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for the Degree of Master of Science in Mechanical Engineering

Abstract

Metal nanoparticles can be used as antennae covalently linked to biomolecules. External
alternating magnetic field can turn on and off the biological activity of the molecules due to
induction heating from the particles that changes the temperature around the molecules.
Here an experimental scheme towards direct temperature probing is proposed to predict the
behavior of the antenna. Oligonucleotides modified with photosensitive molecules are
conjugated with gold nanoparticles and report the temperature at their positions within
some nanometers' distance from the particles. However, oligos have a known tendency to
stick to gold surfaces. To locate the probes at desired position, 6-mercapto-1-hexanol
(MCH) is used to reduce oligonucleotides' adsorption to the surface of gold. The
experimental result shows that oligos on particle's surface can be stretched radially without
any reduction of coverage ratio. Optimal MCH concentration and reaction time highly
depend on the concentration of MCH and the conjugates as well as reaction time and the
size of the molecules.
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Chapter 1: Introduction

There has been enormous effort in developing "bottom up" manufacturing to

replace traditional "top down" methods. However, these approaches have reached

limitations. Nature provides many remarkable biomolecular machines that perform with

great efficiency, precision, and accuracy. A goal is to come up with a means of controlling

biomolecular activity to utilize Nature's engineering. The method of control should be

precise and specific as well as compatible with the complex and highly disordered

environments inside cells.

Metal nano-particles can be used as antennas to control the activity of

biomolecules'. The antennas are heated by an external radio-frequency magnetic field,

which generates eddy currents in the nanoparticles that create heat. The heat generated in

the particle propagates to the DNA, protein, or enzyme covalently linked to the antenna.

The biomolecule is thus denatured slightly, thereby changing its biological activity. Under

the absence of the magnetic field, the heat is dissipated from the biomolecule, allowing it to

renature, and recovers its activity rapidly. This has been used as a way to control activity of

a biomolecule in a way that is both reversible and selective in solution. These properties are

dependent on the heat localization around the nanoparticle. This will become a crucial issue

if implemented in cells, where the environment is extremely crowded and not heating

surrounding proteins will be difficult. Consequently, it is of central importance to

characterize the heat transfer and heat localization around nanoparticles when heated by an

alternating magnetic field. Once we can precisely predict the amount of heat generated in

antenna and the temperature profile near the molecules, we can finely control activity.

However, heat transfer between antenna and biomolecule is expected to occur

within only a few nanometers, where the physics of the heat carrier transport is inherently

different from the macroscale and continuum approaches. Nanoscale heat transfer is not

well understood theoretically, especially in the context of molecular systems. In addition,

traditional methods for probing temperature are applicable only for macroscale systems.

Consequently, the goal is to experimentally map the temperature profile around

nanoparticles and also heating kinetics. The proposed approach is to utilize DNA molecules
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since increased temperatures induce conformational changes in DNA. This can be

monitored by optical absorption and fluorescence spectra of functionally modified DNA

strands. By varying the length of DNA attached to the metal nanoparticle, we can map the

actual temperature distribution for a given particle. This can be compared to calculations

for heat transfer from nanoparticles. This requires control of conformation of oligos

attached to nanoparticles, which makes it possible to control the real lengths of the oligos

on the particles.

1.1 Previous research

There are many known techniques for conjugating metal clusters and

biomolecules 2 . From the methods, multi-dimensional array of nanoscale metal pieces can

be achieved by use of unique characteristics of biomolecules such as hybridization of

complementary DNA strands'.

Regarding with nanoparticles, there has been another big research area dealing with

hyperthermia utilizing induction heating in ferromagnetic particles5 7 . It is advantageous

compared to global heating in that heating is localized in a very narrow area. Thus only

target spots are thermally treated under magnetic field without damaging environment.

A remarkable study that grafted hyperthermia phenomena for the first time onto the

research on metal-biomolecule conjugates was recently reported. Its superiority is in the

fact that biological behavior in nanoscale can be remotely controlled by external magnetic

field. By changing the type of the metal particle, we can have different channels of control

and this enables selective control of complex biological system. Figure 1.1 shows the

possibility of remote controls. Under the presence of magnetic field, the gold particle is

inductively heated and the hairpin-shaped oligos are released from its hybridized form. This

can be detected by absorbance measurement at 260nm, a general method for quantifying

the degree of DNA's hybridization-dehybridization. We can see that oligo's conformation is

quickly responding to the external magnetic field (1GHz).

The research given in this paper is motivated by the above study. To utilize the

ability of nanosize antenna it is essential to reveal its heat generation and heat propagation

behavior. This paper suggests a method of direct temperature probing that works in the very
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small size scale. Since conformational change of DNA on particle surface is very important

for proper function of the probes, 6-mercapto- 1 -hexanol is introduced to modify the surface

of the nanoparticle.

A4

b

0,2' O Off (u

~0.24ji

0,20K)

0 1 2.9

TV"e (two)

Figure 1.1 (a) Sequence of the self-complementary oligo for 7 bases. It has a primary
amine group that is covalently linked to 1.4nm gold nanoparticle.
(b) Absorbance at 260nm of two solutions having oligos conjugated with the gold
particle(M) and the same oligos without the gold particle(N), respectively.
1GHz magnetic field is used. Copied image'.

1.2 Snapshot of the paper

Gold particle - DNA conjugate is mostly concerned throughout the paper. But some

possible issues might arise to utilize the conjugate system quantitatively. How much is the

actual power generation? What parameters will control the heating? How does the size

effect change the heat transfer mechanism? How does the DNA look like around the

particle? and how can we control its behavior based on the answers from the questions?

Here is a part of the answers suggested, though there is a lot of space to be filled through

further research.
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The main topic of chapter 2 is heat generation and propagation in nano-size system.

We will discuss how alternating magnetic field induces power dissipation in metal clusters.

Some classical formulas are introduced and recently developed equations considering size

effect also are mentioned. By literature review, we will see the availability of classical heat

transfer equations on nano-scale heat propagation. A sample calculation of Au particle -

water system will be given.

In chapter 3, an experiment on direct temperature probing is proposed.

Fluorescence modified DNA's are conjugated with gold particles and its conformation

change will give the information on temperature. Root-mean-square end-to-end length of

the conjugates is closely related with the distance from particle center to the probing

position. We will discuss some theories on polymer chain and its conformation of which the

most important parameter is its persistence length.

Surface modification experiment on gold-DNA conjugate is given in chapter 4. 6-

mercapto- 1 -hexanol prevents DNA adsorbing on the gold particle's surface and improve

hybridization ability of the linked DNA. To analyze the conformational change of DNA,

Ferguson plot method is used. A short review on the method will be given.

Chapter 5 briefly shows the summary of the research given in chapter 2~4 followed by

some possible future work.
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Chapter 2: Heating Mechanism of nanoparticle-biomolecule system

The keys of the function of Au particle antenna are heat generating and heat

propagation. Temperature around biomolecules strongly affects the molecules' activity, so

we need to get an exact picture of temperature profile. The temperature profile itself

depends on the heat flux from the particle. Difficulties arise from Au particle -

biomolecules syetem are mainly related with the size scale. It is now very well known that

nanostructure is affected by quantum or classical size effect. The former is from the energy

band structure. Bulk material has almost continuous energy level, whereas nanostructure

has limited number of energy levels that give wider gap between the bands. The latter tells

about transport phenomena of carriers. In the macrosystem, detail movements of carriers

are generally ignored by being averaged, but if the length scale of structure becomes

comparable with that of carriers' movement, we need to directly deal with the carriers'

microscopic behavior.

In this chapter, heat generating and heat transfer mechanisms are explained

especially for 1 Onm Au particle and oligo system, which is used for the oligo conformation

control experiment in chapter 4 and future work. Ch. 2.1 deals with some heat generation

mechanisms and ch.2.2 is describing heat propagation phenomena. Application to our

system is given in ch.2.2, too.

2.1 Heat generating mechanisms in nanoparticle

2.1.1 Introduction

There are some heating mechanisms originated from electromagnetic wave (or

magnetic wave) incident on metal substance. One method is induction heating, commonly

used in industries. Due to high electrical conductivity, we have to apply very high current if

we want direct Joule heating of metal. We may put the object in a hot chambers or make it

contact with heat source at high temperature, but still there is a certain time scale for

sufficient heating. So induction heating gives similar convenience as microwave ovens do,

though their mechanisms are fundamentally different. There are also other heating

processes such as Neel relaxation, Brownian relaxation and hysterisis loss. They mainly
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occur for magnetic particles. Our primary concern is how the heating mechanisms look like

for nanoparticle-magnetic field system. It has not been clearly shown that how the size

effect play a role in the mechanisms, but we are still able to infer some physical sense from

classical approach to the phenomena.

2.1.2 Joule heating

From Maxwell equations, equation 2.1 is derived with a constitutive law (equation

2.2) 8

1 V2 H
V2H = (2.1)

B=pH (2.2)

We can solve equation 2.1 for the particle to find the distribution of magnetic field. From

the distribution, we can get current density (eddy current) by Ampere's law. The time-

averaged power is calculated by equation 2.3 with eddy current.

(P)= Re IJ(E-J)dVj (2.3)
2

Induction heating is associated with a skin depth where most of the power absorbed by

conductor 1,6. The skin depth is defined by equation 2.4.

1
9= (2.4)

When the radius of the particle is equal to or smaller than the skin depth, power is

dissipated in the whole region of the particle. Critical frequency is calculated simply by

replacing t in equation 2.4 with the particle radius R.

1
fcrJ = 2 (2.5)

7VR pt1G-
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frit of IOnm diameter Au particle is about 2x105GHz with the bulk electrical conductivity

and the fact p ~ po. Generally "low frequency" denotes the frequency much smaller

than fri, 6'9. In the frequency regime, the particle is uniformly heated. One thing to note is

that the wavelength of incident magnetic field should be much longer than the particle size

to simplify the analysis. This assures that the whole particle is in the uniform magnetic field

at each moment9 (figure 2.1). In addition, the validity of equation 2.2 is not guaranteed if

the wavelength becomes comparable with the atomic length scale1 0. The wavelength of

~GHz magnetic wave (in the low frequency range) is order of sub-meter, much larger than

our particle's size. Thus using low frequency such as GHz or MHz range of magnetic field

is acceptable for the nanocluster antenna experiment.

(a) R >A (b) R <A

Figure 2.1 Phase of magnetic wave inside particle.

The results of applying equation 2.3 to cylindrical and spherical particle are listed

in table 2.1 with their limit forms for low frequency and high frequency 6'9. An analytical

kinetics solution is also available for the case that the particle size is much smaller than

mean free path(MFP) of electron ranging 10-1 00nm9'11 in metal. It is assumed that there

are no scatterings between electrons, and the electrons are diffusively reflected at the

wall(i.e., equal probability for all directions of reflection, regardless of the incident angle).

Low frequency is still assumed, too. The result is given in table 2.1.
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Cylindrical particle [W/particle] Spherical particle [W/particle]

zHO2R1,,1,,,, _ Re (j -1)- J, [(I-- j) R]J, [(I+ j) ]

classical
solution 37rR o 21P2(p,H) 2 

., {u( S+s)- C+c

(p - p 2 2 + C + -1 c-u(S+s) +(p-p )1 p2 (S - s) + p 4 (C-c)

op2p 2H 2 R'l,,, 1, 15a-p2p2 HO 2TR5
f << f, 16 1

H 2 R N/A
f >> f, Usa,5 eN

MFP>R c 2 P2 HO2 2n R 5l,"", N/A
f < f 

2 0mevf

Table 2.1 Analytical solutions on induction heating per each cylindrical and spherical particle 6'9 .

Note) n; electron concentration C, : Fermi level m : mass of electron

We may compare two formulas of cylindrical particle at low frequency condition.

The ratio of kinetics' solution to classical solution is 4ne 2R . From the bulk properties of
5me -evf

gold, the ratio is about (2 x 107). R without dimension. For example, kinetics solution of

1 Onm gold may gives only about 1/10 of volumetric energy dissipation compared to

classical solution. But we should remember that this comparison is only valid for the

particle size less or similar with MFP of electron due to the assumption made on the

particle dynamics solution. In addition, electrical properties of nanoparticle may be

different from those of macroparticle, so the ratio changes. However, we can accept that

classical solution may be considered as an upper limit of the amount of possible heat

generation.

2.1.3 Hysterisis loss and relaxation loss

We assumed linear relationship between B and H in the previous chapter

(equation 2.2). However, magnetic material actually shows hysterisis behavior. It is well
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known that the enclosed area of the hysterisis curve gives the energy loss during a one

cycle of H change. Paramagnetic materials like gold have a linear response, and thus do

not yield hysterisis loss. In addition, nanosize magnetic particles sometimes result in single

magnetic domains that are superparamagnetic. Since the volume of a nanoparticle is very

small, its magnetization can be easily perturbed by thermal fluctuation. But transition to

superparamagnetism depends on not only the size, but also frequency and magnetic field

strength5 .

Figure 2.2 shows how hysterisis curve changes with particle dimension and the

amplitude of magnetic field. Data are given for unit weight of the particles 5. Relatively

bigger particles having multi-magnetization domains are used. Figure 2.2(a) explains the

size dependence of hysterisis. We can also infer from figure 2.2(b) that if the magnetic field

intensity is not strong enough to change the magnetization direction of each single domain,

hysterisis behavior will not be observed. Once the hysterisis is saturated at certain field

strength, higher H doesn't give bigger hysterisis area, too.

100 ........

Sample i

Sample III 2

so
40

201

20I

.0

-150 -100 -50 0 50 100 150

(kam])

(a)

80

40.

40

20

N 0

.20

-40

-00

-150 -100 -50 0 50 100 150

(b)

Figure 2.2 (a) Saturated hysterisis loops of samplel: -350nm, sample2: -250nm,
sample3: -50nm x 1500nm, rod shape (b) Hysterisis of sample 3 for three different
loop amplitudes measured at 50Hz. Copied image
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Generally very small magnetic particle gives superparamagnetism as described

earlier. From the measurement, Fe 30 4 particles below 1 Onm in diameter don't have any

hysterisis loop. But still there is loss of power comparable with anisotropic particles

according to some experiment ,12,13. Neel relaxation and Brownian relaxation can explain

these heating phenomena for non-hysterisis particle.

An external alternating magnetic field supplies energy and assists magnetic

moments in overcoming the energy barriers between magnetization states. This energy is

dissipated when the particle moment relaxes to its equilibrium orientation. The loss caused

by this mechanism is called Neel relaxation5'14 . Relaxation time for this system is

determined by the ratio of anisotropy energy KV to thermal energy kBT, if only two anti-

parallel orientations of the magnetic moment m are assumed for simplicity.

r = ,r exp (2.6)

ro is on the order of nanosecond and V is the particle volume. For the oscillating external

5magnetic field, the analytical solution for the resultant power is given below .

P = (rH[T) 2 w /m3] (2.7)
2r kTV(1 + (92T2

At the low extreme of w, P is proportional to w2 , thus P decreases as O becomes

smaller. For very high w, it becomes constant(equation 2.8). It is interesting that induction

heating of pure paramagnetic particle gives the same frequency dependence(see Table 2.1).

P = [W/m3] (2.8)
2rkTV

For nanofluid, another type of relaxation occur due to rotational Brownian motion

of the magnetic particles 5'6 . Particles are rotating under alternating magnetic field because

of their magnetization. This results in viscous drag between particle surface and fluid.

Equation 2.9 shows Brownian relaxation power loss of each particle6 . To reach the result,

classical equations of fluid mechanics are used, though their validity at nanoscale is

14



somewhat questionable. In addition, low frequency( c <105 rad/s) is assumed to make sure

smooth and full rotation of particles.

P = 3 pH2 [W/m] (2.9)
4

To combine Neel relaxation and Brownian relaxation, Brownian relaxation time constant

,5 may come from the order of magnitude relation between thermal fluctuation and

rotational energy dissipation kBT ~8,- R3*-o~ 8'r.R 3

TB

TB- =87r7R (2.10)
kB

The effective relaxation time constant rff can be approximated as equation 2.115.

T -TB 
(.1

From equation 2.6, we expect larger Neel relaxation time constant compared to Brownian

relaxation time for bigger particle due to its exponential term. rdf converges to rB in the

case. On the contrary, T is dominant for very small particles(~nm).

In summary, Neel relaxation is a major concern at high frequency(~MHz or higher)

and for the particles with small size, whereas Brownian relaxation is important for low

frequency and big particles. Hysterisis loss rapidly disappears as the particle size decreases

due to superparamagnetism. Thus the induction heating mechanism of magnetic particle

with the size in the order of some nanometer is mainly governed by Neel relaxation. (Note:

the term "low frequency" mentioned here is only in mathematical sense. It differs from the

frequency that is smaller than critical frequency of induction heating(equation 2.5) which is

described in chapter 2.1.2)
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2.2 Nanoscale heat transfer mechanism

2.2.1 Introduction

We have seen some theories for heat generation in the previous chapter. Now we

need to figure out how the generated heat propagates to the surrounding medium. Two

major variables characterizing heat transfer are temperature and heat flux. Most questions

evolving from heat transfer basically request to show those two values by use of the given

parameters such as thermal conductivity, specific heat, density, and so on. It is very well

known that there are three modes of heat transfer; heat conduction, convection, and

radiation. Heat conduction is governed by Fourier's law(equation 2.12), and can be

formulated further to the diffusion equation(equation 2.13) by use of energy conservation

law'" 7 . Convection phenomena can be described as a simple form(equation. 2.14), but

convection heat transfer fundamentally comes with fluid motion, which requires solving

Navier-Stokes equation(equation 2.15) at the same time' 18 . So heat transfer coefficient h

cannot be achieved easily. Radiation equation is also described in a short form(equation.

2.16), but the energy conservation equation for radiation is an integral equation rather than

differential equation, which is a main cause to make hard to solve coupled heat transfer

modes' problem.

q"=-kVT (W/m 2 ) (2.12)

aT
V(kVT) + qf' = pC, (2.13)

at

q" =h(T -T.) (2.14)

Du
p = pV 2U-Vp+p(g+f) (2.15)

Dt

q"=e(T 4 -T) (2.16)

One thing to note is that conduction and convection equation are based on

continuum medium assumption. For example, a bulk of water is a group of a huge number

of water molecules. Though the governing equations are expressed in differential forms, we

16



cannot take too small control volume for the analysis. If we do, we probably see the

molecular properties of water rather than those of bulk. We need to set lower limit that

allows differential analysis without loss of bulk properties. Generally the limit for fluid

motion is believed to be order of micron or less. Similar explanation can be made for heat

conduction, too. Thus if the length scale of the system is at or below this value, we may not

be able to use classical equations. There is also a limit for time scale. Classical equation

cannot be used for very short time scale such as femtosecond laser case because there is not
10

enough time for heat carriers' relaxation . Since there has been recently much concern

about nanoscale devices and structures, necessity of more precise prediction of thermal

behavior has grown up. The theories in classical regime failed to describe nanoscale heat

transfer phenomena as explained above, thus new concept emerged and is now widely

accepted. This will be reviewed below.

2.2.2 Nanoscale heat transfer between parallel plates

Semiconductor industries are confronting the challenge of putting more and more

circuits per unit area and reducing the thickness of device layers. Highly integrated circuits

generate a considerable heat, motivates nanoscale heat transfer study. Not surprisingly,

studies first came with the analysis of heat transfer between two parallel plates, essential for
19-22the design of semiconductor layers . Heat conduction phenomena between parallel

plates can be explained by particle transport concept. Major heat carriers of metal are

electrons and phonons, while those of dielectric materials are phonons'0 .At sufficiently

large length and time scales that avoid violating continuum and relaxation limits, there are

enough scattering between heat carriers in the medium. Energy can propagate by collisions

between carriers. So we can use equation 2.12 and equation 2.13, and this type of transport

is diffusive. On the other hand, if there is no scattering between heat carriers, the carriers

emitted from one side do not lose their energy until they reach the other side. This

mechanism is very similar with the radiation phenomena between two parallel plates filled

with transparent media. Photons travel from one plate to the other without any obstacles.

There are no scatterings or no absorptions of photons. This gives the idea that we can use

radiation formula for the no scattering limit, called Casimir limit or ballistic limit. Since

17



the existence and frequency of scattering between heat carriers is very important, we need

to consider mean free path(MFP) of the heat carriers an indicator to show whether the

system is in ballistic regime or diffusive regime. MFP in solid medium can be roughly

calculated by equation 2.17 ".

1
k = -CvA (2.17)

3

The phonon MFP is I~I00nm in general, but electron MFP depends on free

electron density. Therefore electron MFPs are much longer in dielectric materials than in

metals'0 . In other words, heat conduction in a dielectric material is dominated by phonon

transport, but both phonons and electrons affect the conduction mechanism in metal.

For the case that the length scale of object is comparable with MFP, both diffusive and

ballistic behavior should be considered. Boltzmann transport equation (BTE) is used to

derive an equation of phonon radiative transfer (EPRT)20 and a hyperbolic equation called

the Cattaneo equation23 is also suggested. The BTE (equation 2.18) and EPRT mainly

describes scattering and absorption in media, and both BTE and Cattaneo equation(equation

2.19) have effective relaxation time scale rR to explain short time scale phenomena. TrR is

defined by A / v, usually the order of picoseconds to nanoseconds based on a typical

phonon of 10OOm/s' 0 . Since rR changes with the mean free path A, MFP affects the

solutions of the two equations. If we get rid of scattering terms from equation 2.18 and

2.19, the remaining is simply continuity equation or Fourier law. Researchers simply add

one more term representing scattering and to get more realistic solutions.

+V -Vf =- -f : BTE (2.18)
at = at TRI

TR i + q "=-kVT : Cattaneo (2.19)
at

The steady state solution of EPRT for two parallel plates filled with dielectric media is

given in equation 2.2020.
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3 L
(4A A

(2.20)

The steady state temperature distributions from three different regimes are also shown in

Fig 2.3.

L

x

T1

T2

T,

T2

Diffusive Transport
q" = -kVT

Diffusive-Ballistic Transport

q 3 L + I4 A

Ballistic Transport
q" - 74 -_T4)

Figure 2.3 Schematic diagrams quantitatively show the steady-state temperature
profiles. In the regime of diffusive or ballistic phonon transport2I

In ballistic transport regime, there is no energy exchange between hot and cold phonons,

thus local equilibrium does not exitst. At every position, the number density of hot and cold

phonons is uniform and the conceptual temperature can be defined by averaging the phonon
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energies of both kinds. This temperature is different from the classical temperature, which

is based on local equilibrium.

Figure 2.4 shows numerical solution of transient temperature distribution in

diamond slab with 0.1 pm thickness initially at T=T2
2 1. EPRT, Fourier law with energy

conservation, and hyperbolic heat equation are used. MFP can be calculated by equation

2.17 from material properties.

1=.1 .

---- P0

0.0

010 02 0 4 0.y O's 1

Figure 2.4 Variation of dimensionless
temperature profiles predicted by the EPRT,
Fourier law, and hyperbolic heat equation as
functions of dimensionless time. Thickness of
the diamond film is 0.1 pm. The film was
initially at T=T 2 Copied image2 '
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Geometry of the parallel plates is given in
Figure 2.3
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The result shows that Fourier law(equation 2.12 and 2.13) cannot give a temperature profile
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varying with time. The classical time constant to reach steady state can be expressed as

L2 / a and is much smaller than r R in this problem mainly due to a very small L. This is

not a realistic description. If we look at the other two solutions, after very short time such

as r =0.1 (or t=0.1 r,), the diamond thin film is still at initial temperature T2 except near

x=0. For r =1, or t=R, , hyperbolic equation shows an unrealistic temperature profile. There

is a temperature jump in the middle of the medium. On the contrary EPRT shows the most

acceptable result. Temperature profile rises as time progresses. One thing to note is that

there are always temperature jumps at both walls according to the EPRT solution. The

discontinuities do not disappear even at steady state. This is from the fact that EPRT is

based on the radiation equation, where there is a thermal resistance right next to the wall,

depicting the medium gas's ability to absorb emitted energy from the wall.

2.2.3 Nanoscale heat transfer from particle to medium

Heat transfer from uniform sphere to medium was studied with BTE and EPRT24 .

The author discovered the fact that the solution is identical with that of parallel plates

analysis if the gap size L is replaced with the particle radius R . This analysis assumes that

phonons are the only heat carriers in the medium, similar to the two parallel plates problem.

r

Particle size parameter

A

Figure 2.5 Schematic diagram of the heat transfer from sphere to host medium

The particle size parameter r, (figure 2.5) plays an important role. Large T, means

that the size of the particle is much bigger than MFP, and this allowing enough phonon

scattering around the surface of sphere within the length scale of the particle size. On the

contrary, there are only a few scattering events if r, is small. Figure 2.6 illustrates two
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extreme cases of r .

(a) r < A (b) r > A

Figure 2.6 Schematic diagrams of phonon scattering for two different r,'s.
The length of an arrow is proportional to the phonon MFP in host medium

The steady state solution is given in Figure 2.7 24. The host medium is initially at

T2, and the particle surface is at T1. Like the parallel plates problem, there is a temperature

discrepancy at the interface(r / r, =1). The nondimensional temperature rise (P is 0.5 at the

interface for the low extreme of rl , which means that the temperature was calculated by the

average of two kinds of phonons coming from the surface of the sphere and infinite

medium without any scattering. For high rl , the result is almost identical with the solution

from Fourier's law.
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Through further analysis, effective thermal conductivity ke, was approximated as equation

2. 2124,

kef (3r 1 /4)

k (3r, /4)+1

where k is the bulk thermal conductivity. Figure 2.8 describes how the effective thermal

conductivity changes with different length scales 24 . It can be induced that if -r, is larger than

about 10, we can use the thermal conductivity of bulk states, but still not for very near field

(within a few MFP) to the particle. For smaller zT, effective thermal conductivity decrease

rapidly, due to reduced scattering of phonons. Equation 2.21 is shown in fig. 2.8 (circles)

and matches very well with exact numerical solution. Generally speaking, nanostructures

have a smaller thermal conductivity2 5 compared to macrostructures, thus cooling problem

of nano-devices becomes more difficult. This creates a challenge for the device industry.

101
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Figure 2.8 Normalized effective thermal conductivity as a function of
particle size parameter. Copied image24
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The mean free path of water is -0.3nm (also based on equation 2.17). If we deal

with 5nm or 1 Onm diameter particles in water, we may use the classical heat conduction

equation for the particle to medium transport. But for much smaller particles (<I~2nm), we

need to get the answer directly from EPRT. Another thing to note is that we need to check

whether there is possibility for the initiation of convection heat transfer. But for our

concerns, which are about 5nm or 1 Onm particles, we do not need to take into account

convection phenomena according to some research on nanofluid 26-33. The research has

shown that fluid with well-dispersed nanosize particles has higher thermal conductivity

compared to pure fluid. The authors mainly use a hot-wire technique, and the diameter of

the wire is typically microns. From these measurements, non-existence of convection

within a certain time scale was evidenced around the wire. So we may ignore convection

around particles in much smaller size scale.

2.2.4 Interface thermal resistance and other material properties

The methods used in ch.2.2.2 and 2.2.3 do not consider the interface thermal

resistance. It is natural that there is a certain amount of contact resistance at a discontinuity

of a material structure. If we deal with large system, the interface resistance is usually

ignored because the resistance of the media is dominant. Problems occur in nanoscale

structures, where the ratio of the interface area to the volume of material becomes

substantially large. The diffuse mismatch model(DMM) 34 and lattice dynamical

model(LD)35 have been developed to explain irregular phonon movement at the interface.

The main concept of DMM is that phonons are randomly and elastically scattered at the

interfaces with a transmission coefficient given by the relative density of vibrational states

on the two sides of the interface. On the contrary, LD assumes that there is no scattering

at the interface and directly deals with the lattice structure of the media. Figure 2.9 shows

some interface thermal conductance data of microfabricated structure from experiment and

the theories . The right hand side vertical axis shows equivalent material thickness that

gives the same amount of thermal resistance. It is simply the thermal conductivity divided

by interface conductance. DMM and LD were used to model the Al/A120 3 interfaces. The

graph shows that both theories overestimate the conductance (i.e., by underestimating the
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resistance). One remarkable thing is that for most combinations of two solid materials

making an interface, the interface conductances fall into a very narrow range. At room

temperature, the high extreme thermal conductance is only ~5 times larger than the lowest

conductance . They are generally on the order of 1 OOMW/m 2K.
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Our concern is much more about solid to liquid interfaces, and the above data are

from solid-solid interfaces. If we recall that DMM considers phonon transmission

coefficients for both sides of the interface, we can infer that the thermal resistance between

the solid and liquid is very high because phonons in liquid are rarely initiated by the

interfacial collision of phonons in the solid'0 . However, the other extreme on thermal

conductance can be explained by liquid layering. In liquid-particle mixtures, the liquid

molecules close to a particle surface are known to form layered structures, and behave

much like a solid36,37, which gives a smooth change of properties at the interface and less

thermal resistance. The size of layering is known to be order of some nanometers 6. The

validity of the theory for liquid layering is still under study.
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2.3 Application to Au particle and water system

In chapter 2.2.3, we concluded that if we use 5nm or IOnm Au particles dispersed

in water, we can use bulk thermal conductivity and classical diffusion equation for water

region. Temperature discontinuities originating from nanosize effect also can be neglected.

But importantly we still have to take into account the interface thermal resistance, which

also causes an abrupt temperature change at the interface.

For heat transfer analysis of particle to water system, we need some more physical

properties. The density of gold particles of diameter ~1 Onm is almost the same as that of

bulk gold, because the atomic structure of Au particles is similar with that of bulk38'3 9. For

the specific heat, we need to separate phonon specific heat and electron specific heat in the

case of metals. The specific heat of phonon is proportional to T3 when T is low, but it is

nearly constant when T is much larger than Debye temperature (170K for gold). Whereas

electron specific heat is proportional to T for the whole temperature range, but also is a

function of the particle size. The change of the electron specific heat is due to the difference

in energy levels and the density of states". Figure 2.10 shows the temperature dependence

of the specific heat of bulk gold10 . We can infer that phonon specific heat is dominant for

overall range of temperature, thus specific heat of gold at room temperature is nearly

constant regardless of size change. The conclusion throughout the above is that we can use

density and specific heat of bulk water and gold, whereas bulk thermal conductivity is only

for water until now. Classical Fourier law and diffusion equation is still valid in water if we

use some nanometer sized gold. In addition, interface resistance may be considered.
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A classical solution for heat conduction from heated sphere to ambient material is

well developed in literature 7,40,41. All the materials are initially at T=O and the sphere starts

to generate uniform q "' [W / m3] after t=0. Governing equations are spherical forms of

equation 2.13 and boundary conditions are very common in heat transfer textbook 17. They

are listed in equation 2.21-27, and the geometry is given in figure 2.11. But some

complicated algebra rises from Laplace's transform and its inverse transform. In addition,

no interfacial resistance is assumed during the analysis, which gives continuous

temperature profile at the interface. The interface resistance will be discussed later. Here the

particle is considered bulk, which is not quite true for the thermal conductivity of

nanoparticle.

I aT I a 2 aT q'1-= - (r ')+ , 0! r < R (2.21)
a, at r2 ar ar k,

1 aT 1 a 2 _T

--1 = - (r 2),
a 2 at r 2 a r ar

T, = T2 = 0 at t =0

T = T2 atr = R

aT aT
k, 1 '=k 2 2 atr=R

ar ar

T,: finite as r -+ 0

r > R

: initial condition

temperature continuity

heat flux matching at interface

T: finite as r -+ oo

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

r

TI, k,, a,, q."'

T2, k2, a2
R

Figure 2.11 Geometry of heat transfer problem.
Initially the sphere is at T and the medium is at T2
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The transient solutions are given in equation 2.28 and 2.29,

2bR exp(-y2t /I )

rlT? y2

(sin y - y cos y) sin(ry / R)

[(c sin y - y cos y) 2 +b 2Y 2 sin 2

q"'R3  k, 2 exp(-y 2t/ 71)
rk, 3 k2 ir 7

(sin y - y cos y) [by sin y -cosoy - (c sin y - y cos y) sin -y] d
[(csiny-ycosy) 2 +b2

2 sin 2 y]

where b = k2 a1
k1 2

C=1 2 R and
a1

1 --L . An Interesting thing to note is
} 2

that the time scale y,, for the overall system to reach steady state, depends on a, only.

Considering the thermal diffusivity of bulk gold(table 2.2), it is about 0.2 picosecond for

1 Onm gold. But this time scale is not accurate. The phonon relaxation time constant Tr was

already discussed in chapter 2.2.2, and the time scale for classical heat transfer equation

should be much larger than rR. Due to insufficient phonon scattering, the real time scale to

steady state is expected to be much larger than rv.

The steady state solution can be achieved by taking t -+ oo from equation 2.28 and

2.29.

T, q'"1 R 2 1 k + I
T = 2 +6(

k, ~3k 2 6

T2

r2 )

R2
q3' R2-

3k2
q' R2 r2

+ 1i I
6k1 R?2

q"' R 2 R

3k 2 r

Volumetric power generation q'" can be from Table 2.1 by being divided by particle

28
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(2.28)

(2.29)

(r > R)

(0 s r <R)

(r > R)

(2.30)

(2.31)

T - t"' R2 1 k, +I1-
k, 3 k2 6(



volume, or equation 2.7-9 can be considered if we use magnetic particles. An illustration of

equation 2.30 and 2.31 is given in figure 2.12. One assumption is that particle solution is

dilute enough to neglect the interactions between the particles. The maximum temperature

is I"'R
2 r+ k 2  at the center of the sphere, and the interface temperature is q'R 2 . At

3k2 2k,) 3k2

r = 2R, temperature decreases to a half of the interface temperature. If k, is substantially

larger than k2 , particle's center temperature converges to the interface temperature, thus we

can consider that the whole particle is nearly isothermal in that case. We can also see that

temperature change linearly depends on q"'. Generally experimental or theoretical data of

power generation are accurate only to an order of magnitude, resulting in a considerable

difference in the temperature profile. For example, even if the real temperature increase is a

few degrees, estimates for the resulting temperature could range from <1 0C to 100 0C. This

give rises to the necessity of direct measurement of temperature. These ideas will be

discussed in chapter 3.

0.1
1.0 -

0.01

0 1 2 3

r/R

Figure 2.12 Temperature distribution of particle and medium,
where

AT k
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Now an Au particle - water system is taken into account. Physical properties 11,16

from bulk properties of gold and water at room temperature(table 2.2).

are

Table 2.2 Physical properties of bulk Au and water at 300K""'16

Due to its very small 4 , gold particle is expected to be nearly isothermal. Actually we have

not discussed if we can use the classical equation and bulk thermal conductivity to describe

the particle. But even if we consider the size effect, particles are still isothermal due to no

phonon scattering inside the particles(figure2.3). So the ideas from both regimes give the

same pictures for the particle's temperature profile. Another important question is that

which power dissipation formula should be used. We may use the classical one for the

spherical particle in table 2.1. We should divide it by the particle volume to get

q "' (equation 2.32). Though no kinetics formula for sphere is available in table 2.1, we may

guess that the classical one has higher value by considering the cylindrical particle's

solution.

, P 15 , CO 2 P2HO2 ;rR 5 . 2 2H 2 R2
S = = P

(volume) 4 rR 20
3

(2.32)

30

Gold (material 1) Water (material 2)

k [W/m.K] 317 0.61

a [m2 /s] 1.27x] 0-4  1.47x10-7

p [kg /m 3 ] 19280 996

= k2 /k, 1.92x10-4  -

o-, [0-'m-'] 4.55x10 7  -

u [H/m] -4x10-7 -



We may take into account hysterisis, Neel relaxation, and Brownian relaxation loss

for magnetic particles, but not for Au particles. The interface temperature now becomes

equation 2.33.

q "'R 2  a e, 2 1 2fH 0
2 R4

Tit =3k 2  15k2

Unfortunately, ATnt of lOnm gold under 1GHz, 20kA/m magnetic field is just 2x10~" C

according to equation 2.33. To get 20 0C as temperature increase, we need 1 Opm Au

particles under the same magnetic field condition. But it was reported that even 1.4nm gold

can heat up oligos attached on its surface'. It is hypothesized that other unknown heating

mechanisms may be present, or the given formula cannot describe the actual temperature.

Instead of gold particle we may use magnetic particles. Due to high magnetic permeability,

A7t of magnetic particle is an order of larger than that of Au particle. Also we can expect

hysterisis loss and relaxation loss. Though low frequency gives less power, we probably cut

down magnetic field frequency for magnetic particles because other parameters will

compensate. In addition, high frequency magnetic waves may do harm on biological

systems.

Finally, we need to check the effect of interface thermal conductance h, given in

chapter 2.2.4. If there is considerable thermal resistance, there will be a temperature

discontinuity between the interfaces. The energy balance equation at the interface is given

in equation 2.34.

q = h (TR- -TR+O)-(47rR 2  q "'-(4 TR3) (2.34)
3

Combined with AT = q R2 , the sudden temperature drop at the interface is as below.
3k2

TR-O - R+O = int k2 (2.35)
Rh,
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From chapter 2.2.4, it was discussed that thermal conductance for solid-solid interface is

usually about order of 12MW/m2K. If we treat the Au-water interface the same as solid-

solid contact, TRO -T R+o becomes order of the same as AT7, from equation 2.35. Interface

conductance between Solid-liquid may be even less than that of solid-solid interface,

because there are much less phonon initiations in water right next to the interface which are

resulted from inner particle's phonon collisions(i.e., phonon transmission coefficient from

solid to liquid is very small). Thus there can be very big temperature difference at the

interface for Au-water system. Figure 2.13 shows this schematically. If the resistance is

extremely high, generated energy will be trapped in the particle. The particle temperature

will rise significantly and may affect the bond between the particle and oligo.

However, liquid layering theory 36'37 gives an opposite explanation. Nanofluid gives

enhanced mixture thermal conductivity even bigger than prediction from theories, and some

researchers suggest that it is due to the increase of effective size of the particle resulted

from liquid layering 28-30. However, this still needs more investigation. In addition, some

other mechanisms for thermal conductivity enhancement are being suggested. To get a

more precise answer, we may try diffuse mismatch analysis with the transmission

coefficient from solid to water, while it has not been revealed clearly.

2.0 TR-0
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Figure 2.13 Temperature distribution of particle and medium
with interface resistance

AT =- k2=__ k2
q"' 2 k Rh,

(3k2

32



2.4 Nomenclatures for chapter 2

B Magnetic flux density

C, Vloumetric specific heat

f Frequency

H Magnetic field strength [A / m]

k Interface thermal conductance [MJ'W /m 2K]

J Currenty density

kB Boltzmann constant

k Thermal conductance [W / mK]

/ Length

m, Effective mass of electron

n Free electron concentration

q Heat generation [W]

q "f Heat flux [W/M 2]

q "' Volumetric heat generation [W /m 3 ]

R, r Particle radius

t Time

v Velocity of phonon

Vf Fermi velocity

a Thermal diffusivity [m2 / s]

S Skin depth of induction heating

Fermi energy (= myv1 /2)

7 Fluid viscosity [kg / ms]

A Mean free path

2 Wavelength

pi Magnetic permeability (= Prfp) [H / m]

PO Vacuum permeability (= 47r x10- H / im)

U-, Electrical conductivity [Q-'m-']

P Magnetic permeability (= p,p) [H / m]

Neel relaxation time scale
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TB Brownian relaxation time scale

T Effective relaxation time scale

ZR Effective phonon relaxation time scale (= A / v)

TI Particle size parameter (= r, / A)

O Angular velocity (= 27rf) [rad /s]

0, q Non-dimensional temperature

34



Chapter 3: Direct measurement of temperature profile in nanoscale

Through chapter 2, some possible explanation was given for the temperature

profile around gold particles in water under alternating magnetic field. But there is a

limitation due to an inexact estimation on the amount of power. Biological activity is very

sensitive to temperature, thus a wrong estimation of power will result in undesired effects.

This motivates a direct measurement of the actual temperature profile. We already know

that classical methods for temperature probing such as thermocouples and IR cameras are

not applicable to nanometer-size systems. We need data points at every ~nanometer

intervals, but that level of resolution has not yet been achieved. In addition, particles in

liquid experience Brownian motion. Since the particle is the reference point of the

coordinate as well as the heating source, we have to trace the position of the freely moving

particle and gather some temperatures within the reference frame relative to the center of

the particle. Due to the reasons DNA temperature probing is a possible solution. Oligos are

directly attached to particles, and the oligos have special temperature indicators. The

information from the indicators will be translated into the temperature profile. In this

chapter, brief description on the project is given, though it should be addressed to be the

future work. In addition, some literature about DNA's persistence length will be reviewed.

To use a DNA strand as a ruler between metal particles and indicators, rigidity of the DNA

should be considered.

3.1 Fluorescence measurement toward temperature probing

3.1.1 Introduction

Fluorescence is one of the most common methods in modern biological science.

Fluorescence is the phenomenon in which absorption of light of a given wavelength by a

fluorescent molecule is followed by the emission of light at longer wavelengths. There are

many kinds of fluorophores having their own excitation and emission spectrum. Figure 3.1

shows excitation spectrum and emission spectrum of fluorescein 42
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Figure 3.1 Excitation and emission spectrum of Fluorescein.
Copied image 42

The most remarkable advantage of fluorescence over other optical techniques is its

sensitivity. Absorbance measurements are generally done with micromolar oligo

concentration, whereas fluorescence reliably works with nanomolar or even picomolar

concentration. Another good point is the availability of fluorescence quenching. A quencher

is a molecule that has strong absorption at similar wavelength of a certain fluorophore's

emission peak. If both molecules are close enough to each other then fluorescence cannot

be seen. Table 3.1 shows some common fluorophores and quenchers 4. It is also known

that metal particles are very strong quenchers 44'45 . For example, a I Onm gold particle has an

absorbance peak at 520nm. Thus fluorescein, with an emission peak at 520nm, is mostly

quenched by nearby gold particles.
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Fluorophore Max. Abs. Max. Emi.

6-FAM 495nm 517nm

CY3 550 570

CY5 650 667

CY5.5 675 694

Fluorescein 495 520

HEX 537 553

JOE 520 548

LightCycler Red 640 625 640

LightCycler Red 705 680 705

Oregon Green 488 495 521

Oregon Green 500 499 519

Oregon Green 514 506 526

Rhodamine 564 603

Rhodamine6G 524 557

Rhodamine Green 504 532

Rhodamine Red 570 590

ROX 581 607

TAMRA 550 576

TET 521 538

Texas Red 589 610

Quencher Max. Abs. Max. Emi.

BHQ-1 Dark 535nm None

BHQ-2 Dark 579 None

BHQ-3 Dark 672 None

DABCYL Dark 453 None

DABCYL-dT Dark 453 None

QSY-7 560 None

TAMRA 550 576nm

Table 3.1 Maximum absorbance and emission

wave length of fluorophores and quenchers in

common use4

3.1.2 Description for the experiment

Figure 3.2 depicts the temperature probing experiment. One DNA strand has thiol

group at 5' end, and a quencher at 3' end. This is hybridized with shorter complementary

strand that has fluorophore at 5' end. Two different kinds of double-stranded DNA(dsDNA)

are given in figure 3.2. The hybridized part of each DNA is identical, but single-stranded

part (offset strand) has a different length. After conjugated with gold particle through thiol

group, it is placed under magnetic field with known strength and frequency. Since the

probability of dehybridization is higher for the DNA with shorter offset strand, we can get

higher fluorescence intensity from it due to reduction of fluorescence quenching. Note that

if we attach quenchers and fluorophores in the other way(i.e., fluorophore on the strand

conjugated to Au and quencher on the complementary strand), the particle may quench the

fluorophore regardless of the temperature.
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Figure 3.2 Description of the temperature probing experiment for the case

(a) when the alternating magnetic field is turned off and (b) turned on.

As a reference experiment we need to measure the fluorescence of the solution at different

bulk temperature. By comparing the intensities we are able to infer the temperature around

the double-stranded part of the DNA.

But there exist some actual problems for using the above method. One is DNA

adsorption to the gold surface 46'47. The phosphate groups as well as the functional groups

such as amines and carbonyls in DNA bases (see figure 3.3) can donate electron pairs to the

particle surface, thus DNA strands wrap up the gold particle. Since the length of DNA

strand determines the distance from the heat source to a double stranded part, it is essential

to keep the strand detached from the particle. We may use a homogeneous thymine series as

an offset strand because they have the smallest affinity to gold surface compared with other

bases46. But we need to develop a more general method to treat unspecific sequence for

future application such as antisense. Some researchers reported that 6-mercapto- 1 -hexanol
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(MCH) effectively replace the DNA adsorption site on flat gold surface48 . It motivates the

same treatment on gold particle but requires much more precise reaction control, because

gold particles are easily aggregated due to charge loss upon MCH reaction. Chapter 4 will

deal with the MCH treatment on Au particle-DNA conjugates, and their conformation

change by MCH reaction is confirmed by Ferguson plot analysis.

MNA (double-stranded)

11ydt'%1gen1. bond Purine base-

~Hdaen bnds
Abetween pune

and oynidinos
hold ho two rtands
of DNA together,

Figure 3.3 Chemical structure of double-stranded DNA 49

Once the DNA is in a radial conformation, we have to measure the actual distance

from the particle center to the dsDNA, the actual temperature probe. Average end-to-end

length of polymers can be achieved by persistence length analysis. It is reviewed in chapter

3.2.
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3.2 DNA persistence length

3.2.1 Introduction

To measure or to calculate the persistence length of polymer has been an extensive

topic for the last a few decades because the rigidity of polymer is a main parameter for its

conformation. Persistence length is conceptually defined as the length over which the

average deflection of the polymer axis caused by thermal agitation is one radian. More

rigorously, it is the sum of the average projections of all chain segments on the direction of

a given segment or simply the first segment5 1 5 2. Due to recent emphasis on biology and

biotechnology, the persistence length of biomolecules including DNA has become an

important issue. Conformational changes of biomolecules are directly related with their
53

activity, and inversely we can influence them by changing external force and stress, etc

For example, a single-stranded DNA(ssDNA) has different ability to hybridize with its

complementary strand according to their conformation. Also when transcriptions occur,

double stranded DNA(dsDNA) partially open their double helix structures. We may be able

to control these phenomena with the exact picture of the behavior.

3.2.2 Basic theories on persistence length

Generally two kinds of persistence length are mentioned in DNA related research.

One is from enthalpic contribution and the other is entropic contribution54 5 5 . The latter is

due to the statistical distribution of DNA conformation, while the former is mainly because

of the rigidity of DNA itself. In general, short DNA strands have fewer number of possible

conformations, thus the enthalpic persistence length dominates. Some other researchers

using DNA electrophoresis employ different classifications such as intrinsic and

electrostatic contributions 6 ~59 . Since DNA strands have charges on their backbones, ionic

strength of the medium becomes very important to describe charge-screening behavior,

which induces reduction of charge repulsion between DNA bases. In any case, the overall

persistence length p is considered as the sum of the two persistence lengths, because the

entropic or electrostatic term gives additional stiffness.
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p =p +p, (3.1)

p0 denotes the enthalpic (or intrinsic) persistence length, and p, means the entropic (or

electrostatic) persistence length for different situation. When electrostatic contribution to

the persistence length is considered, Debye layer K' becomes important parameter. It is

associated with Bjerrum length 9 60

2

1B = kT(3.2)
LkBT

the distance where the electrostatic energy between two counter ions with unit charge e is

the same as thermal fluctuation kBT. Then v-' can be expressed as

rC" = (3.3)
4'rz(z +1)/Bc

For intrinsically stiff polymer such as short DNA strand, pe is approximated as 59,60

pe = (K-i (3.4)

where z is the valency of the ions, / is line charge density, and c is the concentration of

ions 59'61. Though the equation is not applicable to all cases, it shows that smaller Debye

length, which can be caused by high salt concentration or high valency, induces less

electrostatic stiffness.

One more description on the classification is found in other literature 50'62 , where

static(ps) and dynamic(pd) contribution of persistence length are mentioned. Dynamic

contribution is the persistence based on thermal fluctuation. Hence the static persistence

length may contain all the other effect such as intrinsic and electrostatic contributions. The

authors defined the overall persistence length in a different way0'62
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1 1 1+ - (3.5)
P Ps Pd

It is understood from the formula that both contributions making the DNA "pliable" give

rise to the decrease of the overall persistence length.

From the understanding of persistence length, some theories for the conformation

of polymer chains were suggested. Among them, Freely Jointed Chain (FJC) model and

Worm Like Chain (WLC) model are most commonly used. FJC model assumes that

polymer is a serious of orientationally independent statistical segments(Kuhn segments) 63.

On the contrary, WLC model consider polymers continuous, thin and flexible chains, which

give
5 0' 63

(s)- ~ s) exp (-"s(3.6)

where t(s) is the unit tangential vector of the contour. Persistence length p is involved in

WLC model. From well established theories, the root-mean-square end-to-end length under

the absence of force is given as

R=KR =Nb =Lb FJC (3.7)

R = p [+ exp- WLC (3.8)

For FJC, the chain length L can be expressed as the product of the Kuhn length b and the

number of Kuhn segments N. It also can be written as simply monomer length times the

number of monomers, but practically not for FJC. Sometimes b of FJC is treated as 2p

due to the fact that R of WLC becomes close to ,2Lp as L becomes much larger than p.

More specifically, the probability distribution of R for WLC model is known by64

4,rAr 2  -3t
P(r, t) = (-r29/2 exp 4( )(3.9)
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Where

A = 4(3t /4)32 exp(3t / 4)

+ 15 )(3.10)
(3t /4) (3t /42

with t=L/p and r=R I L.

All these equations can be argued by excluded-volume interaction, which means

that a position in space cannot be occupied by two monomers simultaneously58'65 . When the

volume scale of polymer Ld 2 (d: polymer diameter) is much larger than the cube of Kuhn

length, the excluded-volume may affect the end-to-end size of the polymer.

R = N'b = LEbI-v (3.11)

v is known as Flory exponent, approximately equal to 0.658,65,66. Also if K-' is comparable

to or bigger than the polymer diameter, the excluded volume becomes the order of (K-')3,

and the end-to-end length may follow a different rule 8 .

We can also find some useful approximations for force-extension relation5' 60 67

2Fp kbT +FR = L [coth K+- : FJC (3.12)
kbT 2 FpK

kyT 1 I R F~
F =(--+--- : WLC (3.13)

p 4(1-RIL+FIK) 4 L K_

Above equations contain enthalpic contribution term F / K that is due to elastic stretching

of polymer structure itself. But practically this term is negligible in case of random coil 67.

An approach for more exact solution is given in literature60'67. Based on WLC model,

energy stored in chain can be expressed as

2

EwL, rKB d -s) F cos O(s) -ds (3.14)
2 ds

where KB is bending stiffness of polymer. The first term of the integrand is the stored
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energy due to bending, and the relation p = K, / kT holds. The Boltzman factor e-EfL /kBT

is used to get partition function Z, and finally the relation

R kBTanS-- n (3.15)
L L &F

is used for numerical calculation of force-extension relation. By comparing with equation

3.13, the author 67 simply added correction terms up to 7th order,

F = -1 + + a, -1' (3.16)
p 4(1-1) 4 i=

where l=R/L-FIK.

Important thing to note is the fact that force-free end-to-end length or force-

extension relation contain persistence length term, though its definition in the formula

changes somewhat(e.g., a half of Kuhn length or bending stiffness over thermal

fluctuation). Thus we can get persistence length of DNA by comparing the theoretical

models with some experimental result showing the above relations. Also it can be more

exactly compared with direct simulation of FJC or WLC model.

3.2.3 Double-stranded DNA's persistence length

There have been numerous researches on dsDNA's persistence length, and it has

been a typical way of the research to figure out the relationships between force and DNA's

configuration. One way of DNA stretching is to use electrophoresis. External electric field

gives rise to motion of DNA, and the force is balanced by drag force from relative fluid

motion5 6. Thus DNA moves with constant velocity during electrophoresis(or at rest). DNA

is stained by fluorescence materials, which gives the information about its conformations.

From FJC model, a relationship is given as56

1 sinhaL(
R = - In aL(3.17)
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where a = E0,b / kBT, E is electric field strength and A is line charge density. Thus EAb

is a local force acting on one Kuhn segment. The author compared experimental data of X-

phage DNA with equation 3.17 with varying A, finally got A =1 5e- per p (= b / 2). To get

the persistence length through FJC simulation, electric field was removed to compose a

random coil. By measuring the average end-to-end length, p ~80nm was achieved. The

approaches in the article may be claimed because excluded volume effect was not

considered. Since K 1 is of order 1~3nm for highly charged polymer such as DNA in

general salt condition5 8' 59, effective diameter of DNA is similar to d + 2K1 rather than just
68d. Electro-osmotic flow may affect the force balance in the case

Actually there have been some arguments5 8,60,68,69 on the situation involving both

hydrodynamic force and electrostatic force, because the electro-osmosis flow is sometimes

underestimated. In addition, fluid motion induced by one monomer (or a part equivalent to

Kuhn length) also may affect other monomers. We cannot say that the local force balanced

by fluid drag is simply EAb 58,68.At the same time, the total force is not EOAL . A more

realistic overall force balance is given below 8'68.

F - (vlhd - poEO) = 0 (3.18)

po is the mobility under the absence of external fluid flow. When external fluid velocity is

zero(i.e., most gel electrophoresis cases),

F = pOEO = 6;rqRhpoE0  qRgpOE 0  (3.19)

where Rh is hydrodynamic radius and R9 is the radius of gyration originated from intrinsic

viscosity of polymers 0 . Considering equation 3.7 or 3.11, and 3.19, we can reach the below

relation.
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F~R,~ R ~L05 (or L. 6) (3.20)

Note that the mobility po is almost constant when reptation occurs regardless of its

length71. This force-chain length behavior was confirmed experimentally by use of fluid

flow 72, by fixing one end of DNA with optical trapping. The experiment shows that the free

end of DNA is not very stable 60,72. The fluctuation is caused by a variation in the

hydrodynamic drag force as the DNA conformation changes 72.

Since there is uncertainty for the conformation when we let one or both ends of the

DNA free, direct stretching of both ends may be preferred to get clearer picture. Due to

recent technology such as optical trap, it is possible to control both force(~pN) and position

in very precise manner. Very popular experiment was done on B-form -Phage DNA to get

enthalpic contribution to the persistence length 66.As described earlier, stretching random

coiled DNA mainly depends on entropic feature, whereas nearly linear polymer is subjected

to enthalpic behavior. Equation 3.12 or 3.13 can be recalled. The author reported that force-

extension experiment gives linear relationship up to F -60pN. Around 65pN, the DNA

suddenly stretched to ~1.7 times its B-form contour length, which means the rupture of one

of its strands. Twisted coil becomes straight at this stage. But it recovers its shape when

released, though there is a certain time scale for the recovery. It is stated that the required

force for the sudden behavior becomes small when ionic strength becomes low. Low degree

of charge screening causes electrostatic repulsion between DNA backbones. Another

experiment with optical tweezer5 5 shows that multi-valent ions in solution gives low

persistence length compared to mono-valent ions. It is in agreement with the explanation

given on equation 3.3 and 3.4. In 10mM Na+ salt condition, the persistence length achieved

is 47nm, but reduces to 39nm in 100ptM Mg2+ solution, even lower concentration

compared to Na*. But no further drop of the persistence length is observed for higher salt

condition, thus we can infer that the intrinsic persistence length is about 39nm.

Regarding with equation 3.5, cryo-electron microscopy can be used to

instantaneously immobilize and image the DNA5 0 . dsDNA trapped between 40-50nm slabs
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is rapidly cooled with the rate of 10 6K/s. It is fast enough to capture a single state out of

many different dynamic fluctuations. By comparing the actual DNA conformation with

numerical simulation of equation 3.6, dynamic persistence Pd is given as 80nm. If we

assume the overall persistence length is 50nm (or 45nm from this article), then the static

persistence length is about 130nm from equation 3.5. This static persistence length is much

longer than the values called "intrinsic" from the above. The author explains that the overall

persistence length is basically containing the pliability originated from thermal fluctuation,

thus if we get rid of the effect, DNA becomes stiffer.

Besides the methods mentioned above, some other imaging and stretching methods

such as scanning force microscopy 63' 73, moving meniscus 74, etc. Through numerous

researches, the persistence length of dsDNA is believed to be of order 50nm with some

variation.

3.2.4 Persistence length of single-stranded DNA

In general, single-stranded DNA(ssDNA)'s have much smaller persistence length

compared to dsDNA which compose sturdy double helix structure. From the force-

extension relation given in equation 3.12 and 3.13, we can see that a small persistence

length requires higher force to stretch, but results in small end-to-end length according to

equation 3.7 and 3.8.

Stretching experiment with optical tweezers was done on single-stranded DNA(ssDNA) 66.

The procedure is identical with that of dsDNA experiment given above. In the early stage of

stretching, ssDNA is much more contractile than dsDNA, but overstretch behavior is

similar with dsDNA because only one of the two strands is dominant during the dsDNA

overstretching. From the experiment and FJC model, calculated p (=b /2) was only 0.75nm

which is comparable to the length of two bases only.

The ssDNA's persistence lengths are calculated for different salt conditions and

chain length 7 . It was done thourgh measuring the diffusivity of each random coil ssDNA,

by use of fluorescence recovery after photobleaching(FRAP). Stokes-Einstein relation is

given in equation 3.21.

47



D = kBT = kBT (3.21)
6;'rqRh 6;t7( Rg)

Radius of gyration R9 is given as70

R R 2L p Lp
Rg = - = - (3.22)

for long WLC. Intrinsic viscosity is considered in equation 3.22, and excluded volume

effect comes in , rather than in the end-to-end length. The author5 7 took 0.5< <0.664

from various sources. In addition, L is the product of the number of bases No and

monomer length bo (-0.43nm for ssDNA in this article, but may be argued). From equation

3.21 and 3.22, we can see D, ~ NO-0 5 for fixed p. If excluded volume effect is considered

in end-to-end length, D, ~ NO-V should hold. Since the diffusivity data exactly fit in these

relation 57,66, ssDNA length dependent behavior of p was not observed. It is understood

from the fact that the smallest ssDNA used for the experiment is N =280, long enough to

be WLC.

An important point made by the experiment is that the persistence length of ssDNA

highly depends on ionic strength(figure 3.4) 57. Data from another article 66 agree with the

graph in the high salt condition, which gives intrinsic persistence length.

z
p values wito 2 05 Figure 3.4 Persistence length change

with the ion concentration C,(mol/L)
with =0.5. The arrow denotes the

l1e] data from 66. Copied image57 .

G (moI)
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Rather than using randomly sequenced long chain, we may be interested in short ssDNA.

However, it is difficult to image the actual contour because of its very small size. Recently

fluorescence resonance energy transfer (FRET) experiment was carried out with short

ssDNA (No =10~70) wholly composed of thymines. Figure 3.5 shows a schematic of the

DNA used for the experiment. One advantage of the experiment is that we do not concern

about each strand, but measure the overall intensity from the bulk solution.

oanor

Poly dT
s'stNA Acceptor

dsDNA

Hiotin

Figure 3.5 A Schematic of dTN, tailed, fluorescence labeled
64DNA. No varies from 10 to 70. Copied image

The energy transfer efficiency E is defined below64'75.

_+ R_ (3.23)
Ro

R is donor-acceptor distance which is equal to the average end-to-end length of dTN from

the figure 3.5, and E is the fraction of the donor's excitation resulting in the excitation of

the acceptor. Characteristic distance Rk can be defined as a theoretical formula depending

on salt condition and the characteristics of donor and acceptor7 5 , but it is about 6nm for

various NaCl concentrations (25mM-2M) and Cy3-Cy5 pair used in this experiment. If we

consider the probability distribution of the end-to-end length given in equation 3.9, we can
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modify the transfer efficiency as

E= f P(r) dr (3.24)
11+ (rL / R )' (324

where r = R / L. To get chain length L, the monomer length is assumed to be 0.63nm,

calculated from computerized molecular construction software. This value is a little

different from that of 57, but sequence dependent persistence behavior will be explained

later.

Figure 3.6 shows the change of E with the number of bases and salt concentration.

Each line for different salt concentration comes from the numerical simulation with the

optimal persistence length that gives the best fit with the experiment data of E. This also

shows that high salt concentration induces intrinsic persistence length due to charge

screening of DNA backbones. The range of the persistence length is 1.5nm~3nm, similar
57with the diffusivity experiment on long chain

11S N.4? M\M('

0mM Na Mn

:1 - 4'A -v Nt] i

'10 tnM Nat nun

10 20 30 40 50 60 70

N

Figure 3.6 FRET efficiencies for different sizes of DNA and
salt concentration. Image from 64.

Short and homogeneous serious of thymines were also used in other experiments63'76.
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To get detectable conformation change, dT, is introduced only in the middle of

dsDNA(figure 3.7). Double stranded parts are nearly straight since their lengths are within

the range of the persistence length of dsDNA.

f i

>)

A

Figure 3.7 A schematic of ssDNA having dsDNA wings.
Image from 76.

The DNA chain given in figure 3.7 is comprised with sections of different persistence

length. The overall end-to-end length is related with all the p 's, section lengths, and angles

of each joint. The formula is given in the literature63 .

N+1

#i,,#vI :P,--,, )2 
- /p&

+ LpL -P+ COS An(I-e-L /+ -L.+1 /P+) (3.25)

N-1 N+1 M-1 M-12

+2 I pI -n CS 1)6s H e-Li''' )(1-e-Ln/p )(--L,,/p,,
n=1 m=n+2 (=n ) =n+l

N+1 is the total number of sections and N is the number of joints. p,, and L, are the

persistence length and section length of n'h segment. 8n is the angle between the tangent

vectors of nth and (n+ l)th segment at the joint. Smooth chain gives pn =0. The only
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unknown is ssDNA's persistence length, and all other parameters are supposed to be known

including end-to-end length utilized from SFM image. Experiments were done on several

kinds of chains with various number and length of sections. Under the presence of divalent

ions, p is about 1.3nm for short dTN 63

There is some consideration for the difference caused by DNA sequence76'77 . Since

the strand being comprised entirely of thymines has minimal stacking interactions 63, a

series of whole adenine may give higher persistence length. It was confirmed by WLC

simulation and the experiment done the similar DNA's given in figure 3.576. p and

monomer length b0 of dTN. are 2-3nm and 0.5-0.7nm, respectively. In case of dAN,

however, they are 7.8nm and 0.32nm at 40C. It seems that poly-adenines are more closely

stacked (low b) due to strong interaction between bases, thus high persistence length is

induced. More generally, the information on stacking free energy for different combinations

of bases can be found in literature 8 . We may infer that the additional rigidity of dANo is

mostly enthalpic, rather than entropic. Another thing to note is that if only one different

kind of base is introduced in the homogenous short chain, the stiffness is significantly

reduced 77 by making a kink on the position. Some authors argue that the traditional model

of DNA structure must be revised to include these sequence dependent rigidity of single-

stranded DNA77.

3.2.5 Application to the temperature probing experiment

Our polymer consists of an Au particle, a single-stranded offset, and a double-

stranded part. Figure 3.8 shows how we can model this system to use equation 3.25. L1 is

the same as particle's radius and the persistence length of the section is infinite. The joint

angle between section 1 and 2 (= /,) is more or less vague. We may use chemical bond

angle between gold and sulfur at the joint, but also we can think that the ssDNA is

perpendicular to the gold surface(A=/ 0) due to ligand and MCH layer on the surface. 62 is

zero if smooth chain is assumed. R, denotes the average length from particle center to the

end of ssDNA and R2 is from the particle center to the end of dsDNA.
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(3.28)p, r1- e & P Ln as p -co

Finally we can simplify equation 3.25 for R, and R2 .

(3.29)

(3.30)

R, = F2 L +P22 L2 -_e p2+LIP2 1-e n
2 -P2

R2 V2 L 2+P2 2 L2 1- _ P2 + P32 L3- -eP
2 2 P3

+LIP2 1-e P2 +p2P3 1-e P2 l-e P3 +L IP e P2 1-e P3

Section 1 (gold) Section 2 (ssDNA) Section 3 (dsDNA)
bo 5nm 0.63nm 0.34nm

No 1 25 15

L = No -bo 5nm 15.75nm 5.lnm

P 00 2nm 50nm
R 1O.Onm
R2 12.Onm

Table 3.2 End-to-end length of Au-ssDNA-dsDNA chain. IOnm Au particle, 25mer poly-T, and
15mer dsDNA are considered.

From the table 3.2, dsDNA of the Au-DNA conjugate is supposed to be away from the

particle center by 1 Onm~ 12nm. Though overall chain length is above 20nm, the position

actually we measure the temperature is just a half of it.

We probably need to compare the time scale of dehybridization and that of thermal

fluctuation of DNA conformation. If the fluctuation is fast enough, then the position where
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Figure 3.8 Equivalent polymer chain of Au-ssDNA-dsDNA series.

Since short dsDNA is nearly straight due to its long persistence length, we can

think that the dsDNA section, which is the actual temperature probe, exists between R, and

R2 in average. The weakness of the modeling is that the gold particle really excludes a lot

of volume. It will change the actual conformation of the DNA. If the size of the gold is not

very big compared to the chain length of DNA, however, the model may give a close

answer.

Table 3.2 gives an example. The offset strand is a homogeneous 25mer poly-T with

the assumption of p, =2nm, dsDNA is 15mer, and p8, 82 are zero. To deal with the infinite

persistence length, we need to use the below relation.

" Lnl-e Pn=1- 1 "
Pn

)2 as pn -+ (3.26)
pn

This leads to the following two equations.

pn2 
Ln

L2

2
as pn -+ o (3.27)
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dehybridization occur is determined by average end-to-end length. Otherwise we have to

get time distribution that end-to-end length becomes firstly smaller than a certain heating

radius. This is acceptable only when the time scale of dehybridization is much smaller than

that of hybridization.

At high temperature the end-to-end length becomes smaller due to decrease of

persistence length. Though we considered each persistence length constant in the example,

actual temperature profile may cause irregular persistence length distribution.

3.3 Nomenclatures for chapter 3

b Kuhn length

bo Monomer length

c Ion concentration [ mol / 1]

DS Self diffusivity [ m2 / s]

d Polymer diameter

E FRET efficiency

E0  Electric field strength [ V / m ]

F Force

K Polymer's enthalpic spring constant

KB Bending stiffness

kB Boltzmann constant

L Polymer chain length

1B Bjerrum length

N The number of Kuhn segments (= L / b)

No The number of monomers (= L / bo)

p Persistence length

p Intrinsic persistence length / Enthalpic persistence length

P, Electrostatic persistence length / Entropic persistence length

pA Static persistence length

Pd Dynamic persistence length

R Root-mean-square end-to-end length of polymer
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R9 Radius of gyration

Rh Hydrodynamic radius

RO Characteristic length of FRET

s Contour coordinate

v Velocity

Z Partition function

z Valency of ion

e Electric permittivity

7 Fluid viscosity [kg / ms]

K- 1  Debye length

A Line charge density [Q im]

po Electrophoretic mobility

v Flory exponent
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Chapter 4: MCH modification of Au-DNA conjugate

In chapter 3, we saw that DNA strands conjugated to gold particles can be used as

temperature probes. It was already pointed out that DNA adsorption on gold surface should

be avoided to get proper information of probe's position. Thiol modified DNA's tend to

make covalent bond with gold surface, but their bases also stick to the surface. Though it is

known that there is some sequence and length dependent adsorption behavior, it would be

advantageous to have some way to chemically destabilize nucleotide adsorption, so that

constraints on sequence and length do not necessarily limit their usage.

According to previous research, 6-mercapto- 1 -hexanol (MCH) composes self-

assembled monolayer (SAM) on flat gold surface48. The monolayer prevents DNA

adsorption, thus enhancing the ability to hybridize with their complementary strands. This

gives us an idea on how to modify our Au-DNA system to be suitable for temperature

probing experiment. However, gold particles are much more difficult to deal with because

they easily aggregate in liquid if they do not have enough charge to repel each other. From

the experience of MCH treatment, MCH replaces not only base's adsorption sites but also

displaces the charged ligand on nanoparticle surface.

Once DNA bases are detached from particle surfaces, the overall size of gold-DNA

conjugates become larger. This causes mobility difference during gel electrophoresis. A

theory developed to get the actual hydrodynamic size and charge of particle from the

mobility change is Ferguson plot method. A review on Ferguson plot is given in chapter

4.1. Furthermore, the method is extensively used in this paper to analyze MCH treated Au-

DNA conjugates. This leads to chapter 4.2, which shows how we can use MCH for particles

rather than flat surface, with overcoming the aggregation problem mentioned above.

4.1 Ferguson plot and gel electrophoresis

4.1.1 Theories of Ferguson plot

The behavior of molecules in gel electrophoresis can be predicted by some models

for random meshwork or cylindrical hollow pore" ''. Due to some researchers' early

work, the below relationship had been established 0 .
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V, -V M
e = f = (4.1)

V - V, 0

f is the fraction of available volume to molecules V to total volume of gel V,., and it is

assumed to be the same as the ratio of mobility M to free mobility M". Void volume V is

identically subtracted from both the volumes. f is expressed in different forms, depending

on the assumptions made on geometry of molecules and gel material, which are highly

associated with the collision behavior between them 0 . For spherical molecules,

f =exp(-sL) : 2-D gel structure (4.2)

f = exp(-lS/4) : 1-D gel structure (4.3)

f exp (-n V) : O-D gel structure (4.4)

A gel with random planes is called a 2-D structure and 1 -D gel denotes a fibrous structure.

If the volume of each gel fiber is very small compared to the molecules running in gel, it is

called a O-D gel. s is the surface area of the planes per unit volume of 2-D gel, and L is the

mean length of the molecule. For 1 -D gel, / is the total length of fibers per unit volume and

S is coupled surface area of molecules and fibers considering collisions between them. n

and V of O-D gel means the number of gel fibers per unit volume and coupled volume of

molecules and fibers respectively. S and V are given below.

S= 4x(R +r)2 : Coupled surface area in I-D gel (4.5)

4
V = -r(R + r)3  Coupled volume in O-D gel (4.6)

3

R is the radius of molecule and r is that of gel fiber.

Equation 4.7 shows the combined effect of gel pieces in different dimensions.
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f= exp{-(sL+lS+nV) (4.7)

In reality, 1 -D elements dominate in gel structure 7180. Thus equation 4.1, 4.3 and 4.5 can be

combined as

M exp(-7r(R +r)21) 
(4.8)

MO

Note that / is in [cm / ml] and M is in [cm2 / V -s]. By taking logarithm,

logO M = logio Mo - (log 0 e)- 7r(R +r)2

= logio Mo -(log 0 e) -1007rL(R + r) 2 -T (4.9)

= logo Mo -KR T

where T is gel percentage (%, [g / 1 00ml]) and L = I / T ([cm / g]) is the total length of

fibers per unit mass of gel material. From equation 4.9, we can see that retardation

coefficient KR , which is given by (log 10 e)- I00rL(R + r) 2 , is the slope of linear equation

between the logarithm of the mobility and gel percentage. Note that the fitting extrapolated

to T =0 will give free mobility Mo. It depends on the charge density of the molecules. In

addition, if we take a square root of the KR,

R =10 log 1,e ( RR+ ,L-r) (4.10)

={10 (logo e)zrL}- R +{IlO og 0 e - Vtihr}

V,,er is the volume of fiber per unit mass, given as 7rr 2L ([cm 3 / g]). Because this value is

an intrinsic property of gel material that is constant, KR is linearly fitted as a function of

R .According to equation 4.10, larger particle gives bigger slope of Ferguson plot. This

means that large molecules experience much more retardation in gel due to frequent

collision with gel structure. Figure 4.1 shows the pictures of 0.5% and 4.5% agarose gel in

0.5xTBE with 2.75~1 Onm radius-sized gold particle. They clearly show the relation

between slopes and size.
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(a) (b)

Figure 4.1 Pictures of agarose gel with Au particles. R=2.75, 4.7, 7.5 and 10nm from the
left. Electric field strength is about 4V/cm. Gel percentage is (a) 0.5%, (b) 4.5%

Unfortunately, the actual fitting of log,, M and T is generally convex or concave

depending on type of molecules. Random coiled DNA experiences reptation, which results

in much less change of mobility at high gel percentage range8 .83. On the contrary, spherical

molecules experience more collisions than expected at high gel percentage, therefore the

mobility rapidly decreases as T becomes high7' 81. Figure 4.2 shows a Ferguson plot with

agarose gel and ligand modified gold particles in 20nm diameter(i.e., 1 Onm in radius).

Running buffer is 0.5xTBE.

I I I I

-3.6-

-3.8

-4.0-
Figure 4.2 Ferguson plot

: -4.2- with agarose gel and gold
particles in 1 Onm radius.

-4.4 Gel percentage is from 0.5%

R=10nm to 4.5%
-4.6 -

-4.8

0 1 2 3 4 5

Gel Percentage (%)
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At low gel concentrations, the slope of the plot decreases, which means the particles hardly

experience collisions below a certain level of gel concentration and shows very little

change of mobility. To explain this convex behavior, a modified form of equation 4.9 was

suggested 1 .

logo M = loglo MO - a -Tb

= log,, M - KR'*T
(4.11)

Note KR '= a Tb-. In this case, KR' and R is fitted to the sigmoidal function rather than

linear relation.

KR= (A -A 2 )
1+(RI/R,)P A (4.12)

A,, A2 , p and R0 are determined by fitting the data. RO is an inflection point of the

sigmoidal curve. From the experience, however, it was found that it is hard to get consistent

KR' from the fitting because it contains T b- term whose exponent is very close to zero. A

significant error arises from equation 4.12, too.

To utilize equation 4.9, we need to limit the range of gel concentration 79. For gold

particles in 2.75nm ~ 10 nm radius, 1.5%~3.5% agarose gel percentage gives linear

relationships by experiment (figure 4.3)

I . I . I . I ~

mV

V R=2.75nn
A R=4.7nm
e R=7.5nm
* R=10nm

1.5 2.0 2.5 3.0

Gel Percentage (%)

Figure 4.3 Ferguson plot
with agarose gel and gold
particles in 2.75-10nm
radius. Gel percentage is
from 1.5% to 3.5%
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KR can be calculated from the square root of the slopes in figure 4.3. These values are

fitted again as a function of R (see equation 4.10).

Co

0.50 -

0.45 -

0.40 -

0.35-

0.30-

2 3 4 57 8

Mean Radius of Au particles (nm)

9 10 11

Figure 4.4 K vs. R

The fitted linear equation is given as equation 4.13 for later use.

KR= 0.23935+0.02345 -R (4.13)

4.1.2 DNA reptation model

Gel electrophoresis is widely used for separating DNA fragments. The mobility of

DNA is strongly related with its chain length. As shown in chapter 3, the polymer chain

sufficiently longer than its persistence length composes globular random coil. It behaves

like a spherical molecule if gel concentration is low. We probably consider radius of

gyration to deal with internal viscous flow. At high gel concentration, however, the pore

size may be smaller than the random coil. Under the external electric field, a part of their

strand is unraveled and sneaks through the gel pores8 3. This is called reptation. To explain

this phenomenon, the gel structure is treated as a porous material, rather than a matrix of

fibers described in chapter 4.1 .1.
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Classical models of mobility in porous gel structure is given below79,84

M R-=1- (4.14)
MO PE

M R " (2Y

M- R) (4.15)

-- =-2.104 -- +2.09 - -0.95 - (4.16)
MO PE, E E

M R (R YRl
-= 1 1-2.104 - +2.09 - )-0. 9 5 - (4.17)

MO PE-' -P Ei-P"

P is effective gel pore size, empirically determind by standard molecules with known size.

It decreases as gel concentration becomes high. But equation 4.14-17 are still based on the

assumption of spherical molecules, thus they cannot be used for reptating DNA strands.

As far as DNA strands are concerned, the size of molecule is usually given as the number of

bases in the strand N0 , rather than the average end-to-end length8 1"-83. For reptating DNA,

the following formula known as vWBR is often used 2 8 .

M= -Ni /+N, (4.17)p8+ a(] -e )

a , p and N are experimentally determined. N,. is a critical number of DNA bases that is a

function of gel percentage. If N0 is replaced with zero, equation 4.17 gives

M(NO =0) = I /8 = M,, which means the asymptote mobility of very small DNA fragment.

From the other extreme, M(NO -> cc) gives I /(/B+ a) - M., the mobility of infinitely long

DNA chain. Equation 4.17 then can be rewritten as82'83

I _- I -( I I -N / N,( .8
M M. M, M,

or
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1 1
M M, =N/ N (4.19)

M, M.

The equation looks like equation 4.8, but N is used as the size parameter instead of R.

Note that the information on gel percentage is contained in N,.

4.2 MCH treatment on Au-DNA conjugate

4.2.1 Introduction

The molecular structure of MCH is given in figure 4.5. The structure is the same as

thiol modification part of oligo except for -OH group that gives a little solubility in water.

Thus MCH molecules don't screen any of bases of oligo on particle surface.

O-H

Figure 4.5 Molecular structure of 6-mercapto-1-hexanol (MCH)

Figure 4.6 shows how MCH reaction changes the conformation of Au-DNA conjugates.

Oligos on gold particles are mostly adsorbed to the particle's surface before MCH being

introduced. After MCH (short rod in the figure 4.6) is added to the solution, MCH

molecules start replacing the adsorption sites with themselves(step 2 in the figure).

Consequently, the oligo strands point outward, though still being attached to the particle by

the thiol group. Further MCH reaction, however, replaces the charged ligand and oligos as

well as the adsorption sites(step 3). At long times the particles lose all the ligands and

oligos on the surface, and thus aggregate in the solution.

To get Au-DNA samples at step 2 or step 3 that can be used for the temperature

probing experiment and future applications such as antisense, we need to stop the MCH
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reaction at step 2 or step 3. This can be done by selective extraction of MCH with ethyl

acetate. Chapter 4.2.2 will give detail description on the MCH treatment and its evaluation

by use of Ferguson plot that gives actual size of the conjugates.

1 2

4 3

Aggregation

Figure 4.6 Conformation change of Au-DNA conjugate upon MCH reaction

4.2.2 Experiment

Gold nanoparticles with mean diameters 9.4nm were obtained from Ted Pella in

aqueous solutions stabilized by citrate. The nanoparticle surfaces are then functionalized

with bis (p-sulphonatophenyl) phenylphosphine dihydrate, dipotassium salt (BPS, Ted

Pella), which has been determined to help keep the particles stable at high concentrations in

aqueous solutions8 5. The BPS coated nanoparticles are precipitated from solution by

addition of excess NaCl. These particles can then be resuspended into water at a higher

concentration that is more amenable for visualization by gel electrophoresis. DNA

oligonucleotides are purchased with C6 thiol group on the 5' end and a FAM on the 3' end

(Proligo). The oligos were 15mers with a sequence 5'-HS-CCCATTGTGGATTAG-FAM-

3' and purified by HPLC. Dithiol linkages between two oligos that result in oligo dimers
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were initially reduced by exposure to 50mM dithiothreitol (DTT, Sigma Aldrich) for Iday

prior to reaction with the gold nanoparticles. Excess DTT is removed by extraction into

ethyl acetate (EM Science) at 3x the volume of the aqueous fraction multiple times (>3),

which dissolves DTT but not the DNA which is charged and more hydrophilic. Conjugation

is done by drying out the DNA and Au nanoparticles by lyophilization, which is found to

help conjugation by increasing the collision rate between gold particles and oligos.

Nanoparticle-oligo conjugates were resuspended in buffer 0.5xTBE.

The conjugates were then exposed to MCH in water, at concentrations ranging

from 1p M to ImM with reaction times 1 minute to 10 minutes. The reaction concentration

of Au-DNA conjugate was 1 .5x10-7 M. Reactions were halted by introduction of 3x volume

of ethyl acetate (EtAc) three times, which extracts the excess MCH into ethyl acetate away

from the DNA in H20. The extraction of MCH crucial as it permits control of reaction time.

The samples after removal of MCH were stable as aqueous solutions at least for a month,

though it is subject to the initial oligo coverage ratio. If the samples are exposed to MCH

for extended periods of time, they aggregate, as the particles become neutrally charged and

are no longer fully soluble in aqueous solutions due to the loss of BPS and DNA from their

surface.

Figure 4.6 Agarose gel electrophoresis (3%) of
9.4nm Au - 15mer DNA conjugate (-1:3.7) with
various MCH treatment

Lane 1: Au only
Lane 2: Au-DNA
Lane 3: Au-DNA with I pM MCH, 1min reaction
Lane 4: 1 pM, 1 0min
Lane 5: 10pM, 1min
Lane 6: 1OpM, 10min
Lane 7: 0.1mM, 1min
Lane 8: 0.1mM, 10min
Lane 9: 1mM, 1min

1 2 3 4 5 6 7 8 9
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In order to test the change in effective size DH upon reaction with MCH, a

Ferguson plot method is used. Figure 4.6 shows a 3% gel containing nanoparticle-DNA

(1:3.7 coverage ratio) samples that have been exposed to various reaction conditions. Lane

1: Au BPS alone, 2: Au-DNA, 3: Au-DNA with 1pM MCH for 1min, 4: Au-DNA with

1p M MCH for 1 0min, etc. 0.5xTBE was used as running buffer. The bands shift slightly

upon treatment with low concentration MCH. However, samples that have been exposed to

MCH at high concentration do not shift as much, which suggests that reaction with

concentrated MCH displaces the oligo from the nanoparticle surface and results in size

decrease.

Since the standard for particle sizing (equation 4.13) was made with 1.5~3.5% agarose gel,

the same range of gel percentage is used for the Ferguson plot of the samples. At least 4

data points are collected from each sample. Figure 4.7 shows the Ferguson plot of some Au

and Au-DNA samples.

S I I I I I I I I

-3.6

3 -3.8 -
3-3.45

-3.50-> N

-4 - 3.55

-3.60-

0.0 0.1 0.2 03 0.4 0.5

I I I I I I I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Gel Concentration (%)

Figure 4.7 Ferguson plot of 9.4nm Au - 15mer DNA conjugate (-1:3.7) with
MCH treatment: Au(-BPS) only, Au-DNA, Au-DNA with I0piM MCH 1min, Au-
DNA with 1mM MCH, 1min. Inset: zoomed in near 0%

The figure clearly shows ImM/Imin MCH treated sample has smaller MO compared to the

other three samples, which means there was some charge reduction due to loss of DNA as
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well as BPS. From the slope of liner fittings, we can infer the effective size DH of each

sample by use of equation 4.13.

Figure 4.8(a) shows DH obtained from various samples. DH is plotted as a

function of the MCH concentration (1p M 1 ImM) for a reaction time of 1 min (circles) or

10 min (squares), and is reported for coverage ratios from 1:0.4 to 1:3.7. Only the samples

being stable at least for a month after MCH reaction are shown in the figure. The size

differences between Au and Au-DNA without MCH treating increase as coverage ratio

becomes high. Upon reaction with MCH, the size of Au-DNA with the coverage ratio above

1:1 increases by up to 0.6nm, while no noticeable change was observed from Au-DNA with

the coverage ratio below 1:1. This result is consistent from multiple measurements. The

change in DH means that the oligo is changing to a lightly more radial configuration. The

persistence length of single stranded DNA varies from 0.75nm to 2~3 nanometers from

chapter 3, so even if the C6 linker (i.e., MCH) were perfectly packed, the 15mer oligo's

actual end-to-end length is much smaller than its chain length. At MCH concentration

higher than 0. 1mM, DH decreases or the particles aggregate depending on coverage ratio.

This indicates that at lower concentrations the MCH initially displaces any base bonding of

the oligo, but at higher concentrations MCH detaches oligo by its thiol linkage. For the

longer reaction time of 10 min (squares) the increase in effective size is not very different

from 1 min of MCH reaction, but at higher concentrations (>0.1 mM) the size decreases

more than 1 min reaction curve does for 1:3.7 Au-DNA, or 1:1.5 and 1:2.1 conjugates

aggregate through long time according to further detachment of the oligo. This suggests

that there is a certain period of time in which the MCH can disrupt the base bonding and

straighten out the oligo, but after a longer period of time more MCH binds to the

nanoparticle surface, competing with the thiolated oligo and eventually completely

displacing the oligo. For low coverage ratio (below 1:1), there are not enough oligos on Au

particles to change hydrodynamic behavior in the gel whether they are straight or not, so

MCH treatment does not give any size increase. Also the Au-DNA conjugates easily

aggregate by treatment of MCH at high concentrations.
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Figure 4.8 (a) 9.4nm Au - 15mer DNA conjugate's size change relative to Au
as a function of MCH reaction condition and coverage ratio and (b) their
coverage ratio

Previously, the similar molecule mercaptoethanol has been used to completely

displace the DNA oligos to allow quantification of surface coverage of the nanoparticles by

fluorescence spectroscopy 44. Here we use MCH in excess to quantify the Au:DNA ratios by

total displacement. Samples were extracted from agarose gels thus have no free DNA.

Optical absorption at 520nm is measured to obtain the particle concentration and then the

sample is exposed to MCH at ImM for 1 day. Completely displaced DNA was quantified

by fluorescence. The resulting surface coverage ratios are shown in Figure 4.8(b) as a
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function of MCH concentration and reaction time. This plot shows that the DNA is not

removed from the nanoparticle surface for the MCH concentrations at or below 10 pM

observed in figure 4.8(b). However, the coverage ratio decreases at 0.1mM MCH,

indicating that the DNA is displaced.

Fluorescence data was also used to show oligo displacement from the surface of

the Au particles. The oligo has a FAM on the 3'end, but fluorescence is quenched by Au

particles if the oligo is thiolated on the Au particle. Upon reaction with MCH, fluorescence

from detached oligos can be measured, which yields kinetic data on how the MCH reaction

is progressing. Fluorescence spectroscopy was performed on a Spex Fluoromax 3, with

excitation at 495nm, emission collected at 517nm. Figure 4.9 shows the fluorescence

intensity of 1:3.7 Au-DNA as a function of reaction times with MCH at a concentration of

0. 1mM (triangles) and 1OpM (circles). Samples were reacted with MCH for time varying

from 1 min to 1 0min, and washed by ethyl acetate. Then the samples were identically

diluted to measure the fluorescence with reduced quenching effect from Au particles.

0.1mM MCH displaces oligo, but 10pM does not. This result is consistent with the

coverage ratio changes shown in figure 4.8(b).

120000 . --....I 1. . .. I . 1 ' . 1 . ' . 1 I...

A

100000

80000
0.r

60000- A O.1mM
-f A/ 10microM i

- 40000 -

20000-

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (min)

Figure 4.9 Fluorescence intensity curves as a function of MCH reaction time.
Au-DNA(-1: 3.7) samples were at lx10-7 M during the reaction. Diluted
identically for the measurement.
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In summary, 9.4nm gold - 15mer DNA conjugates in lxiO-7 M can be modified by

I~IOminutes of 10pM MCH reaction without any loss of DNA's. It is shown that this

treatment effectively prevents oligo's adsorption to gold particles' surface. We can try other

size of particle and oligos, or the concentration of the conjugates, but it will change the

current optimized MCH concentration and reaction time since many parameters are coupled

to each other. For example, bigger particle has larger surface area, thus it needs higher

concentration of MCH or longer reaction time. At the same time, however, the collision rate

between gold particles and MCH molecules becomes high as the particle size increases.

This reduces the reaction time required.

For general usage of MCH on Au-DNA conjugates, some more different

combinations of gold and oligo need to be tested. Then a trend of optimal MCH reaction

condition may be achieved.

4.3 Nomenclatures for chapter 4

f Fractional volume

KR Retardation coefficient

KR' Modified retardation coefficient

L Fiber length per unit mass [ cm / g]

L Mean length of molecule

/ Fiber length per unit volume [ cm / ml]

M Mobility [ cm 2 / V -s]

MO Free mobility

M , Mobility of infinitely short DNA

M. Mobility of infinitely long DNA

No The number of monomers in polymer chain

n The number of point-like gel fibers per unit volume [1/ ml]

R Radius of molecule

r Radius of cylindrical gel fiber

S Coupled surface area of molecule and 1 -D gel (= 47r(R + r)2 )
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s Surface area of 2-D gel plane per unit volume [cm 2 / ml] or [1/ cm]

T Gel percentage [ g / 1 00ml ]

V Coupled Volume of molecule and O-D gel (=4 /3 -;r(R + r)3)
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5. Summary and future work

The work given in this paper was highly motivated by a previous research that

showed the possibility of remote control of biomolecules through metal nanocluster

antenna'. In alternating magnetic field metal particles are inductively heated, and the

generated heat propagates to the media thus heat up biomolecules covalently linked to the

particle. Since the temperature highly affects biomolecules' activity, we can control nano-

scale phenomena by use of external switch.

The major heating mechanism of paramagnetic particle in classical theory is Joule

loss. Alternating magnetic field induces current in the particles and this current is dissipated

by internal resistance of the particle. For the nano-size system, however, we may need to

adopt electron kinetics model since the physical properties of nano-system are quite

different form bulk properties. From the calculation, the kinetics theory predicts less

amount of power generation compared to the classical theory. Ferromagnetic particles have

additional heating mechanisms. Hysterisis loss contributes only to relatively bigger

particles since small ferromagnetic particles are within the regime of superparamagnetism.

The super-paramagnet is mainly heated by Neel relaxation and Brownian relaxation. Due to

these additional heat mechanisms, ferromagnetic particles may be preferred as an antenna

in thermodynamics' sense.

Because of classical size effect, nano-size structure has low thermal conductivity in

general. Phonon scatterings are mainly considered when the length scale of the system is

comparable with the mean free path. According to previous research, the size effect

disappears when the radius of particle is about an order bigger than phonon mean free path

of medium. Since mean free path of water is very small (~0.3nm) compared to the particles

mainly mentioned in this paper(~5nm), classical heat transfer equations and properties

could be applied. But interface thermal resistance still exists and is not clearly explained

how it affects the heat transfer. The calculated temperature profile suggested that there is

not enough power to heat up gold particle and water around it. There may be unknown

heating mechanisms or some problems in the power generation theory.

Because of the theories' weakness, direct temperature probing was suggested. It
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may be fulfilled with a series of a particle, ssDNA and dsDNA. The segment of dsDNA has

a fluorophore and a quencher on each strand. If the particle is heated, dsDNA near to

particle will be dehybridized and gives unquenched fluorescence, while dsDNA outside the

heating zone stays hybridized. Different lengths' of ssDNA can be used to offset dsDNA

from the particle with different distances. To quantify the actual distance, worm-like chain

model is used to evaluate the root-mean-square end-to-end length with the persistence

length of each segment. Gold particle has infinite persistence length and that of dsDNA is

about 50nm. ssDNA has much smaller persistence length varying from sub-nanometer to a

few nanometers. The persistence length highly depends on salt condition that results in

difference in charge screening around the DNA's backbone.

But recent research revealed that DNA bases have a tendency to stick to gold

surface by donating their electron pairs. It is essential to make DNA stretched radially for

the temperature probing experiment. There is some sequence dependent adsorption

behavior of oligos and we may utilize it, but surface modification of gold with 6-mercapto-

1 -hexanol(MCH) can be a general method not depending on oligo's specific parameter. As

an example, 9.4nm gold - 15mer DNA conjugates at 1x10-7 M were treated with various

concentrations of MCH and reaction times. Their conformation changes upon MCH

reaction were quantified by Ferguson plot method with agarose gel electrophoresis. It is

based on the fact that larger molecules experience more rapid decrease of mobility as the

gel concentration becomes high. The result shows the conjugates reacted with 1 OpM MCH

for 1 1 0min have the largest effective size without any loss of DNA. At the reaction

condition the DNA on the gold is believed to be stretched outward. At higher MCH

concentration the conjugates lose their DNA, and further reaction results in aggregation of

the particles. A combination of different sizes of particle and oligo may change the optimal

reaction condition of MCH.

We are now able to assemble nano-temperature probes and possibly collect the

information on temperature profile. The information is essential for controlling large and

complex proteins by nanoparticle heating, where temperature gradients are expected to play

a big role in the change of protein structure.
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Whenever we develop a new antenna, we need to test its own heating behavior

since the operating conditions highly depend on particle size, material, shape, magnetic

field frequency and intensity, etc. If we can control different kinds of antennas with discrete

magnetic field conditions, and if the antennas are conjugated to different kinds of

biomolecules, then we can selectively turn on and off the molecular activities with an

external control panel.
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