electrical loss of langasite became significant. 

With the bulk resistance proportional to Q, this leads to increased uncertainty in the 

measurements, δ, of the resonator (i.e. lower resolution). On the other hand, it was also 

demonstrated that langasite exhibits only very small mass change due to oxygen 

stoichiometric change, and, even at 1000oC,  ∆f/f is 5ppm or less for a pO2 change of as 

much as 20 decades.  

 

Two high temperature resonant-based sensors were studied. Oxygen partial pressure 

detection was performed using a bulk-based film (praseodymium-cerium oxide), and NO2 

detection was performed using a reaction-based film (barium carbonate). The processes 

controlling sensitivity in each instant were discussed. For the sensor using the bulk-based 

film, in order for it to be useful for measuring stoichiometric changes in thin films, the 
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anomalous frequency shift has to be understood. Even though frequency changes were 

shown to be related to stoichiometric changes, mass change alone could not explain the 

large observed frequency shifts. For the reaction-based NO2 sensor, high temperature 

operation posed major challenges, i.e. instability of microstructure and high signal noise. 

It is crucial to overcome these limitations since NO2 sensors will have to survive the 

extreme conditions of engine exhausts while performing precise measurements down to 

parts-per-million level of NO2. Future work to address the above sensor performance 

issues and additional work on sensor packaging will be required. 

 

6.2 Recommendations for Future Work 

Listed below are some recommendations for future work, both as extensions of the work 

presented here and as general recommendations for a better understanding of transport 

properties of langasite-type materials: 

 

 Examine langasite with more dopant levels (both acceptor and donor) allowing for 

better understanding of defect association/ordering effects, if any. Varying dopant 

types will allow the examination of dopant size on transport properties. This series of 

studies will provide refinement on the predictive model, giving a better estimation on 

the effects of dopants on transport properties. 

 

 Growth of doped single crystal langasite allows the examination of effect of doping 

on the piezoelectric properties of langasite. Complete substitution of a cation will also 

provide interesting transport and piezoelectric properties to be studied. Other 

members of langasite family can also be examined in the same fashion. 

 

 Each sensor application has potentials for further studies. The frequency change in 

bulk-based type film was not entirely understood– stress effect studies should be 

undertaken. The reaction-based film can be studied for cross-sensitivity to other 

interfering species or effects. More systematic studies on the effects of 

microstructures, catalysts, and temperature cycling on sensitivity and kinetics can be 
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carried out. A better temperature compensation scheme using harmonics can be 

implemented, especially at higher temperature, to reduce noise. Miniaturization of the 

resonator for use in a sensing array can be examined for better selectivity and lower 

power requirements. 

 

 Barium carbonate film (for NO2 sensing) should be deposited onto langasite resonator 

with thin film technique so as to obtain a better control over film adhesion and 

thickness uniformity. This might lead to a lowering of noise, which will be essential if 

it is to be used for NO2 monitoring. 

 

 The possibility of growing epitaxial langasite thin films can be examined. Such thin 

films can form a basis for surface acoustic wave devices with higher resonant 

frequencies (higher sensitivity) and remote control capability. Sensor array 

miniaturization and fabrication using thin film piezoelectric materials will potentially 

be simpler than using single crystals. 
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Appendix A 
DMMP sensing with SiO2 active film 

Experimental 

SiO2 was used as the active film on a 10MHz AT-cut QCM (Elchema). SiO2 films were 

deposited using the PMMA templating technique [148] onto 10MHz (Elchema) AT-cut 

quartz resonators. The first step of this technique is to create a 3-D array of PMMA 

microspheres. About 0.20g (800nm in diameter) of PMMA microspheres (Soken Chem. 

& Eng. Co., Ltd.) was dispersed in 10 ml deionized water using ultrasonicator for 10min. 

The suspension was then dripped by pipette onto one electrode face of quartz resonators 

and allowed to dry at room temperature over night.  

 

Tetraethoxysilane (TEOS) was then permeated (using a pipette) into the interstices of the 

3-D array of PMMA microspheres, in vacuo, at room temperature. Thereafter, the film 

was treated consecutively for 2 days at room temperature and 1 day at 50oC (controlled 

using hotplate) in HCl atmosphere. HCl atmosphere was created by enclosing the film in 

a beaker together with concentrated HCl, without the film or the resonator coming in 

contact with the acid. After the HCl treatment, the film was thermally treated at 80oC for 

12hr for the formation of SiO2 film.  Further heat treatment at 400oC for 2hr remove the 

PMMA microspheres, creating a porous SiO2 film. The resultant SiO2 microstructure is 

shown in Figure 93, in which the highly porous nature of the structure can be observed. 

 

 
Figure 93: Microstructure of SiO2 film prepared from 800nm PMMA microspheres.  
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The sensor was tested at temperatures ranging from room temperature (~20oC) to 100oC. 

After equilibrating at the test temperature in dry air, different concentrations of DMMP 

were introduced. The DMMP concentration was varied by flowing dry air over DMMP 

under controlled temperature (controlling its vapor pressure) and then mixing that with 

pure dry air.  The total flow rate was controlled at 100sccm. The test setup used was 

identical to that used for the thesis work (see Experimental for further details). 

 

Results 

Quartz resonators coated with SiO2 active films were exposed to a fixed concentration of 

DMMP vapor at various temperatures. The sensor was equilibrated in dry air for 1hr 

before being exposed to DMMP for 1hr. The concentration of DMMP was controlled by 

fixing the temperature of a DMMP bath at 20oC with dry air being flowed over it. The 

calculated concentration of DMMP in this case is about 920ppm. The sensor temperature 

was varied to observe the effect on response. The frequency response to DMMP is shown 

in Figure 94. 
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Figure 94: Response of SiO2 coated QCM sensor to 920ppm 

DMMP at various sensor temperatures.  
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The SiO2 coated QCM sensor was then exposed to a lower concentration of DMMP, at 

around 170ppm. This concentration was obtained by fixing the DMMP temperature at 

0oC while dry air was flowed over the DMMP fluid bath. The sensor was evaluated at 

two sensor temperatures (RT and 55oC) and the frequency response to 170ppm DMMP is 

shown in Figure 95. The two data sets allow us to see that DMMP sensitivity varied 

drastically between 20 and 45oC. 

  

 

The temperature of the sensor was then fixed at room temperature (where sensor 

sensitivity is high as suggested by Figure 94 and Figure 95) and its response to varying 

concentration of DMMP was examined. The frequency changes measured as a function 

of DMMP concentration are plotted in Figure 96.  
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Figure 95: Response of QCM/SiO2 sensor to 170ppm DMMP at 

various sensor temperatures. 



 162

The first derivative of the response curve, which gives the sensitivity of the sensor, is also 

plotted in Figure 96 and illustrates that the sensor begins to saturate at about 500-600ppm 

of DMMP.  

 

 

The temperature sensitivity of the sensor was examined in greater detail by examining its 

response to 920ppm DMMP for temperatures between 20 and 100°C. The results, shown 

in Figure 97, confirm that there is a decrease in response as the temperature of the sensor 

increases; at 100oC, the response goes practically to zero. The right axis shows the 

sensitivity normalized to sensitivity at 20oC. At around 30oC, the sensitivity of the sensor 

is already halved from 20oC demonstrating the highly temperature dependent nature of 

the sensitivity towards DMMP.  
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Figure 96: Response of QCM/SiO2 sensor at RT to different 

concentrations of DMMP. 
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Discussion 

The decrease in resonant frequency is indicative of a mass increase caused by adsorption 

of DMMP on the surface of the silicon dioxide film. The sensor responds very quickly 

after exposure, although, at 500-600ppm DMMP and above, the sensor response seems to 

have saturated (Figure 96). In addition, recovery at room temperature, in air, seems 

incomplete. 

 

The sensor tests at room temperature also show that as temperature increases, the sensor 

sensitivity to DMMP drops (Figure 97). This could be explained by the adsorption-

desorption process which is highly sensitive to temperature. At low temperatures, 

adsorption is favored and more DMMP molecules stay on the surface of the SiO2 film; 

which is also the reason why recovery process was incomplete. At higher temperature, 
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Figure 97: Influence of sensor temperature on the frequency 

response to 920ppm DMMP (left axis) and on sensitivity 

(normalized to sensitivity at 20oC, right axis) 
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the desorption is favored and less DMMP can be adsorbed on the surface of SiO2, 

resulting in weaker frequency shift. Figure 97 also provides an estimation for the 

operation temperature of DMMP resonant sensors. From the plot, the sensor should be 

operating at room temperature or even lower for maximum sensitivity. However, for 

recovery, the sensor should be heated to around 100oC for almost complete desorption 

(i.e. zero sensitivity to DMMP).  

 

The logical next question will then be what advantage would a high temperature 

piezoelectric like langasite have over a cheaper alternative like quartz. One reason is that 

if the adsorbate is not as volatile as DMMP, a higher temperature might be needed for 

complete regeneration. Complete regeneration is necessary for ensuring that the 

maximum number of adsorption sites is available for the next sensing cycle. Furthermore, 

having a high temperature piezoelectric might be necessary for adsorption process 

measurements done at high temperature. Another reason is that utilization of a high 

temperature piezoelectric without destructive phase transformation removes restrictions 

on process conditions used to deposit and anneal the active films (e.g. allowing higher 

temperature treatments). 

 

 



 165

Appendix B 
Glow Discharge Mass Spectroscopy 

Results and Discussion 

The nominally undoped and 1%Sr-doped langasite samples were analyzed for trace 

elements using glow discharge mass spectroscopy. The analyses were performed by 

Northern Analytical Laboratory, Inc (23 Depot St, Merrimack, NH 03054) with 

proprietary procedures and software. The results for the two samples are tabulated below. 

 

Table 7: Trace elements in nominally undoped langasite. 

ANALYSIS ppmw ANALYSIS ppmw ANALYSIS ppmw 

H   Zn 1.2 Pr 1.2 

Li 0.30 Ga Major Nd 0.05 

Be <0.1 Ge   Sm 0.20 

B 9.2 As <0.1 Eu <0.05 

C   Se   Gd <0.5 

N   Br   Tb <0.05 

O Major Rb   Dy 0.25 

F <1 Sr 0.20 Ho <0.05 

Na 100 Y 1.4 Er <0.05 

Mg 1.3 Zr 40 Tm <0.05 

Al 12 Nb 1.1 Yb <0.05 

Si Major Mo 0.10 Lu <0.05 

P 1.1 Ru   Hf <0.05 

S 2.0 Rh   Ta   

Cl 0.59 Pd   W <0.1 

K 1.2 Ag <1 Re   

Ca 16 Cd   Os   

Sc 0.02 In   Ir   

Ti 0.25 Sn   Pt 0.65 

V 0.037 Sb   Au   

Cr <0.5 Te   Hg   

Mn 0.070 I   Tl   

Fe 6.0 Cs   Pb 1.0 

Co <0.01 Ba 0.45 Bi <0.05 

Ni 0.15 La Major Th <0.01 

Cu 1.5 Ce 1.7 U <0.01 

All other elements <0.1ppmw    * Major >1wt%   



 166

 

 

Table 8: Trace elements in 1%Sr-doped langasite. 

ANALYSIS ppmw ANALYSIS ppmw ANALYSIS ppmw 

H   Zn 0.45 Pr 1.6 

Li 0.45 Ga Major Nd 0.05 

Be <0.1 Ge   Sm 0.25 

B 1.3 As <0.1 Eu <0.05 

C   Se   Gd <0.5 

N   Br   Tb <0.05 

O Major Rb   Dy <0.05 

F <1 Sr ~3000 Ho <0.05 

Na 25 Y 7.0 Er <0.05 

Mg 1.0 Zr 150 Tm <0.05 

Al 11 Nb <0.1 Yb <0.05 

Si Major Mo 0.25 Lu <0.05 

P 1.6 Ru   Hf   

S 2.0 Rh   Ta   

Cl 0.60 Pd   W <0.1 

K 0.62 Ag <1 Re   

Ca 115 Cd   Os   

Sc 0.090 In   Ir   

Ti 0.40 Sn <0.1 Pt 0.3 

V 0.045 Sb 0.12 Au   

Cr <0.5 Te   Hg   

Mn 0.085 I   Tl   

Fe 6.2 Cs   Pb 0.20 

Co <0.01 Ba 2.0 Bi <0.05 

Ni 0.15 La Major Th <0.01 

Cu <0.2 Ce 3.0 U <0.01 

All other elements <0.1ppmw     * Major >1wt%    

 

First of all, in the trace element analysis of 1%Sr-doped langasite, the Sr concentration 

was found to be ~3000ppmw (i.e. 0.3wt%), with approximate error of ±1000ppmw, close 

to the intended Sr doping level of 1mol% or 0.4wt% (see Table 5, p.61). In addition, we 

can see that the concentrations of background impurities in the 1%Sr-doped sample were 

orders of magnitude lower, indicating that Sr was indeed controlling the langasite 

transport properties. 
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In nominally undoped langasite, the major background impurity was Na at 100ppmw. Na 

is found to go into the Thomson cube site [54], i.e. substituting for La, and therefore 

acted as an acceptor ''
LaNa . In principle, langasite can have cation nonstoichiometry for 

which the cation deficiency can also act as acceptor. However, we have no evidence for 

cation nonstoichiometry in langasite, and therefore assume that the extrinsic dopant 

dominates the defect properties. 

 

In the ionic conduction regime, the Brouwer approximation ••≈ OLa VNa ''  is applicable. If 

we convert the Na impurity in nominally undoped langasite from ppmw to #/cm3, we 

obtain 1.5×1019 cm-3, and therefore expect the oxygen vacancy concentration for 

nominally undoped langasite to be 1.5×1019 cm-3. The oxygen vacancy mobility can then 

be calculated (see Discussion). 
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Appendix C 
ZnO Film on QCM 

Experimental 

 

This appendix describes preliminary work to examine the effect of change in electrode 

area on resonant frequency. For the active film material, we used ZnO, normally 

insulating at room temperature, but becomes conductive with UV irradiation as electrons 

are excited to its conduction band (ZnO optical bandgap is 3.3 eV [160]). The ZnO films 

were sputtered onto AT-cut quartz resonators (5MHz, Maxtek Inc, Part #149211-2) with 

asymmetric Au electrodes, as shown in Figure 98. Two different thicknesses of sputtered 

ZnO films, 150 and 200nm, were fabricated. The surface area of ZnO was identical to 

that of the larger electrode on the quartz resonator, so when it became conductive, the 

area of the smaller electrode increased to that of the larger electrode. 

 

Resonator

Larger back electrode Smaller front electrode

 

Figure 98: Resonator with asymmetric electrodes. The two electrodes are 

of different surface area, with the back electrode larger than the front. 
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Figure 99: Experimental setup for ZnO-Quartz sensor. 
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The sensor was placed in the optical path of an arc lamp (set at 15A 20V) (Schoeffel 

Instrument Corporation, LH-151N/2 with power supply LPS-225HR), with an IR filter 

(Newport Corporation, #20HMS-0) placed in the light path between the lamp and the 

sensor to block IR radiation that heats up the sensor (see Figure 99). The experiment was 

performed in dark, with only light from the lamp. Resonant frequency shifts (labeled 

‘ZnO-side’, Figure 100) were observed when the arc lamp was turned on, irradiating the 

ZnO film and making it conductive. When the same experiment was performed with the 

larger electrode facing the light path, effectively blocking the light on the ZnO film, a 

much smaller shift was observed (labeled ‘Blank-side’, Figure 100). The net frequency 

changes of ZnO films of different thicknesses, obtained by subtracting frequency change 

on ‘Blank-side’ from ‘ZnO-side’, were also shown in Figure 100 (labeled ‘Net change’). 

 

Discussion 

One explanation for those observations was proposed by H. Fritze, our collaborator at 

University of Clausthal in Germany. He explained that the increase in frequency was due 

to an apparent decrease in effective areal mass density. The mass of the film remained 

constant, but as the film became conductive, it became part of the electrode, effectively 

increased the electrode area and therefore the areal mass density (ρs) decreased. The 
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Figure 100: Resonant frequency change of ZnO active film, 120nm(left) and 

200nm(right), on 5MHz AT-cut quartz resonator.  
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Sauerbrey equation (Eq.(6), p.27) shows that ∆f ∝-ρs, and a decrease in areal mass 

density will translate to an increase in resonant frequency of the resonator.  

 

In our experiment, the effective electrode area tripled (0.49π to 1.5πcm2) once ZnO 

became conductive, effectively reducing the areal mass density of ZnO film on the 

resonator by two-third. As ZnO has density of 5.6g/cm3 [161], the values of areal mass 

density of the active films were around 670ng/cm2 and 1120ng/cm2 for 120nm and 

200nm thick ZnO films respectively. Two-third reduction of areal mass density translates 

to frequency shifts of around +447Hz and +747Hz for 120nm and 200nm ZnO films 

respectively (sensitivity of 1 Hz.cm2/ng).  

 

The results in Figure 100 show net frequency shifts of 400 and 350Hz for 120nm and 

200nm thick ZnO film respectively. The frequency change in 120nm ZnO film was close 

to the expected frequency change due to two-third reduction in areal mass density. 

However, for the 200nm ZnO film, the frequency change was much lower than the 

expected frequency change. To understand this interesting phenomenon, it should be 

studied in greater details in future work. 
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Appendix D 
Setting up Agilent E5100A 

The correct use of the network analyzer (Agilent E5100A) is important for precise 

frequency measurements. This appendix section lists the procedures for setting up the 

analyzer for measurement. 

 

Initialization 

The network analyzer has an internal frequency standard (heated quartz resonator) which 

should be allowed to warm up and equilibrate before any measurements are performed. 

This initialization period is about 15-30min depending on room temperature. 

 

Calibration 

When a new sensor holder or new wiring is used, calibration should be performed on the 

network analyzer. Before calibration, a calibration standard has to be defined; a resistor is 

usually used. To define the calibration standard, select ‘CAL’, follow by ‘Modify Cal 

Kit’. Select ‘LOAD’ to define the standard. 

 

The calibration procedures are initiated by pressing the ‘CAL’ button, and selecting the 

three-term calibration. The calibration involved measuring ‘SHORT’ – when a piece of 

copper wire is connected in place of a resonator, ‘OPEN’ – when the holder is left empty, 

and ‘LOAD’ – when the calibration standard (e.g. a resistor with known resistance) is 

placed in the holder. After calibration is completed, the calibration data can be saved and 

recalled whenever a measurement needs to be performed. 

 

Periodic calibration should be performed to ensure that the holder or the wiring has not 

changed. Before each measurement, one should check that the correction is applied. 
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Measurement Parameters 

The following parameters were found to work well at high temperature (i.e. lower noise 

to signal ratio): 

 Power: 1mW 

 Point-per-scan: >1000 

 IF Bandwidth: <1kHz 

 

Setting a high point-per-scan and low IF bandwidth will slow down each scan. With the 

above parameters, the analyzer can make about 1 reading per second.  

 

Extracting fr 

There is two basic way of extracting fr. The first is to let the analyzer fit the spectrum 

using the build-in equivalent circuit model. The second is to record each spectrum and 

analyze them off-line. At low temperature where Q is generally high, letting the machine 

fit the spectrum seems to be a fast way of measurement. However, as Q drops, the 

machine fitting gets noisier. The second method should be used for reliable fr 

measurements at high temperature. 
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