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Abstract

Transverse jets arise in many applications, including propulsion, effluent dispersion,
oil field flows, V/STOL aerodynamics, and drug delivery. Furthermore, they exem-
plify flows dominated by coherent structures that cascade into smaller scales, a source
of many current challenges in fluid dynamics. This study seeks a fundamental, mech-
anistic understanding of the relationship between the dispersion of jet fluid and the
underlying vortical structures of the transverse jet-and of how to develop actuation
that optimally manipulates their dynamics to affect mixing.

We develop a massively parallel 3-D vortex simulation of a high-momentum trans-
verse jet at large Reynolds number, featuring a discrete filament representation of the
vorticity field with local mesh refinement to capture stretching and folding and hair-
pin removal to regularize the formation of small scales. A novel formulation of the
vorticity flux boundary conditions rigorously accounts for the interaction of channel
vorticity with the jet boundary layer. This formulation yields analytical expressions
for vortex lines in near field of the jet and suggests effective modes of unsteady
actuation at the nozzle. The present computational approach requires hierarchical
N-body methods for velocity evaluation at each timestep, as direct summation is
prohibitively expensive. We introduce new clustering algorithms for parallel domain
decomposftion of N-body interactions and demonstrate the optimality of the resulting
cluster geometries. We also develop compatible techniques for dynamic load balanc-
ing, including adaptive scaling of cluster metrics and adaptive redistribution of their
centroids. These tools extend to parallel hierarchical simulation of N-body problems
in gravitational astrophysics, molecular dynamics, and other fields.

Simulationsrevealthe mechanisms by which vortical structures evolve; previous
compultational and exp~einental investigations of these processes have been incom-
pletegt-best, limited to low Reynolds numbers, transient early-stage dynamics, or
Eulerian diagnostics of essenIaHy Lagrangian phenomena. Transformation of the
cylindrical shear layer emanating from the nozzle, initially dominated by azimuthal
vorticity, begins with axial elongation of its lee side to form sections of counter-
rotating vorticity aligned with the jet trajectory. Periodic rollup of the shear layer
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accompanies this deformation, creating arcs carrying azimuthal vorticity of alternat-
ing signs, curved toward the windward side of the jet. Following the pronounced
bending of the trajectory into the crossflow, we observe a catastrophic breakdown
of these sparse periodic structures into a dense distribution of smaller scales, with
an attendant complexity of tangled vortex filaments. Nonetheless, spatial filtering
of this region reveals the persistence of counter-rotating streamwise vorticity. We
further characterize the flow by calculating maximum direct Lyapunov exponents of
particle trajectories, identifying repelling material surfaces that organize finite-time
mixing.

Thesis Supervisor: Ahmed F. Ghoniem
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

The mixing properties of the transverse jet-a jet issuing normally into a uniform

crossflow-are important to a variety of applications. Transverse jets may function as

sources of fuel in industrial furnaces, or as diluent jets for blade cooling or exhaust gas

cooling in industrial or airborne gas turbines. Other industrial applications include

pipe tee mixers and jets of oil and gas entering the flow in oil wells. Transverse jets

have also been studied extensively for their relevance to V/STOL aerodynamics, roll

control of missiles, and environmental problems such as pollutant dispersion from

chimneys or the discharge of effluents into the ocean.

Enhancement of the mixing rate between jet and crossflow can lead to significant

improvements in many performance aspects. In gas turbines, for instance, better

transverse jet mixing is essential to achieving a wider range of operability, lower

emissions, smaller size, and lower noise output. The ultimate objective of this work

is to develop actuation strategies for the transverse jet that optimally manipulate the

mixing rate between the jet fluid and the crossflow.

Effective actuation must be grounded in a clear understanding of flow structures,

their dynamics, and their impact on mixing. The transverse jet presents many chal-

lenges in this regard. The near field of the flow is dominated by coherent vortical

structures; further downstream, these structures exhibit a critical transition to smaller

scales. Mechanisms underlying both the formation of vortical structures in the near

field and their eventual breakdown are largely unresolved. This thesis focuses on eluci-
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dating these mechanisms and characterizing their impact on transport and dispersion

of jet fluid.

Our approach to a mechanistic understanding of the flow is computational. We

develop a three-dimensional vortex simulation of the high-momentum transverse jet

at large Reynolds number, featuring a discrete filament description of the vorticity

field with local mesh refinement to capture stretching and folding and hairpin removal

to regularize the formation of small scales. Previous computational and experimental

investigations of vorticity dynamics in the transverse jet have been limited to low

Reynolds numbers [70, 76], transient early-stage dynamics [30], or Eulerian diagnos-

tics of essentially Lagrangian phenomena [132, 118]. Vortex methods thus provide an

attractive framework for simulation of the transverse jet, first of all for their explicit

link to the formation and dynamics of vortical structures in the flow. Vorticity intro-

duced at the boundary is tracked through the flow field, providing a clear, mechanistic

view of its evolution. Moreover, vortex methods are well-suited to high Reynolds num-

ber flows for their ability to simulate convection without numerical diffusion, through

the advection of Lagrangian computational elements. Also, inherent in the grid-free

nature of the method is a dynamic clustering of computational points only where

they are needed, i.e., over the small support of the vorticity field.

The present simulations employ a new formulation of vorticity flux boundary con-

ditions that rigorously describes the interaction of crossflow boundary layer vorticity

with jet vorticity. Analysis of the flow is aided by extracting and examining the evo-

lution of material lines and vorticity isosurfaces, streamlines, and trajectories; these

efforts encompass comparison with both experiment and similarity analysis. We fur-

ther characterize the flow by calculating maximal Lyapunov exponents directly from

particle trajectories, identifying repelling surfaces that organize finite-time mixing.

A complementary component of this work focuses on the computational challenges

presented by highly-resolved vortex particle simulations. The primary cost of vortex

methods is incurred in evaluation of the vortical velocity field. Velocities induced by

all the vortex elements must be evaluated at each vortex element through solution of

a Poisson equation. The result is an N-body problem on an irregular particle distri-
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bution of non-uniform density; similar N-body problems arise in astrophysics (e.g.,

gravitational cluster interactions) and molecular dynamics. Direct solution of these

problems yields a computational complexity of O(N 2 ), which becomes prohibitive for

large N. Yet simulations with N = 106 or greater are necessary for resolution and

scale.

Hierarchical methods for N-body problems, detailed in Chapter 4, reduce this com-

putational complexity to 0(N log N) or 0(N). Many sequential hierarchical methods

have been developed [8, 50, 104], but parallel methods expose additional computa-

tional issues, chief among these the impact of domain geometry and cell geometry on

computational cost. This thesis introduces new algorithms, based on k-means clus-

tering, for partitioning of parallel hierarchical N-body interactions. We also develop

new heuristics for dynamic load balancing, including adaptive scaling of cluster met-

rics and adaptive redistribution of cluster centroids. These techniques prove quite

effective when applied to realistic massively parallel N-body simulations. Moreover,

results suggest that clustering can replace traditional oct-tree partitioning schemes

to optimize the computational efficiency of serial hierarchical N-body algorithms.

1.1 Physics of the transverse jet

Numerous experiments and computations over the past fifty years have addressed the

trajectory, scaling, and structure of jets in crossflow [80]. In the following, we review

some of these results and highlight unresolved areas, providing context for the flow

physics explored by our vortex simulations.

1.1.1 Flow parameters and coherent structures

The structure of the flow field is primarily governed by the jet-to-crossflow momentum

ratio /2

r = U(.2
(PooU 20
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written here as an effective velocity ratio, where pj and Vj are the density and mean

velocity of the jet, while p, and U, are the density and velocity of the crossflow.

Another controlling parameter is the jet Reynolds number, defined as Re, =

Vd/v, where d is the jet diameter and v is the kinematic viscosity. While only a few

studies have discussed the effect of Reynolds number independently of r, it is generally

considered to have at best a secondary effect on the large-scale structures of the jet

flow field [70, 132]. A comparison of experimental results obtained at different Re,

throughout the literature confirms this assertion; in fact, the similarity analysis in [58]

invokes Reynolds number invariance. Trajectory correlations discussed in §1.1.2 below

are independent of Reynolds number. Broadwell and Breidenthal [18] argue that the

flame length of the transverse jet-a measure of its mixing rate-is independent of

Re3 above a certain critical value, a behavior typical of free shear flows.

Numerous studies report the presence of large-scale "coherent" vortical structures

in the flow field [112, 58]. Experimental observations by [44] identify four such struc-

tures in the transverse jet, shown schematically in Figure 1-1: jet shear layer vortices;

"wake vortices" arising from interaction between the jet and the channel wall bound-

ary layer; horseshoe vortices that wrap around the jet exit; and a counter-rotating

vortex pair that forms as the jet bends into the crossflow, persisting far downstream.

Jet shear layer vortices result from Kelvin-Helmholtz instability of the cylindrical

shear layer shed from the edge of the jet orifice. A water-tunnel dye visualization of

these vortices, adapted from [94], is shown in Figure 1-2. Kelso et al. [70] report that

shear layer roll-up is limited to the upstream side of the jet for smaller Re, while for

crossflow Reynolds number Ref = Ud/v > 1000 large scale roll-up occurs along the

entire perimeter of the shear layer. These structures are analogous to the vortex ring

structures typically observed in free jets. Chapter 3 of this thesis will characterize

the evolution of the jet shear layer in greater detail.

The horseshoe vortices develop close to the wall, wrapping around the nascent

column of jet fluid. These vortices form as the wall boundary layer upstream of

the jet encounters an adverse pressure gradient and separates [44]. Several studies

have elucidated the complex streamline topology of the horseshoe system [73, 71, 70];
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these studies also observe periodicity in the formation and roll-up of the vortices.

Different parameter regimes may see this unsteadiness coupling with the dynamics of

wake vortices and with intermittent separation in the jet nozzle [71, 73]. Nonetheless,

Kelso et al. [70] assert that "the horseshoe vortex system seems to play only a minor

role in the overall structure" of transverse jet flow field.

Downstream of the orifice, an alternating pattern of upright or "wake" vortices

extends from the wall to the bending jet. These vortices have been studied extensively

using various flow-visualization techniques [44, 70] along with hot-wire anemometry

[102]. Fric and Roshko [44] demonstrate that though the wake vortex pattern is

reminiscent of Kirmin shedding behind a solid cylinder, its origins are fundamentally

different. Vorticity is not shed from the jet column into the wake; rather, the wake

vortices consist of vorticity generated in the crossflow boundary layer. "Separation

events" in the wall boundary layer downstream of the jet form upright vortices that

lift fluid from the wall toward the main flow of the jet. For larger r, however, the wake

structures connecting the wall to the jet fluid are weakened [112]; Fric and Roshko

[44] find that the wake vortices are most orderly at r = 4, then diminish in strength

as r increases.

For very low r, e.g., r < 1, interactions of the jet fluid with the wall boundary

layer downstream of the orifice result in a qualitatively different flow structure; this

regime is examined in [60] for a series of circular, elliptical, and rectangular nozzle

geometries. We also note that elevated transverse jets have a different wake structure

than jets flush with the wall. In this case, there is evidence that jet-wake vortices

couple with similar Kirmin-like structures in the wake of the stack [41].

The last of the four vortical structures listed above is the counter-rotating vortex

pair (CVP). The CVP is a robust feature of the flow over all parameter ranges (e.g.,

r, Re) and has been a focus of numerous studies [30, 99, 66, 5, 4, 70, 76]. Broadwell

and Breidenthal [18] argue that the impulse of the jet normal to the crossflow results

in a streamwise counter-rotating vortex pair. This argument views the jet as a point

source of momentum, and does not explain the vorticity transformation mechanisms

that actually create the CVP in the near field. (Previous work aimed at understanding
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these mechanisms is reviewed in §1.1.3; we elucidate these mechanisms more fully in

Chapter 3.) Though the CVP is present in the mean flow, it has significant unsteady

components [102] and its instantaneous structure may be strongly asymmetric [112].

With regard to the design of actuation strategies, many of the dynamic character-

istics of the transverse jet are unknown. For free jets or co-flowing jets, for instance,

the jet natural modes are well-known, and actuation typically consists of exciting the

jet at a corresponding frequency or harmonic. Analogous modes for the transverse

jet and their relation to jet properties largely have yet to be determined [30]. A

few studies have characterized dominant frequencies in the wake of the unforced jet

[73, 44]. Experimental studies of pulsed jets in crossflow [65, 43, 88] have identified

pulsing frequencies and duty cycles or characteristic temporal pulse widths [87] that

maximize jet penetration into the crossflow. These actuations tend to create discrete

vortex rings that propagate deep into the crossflow [20], a flow structure that is qual-

itatively different from that of the unforced jet. The relationship between optimal

pulsing and the transverse jet's preferred modes or shear layer dynamics has not been

rigorously examined, however, particularly over a range of r.

1.1.2 Trajectories, length scales, and similarity analysis

The trajectory of the transverse jet has long been the subject of experimental measure-

ments and analytical predictions. Many experimental correlations can be collapsed

to power-law form [80, 58]:

- = A () (1.2)
rd rd

Values reported in the literature are in the range 1.2 < A < 2.6 and 0.28 < B < 0.34

[58]. Pratte and Baines [99] report A = 2.05, B = 0.28 for r = 5 to r = 35; the 0.28

exponent of this power-law fit has been corroborated in computational simulations

[131]. Variation in the coefficients A and B may stem from different definitions of the

jet trajectory. Some researchers use the streamline emanating from the center of the

orifice; others use the locus of maximum velocity on the centerplane, and still others

use the locus of maximum scalar concentration. Kamotani and Greber [66] note that

19



the trajectory based on maximum local velocity penetrates 5-10% deeper into the

flow than the trajectory based on scalar concentration. Another source of scatter in

the correlations is the determination of r, since the jet velocity Uj is not perfectly

uniform at the jet exit. Hasselbrink and Mungal [58] argue that the velocity ratio r

is best defined in the integral sense, as an average momentum flux per unit area of

the jet.

Analytical predictions of the jet trajectory are pursued in [117, 18, 67]. Of particu-

lar interest are approaches based on the kinematics of the vorticity field. The inviscid

model of Broadwell and Briedenthal [18] models the lift associated with a counter-

rotating vortex pair in the far field, obtaining a 1/3 power law in rd-coordinates.

Karagozian [67] also obtains a 1/3 power law, using a two-dimensional model of a

viscous vortex pair.

All of the above trajectories-whether based on experimental measurements or

analytical models-are strictly valid only in the far field of the jet. A recent similarity

analysis by Hasselbrink and Mungal [58] provides a more precise delineation of "far

field" and "near field" in this context. The authors argue that the transverse jet

contains two regions of intermediate-asymptotic similarity. In the far field, for y/rd>

1, the centerline trajectory follows a 1/3 power law:

- = (3- 1/3 (1.3)
rd cew rd)

where cew is a far field entrainment coefficient. In the near field, for y/d> 1, x/rd < 1

the centerline trajectory obeys a 1/2 power law:

C (2c1/2 (1.4)
rd Cej rd)

Here cej denotes a near-field entrainment coefficient. Intermediate-asymptotic behav-

ior is confirmed via measurements of mean velocity and velocity-fluctuation profiles

along the jet in [59].

Underlying the trajectory correlations and similarity analysis presented above are
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several length scales that describe the jet scaling. Events near the orifice scale with

the jet diameter d [29]. Away from this region, the most important global length

scale [18, 67] is

L= ~) rd (1.5)
PooU2O

where rmj is the mass flux of the jet. This rd-scaling underlies almost all the trajectory

scaling laws. A third length scale is revealed by scalar concentration measurements in

[112]; a branch point in the decay of centerline concentrations for various r collapses

when normalized by r2d. Keffer and Baines [69] also collapse jet trajectory data for

r = 6 to r = 10 using this length scale. Thus r 2d may play the role of an outer

momentum length scale.

1.1.3 Vorticity generation and evolution

The transverse jet presents several subtle physical issues of relevance to mixing and

dynamic response to actuation. Chief among these is the origin of the counter-rotating

vortex pair (CVP). Differing accounts of the mechanism by which the counter-rotating

vortices form still persist. Recent experimental work [70, 43, 76] suggests that the

CVP is initiated just above the jet exit as jet shear layer vorticity folds onto itself

and Kelvin-Helmholtz instability leads to a simultaneous roll-up. A water-tunnel

dye visualization of the folding shear layer is shown in Figure 1-3. The resulting flow

pattern can be interpreted as the tilting and folding of vortex rings as they are ejected

from the nozzle, where the downstream side of each vortex ring is approximately

aligned with the jet trajectory. Various other studies support this view [118, 20, 58,

29]. A different mechanism in [132] points to quasi-steady "hanging vortices" formed

in the skewed mixing layers on lateral edges of the jet; the authors suggest that an

adverse pressure gradient causes these vortices to break down into a weak CVP. Scalar

concentration measurements in [112] indicate that CVP development is delayed with

higher r.

Water-tunnel flow visualizations [70] suggest that the CVP also contains vorticity

generated in the channel wall boundary layer. Though the relative magnitude of this
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contribution must decrease with higher r, it has not been clear whether jet shear layer

vorticity alone is sufficient to characterize the dynamics of the CVP. These questions

will be addressed in the present work through careful construction of vorticity flux

boundary conditions.

1.2 Objectives

The present modeling efforts focus on coherent vortical structures present in the

main flow-the jet shear layer and the counter-rotating vortex pair-rather than

those linked to the wall, as the former are most relevant to entrainment and mixing.

We would like to capture the dynamics of these structures at high Reynolds number,

to understand their formation mechanisms and follow them downstream as they ma-

ture. For simplicity, we focus on incompressible flow, and for relevance to mixing in

engineered systems we consider r >> 1.

The objectives of this work are as follows:

9 To develop and validate a three-dimensional vortex simulation of the transverse

jet, accurately incorporating vorticity generation mechanisms from first princi-

ples and capturing the formation and evolution of large-scale vortical structures.

e To characterize vortex dynamics in the high-momentum (r > 1) transverse

jet. We seek a mechanistic understanding of the formation of coherent vortical

structures and of their subsequent breakdown into small scales. To this end,

develop appropriate methods for extracting material surfaces, integral quantities

(e.g., streamlines and trajectories), and vorticity field diagnostics. Compare

results to scaling laws and experiment.

e To analyze the mixing characteristics of the transverse jet using velocity data

as well as recent tools for extracting distinguished Lagrangian structures [56].

Explore the impact of vortical structures-and their evolution-on mixing.

9 To identify mechanisms for actuating the flow field and formulate boundary
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conditions that describe these mechanisms. Where possible, develop reduced-

order models for the response of the flow to actuation inputs.

9 To develop numerical tools for fast, accurate high-resolution vortex simulation.

These include local remeshing schemes to resolve the cascade to small scales on

vortex filaments and hairpin removal to prevent a numerical over-proliferation

of elements. These tools also include scalable parallel algorithms for hierarchical

evaluation of vortical velocities, for which we will demonstrate applicability to

general dynamic N-body problems.

More broadly speaking, this research seeks to develop the computational tools and

the physical understanding required for control and optimization of mixing in three-

dimensional vortical flows.

Chapter 2 begins with a discussion of vorticity transport in inviscid, incompressible

flows, presenting three-dimensional vortex particle methods and details of our filament

construction. This chapter also formulates vorticity flux boundary conditions for the

transverse jet and extends the formulation to an analytical description of vorticity in

the near field.

Chapter 3 presents simulation results revealing mechanisms of vorticity transfor-

mation in the transverse jet. We describe the formation and eventual breakdown

of vortical structures, discussing our results in the context of earlier experimental,

theoretical, and computational studies. We also use notions from dynamical systems

to characterize the mixing properties of the jet, relating these properties to vortical

structures.

Chapter 4 describes new clustering algorithms for partitioning and dynamically

load-balancing parallel hierarchical N-body interactions. We evaluating the impact

of these algorithms on computional speed and accuracy via a number of realistic test

cases.

Conclusions and a sketch of future work are given in Chapter 5.
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Figure 1-1: Coherent vortical structures in the transverse jet; schematic after Eric
and Roshko [44].
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Figure 1-2: Water-tunnel dye visualization of a transverse jet at r = 4.0, Re3 = 6400.

Blue dye is released from a circumferential slot 1.6 diameters upstream of the jet

exit; red dye is released from a single port 0.06 diameters upstream of the jet exit.

Reproduced from Perry, Kelso, and Lim [94].

Figure 1-3: Water-tunnel dye visualization of a transverse jet at r = 4.6, Rey = 1600,
showing folding of cylindrical shear layer. Reproduced from Lim, New, and Luo [76].
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Chapter 2

Vorticity Formulation for the

Transverse Jet

This chapter presents governing equations for the flow field of the transverse jet and

describes solution of these equations with a three-dimensional vortex particle method.

Our interests center on incompressible transverse jets at high Reynolds number, and

thus we focus on the inviscid transport of vorticity. The dominant role of inviscid

dynamics is supported by experimental and computational evidence summarized in

the preceding chapter.

We also formulate new vorticity flux boundary conditions for the transverse jet,

accounting for the interaction of azimuthal vorticity in the jet boundary layer with

spanwise vorticity in the crossflow boundary layer around the jet orifice. Derivation

of these boundary conditions motivates an analytical description of vortex lines in

the near field of the jet. The shape of these vortex lines is shown to depend on the

jet-to-crossflow velocity ratio r and on additional parameters that describe actuation

at the jet nozzle.

26



2.1 Numerical formulation

2.1.1 Governing equations

Equations of motion for inviscid, incompressible flow may be written in vorticity

transport form, where w = V x u:

Dw -wVu (2.1)
Dt

V -u = 0 (2.2)

In this Lagrangian description, the right-hand side of (2.1) accounts for stretching

and tilting of the vorticity as it is convected by the flow.

Using the Helmholtz decomposition of the velocity field, we write

u = uw + up (2.3)

where us, is the curl of a vector potential (u, = V x 0) and up is the velocity of

a potential flow (up = VOb). It follows from (2.3) that the vector potential and the

vorticity are related by a Poisson equation:

W=V xu=V xV x =-V 2 0 (2.4)

where V -0 = 0

The vector potential b is not uniquely determined by this system, and can always

be chosen divergence-free by imagining an extension of the fluid to a domain where

w - n = 0 at the boundary [10]. Given a distribution of vorticity w, the vortical

velocity u, may thus be recovered from the Biot-Savart law

1 (x -x' 3 ('47rx =T dx' = K * w (2.5)

4I D (X -x- X0

Here K denotes the matrix-valued Biot-Savart kernel.

The above equations are closed by choosing a divergence-free potential velocity
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field to satisfy a prescribed normal velocity n -u on the boundary of the given domain

D:

V 2 0 = 0 (2.6)

n-170 = n-u-n-u onaD

Together, (2.1), (2.2), (2.3), (2.5), and (2.6) completely specify the motion of an

incompressible, inviscid fluid [26].

2.1.2 Three-dimensional vortex particle methods

We formulate a three-dimensional vortex method for simulations of an unsteady,

incompressible transverse jet at large Reynolds number.

Vortex methods are a computational approach to systems governed by the Navier-

Stokes or Euler equations, employing a particle discretization of the vorticity field

and transporting vorticity along particle trajectories [75, 72, 79, 32, 100]. Originally

conceived of for high Reynolds number flows [22] and for flows dominated by vortex

dynamics [1031, these methods have received significant attention over the past thirty

years, maturing into tools for direct simulation, supported by several convergence

results and a rigorous error analysis [52, 53, 54, 11, 12, 3, 32].

The essence of a vortex method is the discretization of the vorticity field onto

Lagrangian computational elements, or particles. In three dimensions, these particles

have vector-valued weights ac(t) (odV)i (t) and trajectories xi(t).

N

o(x, t) ~ a (t)fs (x - Xi (t)) (2.7)

The vorticity associated with each element is desingularized with a radially-symmetric

core function f6 (r) of radius 6, where f6 (r) 6 3 f . The function f must be

smooth and rapidly decreasing, satisfying the same moment properties as the Dirac

measure up to order m > 1 [13].

Given a regularized particle discretization of the vorticity field as in (2.7), the
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Biot-Savart law (2.5) may be rewritten as follows:

N

u.(x) = Ks(x, xi) ai (2.8)

where the regularized kernel K6 results from componentwise convolution with the core

function, K6 (x) = K * fj(x). In the present simulations, we employ the Rosenhead-

Moore kernel [77, 103]

1 x - x'
K5 (x, x') = + 62)3/2 x (2.9)

47r (|x -x'2+2)/

which corresponds to the low-order algebraic core function' [128]:

3 1
f (p) = - (2.11)

41r (p2 + 1)5/2

Vortex methods solve the equations of motion via numerical integration for the

particle trajectories Xi(t) and weights a (t). Computing particle trajectories Xi(t)

requires evaluation of the velocity at each particle at every timestep:

i = u(Xi) (2.12)
dt

Three-dimensional vortex methods also require evaluation of velocity gradients to

compute the vortex stretching term and thus the evolution of particle weights. For

inviscid flows, ODEs for ai(t) follow directly from (2.1):

d = i -Vu (Xi, t) (2.13)dt

The right-hand side of (2.13) may be evaluated through explicit differentiation of

'Strictly speaking, this core function does not satisfy the moment condition

00j f f(P~ P21 < oc (2.10)

for r > 0, and thus the usual convergence results may not apply. However, it has been used effectively
as a mollifier for numerous vortex particle simulations [77, 75]; based on this practical evidence, we
employ it here.
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the Biot-Savart kernel [3] or by application of a finite-difference operator [121. The

present calculations evalute vorticity stretch in the context of vortex filaments; more

details on this construction will be provided in the next section.

A discussion of the various convergence results for inviscid vortex particle methods

is beyond the scope of this thesis. However, it is important to note that error norms

expressing convergence to smooth solutions of the Euler equations go to zero as the

number of particles increases and the core size J decreases, subject to the constraint

that the typical interparticle spacing h -+ 0 faster than 5; effectively, this requires the

cores of neighboring particles to overlap. For convergence proofs and rigorous error

analyses, the reader is referred to [52, 53, 54, 11, 12, 3, 31, 62]; reviews can be found

in [79, 100, 32].

The Lagrangian vortex method provides an attractive model of the transverse jet,

first of all for its explicit link to the formation and dynamics of vortical structures

in the flow. Vorticity introduced at the boundary is tracked through the flow field,

providing a clear, mechanistic view of its evolution. Moreover, because convection

exactly corresponds to the advection of Lagrangian computational elements, the errors

associated with vortex methods contain minimal numerical dissipation [32], rendering

these methods well-suited to high Reynolds number flows. Finally, inherent in the

grid-free nature of the method is a dynamic clustering of computational points only

where they are needed, i.e., over the small support of the vorticity field.

Additional, important physics have been built on the foundation outlined above.

New particle methods for solving the diffusion equation, coupled with viscous split-

ting, have extended the applicability of vortex methods to flows of finite Reynolds

number [45, 34, 35, 109, 86], enabling direct simulation of the Navier-Stokes equa-

tions, including boundary layer phenomena. We also mention a range of techniques

for dealing with complex boundaries [96, 97], as well as extensions to stratified flows

[113], aeroacoustics [42], and reacting flows [114, 115, 74].
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2.1.3 Vortex filament methods

Consider the evolution of a material line element 6x in a velocity field u(x, t):

D = -6 -VU (2.14)
Dt

Comparing this equation with (2.1), we observe that in inviscid incompressible flows

the motion of material lines corresponds to the evolution of vortex lines [10]. This is

Helmholtz's theorem for inviscid incompressible flow; a material element coinciding

with a vortex line remains on that vortex line for all time.

In a vortex filament scheme, the overall vorticity field is viewed as a collection of

vortex filaments; each filament consists of a vorticity field concentrated on a curve

rj(p) that is either closed or extending to infinity. The circulation of each filament is

constant at all cross sections and, in accordance with Kelvin's theorem, unchanged

as the filament is transported by the flow. From a vortex element point of view, we

can discretize the filament along its one-dimensional parameterization, writing:

widVi = Fyxj (2.15)

where the circulation is indexed by the filament number j and is constant in time.

On a given filament, connectivity should be maintained between neighboring vortex

elements. In place of the original discretization in (2.7), we now have

Nj

w(x, t) I' FJxj(t)f6 (x - x, (t)) (2.16)
J z

Filament methods present several numerical advantages over ordinary three-dimensional

vortex particle methods. They preserve the fundamental invariants of three-dimensional

inviscid flow, conserving total circulation, impulse, and helicity, and maintaining the

solenoidal nature of the vorticity field. They also allow efficient evaluation of vortic-

ity stretch: rather than updating widVi explicitly according to (2.13), as in a vortex

particle method, one must simply keep track of the deformation of the filament (i.e.,
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3xj(t)), since vortex lines and material lines coincide.

It is possible to enforce only a local correspondence between vortex lines and ma-

terial lines-that is, to initialize vortex elements so that they coincide with specific

material lines without requiring that the elements be arranged along continuous closed

(or infinite-extent) vortex lines. In this case, we do not have a true filament method;

each vortex element may locally coincide with a different vortex line, and thus have

a different F. However, we can still write widVi = Fj6Xj and take advantage of the

coincidence of vortex lines and material lines to evaluate vorticity stretch. Discretiza-

tion of the vorticity field still takes the form of (2.16). In this construction, we refer to

the computational elements as lying on "partial filaments" or "vortex sticks." These

methods relinquish some of the unique conservation properties of filament methods,

but they allow greater flexibility in the initialization of the vorticity.

Vortex sticks can be interpreted as ordinary vortex particles that employ a finite-

difference stencil oriented in the direction of the local vorticity vector to evaluate the

vorticity stretch term. However, they differ from ordinary vortex particles in that, like

filament methods, they provide a straightforward facility for local remeshing, ensuring

that core overlap is maintained along the direction of the vorticity. Remeshing and

other forms of "filament surgery" will be described in §2.1.4.

The present computations describe each filament j-whether it is a partial fila-

ment or a true, closed filament-by a finite set of nodes {yX} 3 . Rather than using

these nodes to construct a piecewise linear description of filament geometry, we use

a cubic spline interpolant to describe each space-curve [7]. Each filament rj(p) is

parameterized by the accumulated chord-length between nodes. That is,

Api ~Pi+1 -P = Xi+1 Xi (2.17)

For simulations employing closed vortex filaments, we use a periodic cubic spline

interpolant for each Cartesian component of rj(p), eliminating any ambiguity in the

specification of end conditions [33]. With vortex sticks or partial filaments, we specify

"not-a-knot" end conditions for the cubic splines [33]. If a filament contains only three
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nodes, quadratic interpolants are used; if only two nodes are present, we resort to

linear interpolation.

With the vorticity field described in this manner, the mollified Biot-Savart law

may be re-written as follows:

I (x - r(p)) dr
uW~x = 47r 3x -rs)I'"dP.r (x - r(p)) dp) (2.18)

where k6 (r) = i(f),

,(p) = 47 j f (s)s2ds (2.19)

and f(s) is the core function in (2.16). Note that the mollified Biot-Savart kernel K6

in (2.9) is equal to

K6 (x, x') 6- , ( (x - x') x (2.20)
Ix - x I

The midpoint rule is used for quadrature of the Biot-Savart law as written above

(2.18). This is analogous to applying the Biot-Savart law directly to the summation

over vortex elements in (2.16), taking 6xj = dr/dp. Ap and x' = r (pi+12).

Nodes on each filament are advected by the velocity field, as specified in (2.12). A

second-order predictor/corrector method is used for time integration of these ODEs

(Euler predictor, trapezoidal corrector). Two criteria are used for timestep control

during integration. The first estimates the position error in advecting each node and

forces the maximum error estimate, over all the nodes, to be less than some fraction

a of the core radius J:

max (errx.) < a (2.21)
i 6

The second criterion requires that each element travel no further than a single core ra-

dius over the course of one timestep, in effect ensuring that remeshing of the filaments

occurs frequently enough to maintain core overlap at all times:

At < 5 (2.22)
maxi Iu(xi)I
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2.1.4 Mesh refinement and hairpin removal

Cubic spline representations for rj (p) are recomputed from the advected nodes at

each timestep. As the filaments stretch and fold in response to the strain field of the

flow, a mesh refinement scheme must be implemented to ensure core overlap, as well

as an adequately detailed description of filament geometry. When 16xi of a given

element, as computed from the cubic spline representation, exceeds a given fraction

of the core radius, e.g., 0.96, a new node is added at the midpoint of the element,

thus splitting the element in two. The location of the new node is also computed

from the cubic spline representation: Xnew = Xc = r (Pi+1/2), and, after advection,

the new node is used to compute subsequent spline interpolants.

One result of this mesh refinement scheme is a continuous (in fact exponential)

growth in the number of vortex elements used to resolve the vorticity field, corre-

sponding to the generation of smaller length scales in the flow. We employ filament-

based hairpin removal algorithms to curb the numerical proliferation of small length

scales [23, 24]. These algorithms directly remove small-scale folds in vortex lines (i.e.

"hairpins"), yet have been demonstrated to preserve the dynamical characteristics

of large-scale vortical structures and to conserve integral quantities of the flow, like

kinetic energy and linear impulse [24]. By considering the statistical mechanics of

vortex filaments at the inviscid limit, hairpin removal can be justified as a renormal-

ization procedure [28, 25, 27].

Hairpins are identified by computing the angle between adjacent vortex elements;

for simplicity, we use the chords between neighboring nodes to compute these angles.

When the angle exceeds a certain maximum, given by the parameter cos(O)min, the

pair of elements is replaced by its vector sum. More complicated rules are needed

to deal with adjacent hairpins on a single filament. If the number n of adjacent

hairpins is odd, we remove hairpins at the odd-numbered nodes, e.g., {1, 3, ... , n}.

If the number of adjacent hairpins is even, we search for the sharpest hairpin and

remove it along with its neighboring even interleaf. For instance, if the sharpest

hairpin occurs at node m in a group of m < n adjacent hairpins, we remove hairpins
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at nodes i E {... , m - 2, M, m + 2, ... }, for 1 < i < n. Hairpin removal may also

require multiple passes; removing one set of hairpins may leave, or even produce,

another. Our current implementation does not search for hairpins between elements

on different filaments, however; thus explicit filament splitting and reconnection as

described in [24] are not pursued.

In addition to splitting elements and removing hairpins, we merge small elements

with their neighbors along a filament if the linear extent of the element becomes too

small, e.g., for I6Xl < 0.26. As with hairpin removal, we devise separate rules to

contend with even and odd numbers of adjacent small elements. In practice, we find

that hairpin removal is significantly more important than small-element merging in

curbing the proliferation of vortex elements and in regularizing filament geometry.

2.1.5 Parallel implementation

The present computations are implemented on a massively parallel distributed mem-

ory computer using message passing, via the standard MPI libraries. Two sets of

parallel calculations, with two corresponding data distributions, are employed in the

code.

The first set of parallel calculations centers on the vortex filaments. All of the fol-

lowing tasks are performed in parallel: calculation of cubic spline representations for

rj(p) and of all the quantities derived from cubic spline representations (e.g. element

centers, particle weights); mesh refinement along the filaments; hairpin removal; small

element merging. Domain decomposition in this case is simply a block distribution of

the filaments; each processor is assigned approximately an equal number of filaments

on which to operate. Since filaments may vary significantly in size, load balance is

not perfect. In this case, however, good load balance is not particularly important.

When parallelized, filament-based calculations represent less than 5% of the overall

computational expense of the code.

The second set of parallel calculations is significantly more complicated and com-

putationally demanding. To speed the evaluation of the velocity field, we use an

adaptive treecode developed by Lindsay and Krasny [77]. Parallel implementation of
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this treecode, or indeed any hierarchical solver, presents a number of computational

and geometric challenges. We introduce clustering algorithms for parallel domain

decomposition in this context, as well as new heuristics for dynamic load balancing.

Chapter 4 presents this development in detail.

Simulations reported in this thesis contain as many as 3.5 x 106 vortex elements.

2.2 Boundary conditions

We now discuss boundary conditions particular to the simulation of the transverse

jet flow field-both normal-velocity boundary conditions and vorticity flux boundary

conditions. In the subsequent expressions, all variables are made dimensionless by

d, the jet diameter, and Um, the velocity of the uniform crossflow. The crossflow is

directed in the positive x direction; the jet centerline is aligned with the y axis; and

the z axis is in the spanwise direction. Except on the disc of the jet orifice, the x-z

plane is taken to be a solid wall through which we enforce a no normal-flow boundary

condition.

2.2.1 Normal-velocity boundary conditions

The jet outflow is represented by a semi-infinite cylindrical vortex sheet of radius 1/2

extending from y = 0 to y = -oo, with strength -y = 2r O. The vorticity in this

cylinder is mollified by a core function identical to that used with the computational

vortex elements. This matching is crucial. An unmollified cylindrical vortex sheet,

or, equivalently, a uniform distribution of potential sources over the jet orifice with

surface source strength 2r, yields a singularity in the radial velocity at the nozzle edge

when paired with the computational vortex elements. This singularity was noted, and

left uncorrected, in [30]. We discretize the vortex sheet using vortex particles with

core radius, axial spacing, and azimuthal spacing identical to the vortex particles

introduced into the flow, as shown in Figure 2-1.

The crossflow velocity is given by the potential q$o = x. Image vortex elements

are used to model the behavior of vorticity in the semi-infinite domain, i.e., to enforce
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no-flow through the channel wall y = 0. Writing the vorticity in the domain compo-

nentwise w = (w, wY, w), the image vorticity has components Wimg = (-W, wY, -wZ).

2.2.2 Boundary generation of vorticity

Vorticity produced in the jet boundary layer (i.e., in the pipe below the y = 0 plane)

is represented by a single sheet of azimuthal vorticity. Introducing this vorticity into

the flow every Atnoz time units, we divide it among no vortex elements distributed

along the edge of the jet nozzle, where 6 = 2ir/no. These elements have weight

T2

(widV)o = 4 Atno.A~ ee (2.23)
4

where 60 is the tangential unit vector in the x-z plane.

Upstream of the jet, vorticity produced in the channel wall boundary layer initially

points in the negative spanwise (-i) direction. Our interest lies in the interaction of

this vorticity with the jet flow immediately around the nozzle edge; in particular, we

wish to model channel wall vorticity carried upward by the jet, as this is the vorticity

that will affect the evolution of the jet trajectory over the range of r. Thus we do

not attempt to resolve events in the wall boundary layer away from the jet nozzle, as

these have a diminished role in determining jet dynamics for r > 1 [112].

By considering the slip of crossflow velocity over the edge of the jet orifice, or,

alternatively, the penetration of crossflow velocity into the jet fluid at the wall, we

now derive perturbations to the vortex element strengths given in (2.23). These

perturbations, due to channel wall boundary layer vorticity, are 0(r) rather than

0(r2) [83].

First, consider the slip of crossflow velocity over the edge of the jet orifice. In polar

coordinates (r, 0) centered at the origin of the x-z plane, the radial component of this

slip velocity is canceled locally by an azimuthal vortex sheet of strength -y = - cos 660.

These vortex sheets are shed a distance rAtsoz/2 into the flow every timestep. Again

dividing this vorticity over no = 27r/AO elements distributed along the nozzle edge,
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we obtain
r

(LoidVi), = -Cos O-At AOz &Q (2.24)4

for the vortex element strengths due to this interaction.

Next we observe that crossflow velocity does not penetrate into the jet at y = 0.

This requires a velocity discontinuity in the 6o direction, which corresponds to a vortex

sheet of strength y = sin 0OY. Thus the interaction of crossflow vorticity with the jet

results in wall-normal vorticity; this idea is confirmed heuristically by considering the

tilting of a spanwise material line that encounters either spanwise extremity of the

jet. Again, we expect these vortex sheets to be shed at the local flow velocity, i.e.,

rAtnoz/2 every timestep. Dividing the vorticity over elements along the nozzle edge,

we obtain element strengths as:

r

(widVi) 2 = - sin Otnoz A0y (2.25)
4

A final constraint arises from kinematic considerations. In cylindrical coordinates,

for vorticity confined to a sheet emanating from the nozzle edge, the solenoidality

constraint on the vorticity field V -w = 0 requires

0 WY - 2 (2.26)
ay 00

Each new set of vortex elements represents vorticity in the flow for 0 < y < rAtnoz/2.

We thus introduce elements so that their centers lie at y = rAtnoz/4. Summing

jet and channel-wall boundary layer contributions to vortex element strengths and

enforcing (2.26), we obtain the following expression for the total strength of the vortex

elements introduced at each timestep:

widVi r = cos Oi )tnz A0 604 4
(r r2At _

+ -- sin O in Atnoz-r8y (2.27)
4 8 w

It is worthwhile to contrast the present vorticity formulation with other vortex
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models of the transverse jet. Our earlier computational effort [82] neglected vorticity

in the crossflow boundary layer, focusing only on the evolution of jet azimuthal vortic-

ity; this approximation is discussed therein and its effect will be noted in the results

section below. Another recent vortex filament simulation of the unforced transverse

jet [30] enforces a no-slip boundary condition along the channel wall by modifying the

uniform crossfiow with a cubic boundary layer profile near the wall. This boundary

layer profile corresponds to a finite vorticity, yet this vorticity is not allowed to evolve,

i.e., to obey the dynamics of equation (2.1), nor is it carried into the main flow by

the jet.

2.2.3 Closed vortex filaments in the near field

As a further modeling step, we provide a description of continuous, closed vortex

filaments representing the vorticity field derived above. For the purposes of detailed

simulation, closed vortex filaments are numerically convenient; they guarantee that

the numerical representation of the vorticity field remains solenoidal and conserve

many fundamental invariants of three-dimensional inviscid flow [32]. Knowledge of

filament geometry also provides a deeper physical understanding of the flow, par-

ticularly in the context of filament folding mechanisms shown to be responsible for

formation of the counter-rotating vortex pair [82, 43] (see Chapter 3).

From the derivation detailed above, we can write the vorticity field near the nozzle,

i.e., for 0 < y < 1, as:

_ T 2 r
widVi - cos oi Atnoz AO60

4 4

+ - sin 0 - y - sin oi) AtnoZA06Y

- Fidli (0, y) (2.28)

2Dividing by the desired filament circulation r' = 1 2At, we seek integral curves of the

vector field
) cos sin 0

l (0,y) =(-l + O o (- 2 y) &y (2.29)
r T
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The resulting space curve C(s) = p(s)eo + q(s)ey can be obtained as the solution of

two ODEs:

dp Cos P

ds
dq sin p (1 - 2q) (2.30)
ds -r (.0

A solution of these coupled ODEs can in fact be written analytically. Choosing initial

conditions so that (6, y) = (7r, 0) is a point on C(s), we have:

p(s) = -2 arctan I j (2.31)

q (s) 2r r -1 _ _2 )2 +2V12 7r + r - (2)2q(s) = (r12r12r1+ 2 +r121+2(2.32)
(r - 1)2(r + 1)2 1 +12 r, - 1)2 (1 + _2)2

where

I = tan 1 -- (2.33)

and the solution is (27r/ 1 - 1/r2)-periodic in the parameter s. For larger r, the

resulting vortex filament is fiat and ring-like, as jet azimuthal vorticity dominates;

for smaller r, the vortex filament is more "kinked" in the y-direction. The geometry

of the initial vortex filament entering the flow is shown in Figure 2-2 for r = 5 and

in Figure 2-3 for r = 15.

The vortex filament construction here can be generalized to arbitrary perturba-

tions to the primary jet azimuthal vorticity-that is, arbitrary vorticity actuations at

the nozzle edge.

wid i = - + f () xtnozzAO&

+ (g(O) - 2yf'(O)) AtOzA6-y (2.34)

Here, f(0) is a perturbation to the azimuthal vorticity and g(6) is perturbation to the

axial vorticity; both functions could be 0(r). Once again, solution of simple ODEs,

analogous to (2.30), yields the geometry of the closed vortex filaments entering the
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flow at the jet orifice. This construction provides a compact, physically revealing

description of key actuation inputs. The shape and circulation of filaments entering

the flow depends explicitly on the distribution of axial and azimuthal vorticity along

the nozzle edge and on the jet-to-crossflow velocity ratio r.
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Figure 2-1: Discretization of the cylindrical vortex sheet representing the jet outflow
for y > 0.
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Figure 2-2: Initial geometry of closed vortex filaments in the transverse jet, for r = 5.
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Figure 2-3: Initial geometry of closed vortex filaments in the transverse jet, for r = 15.
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Chapter 3

Results: Vorticity Dynamics

We now present the results of vortex simulations of the spatially evolving transverse

jet, at velocity ratios r ranging from 5 to 10. Our goal is to understand the structure

of the vorticity field and to elucidate the mechanisms giving rise to this structure.

While the literature has seen much emphasis on the formation of the counter-rotating

vortex pair (CVP), we find that this process is tightly coupled to dynamics involving

unsteady transformations of the initially cylindrical jet shear layer into a rich and

varied set of vortical structures, and a concurrent "cascade" of large length scales

into small scales as the jet evolves downstream.

Analysis of the flow is aided by extracting and examining the evolution of material

lines carrying vorticity, instantaneous and averaged vorticity isosurfaces, streamlines,

and trajectories. These efforts encompass comparison with similarity theory, other

computational results, and experiment. We will also examine the impact of the

vorticity flux boundary conditions derived in the previous chapter and comment on

the validity of analytical expressions for the near-field vortex lines.

Finally, we compute the field of maximal finite-time Lyapunov exponent associated

with particle trajectories for selected regions and time intervals in the r = 7 jet. This

field, calculated directly from particle paths, identifies repelling material surfaces that

organize finite-time mixing.
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3.1 Numerical parameters

Numerical parameters for the vortex simulations were chosen as follows: Overall spa-

tial resolution is governed by the core radius 6, chosen to be 0.1. The number of

elements discretizing vorticity introduced along the nozzle edge (e.g., the initial az-

imuthal resolution) is no = 64. Axial resolution depends on the timestep between

successive filament introductions, AtnOz. We keep the distance rAts,, relatively con-

stant for different choices of r. Thus, for the r = 7 jet we put At,,, = 0.01; for r = 10

we put AtnOz = 0.0075; and for r = 5 we put At 0Oz = 0.0125.

The length threshold for splitting elements is fixed at 0.96, while the length thresh-

old for merging small elements along a filament is 0.26. We fix the cutoff for hairpin

removal at cos(O)min = 0.0. The error tolerance parameter a controlling the integra-

tion timestep in (2.21) is set to 0.01.

A series of numerical convergence studies were performed to justify the above

choices of numerical parameters. Filament geometries were observed to be unaffected

by further reduction of the error tolerance parameter a. The jet trajectory as well as

the shape and location of large-scale vortical structures in the flow were unaffected by

relaxation of the hairpin removal cutoff (cos 0)min. Similarly, the trajectories, vortical

structures, and dynamical processes reported below were preserved under further

refinement of the spatial resolution parameters 6, no, and Atnoz, suggesting that the

present simulations are well-resolved at the chosen values.

3.2 Vorticity transformation mechanisms

3.2.1 Vortex filament evolution

We first examine successive snapshots of computational vortex filaments in transverse

jets at various jet-to-crossfiow velocity ratios r. Filament geometries provide a clear

overview of the vortical structures in the starting jet and of the dynamical processes

that accompany formation of these structures. Figure 3-1(a)-(e) shows filaments

in 3-D perspective for the r = 5 jet. Times i corresponding to each snapshot are
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normalized by d/U,, the crossflow convective time scale. Figure 3-2(a)-(e) shows

analogous snapshots for the r = 7 jet and Figure 3-3(a)-(e) shows filaments in the

r = 10 jet. Times for the various snapshots were chosen to cover the entire computed

evolution of each jet and to allow comparison of different jets at identical crossflow

convective times i. Times were also selected to show the r-dependence of jet evolution

at identical jet convective times t/(d/rU0 ). For instance, the r = 5 jet at i = 2.40,

Figure 3-1(c), is at the same jet convective time as the r = 10 jet at t= 1.20, shown

in Figure 3-3(c).

Several important features are apparent in these figures. The most obvious is that

the jet penetrates more deeply into the domain for larger r. The envelope of the

r = 10 jet is more upright than that of the r = 7 and r = 5 jets, and although all the

jets are deflected by the crossflow in the positive x-direction, the larger-r jet begins

significant tilting much later in its evolution-later in the sense of both jet convective

time and wall-normal distance y/d.

Next, all three cases show roll-up of the jet shear layer, indicative of the expected

Kelvin-Helmoltz instability. Shear layer roll-up is indicated by the axial grouping-

together of vortex filaments and is particularly visible on the upstream (windward)

side of the jet. On the lee side of each jet, a more complex out-of-plane distortion

of the vortex filaments accompanies the roll-up. This distortion holds the key to

the development of counter-rotating vorticity and will be explored more fully in the

next subsection. As the jets evolve further, filaments stretch and fold in response

to flow strain and are continually remeshed with a growing number of nodes. The

growing number of computational elements thus reflects the mechanism by which

smaller length scales are generated in the flow. At all values of r, large-scale vortical

structures undergo a critical transition at the head of each jet, breaking up to form a

"mushroom cloud" dominated by complex, shorter-length-scale vortical interactions.

This transition is accompanied by more pronounced bending into the crossflow. While

this far-field region appears solid black in the present black-and-white plots, it con-

tains structure which we will elucidate with additional diagnostics (see §3.2.3 and

§3.2.4).
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We also note that, though the jets continue to evolve downstream, the near field

envelope of each jet seems to mature. Comparing Figure 3-2(d) and Figure 3-2(e), for

instance, the jet envelope seems unchanged for x/d < 2.0. At this stage, the initial

orientation of the jet is normal to the wall for all three values of r.

3.2.2 Ring folding and counter-rotating vorticity

The out-of-plane distortion of vortex filaments may be analyzed more carefully by

following the evolution of individual segments of the jet shear layer. Consider first

the r = 7 jet: we count nine distinct roll-up events on the windward side of the jet as

it evolves from i = 0 to i = 2.60. The fate of the ring-like vortical structures formed

in the first two roll-ups differs qualitatively from that of subsequent structures. This

is not surprising, as the earlier rings initially interact with a very different vorticity

field than the later rings. The first vortex ring, shown forming at head of the jet in

Figure 3-2(a), encounters no vorticity downstream. Vorticity later introduced into the

flow is affected significantly by vorticity already in the field; while this vorticity also

forms ring-like structures, these structures are stretched and deformed by existing

vorticity as they in turn affect the evolution of pre-existing and subsequent vortical

structures.

Let us examine this process step-by-step, remaining focused on the r = 7 jet,

though we will later show that the evolution of vorticity is similar for all the values of

r considered. The first roll-up, occurring at the head of the shear layer in Figure 3-

2(a), gives rise to a vortex ring that remains strong in the flow for subsequent times.

This ring can be seen near the head of the jet in Figure 3-2(b) for instance, 0.60

convective times later, though it has pulled additional vorticity through its center.

The ring stays relatively planar as it tilts into the crossflow, inducing deformations of

the vorticity-carrying material around it that contribute to the complicated structure

in the mushroom cloud.

Next, in Figure 3-4 we show only those vortex elements that were introduced be-

tween i = 0.45 and i = 0.52. As detailed in Chapter 2, elements take the form of

locally-defined vortex filaments or "sticks." Though they primarily carry azimuthal
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vorticity, these filaments actually represent multiple components of vorticity whose

relative strengths vary along the azimuthal coordinate in accordance with (2.27).

These filaments grow in length and are remeshed independently of each other in re-

sponse to flow-induced stretch. Their initial arrangement, however, is essentially along

a ring, and the filaments collectively maintain this coherence as they evolve. Thus it is

meaningful to speak of the geometric transformations of a vorticity-carrying material

"ring" when describing the collective evolution of this group of vortex elements.

The segment of the shear layer shown in Figure 3-4(a) participates in the second

roll-up on the windward side of the r = 7 jet. But the evolution of the entire material

ring is significantly more complex than a single roll-up. This evolution is traced in

Figure 3-4(b)-Figure 3-4(e) with four snapshots, equally spaced in time. The shear

layer first deforms out-of-plane, as shown in Figure 3-4(b); here, the downstream (lee)

side of the shear layer has stretched upwards to form a tongue-like structure. This

deformation can be attributed to velocity induced by the preceding vortex ring; above

and slightly downstream of the filaments shown, the first ring induces an upward

velocity on the lee side of the ensuing shear layer. In Figure 3-4(c), the tongue-like

structure becomes more pronounced and the filaments group together; the shear layer

is rolling up, and the roll-up centers on the filaments we have selected here. At the

very top of the tongue-like structure, however, a new deformation is present: vortex

elements are curving towards the windward side of the jet. This deformation is due at

least in part to the vorticity carried by lower portions of the filaments. Vertical arms of

the tongue-like structure carry counter-rotating vorticity-pointing upwards for z > 0

and downwards for z < 0. Material elements between the counter-rotating arms are

transported backwards (in the negative x-direction), normal to the vorticity. As the

ring evolves further, its upper portion flattens and the entire structure takes the form

of two vortex arcs connected by vertical arms. While the arms are approximately

aligned with the jet trajectory in Figure 3-4(d), they curve against the crossflow in

Figure 3-4(e); this final stage of deformation is unique to this shear layer segment,

due to interactions with the first vortex ring, and is not repeated as the jet near-field

matures.
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Subsequent segments of the shear layer undergo a series of deformations reminis-

cent of those just described, but settle into a repeating pattern. This pattern may be

summarized by tracing the evolution of two complementary groups of elements. Fig-

ure 3-5 is representative of the first group, showing vortex elements introduced into

the flow between t = 1.09 and i = 1.14, in five successive snapshots each separated by

0.20 time units. The start of upward deformation on the lee side of the shear layer is

shown in Figure 3-5(b). Upward deformation becomes more pronounced in Figure 3-

5(c). In contrast to the shear layer segment considered in the preceding paragraph,

it is the lee side of the present shear layer segment that rolls up most strongly; the

windward side remains sheet-like. Vertical arms form below the lee-side roll-up on

either side, but their length is at most one diameter. As with the earlier tongue-

like structure, the vertical arms carry counter-rotating vorticity essentially aligned

with the jet trajectory. In Figure 3-5(d) the lee side roll-up begins curving towards

the windward side of the jet; at this stage, the lee-side roll-up is a vortex arc in its

own right. Deformation of this arc is consistent with the orientation of the counter-

rotating vorticity; it is likely the result of velocity induced both by counter-rotating

vorticity on the present vertical arms (i.e., below the roll-up) and by counter-rotating

vorticity produced by earlier segments of the shear layer, not shown in these figures

but situated above the roll-up. (We will address coupling between the deformation of

different shear layer segments later.) Figure 3-5(e) shows that the lee-side vortex arc

has curved more completely towards the windward boundary of the jet while the rest

of the shear layer segment's vorticity has become somewhat more convoluted. Note

that the vortex arc carries vorticity pointing in the negative z direction, opposite

in sign to the vorticity that has remained on the windward side of the shear layer

segment.

Figure 3-6 is representative of the second group of vortex elements. This figure

traces evolution of the shear layer segment immediately following that of Figure 3-5;

its elements were introduced into the flow between t = 1.16 and i = 1.22. This

shear layer segment is also pulled upwards on its lee side, as shown in Figure 3-

6(b), but it rolls up most strongly on its windward side. This shear layer segment

49



in fact participates in the 6th roll-up on the windward side of the jet. Now it is the

lee side that, though deformed out-of-plane, remains more sheet-like-see Figure 3-

6(c). Vertical arms of counter-rotating vorticity still develop as the lee side is pulled

upwards, however. The arms themselves show a tight grouping of vortex elements,

clearly visible in Figure 3-6(d); these rolled-up vertical arms coincide with the vertical

arms in of the first group, in Figure 3-5. Figure 3-6(d) shows that lee-side elements

still get swept towards the windward boundary of the jet, just without undergoing

roll-up. Lee-side elements appear slightly more disorganized in Figure 3-6(e); some

of the elements seem to be winding around the primary vertical arms.

Shear layer segments in both groups thus exhibit strong similarities in their evolu-

tion. Each segment transforms into two arcs contributing opposite signs of vorticity

to the jet's windward boundary and connected by vertical arms of counter-rotating

vorticity. The two groups differ in whether it is the lee side or the windward side

of the shear layer that rolls up more strongly. The two shear layer segments we se-

lected are complementary because they coincide in space after their transformations

are complete. In other words, the upper vortex arc of the first group is surrounded

by disorganized elements of the second group; and the lower vortex arc of the second

group is surrounded by disorganized windward-side elements of the first.

This analysis is consistent with recent experiments of Lim, New, and Luo [76] in

which water-tunnel dye visualizations identify "vortex loops" carrying opposite signs

of vorticity that result from folding of the cylindrical shear layer. (See Figure 1-3.)

Our simulation results allow us to trace the origins of these loops and note how both

lee and windward loops alternately evolve from identical vorticity-carrying material

rings.

Assembling successive segments of the shear layer affords additional insight into

the mechanisms underlying the observed ring-deformation. Figure 3-7 shows four

successive segments of the shear layer at t = 1.56, before significant deformation has

occurred. The segments are color-coded; the gray segment is the "first group" of

vortex elements analyzed above, while the red segment is the "second group." The

green and blue segments show vorticity introduced into the flow for i C [1.23, 1.26] and
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t E [1.28, 1.35] respectively. Now consider the shape of these shear layer segments

at t = 2.00. Figure 3-8(a) shows groups 1 and 2 together; it is clear that these

deformed shear layer segments coincide in space, with group 1 contributing to the

lee-side roll-up and group 2 contributing to the windward roll-up as described above.

Figure 3-8(b) adds the next shear layer segment to the picture. This segment begins

the transition to next group of roll-ups; like other segments, it folds into two vortex

arcs, but its vertical extent is much smaller. Its lee-side vorticity is not attracted to

the vortex arc at the top of the figure; rather, it initiates a new lee-side vortex arc in

between the windward and lee arcs of segments 1 and 2. Figure 3-8(c) adds the fourth

shear layer segment. This segment rolls up strongly on its lee side, strengthening the

new vortex arc; its windward side, though not rolled up strongly, points out the site of

a new windward roll-up, at the bottom of the figure. In keeping with this alternating

pattern, the subsequent segment of the shear layer will reinforce the new windward

roll-up. An alternate perspective view of all four shear layer segments at i = 2.00

is given in Figure 3-9. Figure 3-9(b) clearly shows the winding of vortex filaments

around the arms of counter-rotating vorticity.

The periodic shear layer deformation mechanism just described is not unique to the

r = 7 jet. In fact, we observe the same transformation of vorticity-carrying material

rings into arcs connected by vertical arms of counter-rotating vorticity in the r = 5

and r = 7 jets, along with the same alternating pattern of lee and windward roll-ups.

Figure 3-10 shows the folding of a shear layer segment in the r = 5 jet, with strong

roll-up on the lee side. Figure 3-11 shows the complementary segment of the shear

layer immediately following, which rolls up strongly on its windward side. Figure 3-12

shows an analogous shear layer segment in the r = 10 jet, featuring strong lee roll-up;

transformation and windward roll-up of the complementary shear layer segment is

traced in Figure 3-13.

3.2.3 Vorticity isosurfaces

We turn our attention from transformations of the jet shear layer to direct exami-

nation of the vorticity field. The vorticity w(x, t) is computed on nodes of a regular
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grid by summation over all the vortex elements, as specifed by (2.16). Grid spacing

is h = 0.05; this 3-D mesh is then used to create vorticity isosurfaces and contours.

Figure 3-15 shows isosurfaces of vorticity magnitude I|W|12 = 40.0 for the r = 7

jet at three successive times, i=1.8, 2.1, and 2.4. Analogous isosurfaces are computed

for the two other jets. Figure 3-14 shows IW112 = 28.0 isosurfaces for the r = 5 jet at

f=2.4 and 3.0; Figure 3-16 shows |WH2 = 60.0 isosurfaces for the r = 10 jet at f=1.5

and 1.8.

Examination of these isosurfaces confirms the presence of several key vortical

structures. Roll-up of the shear layer into vortex rings is clearly visible at all values

of r. These rings immediately deform upwards on the lee side of the jet. Note that

because isosurfaces only highlight regions of high vorticity, they cannot strictly be

interpreted as material lines; that is, isosurfaces may not reflect the continuity of the

material rings discussed in §3.2.2. Nonetheless, these figures all show arms of vorticity

aligned with the jet trajectory on the lee side of the jet; these arms seem connected

to vortex rings on the windward side, particularly among the first several roll-ups.

This vorticity structure is consistent with the material deformations described in the

previous section. The configuration of the vorticity arms-pulled upwards into the

center of the vortex rings immediately above them-strengthens our hypothesis that

vortical structures already in the flow induce the initial axial stretching of the jet

shear layer on its lee side.

The relatively organized and periodic vortical structures in the intermediate field

of the jet undergo a sudden breakdown into smaller length scales-4-5 diameters

from the nozzle for r = 10, 3-4 diameters from the jet nozzle for r = 7, and slightly

closer for r = 5. In the vortex filament plots, this breakdown was manifested by a

complex tangle of computational elements; here we observe a dense field of small,

nearly fragmented isosurfaces. This transition is accompanied by more pronounced

bending into the crossflow. Some larger-scale structures-e.g., interacting vortex rings

along the top edge of jet-are still visible, but the field is dominated by small length

scales. Further downstream (e.g., for x/d > 4.0 at r = 7) there are artifacts of jet

startup, such as a tongue of vortex-carrying fluid collapsing onto the centerplane. But
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the present simulations have continued long enough to show that the breakdown into

small scales is a persistent feature of the flow.

Returning to the intermediate field, we note a change in the spatial periodic-

ity of rings on the windward side of the shear layer as the jet penetrates into the

crossflow, upstream of the transition to small scales. Mechanisms discussed in §3.2.2

suggest that vortex arcs carrying opposite-sign azimuthal vorticity are driven towards

the windward boundary of the jet. Confirmation of this mechanism is presented in

Figures 3-17 and 3-18 which contour vorticity magnitude isosurfaces with values of

spanwise vorticity w, at successive times, for r = 5 and r = 7. Negative spanwise

vorticity, indicated by darker shading, originates on the lee side of the jet. As the jet

penetrates, lee-side vortex arcs produced by roll-up and deformation of the shear layer

find their way to the windward side. The resulting pattern is of vortex arcs carrying

alternating signs of azimuthal vorticity, curved along the windward boundary of the

jet.

While merging of opposite-sign vortex arcs has been proposed in [43] and was

observed in our earlier, more dissipative, simulations [82], we do not explicitly observe

merging here. Opposite-sign vortex arcs certainly approach each other more closely

as the jet evolves; it is possible that the subsequent breakup into small scales may

obscure any large-scale merging. It is also reasonable to expect that the mechanism

and location of any merging may depend on Reynolds number; this dependence is

currently under investigation [125].

Mechanisms proposed in §3.2.2 predict that vortex arms aligned with the jet tra-

jectory should carry counter-rotating vorticity. In the near field of the jet, a significant

component of this counter-rotating vorticity will be oriented vertically, and thus we

show isosurfaces of vorticity magnitude contoured by wy in Figure 3-19. This image

clearly reveals tubes of counter-rotating vorticity on the lee side of the jet, tilting into

the cross-stream. Regions of high vorticity also seem to wind around the CVP arms;

this phenomenon is particularly visible in Figure 3-15(a) and Figure 3-14(b).

A crucial feature of counter-rotating vorticity in the near field is that, though it

results from periodic processes (e.g., roll-up and deformation of the shear layer), it
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persists in the mean field [30, 102, 132]. We investigate this feature for the r = 7

jet by computing the time-average of the vorticity field over one cycle of shear layer

roll-up. Shear layer roll-up in the near field is strongly periodic, with a period t of

approximately 0.18. This corresponds to a jet Strouhal number St = fd/(rU.) of

0.8, a value confirmed by measurements of velocity spectra at selected points near

the shear layer. (Further measurements of velocity spectra at different r and in

different regions of the flow are underway [85].) We compute the averaged vorticity

field using realizations incrementally separated by At = 0.02. Figure 3-20 shows the

isosurface of vorticity magnitude ||0o| = 40 where Co is the mean vorticity in the

interval i E [2.31, 2.49]. The isosurface is contoured by the mean vertical vorticity

CDY. Two arms of counter-rotating vorticity are clearly present in the near field; the

remaining structures-the periodic vortex arcs of alternating sign on the windward

side of the jet-have disappeared in the mean field. Widening the interval over which

averaging is performed to [2.23, 2.49] reveals a continued CVP section further along

the trajectory, in Figure 3-21(a). Since the length of this interval is not a multiple

of near-field roll-up period, however, the near field CVP is more cleanly isolated in

Figure 3-20.

Higher isosurface values can expose the CVP cores even more clearly. Figure 3-

21(b) contours the isosurface of vorticity magnitude JJCLA = 48, showing that the CVP

is really the dominant feature of the mean vorticity field upstream of the breakup into

smaller scales. Also, it is important to emphasize that the counter-rotating structures

are present at earlier times in the simulation as well. Figure 3-22 shows the isosurface

I = 52, where time-averaging has been performed over the interval i E [1.71, 1.89].

The higher cutoff shrinks the isosurfaces even further, but clearly isolates tubes of

counter-rotating vorticity aligned with the jet trajectory.

In each of the four preceding figures, note that very little wall-normal vorticity

is present in the first diameter of the trajectory. This observation is consistent with

the mechanisms described in §3.2.2, in which axial deformation of the shear layer

gradually re-orients initially azimuthal vorticity to the wall-normal direction.
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3.2.4 Streamwise vorticity and transition to small scales

The dramatic breakdown of organized vortical structures into smaller scales as the

transverse jet bends into the crossflow has been observed elsewhere [132], but mech-

anisms for this breakdown are not immediately clear. Classical instabilities of anti-

parallel vortex tubes may be excited as counter-rotating vortex arcs approach each

other on the windward boundary of the jet [98, 127]. More generally, the wild stretch-

ing and folding of vortex filaments to form small scales can be linked to short-wave

instabilities, excited when the distance between filaments is comparable to or smaller

than a core size [121, 28]. These mechanisms and their relevance to the transverse jet

merit further investigation.

The complex structure of the far field, observed in vorticity isosurface plots (Fig-

ures 3-14-3-18) is also visible on instantaneous slices of streamwise vorticity. Our

interest in streamwise vorticity is motivated by the traditional picture of the trans-

verse jet far-field, in which a counter-rotating vortex pair with compact cores slowly

travels away from the wall and spreads as it persists downstream [18, 67]. This

picture, based on integral arguments or ensemble-averaged measurements of scalar

concentration, vorticity, or velocity, is admittedly over-simplified. The instantaneous

structure of the jet cross section is far more complex-asymmetric, meandering in the

spanwise and wall-normal directions, and dominated by small scales [112, 41, 102, 88].

Figures 3-23 and 3-24 bear this out, showing slices of streamwise vorticity on a series

of x/d-planes, for r = 5 and r = 7. The field varies significantly from plane to plane,

and significant co-mingling of positive and negative vorticity is evident.

Though the vorticity field appears quite unorganized, it may yet have an under-

lying structure; we would like to extract a signature of this structure if it is present.

Following the approach suggested by Yuan et al. [132], we low-pass filter the instan-

taneous streamwise vorticity on each plane in Figures 3-23 and 3-24. We construct

a two-dimensional low pass filter with corner wavenumber ky = k. = ir/d, where d is

the jet diameter. Results of the filtering are shown in Figures 3-25 and 3-26. Orga-

nized counter-rotation is evident in the filtered vorticity field, with strong regions of
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positive w, for z > 0 and vice versa, as expected. The maximum streamwise vorticity

magnitude in the filtered field is approximately 8 times lower than in the unfiltered

field; again, this result is consistent with [132].

The instantaneous vorticity in Figures 3-23 and 3-24 is slightly asymmetric about

the centerplane (z = 0). Asymmetry persists under filtering (see Figures 3-25 and 3-

26) and is more pronounced in the r = 7 case than in the r = 5 case. Interpretation of

this asymmetry and its origins is rather subtle. Though our vorticity-flux boundary

conditions are symmetric and the crossflow is uniform, symmetry is not explicitly

enforced elsewhere in the computation. In fact the clustering partition, with its

random seed of initial centroids (see Chapter 4) does not respect symmetry at all.

As a result, the velocity approximation error is distributed asymmetrically in space.

These errors, in turn, may cause initially symmetric vortex particle locations and

weights to evolve asymmetrically.

Numerical mechanisms, however, cannot be separated from the underlying flow

physics. In a simulation, various forms of numerical error (e.g., approximation error

and roundoff error from finite-precision arithmetic) are always present; similarly, no

experimental setup can be free of physical noise, surface roughness, or asymmetry at

length scales smaller than measurement or machining accuracy. Questions of symme-

try are intimately linked to how the flow amplifies or dampens these perturbations. In

general, issues of whether the transverse jet is ultimately "symmetric" or "asymmet-

ric" remain unresolved. Smith and Mungal [112] performed a series of wind tunnel

experiments in which symmetry of the experimental setup and flow uniformity were

carefully controlled, yet they report instantaneous and even ensemble-averaged PLIF

images of the jet cross-section that are not symmetric. Spatially filtered streamwise

vorticity contours reported in [132] are also asymmetric, though in this computa-

tional study, the incoming pipe velocity profiles were extracted from a temporally-

evolving "turbulent flow" simulation which may have had instantaneous asymmetry.

In general, several researchers have observed asymmetry in averaged profiles of the

transverse jet, increasing with r and with downstream distance [66, 112].

Analysis of the filtered vorticity field raises another interesting issue-the impact
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of Reynolds number. Our earliest vortex simulations of this flow employed core ex-

pansion and consequently were quite dissipative in the far field; despite the coarseness

of those calculations, counter-rotating streamwise vorticity was immediately evident

in instantaneous transverse planes [81, 82]. Some of our current work (beyond the

scope of this thesis) focuses on accurate finite-Reynolds number simulations of the

transverse jet using vorticity redistribution [125]; here the breakdown of organized

structures into small scales remains very much in evidence, but it may be that the

filtered vorticity field carries a proportionally larger portion of the energy. An LES

study by Yuan et al. [132] at a crossflow Reynolds number (Re = Uood/v) of 1050

shows results similar to the present data. Water-tunnel experiments for extremely low

Reynolds number (Re=21-78), however, show the jet fluid can completely bifurcate

into tubes aligned with counter-rotating vorticity [63].

3.3 Boundary conditions and jet trajectories

Figures 3-27 and 3-28 show instantaneous velocity vectors and streamlines on the

centerplane z = 0 at t = 3.20, for simulations with r = 7. The simulation in

Figure 3-27 introduces vortex elements containing only jet azimuthal vorticity, i.e.,

with strengths given by equation (2.23). The simulation in Figure 3-28 introduces

vortex elements that additionally account for the interaction of channel wall vorticity

with the jet, i.e., with strengths given by equation (2.27). Contours indicate the total

velocity magnitude dU1. In both simulations, the time interval for introducing new

filaments at the nozzle was fixed at At,,, = 0.02.

The comparison in these two figures clearly illustrates the effect of nozzle-edge

vorticity on the near field trajectory of the jet. Neglecting vorticity in the jet channel

wall boundary layer results in a jet initially angled downstream from the vertical,

inconsistent with experimental observation. Modeling the interaction of channel wall

vorticity with the jet, however, results in a jet trajectory initially normal to the wall,

matching experimental observations and correlations [58].

An interesting feature of the centerplane velocity field in Figure 3-28 is the presence
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of a node just downstream of the jet nozzle. In three dimensions this correponds to

fluid being swept forward around the jet, toward the centerplane. Hasselbrink and

Mungal [59] confirm the presence of this node in PIV measurements. By continuity,

the lee side of the jet shear layer is initially subject to a compressive strain rate

(aw/Dz < 0) as it is stretched upwards.

Three-dimensional streamlines, shown at t = 2.00 in Figures 3-29 and 3-29, provide

a more complete context for features on the centerplane. Crossflow fluid near the wall

is swept around the nascent jet fluid, consistent with our boundary conditions, and

into the centerplane downstream of the jet. Water-tunnel dye visualizations by Kelso,

Lim and Perry [70] revealed very similar flow patterns, corroborated in other studies

[108]. On the lee side of the jet, some of the crossflow fluid is pulled strongly upwards

into the region of counter-rotating vorticity, while other streamlines continue in the

streamwise direction; there is likely a separatrix in the streamline pattern delineating

the two behaviors.

Additional validation may be obtained may be comparing numerical results with

correlations and scaling laws for the jet trajectory. Hasselbrink and Mungal [58]

perform an extensive scaling analysis of the transverse jet and derive an analytical

expression for the near-field trajectory, where the trajectory is defined as the mean

streamline emanating from the center of the jet:

ye 2 XC 1/2(31
-- = - -(3.1)rd cej rd)

Here cj denotes a near-field entrainment coefficient; we use the value cj = 0.32 as

suggested by [101]. This analytical trajectory is shown in Figure 3-31, along with the

instantaneous center streamlines obtained from simulations at r = 5 and r = 7. We

plot in rd-coordinates suggested by similarity analysis and often used in experimental

correlations [80, 69, 117]. Initial agreement between the simulation and the scaling-

law model is good, although the instantaneous streamlines exhibit wiggles around

periodic vortical structures, as expected. Moderate deviations downstream may be

due to a variety of factors. For one, the near-field scaling law in (3.1) transitions
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to a different 1/3 power-law trajectory for the jet far-field, and it is not clear where

this transition should occur, and how this location should depend on r. Also, while

the 1/2 exponent in (3.1) results from a well-founded series of similarity assumptions

and other approximations, experimentalists have reported a range of different values,

typically from 0.28 to 0.34. Finally, it is important to note that the downstream

section of each numerical trajectory represents a jet envelope that is still evolving

downstream in time, and that vortical artifacts of jet startup have yet to convect far

away enough to have negligible effect.

The ring-folding mechanism discussed in §3.2.2 motivates an interesting connec-

tion to the trajectories and scaling analysis. Jet centerline trajectories in Figure 3-31

match Hasselbrink and Mungal's "near field" 1/2 power-law trajectory quite well un-

til a certain critical value of y/d (or y/rd); then, the trajectories continue with a

shallower penetration into the flow. (This is particularly visible for the r = 7 results,

at y/rd = 0.65.) The same similarity analysis yields a 1/3 power-law for the far field,

which does indeed correspond to shallower trajectories:

Y = (3x 1/3 (3.2)
rd (c,, rd)

Here cew is a far field entrainment coefficient; a value of (3/ce) 1/3 = 2.1 is suggested

in [59].

The folding of vortex rings suggests a mechanism governing the transition from

near to far fields. Before rings have folded completely, the jet is more upright, domi-

nated by periodic structures derived from deformations of the cylindrical shear layer;

after the rings fold, we observe a cascade to small scales and an underlying counter-

rotating vorticity. Folding comprises the key topological change in the evolution of

vorticity field, replacing one set of vorticity dynamics with another. It is possible

that this demarcation of the vorticity dynamics bears some correspondence to the

near- and far-field jet behavior obtained by intermediate asymptotic similarity, and

that the folding of vortex rings to form the counter-rotating vortex pair provides a

mechanistic explanation of the transition. While the folded states depicted in Fig-
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ures 3-5-3-6 are obtained at different times than the r = 7 trajectory in Figure 3-31,

the y/rd coordinate at which lee-side vortex arcs reach the windward side of the jet

roughly corresponds to the point at which the jet centerplane trajectory departs from

the near-field power law. This possiblity bears further investigation.

A more complete analysis of jet trajectories requires longer-time simulations to

achieve a stationary state for y/rd >> 1 and to compute the resulting mean velocity

field. Continuing the present vortex simulations to longer time is more computa-

tionally feasible at finite Reynolds number; finite-Re simulations employing vorticity

redistribution and remeshing are currently underway [125].

3.4 Near-field vortex lines

A confirmation of the analytical model for closed vortex filaments in the near field

of the transverse jet is presented in Figure 3-32. Here, the solid curves are vortex

lines of the numerical vorticity field-i.e., lines obtained by numerical integration

of the vorticity of an r = 7 jet at t = 1.40, i.e., a time by which the vorticity

field several diameters above the jet nozzle has matured. Dashed lines are obtained

from integration of the ODE system in (2.30). Agreement is quite good. Slight

discrepancies may be due in part to the finite spatial resolution of the numerical

vorticity field, here obtained for 6 = 0.05, h/6 < 1, compared to the continuous field

used to derive the analytical filaments.

3.5 Direct Lyapunov exponent calculations

An alternative approach to characterizing the flow seeks Lagrangian coherent struc-

tures. Many approaches to coherent structures-indeed myriad definitions of coherent

structure-have been proposed [55, 57, 126, 19, 641; we do not attempt to review these

here. Instead, we note that the utility of many of these criteria is restricted in the

present context because the turbulent transverse jet is an aperiodic flow for which we

necessarily have only a finite-time interval of data.
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Here we take the approach suggested in [56] and view coherent structures as

linearly unstable material lines or surfaces. A straightforward means of extracting

stable/unstable material structures is to directly calculate their effect on particle

paths. Consider the deformation tensor F:

FT = V 0x (t, to, xo) (3.3)

Here x(t, to, xo) is the flow map, i.e., the trajectory followed by the particle that is

at point xO at time to. F thus describes deformation at (x, t) with respect to initial

conditions. For t > to, the largest singular value of F, a-1(F), gives the maximum

relative growth of an infinitesimal vector at xO advanced by the flow map over the

interval [t, to]. Equivalently, this is the maximum length S' (xo) of a unit vector

advected by the linearized flow map:

S' (xo) = -1 (F) = VAmax (FTF) (3.4)

where FTF is known as the right Cauchy-Green strain tensor [91]. The largest finite-

time Lyapunov exponent associated with x(t, to, xo) is thus [56]

1
A(t, to, xo) = ln (Amax (FTF)) (3.5)

2(t - to)

We calculate A in forward time (t > to) using a dense initial grid of particles.

These particles are advected by the same second-order predictor-corrector scheme

used to advect the nodes of vortex filaments. The velocity at each particle is cal-

culated directly from the Biot-Savart law (2.8). Derivatives in F are approximated

with central differences; the maximal eigenvalue of each symmetric matrix FTF is

calculated using a rational variant of the QR method. Local maxima of the resulting

field At (xo) are repelling coherent structures.

Direct calculation of A as described above is susceptible to numerical error. Parti-

cle paths diverging from each other exponentially fast will yield exponentially-growing

errors in discrete approximations to components of F. However, this issue can be sur-
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mounted for finite time by choosing a sufficiently dense initial grid [56]. We focus

our calculations on the near field of the r = 7 jet, releasing particles at to = 2.00,

a time when vorticity dynamics in the near field of the jet have matured. We run

cases corresponding to two initial grids: a lower-resolution case with a uniform grid

spacing of 0.040 and a higher-resolution case with uniform grid spacing of 0.025; both

of these values are normalized by the jet diameter d.

Figures 3-33 and 3-34 show contours of maximal direct Lyapunov exponent (DLE)

A (xo) on planes of constant z/d. We restrict our attention to z/d < 0 since the

flow is essentially symmetric in this region. The lower-resolution case, Figure 3-

33, continues the calculation to i = 2.30. The higher-resolution case, Figure 3-34,

continues to i = 2.35 but restricts the grid of initial conditions to y/d > 1.5 in order

to save computational time. In both cases, continuing the calculations significantly

further in time led to degradations in the sharpness of the structures, perhaps a result

of numerical error.

An interesting series of repelling structures is revealed as the planes slice through

the near field of the transverse jet. For y/d < 3.0, roll-up of the shear layer is a

central feature of the vorticity dynamics. On both the lee and windward sides of the

jet, we observe a telescoping series of repelling lines. Lines on the windward side are

quite vertical near the nozzle and increasingly S-shaped further into the flow. Lines

on the lee side flatten somewhat as they recur along the jet trajectory. The periodic

structure of these repelling lines suggests that they delineate regions of fluid that

participate in different roll-ups along the shear layer. Figure 3-35 lends credence to

this hypothesis by plotting vortex filaments at i = 2.00 over a spanwise slice of DLE

contours. It is important to keep in mind that the DLE field reflects dynamics over the

entire interval [2.00, 2.30], while the vortex filaments provide only an instantaneous

snapshot of the flow structure at i = 2.00. Thus we should not expect features to

correspond exactly between the two. In regions where roll-up has already occurred at

to (e.g., for y/d > 1.2), however, repelling surfaces seem to the bound cores of high

vorticity. These surfaces reflect the future action of vortex arcs on the surrounding

fluid. Focusing on the lee side for 2 < y/d < 3, we also note that flattening and inward
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migration of the lee-side repelling surfaces matches movement of lee-side vortex arcs

toward the windward boundary.

Returning to Figures 3-33 and 3-34, we note that spanwise slices for which z/d <

-0.5 are beyond the jet column, and thus they intersect a different set of repelling

surfaces than those discussed above. The structure in these planes is more difficult to

interpret, but does reflect the widening of the jet that follows formation of counter-

rotating vorticity.

Axial slices of A reveal another crucial dynamical feature of the near field. Fig-

ure 3-36 shows DLE contours on planes of constant y/d. (Zero values at the cen-

terplane for subfigures (b)-(e) are an artifact of the plotting routine and should be

ignored.) Part (a) shows a circular repelling surface surrounding the jet column near

the nozzle; subsequent slices, moving away from the wall, show this circle transform

into the traditional kidney-shaped cross section associated with counter-rotating vor-

ticity. This transformation seems to continue in layers; the repelling line furthest

upstream declines in strength until it is replaced by the next line, and so on. Layers

mirror the periodicity of the roll-up and deformation process that creates successive

vertical sections of counter-rotating vorticity, described in §3.2.2. As the axial slices

move away from the wall, the repelling surfaces move further downstream and spread

further in the spanwise direction.

Figures 3-37-3-39 show isosurfaces of A in three dimensions, with and without

overlaid vortex filaments. A relatively large value of A was chosen so that isosurfaces

would delineate local maxima on either side, but no attempt was made to rigorously

extract local maxima in three dimensions. This limitation, plus limitations of nu-

merical resolution, give some of the surfaces a rough appearance. Nonetheless the

structure amplifies that of the planar contour plots. In particular, the repelling lines

identified on spanwise planes wrap around the jet to form layered shells of repelling

surfaces. The shape of repelling surfaces on the sides of the transverse jet suggests a

helical winding of fluid through counter-rotating tubes.

It would be interesting to continue these DLE calculations further in time and

apply them to the more complex far-field regions of the flow, particularly after the
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breakdown into smaller scales. Doing so may require a significantly denser grid of

initial particles, however, and thus carry great computational expense. Alternatively,

we may have more success with techniques that employ velocity gradient information

along particle trajectories to compute hyperbolicity time [56]. We also note that at-

tracting coherent structures, computed for i < to, would complete the present picture

of transport in the near field of the jet; these structures tend to correspond with

readily observable features of the flow, and may thus be easier to interpret.
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Figure 3-1: Perspective view of vortex filaments in the evolving transverse jet at five
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Figure 3-1: Perspective view of vortex filaments in the evolving transverse jet at five

successive times, for r = 5 (con't).
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Figure 3-1: Perspective view of vortex filaments in the evolving transverse jet at five
successive times, for r = 5 (con't).
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Figure 3-1: Perspective view of vortex filaments in the evolving transverse jet at five

successive times, for r = 5 (con't).
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Figure 3-2: Perspective view of vortex filaments in the evolving transverse jet at five
successive times, for r = 7.
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Figure 3-2: Perspective view of vortex filaments in the evolving transverse jet at five
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Figure 3-2: Perspective view of vortex filaments in the evolving transverse jet at five
successive times, for r = 7 (con't).
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Figure 3-2: Perspective view of vortex filaments in the evolving transverse jet at five

successive times, for r = 7 (con't).
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Figure 3-2: Perspective view of vortex filaments in the evolving transverse jet at five
successive times, for r = 7 (con't).

74



K6

2 0 x/d

(a) t=O0.60

Figure 3-3: Perspective view of vortex filaments in the evolving transverse jet at five
successive times, for r = 10.
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Figure 3-3: Perspective view of vortex filaments in the evolving transverse jet at five
successive times, for r = 10 (con't).
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Figure 3-3: Perspective view of vortex filaments in the evolving transverse jet at five
successive times, for r = 10 (con't).
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Figure 3-3: Perspective view of vortex filaments in the evolving transverse jet at five
successive times, for r = 10 (con't).
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Figure 3-3: Perspective view of vortex filaments in the evolving transverse jet at five
successive times, for r = 10 (con't).
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Figure 3-4: Vortex ring folding in the transverse jet, for r = 7. Snapshots follow
the evolution of vortex elements introduced for i E [0.45, 0.52], corresponding to the
second shear layer roll-up.

80

44

2 2



4

2

-2-0

I I I I I I

O 4 5'
xld

(d) = 1.12 (e) t= 1.32

Figure 3-4: Vortex ring folding in the transverse jet, for r = 7. Snapshots follow

the evolution of vortex elements introduced for i E [0.45, 0.521, corresponding to the

second shear layer roll-up (con't).
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Figure 3-5: Vortex ring folding in the transverse jet, for r = 7. Snapshots follow the

evolution of vortex elements introduced for i C (1.09,1.14], corresponding to the 6th

lee-side roll-up.
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Figure 3-5: Vortex ring folding in the transverse jet, for r = 7. Snapshots follow the
evolution of vortex elements introduced for i E [1.09,1.14], corresponding to the 6th

lee-side roll-up (con't).
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Figure 3-6: Vortex ring folding in the transverse jet, for r = 7. Snapshots follow the
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Figure 3-6: Vortex ring folding in the transverse jet, for r = 7. Snapshots follow the
evolution of vortex elements introduced for t E [1.16,1.22], corresponding to the 6th
windward-side roll-up (con't).
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Figure 3-8: Shear layer segments from Figure 3-7 shown at t 2.00; r = 7.
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Figure 3-9: Shear layer segments from Figure 3-8 shown at t = 2.00; alternate per-
spective view
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Figure 3-10: Vortex ring folding in the transverse jet for r = 5. Snapshots follow the

evolution of vortex elements introduced for i E [2.175, 2.2375].
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Figure 3-11: Vortex ring folding in the transverse jet for r = 5. Snapshots follow the
evolution of vortex elements introduced for i E [2.2625, 2.325].
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the evolution of vortex elements introduced for i E [1.1400, 1.1625].
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Figure 3-14: Vorticity magnitude isosurface Iw1 2 = 28.0 in the r = 5 jet, at two

successive times.
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Figure 3-14: Vorticity magnitude isosurface ||WI12 = 28.0 in the r = 5 jet, at two
successive times (con't).
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Figure 3-15: Vorticity magnitude isosurface IIw|12 = 40.0 in the r = 7 jet, at three
successive times.
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Figure 3-15: Vorticity magnitude isosurface ||WI12 = 40.0 in the r = 7 jet, at three
successive times (con't).
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Figure 3-15: Vorticity magnitude isosurface I|WI12 = 40.0 in the r = 7 jet, at three

successive times (con't).
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Figure 3-16: Vorticity magnitude isosurface ||WI12 = 60.0 in the r = 10 jet, at two
successive times (con't).
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Figure 3-17: Vorticity magnitude isosurface Iw1 2 = 28.0 contoured by spanwise
vorticity wz at two successive times; r = 5.
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Figure 3-17: Vorticity magnitude isosurface ||WI12 = 28.0 contoured by spanwise

vorticity w, at two successive times; r = 5 (con't).
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Figure 3-18: Vorticity magnitude isosurface ||WI12 = 45.0 in the r = 7 jet contoured

by spanwise vorticity wz, at three successive times.
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Figure 3-18: Vorticity magnitude isosurface |W|| 2 = 45.0 in the r = 7 jet contoured

by spanwise vorticity w, at three successive times (con't).
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Figure 3-18: Vorticity magnitude isosurface ||WI12 = 45.0 in the r = 7 jet contoured
by spanwise vorticity w,, at three successive times (con't).
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Figure 3-20: Isosurface of ||H2 = 40.0 contoured by the mean wall-normal vorticity
CDY in the r = 7 jet; C is the mean vorticity field over the interval i E [2.31, 2.49],
which corresponds to a single cycle of shear layer roll-up.
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corresponds to a single cycle of shear layer roll-up.
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corresponding negative values.
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jet. Positive values are indicated by the labeled solid contours; dashed contours are
the negative counterparts.
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Figure 3-27: Velocity streamlines in the centerplane z 0 at t 3.20, introducing
only jet azimuthal vorticity. Contours indicate total velocity magnitude.
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Figure 3-28: Velocity streamlines in the centerplane z = 0, at t 3.20, using the
vorticity-flux boundary condition in (2.27). Contours indicate total velocity magni-
tude.
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Figure 3-29: Three-dimensional velocity streamlines in the r 7 jet at t 2.00;
spanwise view.
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Figure 3-30: Three-dimensional velocity streamlines in the r =7 jet at t=2.00; view
from downstream.
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Figure 3-31: Instantaneous jet-center streamlines for an r = 5 jet at t = 4.7 and an
r = 7 jet at t = 3.1, compared to trajectories obtained from similarity analysis.
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Figure 3-32: Comparison of analytical and numerical vortex lines in the near field of
the transverse jet, r = 7. Solid lines are integral curves of the numerical vorticity
field at t = 1.4; dashed lines are computed from the analytical expression derived in
§2.2.3.
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Figure 3-35: DLE contours at z/d = -0.025 on the interval [2.00,2.30]; superimposed
on the contours is a perspective view of vortex filaments at i= 2.00; r = 7.
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Figure 3-37: DLE isosurfaces A = 7.2 on the interval [2.00, 2.30], plotted at to = 2.00;
r = 7.
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Figure 3-38: DLE isosurfaces A = 7.2 on the interval [2.00, 2.35], plotted at to = 2.00;
lee-side view, r = 7.
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Chapter 4

K-means Clustering for Dynamic

Partitioning of Hierarchical

N-body Interactions

A number of complex physical problems can be approached through N-body simu-

lation. High-Reynolds number flows, computed with vortex methods as detailed in

the preceding chapters, are but one example. Other important problems range from

gravitational astrophysics and cosmology [39] to smoothed particle hydrodynamics,

molecular dynamics, non-Newtonian flows [130], and electrodynamics [49].

In all these applications, a dense system of pairwise particle interactions leads to

a computational cost of O(N 2 ), which is prohibitive for large N. Fast summation

algorithms that reduce this cost to O(Nlog N) or O(N) are necessary to achieve

resolution and scale. Typically these methods must contend with irregular particle

distributions of non-uniform density; in dynamic N-body problems, the algorithms

also face a particle distribution that evolves in time. Large, realistic physical problems

require efficient implementation of these algorithms on massively parallel distributed

memory computer architectures.

The present work employs hierarchical methods for fast summation. Hierarchical

methods construct approximations for the influence of a cluster of particles and,

where possible, use these approximations to replace pairwise particle interactions
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with a smaller number of particle-cell or cell-cell interactions. Based on the latter,

these methods may be classifed into treecodes (particle-cell interactions) [6, 8] and

fast multipole methods (cell-cell interactions) [50]. The focus here is on treecodes; a

more complete background on hierarchical methods is provided in §4.1.2.

The "quality" of spatial partitioning is central to the performance of a hierarchical

method. The spatial partition determines cell moments and cell proximities (includ-

ing neighbor relationships), and thus controls the number and order of particle-cell

interactions necessary to achieve a given level of accuracy. For an efficient paral-

lel implementation, one also must devise a spatial partition that is compatible with

distributing hierarchical interactions over many processors.

In the following, we introduce new algorithms, based on k-means clustering, for

partitioning parallel hierarchical N-body interactions. The advantages of cluster par-

titions stem from their geometric properties. K-means partitions optimize cluster

moments and other quantities that control the error bounds of a treecode, and thus

reduce the computational cost of N-body approximations. The clustering procedure

is inherently adaptive-an important feature for non-uniform distributions of particle

positions and weights-and itself may be parallelized efficiently. All these features

are preserved as the number of processors is scaled. Alternative algorithms for spa-

tial partitioning of parallel treecodes-namely orthogonal recursive bisection (ORB)

[123, 39] or the hashed-oct-tree (HOT) algorithm [122]-do not yield similar geomet-

ric properties.

We demonstrate the parallel performance of clustering by constructing a parallel

treecode for vortex particle simulations, based on the serial variable-order treecode

developed by Lindsay and Krasny [77]. For simplicity, we do not focus on distributed

data and the communications algorithms required to fetch non-local cell data effi-

ciently. On a modern computer, locations, weights, and cell moments for up to 10'

particles will fit on one processor's memory, so this problem becomes less important.

We also note that the spherical domain geometries favored by clustering minimize

surface area-to-volume ratios often associated with communications overhead [14],

and thus may be advantageous to any distributed data implementations we develop
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in future work.

This chapter also presents new heuristics for dynamically load balancing cluster

partitions. These techniques include dynamic scaling of cluster metrics and adaptive

redistribution of cluster centroids. Load balance is always an issue in N-body problems

with non-uniform particle distributions, but a unique impediment to load balance in

the present context is the continual introduction of new vortex elements. As detailed

in §2.1.4 and Chapter 3, new element introduction is crucial to simulation of turbulent

flow: resolving the stretching of vortical structures and the resulting breakdown of

the flow into small scales requires a continual remeshing of vortex filaments. We

demonstrate the performance of load-balanced clustering on full three-dimensional

simulations of the transverse jet, identical to those considered in Chapter 3.

4.1 Background

We begin by reviewing the fundamentals of vortex particle methods for fluid dynamics,

illustrating how the formulation gives rise to a classical N-body problem. We then

discuss hierarchical solvers that have been developed for efficient solution of such

N-body problems in serial code.

4.1.1 Vortex methods and N-body problems

Vortex methods are a computational approach to systems governed by the Navier-

Stokes or Euler equations, employing a particle discretization of the vorticity field

and transporting vorticity along particle trajectories [75, 72, 100, 79, 32]. The reader

is referred to Chapter 2, §2.1, for a complete exposition of vortex methods. Here, we

simply highlight the connection between vortex methods and more general N-body

problems.

Given a regularized particle discretization of the vorticity field:

N

w (x, t) ~ >j (t)f6 (x - xi (t)) (4.1)
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we can write the vortical velocity u, at any point x as follows:

N

u,(x) = K6 (x, X) ci (4.2)

where K6 is the regularized Biot-Savart kernel. Vortex particles here have vector-

valued weights ai(t) and positions Xy(t).

Vortex methods solve the inviscid equations of motion via numerical integration

for the particle trajectories Xi(t) and weights ai(t). Computing particle trajectories

xi(t) requires evaluation of the velocity at each particle at every timestep. As each

vortex element induces a velocity on every other vortex element, this is an N-body

problem; direct evaluation of (4.2) at every element yields a computational cost of

O(N 2 ). For large numbers of particles, this clearly can be prohibitively expensive.

The O(N 2 ) bottleneck is not unique to vortex methods; indeed, it is a feature in-

herent to N-body problems in a variety of contexts, whether the result of summation

or quadrature (as in equations 2.5 or 2.8) is a velocity, a force, or a potential. Gravi-

tational N-body simulations are an essential tool in astrophysics, where they are used

to study galaxy dynamics and cosmological structure formation [104, 123]. Here, as

in vortex methods, large N is essential to resolve fine features and the necessary large

scales [39]. N-body problems are also encountered in smoothed particle hydrodynam-

ics [46, 61] and plasma physics. Coulomb potentials and other, more complicated

short-range potentials give rise to N-body problems in molecular dynamics [37, 38],

with increasingly important biological applications [16, 107]. Overcoming the O(N 2 )

bottleneck is thus essential to progress across a variety of scientific fronts.

4.1.2 Hierarchical methods

Hierarchical methods for N-body problems construct approximations for the influ-

ence of a cluster of particles and, where possible, use these approximations to re-

place particle-particle interactions with a smaller number of particle-cluster or cluster-

cluster interactions. The construction of these approximations is typically organized

by a recursive tree structure. Treecodes, introduced for gravitational problems by
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Appel [6] and Barnes-Hut [8], organize a group of N particles into a hierarchy of

nested cells, e.g., an oct-tree in three dimensions. At subsequent levels of the tree,

each "parent" cell is divided into smaller "child" cells representing finer spatial scales.

Treecodes have found wide application in particle methods. The original Barnes-

Hut (BH) algorithm employs an oct-tree with a monopole moment calculated at each

cell. Tree construction proceeds until leaf nodes each contain only a single particle.

The tree is traversed once for every particle using a divide-and-conquer strategy of

particle-cell interactions; if the monopole approximation at a given cell cannot pro-

vide the force on the target particle to a sufficient level of accuracy, the contribution

of the cell is replaced by the contribution of its child cells. The total computational

cost scales as O(Nlog N). Variations on this treecode algorithm have been numer-

ous; broadly speaking, these differ in terms of physics-i.e., the kernel describing the

influence of each particle [122, 38, 16, 49]-and in the type and order of series ap-

proximation used to describe the influence of a cluster [120, 2, 77]. Other variations

encompass adaptive features of the tree construction [9] and more sophisticated error

estimates [104, 48].

Fast multipole methods (FMM), introduced by Greengard and Rokhlin [50, 51],

employ additional analytical machinery to translate the centers of multipole expan-

sions and to convert far-field multipole expansions into local expansions, reducing

the total operation count to O(N). Like many BH-type codes, these codes also use

higher-order approximations, typically a multipole expansion involving spherical har-

monics in three dimensions [116, 95], although other schemes have been proposed

[2, 21, 16].

Lindsay and Krasny have introduced a BH-type treecode with many adaptive

features well-suited to vortex particle methods [77]. This serial code provided a

convenient platform on which to develop and test the clustering and load-balancing

algorithms described in this paper, so we will review its essential features. The

Lindsay-Krasny (LK) code organizes particles in an oct-tree. Adaptive features of

the tree include nonuniform rectangular cells that shrink to fit their contents at every

level of the tree and a leaf size parameter No below which a cell is not divided.
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The velocity induced by each particle is given by the Rosenhead-Moore kernel, a

regularized form of the Biot-Savart kernel; in vortex methods, this regularization is

also known as the low-order algebraic smoothing [128].

1 x -x'
K6 (x, x') = -x (4.3)

4ir (x - x,12 + 62)3/2

Because this kernel is not harmonic, it cannot be expanded in a classical multipole

series; instead the treecode employs a Taylor expansion in Cartesian coordinates to

approximate the influence of each cell at a target point x:

Nc \|kII<p1

u(x) 3 jk D Kp (x, Yc) (yi - y x a(4
i=1 k

I|kII<p

uZ ak (x, y) x mK (c) (4.5)
k

where y, is the coordinate of the cell centroid, N, is the number of particles in the

cell, y are their coordinates, k = (ki, k2, k3 ) is an integer multi-index with all ki ;> 0,

ak(x, Y,) = IDkK6 (x, yc) (4.6)

is the kth Taylor coefficient of the Rosenhead-Moore kernel at y = y, and

NC

mk (c) = Z(y, - y)ka (4.7)
i=1

is the kth moment of cell c about its center. Taylor expansions are computed to

variable order p up to a user-specified maximum order of approximation Pmax; a

typical choice is Pmax = 8. A recurrence relation for the Taylor coefficients ak allows

them to be computed cheaply (each coefficient in 0(1) operations) for each particle-

cluster interaction. Cell moments, on the other hand, are computed as needed for

each cell then stored for use in subsequent interactions. Unlike other vortex particle

treecodes, the LK treecode incorporates the regularization of the kernel directly into

the expansion [129, 105].
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The velocity at each target particle is evaluated using a "divide-and-conquer"

strategy governed by a user-specified accuracy parameter c and an error estimate

derived from the approximation error for the vector potential:

M -4C) (4.8)
-4i1-RP+l

where
N,

M,(c) = Z yi - ycIP il (4.9)

is the pth absolute moment of cell c and R = (jx - yc12 + 62)1/2 is the regularized

distance between the target particle and the cell center. Velocity evaluation for each

target particle begins at the root cell and proceeds recursively. For each cell c en-

countered, the code computes the minimum order of approximation p that satisfies

inequality (4.8). If this p < p,,a,, the particle-cell interaction is evaluated for the cell

c; otherwise the velocity evaluation descends the hierarchy and sums the velocities

induced by the children of cell c. This procedure is modified by a run-time choice be-

tween Taylor expansion and direct evaluation at each cell, which may become active

at lower levels of the hierarchy; if the estimated time for direct summation is smaller

than the estimated time for Taylor expansion, the former method is used to compute

the influence of the cell.

Some of our ongoing work [125] develops recurrence relations for other regular-

izations of the Biot-Savart kernel, including the higher-order algebraic smoothing

proposed in [128].

4.2 Computational approach

Efficient parallelization of an algorithm depends on avoiding the duplication of work

among processors, ensuring equal workload at each processor, and minimizing addi-

tional costs, such as the time for inter-processor communication and domain decom-

position. In the case of treecodes for particle methods, a good spatial decomposition

is essential to all of the goals just mentioned.
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4.2.1 Clustering

We propose a new approach for parallel domain decomposition of vortex particles,

based on k-means clustering of the particle coordinates. Clustering procedures are

essential tools for multivariate statistical analysis, data mining, and unsupervised

machine learning [1, 40]; k-means clustering [78] is a classical algorithm in these

contexts. In the new context of domain decomposition, however, we develop a variant

of the k-means algorithm yielding a partition with many desirable properties.

K-means takes a set of N observations {xi} in d-dimensional space as input and

partitions the set into k clusters with centroids {Yi,... , Yk}, where k is prescribed.

The partition is chosen to minimize the cost function

N k N,

J = n (xi -ykI 2 a) __ _ 2aij (4.10)
i=1 j=1 i

In other words, each observation is assigned to the nearest centroid, and the centroid

positions are chosen to minimize the within-cluster sum of squared Euclidean dis-

tances. In our implementation, for reasons that will be made clear below, we weigh

each particle's contribution by its vorticity magnitude Iai|. K-means results in a flat

or non-hierarchical clustering, in contrast to other clustering algorithms that con-

struct hierarchical partitions, either from the bottom up (agglomerative) or the top

down (divisive) [40].

The k-means algorithm can be viewed as an iterative optimization procedure for

the cost function defined in (4.10), beginning with a choice of centroids {Yi=1...k} and

iteratively updating them to reduce J. K-means will find a local minimum of J,

and thus the solution may depend on the initial choice of centroids; the problem of

finding a global minimum is in fact NP-complete. We implement a "batch" version of

the k-means algorithm, in which all the particles are assigned to centroids before the

centroids are updated, at each iteration. This is in contrast to the "online" approach,

in which the centroid locations are updated as each particle is individually classified

[17]. In either case, the resulting classification boundaries are the Voronoi tesselation
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of the cluster centroids, and thus they bound convex subsets of Rd.

An outline of the algorithm, using variable particle weights, is as follows:

Algorithm 4.1 (K-means Clustering).

initialize N, k, Y1,... , Yk

do 1 = 1 to la,

assign each particle xi to cluster k* = argmin (Ix -- yk 2 )
k'

put each Yk =ZNk E

recompute J)

until J('-1 ) - J) small

return centroids Y1,... , Yk and memberships {k }i=1...N

The computational complexity of this algorithm is O(NkdT), where T is the

number of iterations. It is straightforward to implement k-means clustering in par-

allel, however, and we do so using the parallel implementation proposed by Dhillon

and Modha [36]. Since we typically seek a number of clusters k equal to the num-

ber of processors, an ideal parallelization reduces the computational complexity to

O(NdT). This scaling is what find in practice, as will be shown in the Results sec-

tion. Recent work has demonstrated new algorithms for fundamentally accelerating

k-means clustering, using kd-trees to reduce the number of nearest-neighbor queries,

for computational times sublinear in N [93]. We do not pursue these approaches

here, but note that they may become useful in ensuring that the time for parallel

domain decomposition (O(N) with parallel k-means) remains a small fraction of the

time required for velocity evaluation (0(N/k log N) in the ideal case) for very large

k.

It is worthwhile to note that the partition of vortex elements resulting from the

clustering procedure may bear no relation to the data structure elsewhere used to

represent the vortex particles in memory. This is particularly relevant to vortex

filament methods, in which an ordering, or connectivity, between neighboring elements

must be preserved. In this case, it may be necessary to maintain separate data

structures or attribute lists, one appropriately representing filament connectivity, and
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another encoding the flat k-means partition, which considers the vortex elements as

a set of completely independent particles.

4.2.2 Towards optimal geometry of clusters

Clusters resulting from k-means procedure are certainly well-localized, in the sense of

cost function (4.10). But it is important to consider why data locality is important

to hierarchical N-body solvers, and precisely why poor data locality may negatively

impact performance.

In the following discussion we make a distinction between "source" particles and

"target" particles. Targets are the points at which the velocity or force is computed;

sources are the particles, or quadrature points, inducing the velocity or force. In most

situations-e.g., a vortex blob code or a gravitational N-body simulation-the source

sets and target sets are exactly the same, and each particle simply takes turns in

either role. For simplicity, in the following discussion we let the set of source particles

be identical to the set of target particles.'

A given domain decomposition method admits many schemes for parallelizing the

treecode calculations. Consider first the possibility of using a global tree. This pro-

cess may be driven by parallelizing over targets. By this we mean that the domain

decomposition scheme yields a certain partition of particles and that each processor is

responsible for computing the influence of the entire domain on the particles assigned

to it by partition. A global tree is thus constructed on each processor, but only in

structure: Cells subdividing the root cell are included only if they will be requested

during tree traversal for velocity evaluation. In the LK treecode, cell-moment calcu-

lations make up the majority of tree construction cost. Because velocity is evaluated

only for the assigned particles, the resulting set of tree cells with filled-in moments

(to varying order) is in fact the locally essential tree [123, 15]. Each locally essential

tree is a global tree, describing the influence of the entire domain on the assigned

'In a vortex filament code, the two sets may differ slightly depending on the quadrature rule used
along the filament coordinate; the targets (filament nodes) may be staggered with respect to the
sources (element centers). In this case, however, the displacement between members of the source
and target sets is less than half a core size and relatively negligible in discussing cluster geometry.
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target particles.

The topology of the locally essential tree and the methods by which it is con-

structed depend strongly on the domain decomposition scheme and on the overall

parallel implementation. Section §4.2.4 discusses these parallel implementation is-

sues in detail.

Regardless of the global tree's topology, the fundamental issues of geometry in

domain decomposition are the same. Contrast cases of good and bad partition over

targets, illustrated in Figure 4-1 for two processors. In the worst case, case (a),

the partitions are interleaved; that is, the convex hull of particles assigned to one

processor overlaps with the hull of points on another processor. Even if this is not the

case-consider, for instance, long and narrow non-overlapping domains as in Figure 4-

1(b)-the locally essential trees on different processors can still overlap strongly. This

means that computations evaluating the influence of cells deeper in the hierarchy and

at higher order are duplicated across processor domains, and parallel efficiency will

be poor. To minimize the overlap of locally essential trees, one should minimize

the surface-area-to-volume ratio of each domain, favoring spherical, non-overlapping

partitions as in Figure 4-1. Note that in this discussion, the concept of "overlap"

characterizes not the spatial extent of trees, but the duplication of locally essential

cells at each level of the tree hierarchy.

An alternative approach to parallelization avoids constructing a global tree (i.e.,

a locally essential tree), and instead can be viewed as "parallelizing over sources."

The flat partition resulting from k-means clustering is perhaps better suited to this

approach. Here, the domain decomposition scheme is applied to the particles and a

local adaptive oct-tree is constructed in each processor's domain, as shown schemat-

ically in Figure 4-2. The target particles are left unorganized, and each processor

computes the influence of its source tree on the entire set of target particles. Global

reduction operations then sum the contribution of each processor to the velocity at

every target.

With this approach, the geometric considerations governing good domain decom-

position are analogous to those described before. Cases of good and bad source
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partition are shown schematically in Figure 4-2 for three processors. Again, the

worst case partition is one in which source points belonging to the three processors

are interleaved. Though these sets of points are interleaved in space, they belong to

distinct local trees, and thus their influence must be approximated with up to three

times as many particle-cluster interactions as necessary (k times in the case of k in-

terleaved partitions). But the situation persists even in the case of non-overlapping

partitions. Consider the partition shown in Figure 4-2(b). The source domains are

long and narrow, and they constrain the shape of each local oct-tree accordingly. One

can enumerate Nk pairs of source domains interacting with target particles; few of

these pairs specify targets that are well-separated from sources. The closer a target

particle lies to a source domain, the more expensive the interaction; evaluation of

the velocity induced on the target will descend to cells deeper in the local source

hierarchy and/or employ higher-order expansions. The relative lack of well-separated

domain-target pairs is equivalent to noting that the surface-area-to-volume ratio of

each source domain is large, compared to the partition in Figure 4-2(c). Here, the

domains are compact, and the domain boundaries are more nearly spherical. As a

result, velocities at the targets may be computed with fewer particle-cluster inter-

actions. This is illustrated schematically for a target particle in the center of the

particle distribution.

The qualitative discussion above emphasizes the critical role of partition geometry

in N-body problems, whether the partition is used to separate target particles or to

fix the root cells of local source trees. For identical sets of particle distributions and

weights, the partition geometry directly determines the number and order of particle-

cluster interactions necessary to evaluate the velocity at each particle, summed over

all domains.

In this work, we use k-means clustering to construct a partition of the source

particles, "parallelizing over sources" as described above. A local oct-tree is then

constructed from each processor's assigned particles and the velocities induced by

each processor's source tree are summed at each target. The root cell of each source

tree is thus a k-means cluster. Because these clusters minimize the cost function J
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in (4.10), their boundaries define tightly-localized, convex sets, as discussed in §4.2.1.

Based on the preceding discussion, this partition geometry will favor smaller numbers

and lower orders of particle-cluster interactions, for greater parallel efficiency.

For clarity, we have focused the discussion in this section on computational time,

not on the communication time associated with retrieving non-local cell or particle

data. In fact, our current implementation keeps copies of all the particle positions

and weights on each processor; on a modern computer, this allows for problem sizes

of up to N = 10' and thus does not constrain the present vortex simulations. But

we concentrate our discussion as stated above for more fundamental reasons. First,

we view the relationship of partition geometry to computational time as more fun-

damental, inherent to the accuracy and error bounds of multipole expansions-e.g.,

the distance from a target to a cell center, the magnitude of the multipole moments

of the cell. Communication time is typically more implementation-dependent-it can

depend on the hardware interconnect or on latency-hiding features of the message

passing architecture-and in N-body problems is usually much smaller. Secondly,

computational time and communication time are not really separable issues. Min-

imizing the number of particle-cluster interactions has the simultaneous benefit of

minimizing time spend on interprocessor communication, sending and receiving the

cell or particle data. Also, k-means clustering yields relatively spherical domains,

which in turn minimize the surface area-to-volume ratios often associated with com-

munication overhead [14].

Considerations of optimal source geometry can be made yet more precise. The

numerator in the error criterion of the LK treecode, (4.8), is the p-th absolute moment

of cell c, Mp(c). Note the correspondence between this sum and the cost function in

(4.10). Our vorticity-weighted k-means algorithm finds a partition yielding a local

minimum of zK M2(co,k) where CO,k are the resulting K root cells. While this flat

partition cannot minimize individual absolute moments M2(cO,k), it will tend to make

each one small. Furthermore, while the minimization of T M, strictly occurs for

p = 2, E Mp will generally remain small for other values of p, with possible exception

of pathological cases.
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Error estimates containing absolute moments of the form Mp(c) are not limited to

the LK treecode. In fact, they are a general feature of multipole expansions [104, 122].

For multipole expansions of the singular Biot-Savart kernel in spherical harmonics,

Winckelmans et al [129, 122] report the following error bound:

ep(X) <( - b) (p + 2) - (P + 1) (4.11)

where ep(x) is the L 2 error on u, at the evaluation point x, d =x - yc, b is the

radius of the smallest sphere centered at x, and containing all the particles in the

cell, and

Bp(c) = j x' - Ycj flla'1 dx M (c) (4.12)

In this case, the error thus depends not only on the cell moment but on the effective

cell radius b, another quantity that will generally be small in a k-means partition.

In all these cases, error bounds or error criteria directly control the computational

cost of the treecode by affecting the order of expansion (in a variable-order code) and

the choice of cells used to sum the velocity at each target. When the inequalities

in (4.8) and (4.11) cannot be met, evaluation of the velocity on a target particle must

proceed at higher order or descend to the children of the cell; in the latter case, a

single particle-cluster interaction may be replaced with up to eight interactions. (In

the limit, tree descent typically devolves into direct summation; criterion for this

depend on the structure of the particular treecode.) Reducing the cell moment M(c)

and cell radius b allows an error criterion to be met for smaller cell-to-target distances

R or d, avoiding the need to increase the order of expansion p or descend further into

the hierarchy.

In the present implementation, k-means clustering determines the configuration

of each root cell. The geometries of child cells in the local hierarchy are strongly

influenced by the root, however. In other words, it is reasonable to expect a good

root cell geometry to maintain small cell moments and radii several levels into the

hierarchy. We explore the impact of the depth of local trees on performance in the

Results section.
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As described in §4.1.2, the serial LK treecode uses a user-specified accuracy pa-

rameter c to control the velocity error at each target point, due to all the sources.

In order to maintain the same global error specification in the present implementa-

tion, a global accuracy parameter c must be distributed to each processor's local tree.

We take the following approach, patterned after the fractional distribution of c from

parent cells to child cells inside the LK oct-tree [77].

E(C) = o E (4.13)
MO

In other words, the global error parameter is distributed to each k-means cluster c in

proportion to its total vorticity magnitude.

A few other approaches to domain decomposition of treecodes will be reviewed in

Section 4.2.4.

4.2.3 Dynamic load balancing

While k-means partition yields domain geometries that favor reduced computational

cost, this partition comes with no guarantee of load balance. Load balance is a difficult

issue in N-body problems. Irregular particle distributions, often with a wide range

of particle densities, are typical and thus equipartition (ensuring the same number of

particles in each domain) does not ensure load balance. Contrast, for instance, the

cost of computing the velocity at a target that is well-separated from other particles

to the cost of computing the velocity at a target in a densely populated region; clearly,

more particle-cluster interactions must be used to compute the latter [122]. Indeed, it

is difficult to define or estimate a spatial distribution of "per-particle-cost" a priori, as

this quantity depends both on the particle distribution and on how the distribution

is partitioned.2

2 The concept of "per-particle-cost" is perhaps most meaningful when considering each particle's
role as a target, for then the time or number of interactions required for velocity evaluation at each
particle is directly measurable, though even this measurement may be disrupted by one-time costs
like the fill-in of multipole moments or the retrieval of faraway data to build locally essential trees.
When considering partition over sources, the "per-particle-cost" becomes somewhat more ill-defined
as the influence of each particle is replaced by multipole expansions of source cells. Allowing variable
orders of expansion could make this per-particle cost even less consistent.
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In dynamic N-body problems, particle locations and weights change in time, and

thus it is advantageous to repartition the domain and re-balance computational loads

as the particle distribution evolves. Vortex particle methods render the load balancing

process more challenging because of local mesh refinement; at each timestep, new

particles are introduced throughout the domain in order to maintain resolution and

core overlap [72, 75, 82]. The spatial distribution of the newly inserted particles is

itself highly irregular and hard to predict.

To address these difficulties, we develop several heuristics for the dynamic load

balancing of k-means clusters. The first of these introduces scaling factors sk into the

weighted k-means cost function along with a rule to adapt their values in time:

N

J= m n (sklxi - Yk'HQa ) (4.14)
i=1

The factors sk scale the squared Euclidean distance between each cluster centroid and

the surrounding particles, and thus modify the assignment at each k-means iteration.

Each particle is assigned to the centroid from which its scaled distance is smallest.

The space around each centroid is effectively "zoomed" in or out by the scaling factor.

The resulting classification boundaries still define convex sets, but the cutting planes

are no longer equidistant from the nearest two centroids, as in a Voronoi tesselation;

rather they are shifted closer to the centroid with larger sk. Figure 4-3 illustrates the

geometry of these scaled k-means clusters.

To dynamically load balance the cluster populations, we update the scaling factors

sk at the start of each timestep. In general, the adaptation rule for scaling factors

should express dependence on the previous timestep's scalings s' as well as the times

t' spent evaluating the influence of each cluster's particles on the whole domain. Here

the superscript n denotes the preceding time layer and n + 1 is the current time.

sn, = f (s , ts ; k I ... K) (4.15)

In the present implementation, we choose a simple case of this adaptation rule, mul-
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tiplicatively updating each Sk based on each cluster's deviation from the mean source

evaluation time r = k tk/k.

sn 1 = s 1 + a tanh ( 1 3 t ) (4.16)

In this sense, we are using the relative time required to evaluate the velocity due

to all the sources in clusters at the previous timestep as an estimate of the relative

time required by a similarly-composed cluster at a nearby position in space. Cluster

boundaries and centroids will change from timestep to timestep, as will the actual

memberships-due to movement of particles, evolution of particle weights, and new

particle introduction-but these changes should be incremental.

After each iteration, Sk will increase for a "high-cost" cluster and vice-versa. Ex-

pensive clusters will thus lose particles to their neighbors, while clusters with below-

average tk will incrementally become more attractive. The parameters a and 3 can be

tuned; we find that a = 0.1 and 3 = 2 give good performance. We also impose safety

bounds to avoid unreasonable values of the scaling factors; after each application of

(4.16) we require that 0.25 < sk < 4.0.

A new k-means partition is computed at each timestep, immediately after updat-

ing the cluster scalings. At the first timestep, all the Sk are set to unity and initial

guesses for the centroids Yk are randomly chosen from among the particle locations.

At subsequent timesteps, converged centroid locations from the preceding step are

used as initial guesses for the current k-means partition. As a result, later applica-

tions of k-means converge much more quickly than the first. In practice, three or four

k-means iterations are sufficient to achieve convergence for k-means processes that

are initialized with the preceding step's centroids.

A second heuristic for load balancing the k-means domain decomposition involves

modifying the centroid initializations themselves. As discussed in §4.2.1, the k-means

algorithm yields only a local optimum, and thus the final partition may be quite

dependent on the initial Yk. We take advantage of this dependence by splitting the

centroid of the highest-cost cluster at the end of each timestep. We select the particles
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that were assigned to the cluster with maximum tn and partition them with a local

application of k-means, putting k = 2. The two resulting converged centroid locations

are used as initial guesses for the full k-means iterations that partition the entire

domain. Since the total number of centroids must remain constant (and equal to K),

the centroid of the lowest-cost cluster is removed from the initialization list. Aided

by these successive splittings, the centroid distribution will adapt itself to the particle

distribution over time.

A final heuristic enables the load balancing scheme to recover from situations in

which the random initial choice of centroids may be poor. If the load imbalance, de-

fined as (maxk tk) /, exceeds a chosen safety threshold for two timesteps in a row, the

centroids are "reseeded"-in other words, new centroid initializations are randomly

chosen from among the current particle locations and the scaling factors sk are all set

to unity. For most of the runs reported herein, we set the threshold imbalance to 1.5

and observe that this level of imbalance is rarely encountered. (For more details, see

section §4.3.5 below.)

4.2.4 Other frameworks for treecode parallelization

The preceding sections introduced k-means clustering as a new tool for the partition of

hierarchical N-body methods. Other frameworks for parallelizing treecodes have been

developed in the literature, however, and it is worthwhile to contrast their approaches

to domain decomposition, load balancing, and interprocessor communication with the

present k-means-based implementation.

Beginning with a parallel BH-type code developed by Warren and Salmon for as-

trophysical N-body simulations [123], there have emerged a family of parallel treecodes

employing orthogonal recursive bisection (ORB) for domain decomposition [39, 15,

111]. ORB recursively partitions the computational domain into rectangular cells. At

each level of the hierarchy, the domain is bisected along its longest coordinate dimen-

sion. The result of this partition is a binary tree with each leaf node corresponding

to the domain of a single processor; for a tree with p levels, there are 2P- 1 processors.

Load balance in ORB partition is controlled by positioning each bisecting plane
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so that equal amounts of computational work lie on either side. Computational work

is estimated on a per-particle basis, usually by counting the number of interactions

necessary to evaluate a particle's velocity at the previous timestep.3 Schemes have

been devised for incrementally updating these bisector positions to maintain load

balance [15]; other codes recompute the ORB partition at each timestep [123, 39].

Following ORB partition, velocity evaluation in all these codes proceeds by paral-

lelization over targets, as described in the first half of §4.2.2. That is, each processor

is responsible for evaluating the influence of the whole domain on its own particles.

Each processor constructs a local BH tree in its own domain. The root nodes of these

trees, corresponding to the leaf nodes of the ORB tree, are all shared among pro-

cessors. Then, each processor builds a unique locally essential tree, i.e., imports the

cells of non-local BH trees required to evaluate the velocity on local particles. Rather

than transmitting this data as needed during tree traversals for velocity evaluation,

these codes use simple multipole acceptability criteria (MAC) [8, 9, 123] to construct

locally essential trees a priori. This process is typically organized by sender-driven

communication; the owner of an ORB domain determines which of its cells may be

essential to other ORB leaf nodes and sends appropriate multipole data. This is

only possible for simple MACs, like the original cell-opening criterion of Barnes and

Hut or variations thereof [8]. More complex and accurate error bounds like those in

Equations 4.11 and 4.8 preclude the a priori construction of locally essential trees,

particularly for variable-order treecodes [122].

Consistent with our description in §4.2.2, the locally essential tree is effectively

a pruned global tree, incorporating the influence of the entire domain on the local

particles. In [123] and [39], this tree is hybrid in structure-a binary tree on top (due

to ORB) partition, and an oct-tree below the ORB leaf nodes. Bhatt et al. [15] go

further by explicitly constructing a global oct-tree, resolving levels between the local
3 Per-particle cost estimates are possible because velocity evaluation is parallelized over targets, as

will be described below; and typically, the order of multipole expansion is fixed, so per-particle costs
will remain more consistent. The "granule" of parallel partition (a target particle) can be directly
associated with a cost, since velocity evaluation involves target particle-source cluster interactions.
New particle introduction, however, will disrupt these estimates; this issue has not been addressed
in the cited codes.

148



oct-trees; this process is rendered more difficult by adaptive features in the BH trees,

like variable-size leaf nodes.

In contrast to these ORB-based codes, the hashed oct-tree (HOT) code of Warren

and Salmon directly performs domain decomposition on the bodies of a global, dis-

tributed oct-tree [124, 105, 122]. Particle coordinates are mapped to 64-bit keys; the

mapping is designed so that keys can identify not just particles (i.e., leaf nodes of the

tree) but higher nodes of the tree. A hashing function maps keys to cell data, e.g.,

multipole moments and cell centers. In contrast to the pointer-based tree traversals

employed above, hashing is designed to allow easier access to non-local cell data.

Domain decomposition in the HOT code proceeds by sorting the body key or-

dinates. Sorting these keys amounts to constructing a space-filling curve passing

through all the particles with Morton ordering [106]. The curve is then partitioned

into K segments, one for each processor, using estimates of per-particle cost to en-

sure that segments represent equal work. Branch nodes-the smallest oct-tree cell

containing all the particles on a particular processor's segment of the curve-are then

shared among processors to build the upper levels of the global oct-tree. Because it

is the oct-tree itself that is partitioned, this stage of the algorithm avoids many of

the complications of the ORB scheme [47].

Morton ordering preserves reasonable spatial locality, but is not ideal in this re-

gard; the sorted list still contains spatial discontinuities that may be spanned by a

single processor domain. These discontinuities can lead to inefficiencies in velocity

evaluation [124], particularly in light of the discussion in §4.2.2. The hashed oct-tree

scheme also requires that leaf nodes contain single particles, unlike adaptive treecodes

that allow variable leaf-node size [15]. Also, cells of the hashed oct-tree are uniform

rectangular prisms, and cannot shrink to fit their data, an adaptive feature that was

found to improve the efficiency of the present LK treecode [77].

As in the ORB codes, velocity evaluation proceeds by parallelizing over targets.

To allow the use of data-dependent error criteria like that in (4.11) the HOT code

does not construct a locally essential tree a priori. Instead, each processor requests

cell data from other processors as needed while evaluating the velocity on its own
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particles. A complicated system of communication lists is used to hide the latency of

requesting faraway data.

A different, more theoretical approach is taken by Teng [119]; his work analyzes the

communication graphs of hierarchical N-body algorithms, including the BH scheme,

and proposes algorithms for their load-balanced partition. The communication graph,

defined on particles and oct-tree cells, represents the interactions between these ob-

jects during the execution of the N-body algorithm; the edge weights reflect com-

munication requirements of each interaction. A good partitioning algorithm, in this

analysis, yields an edge-partition of the communication graph into two disjoint graphs

of equal (vertex-weighted) computational cost, while keeping the "cost"-the total

weight of all edges removed-small. While this and other studies of graph partition

algorithms [92, 68], including recursive bisection [110], provide useful theoretical re-

sults on the partition of oct-trees and other data structures, they do not address the

problem of what the tree objects themselves should look like. Teng's algorithm only

considers partitioning the cells of an existing, generic oct-tree. Yet cell geometry

can have a profound effect on computation and communication costs, as discussed

above and as will be demonstrated in the next section. Guided by these considera-

tions, K-means clustering yields an entirely new class of geometric objects, forming

an adaptive spatial partition of N-body interaction.

We re-emphasize the following points:

" More accurate, more complex error estimates preclude the a priori construction

of locally essential trees. So do adaptive features, like a run-time choice between

direct interaction and multipole expansion.

" Variable order expansion and adaptive features of the tree (like cells that shrink

to fit, run-time choice between direct interaction and multipole expansion) make

per-particle cost more difficult to define, even when parallelizing over targets.

Moreover, the present implementation parallelizes over sources.

" ORB and sorted hash keys do not create optimal domain geometries. Domains

can have poor shape, even spatial discontinuities; for instance see Figure 3 in
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[39]. The hashed oct-tree construction further limits tree adaptivity.

9 None of these studies show the performance of load balancing while new particles

are continually being introduced, e.g., through filament remeshing. But we will

do so below.

4.3 Results

In the following, we examine the performance of cluster partition of N-body inter-

actions by a variety of measures-speed and parallel efficiency, error control, load

balance, and particle-cluster interaction counts. In particular, we apply the k-means

clustering and load balancing algorithms developed in §4.2 to the parallel hierarchi-

cal evaluation of vortical velocities in a vortex simulation of a transverse jet at high

Reynolds number.

The mixing properties of the transverse jet-a jet issuing normally into a uniform

crossflow-are important to a variety of engineering applications. Transverse jets

may function as sources of fuel in industrial furnaces, or as diluent jets for blade

cooling or exhaust gas cooling in industrial or airborne gas turbines. The transverse

jet is a canonical example of a flow dominated by large-scale "coherent structures."

Experimental observations by Fric and Roshko [44] identify four such structures in

the transverse jet: jet shear layer vortices; "wake vortices" arising from interaction

between the jet and the channel wall boundary layer; horseshoe vortices that wrap

around the jet exit; and a counter-rotating vortex pair that forms as the jet bends

into the crossflow, persisting far downstream. The evolution of these structures is

inherently three-dimensional and characterized by topological changes in the vorticity

field. Vortex methods are attractive in this context for their explicit link to the

formation and dynamics of vortical structures in the flow.

Details of our vorticity formulation and a thorough analysis of the flow physics

revealed by vortex simulation are presented in Chapters 2 and 3. Here, we merely

summarize aspects of the simulation that are relevant to the parallel N-body problem.

Vorticity entering the flow at each timestep is discretized with vortex particles that lie
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on partial filaments [84]. Filaments result from our physically-motivated expression

of vorticity flux boundary conditions, but also provide a convenient mechanism for

local remeshing in response to flow strain. Filament geometries are described by

cubic splines supported by a finite set of nodes. Nodes are advected by the local

velocity field using a second-order predictor/corrector method with timestep control.

Advecting the nodes accounts for deformation of the material lines and thus for

stretching and tilting of the vorticity and the corresponding modification of element

weights ci = wdVi, since vortex lines and material lines coincide. When the length

6bXil of a given element exceeds 0.96, where 6 is the regularization radius in (2.9), a

new node is added at the midpoint of the element, thus splitting the element into two

connected elements and enforcing the core overlap condition along the filament [82].

In addition to local insertion of vortex elements/nodes, we implement hairpin

removal algorithms to remove small-scale folds along vortex filaments; this process

regularizes the formation of small scales and thus reduces the rate at which elements

proliferate. We also merge neighboring elements along filaments whenever the lin-

ear extent of an element becomes too small. The result of all these operations on

filament geometry is an incremental remeshing which modifies the vortex particle

distribution-a distribution that is also being modified by advection and by the evo-

lution of particle weights ai(t). On balance, local element insertion, hairpin removal,

and small element merging result in a net positive introduction of elements. Thus, not

only do elements enter the flow at the jet nozzle, but they are created throughout the

domain. This is typical of three-dimensional vortex methods [72, 7], and corresponds

to the turbulent cascade towards smaller length scales via stretching and folding of

vortex lines.

4.3.1 Single-step performance and scaling

We first examine timings for a single evaluation of vortical velocities. A "single

evaluation" involves calculation of the full N-body problem, computing the velocity

induced by every vortex element on every other vortex element. Of course, a higher-

order time integration scheme (e.g., a Runge-Kutta scheme) may require multiple
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such evaluations in a single timestep.

Figure 4-4 shows a representative particle distribution from transverse jet simu-

lation, containing N = 157297 particles. Each vortex particle is represented by a

sphere with radius proportional to the norm of the particle's vector weight Ilai l2.

The crossflow is directed in the positive x direction; the jet centerline is aligned with

the y axis; and the z axis is in the spanwise direction. Flow variables are made di-

mensionless by d, the nozzle diameter, and U,,, the crossflow velocity. The jet orifice

is thus a disc of diameter one centered at the origin of the x-z plane; the remainder of

the x-z plane is a solid wall through which we enforce a no-flow boundary condition.

The ratio of the jet velocity to the crossflow velocity, denoted by r, is 7.

A few comments on the particle distribution are in order. Vortex particles are

introduced at the edge of the jet nozzle every At,, time units; the number of particles

introduced at each such instant is no. Here we take Atno0  = 0.01, no = 64, and the

particle core radius 6 = 0.1. As particles enter the flow, they initially compose a

cylindrical shear layer which rolls up 1-2 diameters above the jet. Roll-up of the shear

layer is manifested by grouping of the particles into vortex rings; but as these rings

form, they stretch and deform out-of-plane in a process that is intimately linked to the

formation of a counter-rotating vortex pair aligned with the jet trajectory. Counter-

rotating vorticity further disrupts the particle distribution as vortex filaments wind

and stretch and as opposite-signed vorticities approach each other. The jet then bends

further into the crossflow and the particle distribution-in terms of both locations and

weights-becomes enormously complicated as smaller scales are generated and the

particles fill the space. Again, a complete analysis of these vortical transformations

is in Chapter 3.

We consider two different vortex element distributions, both drawn from these

simulations of an evolving transverse jet-one with smaller N (N = 261,481) and

one with larger N (N = 1, 164,184). The larger case is reached approximately 0.4

convective time units after the smaller one, and thus represents not only more particles

but a particle distribution that has evolved slightly further downstream and developed

more small scales.
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For each of these two cases, we compare three partitioning schemes. The first,

labeled "block distribution," is simply a block partition of vortex element arrays.

Within the arrays, elements are arranged in order of (1) where they appear along a

filament and (2) when the filament was introduced into the flow. Since elements on

successive filaments will share somewhat similar trajectories, this distribution pre-

serves some data locality, as shown in Figure 4-5(a). Nonetheless, some interleaving

is present. Performance of this "naive" partition is not expected to be good, but it

is a convenient and straightforward partition to compute for purposes of comparison.

Each domain contains essentially the same number of particles, N/k.

The second partitioning scheme is k-means clustering as presented in §4.2.1, with

no attempt at correcting the load balance. Thus all the scaling factors sk are set to

1.0, and the iterations for cluster centroids are allowed to begin from a random initial

seed of particle locations. The third partitioning scheme employs k-means clustering

but adds the load balance heuristics developed in §4.2.3. The precise procedure for

obtaining this partition is as follows: First, k-means clustering is performed with unity

scalings and random initial seed. Then, the velocity is evaluated and cluster timings

tn are obtained. The highest-cost cluster is split and the scalings Sk are updated

with one application of (4.16), then the partition is re-computed. In other words, the

difference between the second and third partitioning schemes is one iteration of the

load balance heuristics.

Two exceptions to this procedure are the k = 1024 "scaled clusters" cases in

Figures 4-6-4-9, identified by the filled-in square symbol in each figure. Timings for

these cases were obtained from an actual, dynamic vortex element simulation, and

hence are the result of many load-balancing iterations applied to an evolving particle

distribution. These cases serve to illustrate the realistic performance of load-balanced

clustering in a dynamic simulation.

For each particle distribution, with each of the three partitioning schemes, we

scale the number of processors from 1 to 1024, choosing k E {1, 16, 64, 128, 512, 1024}.

Figures 4-6(a) and 4-6(b) show the total time of velocity evaluation in each of these

cases. We set the treecode accuracy parameter E = 10-2 and the leaf size parameter
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No = 512. Velocity evaluation times reflect both the time necessary to evaluate

the velocity at each vortex particle in parallel and the overhead of interprocessor

communication (i.e., for global reduction operations after every processor has finished

evaluating the velocity induced by sources in its domain). This can be broken down,

using the notation of the previous section, as T = maxk tk - tcomm. From these figures,

it is clear that the block distribution results in slower velocity evaluations than either

of the cluster distributions. Load-balanced clustering results in faster evaluations

than plain k-means clustering, particularly for k > 128. Regardless of the partition

scheme, adding more processors leads to faster evaluations (not a surprising result).

It is instructive to cast the timing data in terms of speedup S, where

S = serial (4.17)
Tparaiel

These data are shown in Figure 4-7. Ideal speedup is equal to k. Clearly, the block dis-

tribution performs poorly compared to the clustered distributions, yielding a speedup

of less than 200 when using 1024 processors. Scaled k-means outperforms plain k-

means, especially for k > 128. An additional gain in speedup is seen in the the scaled

k = 1024 cases, denoted with solid squares in Figures 4-7(a) and 4-7(b); recall that

these partitions result from successive load-balance iterations, whereas scaled cases

with k $ 1024 are only one load balance iteration away from their unscaled counter-

parts. In general, the speedup of scaled k-means clusters in the larger N case is quite

close to the ideal speedup. This comparison is better distilled by plotting parallel

efficiency P, defined as follows

P = Tserial (4.18)
k * Tparaiei(

and shown in Figure 4-8. Parallel efficiency of block distribution falls off rapidly

at relatively small k and approaches a value below 20% in both the large N and

small N cases. With the cluster partitions, the parallel efficiency observed in the

large N case is significantly better than in the small N case. This may be due to the

proportionally smaller communication cost of the former, or may point to some subtle
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interaction between the granularity N/k and the maximum leaf node size No. In any

case, problem sizes of N > 106 are much more representative and computationally

demanding targets for parallel hierarchical methods, particularly for large k ~ 103. In

this case, we observe parallel efficiencies consistently above 85% for scaled k-means

clusters. The most realistically load-balanced case, k = 1024, shows a remarkable

parallel efficiency of 98%.

The load imbalances underlying the single-step timings just presented are shown

in Figure 4-9. We define load imbalance I as follows:

maxk tk
I = _(4.19)

t

Several features are worth noting. First, block distribution shows the best overall

load balance, with an imbalance below 1.3 in all cases of k and N. Although every

domain in a given block distribution has essentially the same number of particles,

per-particle cost is not uniform, as discussed in §4.2.3, and thus some imbalance will

be present. Nonetheless, this imbalance is relatively small, and illustrates the fact

that good load balance is no guarantee of parallel efficiency. Domain geometry has a

key role in determining parallel efficiency; and thus all the cluster partitions, though

they may exhibit larger load imbalances, show vastly better parallel performance than

the block partition.

Load imbalance with plain k-means clustering, shown by the dash-dotted line in

Figures 4-9(a) and 4-9(b), tends to increase with the number of processors, although

jaggedness in this curve reflects the fact that, without any attempts at controlling the

relative cluster populations, load balance in the clustered case depends on the random

initial seed. After all, it is the highest-cost cluster that determines the load imbal-

ance. One application of the load-balancing heuristics reduces the imbalances to those

observed on the solid line, for k # 1024. Successive load-balancing iterations, even

though they are performed on a dynamically evolving particle distribution, reduce

the imbalance even further-to approximately 1.3 in both k = 1024 cases. Again,

we emphasize that this value is typical of the imbalance observed in full simulations.
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We will comment further on the performance of successive load-balance iterations in

§4.3.5.

Examination of Figure 4-8(b) and Figure 4-9(b) together motivates an additional

observation. Consider the scaled k-means partitions for large N: while these cases

have load imbalances of 1.3-1.7, they have parallel efficiencies above 85%. In par-

ticular, consider the k = 1024 case, with its load imbalance of 1.355 and parallel

efficiency of 98%. If the load balance were further improved, the parallel efficiency

would clearly be higher than 100%. Suppose, for instance, that the load imbalance in

this case could somehow be reduced to 1.0, and suppose further that perfecting the

load balance would not shift the mean cluster time, t, or change the communication

overhead Tcomm. Then, using a simple breakdown of computational costs,

Tserial Tserial

k * Tparaiei k (Tomm + I * (2

we would find a parallel efficiency of 130%. Without communication overhead, we

would observe a speedup of 1536-a "parallel efficiency" of 150%. While this situation

seems entirely hypothetical, it illustrates that our actual parallel partition performs

better than the load balance would lead one to expect. Why is this the case? There

may be some gains in speed due to better use of cache in the parallel computation. But

a factor that cannot be overlooked is the difference in the geometry of the hierarchical

partition between the serial and parallel cases. The serial case has no k-means clusters;

instead it has a single adaptive oct-tree covering the entire domain. Clusters partition

the domain differently, and it may be that the resulting hybrid partition-with k-

means clusters serving as root cells of small oct-trees-is more efficient than even the

original oct-tree.

4.3.2 Particle-cluster interaction counts

While the timings reported in the preceding section are the ultimate practical measure

of performance, additional insight into the effect of geometry on computational cost

may be gained by counting particle-cluster interactions.
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The possibility raised at the close of the previous section-that k-means clustering

may provide a better partition of the domain- has implications beyond parallel de-

composition. It is difficult to explore this possibility with measures of computational

time alone, however, as factors like communication overhead, along with memory and

cache access patterns, will color the timing data in a hardware-dependent fashion.

Figure 4-10 shows the number of source particles evaluated at each order of ex-

pansion p or with direct summation, for a single computation of vortical velocities.

We use the N = 1164124 particle distribution presented earlier and consider three

different partitions: (1) block distribution with 1024 domains, (2) k-means clustering

with k = 1024 clusters, and (3) a single adaptive oct-tree. The last partition is simply

the serial (k = 1) case in §4.3.1, employing all the adaptive oct-tree features discussed

in [77].

Particle-cluster interactions are counted as follows. Each time the velocity in-

duced by a source cell of n, particles is evaluated at some order p, n, is added to a

counter corresponding to that p. Of course, every target particle interacts with N

source particles through expansions at different levels of the tree, and thus the sum

of the ordinates on each curve in Figure 4-10 is equal to N 2 . The curves differ, how-

ever, in their distribution. The block partition yields a very large number of direct

interactions, accounting for its poor parallel efficiency. The global oct-tree shows that

the largest number of particle participate in order p = 7 interactions, and that very

few cells are expanded at p < 5. The k-means partition, by contrast, shows lower

orders of expansion. Some particles are expanded at order p = 4, and the distribution

peaks at p = 6. Lower-order expansions are less expensive-both on a per-cell basis,

because the number of terms at each order is 0(p3)-and on a per-particle basis,

because the initial calculation of higher-order moments may be avoided. K-means

thus yields a partition on which hierarchical velocity evaluations may be performed

more efficiently, at lower computational expense.

Figure 4-10 very clearly shows the impact of geometry on computation cost-in

particular, how geometry directly controls the number and order of particle-cluster

interactions necessary to evaluate velocity within a given accuracy. This confirms the
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mechanisms discussed in §4.2.2 and carries implications for the geometric construc-

tions on which hierarchical methods are built, transcending issues of serial or parallel

implementation. Future work that extends these ideas will be discussed in §5.2.1.

4.3.3 Error control

While noting substantial gains in parallel performance, it is important to verify that

the accuracy of velocity evaluation is well-controlled with the present algorithm. We

compute the exact velocity at each target particle uqzr using direct summation and

compare these values to those obtained with the parallel treecode, using both block

and cluster partitions. This comparision is performed for two cases of N: N =

261, 481 (the small-N case used in the previous two sections) and N = 102, 505.

Because of the high cost of direct summation, performing this comparison for much

larger N would have been computationally prohibitive. The treecode velocities were

obtained for two different values of the accuracy parameter, E = 10-2, 104. Cluster

partition is performed without splitting of high-cost clusters or scaling, as load balance

is not expected to have much effect on velocity error.

Figure 4-11 shows the absolute error in velocity as a function of k, for k =

1, 16, 64, 256. This error is defined as the maximum, over all the target particles,

of the velocity error magnitude:

eabs = max 112 - dir (21

We find that this error is very well-controlled as the velocity evaluation is further

parallelized-it remains at or below the serial (k = 1) error for all k, with only one

exception (k = 16 and N = 102505). Block distribution seems to produce smaller

errors than cluster distribution as k increases. With either partition, the reduction

in error with higher k is more pronounced for the c = 10-2 case than the e = 104

case. Similar trends are observed with the relative magnitude of the velocity error,
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defined as
ui - O|

erel = Max (1 1 '2 . (4.22)

and shown in Figure 4-12. The fact that errors are smaller in the parallel cases than

in the serial case suggests that we are over-constraining the error. By distributing

fractions of the global accuracy parameter E to all clusters, as in Equation (4.13), we

are in a sense replacing one constraint with k independent constraints. As a result,

the bound on the total error is too conservative. A more sophisticated distribution

of the error parameter to clusters-one that keeps eabs or erel from declining with

higher k-could conceivably further reduce the time of parallel velocity evaluation,

for additional gains in computational efficiency.

4.3.4 K-means performance and scaling

The calculation of a k-means partition carries its own computational cost, and it is

desirable, for an effective parallel domain decomposition, that this cost (1) remain

small relative to the actual cost of evaluating the N-body interaction and (2) scale

well with problem size. Figure 4-13 shows the time per iteration of the k-means

algorithm as a function of the number particles N for different values of k. In this

context k is both the number of clusters and the number of processors performing

the clustering. As a result, the overall computational complexity of a single k-means

step, O(Nkd), is divided by k, and we should see O(N) scaling. This is borne out

in the figure, as the lines corresponding to different k lie on top of each other and

are relatively indistinguishable. Thus, the parallel efficiency of our parallel k-means

implementation is very near 100%. The absolute time per iteration is quite small

compared to the velocity evaluation times in Figure 4-6 for similar N, and, for a

given k, the 0(N) scaling of k-means is asympotically smaller than the O(N log N)

scaling expected of a BH-type treecode. Converging to a k-means partition may

require several iterations; in fact we set imax = 7 when starting from a random seed

of centroids and imax = 4 otherwise. But the total cost of these iterations is still

small compared to the cost of velocity evaluation, especially when one considers that
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higher-order time integration schemes like Runge-Kutta will perform several velocity

evaluations with a single k-means partition.

4.3.5 Dynamic load balance

The performance of the load-balancing algorithms developed in §4.2.3 is best demon-

strated in a dynamic N-body simulation; here we use the transverse jet simulation,

complete with evolving vortex particle locations and weights and new particle intro-

duction throughout the domain.

First, we examine the distribution of processor times tk for a single velocity eval-

uation step. We choose the N = 1164184 case used earlier, extracting this case from

two simulations. One simulation employs the load-balancing algorithms-i.e., iter-

ated scaling and split/merge of cluster centroids-and the other does not, instead

reseeding the centroids at each step. The processor times tk do not include any com-

munication overhead; they consist of the time required by each processor to evaluate

the influence of its source particles on the whole domain. These times are normalized

by t and used to populate the histogram in Figure 4-14. Clearly, the distribution of

processor times is much narrower in the load-balanced case. The maximum processor

time determines the load imbalance, which is approximately 1.4.

We can extend this analysis to successive velocity evaluations and thus find the

averaged normalized load distribution on an evolving field of particles. Figure 4-15

shows normalized processor times for 36 successive velocity evaluations, with N grow-

ing from 106 to 2.5 x 106. The load-balanced simulation again shows a significantly

narrower load distribution than the simulation performed with plain k-means cluster-

ing. The load distribution in the latter case has a long tail above the mean processor

time; iterated scaling and split/merge in Figure 4-15(b) seem to control the extent of

this tail quite effectively.

Figure 4-16 shows the load imbalance at each step of the simulation. Since we are

using a second-order Runge-Kutta method for time integration, there are two values

of the imbalance at every value of N, corresponding to two different velocity evalua-

tions. The load imbalance with plain k-means ranges up to 2.5 and shows significant
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variation from step to step. In contrast, the load-balanced clustering maintains an

imbalance well below 1.5 for much of the simulation, and has a better bounded step-

to-step variation as well. The contrast in values of the load imbalance is particularly

appreciable at large values of N.

Of course, the ultimate measure of performance is velocity evaluation time, to

which load balance is a contributing factor. Figure 4-17 plots the total velocity

evaluation time-including communication overhead-at every step of a simulation

of the evolving transverse jet. The dashed line shows velocity evaluation times using

plain k-means clustering; as suggested by the plots of load balance, this line is quite

jagged, and its deviation from the load-balanced case becomes significant at large N.

Introducting the load-balance heuristics results in a smoother profile of evaluation

time versus N; at larger values of N, the computational savings, relative to the

unbalanced case, can be as much as 50 seconds per evaluation. The hypothetical ideal

performance is represented by the dash-dotted line, which shows the mean velocity

evaluation time t plus communications overhead. This is the velocity evaluation time

that could be achieved with perfect load balance. While there is some gap between

this line and the actual load-balanced simulation at large N, the present simulations

perform remarkably well relative to this ideal.

Figure 4-17 also shows a relatively favorable increase in velocity evaluation time

versus N. The trend is best observed with either the load-balanced evaluation time

or the mean evaluation time. While we cannot make strict conclusions about scaling,

since the particle distribution is evolving as N increases, the mean velocity evaluation

time shows a growth that appears somewhere between 0(N) and the 0(N log N) that

would be expected for a Barnes-Hut-type treecode.
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Figure 4-1: The geometry of partitions over target particles, illustrated with three
processors. Dashed lines outline the locally essential tree for domain #2.
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Figure 4-2: The geometry of partitions over source particles, illustrated with three
processors. Dashed lines represent the local source tree for domain #2. Note that
the quadtree in (b) employs an adaptive bisection to control the aspect ratio of its
cells, but still demonstrates the larger number of particle-cluster interactions that
accompany poor domain geometry.
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Figure 4-3: Two-dimensional schematic of scaled k-means cluster boundaries, with
three clusters. The numered solid circles are cluster centroids. Clusters have scaling
factors si; here, Si > S2.
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Figure 4-4: Vortex elements in the transverse jet at t 2.0; N = 157297. Particle
sizes are proportional to ||(wdV) 112.

166



4

4

.~fJr 2lid

2

(a) Block partition, 4 domains.

(b) Cluster partition, 7 domains.

Figure 4-5: Block and cluster partitions of vortex elements in the transverse jet at
t = 2.0; N = 157297, k = 128.
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Figure 4-6: Velocity evaluation time for the parallel treecode versus number of pro-
cessors, testing three different domain decomposition schemes.
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Figure 4-7: Speedup for the parallel treecode versus number of processors, testing
three different domain decomposition schemes.
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Chapter 5

Conclusions and Future Work

5.1 Vorticity dynamics in the transverse jet

This thesis has sought a detailed, mechanistic understanding of vorticity dynamics in

the transverse jet. Transverse jets arise in many applications, including propulsion,

effluent dispersion, oil field flows, V/STOL aerodynamics, and drug delivery. More

fundamentally, they are a canonical example of a flow composed of coherent vortical

structures. Our investigation has centered on elucidating the mechanisms underlying

the formation of organized vortical structures in the near field and the subsequent

breakdown of these structures into small scales. We have also sought to characterize

the impact of vortical structures on the transport and mixing characteristics of the

flow.

We develop a massively parallel 3-D vortex simulation of a high-momentum trans-

verse jet at large Reynolds number, featuring a discrete filament representation of the

vorticity field with local mesh refinement to capture stretching and folding and hair-

pin removal to regularize the formation of small scales. A novel formulation of the

vorticity flux boundary conditions, detailed in Chapter 2, carefully accounts for the

interaction of channel vorticity with the jet boundary layer. We demonstrate that

this interaction is essential in predicting the near-field jet trajectory and in obtaining

agreement with scaling laws. Our formulation also yields analytical expressions for

vortex lines in near field of the jet, which are confirmed in comparisons with numerical
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simulations.

Results presented in Chapter 3 capture the key vortical structures in the transverse

jet and, more importantly, reveal the mechanisms by which vortical structures evolve.

Previous computational and experimental investigations of these processes have been

incomplete at best, limited to low Reynolds numbers, transient early-stage dynamics,

or Eulerian diagnostics of essentially Lagrangian phenomena. Our results resolve

transformations of the cylindrical shear layer emanating from the nozzle. Initially

dominated by azimuthal vorticity, the lee side of the shear layer is elongated axially

by existing vortical structures to form arms of counter-rotating vorticity aligned with

the jet trajectory. Periodic roll-up of the shear layer accompanies this deformation,

creating vortex arcs on the lee and windward sides of the jet. Counter-rotating

vorticity then drives lee-side vortex arcs toward the windward boundary where they

form a pattern of azimuthal vorticity of alternating sign. Following the pronounced

bending of the trajectory into the crossflow, we observe a catastrophic breakdown of

these sparse periodic structures into a dense distribution of smaller scales, with an

attendant complexity of tangled vortex filaments. Nonetheless, spatial filtering of this

region reveals the underlying persistence of counter-rotating streamwise vorticity.

A range of diagnostic tools facilitates insight into the flow physics. The vorticity

transformation mechanisms described above are elucidated via time-resolved tracking

and continual remeshing of material lines and shear layer segments. Instantanous

isosurfaces of vorticity magnitude, contoured by different vector components, reveal

the overall vorticity structure. We also compute velocity spectra in the near field of

the jet, then examine the mean vorticity field over single cycles of shear layer roll-up.

Though the near field of the jet is dominated by deformation and periodic roll-up

of the shear layer, the resulting counter-rotating vorticity is a pronounced feature of

the mean field; in turn, the mean counter-rotation exerts substantial influence on the

deformation of the shear layer.

We further characterize the flow by calculating maximum direct Lyapunov ex-

ponents of particle trajectories, identifying repelling material surfaces that organize

finite-time mixing. We visualize these surfaces simultaneously with vortical struc-
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tures in the flow. Spatially periodic repelling surfaces bound the jet fluid before it

bends strongly into the crossflow; these surfaces begin and end near cores of high

vorticity. Plan views of the repelling surfaces reveal an initially circular jet boundary

that spreads and deforms into a kidney shape as fluid penetrates into the crossflow.

5.1.1 Future work

Our analysis of vorticity dynamics in the transverse jet, as well as the limitations and

advantages of the numerical methods used to obtain our results, suggest a number of

avenues for future work. We briefly outline these areas below:

1. Continuing analysis of the flow physics: While results in Chapter 3 have

offered fundamental insights and answered long-standing questions about the

physics of transverse jet, they have also exposed many interesting open issues.

First among these is the cascade to small scales that accompanies jet bending

into the crossflow, described in §3.2.4. It may be fruitful to seek an understand-

ing of this breakdown in terms of vortical instabilities.

Also, while inviscid dynamics play a dominant role in the transverse jet, the

fine-scale structure of the far field raises a host of questions related to Reynolds

number. (We have noted these questions at specific points in Chapter 3.) In

particular, to what extent does the mean/instantaneous structure of the far-

field CVP depend on Re? Is merging of opposite-signed vortex arcs on the

windward side of the jet more complete at lower Re? Does Re affects the near-

field deformation mechanism of the shear layer? An ongoing effort in developing

diffusion and remeshing algorithms for particle simulation has enabled vortex

simulations of the transverse jet at finite Reynolds number [125]; we intend to

employ these new computational tools to address these questions.

We would also like to characterize the natural dynamics (St) of the flow more

completely. While we have measured Stassociated with shear layer roll-up at

a particular r, different regions of the flow may exhibit different dominant fre-

quencies; merging or pairing of vortices may contribute to these delineations, for
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example. A thorough analysis of flow spectra-and of their dependence on flow

parameters like r and the shear layer thickness-is absent from the literature.

Finally, longer-time simulations of the starting transverse jet will yield mean

trajectories that are stationary over wider regions of the flow. Achieving a sta-

tionary state for y/rd >> 1 will allow better comparison with far-field trajectory

correlations, along with further investigation of the relationship between topo-

logical changes in the vorticity field and demarcation between near- and far-field

regions of intermediate-asymptotic similarity.

2. Flow actuation: The broader context of this work, as we have emphasized in

Chapter 1, is the development of actuation strategies that optimally manipu-

late vortical structures to affect mixing. This thesis has focused on the physics

of the unforced flow rather than on actuation, yet we may make the following

observation: Figures 3-27 and 3-28 show significantly different jet trajectories,

yet the vorticity entering the flow in Figure 3-28 essential adds only axial and

azimuthal perturbations to the primary jet vorticity. In particular, the relative

magnitude of these perturbations is O(1/r), approximately 10%. The result-

ing difference in trajectories suggests that small axial and azimuthal vorticity

perturbations can serve as useful actuation inputs.

We plan to study the physics of the actuated flow with a focus on particular

actuation inputs. We will examine the role of jet pulsing-i.e., varying the

frequency, amplitude, and duty cycle of r(t). Pulsed actuation has been explored

in some experimental studies [87, 43, 65], but the relationship between optimal

pulsing and the transverse jet's preferred modes or shear layer dynamics remains

unexamined. In addition, we are generalizing the results of Figure 3-28 to

examine more general sets of perturbations to the vorticity field along the nozzle

edge. These actuations correspond to choosing the functions f(0) and g(6) in

(2.34), and may be realized through the use of tabs [133] or vortex generators

along the nozzle edge. Continuous filament models as derived in §2.2.3 will be

employed as illustrative physical models and in numerical simulation.
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Non-circular nozzle shapes-elliptical orifices, for example [89, 90-may also

have a useful impact on the flow field. The effect of these shape modifications

on the vorticity entering the flow is clear, suggesting an interesting examination

of the ensuing vorticity dynamics.

3. Particle methods, diffusion, and subgrid modeling: On the purely nu-

merical side, this work is motivating new algorithmic developments for vortex

methods. As mentioned earlier, we are developing novel approaches for simul-

taneous diffusion and remeshing of vortex particles [125], based on vorticity

redistribution [109].

More open is the question of subgrid modeling with vortex methods-analyzing

and generalizing the role of hairpin removal methods described in §2.1.4. The

energy spectrum obtained with hairpin removal has not been analyzed; this

fundamental question is even more interesting in light of the transverse jet's

observed breakdown into small scales. How can one construct more general

subgrid models for vortex particles? To what extent can these models capture

the inertial range?

Related to this are questions of optimal inviscid remeshing: What is the optimal

distribution of Lagrangian computational points representing a smooth field

containing a range of length scales? Work in this area should have important

implications for the numerical modeling of multi-scale phenomena.

5.2 K-means clustering for hierarchical N-body in-

teractions

The high-resolution vortex particle simulations described in Chapters 2 and 3 of this

thesis present a number of computational challenges. Chief among these-in terms of

computational cost-is the N-body problem of evaluating vortical velocities at every

particle. Direct summation is prohibitively expensive for large N and thus we employ

a hierarchical method, specifically an adaptive treecode based on Taylor expansions
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of the Rosenhead-Moore kernel (2.9) in Cartesian coordinates [77]. This method must

contend with an irregular, time-evolving particle distribution of non-uniform density

and with the continual introduction of new vortex particles throughout the domain.

Moreover, the size of our problem requires that we implement the hierarchical method

in parallel on a distributed-memory machine.

This thesis introduces new algorithms, based on weighted k-means clustering, for

partitioning and dynamic load balancing of N-body interactions. Good spatial parti-

tioning is central to the performance of a hierarchical method. We demonstrate that

the number of particle-cluster interactions and the order at which they are performed

is directly affected by partition geometry, and that the relationship between partition

geometry and computational cost is expressed in the error bounds of various cluster

approximations. Weighted k-means creates well-localized convex domains and min-

imizes a sum of cluster moments, reducing the cost of the computing the N-body

problem.

We also introduce heuristics for dynamic load balancing that are compatible with

k-means; these include iterative scaling of cluster sizes and adaptive redistribution of

cluster centroids.

Application of load-balanced k-means partition to the parallel hierarchical evalua-

tion of vortical velocities results in outstanding parallel efficiencies; velocity evaluation

errors, on the other hand, are maintained at or below their serial values. On a realistic

particle distribution of 1.2 million particles (obtained from the transverse jet) we ob-

serve a parallel efficiency of approximately 98% on 1024 processors; naive approaches

to domain decomposition show parallel efficiencies below 20% on the same problem.

In simulations of the evolving transverse jet, we find that load imbalance is typically

maintained below 1.5. Additionally, we find that (1) load balance provides no guar-

antee of parallel efficiency, and (2) with k-means partition, the parallel efficiency of

the hierarchical method is better than the load imbalance would suggest.

The utility of these clustering algorithms extends beyond vortex particle methods

to N-body problems in a variety of fields.
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5.2.1 Future work

The performance of parallel cluster partitioning and the accompanying dynamic load

balancing techniques, while very good, suggests a number of extensions and improve-

ments.

First, one may explore alternative means of obtaining load-balanced cluster par-

titions. Load balancing in this problem may be cast as a constrained optimization

problem. Optimal geometry-i.e., minimization of the cost function J in (4.10) with

all the scalings Sk set to unity-must be subject to a constraint ensuring equal com-

putational cost for each cluster. One way to approach this constraint is to add a

penalty term of the form 'y(Nk - N) 2 or -y(tk - t) 2 to the k-means cost function. How

best to solve this optimization problem-in other words, how this new term would

modify (or invalidate) the k-means algorithm-will require some thought.

Second, a logical step forward for our parallel treecode is to extend the imple-

mentation to distributed data-that is, to no longer store copies of all the particle

locations and weights on all processors. Doing this will add additional communica-

tion steps to the current parallel framework, but eliminate any realistic constraints

that memory may place on problem size. We may be able to take advantage of the

k-means partition in designing the necessary algorithms. Mapping a point in space

to the domain that contains it in log k time could easily be accomplished with hier-

archical clustering (see below); we also may be able to use the Voronoi tesselation of

cluster centroids to do the same.

Finally, and most fundamentally, the load balance, parallel efficiency, and inter-

action counts reported in Chapter 4 together suggest that k-means partition should

be used for more than just parallel domain decomposition. The parallel efficiency of

k-means is better than its load balance would suggest because it creates a different

overall partition geometry. As shown in Figure 4-10, more source particles have their

influence computed at lower order in the parallel case (a hybrid k-means + local oct-

tree partition) than in the serial case (an adaptive global oct-tree partition). This

result is not surprising, given the geometric optimality of k-means clusters. Results
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thus suggest that hierarchical k-means clustering could replace traditional oct-tree

partitioning schemes to optimize the computational efficiency of serial hierarchical

N-body algorithms. The opportunities for adaptivity in this context are enormous.

The number of child clusters within each parent cell is not constrained in any way,

and could be locally optimized at each node of the tree. In the parallel context,

hierarchical clustering may also offer a simpler means of load-balancing by localiz-

ing competition among centroids for particles. The improved interaction counts in

Figure 4-10 may just scratch the surface of potential gains.
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